1 /* Calculate branch probabilities, and basic block execution counts. 2 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 4 Free Software Foundation, Inc. 5 Contributed by James E. Wilson, UC Berkeley/Cygnus Support; 6 based on some ideas from Dain Samples of UC Berkeley. 7 Further mangling by Bob Manson, Cygnus Support. 8 9 This file is part of GCC. 10 11 GCC is free software; you can redistribute it and/or modify it under 12 the terms of the GNU General Public License as published by the Free 13 Software Foundation; either version 3, or (at your option) any later 14 version. 15 16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 17 WARRANTY; without even the implied warranty of MERCHANTABILITY or 18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 19 for more details. 20 21 You should have received a copy of the GNU General Public License 22 along with GCC; see the file COPYING3. If not see 23 <http://www.gnu.org/licenses/>. */ 24 25 /* Generate basic block profile instrumentation and auxiliary files. 26 Profile generation is optimized, so that not all arcs in the basic 27 block graph need instrumenting. First, the BB graph is closed with 28 one entry (function start), and one exit (function exit). Any 29 ABNORMAL_EDGE cannot be instrumented (because there is no control 30 path to place the code). We close the graph by inserting fake 31 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal 32 edges that do not go to the exit_block. We ignore such abnormal 33 edges. Naturally these fake edges are never directly traversed, 34 and so *cannot* be directly instrumented. Some other graph 35 massaging is done. To optimize the instrumentation we generate the 36 BB minimal span tree, only edges that are not on the span tree 37 (plus the entry point) need instrumenting. From that information 38 all other edge counts can be deduced. By construction all fake 39 edges must be on the spanning tree. We also attempt to place 40 EDGE_CRITICAL edges on the spanning tree. 41 42 The auxiliary files generated are <dumpbase>.gcno (at compile time) 43 and <dumpbase>.gcda (at run time). The format is 44 described in full in gcov-io.h. */ 45 46 /* ??? Register allocation should use basic block execution counts to 47 give preference to the most commonly executed blocks. */ 48 49 /* ??? Should calculate branch probabilities before instrumenting code, since 50 then we can use arc counts to help decide which arcs to instrument. */ 51 52 #include "config.h" 53 #include "system.h" 54 #include "coretypes.h" 55 #include "tm.h" 56 #include "rtl.h" 57 #include "flags.h" 58 #include "output.h" 59 #include "regs.h" 60 #include "expr.h" 61 #include "function.h" 62 #include "toplev.h" 63 #include "coverage.h" 64 #include "value-prof.h" 65 #include "tree.h" 66 #include "cfghooks.h" 67 #include "tree-flow.h" 68 #include "timevar.h" 69 #include "cfgloop.h" 70 #include "tree-pass.h" 71 72 #include "profile.h" 73 74 /* Hooks for profiling. */ 75 static struct profile_hooks* profile_hooks; 76 77 struct bb_info { 78 unsigned int count_valid : 1; 79 80 /* Number of successor and predecessor edges. */ 81 gcov_type succ_count; 82 gcov_type pred_count; 83 }; 84 85 #define BB_INFO(b) ((struct bb_info *) (b)->aux) 86 87 88 /* Counter summary from the last set of coverage counts read. */ 89 90 const struct gcov_ctr_summary *profile_info; 91 92 /* Collect statistics on the performance of this pass for the entire source 93 file. */ 94 95 static int total_num_blocks; 96 static int total_num_edges; 97 static int total_num_edges_ignored; 98 static int total_num_edges_instrumented; 99 static int total_num_blocks_created; 100 static int total_num_passes; 101 static int total_num_times_called; 102 static int total_hist_br_prob[20]; 103 static int total_num_branches; 104 105 /* Forward declarations. */ 106 static void find_spanning_tree (struct edge_list *); 107 static unsigned instrument_edges (struct edge_list *); 108 static void instrument_values (histogram_values); 109 static void compute_branch_probabilities (void); 110 static void compute_value_histograms (histogram_values); 111 static gcov_type * get_exec_counts (void); 112 static basic_block find_group (basic_block); 113 static void union_groups (basic_block, basic_block); 114 115 /* Add edge instrumentation code to the entire insn chain. 116 117 F is the first insn of the chain. 118 NUM_BLOCKS is the number of basic blocks found in F. */ 119 120 static unsigned 121 instrument_edges (struct edge_list *el) 122 { 123 unsigned num_instr_edges = 0; 124 int num_edges = NUM_EDGES (el); 125 basic_block bb; 126 127 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 128 { 129 edge e; 130 edge_iterator ei; 131 132 FOR_EACH_EDGE (e, ei, bb->succs) 133 { 134 struct edge_info *inf = EDGE_INFO (e); 135 136 if (!inf->ignore && !inf->on_tree) 137 { 138 gcc_assert (!(e->flags & EDGE_ABNORMAL)); 139 if (dump_file) 140 fprintf (dump_file, "Edge %d to %d instrumented%s\n", 141 e->src->index, e->dest->index, 142 EDGE_CRITICAL_P (e) ? " (and split)" : ""); 143 (profile_hooks->gen_edge_profiler) (num_instr_edges++, e); 144 } 145 } 146 } 147 148 total_num_blocks_created += num_edges; 149 if (dump_file) 150 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges); 151 return num_instr_edges; 152 } 153 154 /* Add code to measure histograms for values in list VALUES. */ 155 static void 156 instrument_values (histogram_values values) 157 { 158 unsigned i, t; 159 160 /* Emit code to generate the histograms before the insns. */ 161 162 for (i = 0; i < VEC_length (histogram_value, values); i++) 163 { 164 histogram_value hist = VEC_index (histogram_value, values, i); 165 switch (hist->type) 166 { 167 case HIST_TYPE_INTERVAL: 168 t = GCOV_COUNTER_V_INTERVAL; 169 break; 170 171 case HIST_TYPE_POW2: 172 t = GCOV_COUNTER_V_POW2; 173 break; 174 175 case HIST_TYPE_SINGLE_VALUE: 176 t = GCOV_COUNTER_V_SINGLE; 177 break; 178 179 case HIST_TYPE_CONST_DELTA: 180 t = GCOV_COUNTER_V_DELTA; 181 break; 182 183 case HIST_TYPE_INDIR_CALL: 184 t = GCOV_COUNTER_V_INDIR; 185 break; 186 187 case HIST_TYPE_AVERAGE: 188 t = GCOV_COUNTER_AVERAGE; 189 break; 190 191 case HIST_TYPE_IOR: 192 t = GCOV_COUNTER_IOR; 193 break; 194 195 default: 196 gcc_unreachable (); 197 } 198 if (!coverage_counter_alloc (t, hist->n_counters)) 199 continue; 200 201 switch (hist->type) 202 { 203 case HIST_TYPE_INTERVAL: 204 (profile_hooks->gen_interval_profiler) (hist, t, 0); 205 break; 206 207 case HIST_TYPE_POW2: 208 (profile_hooks->gen_pow2_profiler) (hist, t, 0); 209 break; 210 211 case HIST_TYPE_SINGLE_VALUE: 212 (profile_hooks->gen_one_value_profiler) (hist, t, 0); 213 break; 214 215 case HIST_TYPE_CONST_DELTA: 216 (profile_hooks->gen_const_delta_profiler) (hist, t, 0); 217 break; 218 219 case HIST_TYPE_INDIR_CALL: 220 (profile_hooks->gen_ic_profiler) (hist, t, 0); 221 break; 222 223 case HIST_TYPE_AVERAGE: 224 (profile_hooks->gen_average_profiler) (hist, t, 0); 225 break; 226 227 case HIST_TYPE_IOR: 228 (profile_hooks->gen_ior_profiler) (hist, t, 0); 229 break; 230 231 default: 232 gcc_unreachable (); 233 } 234 } 235 } 236 237 238 /* Computes hybrid profile for all matching entries in da_file. */ 239 240 static gcov_type * 241 get_exec_counts (void) 242 { 243 unsigned num_edges = 0; 244 basic_block bb; 245 gcov_type *counts; 246 247 /* Count the edges to be (possibly) instrumented. */ 248 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 249 { 250 edge e; 251 edge_iterator ei; 252 253 FOR_EACH_EDGE (e, ei, bb->succs) 254 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree) 255 num_edges++; 256 } 257 258 counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, &profile_info); 259 if (!counts) 260 return NULL; 261 262 if (dump_file && profile_info) 263 fprintf(dump_file, "Merged %u profiles with maximal count %u.\n", 264 profile_info->runs, (unsigned) profile_info->sum_max); 265 266 return counts; 267 } 268 269 270 static bool 271 is_edge_inconsistent (VEC(edge,gc) *edges) 272 { 273 edge e; 274 edge_iterator ei; 275 FOR_EACH_EDGE (e, ei, edges) 276 { 277 if (!EDGE_INFO (e)->ignore) 278 { 279 if (e->count < 0 280 && (!(e->flags & EDGE_FAKE) 281 || !block_ends_with_call_p (e->src))) 282 { 283 if (dump_file) 284 { 285 fprintf (dump_file, 286 "Edge %i->%i is inconsistent, count"HOST_WIDEST_INT_PRINT_DEC, 287 e->src->index, e->dest->index, e->count); 288 dump_bb (e->src, dump_file, 0); 289 dump_bb (e->dest, dump_file, 0); 290 } 291 return true; 292 } 293 } 294 } 295 return false; 296 } 297 298 static void 299 correct_negative_edge_counts (void) 300 { 301 basic_block bb; 302 edge e; 303 edge_iterator ei; 304 305 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 306 { 307 FOR_EACH_EDGE (e, ei, bb->succs) 308 { 309 if (e->count < 0) 310 e->count = 0; 311 } 312 } 313 } 314 315 /* Check consistency. 316 Return true if inconsistency is found. */ 317 static bool 318 is_inconsistent (void) 319 { 320 basic_block bb; 321 bool inconsistent = false; 322 FOR_EACH_BB (bb) 323 { 324 inconsistent |= is_edge_inconsistent (bb->preds); 325 if (!dump_file && inconsistent) 326 return true; 327 inconsistent |= is_edge_inconsistent (bb->succs); 328 if (!dump_file && inconsistent) 329 return true; 330 if (bb->count < 0) 331 { 332 if (dump_file) 333 { 334 fprintf (dump_file, "BB %i count is negative " 335 HOST_WIDEST_INT_PRINT_DEC, 336 bb->index, 337 bb->count); 338 dump_bb (bb, dump_file, 0); 339 } 340 inconsistent = true; 341 } 342 if (bb->count != sum_edge_counts (bb->preds)) 343 { 344 if (dump_file) 345 { 346 fprintf (dump_file, "BB %i count does not match sum of incoming edges " 347 HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC, 348 bb->index, 349 bb->count, 350 sum_edge_counts (bb->preds)); 351 dump_bb (bb, dump_file, 0); 352 } 353 inconsistent = true; 354 } 355 if (bb->count != sum_edge_counts (bb->succs) && 356 ! (find_edge (bb, EXIT_BLOCK_PTR) != NULL && block_ends_with_call_p (bb))) 357 { 358 if (dump_file) 359 { 360 fprintf (dump_file, "BB %i count does not match sum of outgoing edges " 361 HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC, 362 bb->index, 363 bb->count, 364 sum_edge_counts (bb->succs)); 365 dump_bb (bb, dump_file, 0); 366 } 367 inconsistent = true; 368 } 369 if (!dump_file && inconsistent) 370 return true; 371 } 372 373 return inconsistent; 374 } 375 376 /* Set each basic block count to the sum of its outgoing edge counts */ 377 static void 378 set_bb_counts (void) 379 { 380 basic_block bb; 381 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 382 { 383 bb->count = sum_edge_counts (bb->succs); 384 gcc_assert (bb->count >= 0); 385 } 386 } 387 388 /* Reads profile data and returns total number of edge counts read */ 389 static int 390 read_profile_edge_counts (gcov_type *exec_counts) 391 { 392 basic_block bb; 393 int num_edges = 0; 394 int exec_counts_pos = 0; 395 /* For each edge not on the spanning tree, set its execution count from 396 the .da file. */ 397 /* The first count in the .da file is the number of times that the function 398 was entered. This is the exec_count for block zero. */ 399 400 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 401 { 402 edge e; 403 edge_iterator ei; 404 405 FOR_EACH_EDGE (e, ei, bb->succs) 406 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree) 407 { 408 num_edges++; 409 if (exec_counts) 410 { 411 e->count = exec_counts[exec_counts_pos++]; 412 if (e->count > profile_info->sum_max) 413 { 414 error ("corrupted profile info: edge from %i to %i exceeds maximal count", 415 bb->index, e->dest->index); 416 } 417 } 418 else 419 e->count = 0; 420 421 EDGE_INFO (e)->count_valid = 1; 422 BB_INFO (bb)->succ_count--; 423 BB_INFO (e->dest)->pred_count--; 424 if (dump_file) 425 { 426 fprintf (dump_file, "\nRead edge from %i to %i, count:", 427 bb->index, e->dest->index); 428 fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, 429 (HOST_WIDEST_INT) e->count); 430 } 431 } 432 } 433 434 return num_edges; 435 } 436 437 /* Compute the branch probabilities for the various branches. 438 Annotate them accordingly. */ 439 440 static void 441 compute_branch_probabilities (void) 442 { 443 basic_block bb; 444 int i; 445 int num_edges = 0; 446 int changes; 447 int passes; 448 int hist_br_prob[20]; 449 int num_branches; 450 gcov_type *exec_counts = get_exec_counts (); 451 int inconsistent = 0; 452 453 /* Very simple sanity checks so we catch bugs in our profiling code. */ 454 if (!profile_info) 455 return; 456 if (profile_info->run_max * profile_info->runs < profile_info->sum_max) 457 { 458 error ("corrupted profile info: run_max * runs < sum_max"); 459 exec_counts = NULL; 460 } 461 462 if (profile_info->sum_all < profile_info->sum_max) 463 { 464 error ("corrupted profile info: sum_all is smaller than sum_max"); 465 exec_counts = NULL; 466 } 467 468 /* Attach extra info block to each bb. */ 469 alloc_aux_for_blocks (sizeof (struct bb_info)); 470 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 471 { 472 edge e; 473 edge_iterator ei; 474 475 FOR_EACH_EDGE (e, ei, bb->succs) 476 if (!EDGE_INFO (e)->ignore) 477 BB_INFO (bb)->succ_count++; 478 FOR_EACH_EDGE (e, ei, bb->preds) 479 if (!EDGE_INFO (e)->ignore) 480 BB_INFO (bb)->pred_count++; 481 } 482 483 /* Avoid predicting entry on exit nodes. */ 484 BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2; 485 BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2; 486 487 num_edges = read_profile_edge_counts (exec_counts); 488 489 if (dump_file) 490 fprintf (dump_file, "\n%d edge counts read\n", num_edges); 491 492 /* For every block in the file, 493 - if every exit/entrance edge has a known count, then set the block count 494 - if the block count is known, and every exit/entrance edge but one has 495 a known execution count, then set the count of the remaining edge 496 497 As edge counts are set, decrement the succ/pred count, but don't delete 498 the edge, that way we can easily tell when all edges are known, or only 499 one edge is unknown. */ 500 501 /* The order that the basic blocks are iterated through is important. 502 Since the code that finds spanning trees starts with block 0, low numbered 503 edges are put on the spanning tree in preference to high numbered edges. 504 Hence, most instrumented edges are at the end. Graph solving works much 505 faster if we propagate numbers from the end to the start. 506 507 This takes an average of slightly more than 3 passes. */ 508 509 changes = 1; 510 passes = 0; 511 while (changes) 512 { 513 passes++; 514 changes = 0; 515 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb) 516 { 517 struct bb_info *bi = BB_INFO (bb); 518 if (! bi->count_valid) 519 { 520 if (bi->succ_count == 0) 521 { 522 edge e; 523 edge_iterator ei; 524 gcov_type total = 0; 525 526 FOR_EACH_EDGE (e, ei, bb->succs) 527 total += e->count; 528 bb->count = total; 529 bi->count_valid = 1; 530 changes = 1; 531 } 532 else if (bi->pred_count == 0) 533 { 534 edge e; 535 edge_iterator ei; 536 gcov_type total = 0; 537 538 FOR_EACH_EDGE (e, ei, bb->preds) 539 total += e->count; 540 bb->count = total; 541 bi->count_valid = 1; 542 changes = 1; 543 } 544 } 545 if (bi->count_valid) 546 { 547 if (bi->succ_count == 1) 548 { 549 edge e; 550 edge_iterator ei; 551 gcov_type total = 0; 552 553 /* One of the counts will be invalid, but it is zero, 554 so adding it in also doesn't hurt. */ 555 FOR_EACH_EDGE (e, ei, bb->succs) 556 total += e->count; 557 558 /* Search for the invalid edge, and set its count. */ 559 FOR_EACH_EDGE (e, ei, bb->succs) 560 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore) 561 break; 562 563 /* Calculate count for remaining edge by conservation. */ 564 total = bb->count - total; 565 566 gcc_assert (e); 567 EDGE_INFO (e)->count_valid = 1; 568 e->count = total; 569 bi->succ_count--; 570 571 BB_INFO (e->dest)->pred_count--; 572 changes = 1; 573 } 574 if (bi->pred_count == 1) 575 { 576 edge e; 577 edge_iterator ei; 578 gcov_type total = 0; 579 580 /* One of the counts will be invalid, but it is zero, 581 so adding it in also doesn't hurt. */ 582 FOR_EACH_EDGE (e, ei, bb->preds) 583 total += e->count; 584 585 /* Search for the invalid edge, and set its count. */ 586 FOR_EACH_EDGE (e, ei, bb->preds) 587 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore) 588 break; 589 590 /* Calculate count for remaining edge by conservation. */ 591 total = bb->count - total + e->count; 592 593 gcc_assert (e); 594 EDGE_INFO (e)->count_valid = 1; 595 e->count = total; 596 bi->pred_count--; 597 598 BB_INFO (e->src)->succ_count--; 599 changes = 1; 600 } 601 } 602 } 603 } 604 if (dump_file) 605 dump_flow_info (dump_file, dump_flags); 606 607 total_num_passes += passes; 608 if (dump_file) 609 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes); 610 611 /* If the graph has been correctly solved, every block will have a 612 succ and pred count of zero. */ 613 FOR_EACH_BB (bb) 614 { 615 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count); 616 } 617 618 /* Check for inconsistent basic block counts */ 619 inconsistent = is_inconsistent (); 620 621 if (inconsistent) 622 { 623 if (flag_profile_correction) 624 { 625 /* Inconsistency detected. Make it flow-consistent. */ 626 static int informed = 0; 627 if (informed == 0) 628 { 629 informed = 1; 630 inform (input_location, "correcting inconsistent profile data"); 631 } 632 correct_negative_edge_counts (); 633 /* Set bb counts to the sum of the outgoing edge counts */ 634 set_bb_counts (); 635 if (dump_file) 636 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n"); 637 mcf_smooth_cfg (); 638 } 639 else 640 error ("corrupted profile info: profile data is not flow-consistent"); 641 } 642 643 /* For every edge, calculate its branch probability and add a reg_note 644 to the branch insn to indicate this. */ 645 646 for (i = 0; i < 20; i++) 647 hist_br_prob[i] = 0; 648 num_branches = 0; 649 650 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 651 { 652 edge e; 653 edge_iterator ei; 654 655 if (bb->count < 0) 656 { 657 error ("corrupted profile info: number of iterations for basic block %d thought to be %i", 658 bb->index, (int)bb->count); 659 bb->count = 0; 660 } 661 FOR_EACH_EDGE (e, ei, bb->succs) 662 { 663 /* Function may return twice in the cased the called function is 664 setjmp or calls fork, but we can't represent this by extra 665 edge from the entry, since extra edge from the exit is 666 already present. We get negative frequency from the entry 667 point. */ 668 if ((e->count < 0 669 && e->dest == EXIT_BLOCK_PTR) 670 || (e->count > bb->count 671 && e->dest != EXIT_BLOCK_PTR)) 672 { 673 if (block_ends_with_call_p (bb)) 674 e->count = e->count < 0 ? 0 : bb->count; 675 } 676 if (e->count < 0 || e->count > bb->count) 677 { 678 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i", 679 e->src->index, e->dest->index, 680 (int)e->count); 681 e->count = bb->count / 2; 682 } 683 } 684 if (bb->count) 685 { 686 FOR_EACH_EDGE (e, ei, bb->succs) 687 e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count; 688 if (bb->index >= NUM_FIXED_BLOCKS 689 && block_ends_with_condjump_p (bb) 690 && EDGE_COUNT (bb->succs) >= 2) 691 { 692 int prob; 693 edge e; 694 int index; 695 696 /* Find the branch edge. It is possible that we do have fake 697 edges here. */ 698 FOR_EACH_EDGE (e, ei, bb->succs) 699 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU))) 700 break; 701 702 prob = e->probability; 703 index = prob * 20 / REG_BR_PROB_BASE; 704 705 if (index == 20) 706 index = 19; 707 hist_br_prob[index]++; 708 709 num_branches++; 710 } 711 } 712 /* As a last resort, distribute the probabilities evenly. 713 Use simple heuristics that if there are normal edges, 714 give all abnormals frequency of 0, otherwise distribute the 715 frequency over abnormals (this is the case of noreturn 716 calls). */ 717 else if (profile_status == PROFILE_ABSENT) 718 { 719 int total = 0; 720 721 FOR_EACH_EDGE (e, ei, bb->succs) 722 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) 723 total ++; 724 if (total) 725 { 726 FOR_EACH_EDGE (e, ei, bb->succs) 727 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) 728 e->probability = REG_BR_PROB_BASE / total; 729 else 730 e->probability = 0; 731 } 732 else 733 { 734 total += EDGE_COUNT (bb->succs); 735 FOR_EACH_EDGE (e, ei, bb->succs) 736 e->probability = REG_BR_PROB_BASE / total; 737 } 738 if (bb->index >= NUM_FIXED_BLOCKS 739 && block_ends_with_condjump_p (bb) 740 && EDGE_COUNT (bb->succs) >= 2) 741 num_branches++; 742 } 743 } 744 counts_to_freqs (); 745 profile_status = PROFILE_READ; 746 747 if (dump_file) 748 { 749 fprintf (dump_file, "%d branches\n", num_branches); 750 if (num_branches) 751 for (i = 0; i < 10; i++) 752 fprintf (dump_file, "%d%% branches in range %d-%d%%\n", 753 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches, 754 5 * i, 5 * i + 5); 755 756 total_num_branches += num_branches; 757 for (i = 0; i < 20; i++) 758 total_hist_br_prob[i] += hist_br_prob[i]; 759 760 fputc ('\n', dump_file); 761 fputc ('\n', dump_file); 762 } 763 764 free_aux_for_blocks (); 765 } 766 767 /* Load value histograms values whose description is stored in VALUES array 768 from .gcda file. */ 769 770 static void 771 compute_value_histograms (histogram_values values) 772 { 773 unsigned i, j, t, any; 774 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS]; 775 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS]; 776 gcov_type *act_count[GCOV_N_VALUE_COUNTERS]; 777 gcov_type *aact_count; 778 779 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 780 n_histogram_counters[t] = 0; 781 782 for (i = 0; i < VEC_length (histogram_value, values); i++) 783 { 784 histogram_value hist = VEC_index (histogram_value, values, i); 785 n_histogram_counters[(int) hist->type] += hist->n_counters; 786 } 787 788 any = 0; 789 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 790 { 791 if (!n_histogram_counters[t]) 792 { 793 histogram_counts[t] = NULL; 794 continue; 795 } 796 797 histogram_counts[t] = 798 get_coverage_counts (COUNTER_FOR_HIST_TYPE (t), 799 n_histogram_counters[t], NULL); 800 if (histogram_counts[t]) 801 any = 1; 802 act_count[t] = histogram_counts[t]; 803 } 804 if (!any) 805 return; 806 807 for (i = 0; i < VEC_length (histogram_value, values); i++) 808 { 809 histogram_value hist = VEC_index (histogram_value, values, i); 810 gimple stmt = hist->hvalue.stmt; 811 812 t = (int) hist->type; 813 814 aact_count = act_count[t]; 815 act_count[t] += hist->n_counters; 816 817 gimple_add_histogram_value (cfun, stmt, hist); 818 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters); 819 for (j = 0; j < hist->n_counters; j++) 820 hist->hvalue.counters[j] = aact_count[j]; 821 } 822 823 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 824 if (histogram_counts[t]) 825 free (histogram_counts[t]); 826 } 827 828 /* The entry basic block will be moved around so that it has index=1, 829 there is nothing at index 0 and the exit is at n_basic_block. */ 830 #define BB_TO_GCOV_INDEX(bb) ((bb)->index - 1) 831 /* When passed NULL as file_name, initialize. 832 When passed something else, output the necessary commands to change 833 line to LINE and offset to FILE_NAME. */ 834 static void 835 output_location (char const *file_name, int line, 836 gcov_position_t *offset, basic_block bb) 837 { 838 static char const *prev_file_name; 839 static int prev_line; 840 bool name_differs, line_differs; 841 842 if (!file_name) 843 { 844 prev_file_name = NULL; 845 prev_line = -1; 846 return; 847 } 848 849 name_differs = !prev_file_name || strcmp (file_name, prev_file_name); 850 line_differs = prev_line != line; 851 852 if (name_differs || line_differs) 853 { 854 if (!*offset) 855 { 856 *offset = gcov_write_tag (GCOV_TAG_LINES); 857 gcov_write_unsigned (BB_TO_GCOV_INDEX (bb)); 858 name_differs = line_differs=true; 859 } 860 861 /* If this is a new source file, then output the 862 file's name to the .bb file. */ 863 if (name_differs) 864 { 865 prev_file_name = file_name; 866 gcov_write_unsigned (0); 867 gcov_write_string (prev_file_name); 868 } 869 if (line_differs) 870 { 871 gcov_write_unsigned (line); 872 prev_line = line; 873 } 874 } 875 } 876 877 /* Instrument and/or analyze program behavior based on program flow graph. 878 In either case, this function builds a flow graph for the function being 879 compiled. The flow graph is stored in BB_GRAPH. 880 881 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in 882 the flow graph that are needed to reconstruct the dynamic behavior of the 883 flow graph. 884 885 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary 886 information from a data file containing edge count information from previous 887 executions of the function being compiled. In this case, the flow graph is 888 annotated with actual execution counts, which are later propagated into the 889 rtl for optimization purposes. 890 891 Main entry point of this file. */ 892 893 void 894 branch_prob (void) 895 { 896 basic_block bb; 897 unsigned i; 898 unsigned num_edges, ignored_edges; 899 unsigned num_instrumented; 900 struct edge_list *el; 901 histogram_values values = NULL; 902 903 total_num_times_called++; 904 905 flow_call_edges_add (NULL); 906 add_noreturn_fake_exit_edges (); 907 908 /* We can't handle cyclic regions constructed using abnormal edges. 909 To avoid these we replace every source of abnormal edge by a fake 910 edge from entry node and every destination by fake edge to exit. 911 This keeps graph acyclic and our calculation exact for all normal 912 edges except for exit and entrance ones. 913 914 We also add fake exit edges for each call and asm statement in the 915 basic, since it may not return. */ 916 917 FOR_EACH_BB (bb) 918 { 919 int need_exit_edge = 0, need_entry_edge = 0; 920 int have_exit_edge = 0, have_entry_edge = 0; 921 edge e; 922 edge_iterator ei; 923 924 /* Functions returning multiple times are not handled by extra edges. 925 Instead we simply allow negative counts on edges from exit to the 926 block past call and corresponding probabilities. We can't go 927 with the extra edges because that would result in flowgraph that 928 needs to have fake edges outside the spanning tree. */ 929 930 FOR_EACH_EDGE (e, ei, bb->succs) 931 { 932 gimple_stmt_iterator gsi; 933 gimple last = NULL; 934 935 /* It may happen that there are compiler generated statements 936 without a locus at all. Go through the basic block from the 937 last to the first statement looking for a locus. */ 938 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 939 { 940 last = gsi_stmt (gsi); 941 if (gimple_has_location (last)) 942 break; 943 } 944 945 /* Edge with goto locus might get wrong coverage info unless 946 it is the only edge out of BB. 947 Don't do that when the locuses match, so 948 if (blah) goto something; 949 is not computed twice. */ 950 if (last 951 && gimple_has_location (last) 952 && e->goto_locus != UNKNOWN_LOCATION 953 && !single_succ_p (bb) 954 && (LOCATION_FILE (e->goto_locus) 955 != LOCATION_FILE (gimple_location (last)) 956 || (LOCATION_LINE (e->goto_locus) 957 != LOCATION_LINE (gimple_location (last))))) 958 { 959 basic_block new_bb = split_edge (e); 960 edge ne = single_succ_edge (new_bb); 961 ne->goto_locus = e->goto_locus; 962 ne->goto_block = e->goto_block; 963 } 964 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 965 && e->dest != EXIT_BLOCK_PTR) 966 need_exit_edge = 1; 967 if (e->dest == EXIT_BLOCK_PTR) 968 have_exit_edge = 1; 969 } 970 FOR_EACH_EDGE (e, ei, bb->preds) 971 { 972 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 973 && e->src != ENTRY_BLOCK_PTR) 974 need_entry_edge = 1; 975 if (e->src == ENTRY_BLOCK_PTR) 976 have_entry_edge = 1; 977 } 978 979 if (need_exit_edge && !have_exit_edge) 980 { 981 if (dump_file) 982 fprintf (dump_file, "Adding fake exit edge to bb %i\n", 983 bb->index); 984 make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE); 985 } 986 if (need_entry_edge && !have_entry_edge) 987 { 988 if (dump_file) 989 fprintf (dump_file, "Adding fake entry edge to bb %i\n", 990 bb->index); 991 make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE); 992 /* Avoid bbs that have both fake entry edge and also some 993 exit edge. One of those edges wouldn't be added to the 994 spanning tree, but we can't instrument any of them. */ 995 if (have_exit_edge || need_exit_edge) 996 { 997 gimple_stmt_iterator gsi; 998 gimple first; 999 tree fndecl; 1000 1001 gsi = gsi_after_labels (bb); 1002 #ifdef ENABLE_CHECKING 1003 gcc_assert (!gsi_end_p (gsi)); 1004 #endif 1005 first = gsi_stmt (gsi); 1006 if (is_gimple_debug (first)) 1007 { 1008 gsi_next_nondebug (&gsi); 1009 #ifdef ENABLE_CHECKING 1010 gcc_assert (!gsi_end_p (gsi)); 1011 #endif 1012 first = gsi_stmt (gsi); 1013 } 1014 /* Don't split the bbs containing __builtin_setjmp_receiver 1015 or __builtin_setjmp_dispatcher calls. These are very 1016 special and don't expect anything to be inserted before 1017 them. */ 1018 if (!is_gimple_call (first) 1019 || (fndecl = gimple_call_fndecl (first)) == NULL 1020 || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL 1021 || (DECL_FUNCTION_CODE (fndecl) != BUILT_IN_SETJMP_RECEIVER 1022 && (DECL_FUNCTION_CODE (fndecl) 1023 != BUILT_IN_SETJMP_DISPATCHER))) 1024 { 1025 if (dump_file) 1026 fprintf (dump_file, "Splitting bb %i after labels\n", 1027 bb->index); 1028 split_block_after_labels (bb); 1029 } 1030 } 1031 } 1032 } 1033 1034 el = create_edge_list (); 1035 num_edges = NUM_EDGES (el); 1036 alloc_aux_for_edges (sizeof (struct edge_info)); 1037 1038 /* The basic blocks are expected to be numbered sequentially. */ 1039 compact_blocks (); 1040 1041 ignored_edges = 0; 1042 for (i = 0 ; i < num_edges ; i++) 1043 { 1044 edge e = INDEX_EDGE (el, i); 1045 e->count = 0; 1046 1047 /* Mark edges we've replaced by fake edges above as ignored. */ 1048 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 1049 && e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR) 1050 { 1051 EDGE_INFO (e)->ignore = 1; 1052 ignored_edges++; 1053 } 1054 } 1055 1056 /* Create spanning tree from basic block graph, mark each edge that is 1057 on the spanning tree. We insert as many abnormal and critical edges 1058 as possible to minimize number of edge splits necessary. */ 1059 1060 find_spanning_tree (el); 1061 1062 /* Fake edges that are not on the tree will not be instrumented, so 1063 mark them ignored. */ 1064 for (num_instrumented = i = 0; i < num_edges; i++) 1065 { 1066 edge e = INDEX_EDGE (el, i); 1067 struct edge_info *inf = EDGE_INFO (e); 1068 1069 if (inf->ignore || inf->on_tree) 1070 /*NOP*/; 1071 else if (e->flags & EDGE_FAKE) 1072 { 1073 inf->ignore = 1; 1074 ignored_edges++; 1075 } 1076 else 1077 num_instrumented++; 1078 } 1079 1080 total_num_blocks += n_basic_blocks; 1081 if (dump_file) 1082 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks); 1083 1084 total_num_edges += num_edges; 1085 if (dump_file) 1086 fprintf (dump_file, "%d edges\n", num_edges); 1087 1088 total_num_edges_ignored += ignored_edges; 1089 if (dump_file) 1090 fprintf (dump_file, "%d ignored edges\n", ignored_edges); 1091 1092 /* Write the data from which gcov can reconstruct the basic block 1093 graph. */ 1094 1095 /* Basic block flags */ 1096 if (coverage_begin_output ()) 1097 { 1098 gcov_position_t offset; 1099 1100 offset = gcov_write_tag (GCOV_TAG_BLOCKS); 1101 for (i = 0; i != (unsigned) (n_basic_blocks); i++) 1102 gcov_write_unsigned (0); 1103 gcov_write_length (offset); 1104 } 1105 1106 /* Keep all basic block indexes nonnegative in the gcov output. 1107 Index 0 is used for entry block, last index is for exit block. 1108 */ 1109 ENTRY_BLOCK_PTR->index = 1; 1110 EXIT_BLOCK_PTR->index = last_basic_block; 1111 1112 /* Arcs */ 1113 if (coverage_begin_output ()) 1114 { 1115 gcov_position_t offset; 1116 1117 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb) 1118 { 1119 edge e; 1120 edge_iterator ei; 1121 1122 offset = gcov_write_tag (GCOV_TAG_ARCS); 1123 gcov_write_unsigned (BB_TO_GCOV_INDEX (bb)); 1124 1125 FOR_EACH_EDGE (e, ei, bb->succs) 1126 { 1127 struct edge_info *i = EDGE_INFO (e); 1128 if (!i->ignore) 1129 { 1130 unsigned flag_bits = 0; 1131 1132 if (i->on_tree) 1133 flag_bits |= GCOV_ARC_ON_TREE; 1134 if (e->flags & EDGE_FAKE) 1135 flag_bits |= GCOV_ARC_FAKE; 1136 if (e->flags & EDGE_FALLTHRU) 1137 flag_bits |= GCOV_ARC_FALLTHROUGH; 1138 /* On trees we don't have fallthru flags, but we can 1139 recompute them from CFG shape. */ 1140 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE) 1141 && e->src->next_bb == e->dest) 1142 flag_bits |= GCOV_ARC_FALLTHROUGH; 1143 1144 gcov_write_unsigned (BB_TO_GCOV_INDEX (e->dest)); 1145 gcov_write_unsigned (flag_bits); 1146 } 1147 } 1148 1149 gcov_write_length (offset); 1150 } 1151 } 1152 1153 /* Line numbers. */ 1154 if (coverage_begin_output ()) 1155 { 1156 gcov_position_t offset; 1157 1158 /* Initialize the output. */ 1159 output_location (NULL, 0, NULL, NULL); 1160 1161 FOR_EACH_BB (bb) 1162 { 1163 gimple_stmt_iterator gsi; 1164 1165 offset = 0; 1166 1167 if (bb == ENTRY_BLOCK_PTR->next_bb) 1168 { 1169 expanded_location curr_location = 1170 expand_location (DECL_SOURCE_LOCATION (current_function_decl)); 1171 output_location (curr_location.file, curr_location.line, 1172 &offset, bb); 1173 } 1174 1175 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1176 { 1177 gimple stmt = gsi_stmt (gsi); 1178 if (gimple_has_location (stmt)) 1179 output_location (gimple_filename (stmt), gimple_lineno (stmt), 1180 &offset, bb); 1181 } 1182 1183 /* Notice GOTO expressions we eliminated while constructing the 1184 CFG. */ 1185 if (single_succ_p (bb) 1186 && single_succ_edge (bb)->goto_locus != UNKNOWN_LOCATION) 1187 { 1188 location_t curr_location = single_succ_edge (bb)->goto_locus; 1189 /* ??? The FILE/LINE API is inconsistent for these cases. */ 1190 output_location (LOCATION_FILE (curr_location), 1191 LOCATION_LINE (curr_location), &offset, bb); 1192 } 1193 1194 if (offset) 1195 { 1196 /* A file of NULL indicates the end of run. */ 1197 gcov_write_unsigned (0); 1198 gcov_write_string (NULL); 1199 gcov_write_length (offset); 1200 } 1201 } 1202 } 1203 1204 ENTRY_BLOCK_PTR->index = ENTRY_BLOCK; 1205 EXIT_BLOCK_PTR->index = EXIT_BLOCK; 1206 #undef BB_TO_GCOV_INDEX 1207 1208 if (flag_profile_values) 1209 find_values_to_profile (&values); 1210 1211 if (flag_branch_probabilities) 1212 { 1213 compute_branch_probabilities (); 1214 if (flag_profile_values) 1215 compute_value_histograms (values); 1216 } 1217 1218 remove_fake_edges (); 1219 1220 /* For each edge not on the spanning tree, add counting code. */ 1221 if (profile_arc_flag 1222 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented)) 1223 { 1224 unsigned n_instrumented; 1225 1226 profile_hooks->init_edge_profiler (); 1227 1228 n_instrumented = instrument_edges (el); 1229 1230 gcc_assert (n_instrumented == num_instrumented); 1231 1232 if (flag_profile_values) 1233 instrument_values (values); 1234 1235 /* Commit changes done by instrumentation. */ 1236 gsi_commit_edge_inserts (); 1237 } 1238 1239 free_aux_for_edges (); 1240 1241 VEC_free (histogram_value, heap, values); 1242 free_edge_list (el); 1243 coverage_end_function (); 1244 } 1245 1246 /* Union find algorithm implementation for the basic blocks using 1247 aux fields. */ 1248 1249 static basic_block 1250 find_group (basic_block bb) 1251 { 1252 basic_block group = bb, bb1; 1253 1254 while ((basic_block) group->aux != group) 1255 group = (basic_block) group->aux; 1256 1257 /* Compress path. */ 1258 while ((basic_block) bb->aux != group) 1259 { 1260 bb1 = (basic_block) bb->aux; 1261 bb->aux = (void *) group; 1262 bb = bb1; 1263 } 1264 return group; 1265 } 1266 1267 static void 1268 union_groups (basic_block bb1, basic_block bb2) 1269 { 1270 basic_block bb1g = find_group (bb1); 1271 basic_block bb2g = find_group (bb2); 1272 1273 /* ??? I don't have a place for the rank field. OK. Lets go w/o it, 1274 this code is unlikely going to be performance problem anyway. */ 1275 gcc_assert (bb1g != bb2g); 1276 1277 bb1g->aux = bb2g; 1278 } 1279 1280 /* This function searches all of the edges in the program flow graph, and puts 1281 as many bad edges as possible onto the spanning tree. Bad edges include 1282 abnormals edges, which can't be instrumented at the moment. Since it is 1283 possible for fake edges to form a cycle, we will have to develop some 1284 better way in the future. Also put critical edges to the tree, since they 1285 are more expensive to instrument. */ 1286 1287 static void 1288 find_spanning_tree (struct edge_list *el) 1289 { 1290 int i; 1291 int num_edges = NUM_EDGES (el); 1292 basic_block bb; 1293 1294 /* We use aux field for standard union-find algorithm. */ 1295 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 1296 bb->aux = bb; 1297 1298 /* Add fake edge exit to entry we can't instrument. */ 1299 union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR); 1300 1301 /* First add all abnormal edges to the tree unless they form a cycle. Also 1302 add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind 1303 setting return value from function. */ 1304 for (i = 0; i < num_edges; i++) 1305 { 1306 edge e = INDEX_EDGE (el, i); 1307 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE)) 1308 || e->dest == EXIT_BLOCK_PTR) 1309 && !EDGE_INFO (e)->ignore 1310 && (find_group (e->src) != find_group (e->dest))) 1311 { 1312 if (dump_file) 1313 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n", 1314 e->src->index, e->dest->index); 1315 EDGE_INFO (e)->on_tree = 1; 1316 union_groups (e->src, e->dest); 1317 } 1318 } 1319 1320 /* Now insert all critical edges to the tree unless they form a cycle. */ 1321 for (i = 0; i < num_edges; i++) 1322 { 1323 edge e = INDEX_EDGE (el, i); 1324 if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore 1325 && find_group (e->src) != find_group (e->dest)) 1326 { 1327 if (dump_file) 1328 fprintf (dump_file, "Critical edge %d to %d put to tree\n", 1329 e->src->index, e->dest->index); 1330 EDGE_INFO (e)->on_tree = 1; 1331 union_groups (e->src, e->dest); 1332 } 1333 } 1334 1335 /* And now the rest. */ 1336 for (i = 0; i < num_edges; i++) 1337 { 1338 edge e = INDEX_EDGE (el, i); 1339 if (!EDGE_INFO (e)->ignore 1340 && find_group (e->src) != find_group (e->dest)) 1341 { 1342 if (dump_file) 1343 fprintf (dump_file, "Normal edge %d to %d put to tree\n", 1344 e->src->index, e->dest->index); 1345 EDGE_INFO (e)->on_tree = 1; 1346 union_groups (e->src, e->dest); 1347 } 1348 } 1349 1350 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb) 1351 bb->aux = NULL; 1352 } 1353 1354 /* Perform file-level initialization for branch-prob processing. */ 1355 1356 void 1357 init_branch_prob (void) 1358 { 1359 int i; 1360 1361 total_num_blocks = 0; 1362 total_num_edges = 0; 1363 total_num_edges_ignored = 0; 1364 total_num_edges_instrumented = 0; 1365 total_num_blocks_created = 0; 1366 total_num_passes = 0; 1367 total_num_times_called = 0; 1368 total_num_branches = 0; 1369 for (i = 0; i < 20; i++) 1370 total_hist_br_prob[i] = 0; 1371 } 1372 1373 /* Performs file-level cleanup after branch-prob processing 1374 is completed. */ 1375 1376 void 1377 end_branch_prob (void) 1378 { 1379 if (dump_file) 1380 { 1381 fprintf (dump_file, "\n"); 1382 fprintf (dump_file, "Total number of blocks: %d\n", 1383 total_num_blocks); 1384 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges); 1385 fprintf (dump_file, "Total number of ignored edges: %d\n", 1386 total_num_edges_ignored); 1387 fprintf (dump_file, "Total number of instrumented edges: %d\n", 1388 total_num_edges_instrumented); 1389 fprintf (dump_file, "Total number of blocks created: %d\n", 1390 total_num_blocks_created); 1391 fprintf (dump_file, "Total number of graph solution passes: %d\n", 1392 total_num_passes); 1393 if (total_num_times_called != 0) 1394 fprintf (dump_file, "Average number of graph solution passes: %d\n", 1395 (total_num_passes + (total_num_times_called >> 1)) 1396 / total_num_times_called); 1397 fprintf (dump_file, "Total number of branches: %d\n", 1398 total_num_branches); 1399 if (total_num_branches) 1400 { 1401 int i; 1402 1403 for (i = 0; i < 10; i++) 1404 fprintf (dump_file, "%d%% branches in range %d-%d%%\n", 1405 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100 1406 / total_num_branches, 5*i, 5*i+5); 1407 } 1408 } 1409 } 1410 1411 /* Set up hooks to enable tree-based profiling. */ 1412 1413 void 1414 tree_register_profile_hooks (void) 1415 { 1416 gcc_assert (current_ir_type () == IR_GIMPLE); 1417 profile_hooks = &tree_profile_hooks; 1418 } 1419