xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/profile.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* Calculate branch probabilities, and basic block execution counts.
2    Copyright (C) 1990-2013 Free Software Foundation, Inc.
3    Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4    based on some ideas from Dain Samples of UC Berkeley.
5    Further mangling by Bob Manson, Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 /* Generate basic block profile instrumentation and auxiliary files.
24    Profile generation is optimized, so that not all arcs in the basic
25    block graph need instrumenting. First, the BB graph is closed with
26    one entry (function start), and one exit (function exit).  Any
27    ABNORMAL_EDGE cannot be instrumented (because there is no control
28    path to place the code). We close the graph by inserting fake
29    EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
30    edges that do not go to the exit_block. We ignore such abnormal
31    edges.  Naturally these fake edges are never directly traversed,
32    and so *cannot* be directly instrumented.  Some other graph
33    massaging is done. To optimize the instrumentation we generate the
34    BB minimal span tree, only edges that are not on the span tree
35    (plus the entry point) need instrumenting. From that information
36    all other edge counts can be deduced.  By construction all fake
37    edges must be on the spanning tree. We also attempt to place
38    EDGE_CRITICAL edges on the spanning tree.
39 
40    The auxiliary files generated are <dumpbase>.gcno (at compile time)
41    and <dumpbase>.gcda (at run time).  The format is
42    described in full in gcov-io.h.  */
43 
44 /* ??? Register allocation should use basic block execution counts to
45    give preference to the most commonly executed blocks.  */
46 
47 /* ??? Should calculate branch probabilities before instrumenting code, since
48    then we can use arc counts to help decide which arcs to instrument.  */
49 
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "flags.h"
56 #include "regs.h"
57 #include "expr.h"
58 #include "function.h"
59 #include "basic-block.h"
60 #include "diagnostic-core.h"
61 #include "coverage.h"
62 #include "value-prof.h"
63 #include "tree.h"
64 #include "tree-flow.h"
65 #include "cfgloop.h"
66 #include "dumpfile.h"
67 
68 #include "profile.h"
69 
70 struct bb_info {
71   unsigned int count_valid : 1;
72 
73   /* Number of successor and predecessor edges.  */
74   gcov_type succ_count;
75   gcov_type pred_count;
76 };
77 
78 #define BB_INFO(b)  ((struct bb_info *) (b)->aux)
79 
80 
81 /* Counter summary from the last set of coverage counts read.  */
82 
83 const struct gcov_ctr_summary *profile_info;
84 
85 /* Number of data points in the working set summary array. Using 128
86    provides information for at least every 1% increment of the total
87    profile size. The last entry is hardwired to 99.9% of the total.  */
88 #define NUM_GCOV_WORKING_SETS 128
89 
90 /* Counter working set information computed from the current counter
91    summary. Not initialized unless profile_info summary is non-NULL.  */
92 static gcov_working_set_t gcov_working_sets[NUM_GCOV_WORKING_SETS];
93 
94 /* Collect statistics on the performance of this pass for the entire source
95    file.  */
96 
97 static int total_num_blocks;
98 static int total_num_edges;
99 static int total_num_edges_ignored;
100 static int total_num_edges_instrumented;
101 static int total_num_blocks_created;
102 static int total_num_passes;
103 static int total_num_times_called;
104 static int total_hist_br_prob[20];
105 static int total_num_branches;
106 
107 /* Forward declarations.  */
108 static void find_spanning_tree (struct edge_list *);
109 
110 /* Add edge instrumentation code to the entire insn chain.
111 
112    F is the first insn of the chain.
113    NUM_BLOCKS is the number of basic blocks found in F.  */
114 
115 static unsigned
116 instrument_edges (struct edge_list *el)
117 {
118   unsigned num_instr_edges = 0;
119   int num_edges = NUM_EDGES (el);
120   basic_block bb;
121 
122   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
123     {
124       edge e;
125       edge_iterator ei;
126 
127       FOR_EACH_EDGE (e, ei, bb->succs)
128 	{
129 	  struct edge_info *inf = EDGE_INFO (e);
130 
131 	  if (!inf->ignore && !inf->on_tree)
132 	    {
133 	      gcc_assert (!(e->flags & EDGE_ABNORMAL));
134 	      if (dump_file)
135 		fprintf (dump_file, "Edge %d to %d instrumented%s\n",
136 			 e->src->index, e->dest->index,
137 			 EDGE_CRITICAL_P (e) ? " (and split)" : "");
138 	      gimple_gen_edge_profiler (num_instr_edges++, e);
139 	    }
140 	}
141     }
142 
143   total_num_blocks_created += num_edges;
144   if (dump_file)
145     fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
146   return num_instr_edges;
147 }
148 
149 /* Add code to measure histograms for values in list VALUES.  */
150 static void
151 instrument_values (histogram_values values)
152 {
153   unsigned i;
154 
155   /* Emit code to generate the histograms before the insns.  */
156 
157   for (i = 0; i < values.length (); i++)
158     {
159       histogram_value hist = values[i];
160       unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
161 
162       if (!coverage_counter_alloc (t, hist->n_counters))
163 	continue;
164 
165       switch (hist->type)
166 	{
167 	case HIST_TYPE_INTERVAL:
168 	  gimple_gen_interval_profiler (hist, t, 0);
169 	  break;
170 
171 	case HIST_TYPE_POW2:
172 	  gimple_gen_pow2_profiler (hist, t, 0);
173 	  break;
174 
175 	case HIST_TYPE_SINGLE_VALUE:
176 	  gimple_gen_one_value_profiler (hist, t, 0);
177 	  break;
178 
179 	case HIST_TYPE_CONST_DELTA:
180 	  gimple_gen_const_delta_profiler (hist, t, 0);
181 	  break;
182 
183  	case HIST_TYPE_INDIR_CALL:
184  	  gimple_gen_ic_profiler (hist, t, 0);
185   	  break;
186 
187 	case HIST_TYPE_AVERAGE:
188 	  gimple_gen_average_profiler (hist, t, 0);
189 	  break;
190 
191 	case HIST_TYPE_IOR:
192 	  gimple_gen_ior_profiler (hist, t, 0);
193 	  break;
194 
195 	default:
196 	  gcc_unreachable ();
197 	}
198     }
199 }
200 
201 
202 /* Compute the working set information from the counter histogram in
203    the profile summary. This is an array of information corresponding to a
204    range of percentages of the total execution count (sum_all), and includes
205    the number of counters required to cover that working set percentage and
206    the minimum counter value in that working set.  */
207 
208 void
209 compute_working_sets (void)
210 {
211   gcov_type working_set_cum_values[NUM_GCOV_WORKING_SETS];
212   gcov_type ws_cum_hotness_incr;
213   gcov_type cum, tmp_cum;
214   const gcov_bucket_type *histo_bucket;
215   unsigned ws_ix, c_num, count, pctinc, pct;
216   int h_ix;
217   gcov_working_set_t *ws_info;
218 
219   if (!profile_info)
220     return;
221 
222   /* Compute the amount of sum_all that the cumulative hotness grows
223      by in each successive working set entry, which depends on the
224      number of working set entries.  */
225   ws_cum_hotness_incr = profile_info->sum_all / NUM_GCOV_WORKING_SETS;
226 
227   /* Next fill in an array of the cumulative hotness values corresponding
228      to each working set summary entry we are going to compute below.
229      Skip 0% statistics, which can be extrapolated from the
230      rest of the summary data.  */
231   cum = ws_cum_hotness_incr;
232   for (ws_ix = 0; ws_ix < NUM_GCOV_WORKING_SETS;
233        ws_ix++, cum += ws_cum_hotness_incr)
234     working_set_cum_values[ws_ix] = cum;
235   /* The last summary entry is reserved for (roughly) 99.9% of the
236      working set. Divide by 1024 so it becomes a shift, which gives
237      almost exactly 99.9%.  */
238   working_set_cum_values[NUM_GCOV_WORKING_SETS-1]
239       = profile_info->sum_all - profile_info->sum_all/1024;
240 
241   /* Next, walk through the histogram in decending order of hotness
242      and compute the statistics for the working set summary array.
243      As histogram entries are accumulated, we check to see which
244      working set entries have had their expected cum_value reached
245      and fill them in, walking the working set entries in increasing
246      size of cum_value.  */
247   ws_ix = 0; /* The current entry into the working set array.  */
248   cum = 0; /* The current accumulated counter sum.  */
249   count = 0; /* The current accumulated count of block counters.  */
250   for (h_ix = GCOV_HISTOGRAM_SIZE - 1;
251        h_ix >= 0 && ws_ix < NUM_GCOV_WORKING_SETS; h_ix--)
252     {
253       histo_bucket = &profile_info->histogram[h_ix];
254 
255       /* If we haven't reached the required cumulative counter value for
256          the current working set percentage, simply accumulate this histogram
257          entry into the running sums and continue to the next histogram
258          entry.  */
259       if (cum + histo_bucket->cum_value < working_set_cum_values[ws_ix])
260         {
261           cum += histo_bucket->cum_value;
262           count += histo_bucket->num_counters;
263           continue;
264         }
265 
266       /* If adding the current histogram entry's cumulative counter value
267          causes us to exceed the current working set size, then estimate
268          how many of this histogram entry's counter values are required to
269          reach the working set size, and fill in working set entries
270          as we reach their expected cumulative value.  */
271       for (c_num = 0, tmp_cum = cum;
272            c_num < histo_bucket->num_counters && ws_ix < NUM_GCOV_WORKING_SETS;
273            c_num++)
274         {
275           count++;
276           /* If we haven't reached the last histogram entry counter, add
277              in the minimum value again. This will underestimate the
278              cumulative sum so far, because many of the counter values in this
279              entry may have been larger than the minimum. We could add in the
280              average value every time, but that would require an expensive
281              divide operation.  */
282           if (c_num + 1 < histo_bucket->num_counters)
283             tmp_cum += histo_bucket->min_value;
284           /* If we have reached the last histogram entry counter, then add
285              in the entire cumulative value.  */
286           else
287             tmp_cum = cum + histo_bucket->cum_value;
288 
289 	  /* Next walk through successive working set entries and fill in
290 	     the statistics for any whose size we have reached by accumulating
291 	     this histogram counter.  */
292 	  while (ws_ix < NUM_GCOV_WORKING_SETS
293 		 && tmp_cum >= working_set_cum_values[ws_ix])
294             {
295               gcov_working_sets[ws_ix].num_counters = count;
296               gcov_working_sets[ws_ix].min_counter
297                   = histo_bucket->min_value;
298               ws_ix++;
299             }
300         }
301       /* Finally, update the running cumulative value since we were
302          using a temporary above.  */
303       cum += histo_bucket->cum_value;
304     }
305   gcc_assert (ws_ix == NUM_GCOV_WORKING_SETS);
306 
307   if (dump_file)
308     {
309       fprintf (dump_file, "Counter working sets:\n");
310       /* Multiply the percentage by 100 to avoid float.  */
311       pctinc = 100 * 100 / NUM_GCOV_WORKING_SETS;
312       for (ws_ix = 0, pct = pctinc; ws_ix < NUM_GCOV_WORKING_SETS;
313            ws_ix++, pct += pctinc)
314         {
315           if (ws_ix == NUM_GCOV_WORKING_SETS - 1)
316             pct = 9990;
317           ws_info = &gcov_working_sets[ws_ix];
318           /* Print out the percentage using int arithmatic to avoid float.  */
319           fprintf (dump_file, "\t\t%u.%02u%%: num counts=%u, min counter="
320                    HOST_WIDEST_INT_PRINT_DEC "\n",
321                    pct / 100, pct - (pct / 100 * 100),
322                    ws_info->num_counters,
323                    (HOST_WIDEST_INT)ws_info->min_counter);
324         }
325     }
326 }
327 
328 /* Given a the desired percentage of the full profile (sum_all from the
329    summary), multiplied by 10 to avoid float in PCT_TIMES_10, returns
330    the corresponding working set information. If an exact match for
331    the percentage isn't found, the closest value is used.  */
332 
333 gcov_working_set_t *
334 find_working_set (unsigned pct_times_10)
335 {
336   unsigned i;
337   if (!profile_info)
338     return NULL;
339   gcc_assert (pct_times_10 <= 1000);
340   if (pct_times_10 >= 999)
341     return &gcov_working_sets[NUM_GCOV_WORKING_SETS - 1];
342   i = pct_times_10 * NUM_GCOV_WORKING_SETS / 1000;
343   if (!i)
344     return &gcov_working_sets[0];
345   return &gcov_working_sets[i - 1];
346 }
347 
348 /* Computes hybrid profile for all matching entries in da_file.
349 
350    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
351 
352 static gcov_type *
353 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
354 {
355   unsigned num_edges = 0;
356   basic_block bb;
357   gcov_type *counts;
358 
359   /* Count the edges to be (possibly) instrumented.  */
360   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
361     {
362       edge e;
363       edge_iterator ei;
364 
365       FOR_EACH_EDGE (e, ei, bb->succs)
366 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
367 	  num_edges++;
368     }
369 
370   counts = get_coverage_counts (GCOV_COUNTER_ARCS, num_edges, cfg_checksum,
371 				lineno_checksum, &profile_info);
372   if (!counts)
373     return NULL;
374 
375   compute_working_sets();
376 
377   if (dump_file && profile_info)
378     fprintf(dump_file, "Merged %u profiles with maximal count %u.\n",
379 	    profile_info->runs, (unsigned) profile_info->sum_max);
380 
381   return counts;
382 }
383 
384 
385 static bool
386 is_edge_inconsistent (vec<edge, va_gc> *edges)
387 {
388   edge e;
389   edge_iterator ei;
390   FOR_EACH_EDGE (e, ei, edges)
391     {
392       if (!EDGE_INFO (e)->ignore)
393         {
394           if (e->count < 0
395 	      && (!(e->flags & EDGE_FAKE)
396 	          || !block_ends_with_call_p (e->src)))
397 	    {
398 	      if (dump_file)
399 		{
400 		  fprintf (dump_file,
401 		  	   "Edge %i->%i is inconsistent, count"HOST_WIDEST_INT_PRINT_DEC,
402 			   e->src->index, e->dest->index, e->count);
403 		  dump_bb (dump_file, e->src, 0, TDF_DETAILS);
404 		  dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
405 		}
406               return true;
407 	    }
408         }
409     }
410   return false;
411 }
412 
413 static void
414 correct_negative_edge_counts (void)
415 {
416   basic_block bb;
417   edge e;
418   edge_iterator ei;
419 
420   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
421     {
422       FOR_EACH_EDGE (e, ei, bb->succs)
423         {
424            if (e->count < 0)
425              e->count = 0;
426         }
427     }
428 }
429 
430 /* Check consistency.
431    Return true if inconsistency is found.  */
432 static bool
433 is_inconsistent (void)
434 {
435   basic_block bb;
436   bool inconsistent = false;
437   FOR_EACH_BB (bb)
438     {
439       inconsistent |= is_edge_inconsistent (bb->preds);
440       if (!dump_file && inconsistent)
441 	return true;
442       inconsistent |= is_edge_inconsistent (bb->succs);
443       if (!dump_file && inconsistent)
444 	return true;
445       if (bb->count < 0)
446         {
447 	  if (dump_file)
448 	    {
449 	      fprintf (dump_file, "BB %i count is negative "
450 		       HOST_WIDEST_INT_PRINT_DEC,
451 		       bb->index,
452 		       bb->count);
453 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
454 	    }
455 	  inconsistent = true;
456 	}
457       if (bb->count != sum_edge_counts (bb->preds))
458         {
459 	  if (dump_file)
460 	    {
461 	      fprintf (dump_file, "BB %i count does not match sum of incoming edges "
462 		       HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
463 		       bb->index,
464 		       bb->count,
465 		       sum_edge_counts (bb->preds));
466 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
467 	    }
468 	  inconsistent = true;
469 	}
470       if (bb->count != sum_edge_counts (bb->succs) &&
471           ! (find_edge (bb, EXIT_BLOCK_PTR) != NULL && block_ends_with_call_p (bb)))
472 	{
473 	  if (dump_file)
474 	    {
475 	      fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
476 		       HOST_WIDEST_INT_PRINT_DEC" should be " HOST_WIDEST_INT_PRINT_DEC,
477 		       bb->index,
478 		       bb->count,
479 		       sum_edge_counts (bb->succs));
480 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
481 	    }
482 	  inconsistent = true;
483 	}
484       if (!dump_file && inconsistent)
485 	return true;
486     }
487 
488   return inconsistent;
489 }
490 
491 /* Set each basic block count to the sum of its outgoing edge counts */
492 static void
493 set_bb_counts (void)
494 {
495   basic_block bb;
496   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
497     {
498       bb->count = sum_edge_counts (bb->succs);
499       gcc_assert (bb->count >= 0);
500     }
501 }
502 
503 /* Reads profile data and returns total number of edge counts read */
504 static int
505 read_profile_edge_counts (gcov_type *exec_counts)
506 {
507   basic_block bb;
508   int num_edges = 0;
509   int exec_counts_pos = 0;
510   /* For each edge not on the spanning tree, set its execution count from
511      the .da file.  */
512   /* The first count in the .da file is the number of times that the function
513      was entered.  This is the exec_count for block zero.  */
514 
515   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
516     {
517       edge e;
518       edge_iterator ei;
519 
520       FOR_EACH_EDGE (e, ei, bb->succs)
521 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
522 	  {
523 	    num_edges++;
524 	    if (exec_counts)
525 	      {
526 		e->count = exec_counts[exec_counts_pos++];
527 		if (e->count > profile_info->sum_max)
528 		  {
529 		    if (flag_profile_correction)
530 		      {
531 			static bool informed = 0;
532 			if (!informed)
533 		          inform (input_location,
534 			          "corrupted profile info: edge count exceeds maximal count");
535 			informed = 1;
536 		      }
537 		    else
538 		      error ("corrupted profile info: edge from %i to %i exceeds maximal count",
539 			     bb->index, e->dest->index);
540 		  }
541 	      }
542 	    else
543 	      e->count = 0;
544 
545 	    EDGE_INFO (e)->count_valid = 1;
546 	    BB_INFO (bb)->succ_count--;
547 	    BB_INFO (e->dest)->pred_count--;
548 	    if (dump_file)
549 	      {
550 		fprintf (dump_file, "\nRead edge from %i to %i, count:",
551 			 bb->index, e->dest->index);
552 		fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC,
553 			 (HOST_WIDEST_INT) e->count);
554 	      }
555 	  }
556     }
557 
558     return num_edges;
559 }
560 
561 #define OVERLAP_BASE 10000
562 
563 /* Compare the static estimated profile to the actual profile, and
564    return the "degree of overlap" measure between them.
565 
566    Degree of overlap is a number between 0 and OVERLAP_BASE. It is
567    the sum of each basic block's minimum relative weights between
568    two profiles. And overlap of OVERLAP_BASE means two profiles are
569    identical.  */
570 
571 static int
572 compute_frequency_overlap (void)
573 {
574   gcov_type count_total = 0, freq_total = 0;
575   int overlap = 0;
576   basic_block bb;
577 
578   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
579     {
580       count_total += bb->count;
581       freq_total += bb->frequency;
582     }
583 
584   if (count_total == 0 || freq_total == 0)
585     return 0;
586 
587   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
588     overlap += MIN (bb->count * OVERLAP_BASE / count_total,
589 		    bb->frequency * OVERLAP_BASE / freq_total);
590 
591   return overlap;
592 }
593 
594 /* Compute the branch probabilities for the various branches.
595    Annotate them accordingly.
596 
597    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
598 
599 static void
600 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
601 {
602   basic_block bb;
603   int i;
604   int num_edges = 0;
605   int changes;
606   int passes;
607   int hist_br_prob[20];
608   int num_branches;
609   gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
610   int inconsistent = 0;
611 
612   /* Very simple sanity checks so we catch bugs in our profiling code.  */
613   if (!profile_info)
614     return;
615   if (profile_info->run_max * profile_info->runs < profile_info->sum_max)
616     {
617       error ("corrupted profile info: run_max * runs < sum_max");
618       exec_counts = NULL;
619     }
620 
621   if (profile_info->sum_all < profile_info->sum_max)
622     {
623       error ("corrupted profile info: sum_all is smaller than sum_max");
624       exec_counts = NULL;
625     }
626 
627   /* Attach extra info block to each bb.  */
628   alloc_aux_for_blocks (sizeof (struct bb_info));
629   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
630     {
631       edge e;
632       edge_iterator ei;
633 
634       FOR_EACH_EDGE (e, ei, bb->succs)
635 	if (!EDGE_INFO (e)->ignore)
636 	  BB_INFO (bb)->succ_count++;
637       FOR_EACH_EDGE (e, ei, bb->preds)
638 	if (!EDGE_INFO (e)->ignore)
639 	  BB_INFO (bb)->pred_count++;
640     }
641 
642   /* Avoid predicting entry on exit nodes.  */
643   BB_INFO (EXIT_BLOCK_PTR)->succ_count = 2;
644   BB_INFO (ENTRY_BLOCK_PTR)->pred_count = 2;
645 
646   num_edges = read_profile_edge_counts (exec_counts);
647 
648   if (dump_file)
649     fprintf (dump_file, "\n%d edge counts read\n", num_edges);
650 
651   /* For every block in the file,
652      - if every exit/entrance edge has a known count, then set the block count
653      - if the block count is known, and every exit/entrance edge but one has
654      a known execution count, then set the count of the remaining edge
655 
656      As edge counts are set, decrement the succ/pred count, but don't delete
657      the edge, that way we can easily tell when all edges are known, or only
658      one edge is unknown.  */
659 
660   /* The order that the basic blocks are iterated through is important.
661      Since the code that finds spanning trees starts with block 0, low numbered
662      edges are put on the spanning tree in preference to high numbered edges.
663      Hence, most instrumented edges are at the end.  Graph solving works much
664      faster if we propagate numbers from the end to the start.
665 
666      This takes an average of slightly more than 3 passes.  */
667 
668   changes = 1;
669   passes = 0;
670   while (changes)
671     {
672       passes++;
673       changes = 0;
674       FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR, NULL, prev_bb)
675 	{
676 	  struct bb_info *bi = BB_INFO (bb);
677 	  if (! bi->count_valid)
678 	    {
679 	      if (bi->succ_count == 0)
680 		{
681 		  edge e;
682 		  edge_iterator ei;
683 		  gcov_type total = 0;
684 
685 		  FOR_EACH_EDGE (e, ei, bb->succs)
686 		    total += e->count;
687 		  bb->count = total;
688 		  bi->count_valid = 1;
689 		  changes = 1;
690 		}
691 	      else if (bi->pred_count == 0)
692 		{
693 		  edge e;
694 		  edge_iterator ei;
695 		  gcov_type total = 0;
696 
697 		  FOR_EACH_EDGE (e, ei, bb->preds)
698 		    total += e->count;
699 		  bb->count = total;
700 		  bi->count_valid = 1;
701 		  changes = 1;
702 		}
703 	    }
704 	  if (bi->count_valid)
705 	    {
706 	      if (bi->succ_count == 1)
707 		{
708 		  edge e;
709 		  edge_iterator ei;
710 		  gcov_type total = 0;
711 
712 		  /* One of the counts will be invalid, but it is zero,
713 		     so adding it in also doesn't hurt.  */
714 		  FOR_EACH_EDGE (e, ei, bb->succs)
715 		    total += e->count;
716 
717 		  /* Search for the invalid edge, and set its count.  */
718 		  FOR_EACH_EDGE (e, ei, bb->succs)
719 		    if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
720 		      break;
721 
722 		  /* Calculate count for remaining edge by conservation.  */
723 		  total = bb->count - total;
724 
725 		  gcc_assert (e);
726 		  EDGE_INFO (e)->count_valid = 1;
727 		  e->count = total;
728 		  bi->succ_count--;
729 
730 		  BB_INFO (e->dest)->pred_count--;
731 		  changes = 1;
732 		}
733 	      if (bi->pred_count == 1)
734 		{
735 		  edge e;
736 		  edge_iterator ei;
737 		  gcov_type total = 0;
738 
739 		  /* One of the counts will be invalid, but it is zero,
740 		     so adding it in also doesn't hurt.  */
741 		  FOR_EACH_EDGE (e, ei, bb->preds)
742 		    total += e->count;
743 
744 		  /* Search for the invalid edge, and set its count.  */
745 		  FOR_EACH_EDGE (e, ei, bb->preds)
746 		    if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
747 		      break;
748 
749 		  /* Calculate count for remaining edge by conservation.  */
750 		  total = bb->count - total + e->count;
751 
752 		  gcc_assert (e);
753 		  EDGE_INFO (e)->count_valid = 1;
754 		  e->count = total;
755 		  bi->pred_count--;
756 
757 		  BB_INFO (e->src)->succ_count--;
758 		  changes = 1;
759 		}
760 	    }
761 	}
762     }
763   if (dump_file)
764     {
765       int overlap = compute_frequency_overlap ();
766       gimple_dump_cfg (dump_file, dump_flags);
767       fprintf (dump_file, "Static profile overlap: %d.%d%%\n",
768 	       overlap / (OVERLAP_BASE / 100),
769 	       overlap % (OVERLAP_BASE / 100));
770     }
771 
772   total_num_passes += passes;
773   if (dump_file)
774     fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
775 
776   /* If the graph has been correctly solved, every block will have a
777      succ and pred count of zero.  */
778   FOR_EACH_BB (bb)
779     {
780       gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
781     }
782 
783   /* Check for inconsistent basic block counts */
784   inconsistent = is_inconsistent ();
785 
786   if (inconsistent)
787    {
788      if (flag_profile_correction)
789        {
790          /* Inconsistency detected. Make it flow-consistent. */
791          static int informed = 0;
792          if (informed == 0)
793            {
794              informed = 1;
795              inform (input_location, "correcting inconsistent profile data");
796            }
797          correct_negative_edge_counts ();
798          /* Set bb counts to the sum of the outgoing edge counts */
799          set_bb_counts ();
800          if (dump_file)
801            fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
802          mcf_smooth_cfg ();
803        }
804      else
805        error ("corrupted profile info: profile data is not flow-consistent");
806    }
807 
808   /* For every edge, calculate its branch probability and add a reg_note
809      to the branch insn to indicate this.  */
810 
811   for (i = 0; i < 20; i++)
812     hist_br_prob[i] = 0;
813   num_branches = 0;
814 
815   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
816     {
817       edge e;
818       edge_iterator ei;
819 
820       if (bb->count < 0)
821 	{
822 	  error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
823 		 bb->index, (int)bb->count);
824 	  bb->count = 0;
825 	}
826       FOR_EACH_EDGE (e, ei, bb->succs)
827 	{
828 	  /* Function may return twice in the cased the called function is
829 	     setjmp or calls fork, but we can't represent this by extra
830 	     edge from the entry, since extra edge from the exit is
831 	     already present.  We get negative frequency from the entry
832 	     point.  */
833 	  if ((e->count < 0
834 	       && e->dest == EXIT_BLOCK_PTR)
835 	      || (e->count > bb->count
836 		  && e->dest != EXIT_BLOCK_PTR))
837 	    {
838 	      if (block_ends_with_call_p (bb))
839 		e->count = e->count < 0 ? 0 : bb->count;
840 	    }
841 	  if (e->count < 0 || e->count > bb->count)
842 	    {
843 	      error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
844 		     e->src->index, e->dest->index,
845 		     (int)e->count);
846 	      e->count = bb->count / 2;
847 	    }
848 	}
849       if (bb->count)
850 	{
851 	  FOR_EACH_EDGE (e, ei, bb->succs)
852 	    e->probability = (e->count * REG_BR_PROB_BASE + bb->count / 2) / bb->count;
853 	  if (bb->index >= NUM_FIXED_BLOCKS
854 	      && block_ends_with_condjump_p (bb)
855 	      && EDGE_COUNT (bb->succs) >= 2)
856 	    {
857 	      int prob;
858 	      edge e;
859 	      int index;
860 
861 	      /* Find the branch edge.  It is possible that we do have fake
862 		 edges here.  */
863 	      FOR_EACH_EDGE (e, ei, bb->succs)
864 		if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
865 		  break;
866 
867 	      prob = e->probability;
868 	      index = prob * 20 / REG_BR_PROB_BASE;
869 
870 	      if (index == 20)
871 		index = 19;
872 	      hist_br_prob[index]++;
873 
874 	      num_branches++;
875 	    }
876 	}
877       /* As a last resort, distribute the probabilities evenly.
878 	 Use simple heuristics that if there are normal edges,
879 	 give all abnormals frequency of 0, otherwise distribute the
880 	 frequency over abnormals (this is the case of noreturn
881 	 calls).  */
882       else if (profile_status == PROFILE_ABSENT)
883 	{
884 	  int total = 0;
885 
886 	  FOR_EACH_EDGE (e, ei, bb->succs)
887 	    if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
888 	      total ++;
889 	  if (total)
890 	    {
891 	      FOR_EACH_EDGE (e, ei, bb->succs)
892 		if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
893 		  e->probability = REG_BR_PROB_BASE / total;
894 		else
895 		  e->probability = 0;
896 	    }
897 	  else
898 	    {
899 	      total += EDGE_COUNT (bb->succs);
900 	      FOR_EACH_EDGE (e, ei, bb->succs)
901 		e->probability = REG_BR_PROB_BASE / total;
902 	    }
903 	  if (bb->index >= NUM_FIXED_BLOCKS
904 	      && block_ends_with_condjump_p (bb)
905 	      && EDGE_COUNT (bb->succs) >= 2)
906 	    num_branches++;
907 	}
908     }
909   counts_to_freqs ();
910   profile_status = PROFILE_READ;
911   compute_function_frequency ();
912 
913   if (dump_file)
914     {
915       fprintf (dump_file, "%d branches\n", num_branches);
916       if (num_branches)
917 	for (i = 0; i < 10; i++)
918 	  fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
919 		   (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
920 		   5 * i, 5 * i + 5);
921 
922       total_num_branches += num_branches;
923       for (i = 0; i < 20; i++)
924 	total_hist_br_prob[i] += hist_br_prob[i];
925 
926       fputc ('\n', dump_file);
927       fputc ('\n', dump_file);
928     }
929 
930   free_aux_for_blocks ();
931 }
932 
933 /* Load value histograms values whose description is stored in VALUES array
934    from .gcda file.
935 
936    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
937 
938 static void
939 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
940                           unsigned lineno_checksum)
941 {
942   unsigned i, j, t, any;
943   unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
944   gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
945   gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
946   gcov_type *aact_count;
947 
948   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
949     n_histogram_counters[t] = 0;
950 
951   for (i = 0; i < values.length (); i++)
952     {
953       histogram_value hist = values[i];
954       n_histogram_counters[(int) hist->type] += hist->n_counters;
955     }
956 
957   any = 0;
958   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
959     {
960       if (!n_histogram_counters[t])
961 	{
962 	  histogram_counts[t] = NULL;
963 	  continue;
964 	}
965 
966       histogram_counts[t] =
967 	get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
968 			     n_histogram_counters[t], cfg_checksum,
969 			     lineno_checksum, NULL);
970       if (histogram_counts[t])
971 	any = 1;
972       act_count[t] = histogram_counts[t];
973     }
974   if (!any)
975     return;
976 
977   for (i = 0; i < values.length (); i++)
978     {
979       histogram_value hist = values[i];
980       gimple stmt = hist->hvalue.stmt;
981 
982       t = (int) hist->type;
983 
984       aact_count = act_count[t];
985       act_count[t] += hist->n_counters;
986 
987       gimple_add_histogram_value (cfun, stmt, hist);
988       hist->hvalue.counters =  XNEWVEC (gcov_type, hist->n_counters);
989       for (j = 0; j < hist->n_counters; j++)
990 	hist->hvalue.counters[j] = aact_count[j];
991     }
992 
993   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
994     free (histogram_counts[t]);
995 }
996 
997 /* When passed NULL as file_name, initialize.
998    When passed something else, output the necessary commands to change
999    line to LINE and offset to FILE_NAME.  */
1000 static void
1001 output_location (char const *file_name, int line,
1002 		 gcov_position_t *offset, basic_block bb)
1003 {
1004   static char const *prev_file_name;
1005   static int prev_line;
1006   bool name_differs, line_differs;
1007 
1008   if (!file_name)
1009     {
1010       prev_file_name = NULL;
1011       prev_line = -1;
1012       return;
1013     }
1014 
1015   name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
1016   line_differs = prev_line != line;
1017 
1018   if (name_differs || line_differs)
1019     {
1020       if (!*offset)
1021 	{
1022 	  *offset = gcov_write_tag (GCOV_TAG_LINES);
1023 	  gcov_write_unsigned (bb->index);
1024 	  name_differs = line_differs=true;
1025 	}
1026 
1027       /* If this is a new source file, then output the
1028 	 file's name to the .bb file.  */
1029       if (name_differs)
1030 	{
1031 	  prev_file_name = file_name;
1032 	  gcov_write_unsigned (0);
1033 	  gcov_write_string (prev_file_name);
1034 	}
1035       if (line_differs)
1036 	{
1037 	  gcov_write_unsigned (line);
1038 	  prev_line = line;
1039 	}
1040      }
1041 }
1042 
1043 /* Instrument and/or analyze program behavior based on program the CFG.
1044 
1045    This function creates a representation of the control flow graph (of
1046    the function being compiled) that is suitable for the instrumentation
1047    of edges and/or converting measured edge counts to counts on the
1048    complete CFG.
1049 
1050    When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
1051    the flow graph that are needed to reconstruct the dynamic behavior of the
1052    flow graph.  This data is written to the gcno file for gcov.
1053 
1054    When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
1055    information from the gcda file containing edge count information from
1056    previous executions of the function being compiled.  In this case, the
1057    control flow graph is annotated with actual execution counts by
1058    compute_branch_probabilities().
1059 
1060    Main entry point of this file.  */
1061 
1062 void
1063 branch_prob (void)
1064 {
1065   basic_block bb;
1066   unsigned i;
1067   unsigned num_edges, ignored_edges;
1068   unsigned num_instrumented;
1069   struct edge_list *el;
1070   histogram_values values = histogram_values();
1071   unsigned cfg_checksum, lineno_checksum;
1072 
1073   total_num_times_called++;
1074 
1075   flow_call_edges_add (NULL);
1076   add_noreturn_fake_exit_edges ();
1077 
1078   /* We can't handle cyclic regions constructed using abnormal edges.
1079      To avoid these we replace every source of abnormal edge by a fake
1080      edge from entry node and every destination by fake edge to exit.
1081      This keeps graph acyclic and our calculation exact for all normal
1082      edges except for exit and entrance ones.
1083 
1084      We also add fake exit edges for each call and asm statement in the
1085      basic, since it may not return.  */
1086 
1087   FOR_EACH_BB (bb)
1088     {
1089       int need_exit_edge = 0, need_entry_edge = 0;
1090       int have_exit_edge = 0, have_entry_edge = 0;
1091       edge e;
1092       edge_iterator ei;
1093 
1094       /* Functions returning multiple times are not handled by extra edges.
1095          Instead we simply allow negative counts on edges from exit to the
1096          block past call and corresponding probabilities.  We can't go
1097          with the extra edges because that would result in flowgraph that
1098 	 needs to have fake edges outside the spanning tree.  */
1099 
1100       FOR_EACH_EDGE (e, ei, bb->succs)
1101 	{
1102 	  gimple_stmt_iterator gsi;
1103 	  gimple last = NULL;
1104 
1105 	  /* It may happen that there are compiler generated statements
1106 	     without a locus at all.  Go through the basic block from the
1107 	     last to the first statement looking for a locus.  */
1108 	  for (gsi = gsi_last_nondebug_bb (bb);
1109 	       !gsi_end_p (gsi);
1110 	       gsi_prev_nondebug (&gsi))
1111 	    {
1112 	      last = gsi_stmt (gsi);
1113 	      if (gimple_has_location (last))
1114 		break;
1115 	    }
1116 
1117 	  /* Edge with goto locus might get wrong coverage info unless
1118 	     it is the only edge out of BB.
1119 	     Don't do that when the locuses match, so
1120 	     if (blah) goto something;
1121 	     is not computed twice.  */
1122 	  if (last
1123 	      && gimple_has_location (last)
1124 	      && LOCATION_LOCUS (e->goto_locus) != UNKNOWN_LOCATION
1125 	      && !single_succ_p (bb)
1126 	      && (LOCATION_FILE (e->goto_locus)
1127 	          != LOCATION_FILE (gimple_location (last))
1128 		  || (LOCATION_LINE (e->goto_locus)
1129 		      != LOCATION_LINE (gimple_location (last)))))
1130 	    {
1131 	      basic_block new_bb = split_edge (e);
1132 	      edge ne = single_succ_edge (new_bb);
1133 	      ne->goto_locus = e->goto_locus;
1134 	    }
1135 	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1136 	       && e->dest != EXIT_BLOCK_PTR)
1137 	    need_exit_edge = 1;
1138 	  if (e->dest == EXIT_BLOCK_PTR)
1139 	    have_exit_edge = 1;
1140 	}
1141       FOR_EACH_EDGE (e, ei, bb->preds)
1142 	{
1143 	  if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1144 	       && e->src != ENTRY_BLOCK_PTR)
1145 	    need_entry_edge = 1;
1146 	  if (e->src == ENTRY_BLOCK_PTR)
1147 	    have_entry_edge = 1;
1148 	}
1149 
1150       if (need_exit_edge && !have_exit_edge)
1151 	{
1152 	  if (dump_file)
1153 	    fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1154 		     bb->index);
1155 	  make_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
1156 	}
1157       if (need_entry_edge && !have_entry_edge)
1158 	{
1159 	  if (dump_file)
1160 	    fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1161 		     bb->index);
1162 	  make_edge (ENTRY_BLOCK_PTR, bb, EDGE_FAKE);
1163 	  /* Avoid bbs that have both fake entry edge and also some
1164 	     exit edge.  One of those edges wouldn't be added to the
1165 	     spanning tree, but we can't instrument any of them.  */
1166 	  if (have_exit_edge || need_exit_edge)
1167 	    {
1168 	      gimple_stmt_iterator gsi;
1169 	      gimple first;
1170 	      tree fndecl;
1171 
1172 	      gsi = gsi_after_labels (bb);
1173 	      gcc_checking_assert (!gsi_end_p (gsi));
1174 	      first = gsi_stmt (gsi);
1175 	      if (is_gimple_debug (first))
1176 		{
1177 		  gsi_next_nondebug (&gsi);
1178 		  gcc_checking_assert (!gsi_end_p (gsi));
1179 		  first = gsi_stmt (gsi);
1180 		}
1181 	      /* Don't split the bbs containing __builtin_setjmp_receiver
1182 		 or __builtin_setjmp_dispatcher calls.  These are very
1183 		 special and don't expect anything to be inserted before
1184 		 them.  */
1185 	      if (!is_gimple_call (first)
1186 		  || (fndecl = gimple_call_fndecl (first)) == NULL
1187 		  || DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_NORMAL
1188 		  || (DECL_FUNCTION_CODE (fndecl) != BUILT_IN_SETJMP_RECEIVER
1189 		      && (DECL_FUNCTION_CODE (fndecl)
1190 			  != BUILT_IN_SETJMP_DISPATCHER)))
1191 		{
1192 		  if (dump_file)
1193 		    fprintf (dump_file, "Splitting bb %i after labels\n",
1194 			     bb->index);
1195 		  split_block_after_labels (bb);
1196 		}
1197 	    }
1198 	}
1199     }
1200 
1201   el = create_edge_list ();
1202   num_edges = NUM_EDGES (el);
1203   alloc_aux_for_edges (sizeof (struct edge_info));
1204 
1205   /* The basic blocks are expected to be numbered sequentially.  */
1206   compact_blocks ();
1207 
1208   ignored_edges = 0;
1209   for (i = 0 ; i < num_edges ; i++)
1210     {
1211       edge e = INDEX_EDGE (el, i);
1212       e->count = 0;
1213 
1214       /* Mark edges we've replaced by fake edges above as ignored.  */
1215       if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1216 	  && e->src != ENTRY_BLOCK_PTR && e->dest != EXIT_BLOCK_PTR)
1217 	{
1218 	  EDGE_INFO (e)->ignore = 1;
1219 	  ignored_edges++;
1220 	}
1221     }
1222 
1223   /* Create spanning tree from basic block graph, mark each edge that is
1224      on the spanning tree.  We insert as many abnormal and critical edges
1225      as possible to minimize number of edge splits necessary.  */
1226 
1227   find_spanning_tree (el);
1228 
1229   /* Fake edges that are not on the tree will not be instrumented, so
1230      mark them ignored.  */
1231   for (num_instrumented = i = 0; i < num_edges; i++)
1232     {
1233       edge e = INDEX_EDGE (el, i);
1234       struct edge_info *inf = EDGE_INFO (e);
1235 
1236       if (inf->ignore || inf->on_tree)
1237 	/*NOP*/;
1238       else if (e->flags & EDGE_FAKE)
1239 	{
1240 	  inf->ignore = 1;
1241 	  ignored_edges++;
1242 	}
1243       else
1244 	num_instrumented++;
1245     }
1246 
1247   total_num_blocks += n_basic_blocks;
1248   if (dump_file)
1249     fprintf (dump_file, "%d basic blocks\n", n_basic_blocks);
1250 
1251   total_num_edges += num_edges;
1252   if (dump_file)
1253     fprintf (dump_file, "%d edges\n", num_edges);
1254 
1255   total_num_edges_ignored += ignored_edges;
1256   if (dump_file)
1257     fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1258 
1259   total_num_edges_instrumented += num_instrumented;
1260   if (dump_file)
1261     fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);
1262 
1263   /* Compute two different checksums. Note that we want to compute
1264      the checksum in only once place, since it depends on the shape
1265      of the control flow which can change during
1266      various transformations.  */
1267   cfg_checksum = coverage_compute_cfg_checksum ();
1268   lineno_checksum = coverage_compute_lineno_checksum ();
1269 
1270   /* Write the data from which gcov can reconstruct the basic block
1271      graph and function line numbers (the gcno file).  */
1272   if (coverage_begin_function (lineno_checksum, cfg_checksum))
1273     {
1274       gcov_position_t offset;
1275 
1276       /* Basic block flags */
1277       offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1278       for (i = 0; i != (unsigned) (n_basic_blocks); i++)
1279 	gcov_write_unsigned (0);
1280       gcov_write_length (offset);
1281 
1282       /* Arcs */
1283       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
1284 	{
1285 	  edge e;
1286 	  edge_iterator ei;
1287 
1288 	  offset = gcov_write_tag (GCOV_TAG_ARCS);
1289 	  gcov_write_unsigned (bb->index);
1290 
1291 	  FOR_EACH_EDGE (e, ei, bb->succs)
1292 	    {
1293 	      struct edge_info *i = EDGE_INFO (e);
1294 	      if (!i->ignore)
1295 		{
1296 		  unsigned flag_bits = 0;
1297 
1298 		  if (i->on_tree)
1299 		    flag_bits |= GCOV_ARC_ON_TREE;
1300 		  if (e->flags & EDGE_FAKE)
1301 		    flag_bits |= GCOV_ARC_FAKE;
1302 		  if (e->flags & EDGE_FALLTHRU)
1303 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1304 		  /* On trees we don't have fallthru flags, but we can
1305 		     recompute them from CFG shape.  */
1306 		  if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1307 		      && e->src->next_bb == e->dest)
1308 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1309 
1310 		  gcov_write_unsigned (e->dest->index);
1311 		  gcov_write_unsigned (flag_bits);
1312 	        }
1313 	    }
1314 
1315 	  gcov_write_length (offset);
1316 	}
1317 
1318       /* Line numbers.  */
1319       /* Initialize the output.  */
1320       output_location (NULL, 0, NULL, NULL);
1321 
1322       FOR_EACH_BB (bb)
1323 	{
1324 	  gimple_stmt_iterator gsi;
1325 	  gcov_position_t offset = 0;
1326 
1327 	  if (bb == ENTRY_BLOCK_PTR->next_bb)
1328 	    {
1329 	      expanded_location curr_location =
1330 		expand_location (DECL_SOURCE_LOCATION (current_function_decl));
1331 	      output_location (curr_location.file, curr_location.line,
1332 			       &offset, bb);
1333 	    }
1334 
1335 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1336 	    {
1337 	      gimple stmt = gsi_stmt (gsi);
1338 	      if (gimple_has_location (stmt))
1339 		output_location (gimple_filename (stmt), gimple_lineno (stmt),
1340 				 &offset, bb);
1341 	    }
1342 
1343 	  /* Notice GOTO expressions eliminated while constructing the CFG.  */
1344 	  if (single_succ_p (bb)
1345 	      && LOCATION_LOCUS (single_succ_edge (bb)->goto_locus)
1346 		 != UNKNOWN_LOCATION)
1347 	    {
1348 	      expanded_location curr_location
1349 		= expand_location (single_succ_edge (bb)->goto_locus);
1350 	      output_location (curr_location.file, curr_location.line,
1351 			       &offset, bb);
1352 	    }
1353 
1354 	  if (offset)
1355 	    {
1356 	      /* A file of NULL indicates the end of run.  */
1357 	      gcov_write_unsigned (0);
1358 	      gcov_write_string (NULL);
1359 	      gcov_write_length (offset);
1360 	    }
1361 	}
1362     }
1363 
1364   if (flag_profile_values)
1365     gimple_find_values_to_profile (&values);
1366 
1367   if (flag_branch_probabilities)
1368     {
1369       compute_branch_probabilities (cfg_checksum, lineno_checksum);
1370       if (flag_profile_values)
1371 	compute_value_histograms (values, cfg_checksum, lineno_checksum);
1372     }
1373 
1374   remove_fake_edges ();
1375 
1376   /* For each edge not on the spanning tree, add counting code.  */
1377   if (profile_arc_flag
1378       && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1379     {
1380       unsigned n_instrumented;
1381 
1382       gimple_init_edge_profiler ();
1383 
1384       n_instrumented = instrument_edges (el);
1385 
1386       gcc_assert (n_instrumented == num_instrumented);
1387 
1388       if (flag_profile_values)
1389 	instrument_values (values);
1390 
1391       /* Commit changes done by instrumentation.  */
1392       gsi_commit_edge_inserts ();
1393     }
1394 
1395   free_aux_for_edges ();
1396 
1397   values.release ();
1398   free_edge_list (el);
1399   coverage_end_function (lineno_checksum, cfg_checksum);
1400 }
1401 
1402 /* Union find algorithm implementation for the basic blocks using
1403    aux fields.  */
1404 
1405 static basic_block
1406 find_group (basic_block bb)
1407 {
1408   basic_block group = bb, bb1;
1409 
1410   while ((basic_block) group->aux != group)
1411     group = (basic_block) group->aux;
1412 
1413   /* Compress path.  */
1414   while ((basic_block) bb->aux != group)
1415     {
1416       bb1 = (basic_block) bb->aux;
1417       bb->aux = (void *) group;
1418       bb = bb1;
1419     }
1420   return group;
1421 }
1422 
1423 static void
1424 union_groups (basic_block bb1, basic_block bb2)
1425 {
1426   basic_block bb1g = find_group (bb1);
1427   basic_block bb2g = find_group (bb2);
1428 
1429   /* ??? I don't have a place for the rank field.  OK.  Lets go w/o it,
1430      this code is unlikely going to be performance problem anyway.  */
1431   gcc_assert (bb1g != bb2g);
1432 
1433   bb1g->aux = bb2g;
1434 }
1435 
1436 /* This function searches all of the edges in the program flow graph, and puts
1437    as many bad edges as possible onto the spanning tree.  Bad edges include
1438    abnormals edges, which can't be instrumented at the moment.  Since it is
1439    possible for fake edges to form a cycle, we will have to develop some
1440    better way in the future.  Also put critical edges to the tree, since they
1441    are more expensive to instrument.  */
1442 
1443 static void
1444 find_spanning_tree (struct edge_list *el)
1445 {
1446   int i;
1447   int num_edges = NUM_EDGES (el);
1448   basic_block bb;
1449 
1450   /* We use aux field for standard union-find algorithm.  */
1451   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1452     bb->aux = bb;
1453 
1454   /* Add fake edge exit to entry we can't instrument.  */
1455   union_groups (EXIT_BLOCK_PTR, ENTRY_BLOCK_PTR);
1456 
1457   /* First add all abnormal edges to the tree unless they form a cycle. Also
1458      add all edges to EXIT_BLOCK_PTR to avoid inserting profiling code behind
1459      setting return value from function.  */
1460   for (i = 0; i < num_edges; i++)
1461     {
1462       edge e = INDEX_EDGE (el, i);
1463       if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1464 	   || e->dest == EXIT_BLOCK_PTR)
1465 	  && !EDGE_INFO (e)->ignore
1466 	  && (find_group (e->src) != find_group (e->dest)))
1467 	{
1468 	  if (dump_file)
1469 	    fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1470 		     e->src->index, e->dest->index);
1471 	  EDGE_INFO (e)->on_tree = 1;
1472 	  union_groups (e->src, e->dest);
1473 	}
1474     }
1475 
1476   /* Now insert all critical edges to the tree unless they form a cycle.  */
1477   for (i = 0; i < num_edges; i++)
1478     {
1479       edge e = INDEX_EDGE (el, i);
1480       if (EDGE_CRITICAL_P (e) && !EDGE_INFO (e)->ignore
1481 	  && find_group (e->src) != find_group (e->dest))
1482 	{
1483 	  if (dump_file)
1484 	    fprintf (dump_file, "Critical edge %d to %d put to tree\n",
1485 		     e->src->index, e->dest->index);
1486 	  EDGE_INFO (e)->on_tree = 1;
1487 	  union_groups (e->src, e->dest);
1488 	}
1489     }
1490 
1491   /* And now the rest.  */
1492   for (i = 0; i < num_edges; i++)
1493     {
1494       edge e = INDEX_EDGE (el, i);
1495       if (!EDGE_INFO (e)->ignore
1496 	  && find_group (e->src) != find_group (e->dest))
1497 	{
1498 	  if (dump_file)
1499 	    fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1500 		     e->src->index, e->dest->index);
1501 	  EDGE_INFO (e)->on_tree = 1;
1502 	  union_groups (e->src, e->dest);
1503 	}
1504     }
1505 
1506   clear_aux_for_blocks ();
1507 }
1508 
1509 /* Perform file-level initialization for branch-prob processing.  */
1510 
1511 void
1512 init_branch_prob (void)
1513 {
1514   int i;
1515 
1516   total_num_blocks = 0;
1517   total_num_edges = 0;
1518   total_num_edges_ignored = 0;
1519   total_num_edges_instrumented = 0;
1520   total_num_blocks_created = 0;
1521   total_num_passes = 0;
1522   total_num_times_called = 0;
1523   total_num_branches = 0;
1524   for (i = 0; i < 20; i++)
1525     total_hist_br_prob[i] = 0;
1526 }
1527 
1528 /* Performs file-level cleanup after branch-prob processing
1529    is completed.  */
1530 
1531 void
1532 end_branch_prob (void)
1533 {
1534   if (dump_file)
1535     {
1536       fprintf (dump_file, "\n");
1537       fprintf (dump_file, "Total number of blocks: %d\n",
1538 	       total_num_blocks);
1539       fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1540       fprintf (dump_file, "Total number of ignored edges: %d\n",
1541 	       total_num_edges_ignored);
1542       fprintf (dump_file, "Total number of instrumented edges: %d\n",
1543 	       total_num_edges_instrumented);
1544       fprintf (dump_file, "Total number of blocks created: %d\n",
1545 	       total_num_blocks_created);
1546       fprintf (dump_file, "Total number of graph solution passes: %d\n",
1547 	       total_num_passes);
1548       if (total_num_times_called != 0)
1549 	fprintf (dump_file, "Average number of graph solution passes: %d\n",
1550 		 (total_num_passes + (total_num_times_called  >> 1))
1551 		 / total_num_times_called);
1552       fprintf (dump_file, "Total number of branches: %d\n",
1553 	       total_num_branches);
1554       if (total_num_branches)
1555 	{
1556 	  int i;
1557 
1558 	  for (i = 0; i < 10; i++)
1559 	    fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1560 		     (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1561 		     / total_num_branches, 5*i, 5*i+5);
1562 	}
1563     }
1564 }
1565