1 /* Calculate branch probabilities, and basic block execution counts. 2 Copyright (C) 1990-2019 Free Software Foundation, Inc. 3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support; 4 based on some ideas from Dain Samples of UC Berkeley. 5 Further mangling by Bob Manson, Cygnus Support. 6 7 This file is part of GCC. 8 9 GCC is free software; you can redistribute it and/or modify it under 10 the terms of the GNU General Public License as published by the Free 11 Software Foundation; either version 3, or (at your option) any later 12 version. 13 14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 15 WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 17 for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with GCC; see the file COPYING3. If not see 21 <http://www.gnu.org/licenses/>. */ 22 23 /* Generate basic block profile instrumentation and auxiliary files. 24 Profile generation is optimized, so that not all arcs in the basic 25 block graph need instrumenting. First, the BB graph is closed with 26 one entry (function start), and one exit (function exit). Any 27 ABNORMAL_EDGE cannot be instrumented (because there is no control 28 path to place the code). We close the graph by inserting fake 29 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal 30 edges that do not go to the exit_block. We ignore such abnormal 31 edges. Naturally these fake edges are never directly traversed, 32 and so *cannot* be directly instrumented. Some other graph 33 massaging is done. To optimize the instrumentation we generate the 34 BB minimal span tree, only edges that are not on the span tree 35 (plus the entry point) need instrumenting. From that information 36 all other edge counts can be deduced. By construction all fake 37 edges must be on the spanning tree. We also attempt to place 38 EDGE_CRITICAL edges on the spanning tree. 39 40 The auxiliary files generated are <dumpbase>.gcno (at compile time) 41 and <dumpbase>.gcda (at run time). The format is 42 described in full in gcov-io.h. */ 43 44 /* ??? Register allocation should use basic block execution counts to 45 give preference to the most commonly executed blocks. */ 46 47 /* ??? Should calculate branch probabilities before instrumenting code, since 48 then we can use arc counts to help decide which arcs to instrument. */ 49 50 #include "config.h" 51 #include "system.h" 52 #include "coretypes.h" 53 #include "backend.h" 54 #include "rtl.h" 55 #include "tree.h" 56 #include "gimple.h" 57 #include "cfghooks.h" 58 #include "cgraph.h" 59 #include "coverage.h" 60 #include "diagnostic-core.h" 61 #include "cfganal.h" 62 #include "value-prof.h" 63 #include "gimple-iterator.h" 64 #include "tree-cfg.h" 65 #include "dumpfile.h" 66 #include "cfgloop.h" 67 68 #include "profile.h" 69 70 /* Map from BBs/edges to gcov counters. */ 71 vec<gcov_type> bb_gcov_counts; 72 hash_map<edge,gcov_type> *edge_gcov_counts; 73 74 struct bb_profile_info { 75 unsigned int count_valid : 1; 76 77 /* Number of successor and predecessor edges. */ 78 gcov_type succ_count; 79 gcov_type pred_count; 80 }; 81 82 #define BB_INFO(b) ((struct bb_profile_info *) (b)->aux) 83 84 85 /* Counter summary from the last set of coverage counts read. */ 86 87 gcov_summary *profile_info; 88 89 /* Collect statistics on the performance of this pass for the entire source 90 file. */ 91 92 static int total_num_blocks; 93 static int total_num_edges; 94 static int total_num_edges_ignored; 95 static int total_num_edges_instrumented; 96 static int total_num_blocks_created; 97 static int total_num_passes; 98 static int total_num_times_called; 99 static int total_hist_br_prob[20]; 100 static int total_num_branches; 101 102 /* Forward declarations. */ 103 static void find_spanning_tree (struct edge_list *); 104 105 /* Add edge instrumentation code to the entire insn chain. 106 107 F is the first insn of the chain. 108 NUM_BLOCKS is the number of basic blocks found in F. */ 109 110 static unsigned 111 instrument_edges (struct edge_list *el) 112 { 113 unsigned num_instr_edges = 0; 114 int num_edges = NUM_EDGES (el); 115 basic_block bb; 116 117 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 118 { 119 edge e; 120 edge_iterator ei; 121 122 FOR_EACH_EDGE (e, ei, bb->succs) 123 { 124 struct edge_profile_info *inf = EDGE_INFO (e); 125 126 if (!inf->ignore && !inf->on_tree) 127 { 128 gcc_assert (!(e->flags & EDGE_ABNORMAL)); 129 if (dump_file) 130 fprintf (dump_file, "Edge %d to %d instrumented%s\n", 131 e->src->index, e->dest->index, 132 EDGE_CRITICAL_P (e) ? " (and split)" : ""); 133 gimple_gen_edge_profiler (num_instr_edges++, e); 134 } 135 } 136 } 137 138 total_num_blocks_created += num_edges; 139 if (dump_file) 140 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges); 141 return num_instr_edges; 142 } 143 144 /* Add code to measure histograms for values in list VALUES. */ 145 static void 146 instrument_values (histogram_values values) 147 { 148 unsigned i; 149 150 /* Emit code to generate the histograms before the insns. */ 151 152 for (i = 0; i < values.length (); i++) 153 { 154 histogram_value hist = values[i]; 155 unsigned t = COUNTER_FOR_HIST_TYPE (hist->type); 156 157 if (!coverage_counter_alloc (t, hist->n_counters)) 158 continue; 159 160 switch (hist->type) 161 { 162 case HIST_TYPE_INTERVAL: 163 gimple_gen_interval_profiler (hist, t, 0); 164 break; 165 166 case HIST_TYPE_POW2: 167 gimple_gen_pow2_profiler (hist, t, 0); 168 break; 169 170 case HIST_TYPE_SINGLE_VALUE: 171 gimple_gen_one_value_profiler (hist, t, 0); 172 break; 173 174 case HIST_TYPE_INDIR_CALL: 175 case HIST_TYPE_INDIR_CALL_TOPN: 176 gimple_gen_ic_profiler (hist, t, 0); 177 break; 178 179 case HIST_TYPE_AVERAGE: 180 gimple_gen_average_profiler (hist, t, 0); 181 break; 182 183 case HIST_TYPE_IOR: 184 gimple_gen_ior_profiler (hist, t, 0); 185 break; 186 187 case HIST_TYPE_TIME_PROFILE: 188 gimple_gen_time_profiler (t, 0); 189 break; 190 191 default: 192 gcc_unreachable (); 193 } 194 } 195 } 196 197 198 /* Computes hybrid profile for all matching entries in da_file. 199 200 CFG_CHECKSUM is the precomputed checksum for the CFG. */ 201 202 static gcov_type * 203 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum) 204 { 205 unsigned num_edges = 0; 206 basic_block bb; 207 gcov_type *counts; 208 209 /* Count the edges to be (possibly) instrumented. */ 210 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 211 { 212 edge e; 213 edge_iterator ei; 214 215 FOR_EACH_EDGE (e, ei, bb->succs) 216 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree) 217 num_edges++; 218 } 219 220 counts = get_coverage_counts (GCOV_COUNTER_ARCS, cfg_checksum, 221 lineno_checksum, num_edges); 222 if (!counts) 223 return NULL; 224 225 return counts; 226 } 227 228 static bool 229 is_edge_inconsistent (vec<edge, va_gc> *edges) 230 { 231 edge e; 232 edge_iterator ei; 233 FOR_EACH_EDGE (e, ei, edges) 234 { 235 if (!EDGE_INFO (e)->ignore) 236 { 237 if (edge_gcov_count (e) < 0 238 && (!(e->flags & EDGE_FAKE) 239 || !block_ends_with_call_p (e->src))) 240 { 241 if (dump_file) 242 { 243 fprintf (dump_file, 244 "Edge %i->%i is inconsistent, count%" PRId64, 245 e->src->index, e->dest->index, edge_gcov_count (e)); 246 dump_bb (dump_file, e->src, 0, TDF_DETAILS); 247 dump_bb (dump_file, e->dest, 0, TDF_DETAILS); 248 } 249 return true; 250 } 251 } 252 } 253 return false; 254 } 255 256 static void 257 correct_negative_edge_counts (void) 258 { 259 basic_block bb; 260 edge e; 261 edge_iterator ei; 262 263 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 264 { 265 FOR_EACH_EDGE (e, ei, bb->succs) 266 { 267 if (edge_gcov_count (e) < 0) 268 edge_gcov_count (e) = 0; 269 } 270 } 271 } 272 273 /* Check consistency. 274 Return true if inconsistency is found. */ 275 static bool 276 is_inconsistent (void) 277 { 278 basic_block bb; 279 bool inconsistent = false; 280 FOR_EACH_BB_FN (bb, cfun) 281 { 282 inconsistent |= is_edge_inconsistent (bb->preds); 283 if (!dump_file && inconsistent) 284 return true; 285 inconsistent |= is_edge_inconsistent (bb->succs); 286 if (!dump_file && inconsistent) 287 return true; 288 if (bb_gcov_count (bb) < 0) 289 { 290 if (dump_file) 291 { 292 fprintf (dump_file, "BB %i count is negative " 293 "%" PRId64, 294 bb->index, 295 bb_gcov_count (bb)); 296 dump_bb (dump_file, bb, 0, TDF_DETAILS); 297 } 298 inconsistent = true; 299 } 300 if (bb_gcov_count (bb) != sum_edge_counts (bb->preds)) 301 { 302 if (dump_file) 303 { 304 fprintf (dump_file, "BB %i count does not match sum of incoming edges " 305 "%" PRId64" should be %" PRId64, 306 bb->index, 307 bb_gcov_count (bb), 308 sum_edge_counts (bb->preds)); 309 dump_bb (dump_file, bb, 0, TDF_DETAILS); 310 } 311 inconsistent = true; 312 } 313 if (bb_gcov_count (bb) != sum_edge_counts (bb->succs) && 314 ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL 315 && block_ends_with_call_p (bb))) 316 { 317 if (dump_file) 318 { 319 fprintf (dump_file, "BB %i count does not match sum of outgoing edges " 320 "%" PRId64" should be %" PRId64, 321 bb->index, 322 bb_gcov_count (bb), 323 sum_edge_counts (bb->succs)); 324 dump_bb (dump_file, bb, 0, TDF_DETAILS); 325 } 326 inconsistent = true; 327 } 328 if (!dump_file && inconsistent) 329 return true; 330 } 331 332 return inconsistent; 333 } 334 335 /* Set each basic block count to the sum of its outgoing edge counts */ 336 static void 337 set_bb_counts (void) 338 { 339 basic_block bb; 340 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 341 { 342 bb_gcov_count (bb) = sum_edge_counts (bb->succs); 343 gcc_assert (bb_gcov_count (bb) >= 0); 344 } 345 } 346 347 /* Reads profile data and returns total number of edge counts read */ 348 static int 349 read_profile_edge_counts (gcov_type *exec_counts) 350 { 351 basic_block bb; 352 int num_edges = 0; 353 int exec_counts_pos = 0; 354 /* For each edge not on the spanning tree, set its execution count from 355 the .da file. */ 356 /* The first count in the .da file is the number of times that the function 357 was entered. This is the exec_count for block zero. */ 358 359 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 360 { 361 edge e; 362 edge_iterator ei; 363 364 FOR_EACH_EDGE (e, ei, bb->succs) 365 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree) 366 { 367 num_edges++; 368 if (exec_counts) 369 edge_gcov_count (e) = exec_counts[exec_counts_pos++]; 370 else 371 edge_gcov_count (e) = 0; 372 373 EDGE_INFO (e)->count_valid = 1; 374 BB_INFO (bb)->succ_count--; 375 BB_INFO (e->dest)->pred_count--; 376 if (dump_file) 377 { 378 fprintf (dump_file, "\nRead edge from %i to %i, count:", 379 bb->index, e->dest->index); 380 fprintf (dump_file, "%" PRId64, 381 (int64_t) edge_gcov_count (e)); 382 } 383 } 384 } 385 386 return num_edges; 387 } 388 389 390 /* Compute the branch probabilities for the various branches. 391 Annotate them accordingly. 392 393 CFG_CHECKSUM is the precomputed checksum for the CFG. */ 394 395 static void 396 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum) 397 { 398 basic_block bb; 399 int i; 400 int num_edges = 0; 401 int changes; 402 int passes; 403 int hist_br_prob[20]; 404 int num_branches; 405 gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum); 406 int inconsistent = 0; 407 408 /* Very simple sanity checks so we catch bugs in our profiling code. */ 409 if (!profile_info) 410 { 411 if (dump_file) 412 fprintf (dump_file, "Profile info is missing; giving up\n"); 413 return; 414 } 415 416 bb_gcov_counts.safe_grow_cleared (last_basic_block_for_fn (cfun)); 417 edge_gcov_counts = new hash_map<edge,gcov_type>; 418 419 /* Attach extra info block to each bb. */ 420 alloc_aux_for_blocks (sizeof (struct bb_profile_info)); 421 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 422 { 423 edge e; 424 edge_iterator ei; 425 426 FOR_EACH_EDGE (e, ei, bb->succs) 427 if (!EDGE_INFO (e)->ignore) 428 BB_INFO (bb)->succ_count++; 429 FOR_EACH_EDGE (e, ei, bb->preds) 430 if (!EDGE_INFO (e)->ignore) 431 BB_INFO (bb)->pred_count++; 432 } 433 434 /* Avoid predicting entry on exit nodes. */ 435 BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2; 436 BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2; 437 438 num_edges = read_profile_edge_counts (exec_counts); 439 440 if (dump_file) 441 fprintf (dump_file, "\n%d edge counts read\n", num_edges); 442 443 /* For every block in the file, 444 - if every exit/entrance edge has a known count, then set the block count 445 - if the block count is known, and every exit/entrance edge but one has 446 a known execution count, then set the count of the remaining edge 447 448 As edge counts are set, decrement the succ/pred count, but don't delete 449 the edge, that way we can easily tell when all edges are known, or only 450 one edge is unknown. */ 451 452 /* The order that the basic blocks are iterated through is important. 453 Since the code that finds spanning trees starts with block 0, low numbered 454 edges are put on the spanning tree in preference to high numbered edges. 455 Hence, most instrumented edges are at the end. Graph solving works much 456 faster if we propagate numbers from the end to the start. 457 458 This takes an average of slightly more than 3 passes. */ 459 460 changes = 1; 461 passes = 0; 462 while (changes) 463 { 464 passes++; 465 changes = 0; 466 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb) 467 { 468 struct bb_profile_info *bi = BB_INFO (bb); 469 if (! bi->count_valid) 470 { 471 if (bi->succ_count == 0) 472 { 473 edge e; 474 edge_iterator ei; 475 gcov_type total = 0; 476 477 FOR_EACH_EDGE (e, ei, bb->succs) 478 total += edge_gcov_count (e); 479 bb_gcov_count (bb) = total; 480 bi->count_valid = 1; 481 changes = 1; 482 } 483 else if (bi->pred_count == 0) 484 { 485 edge e; 486 edge_iterator ei; 487 gcov_type total = 0; 488 489 FOR_EACH_EDGE (e, ei, bb->preds) 490 total += edge_gcov_count (e); 491 bb_gcov_count (bb) = total; 492 bi->count_valid = 1; 493 changes = 1; 494 } 495 } 496 if (bi->count_valid) 497 { 498 if (bi->succ_count == 1) 499 { 500 edge e; 501 edge_iterator ei; 502 gcov_type total = 0; 503 504 /* One of the counts will be invalid, but it is zero, 505 so adding it in also doesn't hurt. */ 506 FOR_EACH_EDGE (e, ei, bb->succs) 507 total += edge_gcov_count (e); 508 509 /* Search for the invalid edge, and set its count. */ 510 FOR_EACH_EDGE (e, ei, bb->succs) 511 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore) 512 break; 513 514 /* Calculate count for remaining edge by conservation. */ 515 total = bb_gcov_count (bb) - total; 516 517 gcc_assert (e); 518 EDGE_INFO (e)->count_valid = 1; 519 edge_gcov_count (e) = total; 520 bi->succ_count--; 521 522 BB_INFO (e->dest)->pred_count--; 523 changes = 1; 524 } 525 if (bi->pred_count == 1) 526 { 527 edge e; 528 edge_iterator ei; 529 gcov_type total = 0; 530 531 /* One of the counts will be invalid, but it is zero, 532 so adding it in also doesn't hurt. */ 533 FOR_EACH_EDGE (e, ei, bb->preds) 534 total += edge_gcov_count (e); 535 536 /* Search for the invalid edge, and set its count. */ 537 FOR_EACH_EDGE (e, ei, bb->preds) 538 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore) 539 break; 540 541 /* Calculate count for remaining edge by conservation. */ 542 total = bb_gcov_count (bb) - total + edge_gcov_count (e); 543 544 gcc_assert (e); 545 EDGE_INFO (e)->count_valid = 1; 546 edge_gcov_count (e) = total; 547 bi->pred_count--; 548 549 BB_INFO (e->src)->succ_count--; 550 changes = 1; 551 } 552 } 553 } 554 } 555 556 total_num_passes += passes; 557 if (dump_file) 558 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes); 559 560 /* If the graph has been correctly solved, every block will have a 561 succ and pred count of zero. */ 562 FOR_EACH_BB_FN (bb, cfun) 563 { 564 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count); 565 } 566 567 /* Check for inconsistent basic block counts */ 568 inconsistent = is_inconsistent (); 569 570 if (inconsistent) 571 { 572 if (flag_profile_correction) 573 { 574 /* Inconsistency detected. Make it flow-consistent. */ 575 static int informed = 0; 576 if (dump_enabled_p () && informed == 0) 577 { 578 informed = 1; 579 dump_printf_loc (MSG_NOTE, 580 dump_user_location_t::from_location_t (input_location), 581 "correcting inconsistent profile data\n"); 582 } 583 correct_negative_edge_counts (); 584 /* Set bb counts to the sum of the outgoing edge counts */ 585 set_bb_counts (); 586 if (dump_file) 587 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n"); 588 mcf_smooth_cfg (); 589 } 590 else 591 error ("corrupted profile info: profile data is not flow-consistent"); 592 } 593 594 /* For every edge, calculate its branch probability and add a reg_note 595 to the branch insn to indicate this. */ 596 597 for (i = 0; i < 20; i++) 598 hist_br_prob[i] = 0; 599 num_branches = 0; 600 601 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 602 { 603 edge e; 604 edge_iterator ei; 605 606 if (bb_gcov_count (bb) < 0) 607 { 608 error ("corrupted profile info: number of iterations for basic block %d thought to be %i", 609 bb->index, (int)bb_gcov_count (bb)); 610 bb_gcov_count (bb) = 0; 611 } 612 FOR_EACH_EDGE (e, ei, bb->succs) 613 { 614 /* Function may return twice in the cased the called function is 615 setjmp or calls fork, but we can't represent this by extra 616 edge from the entry, since extra edge from the exit is 617 already present. We get negative frequency from the entry 618 point. */ 619 if ((edge_gcov_count (e) < 0 620 && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 621 || (edge_gcov_count (e) > bb_gcov_count (bb) 622 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))) 623 { 624 if (block_ends_with_call_p (bb)) 625 edge_gcov_count (e) = edge_gcov_count (e) < 0 626 ? 0 : bb_gcov_count (bb); 627 } 628 if (edge_gcov_count (e) < 0 629 || edge_gcov_count (e) > bb_gcov_count (bb)) 630 { 631 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i", 632 e->src->index, e->dest->index, 633 (int)edge_gcov_count (e)); 634 edge_gcov_count (e) = bb_gcov_count (bb) / 2; 635 } 636 } 637 if (bb_gcov_count (bb)) 638 { 639 FOR_EACH_EDGE (e, ei, bb->succs) 640 e->probability = profile_probability::probability_in_gcov_type 641 (edge_gcov_count (e), bb_gcov_count (bb)); 642 if (bb->index >= NUM_FIXED_BLOCKS 643 && block_ends_with_condjump_p (bb) 644 && EDGE_COUNT (bb->succs) >= 2) 645 { 646 int prob; 647 edge e; 648 int index; 649 650 /* Find the branch edge. It is possible that we do have fake 651 edges here. */ 652 FOR_EACH_EDGE (e, ei, bb->succs) 653 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU))) 654 break; 655 656 prob = e->probability.to_reg_br_prob_base (); 657 index = prob * 20 / REG_BR_PROB_BASE; 658 659 if (index == 20) 660 index = 19; 661 hist_br_prob[index]++; 662 663 num_branches++; 664 } 665 } 666 /* As a last resort, distribute the probabilities evenly. 667 Use simple heuristics that if there are normal edges, 668 give all abnormals frequency of 0, otherwise distribute the 669 frequency over abnormals (this is the case of noreturn 670 calls). */ 671 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT) 672 { 673 int total = 0; 674 675 FOR_EACH_EDGE (e, ei, bb->succs) 676 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) 677 total ++; 678 if (total) 679 { 680 FOR_EACH_EDGE (e, ei, bb->succs) 681 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE))) 682 e->probability 683 = profile_probability::guessed_always ().apply_scale (1, total); 684 else 685 e->probability = profile_probability::never (); 686 } 687 else 688 { 689 total += EDGE_COUNT (bb->succs); 690 FOR_EACH_EDGE (e, ei, bb->succs) 691 e->probability 692 = profile_probability::guessed_always ().apply_scale (1, total); 693 } 694 if (bb->index >= NUM_FIXED_BLOCKS 695 && block_ends_with_condjump_p (bb) 696 && EDGE_COUNT (bb->succs) >= 2) 697 num_branches++; 698 } 699 } 700 701 if (exec_counts) 702 profile_status_for_fn (cfun) = PROFILE_READ; 703 704 /* If we have real data, use them! */ 705 if (bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun)) 706 || !flag_guess_branch_prob) 707 FOR_ALL_BB_FN (bb, cfun) 708 bb->count = profile_count::from_gcov_type (bb_gcov_count (bb)); 709 /* If function was not trained, preserve local estimates including statically 710 determined zero counts. */ 711 else if (profile_status_for_fn (cfun) == PROFILE_READ) 712 FOR_ALL_BB_FN (bb, cfun) 713 if (!(bb->count == profile_count::zero ())) 714 bb->count = bb->count.global0 (); 715 716 bb_gcov_counts.release (); 717 delete edge_gcov_counts; 718 edge_gcov_counts = NULL; 719 720 update_max_bb_count (); 721 722 if (dump_file) 723 { 724 fprintf (dump_file, " Profile feedback for function"); 725 fprintf (dump_file, ((profile_status_for_fn (cfun) == PROFILE_READ) 726 ? " is available \n" 727 : " is not available \n")); 728 729 fprintf (dump_file, "%d branches\n", num_branches); 730 if (num_branches) 731 for (i = 0; i < 10; i++) 732 fprintf (dump_file, "%d%% branches in range %d-%d%%\n", 733 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches, 734 5 * i, 5 * i + 5); 735 736 total_num_branches += num_branches; 737 for (i = 0; i < 20; i++) 738 total_hist_br_prob[i] += hist_br_prob[i]; 739 740 fputc ('\n', dump_file); 741 fputc ('\n', dump_file); 742 } 743 744 free_aux_for_blocks (); 745 } 746 747 /* Load value histograms values whose description is stored in VALUES array 748 from .gcda file. 749 750 CFG_CHECKSUM is the precomputed checksum for the CFG. */ 751 752 static void 753 compute_value_histograms (histogram_values values, unsigned cfg_checksum, 754 unsigned lineno_checksum) 755 { 756 unsigned i, j, t, any; 757 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS]; 758 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS]; 759 gcov_type *act_count[GCOV_N_VALUE_COUNTERS]; 760 gcov_type *aact_count; 761 struct cgraph_node *node; 762 763 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 764 n_histogram_counters[t] = 0; 765 766 for (i = 0; i < values.length (); i++) 767 { 768 histogram_value hist = values[i]; 769 n_histogram_counters[(int) hist->type] += hist->n_counters; 770 } 771 772 any = 0; 773 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 774 { 775 if (!n_histogram_counters[t]) 776 { 777 histogram_counts[t] = NULL; 778 continue; 779 } 780 781 histogram_counts[t] = get_coverage_counts (COUNTER_FOR_HIST_TYPE (t), 782 cfg_checksum, 783 lineno_checksum, 784 n_histogram_counters[t]); 785 if (histogram_counts[t]) 786 any = 1; 787 act_count[t] = histogram_counts[t]; 788 } 789 if (!any) 790 return; 791 792 for (i = 0; i < values.length (); i++) 793 { 794 histogram_value hist = values[i]; 795 gimple *stmt = hist->hvalue.stmt; 796 797 t = (int) hist->type; 798 799 aact_count = act_count[t]; 800 801 if (act_count[t]) 802 act_count[t] += hist->n_counters; 803 804 gimple_add_histogram_value (cfun, stmt, hist); 805 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters); 806 for (j = 0; j < hist->n_counters; j++) 807 if (aact_count) 808 hist->hvalue.counters[j] = aact_count[j]; 809 else 810 hist->hvalue.counters[j] = 0; 811 812 /* Time profiler counter is not related to any statement, 813 so that we have to read the counter and set the value to 814 the corresponding call graph node. */ 815 if (hist->type == HIST_TYPE_TIME_PROFILE) 816 { 817 node = cgraph_node::get (hist->fun->decl); 818 node->tp_first_run = hist->hvalue.counters[0]; 819 820 if (dump_file) 821 fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run); 822 } 823 } 824 825 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++) 826 free (histogram_counts[t]); 827 } 828 829 /* Location triplet which records a location. */ 830 struct location_triplet 831 { 832 const char *filename; 833 int lineno; 834 int bb_index; 835 }; 836 837 /* Traits class for streamed_locations hash set below. */ 838 839 struct location_triplet_hash : typed_noop_remove <location_triplet> 840 { 841 typedef location_triplet value_type; 842 typedef location_triplet compare_type; 843 844 static hashval_t 845 hash (const location_triplet &ref) 846 { 847 inchash::hash hstate (0); 848 if (ref.filename) 849 hstate.add_int (strlen (ref.filename)); 850 hstate.add_int (ref.lineno); 851 hstate.add_int (ref.bb_index); 852 return hstate.end (); 853 } 854 855 static bool 856 equal (const location_triplet &ref1, const location_triplet &ref2) 857 { 858 return ref1.lineno == ref2.lineno 859 && ref1.bb_index == ref2.bb_index 860 && ref1.filename != NULL 861 && ref2.filename != NULL 862 && strcmp (ref1.filename, ref2.filename) == 0; 863 } 864 865 static void 866 mark_deleted (location_triplet &ref) 867 { 868 ref.lineno = -1; 869 } 870 871 static void 872 mark_empty (location_triplet &ref) 873 { 874 ref.lineno = -2; 875 } 876 877 static bool 878 is_deleted (const location_triplet &ref) 879 { 880 return ref.lineno == -1; 881 } 882 883 static bool 884 is_empty (const location_triplet &ref) 885 { 886 return ref.lineno == -2; 887 } 888 }; 889 890 891 892 893 /* When passed NULL as file_name, initialize. 894 When passed something else, output the necessary commands to change 895 line to LINE and offset to FILE_NAME. */ 896 static void 897 output_location (hash_set<location_triplet_hash> *streamed_locations, 898 char const *file_name, int line, 899 gcov_position_t *offset, basic_block bb) 900 { 901 static char const *prev_file_name; 902 static int prev_line; 903 bool name_differs, line_differs; 904 905 location_triplet triplet; 906 triplet.filename = file_name; 907 triplet.lineno = line; 908 triplet.bb_index = bb ? bb->index : 0; 909 910 if (streamed_locations->add (triplet)) 911 return; 912 913 if (!file_name) 914 { 915 prev_file_name = NULL; 916 prev_line = -1; 917 return; 918 } 919 920 name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name); 921 line_differs = prev_line != line; 922 923 if (!*offset) 924 { 925 *offset = gcov_write_tag (GCOV_TAG_LINES); 926 gcov_write_unsigned (bb->index); 927 name_differs = line_differs = true; 928 } 929 930 /* If this is a new source file, then output the 931 file's name to the .bb file. */ 932 if (name_differs) 933 { 934 prev_file_name = file_name; 935 gcov_write_unsigned (0); 936 gcov_write_filename (prev_file_name); 937 } 938 if (line_differs) 939 { 940 gcov_write_unsigned (line); 941 prev_line = line; 942 } 943 } 944 945 /* Helper for qsort so edges get sorted from highest frequency to smallest. 946 This controls the weight for minimal spanning tree algorithm */ 947 static int 948 compare_freqs (const void *p1, const void *p2) 949 { 950 const_edge e1 = *(const const_edge *)p1; 951 const_edge e2 = *(const const_edge *)p2; 952 953 /* Critical edges needs to be split which introduce extra control flow. 954 Make them more heavy. */ 955 int m1 = EDGE_CRITICAL_P (e1) ? 2 : 1; 956 int m2 = EDGE_CRITICAL_P (e2) ? 2 : 1; 957 958 if (EDGE_FREQUENCY (e1) * m1 + m1 != EDGE_FREQUENCY (e2) * m2 + m2) 959 return EDGE_FREQUENCY (e2) * m2 + m2 - EDGE_FREQUENCY (e1) * m1 - m1; 960 /* Stabilize sort. */ 961 if (e1->src->index != e2->src->index) 962 return e2->src->index - e1->src->index; 963 return e2->dest->index - e1->dest->index; 964 } 965 966 /* Only read execution count for thunks. */ 967 968 void 969 read_thunk_profile (struct cgraph_node *node) 970 { 971 tree old = current_function_decl; 972 current_function_decl = node->decl; 973 gcov_type *counts = get_coverage_counts (GCOV_COUNTER_ARCS, 0, 0, 1); 974 if (counts) 975 { 976 node->callees->count = node->count 977 = profile_count::from_gcov_type (counts[0]); 978 free (counts); 979 } 980 current_function_decl = old; 981 return; 982 } 983 984 985 /* Instrument and/or analyze program behavior based on program the CFG. 986 987 This function creates a representation of the control flow graph (of 988 the function being compiled) that is suitable for the instrumentation 989 of edges and/or converting measured edge counts to counts on the 990 complete CFG. 991 992 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in 993 the flow graph that are needed to reconstruct the dynamic behavior of the 994 flow graph. This data is written to the gcno file for gcov. 995 996 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary 997 information from the gcda file containing edge count information from 998 previous executions of the function being compiled. In this case, the 999 control flow graph is annotated with actual execution counts by 1000 compute_branch_probabilities(). 1001 1002 Main entry point of this file. */ 1003 1004 void 1005 branch_prob (bool thunk) 1006 { 1007 basic_block bb; 1008 unsigned i; 1009 unsigned num_edges, ignored_edges; 1010 unsigned num_instrumented; 1011 struct edge_list *el; 1012 histogram_values values = histogram_values (); 1013 unsigned cfg_checksum, lineno_checksum; 1014 1015 total_num_times_called++; 1016 1017 flow_call_edges_add (NULL); 1018 add_noreturn_fake_exit_edges (); 1019 1020 hash_set <location_triplet_hash> streamed_locations; 1021 1022 if (!thunk) 1023 { 1024 /* We can't handle cyclic regions constructed using abnormal edges. 1025 To avoid these we replace every source of abnormal edge by a fake 1026 edge from entry node and every destination by fake edge to exit. 1027 This keeps graph acyclic and our calculation exact for all normal 1028 edges except for exit and entrance ones. 1029 1030 We also add fake exit edges for each call and asm statement in the 1031 basic, since it may not return. */ 1032 1033 FOR_EACH_BB_FN (bb, cfun) 1034 { 1035 int need_exit_edge = 0, need_entry_edge = 0; 1036 int have_exit_edge = 0, have_entry_edge = 0; 1037 edge e; 1038 edge_iterator ei; 1039 1040 /* Functions returning multiple times are not handled by extra edges. 1041 Instead we simply allow negative counts on edges from exit to the 1042 block past call and corresponding probabilities. We can't go 1043 with the extra edges because that would result in flowgraph that 1044 needs to have fake edges outside the spanning tree. */ 1045 1046 FOR_EACH_EDGE (e, ei, bb->succs) 1047 { 1048 gimple_stmt_iterator gsi; 1049 gimple *last = NULL; 1050 1051 /* It may happen that there are compiler generated statements 1052 without a locus at all. Go through the basic block from the 1053 last to the first statement looking for a locus. */ 1054 for (gsi = gsi_last_nondebug_bb (bb); 1055 !gsi_end_p (gsi); 1056 gsi_prev_nondebug (&gsi)) 1057 { 1058 last = gsi_stmt (gsi); 1059 if (!RESERVED_LOCATION_P (gimple_location (last))) 1060 break; 1061 } 1062 1063 /* Edge with goto locus might get wrong coverage info unless 1064 it is the only edge out of BB. 1065 Don't do that when the locuses match, so 1066 if (blah) goto something; 1067 is not computed twice. */ 1068 if (last 1069 && gimple_has_location (last) 1070 && !RESERVED_LOCATION_P (e->goto_locus) 1071 && !single_succ_p (bb) 1072 && (LOCATION_FILE (e->goto_locus) 1073 != LOCATION_FILE (gimple_location (last)) 1074 || (LOCATION_LINE (e->goto_locus) 1075 != LOCATION_LINE (gimple_location (last))))) 1076 { 1077 basic_block new_bb = split_edge (e); 1078 edge ne = single_succ_edge (new_bb); 1079 ne->goto_locus = e->goto_locus; 1080 } 1081 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 1082 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 1083 need_exit_edge = 1; 1084 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1085 have_exit_edge = 1; 1086 } 1087 FOR_EACH_EDGE (e, ei, bb->preds) 1088 { 1089 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 1090 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1091 need_entry_edge = 1; 1092 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1093 have_entry_edge = 1; 1094 } 1095 1096 if (need_exit_edge && !have_exit_edge) 1097 { 1098 if (dump_file) 1099 fprintf (dump_file, "Adding fake exit edge to bb %i\n", 1100 bb->index); 1101 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE); 1102 } 1103 if (need_entry_edge && !have_entry_edge) 1104 { 1105 if (dump_file) 1106 fprintf (dump_file, "Adding fake entry edge to bb %i\n", 1107 bb->index); 1108 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE); 1109 /* Avoid bbs that have both fake entry edge and also some 1110 exit edge. One of those edges wouldn't be added to the 1111 spanning tree, but we can't instrument any of them. */ 1112 if (have_exit_edge || need_exit_edge) 1113 { 1114 gimple_stmt_iterator gsi; 1115 gimple *first; 1116 1117 gsi = gsi_start_nondebug_after_labels_bb (bb); 1118 gcc_checking_assert (!gsi_end_p (gsi)); 1119 first = gsi_stmt (gsi); 1120 /* Don't split the bbs containing __builtin_setjmp_receiver 1121 or ABNORMAL_DISPATCHER calls. These are very 1122 special and don't expect anything to be inserted before 1123 them. */ 1124 if (is_gimple_call (first) 1125 && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER) 1126 || (gimple_call_flags (first) & ECF_RETURNS_TWICE) 1127 || (gimple_call_internal_p (first) 1128 && (gimple_call_internal_fn (first) 1129 == IFN_ABNORMAL_DISPATCHER)))) 1130 continue; 1131 1132 if (dump_file) 1133 fprintf (dump_file, "Splitting bb %i after labels\n", 1134 bb->index); 1135 split_block_after_labels (bb); 1136 } 1137 } 1138 } 1139 } 1140 1141 el = create_edge_list (); 1142 num_edges = NUM_EDGES (el); 1143 qsort (el->index_to_edge, num_edges, sizeof (edge), compare_freqs); 1144 alloc_aux_for_edges (sizeof (struct edge_profile_info)); 1145 1146 /* The basic blocks are expected to be numbered sequentially. */ 1147 compact_blocks (); 1148 1149 ignored_edges = 0; 1150 for (i = 0 ; i < num_edges ; i++) 1151 { 1152 edge e = INDEX_EDGE (el, i); 1153 1154 /* Mark edges we've replaced by fake edges above as ignored. */ 1155 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL)) 1156 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) 1157 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 1158 { 1159 EDGE_INFO (e)->ignore = 1; 1160 ignored_edges++; 1161 } 1162 } 1163 1164 /* Create spanning tree from basic block graph, mark each edge that is 1165 on the spanning tree. We insert as many abnormal and critical edges 1166 as possible to minimize number of edge splits necessary. */ 1167 1168 if (!thunk) 1169 find_spanning_tree (el); 1170 else 1171 { 1172 edge e; 1173 edge_iterator ei; 1174 /* Keep only edge from entry block to be instrumented. */ 1175 FOR_EACH_BB_FN (bb, cfun) 1176 FOR_EACH_EDGE (e, ei, bb->succs) 1177 EDGE_INFO (e)->ignore = true; 1178 } 1179 1180 1181 /* Fake edges that are not on the tree will not be instrumented, so 1182 mark them ignored. */ 1183 for (num_instrumented = i = 0; i < num_edges; i++) 1184 { 1185 edge e = INDEX_EDGE (el, i); 1186 struct edge_profile_info *inf = EDGE_INFO (e); 1187 1188 if (inf->ignore || inf->on_tree) 1189 /*NOP*/; 1190 else if (e->flags & EDGE_FAKE) 1191 { 1192 inf->ignore = 1; 1193 ignored_edges++; 1194 } 1195 else 1196 num_instrumented++; 1197 } 1198 1199 total_num_blocks += n_basic_blocks_for_fn (cfun); 1200 if (dump_file) 1201 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun)); 1202 1203 total_num_edges += num_edges; 1204 if (dump_file) 1205 fprintf (dump_file, "%d edges\n", num_edges); 1206 1207 total_num_edges_ignored += ignored_edges; 1208 if (dump_file) 1209 fprintf (dump_file, "%d ignored edges\n", ignored_edges); 1210 1211 total_num_edges_instrumented += num_instrumented; 1212 if (dump_file) 1213 fprintf (dump_file, "%d instrumentation edges\n", num_instrumented); 1214 1215 /* Compute two different checksums. Note that we want to compute 1216 the checksum in only once place, since it depends on the shape 1217 of the control flow which can change during 1218 various transformations. */ 1219 if (thunk) 1220 { 1221 /* At stream in time we do not have CFG, so we cannot do checksums. */ 1222 cfg_checksum = 0; 1223 lineno_checksum = 0; 1224 } 1225 else 1226 { 1227 cfg_checksum = coverage_compute_cfg_checksum (cfun); 1228 lineno_checksum = coverage_compute_lineno_checksum (); 1229 } 1230 1231 /* Write the data from which gcov can reconstruct the basic block 1232 graph and function line numbers (the gcno file). */ 1233 if (coverage_begin_function (lineno_checksum, cfg_checksum)) 1234 { 1235 gcov_position_t offset; 1236 1237 /* Basic block flags */ 1238 offset = gcov_write_tag (GCOV_TAG_BLOCKS); 1239 gcov_write_unsigned (n_basic_blocks_for_fn (cfun)); 1240 gcov_write_length (offset); 1241 1242 /* Arcs */ 1243 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), 1244 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) 1245 { 1246 edge e; 1247 edge_iterator ei; 1248 1249 offset = gcov_write_tag (GCOV_TAG_ARCS); 1250 gcov_write_unsigned (bb->index); 1251 1252 FOR_EACH_EDGE (e, ei, bb->succs) 1253 { 1254 struct edge_profile_info *i = EDGE_INFO (e); 1255 if (!i->ignore) 1256 { 1257 unsigned flag_bits = 0; 1258 1259 if (i->on_tree) 1260 flag_bits |= GCOV_ARC_ON_TREE; 1261 if (e->flags & EDGE_FAKE) 1262 flag_bits |= GCOV_ARC_FAKE; 1263 if (e->flags & EDGE_FALLTHRU) 1264 flag_bits |= GCOV_ARC_FALLTHROUGH; 1265 /* On trees we don't have fallthru flags, but we can 1266 recompute them from CFG shape. */ 1267 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE) 1268 && e->src->next_bb == e->dest) 1269 flag_bits |= GCOV_ARC_FALLTHROUGH; 1270 1271 gcov_write_unsigned (e->dest->index); 1272 gcov_write_unsigned (flag_bits); 1273 } 1274 } 1275 1276 gcov_write_length (offset); 1277 } 1278 1279 /* Line numbers. */ 1280 /* Initialize the output. */ 1281 output_location (&streamed_locations, NULL, 0, NULL, NULL); 1282 1283 hash_set<int_hash <location_t, 0, 2> > seen_locations; 1284 1285 FOR_EACH_BB_FN (bb, cfun) 1286 { 1287 gimple_stmt_iterator gsi; 1288 gcov_position_t offset = 0; 1289 1290 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb) 1291 { 1292 location_t loc = DECL_SOURCE_LOCATION (current_function_decl); 1293 seen_locations.add (loc); 1294 expanded_location curr_location = expand_location (loc); 1295 output_location (&streamed_locations, curr_location.file, 1296 curr_location.line, &offset, bb); 1297 } 1298 1299 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1300 { 1301 gimple *stmt = gsi_stmt (gsi); 1302 location_t loc = gimple_location (stmt); 1303 if (!RESERVED_LOCATION_P (loc)) 1304 { 1305 seen_locations.add (loc); 1306 output_location (&streamed_locations, gimple_filename (stmt), 1307 gimple_lineno (stmt), &offset, bb); 1308 } 1309 } 1310 1311 /* Notice GOTO expressions eliminated while constructing the CFG. 1312 It's hard to distinguish such expression, but goto_locus should 1313 not be any of already seen location. */ 1314 location_t loc; 1315 if (single_succ_p (bb) 1316 && (loc = single_succ_edge (bb)->goto_locus) 1317 && !RESERVED_LOCATION_P (loc) 1318 && !seen_locations.contains (loc)) 1319 { 1320 expanded_location curr_location = expand_location (loc); 1321 output_location (&streamed_locations, curr_location.file, 1322 curr_location.line, &offset, bb); 1323 } 1324 1325 if (offset) 1326 { 1327 /* A file of NULL indicates the end of run. */ 1328 gcov_write_unsigned (0); 1329 gcov_write_string (NULL); 1330 gcov_write_length (offset); 1331 } 1332 } 1333 } 1334 1335 if (flag_profile_values) 1336 gimple_find_values_to_profile (&values); 1337 1338 if (flag_branch_probabilities) 1339 { 1340 compute_branch_probabilities (cfg_checksum, lineno_checksum); 1341 if (flag_profile_values) 1342 compute_value_histograms (values, cfg_checksum, lineno_checksum); 1343 } 1344 1345 remove_fake_edges (); 1346 1347 /* For each edge not on the spanning tree, add counting code. */ 1348 if (profile_arc_flag 1349 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented)) 1350 { 1351 unsigned n_instrumented; 1352 1353 gimple_init_gcov_profiler (); 1354 1355 n_instrumented = instrument_edges (el); 1356 1357 gcc_assert (n_instrumented == num_instrumented); 1358 1359 if (flag_profile_values) 1360 instrument_values (values); 1361 1362 /* Commit changes done by instrumentation. */ 1363 gsi_commit_edge_inserts (); 1364 } 1365 1366 free_aux_for_edges (); 1367 1368 values.release (); 1369 free_edge_list (el); 1370 coverage_end_function (lineno_checksum, cfg_checksum); 1371 if (flag_branch_probabilities 1372 && (profile_status_for_fn (cfun) == PROFILE_READ)) 1373 { 1374 struct loop *loop; 1375 if (dump_file && (dump_flags & TDF_DETAILS)) 1376 report_predictor_hitrates (); 1377 1378 /* At this moment we have precise loop iteration count estimates. 1379 Record them to loop structure before the profile gets out of date. */ 1380 FOR_EACH_LOOP (loop, 0) 1381 if (loop->header->count > 0) 1382 { 1383 gcov_type nit = expected_loop_iterations_unbounded (loop); 1384 widest_int bound = gcov_type_to_wide_int (nit); 1385 loop->any_estimate = false; 1386 record_niter_bound (loop, bound, true, false); 1387 } 1388 compute_function_frequency (); 1389 } 1390 } 1391 1392 /* Union find algorithm implementation for the basic blocks using 1393 aux fields. */ 1394 1395 static basic_block 1396 find_group (basic_block bb) 1397 { 1398 basic_block group = bb, bb1; 1399 1400 while ((basic_block) group->aux != group) 1401 group = (basic_block) group->aux; 1402 1403 /* Compress path. */ 1404 while ((basic_block) bb->aux != group) 1405 { 1406 bb1 = (basic_block) bb->aux; 1407 bb->aux = (void *) group; 1408 bb = bb1; 1409 } 1410 return group; 1411 } 1412 1413 static void 1414 union_groups (basic_block bb1, basic_block bb2) 1415 { 1416 basic_block bb1g = find_group (bb1); 1417 basic_block bb2g = find_group (bb2); 1418 1419 /* ??? I don't have a place for the rank field. OK. Lets go w/o it, 1420 this code is unlikely going to be performance problem anyway. */ 1421 gcc_assert (bb1g != bb2g); 1422 1423 bb1g->aux = bb2g; 1424 } 1425 1426 /* This function searches all of the edges in the program flow graph, and puts 1427 as many bad edges as possible onto the spanning tree. Bad edges include 1428 abnormals edges, which can't be instrumented at the moment. Since it is 1429 possible for fake edges to form a cycle, we will have to develop some 1430 better way in the future. Also put critical edges to the tree, since they 1431 are more expensive to instrument. */ 1432 1433 static void 1434 find_spanning_tree (struct edge_list *el) 1435 { 1436 int i; 1437 int num_edges = NUM_EDGES (el); 1438 basic_block bb; 1439 1440 /* We use aux field for standard union-find algorithm. */ 1441 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) 1442 bb->aux = bb; 1443 1444 /* Add fake edge exit to entry we can't instrument. */ 1445 union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun)); 1446 1447 /* First add all abnormal edges to the tree unless they form a cycle. Also 1448 add all edges to the exit block to avoid inserting profiling code behind 1449 setting return value from function. */ 1450 for (i = 0; i < num_edges; i++) 1451 { 1452 edge e = INDEX_EDGE (el, i); 1453 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE)) 1454 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1455 && !EDGE_INFO (e)->ignore 1456 && (find_group (e->src) != find_group (e->dest))) 1457 { 1458 if (dump_file) 1459 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n", 1460 e->src->index, e->dest->index); 1461 EDGE_INFO (e)->on_tree = 1; 1462 union_groups (e->src, e->dest); 1463 } 1464 } 1465 1466 /* And now the rest. Edge list is sorted according to frequencies and 1467 thus we will produce minimal spanning tree. */ 1468 for (i = 0; i < num_edges; i++) 1469 { 1470 edge e = INDEX_EDGE (el, i); 1471 if (!EDGE_INFO (e)->ignore 1472 && find_group (e->src) != find_group (e->dest)) 1473 { 1474 if (dump_file) 1475 fprintf (dump_file, "Normal edge %d to %d put to tree\n", 1476 e->src->index, e->dest->index); 1477 EDGE_INFO (e)->on_tree = 1; 1478 union_groups (e->src, e->dest); 1479 } 1480 } 1481 1482 clear_aux_for_blocks (); 1483 } 1484 1485 /* Perform file-level initialization for branch-prob processing. */ 1486 1487 void 1488 init_branch_prob (void) 1489 { 1490 int i; 1491 1492 total_num_blocks = 0; 1493 total_num_edges = 0; 1494 total_num_edges_ignored = 0; 1495 total_num_edges_instrumented = 0; 1496 total_num_blocks_created = 0; 1497 total_num_passes = 0; 1498 total_num_times_called = 0; 1499 total_num_branches = 0; 1500 for (i = 0; i < 20; i++) 1501 total_hist_br_prob[i] = 0; 1502 } 1503 1504 /* Performs file-level cleanup after branch-prob processing 1505 is completed. */ 1506 1507 void 1508 end_branch_prob (void) 1509 { 1510 if (dump_file) 1511 { 1512 fprintf (dump_file, "\n"); 1513 fprintf (dump_file, "Total number of blocks: %d\n", 1514 total_num_blocks); 1515 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges); 1516 fprintf (dump_file, "Total number of ignored edges: %d\n", 1517 total_num_edges_ignored); 1518 fprintf (dump_file, "Total number of instrumented edges: %d\n", 1519 total_num_edges_instrumented); 1520 fprintf (dump_file, "Total number of blocks created: %d\n", 1521 total_num_blocks_created); 1522 fprintf (dump_file, "Total number of graph solution passes: %d\n", 1523 total_num_passes); 1524 if (total_num_times_called != 0) 1525 fprintf (dump_file, "Average number of graph solution passes: %d\n", 1526 (total_num_passes + (total_num_times_called >> 1)) 1527 / total_num_times_called); 1528 fprintf (dump_file, "Total number of branches: %d\n", 1529 total_num_branches); 1530 if (total_num_branches) 1531 { 1532 int i; 1533 1534 for (i = 0; i < 10; i++) 1535 fprintf (dump_file, "%d%% branches in range %d-%d%%\n", 1536 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100 1537 / total_num_branches, 5*i, 5*i+5); 1538 } 1539 } 1540 } 1541