xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/profile.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Calculate branch probabilities, and basic block execution counts.
2    Copyright (C) 1990-2019 Free Software Foundation, Inc.
3    Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4    based on some ideas from Dain Samples of UC Berkeley.
5    Further mangling by Bob Manson, Cygnus Support.
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3.  If not see
21 <http://www.gnu.org/licenses/>.  */
22 
23 /* Generate basic block profile instrumentation and auxiliary files.
24    Profile generation is optimized, so that not all arcs in the basic
25    block graph need instrumenting. First, the BB graph is closed with
26    one entry (function start), and one exit (function exit).  Any
27    ABNORMAL_EDGE cannot be instrumented (because there is no control
28    path to place the code). We close the graph by inserting fake
29    EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
30    edges that do not go to the exit_block. We ignore such abnormal
31    edges.  Naturally these fake edges are never directly traversed,
32    and so *cannot* be directly instrumented.  Some other graph
33    massaging is done. To optimize the instrumentation we generate the
34    BB minimal span tree, only edges that are not on the span tree
35    (plus the entry point) need instrumenting. From that information
36    all other edge counts can be deduced.  By construction all fake
37    edges must be on the spanning tree. We also attempt to place
38    EDGE_CRITICAL edges on the spanning tree.
39 
40    The auxiliary files generated are <dumpbase>.gcno (at compile time)
41    and <dumpbase>.gcda (at run time).  The format is
42    described in full in gcov-io.h.  */
43 
44 /* ??? Register allocation should use basic block execution counts to
45    give preference to the most commonly executed blocks.  */
46 
47 /* ??? Should calculate branch probabilities before instrumenting code, since
48    then we can use arc counts to help decide which arcs to instrument.  */
49 
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "backend.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "gimple.h"
57 #include "cfghooks.h"
58 #include "cgraph.h"
59 #include "coverage.h"
60 #include "diagnostic-core.h"
61 #include "cfganal.h"
62 #include "value-prof.h"
63 #include "gimple-iterator.h"
64 #include "tree-cfg.h"
65 #include "dumpfile.h"
66 #include "cfgloop.h"
67 
68 #include "profile.h"
69 
70 /* Map from BBs/edges to gcov counters.  */
71 vec<gcov_type> bb_gcov_counts;
72 hash_map<edge,gcov_type> *edge_gcov_counts;
73 
74 struct bb_profile_info {
75   unsigned int count_valid : 1;
76 
77   /* Number of successor and predecessor edges.  */
78   gcov_type succ_count;
79   gcov_type pred_count;
80 };
81 
82 #define BB_INFO(b)  ((struct bb_profile_info *) (b)->aux)
83 
84 
85 /* Counter summary from the last set of coverage counts read.  */
86 
87 gcov_summary *profile_info;
88 
89 /* Collect statistics on the performance of this pass for the entire source
90    file.  */
91 
92 static int total_num_blocks;
93 static int total_num_edges;
94 static int total_num_edges_ignored;
95 static int total_num_edges_instrumented;
96 static int total_num_blocks_created;
97 static int total_num_passes;
98 static int total_num_times_called;
99 static int total_hist_br_prob[20];
100 static int total_num_branches;
101 
102 /* Forward declarations.  */
103 static void find_spanning_tree (struct edge_list *);
104 
105 /* Add edge instrumentation code to the entire insn chain.
106 
107    F is the first insn of the chain.
108    NUM_BLOCKS is the number of basic blocks found in F.  */
109 
110 static unsigned
111 instrument_edges (struct edge_list *el)
112 {
113   unsigned num_instr_edges = 0;
114   int num_edges = NUM_EDGES (el);
115   basic_block bb;
116 
117   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
118     {
119       edge e;
120       edge_iterator ei;
121 
122       FOR_EACH_EDGE (e, ei, bb->succs)
123 	{
124 	  struct edge_profile_info *inf = EDGE_INFO (e);
125 
126 	  if (!inf->ignore && !inf->on_tree)
127 	    {
128 	      gcc_assert (!(e->flags & EDGE_ABNORMAL));
129 	      if (dump_file)
130 		fprintf (dump_file, "Edge %d to %d instrumented%s\n",
131 			 e->src->index, e->dest->index,
132 			 EDGE_CRITICAL_P (e) ? " (and split)" : "");
133 	      gimple_gen_edge_profiler (num_instr_edges++, e);
134 	    }
135 	}
136     }
137 
138   total_num_blocks_created += num_edges;
139   if (dump_file)
140     fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
141   return num_instr_edges;
142 }
143 
144 /* Add code to measure histograms for values in list VALUES.  */
145 static void
146 instrument_values (histogram_values values)
147 {
148   unsigned i;
149 
150   /* Emit code to generate the histograms before the insns.  */
151 
152   for (i = 0; i < values.length (); i++)
153     {
154       histogram_value hist = values[i];
155       unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
156 
157       if (!coverage_counter_alloc (t, hist->n_counters))
158 	continue;
159 
160       switch (hist->type)
161 	{
162 	case HIST_TYPE_INTERVAL:
163 	  gimple_gen_interval_profiler (hist, t, 0);
164 	  break;
165 
166 	case HIST_TYPE_POW2:
167 	  gimple_gen_pow2_profiler (hist, t, 0);
168 	  break;
169 
170 	case HIST_TYPE_SINGLE_VALUE:
171 	  gimple_gen_one_value_profiler (hist, t, 0);
172 	  break;
173 
174  	case HIST_TYPE_INDIR_CALL:
175  	case HIST_TYPE_INDIR_CALL_TOPN:
176  	  gimple_gen_ic_profiler (hist, t, 0);
177   	  break;
178 
179 	case HIST_TYPE_AVERAGE:
180 	  gimple_gen_average_profiler (hist, t, 0);
181 	  break;
182 
183 	case HIST_TYPE_IOR:
184 	  gimple_gen_ior_profiler (hist, t, 0);
185 	  break;
186 
187 	case HIST_TYPE_TIME_PROFILE:
188 	  gimple_gen_time_profiler (t, 0);
189 	  break;
190 
191 	default:
192 	  gcc_unreachable ();
193 	}
194     }
195 }
196 
197 
198 /* Computes hybrid profile for all matching entries in da_file.
199 
200    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
201 
202 static gcov_type *
203 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
204 {
205   unsigned num_edges = 0;
206   basic_block bb;
207   gcov_type *counts;
208 
209   /* Count the edges to be (possibly) instrumented.  */
210   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
211     {
212       edge e;
213       edge_iterator ei;
214 
215       FOR_EACH_EDGE (e, ei, bb->succs)
216 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
217 	  num_edges++;
218     }
219 
220   counts = get_coverage_counts (GCOV_COUNTER_ARCS, cfg_checksum,
221 				lineno_checksum, num_edges);
222   if (!counts)
223     return NULL;
224 
225   return counts;
226 }
227 
228 static bool
229 is_edge_inconsistent (vec<edge, va_gc> *edges)
230 {
231   edge e;
232   edge_iterator ei;
233   FOR_EACH_EDGE (e, ei, edges)
234     {
235       if (!EDGE_INFO (e)->ignore)
236         {
237           if (edge_gcov_count (e) < 0
238 	      && (!(e->flags & EDGE_FAKE)
239 	          || !block_ends_with_call_p (e->src)))
240 	    {
241 	      if (dump_file)
242 		{
243 		  fprintf (dump_file,
244 		  	   "Edge %i->%i is inconsistent, count%" PRId64,
245 			   e->src->index, e->dest->index, edge_gcov_count (e));
246 		  dump_bb (dump_file, e->src, 0, TDF_DETAILS);
247 		  dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
248 		}
249               return true;
250 	    }
251         }
252     }
253   return false;
254 }
255 
256 static void
257 correct_negative_edge_counts (void)
258 {
259   basic_block bb;
260   edge e;
261   edge_iterator ei;
262 
263   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
264     {
265       FOR_EACH_EDGE (e, ei, bb->succs)
266         {
267            if (edge_gcov_count (e) < 0)
268              edge_gcov_count (e) = 0;
269         }
270     }
271 }
272 
273 /* Check consistency.
274    Return true if inconsistency is found.  */
275 static bool
276 is_inconsistent (void)
277 {
278   basic_block bb;
279   bool inconsistent = false;
280   FOR_EACH_BB_FN (bb, cfun)
281     {
282       inconsistent |= is_edge_inconsistent (bb->preds);
283       if (!dump_file && inconsistent)
284 	return true;
285       inconsistent |= is_edge_inconsistent (bb->succs);
286       if (!dump_file && inconsistent)
287 	return true;
288       if (bb_gcov_count (bb) < 0)
289         {
290 	  if (dump_file)
291 	    {
292 	      fprintf (dump_file, "BB %i count is negative "
293 		       "%" PRId64,
294 		       bb->index,
295 		       bb_gcov_count (bb));
296 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
297 	    }
298 	  inconsistent = true;
299 	}
300       if (bb_gcov_count (bb) != sum_edge_counts (bb->preds))
301         {
302 	  if (dump_file)
303 	    {
304 	      fprintf (dump_file, "BB %i count does not match sum of incoming edges "
305 		       "%" PRId64" should be %" PRId64,
306 		       bb->index,
307 		       bb_gcov_count (bb),
308 		       sum_edge_counts (bb->preds));
309 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
310 	    }
311 	  inconsistent = true;
312 	}
313       if (bb_gcov_count (bb) != sum_edge_counts (bb->succs) &&
314 	  ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL
315 	     && block_ends_with_call_p (bb)))
316 	{
317 	  if (dump_file)
318 	    {
319 	      fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
320 		       "%" PRId64" should be %" PRId64,
321 		       bb->index,
322 		       bb_gcov_count (bb),
323 		       sum_edge_counts (bb->succs));
324 	      dump_bb (dump_file, bb, 0, TDF_DETAILS);
325 	    }
326 	  inconsistent = true;
327 	}
328       if (!dump_file && inconsistent)
329 	return true;
330     }
331 
332   return inconsistent;
333 }
334 
335 /* Set each basic block count to the sum of its outgoing edge counts */
336 static void
337 set_bb_counts (void)
338 {
339   basic_block bb;
340   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
341     {
342       bb_gcov_count (bb) = sum_edge_counts (bb->succs);
343       gcc_assert (bb_gcov_count (bb) >= 0);
344     }
345 }
346 
347 /* Reads profile data and returns total number of edge counts read */
348 static int
349 read_profile_edge_counts (gcov_type *exec_counts)
350 {
351   basic_block bb;
352   int num_edges = 0;
353   int exec_counts_pos = 0;
354   /* For each edge not on the spanning tree, set its execution count from
355      the .da file.  */
356   /* The first count in the .da file is the number of times that the function
357      was entered.  This is the exec_count for block zero.  */
358 
359   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
360     {
361       edge e;
362       edge_iterator ei;
363 
364       FOR_EACH_EDGE (e, ei, bb->succs)
365 	if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
366 	  {
367 	    num_edges++;
368 	    if (exec_counts)
369 	      edge_gcov_count (e) = exec_counts[exec_counts_pos++];
370 	    else
371 	      edge_gcov_count (e) = 0;
372 
373 	    EDGE_INFO (e)->count_valid = 1;
374 	    BB_INFO (bb)->succ_count--;
375 	    BB_INFO (e->dest)->pred_count--;
376 	    if (dump_file)
377 	      {
378 		fprintf (dump_file, "\nRead edge from %i to %i, count:",
379 			 bb->index, e->dest->index);
380 		fprintf (dump_file, "%" PRId64,
381 			 (int64_t) edge_gcov_count (e));
382 	      }
383 	  }
384     }
385 
386     return num_edges;
387 }
388 
389 
390 /* Compute the branch probabilities for the various branches.
391    Annotate them accordingly.
392 
393    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
394 
395 static void
396 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
397 {
398   basic_block bb;
399   int i;
400   int num_edges = 0;
401   int changes;
402   int passes;
403   int hist_br_prob[20];
404   int num_branches;
405   gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
406   int inconsistent = 0;
407 
408   /* Very simple sanity checks so we catch bugs in our profiling code.  */
409   if (!profile_info)
410     {
411       if (dump_file)
412 	fprintf (dump_file, "Profile info is missing; giving up\n");
413       return;
414     }
415 
416   bb_gcov_counts.safe_grow_cleared (last_basic_block_for_fn (cfun));
417   edge_gcov_counts = new hash_map<edge,gcov_type>;
418 
419   /* Attach extra info block to each bb.  */
420   alloc_aux_for_blocks (sizeof (struct bb_profile_info));
421   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
422     {
423       edge e;
424       edge_iterator ei;
425 
426       FOR_EACH_EDGE (e, ei, bb->succs)
427 	if (!EDGE_INFO (e)->ignore)
428 	  BB_INFO (bb)->succ_count++;
429       FOR_EACH_EDGE (e, ei, bb->preds)
430 	if (!EDGE_INFO (e)->ignore)
431 	  BB_INFO (bb)->pred_count++;
432     }
433 
434   /* Avoid predicting entry on exit nodes.  */
435   BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2;
436   BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2;
437 
438   num_edges = read_profile_edge_counts (exec_counts);
439 
440   if (dump_file)
441     fprintf (dump_file, "\n%d edge counts read\n", num_edges);
442 
443   /* For every block in the file,
444      - if every exit/entrance edge has a known count, then set the block count
445      - if the block count is known, and every exit/entrance edge but one has
446      a known execution count, then set the count of the remaining edge
447 
448      As edge counts are set, decrement the succ/pred count, but don't delete
449      the edge, that way we can easily tell when all edges are known, or only
450      one edge is unknown.  */
451 
452   /* The order that the basic blocks are iterated through is important.
453      Since the code that finds spanning trees starts with block 0, low numbered
454      edges are put on the spanning tree in preference to high numbered edges.
455      Hence, most instrumented edges are at the end.  Graph solving works much
456      faster if we propagate numbers from the end to the start.
457 
458      This takes an average of slightly more than 3 passes.  */
459 
460   changes = 1;
461   passes = 0;
462   while (changes)
463     {
464       passes++;
465       changes = 0;
466       FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb)
467 	{
468 	  struct bb_profile_info *bi = BB_INFO (bb);
469 	  if (! bi->count_valid)
470 	    {
471 	      if (bi->succ_count == 0)
472 		{
473 		  edge e;
474 		  edge_iterator ei;
475 		  gcov_type total = 0;
476 
477 		  FOR_EACH_EDGE (e, ei, bb->succs)
478 		    total += edge_gcov_count (e);
479 		  bb_gcov_count (bb) = total;
480 		  bi->count_valid = 1;
481 		  changes = 1;
482 		}
483 	      else if (bi->pred_count == 0)
484 		{
485 		  edge e;
486 		  edge_iterator ei;
487 		  gcov_type total = 0;
488 
489 		  FOR_EACH_EDGE (e, ei, bb->preds)
490 		    total += edge_gcov_count (e);
491 		  bb_gcov_count (bb) = total;
492 		  bi->count_valid = 1;
493 		  changes = 1;
494 		}
495 	    }
496 	  if (bi->count_valid)
497 	    {
498 	      if (bi->succ_count == 1)
499 		{
500 		  edge e;
501 		  edge_iterator ei;
502 		  gcov_type total = 0;
503 
504 		  /* One of the counts will be invalid, but it is zero,
505 		     so adding it in also doesn't hurt.  */
506 		  FOR_EACH_EDGE (e, ei, bb->succs)
507 		    total += edge_gcov_count (e);
508 
509 		  /* Search for the invalid edge, and set its count.  */
510 		  FOR_EACH_EDGE (e, ei, bb->succs)
511 		    if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
512 		      break;
513 
514 		  /* Calculate count for remaining edge by conservation.  */
515 		  total = bb_gcov_count (bb) - total;
516 
517 		  gcc_assert (e);
518 		  EDGE_INFO (e)->count_valid = 1;
519 		  edge_gcov_count (e) = total;
520 		  bi->succ_count--;
521 
522 		  BB_INFO (e->dest)->pred_count--;
523 		  changes = 1;
524 		}
525 	      if (bi->pred_count == 1)
526 		{
527 		  edge e;
528 		  edge_iterator ei;
529 		  gcov_type total = 0;
530 
531 		  /* One of the counts will be invalid, but it is zero,
532 		     so adding it in also doesn't hurt.  */
533 		  FOR_EACH_EDGE (e, ei, bb->preds)
534 		    total += edge_gcov_count (e);
535 
536 		  /* Search for the invalid edge, and set its count.  */
537 		  FOR_EACH_EDGE (e, ei, bb->preds)
538 		    if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
539 		      break;
540 
541 		  /* Calculate count for remaining edge by conservation.  */
542 		  total = bb_gcov_count (bb) - total + edge_gcov_count (e);
543 
544 		  gcc_assert (e);
545 		  EDGE_INFO (e)->count_valid = 1;
546 		  edge_gcov_count (e) = total;
547 		  bi->pred_count--;
548 
549 		  BB_INFO (e->src)->succ_count--;
550 		  changes = 1;
551 		}
552 	    }
553 	}
554     }
555 
556   total_num_passes += passes;
557   if (dump_file)
558     fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
559 
560   /* If the graph has been correctly solved, every block will have a
561      succ and pred count of zero.  */
562   FOR_EACH_BB_FN (bb, cfun)
563     {
564       gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
565     }
566 
567   /* Check for inconsistent basic block counts */
568   inconsistent = is_inconsistent ();
569 
570   if (inconsistent)
571    {
572      if (flag_profile_correction)
573        {
574          /* Inconsistency detected. Make it flow-consistent. */
575          static int informed = 0;
576          if (dump_enabled_p () && informed == 0)
577            {
578              informed = 1;
579              dump_printf_loc (MSG_NOTE,
580 			      dump_user_location_t::from_location_t (input_location),
581                               "correcting inconsistent profile data\n");
582            }
583          correct_negative_edge_counts ();
584          /* Set bb counts to the sum of the outgoing edge counts */
585          set_bb_counts ();
586          if (dump_file)
587            fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
588          mcf_smooth_cfg ();
589        }
590      else
591        error ("corrupted profile info: profile data is not flow-consistent");
592    }
593 
594   /* For every edge, calculate its branch probability and add a reg_note
595      to the branch insn to indicate this.  */
596 
597   for (i = 0; i < 20; i++)
598     hist_br_prob[i] = 0;
599   num_branches = 0;
600 
601   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
602     {
603       edge e;
604       edge_iterator ei;
605 
606       if (bb_gcov_count (bb) < 0)
607 	{
608 	  error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
609 		 bb->index, (int)bb_gcov_count (bb));
610 	  bb_gcov_count (bb) = 0;
611 	}
612       FOR_EACH_EDGE (e, ei, bb->succs)
613 	{
614 	  /* Function may return twice in the cased the called function is
615 	     setjmp or calls fork, but we can't represent this by extra
616 	     edge from the entry, since extra edge from the exit is
617 	     already present.  We get negative frequency from the entry
618 	     point.  */
619 	  if ((edge_gcov_count (e) < 0
620 	       && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
621 	      || (edge_gcov_count (e) > bb_gcov_count (bb)
622 		  && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
623 	    {
624 	      if (block_ends_with_call_p (bb))
625 		edge_gcov_count (e) = edge_gcov_count (e) < 0
626 				      ? 0 : bb_gcov_count (bb);
627 	    }
628 	  if (edge_gcov_count (e) < 0
629 	      || edge_gcov_count (e) > bb_gcov_count (bb))
630 	    {
631 	      error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
632 		     e->src->index, e->dest->index,
633 		     (int)edge_gcov_count (e));
634 	      edge_gcov_count (e) = bb_gcov_count (bb) / 2;
635 	    }
636 	}
637       if (bb_gcov_count (bb))
638 	{
639 	  FOR_EACH_EDGE (e, ei, bb->succs)
640 	    e->probability = profile_probability::probability_in_gcov_type
641 		(edge_gcov_count (e), bb_gcov_count (bb));
642 	  if (bb->index >= NUM_FIXED_BLOCKS
643 	      && block_ends_with_condjump_p (bb)
644 	      && EDGE_COUNT (bb->succs) >= 2)
645 	    {
646 	      int prob;
647 	      edge e;
648 	      int index;
649 
650 	      /* Find the branch edge.  It is possible that we do have fake
651 		 edges here.  */
652 	      FOR_EACH_EDGE (e, ei, bb->succs)
653 		if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
654 		  break;
655 
656 	      prob = e->probability.to_reg_br_prob_base ();
657 	      index = prob * 20 / REG_BR_PROB_BASE;
658 
659 	      if (index == 20)
660 		index = 19;
661 	      hist_br_prob[index]++;
662 
663 	      num_branches++;
664 	    }
665 	}
666       /* As a last resort, distribute the probabilities evenly.
667 	 Use simple heuristics that if there are normal edges,
668 	 give all abnormals frequency of 0, otherwise distribute the
669 	 frequency over abnormals (this is the case of noreturn
670 	 calls).  */
671       else if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
672 	{
673 	  int total = 0;
674 
675 	  FOR_EACH_EDGE (e, ei, bb->succs)
676 	    if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
677 	      total ++;
678 	  if (total)
679 	    {
680 	      FOR_EACH_EDGE (e, ei, bb->succs)
681 		if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
682 		  e->probability
683 		    = profile_probability::guessed_always ().apply_scale (1, total);
684 		else
685 		  e->probability = profile_probability::never ();
686 	    }
687 	  else
688 	    {
689 	      total += EDGE_COUNT (bb->succs);
690 	      FOR_EACH_EDGE (e, ei, bb->succs)
691 		e->probability
692 		 = profile_probability::guessed_always ().apply_scale (1, total);
693 	    }
694 	  if (bb->index >= NUM_FIXED_BLOCKS
695 	      && block_ends_with_condjump_p (bb)
696 	      && EDGE_COUNT (bb->succs) >= 2)
697 	    num_branches++;
698 	}
699     }
700 
701   if (exec_counts)
702     profile_status_for_fn (cfun) = PROFILE_READ;
703 
704   /* If we have real data, use them!  */
705   if (bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun))
706       || !flag_guess_branch_prob)
707     FOR_ALL_BB_FN (bb, cfun)
708       bb->count = profile_count::from_gcov_type (bb_gcov_count (bb));
709   /* If function was not trained, preserve local estimates including statically
710      determined zero counts.  */
711   else if (profile_status_for_fn (cfun) == PROFILE_READ)
712     FOR_ALL_BB_FN (bb, cfun)
713       if (!(bb->count == profile_count::zero ()))
714         bb->count = bb->count.global0 ();
715 
716   bb_gcov_counts.release ();
717   delete edge_gcov_counts;
718   edge_gcov_counts = NULL;
719 
720   update_max_bb_count ();
721 
722   if (dump_file)
723     {
724       fprintf (dump_file, " Profile feedback for function");
725       fprintf (dump_file, ((profile_status_for_fn (cfun) == PROFILE_READ)
726 			   ? " is available \n"
727 			   : " is not available \n"));
728 
729       fprintf (dump_file, "%d branches\n", num_branches);
730       if (num_branches)
731 	for (i = 0; i < 10; i++)
732 	  fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
733 		   (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
734 		   5 * i, 5 * i + 5);
735 
736       total_num_branches += num_branches;
737       for (i = 0; i < 20; i++)
738 	total_hist_br_prob[i] += hist_br_prob[i];
739 
740       fputc ('\n', dump_file);
741       fputc ('\n', dump_file);
742     }
743 
744   free_aux_for_blocks ();
745 }
746 
747 /* Load value histograms values whose description is stored in VALUES array
748    from .gcda file.
749 
750    CFG_CHECKSUM is the precomputed checksum for the CFG.  */
751 
752 static void
753 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
754                           unsigned lineno_checksum)
755 {
756   unsigned i, j, t, any;
757   unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
758   gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
759   gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
760   gcov_type *aact_count;
761   struct cgraph_node *node;
762 
763   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
764     n_histogram_counters[t] = 0;
765 
766   for (i = 0; i < values.length (); i++)
767     {
768       histogram_value hist = values[i];
769       n_histogram_counters[(int) hist->type] += hist->n_counters;
770     }
771 
772   any = 0;
773   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
774     {
775       if (!n_histogram_counters[t])
776 	{
777 	  histogram_counts[t] = NULL;
778 	  continue;
779 	}
780 
781       histogram_counts[t] = get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
782 						 cfg_checksum,
783 						 lineno_checksum,
784 						 n_histogram_counters[t]);
785       if (histogram_counts[t])
786 	any = 1;
787       act_count[t] = histogram_counts[t];
788     }
789   if (!any)
790     return;
791 
792   for (i = 0; i < values.length (); i++)
793     {
794       histogram_value hist = values[i];
795       gimple *stmt = hist->hvalue.stmt;
796 
797       t = (int) hist->type;
798 
799       aact_count = act_count[t];
800 
801       if (act_count[t])
802         act_count[t] += hist->n_counters;
803 
804       gimple_add_histogram_value (cfun, stmt, hist);
805       hist->hvalue.counters =  XNEWVEC (gcov_type, hist->n_counters);
806       for (j = 0; j < hist->n_counters; j++)
807         if (aact_count)
808           hist->hvalue.counters[j] = aact_count[j];
809         else
810           hist->hvalue.counters[j] = 0;
811 
812       /* Time profiler counter is not related to any statement,
813          so that we have to read the counter and set the value to
814          the corresponding call graph node.  */
815       if (hist->type == HIST_TYPE_TIME_PROFILE)
816         {
817 	  node = cgraph_node::get (hist->fun->decl);
818 	  node->tp_first_run = hist->hvalue.counters[0];
819 
820           if (dump_file)
821             fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run);
822         }
823     }
824 
825   for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
826     free (histogram_counts[t]);
827 }
828 
829 /* Location triplet which records a location.  */
830 struct location_triplet
831 {
832   const char *filename;
833   int lineno;
834   int bb_index;
835 };
836 
837 /* Traits class for streamed_locations hash set below.  */
838 
839 struct location_triplet_hash : typed_noop_remove <location_triplet>
840 {
841   typedef location_triplet value_type;
842   typedef location_triplet compare_type;
843 
844   static hashval_t
845   hash (const location_triplet &ref)
846   {
847     inchash::hash hstate (0);
848     if (ref.filename)
849       hstate.add_int (strlen (ref.filename));
850     hstate.add_int (ref.lineno);
851     hstate.add_int (ref.bb_index);
852     return hstate.end ();
853   }
854 
855   static bool
856   equal (const location_triplet &ref1, const location_triplet &ref2)
857   {
858     return ref1.lineno == ref2.lineno
859       && ref1.bb_index == ref2.bb_index
860       && ref1.filename != NULL
861       && ref2.filename != NULL
862       && strcmp (ref1.filename, ref2.filename) == 0;
863   }
864 
865   static void
866   mark_deleted (location_triplet &ref)
867   {
868     ref.lineno = -1;
869   }
870 
871   static void
872   mark_empty (location_triplet &ref)
873   {
874     ref.lineno = -2;
875   }
876 
877   static bool
878   is_deleted (const location_triplet &ref)
879   {
880     return ref.lineno == -1;
881   }
882 
883   static bool
884   is_empty (const location_triplet &ref)
885   {
886     return ref.lineno == -2;
887   }
888 };
889 
890 
891 
892 
893 /* When passed NULL as file_name, initialize.
894    When passed something else, output the necessary commands to change
895    line to LINE and offset to FILE_NAME.  */
896 static void
897 output_location (hash_set<location_triplet_hash> *streamed_locations,
898 		 char const *file_name, int line,
899 		 gcov_position_t *offset, basic_block bb)
900 {
901   static char const *prev_file_name;
902   static int prev_line;
903   bool name_differs, line_differs;
904 
905   location_triplet triplet;
906   triplet.filename = file_name;
907   triplet.lineno = line;
908   triplet.bb_index = bb ? bb->index : 0;
909 
910   if (streamed_locations->add (triplet))
911     return;
912 
913   if (!file_name)
914     {
915       prev_file_name = NULL;
916       prev_line = -1;
917       return;
918     }
919 
920   name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
921   line_differs = prev_line != line;
922 
923   if (!*offset)
924     {
925       *offset = gcov_write_tag (GCOV_TAG_LINES);
926       gcov_write_unsigned (bb->index);
927       name_differs = line_differs = true;
928     }
929 
930   /* If this is a new source file, then output the
931      file's name to the .bb file.  */
932   if (name_differs)
933     {
934       prev_file_name = file_name;
935       gcov_write_unsigned (0);
936       gcov_write_filename (prev_file_name);
937     }
938   if (line_differs)
939     {
940       gcov_write_unsigned (line);
941       prev_line = line;
942     }
943 }
944 
945 /* Helper for qsort so edges get sorted from highest frequency to smallest.
946    This controls the weight for minimal spanning tree algorithm  */
947 static int
948 compare_freqs (const void *p1, const void *p2)
949 {
950   const_edge e1 = *(const const_edge *)p1;
951   const_edge e2 = *(const const_edge *)p2;
952 
953   /* Critical edges needs to be split which introduce extra control flow.
954      Make them more heavy.  */
955   int m1 = EDGE_CRITICAL_P (e1) ? 2 : 1;
956   int m2 = EDGE_CRITICAL_P (e2) ? 2 : 1;
957 
958   if (EDGE_FREQUENCY (e1) * m1 + m1 != EDGE_FREQUENCY (e2) * m2 + m2)
959     return EDGE_FREQUENCY (e2) * m2 + m2 - EDGE_FREQUENCY (e1) * m1 - m1;
960   /* Stabilize sort.  */
961   if (e1->src->index != e2->src->index)
962     return e2->src->index - e1->src->index;
963   return e2->dest->index - e1->dest->index;
964 }
965 
966 /* Only read execution count for thunks.  */
967 
968 void
969 read_thunk_profile (struct cgraph_node *node)
970 {
971   tree old = current_function_decl;
972   current_function_decl = node->decl;
973   gcov_type *counts = get_coverage_counts (GCOV_COUNTER_ARCS, 0, 0, 1);
974   if (counts)
975     {
976       node->callees->count = node->count
977 	 = profile_count::from_gcov_type (counts[0]);
978       free (counts);
979     }
980   current_function_decl = old;
981   return;
982 }
983 
984 
985 /* Instrument and/or analyze program behavior based on program the CFG.
986 
987    This function creates a representation of the control flow graph (of
988    the function being compiled) that is suitable for the instrumentation
989    of edges and/or converting measured edge counts to counts on the
990    complete CFG.
991 
992    When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
993    the flow graph that are needed to reconstruct the dynamic behavior of the
994    flow graph.  This data is written to the gcno file for gcov.
995 
996    When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
997    information from the gcda file containing edge count information from
998    previous executions of the function being compiled.  In this case, the
999    control flow graph is annotated with actual execution counts by
1000    compute_branch_probabilities().
1001 
1002    Main entry point of this file.  */
1003 
1004 void
1005 branch_prob (bool thunk)
1006 {
1007   basic_block bb;
1008   unsigned i;
1009   unsigned num_edges, ignored_edges;
1010   unsigned num_instrumented;
1011   struct edge_list *el;
1012   histogram_values values = histogram_values ();
1013   unsigned cfg_checksum, lineno_checksum;
1014 
1015   total_num_times_called++;
1016 
1017   flow_call_edges_add (NULL);
1018   add_noreturn_fake_exit_edges ();
1019 
1020   hash_set <location_triplet_hash> streamed_locations;
1021 
1022   if (!thunk)
1023     {
1024       /* We can't handle cyclic regions constructed using abnormal edges.
1025 	 To avoid these we replace every source of abnormal edge by a fake
1026 	 edge from entry node and every destination by fake edge to exit.
1027 	 This keeps graph acyclic and our calculation exact for all normal
1028 	 edges except for exit and entrance ones.
1029 
1030 	 We also add fake exit edges for each call and asm statement in the
1031 	 basic, since it may not return.  */
1032 
1033       FOR_EACH_BB_FN (bb, cfun)
1034 	{
1035 	  int need_exit_edge = 0, need_entry_edge = 0;
1036 	  int have_exit_edge = 0, have_entry_edge = 0;
1037 	  edge e;
1038 	  edge_iterator ei;
1039 
1040 	  /* Functions returning multiple times are not handled by extra edges.
1041 	     Instead we simply allow negative counts on edges from exit to the
1042 	     block past call and corresponding probabilities.  We can't go
1043 	     with the extra edges because that would result in flowgraph that
1044 	     needs to have fake edges outside the spanning tree.  */
1045 
1046 	  FOR_EACH_EDGE (e, ei, bb->succs)
1047 	    {
1048 	      gimple_stmt_iterator gsi;
1049 	      gimple *last = NULL;
1050 
1051 	      /* It may happen that there are compiler generated statements
1052 		 without a locus at all.  Go through the basic block from the
1053 		 last to the first statement looking for a locus.  */
1054 	      for (gsi = gsi_last_nondebug_bb (bb);
1055 		   !gsi_end_p (gsi);
1056 		   gsi_prev_nondebug (&gsi))
1057 		{
1058 		  last = gsi_stmt (gsi);
1059 		  if (!RESERVED_LOCATION_P (gimple_location (last)))
1060 		    break;
1061 		}
1062 
1063 	      /* Edge with goto locus might get wrong coverage info unless
1064 		 it is the only edge out of BB.
1065 		 Don't do that when the locuses match, so
1066 		 if (blah) goto something;
1067 		 is not computed twice.  */
1068 	      if (last
1069 		  && gimple_has_location (last)
1070 		  && !RESERVED_LOCATION_P (e->goto_locus)
1071 		  && !single_succ_p (bb)
1072 		  && (LOCATION_FILE (e->goto_locus)
1073 		      != LOCATION_FILE (gimple_location (last))
1074 		      || (LOCATION_LINE (e->goto_locus)
1075 			  != LOCATION_LINE (gimple_location (last)))))
1076 		{
1077 		  basic_block new_bb = split_edge (e);
1078 		  edge ne = single_succ_edge (new_bb);
1079 		  ne->goto_locus = e->goto_locus;
1080 		}
1081 	      if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1082 		   && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1083 		need_exit_edge = 1;
1084 	      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1085 		have_exit_edge = 1;
1086 	    }
1087 	  FOR_EACH_EDGE (e, ei, bb->preds)
1088 	    {
1089 	      if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1090 		   && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1091 		need_entry_edge = 1;
1092 	      if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1093 		have_entry_edge = 1;
1094 	    }
1095 
1096 	  if (need_exit_edge && !have_exit_edge)
1097 	    {
1098 	      if (dump_file)
1099 		fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1100 			 bb->index);
1101 	      make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
1102 	    }
1103 	  if (need_entry_edge && !have_entry_edge)
1104 	    {
1105 	      if (dump_file)
1106 		fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1107 			 bb->index);
1108 	      make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE);
1109 	      /* Avoid bbs that have both fake entry edge and also some
1110 		 exit edge.  One of those edges wouldn't be added to the
1111 		 spanning tree, but we can't instrument any of them.  */
1112 	      if (have_exit_edge || need_exit_edge)
1113 		{
1114 		  gimple_stmt_iterator gsi;
1115 		  gimple *first;
1116 
1117 		  gsi = gsi_start_nondebug_after_labels_bb (bb);
1118 		  gcc_checking_assert (!gsi_end_p (gsi));
1119 		  first = gsi_stmt (gsi);
1120 		  /* Don't split the bbs containing __builtin_setjmp_receiver
1121 		     or ABNORMAL_DISPATCHER calls.  These are very
1122 		     special and don't expect anything to be inserted before
1123 		     them.  */
1124 		  if (is_gimple_call (first)
1125 		      && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER)
1126 			  || (gimple_call_flags (first) & ECF_RETURNS_TWICE)
1127 			  || (gimple_call_internal_p (first)
1128 			      && (gimple_call_internal_fn (first)
1129 				  == IFN_ABNORMAL_DISPATCHER))))
1130 		    continue;
1131 
1132 		  if (dump_file)
1133 		    fprintf (dump_file, "Splitting bb %i after labels\n",
1134 			     bb->index);
1135 		  split_block_after_labels (bb);
1136 		}
1137 	    }
1138 	}
1139     }
1140 
1141   el = create_edge_list ();
1142   num_edges = NUM_EDGES (el);
1143   qsort (el->index_to_edge, num_edges, sizeof (edge), compare_freqs);
1144   alloc_aux_for_edges (sizeof (struct edge_profile_info));
1145 
1146   /* The basic blocks are expected to be numbered sequentially.  */
1147   compact_blocks ();
1148 
1149   ignored_edges = 0;
1150   for (i = 0 ; i < num_edges ; i++)
1151     {
1152       edge e = INDEX_EDGE (el, i);
1153 
1154       /* Mark edges we've replaced by fake edges above as ignored.  */
1155       if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1156 	  && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1157 	  && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1158 	{
1159 	  EDGE_INFO (e)->ignore = 1;
1160 	  ignored_edges++;
1161 	}
1162     }
1163 
1164   /* Create spanning tree from basic block graph, mark each edge that is
1165      on the spanning tree.  We insert as many abnormal and critical edges
1166      as possible to minimize number of edge splits necessary.  */
1167 
1168   if (!thunk)
1169     find_spanning_tree (el);
1170   else
1171     {
1172       edge e;
1173       edge_iterator ei;
1174       /* Keep only edge from entry block to be instrumented.  */
1175       FOR_EACH_BB_FN (bb, cfun)
1176 	FOR_EACH_EDGE (e, ei, bb->succs)
1177 	  EDGE_INFO (e)->ignore = true;
1178     }
1179 
1180 
1181   /* Fake edges that are not on the tree will not be instrumented, so
1182      mark them ignored.  */
1183   for (num_instrumented = i = 0; i < num_edges; i++)
1184     {
1185       edge e = INDEX_EDGE (el, i);
1186       struct edge_profile_info *inf = EDGE_INFO (e);
1187 
1188       if (inf->ignore || inf->on_tree)
1189 	/*NOP*/;
1190       else if (e->flags & EDGE_FAKE)
1191 	{
1192 	  inf->ignore = 1;
1193 	  ignored_edges++;
1194 	}
1195       else
1196 	num_instrumented++;
1197     }
1198 
1199   total_num_blocks += n_basic_blocks_for_fn (cfun);
1200   if (dump_file)
1201     fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun));
1202 
1203   total_num_edges += num_edges;
1204   if (dump_file)
1205     fprintf (dump_file, "%d edges\n", num_edges);
1206 
1207   total_num_edges_ignored += ignored_edges;
1208   if (dump_file)
1209     fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1210 
1211   total_num_edges_instrumented += num_instrumented;
1212   if (dump_file)
1213     fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);
1214 
1215   /* Compute two different checksums. Note that we want to compute
1216      the checksum in only once place, since it depends on the shape
1217      of the control flow which can change during
1218      various transformations.  */
1219   if (thunk)
1220     {
1221       /* At stream in time we do not have CFG, so we cannot do checksums.  */
1222       cfg_checksum = 0;
1223       lineno_checksum = 0;
1224     }
1225   else
1226     {
1227       cfg_checksum = coverage_compute_cfg_checksum (cfun);
1228       lineno_checksum = coverage_compute_lineno_checksum ();
1229     }
1230 
1231   /* Write the data from which gcov can reconstruct the basic block
1232      graph and function line numbers (the gcno file).  */
1233   if (coverage_begin_function (lineno_checksum, cfg_checksum))
1234     {
1235       gcov_position_t offset;
1236 
1237       /* Basic block flags */
1238       offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1239       gcov_write_unsigned (n_basic_blocks_for_fn (cfun));
1240       gcov_write_length (offset);
1241 
1242       /* Arcs */
1243       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1244 		      EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1245 	{
1246 	  edge e;
1247 	  edge_iterator ei;
1248 
1249 	  offset = gcov_write_tag (GCOV_TAG_ARCS);
1250 	  gcov_write_unsigned (bb->index);
1251 
1252 	  FOR_EACH_EDGE (e, ei, bb->succs)
1253 	    {
1254 	      struct edge_profile_info *i = EDGE_INFO (e);
1255 	      if (!i->ignore)
1256 		{
1257 		  unsigned flag_bits = 0;
1258 
1259 		  if (i->on_tree)
1260 		    flag_bits |= GCOV_ARC_ON_TREE;
1261 		  if (e->flags & EDGE_FAKE)
1262 		    flag_bits |= GCOV_ARC_FAKE;
1263 		  if (e->flags & EDGE_FALLTHRU)
1264 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1265 		  /* On trees we don't have fallthru flags, but we can
1266 		     recompute them from CFG shape.  */
1267 		  if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1268 		      && e->src->next_bb == e->dest)
1269 		    flag_bits |= GCOV_ARC_FALLTHROUGH;
1270 
1271 		  gcov_write_unsigned (e->dest->index);
1272 		  gcov_write_unsigned (flag_bits);
1273 	        }
1274 	    }
1275 
1276 	  gcov_write_length (offset);
1277 	}
1278 
1279       /* Line numbers.  */
1280       /* Initialize the output.  */
1281       output_location (&streamed_locations, NULL, 0, NULL, NULL);
1282 
1283       hash_set<int_hash <location_t, 0, 2> > seen_locations;
1284 
1285       FOR_EACH_BB_FN (bb, cfun)
1286 	{
1287 	  gimple_stmt_iterator gsi;
1288 	  gcov_position_t offset = 0;
1289 
1290 	  if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
1291 	    {
1292 	      location_t loc = DECL_SOURCE_LOCATION (current_function_decl);
1293 	      seen_locations.add (loc);
1294 	      expanded_location curr_location = expand_location (loc);
1295 	      output_location (&streamed_locations, curr_location.file,
1296 			       curr_location.line, &offset, bb);
1297 	    }
1298 
1299 	  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1300 	    {
1301 	      gimple *stmt = gsi_stmt (gsi);
1302 	      location_t loc = gimple_location (stmt);
1303 	      if (!RESERVED_LOCATION_P (loc))
1304 		{
1305 		  seen_locations.add (loc);
1306 		  output_location (&streamed_locations, gimple_filename (stmt),
1307 				   gimple_lineno (stmt), &offset, bb);
1308 		}
1309 	    }
1310 
1311 	  /* Notice GOTO expressions eliminated while constructing the CFG.
1312 	     It's hard to distinguish such expression, but goto_locus should
1313 	     not be any of already seen location.  */
1314 	  location_t loc;
1315 	  if (single_succ_p (bb)
1316 	      && (loc = single_succ_edge (bb)->goto_locus)
1317 	      && !RESERVED_LOCATION_P (loc)
1318 	      && !seen_locations.contains (loc))
1319 	    {
1320 	      expanded_location curr_location = expand_location (loc);
1321 	      output_location (&streamed_locations, curr_location.file,
1322 			       curr_location.line, &offset, bb);
1323 	    }
1324 
1325 	  if (offset)
1326 	    {
1327 	      /* A file of NULL indicates the end of run.  */
1328 	      gcov_write_unsigned (0);
1329 	      gcov_write_string (NULL);
1330 	      gcov_write_length (offset);
1331 	    }
1332 	}
1333     }
1334 
1335   if (flag_profile_values)
1336     gimple_find_values_to_profile (&values);
1337 
1338   if (flag_branch_probabilities)
1339     {
1340       compute_branch_probabilities (cfg_checksum, lineno_checksum);
1341       if (flag_profile_values)
1342 	compute_value_histograms (values, cfg_checksum, lineno_checksum);
1343     }
1344 
1345   remove_fake_edges ();
1346 
1347   /* For each edge not on the spanning tree, add counting code.  */
1348   if (profile_arc_flag
1349       && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1350     {
1351       unsigned n_instrumented;
1352 
1353       gimple_init_gcov_profiler ();
1354 
1355       n_instrumented = instrument_edges (el);
1356 
1357       gcc_assert (n_instrumented == num_instrumented);
1358 
1359       if (flag_profile_values)
1360 	instrument_values (values);
1361 
1362       /* Commit changes done by instrumentation.  */
1363       gsi_commit_edge_inserts ();
1364     }
1365 
1366   free_aux_for_edges ();
1367 
1368   values.release ();
1369   free_edge_list (el);
1370   coverage_end_function (lineno_checksum, cfg_checksum);
1371   if (flag_branch_probabilities
1372       && (profile_status_for_fn (cfun) == PROFILE_READ))
1373     {
1374       struct loop *loop;
1375       if (dump_file && (dump_flags & TDF_DETAILS))
1376 	report_predictor_hitrates ();
1377 
1378       /* At this moment we have precise loop iteration count estimates.
1379 	 Record them to loop structure before the profile gets out of date. */
1380       FOR_EACH_LOOP (loop, 0)
1381 	if (loop->header->count > 0)
1382 	  {
1383 	    gcov_type nit = expected_loop_iterations_unbounded (loop);
1384 	    widest_int bound = gcov_type_to_wide_int (nit);
1385 	    loop->any_estimate = false;
1386 	    record_niter_bound (loop, bound, true, false);
1387 	  }
1388       compute_function_frequency ();
1389     }
1390 }
1391 
1392 /* Union find algorithm implementation for the basic blocks using
1393    aux fields.  */
1394 
1395 static basic_block
1396 find_group (basic_block bb)
1397 {
1398   basic_block group = bb, bb1;
1399 
1400   while ((basic_block) group->aux != group)
1401     group = (basic_block) group->aux;
1402 
1403   /* Compress path.  */
1404   while ((basic_block) bb->aux != group)
1405     {
1406       bb1 = (basic_block) bb->aux;
1407       bb->aux = (void *) group;
1408       bb = bb1;
1409     }
1410   return group;
1411 }
1412 
1413 static void
1414 union_groups (basic_block bb1, basic_block bb2)
1415 {
1416   basic_block bb1g = find_group (bb1);
1417   basic_block bb2g = find_group (bb2);
1418 
1419   /* ??? I don't have a place for the rank field.  OK.  Lets go w/o it,
1420      this code is unlikely going to be performance problem anyway.  */
1421   gcc_assert (bb1g != bb2g);
1422 
1423   bb1g->aux = bb2g;
1424 }
1425 
1426 /* This function searches all of the edges in the program flow graph, and puts
1427    as many bad edges as possible onto the spanning tree.  Bad edges include
1428    abnormals edges, which can't be instrumented at the moment.  Since it is
1429    possible for fake edges to form a cycle, we will have to develop some
1430    better way in the future.  Also put critical edges to the tree, since they
1431    are more expensive to instrument.  */
1432 
1433 static void
1434 find_spanning_tree (struct edge_list *el)
1435 {
1436   int i;
1437   int num_edges = NUM_EDGES (el);
1438   basic_block bb;
1439 
1440   /* We use aux field for standard union-find algorithm.  */
1441   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
1442     bb->aux = bb;
1443 
1444   /* Add fake edge exit to entry we can't instrument.  */
1445   union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun));
1446 
1447   /* First add all abnormal edges to the tree unless they form a cycle. Also
1448      add all edges to the exit block to avoid inserting profiling code behind
1449      setting return value from function.  */
1450   for (i = 0; i < num_edges; i++)
1451     {
1452       edge e = INDEX_EDGE (el, i);
1453       if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1454 	   || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1455 	  && !EDGE_INFO (e)->ignore
1456 	  && (find_group (e->src) != find_group (e->dest)))
1457 	{
1458 	  if (dump_file)
1459 	    fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1460 		     e->src->index, e->dest->index);
1461 	  EDGE_INFO (e)->on_tree = 1;
1462 	  union_groups (e->src, e->dest);
1463 	}
1464     }
1465 
1466   /* And now the rest.  Edge list is sorted according to frequencies and
1467      thus we will produce minimal spanning tree.  */
1468   for (i = 0; i < num_edges; i++)
1469     {
1470       edge e = INDEX_EDGE (el, i);
1471       if (!EDGE_INFO (e)->ignore
1472 	  && find_group (e->src) != find_group (e->dest))
1473 	{
1474 	  if (dump_file)
1475 	    fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1476 		     e->src->index, e->dest->index);
1477 	  EDGE_INFO (e)->on_tree = 1;
1478 	  union_groups (e->src, e->dest);
1479 	}
1480     }
1481 
1482   clear_aux_for_blocks ();
1483 }
1484 
1485 /* Perform file-level initialization for branch-prob processing.  */
1486 
1487 void
1488 init_branch_prob (void)
1489 {
1490   int i;
1491 
1492   total_num_blocks = 0;
1493   total_num_edges = 0;
1494   total_num_edges_ignored = 0;
1495   total_num_edges_instrumented = 0;
1496   total_num_blocks_created = 0;
1497   total_num_passes = 0;
1498   total_num_times_called = 0;
1499   total_num_branches = 0;
1500   for (i = 0; i < 20; i++)
1501     total_hist_br_prob[i] = 0;
1502 }
1503 
1504 /* Performs file-level cleanup after branch-prob processing
1505    is completed.  */
1506 
1507 void
1508 end_branch_prob (void)
1509 {
1510   if (dump_file)
1511     {
1512       fprintf (dump_file, "\n");
1513       fprintf (dump_file, "Total number of blocks: %d\n",
1514 	       total_num_blocks);
1515       fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1516       fprintf (dump_file, "Total number of ignored edges: %d\n",
1517 	       total_num_edges_ignored);
1518       fprintf (dump_file, "Total number of instrumented edges: %d\n",
1519 	       total_num_edges_instrumented);
1520       fprintf (dump_file, "Total number of blocks created: %d\n",
1521 	       total_num_blocks_created);
1522       fprintf (dump_file, "Total number of graph solution passes: %d\n",
1523 	       total_num_passes);
1524       if (total_num_times_called != 0)
1525 	fprintf (dump_file, "Average number of graph solution passes: %d\n",
1526 		 (total_num_passes + (total_num_times_called  >> 1))
1527 		 / total_num_times_called);
1528       fprintf (dump_file, "Total number of branches: %d\n",
1529 	       total_num_branches);
1530       if (total_num_branches)
1531 	{
1532 	  int i;
1533 
1534 	  for (i = 0; i < 10; i++)
1535 	    fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1536 		     (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1537 		     / total_num_branches, 5*i, 5*i+5);
1538 	}
1539     }
1540 }
1541