1 /* Swing Modulo Scheduling implementation. 2 Copyright (C) 2004-2019 Free Software Foundation, Inc. 3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "backend.h" 26 #include "target.h" 27 #include "rtl.h" 28 #include "tree.h" 29 #include "cfghooks.h" 30 #include "df.h" 31 #include "memmodel.h" 32 #include "optabs.h" 33 #include "regs.h" 34 #include "emit-rtl.h" 35 #include "gcov-io.h" 36 #include "profile.h" 37 #include "insn-attr.h" 38 #include "cfgrtl.h" 39 #include "sched-int.h" 40 #include "cfgloop.h" 41 #include "expr.h" 42 #include "params.h" 43 #include "ddg.h" 44 #include "tree-pass.h" 45 #include "dbgcnt.h" 46 #include "loop-unroll.h" 47 48 #ifdef INSN_SCHEDULING 49 50 /* This file contains the implementation of the Swing Modulo Scheduler, 51 described in the following references: 52 [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt. 53 Lifetime--sensitive modulo scheduling in a production environment. 54 IEEE Trans. on Comps., 50(3), March 2001 55 [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. 56 Swing Modulo Scheduling: A Lifetime Sensitive Approach. 57 PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA). 58 59 The basic structure is: 60 1. Build a data-dependence graph (DDG) for each loop. 61 2. Use the DDG to order the insns of a loop (not in topological order 62 necessarily, but rather) trying to place each insn after all its 63 predecessors _or_ after all its successors. 64 3. Compute MII: a lower bound on the number of cycles to schedule the loop. 65 4. Use the ordering to perform list-scheduling of the loop: 66 1. Set II = MII. We will try to schedule the loop within II cycles. 67 2. Try to schedule the insns one by one according to the ordering. 68 For each insn compute an interval of cycles by considering already- 69 scheduled preds and succs (and associated latencies); try to place 70 the insn in the cycles of this window checking for potential 71 resource conflicts (using the DFA interface). 72 Note: this is different from the cycle-scheduling of schedule_insns; 73 here the insns are not scheduled monotonically top-down (nor bottom- 74 up). 75 3. If failed in scheduling all insns - bump II++ and try again, unless 76 II reaches an upper bound MaxII, in which case report failure. 77 5. If we succeeded in scheduling the loop within II cycles, we now 78 generate prolog and epilog, decrease the counter of the loop, and 79 perform modulo variable expansion for live ranges that span more than 80 II cycles (i.e. use register copies to prevent a def from overwriting 81 itself before reaching the use). 82 83 SMS works with countable loops (1) whose control part can be easily 84 decoupled from the rest of the loop and (2) whose loop count can 85 be easily adjusted. This is because we peel a constant number of 86 iterations into a prologue and epilogue for which we want to avoid 87 emitting the control part, and a kernel which is to iterate that 88 constant number of iterations less than the original loop. So the 89 control part should be a set of insns clearly identified and having 90 its own iv, not otherwise used in the loop (at-least for now), which 91 initializes a register before the loop to the number of iterations. 92 Currently SMS relies on the do-loop pattern to recognize such loops, 93 where (1) the control part comprises of all insns defining and/or 94 using a certain 'count' register and (2) the loop count can be 95 adjusted by modifying this register prior to the loop. 96 TODO: Rely on cfgloop analysis instead. */ 97 98 /* This page defines partial-schedule structures and functions for 99 modulo scheduling. */ 100 101 typedef struct partial_schedule *partial_schedule_ptr; 102 typedef struct ps_insn *ps_insn_ptr; 103 104 /* The minimum (absolute) cycle that a node of ps was scheduled in. */ 105 #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle) 106 107 /* The maximum (absolute) cycle that a node of ps was scheduled in. */ 108 #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle) 109 110 /* Perform signed modulo, always returning a non-negative value. */ 111 #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y)) 112 113 /* The number of different iterations the nodes in ps span, assuming 114 the stage boundaries are placed efficiently. */ 115 #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \ 116 + 1 + ii - 1) / ii) 117 /* The stage count of ps. */ 118 #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count) 119 120 /* A single instruction in the partial schedule. */ 121 struct ps_insn 122 { 123 /* Identifies the instruction to be scheduled. Values smaller than 124 the ddg's num_nodes refer directly to ddg nodes. A value of 125 X - num_nodes refers to register move X. */ 126 int id; 127 128 /* The (absolute) cycle in which the PS instruction is scheduled. 129 Same as SCHED_TIME (node). */ 130 int cycle; 131 132 /* The next/prev PS_INSN in the same row. */ 133 ps_insn_ptr next_in_row, 134 prev_in_row; 135 136 }; 137 138 /* Information about a register move that has been added to a partial 139 schedule. */ 140 struct ps_reg_move_info 141 { 142 /* The source of the move is defined by the ps_insn with id DEF. 143 The destination is used by the ps_insns with the ids in USES. */ 144 int def; 145 sbitmap uses; 146 147 /* The original form of USES' instructions used OLD_REG, but they 148 should now use NEW_REG. */ 149 rtx old_reg; 150 rtx new_reg; 151 152 /* The number of consecutive stages that the move occupies. */ 153 int num_consecutive_stages; 154 155 /* An instruction that sets NEW_REG to the correct value. The first 156 move associated with DEF will have an rhs of OLD_REG; later moves 157 use the result of the previous move. */ 158 rtx_insn *insn; 159 }; 160 161 /* Holds the partial schedule as an array of II rows. Each entry of the 162 array points to a linked list of PS_INSNs, which represents the 163 instructions that are scheduled for that row. */ 164 struct partial_schedule 165 { 166 int ii; /* Number of rows in the partial schedule. */ 167 int history; /* Threshold for conflict checking using DFA. */ 168 169 /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */ 170 ps_insn_ptr *rows; 171 172 /* All the moves added for this partial schedule. Index X has 173 a ps_insn id of X + g->num_nodes. */ 174 vec<ps_reg_move_info> reg_moves; 175 176 /* rows_length[i] holds the number of instructions in the row. 177 It is used only (as an optimization) to back off quickly from 178 trying to schedule a node in a full row; that is, to avoid running 179 through futile DFA state transitions. */ 180 int *rows_length; 181 182 /* The earliest absolute cycle of an insn in the partial schedule. */ 183 int min_cycle; 184 185 /* The latest absolute cycle of an insn in the partial schedule. */ 186 int max_cycle; 187 188 ddg_ptr g; /* The DDG of the insns in the partial schedule. */ 189 190 int stage_count; /* The stage count of the partial schedule. */ 191 }; 192 193 194 static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history); 195 static void free_partial_schedule (partial_schedule_ptr); 196 static void reset_partial_schedule (partial_schedule_ptr, int new_ii); 197 void print_partial_schedule (partial_schedule_ptr, FILE *); 198 static void verify_partial_schedule (partial_schedule_ptr, sbitmap); 199 static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr, 200 int, int, sbitmap, sbitmap); 201 static void rotate_partial_schedule (partial_schedule_ptr, int); 202 void set_row_column_for_ps (partial_schedule_ptr); 203 static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap); 204 static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr); 205 206 207 /* This page defines constants and structures for the modulo scheduling 208 driver. */ 209 210 static int sms_order_nodes (ddg_ptr, int, int *, int *); 211 static void set_node_sched_params (ddg_ptr); 212 static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *); 213 static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *); 214 static void generate_prolog_epilog (partial_schedule_ptr, struct loop *, 215 rtx, rtx); 216 static int calculate_stage_count (partial_schedule_ptr, int); 217 static void calculate_must_precede_follow (ddg_node_ptr, int, int, 218 int, int, sbitmap, sbitmap, sbitmap); 219 static int get_sched_window (partial_schedule_ptr, ddg_node_ptr, 220 sbitmap, int, int *, int *, int *); 221 static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int, 222 sbitmap, int *, sbitmap, sbitmap); 223 static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr); 224 225 #define NODE_ASAP(node) ((node)->aux.count) 226 227 #define SCHED_PARAMS(x) (&node_sched_param_vec[x]) 228 #define SCHED_TIME(x) (SCHED_PARAMS (x)->time) 229 #define SCHED_ROW(x) (SCHED_PARAMS (x)->row) 230 #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage) 231 #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column) 232 233 /* The scheduling parameters held for each node. */ 234 typedef struct node_sched_params 235 { 236 int time; /* The absolute scheduling cycle. */ 237 238 int row; /* Holds time % ii. */ 239 int stage; /* Holds time / ii. */ 240 241 /* The column of a node inside the ps. If nodes u, v are on the same row, 242 u will precede v if column (u) < column (v). */ 243 int column; 244 } *node_sched_params_ptr; 245 246 /* The following three functions are copied from the current scheduler 247 code in order to use sched_analyze() for computing the dependencies. 248 They are used when initializing the sched_info structure. */ 249 static const char * 250 sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED) 251 { 252 static char tmp[80]; 253 254 sprintf (tmp, "i%4d", INSN_UID (insn)); 255 return tmp; 256 } 257 258 static void 259 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED, 260 regset used ATTRIBUTE_UNUSED) 261 { 262 } 263 264 static struct common_sched_info_def sms_common_sched_info; 265 266 static struct sched_deps_info_def sms_sched_deps_info = 267 { 268 compute_jump_reg_dependencies, 269 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 270 NULL, 271 0, 0, 0 272 }; 273 274 static struct haifa_sched_info sms_sched_info = 275 { 276 NULL, 277 NULL, 278 NULL, 279 NULL, 280 NULL, 281 sms_print_insn, 282 NULL, 283 NULL, /* insn_finishes_block_p */ 284 NULL, NULL, 285 NULL, NULL, 286 0, 0, 287 288 NULL, NULL, NULL, NULL, 289 NULL, NULL, 290 0 291 }; 292 293 /* Partial schedule instruction ID in PS is a register move. Return 294 information about it. */ 295 static struct ps_reg_move_info * 296 ps_reg_move (partial_schedule_ptr ps, int id) 297 { 298 gcc_checking_assert (id >= ps->g->num_nodes); 299 return &ps->reg_moves[id - ps->g->num_nodes]; 300 } 301 302 /* Return the rtl instruction that is being scheduled by partial schedule 303 instruction ID, which belongs to schedule PS. */ 304 static rtx_insn * 305 ps_rtl_insn (partial_schedule_ptr ps, int id) 306 { 307 if (id < ps->g->num_nodes) 308 return ps->g->nodes[id].insn; 309 else 310 return ps_reg_move (ps, id)->insn; 311 } 312 313 /* Partial schedule instruction ID, which belongs to PS, occurred in 314 the original (unscheduled) loop. Return the first instruction 315 in the loop that was associated with ps_rtl_insn (PS, ID). 316 If the instruction had some notes before it, this is the first 317 of those notes. */ 318 static rtx_insn * 319 ps_first_note (partial_schedule_ptr ps, int id) 320 { 321 gcc_assert (id < ps->g->num_nodes); 322 return ps->g->nodes[id].first_note; 323 } 324 325 /* Return the number of consecutive stages that are occupied by 326 partial schedule instruction ID in PS. */ 327 static int 328 ps_num_consecutive_stages (partial_schedule_ptr ps, int id) 329 { 330 if (id < ps->g->num_nodes) 331 return 1; 332 else 333 return ps_reg_move (ps, id)->num_consecutive_stages; 334 } 335 336 /* Given HEAD and TAIL which are the first and last insns in a loop; 337 return the register which controls the loop. Return zero if it has 338 more than one occurrence in the loop besides the control part or the 339 do-loop pattern is not of the form we expect. */ 340 static rtx 341 doloop_register_get (rtx_insn *head, rtx_insn *tail) 342 { 343 rtx reg, condition; 344 rtx_insn *insn, *first_insn_not_to_check; 345 346 if (!JUMP_P (tail)) 347 return NULL_RTX; 348 349 if (!targetm.code_for_doloop_end) 350 return NULL_RTX; 351 352 /* TODO: Free SMS's dependence on doloop_condition_get. */ 353 condition = doloop_condition_get (tail); 354 if (! condition) 355 return NULL_RTX; 356 357 if (REG_P (XEXP (condition, 0))) 358 reg = XEXP (condition, 0); 359 else if (GET_CODE (XEXP (condition, 0)) == PLUS 360 && REG_P (XEXP (XEXP (condition, 0), 0))) 361 reg = XEXP (XEXP (condition, 0), 0); 362 else 363 gcc_unreachable (); 364 365 /* Check that the COUNT_REG has no other occurrences in the loop 366 until the decrement. We assume the control part consists of 367 either a single (parallel) branch-on-count or a (non-parallel) 368 branch immediately preceded by a single (decrement) insn. */ 369 first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail 370 : prev_nondebug_insn (tail)); 371 372 for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn)) 373 if (!DEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn)) 374 { 375 if (dump_file) 376 { 377 fprintf (dump_file, "SMS count_reg found "); 378 print_rtl_single (dump_file, reg); 379 fprintf (dump_file, " outside control in insn:\n"); 380 print_rtl_single (dump_file, insn); 381 } 382 383 return NULL_RTX; 384 } 385 386 return reg; 387 } 388 389 /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so 390 that the number of iterations is a compile-time constant. If so, 391 return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to 392 this constant. Otherwise return 0. */ 393 static rtx_insn * 394 const_iteration_count (rtx count_reg, basic_block pre_header, 395 int64_t * count) 396 { 397 rtx_insn *insn; 398 rtx_insn *head, *tail; 399 400 if (! pre_header) 401 return NULL; 402 403 get_ebb_head_tail (pre_header, pre_header, &head, &tail); 404 405 for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn)) 406 if (NONDEBUG_INSN_P (insn) && single_set (insn) && 407 rtx_equal_p (count_reg, SET_DEST (single_set (insn)))) 408 { 409 rtx pat = single_set (insn); 410 411 if (CONST_INT_P (SET_SRC (pat))) 412 { 413 *count = INTVAL (SET_SRC (pat)); 414 return insn; 415 } 416 417 return NULL; 418 } 419 420 return NULL; 421 } 422 423 /* A very simple resource-based lower bound on the initiation interval. 424 ??? Improve the accuracy of this bound by considering the 425 utilization of various units. */ 426 static int 427 res_MII (ddg_ptr g) 428 { 429 if (targetm.sched.sms_res_mii) 430 return targetm.sched.sms_res_mii (g); 431 432 return ((g->num_nodes - g->num_debug) / issue_rate); 433 } 434 435 436 /* A vector that contains the sched data for each ps_insn. */ 437 static vec<node_sched_params> node_sched_param_vec; 438 439 /* Allocate sched_params for each node and initialize it. */ 440 static void 441 set_node_sched_params (ddg_ptr g) 442 { 443 node_sched_param_vec.truncate (0); 444 node_sched_param_vec.safe_grow_cleared (g->num_nodes); 445 } 446 447 /* Make sure that node_sched_param_vec has an entry for every move in PS. */ 448 static void 449 extend_node_sched_params (partial_schedule_ptr ps) 450 { 451 node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes 452 + ps->reg_moves.length ()); 453 } 454 455 /* Update the sched_params (time, row and stage) for node U using the II, 456 the CYCLE of U and MIN_CYCLE. 457 We're not simply taking the following 458 SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii); 459 because the stages may not be aligned on cycle 0. */ 460 static void 461 update_node_sched_params (int u, int ii, int cycle, int min_cycle) 462 { 463 int sc_until_cycle_zero; 464 int stage; 465 466 SCHED_TIME (u) = cycle; 467 SCHED_ROW (u) = SMODULO (cycle, ii); 468 469 /* The calculation of stage count is done adding the number 470 of stages before cycle zero and after cycle zero. */ 471 sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii); 472 473 if (SCHED_TIME (u) < 0) 474 { 475 stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii); 476 SCHED_STAGE (u) = sc_until_cycle_zero - stage; 477 } 478 else 479 { 480 stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii); 481 SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1; 482 } 483 } 484 485 static void 486 print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps) 487 { 488 int i; 489 490 if (! file) 491 return; 492 for (i = 0; i < num_nodes; i++) 493 { 494 node_sched_params_ptr nsp = SCHED_PARAMS (i); 495 496 fprintf (file, "Node = %d; INSN = %d\n", i, 497 INSN_UID (ps_rtl_insn (ps, i))); 498 fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i])); 499 fprintf (file, " time = %d:\n", nsp->time); 500 fprintf (file, " stage = %d:\n", nsp->stage); 501 } 502 } 503 504 /* Set SCHED_COLUMN for each instruction in row ROW of PS. */ 505 static void 506 set_columns_for_row (partial_schedule_ptr ps, int row) 507 { 508 ps_insn_ptr cur_insn; 509 int column; 510 511 column = 0; 512 for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row) 513 SCHED_COLUMN (cur_insn->id) = column++; 514 } 515 516 /* Set SCHED_COLUMN for each instruction in PS. */ 517 static void 518 set_columns_for_ps (partial_schedule_ptr ps) 519 { 520 int row; 521 522 for (row = 0; row < ps->ii; row++) 523 set_columns_for_row (ps, row); 524 } 525 526 /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS. 527 Its single predecessor has already been scheduled, as has its 528 ddg node successors. (The move may have also another move as its 529 successor, in which case that successor will be scheduled later.) 530 531 The move is part of a chain that satisfies register dependencies 532 between a producing ddg node and various consuming ddg nodes. 533 If some of these dependencies have a distance of 1 (meaning that 534 the use is upward-exposed) then DISTANCE1_USES is nonnull and 535 contains the set of uses with distance-1 dependencies. 536 DISTANCE1_USES is null otherwise. 537 538 MUST_FOLLOW is a scratch bitmap that is big enough to hold 539 all current ps_insn ids. 540 541 Return true on success. */ 542 static bool 543 schedule_reg_move (partial_schedule_ptr ps, int i_reg_move, 544 sbitmap distance1_uses, sbitmap must_follow) 545 { 546 unsigned int u; 547 int this_time, this_distance, this_start, this_end, this_latency; 548 int start, end, c, ii; 549 sbitmap_iterator sbi; 550 ps_reg_move_info *move; 551 rtx_insn *this_insn; 552 ps_insn_ptr psi; 553 554 move = ps_reg_move (ps, i_reg_move); 555 ii = ps->ii; 556 if (dump_file) 557 { 558 fprintf (dump_file, "Scheduling register move INSN %d; ii = %d" 559 ", min cycle = %d\n\n", INSN_UID (move->insn), ii, 560 PS_MIN_CYCLE (ps)); 561 print_rtl_single (dump_file, move->insn); 562 fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time"); 563 fprintf (dump_file, "=========== =========== =====\n"); 564 } 565 566 start = INT_MIN; 567 end = INT_MAX; 568 569 /* For dependencies of distance 1 between a producer ddg node A 570 and consumer ddg node B, we have a chain of dependencies: 571 572 A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B 573 574 where Mi is the ith move. For dependencies of distance 0 between 575 a producer ddg node A and consumer ddg node C, we have a chain of 576 dependencies: 577 578 A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C 579 580 where Mi' occupies the same position as Mi but occurs a stage later. 581 We can only schedule each move once, so if we have both types of 582 chain, we model the second as: 583 584 A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C 585 586 First handle the dependencies between the previously-scheduled 587 predecessor and the move. */ 588 this_insn = ps_rtl_insn (ps, move->def); 589 this_latency = insn_latency (this_insn, move->insn); 590 this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0; 591 this_time = SCHED_TIME (move->def) - this_distance * ii; 592 this_start = this_time + this_latency; 593 this_end = this_time + ii; 594 if (dump_file) 595 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n", 596 this_start, this_end, SCHED_TIME (move->def), 597 INSN_UID (this_insn), this_latency, this_distance, 598 INSN_UID (move->insn)); 599 600 if (start < this_start) 601 start = this_start; 602 if (end > this_end) 603 end = this_end; 604 605 /* Handle the dependencies between the move and previously-scheduled 606 successors. */ 607 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi) 608 { 609 this_insn = ps_rtl_insn (ps, u); 610 this_latency = insn_latency (move->insn, this_insn); 611 if (distance1_uses && !bitmap_bit_p (distance1_uses, u)) 612 this_distance = -1; 613 else 614 this_distance = 0; 615 this_time = SCHED_TIME (u) + this_distance * ii; 616 this_start = this_time - ii; 617 this_end = this_time - this_latency; 618 if (dump_file) 619 fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n", 620 this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn), 621 this_latency, this_distance, INSN_UID (this_insn)); 622 623 if (start < this_start) 624 start = this_start; 625 if (end > this_end) 626 end = this_end; 627 } 628 629 if (dump_file) 630 { 631 fprintf (dump_file, "----------- ----------- -----\n"); 632 fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)"); 633 } 634 635 bitmap_clear (must_follow); 636 bitmap_set_bit (must_follow, move->def); 637 638 start = MAX (start, end - (ii - 1)); 639 for (c = end; c >= start; c--) 640 { 641 psi = ps_add_node_check_conflicts (ps, i_reg_move, c, 642 move->uses, must_follow); 643 if (psi) 644 { 645 update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps)); 646 if (dump_file) 647 fprintf (dump_file, "\nScheduled register move INSN %d at" 648 " time %d, row %d\n\n", INSN_UID (move->insn), c, 649 SCHED_ROW (i_reg_move)); 650 return true; 651 } 652 } 653 654 if (dump_file) 655 fprintf (dump_file, "\nNo available slot\n\n"); 656 657 return false; 658 } 659 660 /* 661 Breaking intra-loop register anti-dependences: 662 Each intra-loop register anti-dependence implies a cross-iteration true 663 dependence of distance 1. Therefore, we can remove such false dependencies 664 and figure out if the partial schedule broke them by checking if (for a 665 true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and 666 if so generate a register move. The number of such moves is equal to: 667 SCHED_TIME (use) - SCHED_TIME (def) { 0 broken 668 nreg_moves = ----------------------------------- + 1 - { dependence. 669 ii { 1 if not. 670 */ 671 static bool 672 schedule_reg_moves (partial_schedule_ptr ps) 673 { 674 ddg_ptr g = ps->g; 675 int ii = ps->ii; 676 int i; 677 678 for (i = 0; i < g->num_nodes; i++) 679 { 680 ddg_node_ptr u = &g->nodes[i]; 681 ddg_edge_ptr e; 682 int nreg_moves = 0, i_reg_move; 683 rtx prev_reg, old_reg; 684 int first_move; 685 int distances[2]; 686 sbitmap distance1_uses; 687 rtx set = single_set (u->insn); 688 689 /* Skip instructions that do not set a register. */ 690 if (set && !REG_P (SET_DEST (set))) 691 continue; 692 693 /* Compute the number of reg_moves needed for u, by looking at life 694 ranges started at u (excluding self-loops). */ 695 distances[0] = distances[1] = false; 696 for (e = u->out; e; e = e->next_out) 697 if (e->type == TRUE_DEP && e->dest != e->src) 698 { 699 int nreg_moves4e = (SCHED_TIME (e->dest->cuid) 700 - SCHED_TIME (e->src->cuid)) / ii; 701 702 if (e->distance == 1) 703 nreg_moves4e = (SCHED_TIME (e->dest->cuid) 704 - SCHED_TIME (e->src->cuid) + ii) / ii; 705 706 /* If dest precedes src in the schedule of the kernel, then dest 707 will read before src writes and we can save one reg_copy. */ 708 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid) 709 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid)) 710 nreg_moves4e--; 711 712 if (nreg_moves4e >= 1) 713 { 714 /* !single_set instructions are not supported yet and 715 thus we do not except to encounter them in the loop 716 except from the doloop part. For the latter case 717 we assume no regmoves are generated as the doloop 718 instructions are tied to the branch with an edge. */ 719 gcc_assert (set); 720 /* If the instruction contains auto-inc register then 721 validate that the regmov is being generated for the 722 target regsiter rather then the inc'ed register. */ 723 gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn)); 724 } 725 726 if (nreg_moves4e) 727 { 728 gcc_assert (e->distance < 2); 729 distances[e->distance] = true; 730 } 731 nreg_moves = MAX (nreg_moves, nreg_moves4e); 732 } 733 734 if (nreg_moves == 0) 735 continue; 736 737 /* Create NREG_MOVES register moves. */ 738 first_move = ps->reg_moves.length (); 739 ps->reg_moves.safe_grow_cleared (first_move + nreg_moves); 740 extend_node_sched_params (ps); 741 742 /* Record the moves associated with this node. */ 743 first_move += ps->g->num_nodes; 744 745 /* Generate each move. */ 746 old_reg = prev_reg = SET_DEST (set); 747 if (HARD_REGISTER_P (old_reg)) 748 return false; 749 750 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++) 751 { 752 ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move); 753 754 move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i; 755 move->uses = sbitmap_alloc (first_move + nreg_moves); 756 move->old_reg = old_reg; 757 move->new_reg = gen_reg_rtx (GET_MODE (prev_reg)); 758 move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1; 759 move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg)); 760 bitmap_clear (move->uses); 761 762 prev_reg = move->new_reg; 763 } 764 765 distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL; 766 767 if (distance1_uses) 768 bitmap_clear (distance1_uses); 769 770 /* Every use of the register defined by node may require a different 771 copy of this register, depending on the time the use is scheduled. 772 Record which uses require which move results. */ 773 for (e = u->out; e; e = e->next_out) 774 if (e->type == TRUE_DEP && e->dest != e->src) 775 { 776 int dest_copy = (SCHED_TIME (e->dest->cuid) 777 - SCHED_TIME (e->src->cuid)) / ii; 778 779 if (e->distance == 1) 780 dest_copy = (SCHED_TIME (e->dest->cuid) 781 - SCHED_TIME (e->src->cuid) + ii) / ii; 782 783 if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid) 784 && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid)) 785 dest_copy--; 786 787 if (dest_copy) 788 { 789 ps_reg_move_info *move; 790 791 move = ps_reg_move (ps, first_move + dest_copy - 1); 792 bitmap_set_bit (move->uses, e->dest->cuid); 793 if (e->distance == 1) 794 bitmap_set_bit (distance1_uses, e->dest->cuid); 795 } 796 } 797 798 auto_sbitmap must_follow (first_move + nreg_moves); 799 for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++) 800 if (!schedule_reg_move (ps, first_move + i_reg_move, 801 distance1_uses, must_follow)) 802 break; 803 if (distance1_uses) 804 sbitmap_free (distance1_uses); 805 if (i_reg_move < nreg_moves) 806 return false; 807 } 808 return true; 809 } 810 811 /* Emit the moves associated with PS. Apply the substitutions 812 associated with them. */ 813 static void 814 apply_reg_moves (partial_schedule_ptr ps) 815 { 816 ps_reg_move_info *move; 817 int i; 818 819 FOR_EACH_VEC_ELT (ps->reg_moves, i, move) 820 { 821 unsigned int i_use; 822 sbitmap_iterator sbi; 823 824 EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi) 825 { 826 replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg); 827 df_insn_rescan (ps->g->nodes[i_use].insn); 828 } 829 } 830 } 831 832 /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of 833 SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT 834 will move to cycle zero. */ 835 static void 836 reset_sched_times (partial_schedule_ptr ps, int amount) 837 { 838 int row; 839 int ii = ps->ii; 840 ps_insn_ptr crr_insn; 841 842 for (row = 0; row < ii; row++) 843 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row) 844 { 845 int u = crr_insn->id; 846 int normalized_time = SCHED_TIME (u) - amount; 847 int new_min_cycle = PS_MIN_CYCLE (ps) - amount; 848 849 if (dump_file) 850 { 851 /* Print the scheduling times after the rotation. */ 852 rtx_insn *insn = ps_rtl_insn (ps, u); 853 854 fprintf (dump_file, "crr_insn->node=%d (insn id %d), " 855 "crr_insn->cycle=%d, min_cycle=%d", u, 856 INSN_UID (insn), normalized_time, new_min_cycle); 857 if (JUMP_P (insn)) 858 fprintf (dump_file, " (branch)"); 859 fprintf (dump_file, "\n"); 860 } 861 862 gcc_assert (SCHED_TIME (u) >= ps->min_cycle); 863 gcc_assert (SCHED_TIME (u) <= ps->max_cycle); 864 865 crr_insn->cycle = normalized_time; 866 update_node_sched_params (u, ii, normalized_time, new_min_cycle); 867 } 868 } 869 870 /* Permute the insns according to their order in PS, from row 0 to 871 row ii-1, and position them right before LAST. This schedules 872 the insns of the loop kernel. */ 873 static void 874 permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last) 875 { 876 int ii = ps->ii; 877 int row; 878 ps_insn_ptr ps_ij; 879 880 for (row = 0; row < ii ; row++) 881 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) 882 { 883 rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id); 884 885 if (PREV_INSN (last) != insn) 886 { 887 if (ps_ij->id < ps->g->num_nodes) 888 reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn, 889 PREV_INSN (last)); 890 else 891 add_insn_before (insn, last, NULL); 892 } 893 } 894 } 895 896 /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE 897 respectively only if cycle C falls on the border of the scheduling 898 window boundaries marked by START and END cycles. STEP is the 899 direction of the window. */ 900 static inline void 901 set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow, 902 sbitmap *tmp_precede, sbitmap must_precede, int c, 903 int start, int end, int step) 904 { 905 *tmp_precede = NULL; 906 *tmp_follow = NULL; 907 908 if (c == start) 909 { 910 if (step == 1) 911 *tmp_precede = must_precede; 912 else /* step == -1. */ 913 *tmp_follow = must_follow; 914 } 915 if (c == end - step) 916 { 917 if (step == 1) 918 *tmp_follow = must_follow; 919 else /* step == -1. */ 920 *tmp_precede = must_precede; 921 } 922 923 } 924 925 /* Return True if the branch can be moved to row ii-1 while 926 normalizing the partial schedule PS to start from cycle zero and thus 927 optimize the SC. Otherwise return False. */ 928 static bool 929 optimize_sc (partial_schedule_ptr ps, ddg_ptr g) 930 { 931 int amount = PS_MIN_CYCLE (ps); 932 int start, end, step; 933 int ii = ps->ii; 934 bool ok = false; 935 int stage_count, stage_count_curr; 936 937 /* Compare the SC after normalization and SC after bringing the branch 938 to row ii-1. If they are equal just bail out. */ 939 stage_count = calculate_stage_count (ps, amount); 940 stage_count_curr = 941 calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1)); 942 943 if (stage_count == stage_count_curr) 944 { 945 if (dump_file) 946 fprintf (dump_file, "SMS SC already optimized.\n"); 947 948 return false; 949 } 950 951 if (dump_file) 952 { 953 fprintf (dump_file, "SMS Trying to optimize branch location\n"); 954 fprintf (dump_file, "SMS partial schedule before trial:\n"); 955 print_partial_schedule (ps, dump_file); 956 } 957 958 /* First, normalize the partial scheduling. */ 959 reset_sched_times (ps, amount); 960 rotate_partial_schedule (ps, amount); 961 if (dump_file) 962 { 963 fprintf (dump_file, 964 "SMS partial schedule after normalization (ii, %d, SC %d):\n", 965 ii, stage_count); 966 print_partial_schedule (ps, dump_file); 967 } 968 969 if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1) 970 return true; 971 972 auto_sbitmap sched_nodes (g->num_nodes); 973 bitmap_ones (sched_nodes); 974 975 /* Calculate the new placement of the branch. It should be in row 976 ii-1 and fall into it's scheduling window. */ 977 if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start, 978 &step, &end) == 0) 979 { 980 bool success; 981 ps_insn_ptr next_ps_i; 982 int branch_cycle = SCHED_TIME (g->closing_branch->cuid); 983 int row = SMODULO (branch_cycle, ps->ii); 984 int num_splits = 0; 985 sbitmap tmp_precede, tmp_follow; 986 int min_cycle, c; 987 988 if (dump_file) 989 fprintf (dump_file, "\nTrying to schedule node %d " 990 "INSN = %d in (%d .. %d) step %d\n", 991 g->closing_branch->cuid, 992 (INSN_UID (g->closing_branch->insn)), start, end, step); 993 994 gcc_assert ((step > 0 && start < end) || (step < 0 && start > end)); 995 if (step == 1) 996 { 997 c = start + ii - SMODULO (start, ii) - 1; 998 gcc_assert (c >= start); 999 if (c >= end) 1000 { 1001 if (dump_file) 1002 fprintf (dump_file, 1003 "SMS failed to schedule branch at cycle: %d\n", c); 1004 return false; 1005 } 1006 } 1007 else 1008 { 1009 c = start - SMODULO (start, ii) - 1; 1010 gcc_assert (c <= start); 1011 1012 if (c <= end) 1013 { 1014 if (dump_file) 1015 fprintf (dump_file, 1016 "SMS failed to schedule branch at cycle: %d\n", c); 1017 return false; 1018 } 1019 } 1020 1021 auto_sbitmap must_precede (g->num_nodes); 1022 auto_sbitmap must_follow (g->num_nodes); 1023 1024 /* Try to schedule the branch is it's new cycle. */ 1025 calculate_must_precede_follow (g->closing_branch, start, end, 1026 step, ii, sched_nodes, 1027 must_precede, must_follow); 1028 1029 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede, 1030 must_precede, c, start, end, step); 1031 1032 /* Find the element in the partial schedule related to the closing 1033 branch so we can remove it from it's current cycle. */ 1034 for (next_ps_i = ps->rows[row]; 1035 next_ps_i; next_ps_i = next_ps_i->next_in_row) 1036 if (next_ps_i->id == g->closing_branch->cuid) 1037 break; 1038 1039 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii); 1040 remove_node_from_ps (ps, next_ps_i); 1041 success = 1042 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c, 1043 sched_nodes, &num_splits, 1044 tmp_precede, tmp_follow); 1045 gcc_assert (num_splits == 0); 1046 if (!success) 1047 { 1048 if (dump_file) 1049 fprintf (dump_file, 1050 "SMS failed to schedule branch at cycle: %d, " 1051 "bringing it back to cycle %d\n", c, branch_cycle); 1052 1053 /* The branch was failed to be placed in row ii - 1. 1054 Put it back in it's original place in the partial 1055 schedualing. */ 1056 set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede, 1057 must_precede, branch_cycle, start, end, 1058 step); 1059 success = 1060 try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, 1061 branch_cycle, sched_nodes, 1062 &num_splits, tmp_precede, 1063 tmp_follow); 1064 gcc_assert (success && (num_splits == 0)); 1065 ok = false; 1066 } 1067 else 1068 { 1069 /* The branch is placed in row ii - 1. */ 1070 if (dump_file) 1071 fprintf (dump_file, 1072 "SMS success in moving branch to cycle %d\n", c); 1073 1074 update_node_sched_params (g->closing_branch->cuid, ii, c, 1075 PS_MIN_CYCLE (ps)); 1076 ok = true; 1077 } 1078 1079 /* This might have been added to a new first stage. */ 1080 if (PS_MIN_CYCLE (ps) < min_cycle) 1081 reset_sched_times (ps, 0); 1082 } 1083 1084 return ok; 1085 } 1086 1087 static void 1088 duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage, 1089 int to_stage, rtx count_reg) 1090 { 1091 int row; 1092 ps_insn_ptr ps_ij; 1093 1094 for (row = 0; row < ps->ii; row++) 1095 for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) 1096 { 1097 int u = ps_ij->id; 1098 int first_u, last_u; 1099 rtx_insn *u_insn; 1100 1101 /* Do not duplicate any insn which refers to count_reg as it 1102 belongs to the control part. 1103 The closing branch is scheduled as well and thus should 1104 be ignored. 1105 TODO: This should be done by analyzing the control part of 1106 the loop. */ 1107 u_insn = ps_rtl_insn (ps, u); 1108 if (reg_mentioned_p (count_reg, u_insn) 1109 || JUMP_P (u_insn)) 1110 continue; 1111 1112 first_u = SCHED_STAGE (u); 1113 last_u = first_u + ps_num_consecutive_stages (ps, u) - 1; 1114 if (from_stage <= last_u && to_stage >= first_u) 1115 { 1116 if (u < ps->g->num_nodes) 1117 duplicate_insn_chain (ps_first_note (ps, u), u_insn); 1118 else 1119 emit_insn (copy_rtx (PATTERN (u_insn))); 1120 } 1121 } 1122 } 1123 1124 1125 /* Generate the instructions (including reg_moves) for prolog & epilog. */ 1126 static void 1127 generate_prolog_epilog (partial_schedule_ptr ps, struct loop *loop, 1128 rtx count_reg, rtx count_init) 1129 { 1130 int i; 1131 int last_stage = PS_STAGE_COUNT (ps) - 1; 1132 edge e; 1133 1134 /* Generate the prolog, inserting its insns on the loop-entry edge. */ 1135 start_sequence (); 1136 1137 if (!count_init) 1138 { 1139 /* Generate instructions at the beginning of the prolog to 1140 adjust the loop count by STAGE_COUNT. If loop count is constant 1141 (count_init), this constant is adjusted by STAGE_COUNT in 1142 generate_prolog_epilog function. */ 1143 rtx sub_reg = NULL_RTX; 1144 1145 sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg, 1146 gen_int_mode (last_stage, 1147 GET_MODE (count_reg)), 1148 count_reg, 1, OPTAB_DIRECT); 1149 gcc_assert (REG_P (sub_reg)); 1150 if (REGNO (sub_reg) != REGNO (count_reg)) 1151 emit_move_insn (count_reg, sub_reg); 1152 } 1153 1154 for (i = 0; i < last_stage; i++) 1155 duplicate_insns_of_cycles (ps, 0, i, count_reg); 1156 1157 /* Put the prolog on the entry edge. */ 1158 e = loop_preheader_edge (loop); 1159 split_edge_and_insert (e, get_insns ()); 1160 if (!flag_resched_modulo_sched) 1161 e->dest->flags |= BB_DISABLE_SCHEDULE; 1162 1163 end_sequence (); 1164 1165 /* Generate the epilog, inserting its insns on the loop-exit edge. */ 1166 start_sequence (); 1167 1168 for (i = 0; i < last_stage; i++) 1169 duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg); 1170 1171 /* Put the epilogue on the exit edge. */ 1172 gcc_assert (single_exit (loop)); 1173 e = single_exit (loop); 1174 split_edge_and_insert (e, get_insns ()); 1175 if (!flag_resched_modulo_sched) 1176 e->dest->flags |= BB_DISABLE_SCHEDULE; 1177 1178 end_sequence (); 1179 } 1180 1181 /* Mark LOOP as software pipelined so the later 1182 scheduling passes don't touch it. */ 1183 static void 1184 mark_loop_unsched (struct loop *loop) 1185 { 1186 unsigned i; 1187 basic_block *bbs = get_loop_body (loop); 1188 1189 for (i = 0; i < loop->num_nodes; i++) 1190 bbs[i]->flags |= BB_DISABLE_SCHEDULE; 1191 1192 free (bbs); 1193 } 1194 1195 /* Return true if all the BBs of the loop are empty except the 1196 loop header. */ 1197 static bool 1198 loop_single_full_bb_p (struct loop *loop) 1199 { 1200 unsigned i; 1201 basic_block *bbs = get_loop_body (loop); 1202 1203 for (i = 0; i < loop->num_nodes ; i++) 1204 { 1205 rtx_insn *head, *tail; 1206 bool empty_bb = true; 1207 1208 if (bbs[i] == loop->header) 1209 continue; 1210 1211 /* Make sure that basic blocks other than the header 1212 have only notes labels or jumps. */ 1213 get_ebb_head_tail (bbs[i], bbs[i], &head, &tail); 1214 for (; head != NEXT_INSN (tail); head = NEXT_INSN (head)) 1215 { 1216 if (NOTE_P (head) || LABEL_P (head) 1217 || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head)))) 1218 continue; 1219 empty_bb = false; 1220 break; 1221 } 1222 1223 if (! empty_bb) 1224 { 1225 free (bbs); 1226 return false; 1227 } 1228 } 1229 free (bbs); 1230 return true; 1231 } 1232 1233 /* Dump file:line from INSN's location info to dump_file. */ 1234 1235 static void 1236 dump_insn_location (rtx_insn *insn) 1237 { 1238 if (dump_file && INSN_HAS_LOCATION (insn)) 1239 { 1240 expanded_location xloc = insn_location (insn); 1241 fprintf (dump_file, " %s:%i", xloc.file, xloc.line); 1242 } 1243 } 1244 1245 /* A simple loop from SMS point of view; it is a loop that is composed of 1246 either a single basic block or two BBs - a header and a latch. */ 1247 #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \ 1248 && (EDGE_COUNT (loop->latch->preds) == 1) \ 1249 && (EDGE_COUNT (loop->latch->succs) == 1)) 1250 1251 /* Return true if the loop is in its canonical form and false if not. 1252 i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */ 1253 static bool 1254 loop_canon_p (struct loop *loop) 1255 { 1256 1257 if (loop->inner || !loop_outer (loop)) 1258 { 1259 if (dump_file) 1260 fprintf (dump_file, "SMS loop inner or !loop_outer\n"); 1261 return false; 1262 } 1263 1264 if (!single_exit (loop)) 1265 { 1266 if (dump_file) 1267 { 1268 rtx_insn *insn = BB_END (loop->header); 1269 1270 fprintf (dump_file, "SMS loop many exits"); 1271 dump_insn_location (insn); 1272 fprintf (dump_file, "\n"); 1273 } 1274 return false; 1275 } 1276 1277 if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop)) 1278 { 1279 if (dump_file) 1280 { 1281 rtx_insn *insn = BB_END (loop->header); 1282 1283 fprintf (dump_file, "SMS loop many BBs."); 1284 dump_insn_location (insn); 1285 fprintf (dump_file, "\n"); 1286 } 1287 return false; 1288 } 1289 1290 return true; 1291 } 1292 1293 /* If there are more than one entry for the loop, 1294 make it one by splitting the first entry edge and 1295 redirecting the others to the new BB. */ 1296 static void 1297 canon_loop (struct loop *loop) 1298 { 1299 edge e; 1300 edge_iterator i; 1301 1302 /* Avoid annoying special cases of edges going to exit 1303 block. */ 1304 FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 1305 if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1)) 1306 split_edge (e); 1307 1308 if (loop->latch == loop->header 1309 || EDGE_COUNT (loop->latch->succs) > 1) 1310 { 1311 FOR_EACH_EDGE (e, i, loop->header->preds) 1312 if (e->src == loop->latch) 1313 break; 1314 split_edge (e); 1315 } 1316 } 1317 1318 /* Setup infos. */ 1319 static void 1320 setup_sched_infos (void) 1321 { 1322 memcpy (&sms_common_sched_info, &haifa_common_sched_info, 1323 sizeof (sms_common_sched_info)); 1324 sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS; 1325 common_sched_info = &sms_common_sched_info; 1326 1327 sched_deps_info = &sms_sched_deps_info; 1328 current_sched_info = &sms_sched_info; 1329 } 1330 1331 /* Probability in % that the sms-ed loop rolls enough so that optimized 1332 version may be entered. Just a guess. */ 1333 #define PROB_SMS_ENOUGH_ITERATIONS 80 1334 1335 /* Used to calculate the upper bound of ii. */ 1336 #define MAXII_FACTOR 2 1337 1338 /* Main entry point, perform SMS scheduling on the loops of the function 1339 that consist of single basic blocks. */ 1340 static void 1341 sms_schedule (void) 1342 { 1343 rtx_insn *insn; 1344 ddg_ptr *g_arr, g; 1345 int * node_order; 1346 int maxii, max_asap; 1347 partial_schedule_ptr ps; 1348 basic_block bb = NULL; 1349 struct loop *loop; 1350 basic_block condition_bb = NULL; 1351 edge latch_edge; 1352 HOST_WIDE_INT trip_count, max_trip_count; 1353 1354 loop_optimizer_init (LOOPS_HAVE_PREHEADERS 1355 | LOOPS_HAVE_RECORDED_EXITS); 1356 if (number_of_loops (cfun) <= 1) 1357 { 1358 loop_optimizer_finalize (); 1359 return; /* There are no loops to schedule. */ 1360 } 1361 1362 /* Initialize issue_rate. */ 1363 if (targetm.sched.issue_rate) 1364 { 1365 int temp = reload_completed; 1366 1367 reload_completed = 1; 1368 issue_rate = targetm.sched.issue_rate (); 1369 reload_completed = temp; 1370 } 1371 else 1372 issue_rate = 1; 1373 1374 /* Initialize the scheduler. */ 1375 setup_sched_infos (); 1376 haifa_sched_init (); 1377 1378 /* Allocate memory to hold the DDG array one entry for each loop. 1379 We use loop->num as index into this array. */ 1380 g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun)); 1381 1382 if (dump_file) 1383 { 1384 fprintf (dump_file, "\n\nSMS analysis phase\n"); 1385 fprintf (dump_file, "===================\n\n"); 1386 } 1387 1388 /* Build DDGs for all the relevant loops and hold them in G_ARR 1389 indexed by the loop index. */ 1390 FOR_EACH_LOOP (loop, 0) 1391 { 1392 rtx_insn *head, *tail; 1393 rtx count_reg; 1394 1395 /* For debugging. */ 1396 if (dbg_cnt (sms_sched_loop) == false) 1397 { 1398 if (dump_file) 1399 fprintf (dump_file, "SMS reached max limit... \n"); 1400 1401 break; 1402 } 1403 1404 if (dump_file) 1405 { 1406 rtx_insn *insn = BB_END (loop->header); 1407 1408 fprintf (dump_file, "SMS loop num: %d", loop->num); 1409 dump_insn_location (insn); 1410 fprintf (dump_file, "\n"); 1411 } 1412 1413 if (! loop_canon_p (loop)) 1414 continue; 1415 1416 if (! loop_single_full_bb_p (loop)) 1417 { 1418 if (dump_file) 1419 fprintf (dump_file, "SMS not loop_single_full_bb_p\n"); 1420 continue; 1421 } 1422 1423 bb = loop->header; 1424 1425 get_ebb_head_tail (bb, bb, &head, &tail); 1426 latch_edge = loop_latch_edge (loop); 1427 gcc_assert (single_exit (loop)); 1428 trip_count = get_estimated_loop_iterations_int (loop); 1429 max_trip_count = get_max_loop_iterations_int (loop); 1430 1431 /* Perform SMS only on loops that their average count is above threshold. */ 1432 1433 if ( latch_edge->count () > profile_count::zero () 1434 && (latch_edge->count() 1435 < single_exit (loop)->count ().apply_scale 1436 (SMS_LOOP_AVERAGE_COUNT_THRESHOLD, 1))) 1437 { 1438 if (dump_file) 1439 { 1440 dump_insn_location (tail); 1441 fprintf (dump_file, "\nSMS single-bb-loop\n"); 1442 if (profile_info && flag_branch_probabilities) 1443 { 1444 fprintf (dump_file, "SMS loop-count "); 1445 fprintf (dump_file, "%" PRId64, 1446 (int64_t) bb->count.to_gcov_type ()); 1447 fprintf (dump_file, "\n"); 1448 fprintf (dump_file, "SMS trip-count "); 1449 fprintf (dump_file, "%" PRId64 "max %" PRId64, 1450 (int64_t) trip_count, (int64_t) max_trip_count); 1451 fprintf (dump_file, "\n"); 1452 } 1453 } 1454 continue; 1455 } 1456 1457 /* Make sure this is a doloop. */ 1458 if ( !(count_reg = doloop_register_get (head, tail))) 1459 { 1460 if (dump_file) 1461 fprintf (dump_file, "SMS doloop_register_get failed\n"); 1462 continue; 1463 } 1464 1465 /* Don't handle BBs with calls or barriers 1466 or !single_set with the exception of instructions that include 1467 count_reg---these instructions are part of the control part 1468 that do-loop recognizes. 1469 ??? Should handle insns defining subregs. */ 1470 for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn)) 1471 { 1472 rtx set; 1473 1474 if (CALL_P (insn) 1475 || BARRIER_P (insn) 1476 || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn) 1477 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE 1478 && !reg_mentioned_p (count_reg, insn)) 1479 || (INSN_P (insn) && (set = single_set (insn)) 1480 && GET_CODE (SET_DEST (set)) == SUBREG)) 1481 break; 1482 } 1483 1484 if (insn != NEXT_INSN (tail)) 1485 { 1486 if (dump_file) 1487 { 1488 if (CALL_P (insn)) 1489 fprintf (dump_file, "SMS loop-with-call\n"); 1490 else if (BARRIER_P (insn)) 1491 fprintf (dump_file, "SMS loop-with-barrier\n"); 1492 else if ((NONDEBUG_INSN_P (insn) && !JUMP_P (insn) 1493 && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE)) 1494 fprintf (dump_file, "SMS loop-with-not-single-set\n"); 1495 else 1496 fprintf (dump_file, "SMS loop with subreg in lhs\n"); 1497 print_rtl_single (dump_file, insn); 1498 } 1499 1500 continue; 1501 } 1502 1503 /* Always schedule the closing branch with the rest of the 1504 instructions. The branch is rotated to be in row ii-1 at the 1505 end of the scheduling procedure to make sure it's the last 1506 instruction in the iteration. */ 1507 if (! (g = create_ddg (bb, 1))) 1508 { 1509 if (dump_file) 1510 fprintf (dump_file, "SMS create_ddg failed\n"); 1511 continue; 1512 } 1513 1514 g_arr[loop->num] = g; 1515 if (dump_file) 1516 fprintf (dump_file, "...OK\n"); 1517 1518 } 1519 if (dump_file) 1520 { 1521 fprintf (dump_file, "\nSMS transformation phase\n"); 1522 fprintf (dump_file, "=========================\n\n"); 1523 } 1524 1525 /* We don't want to perform SMS on new loops - created by versioning. */ 1526 FOR_EACH_LOOP (loop, 0) 1527 { 1528 rtx_insn *head, *tail; 1529 rtx count_reg; 1530 rtx_insn *count_init; 1531 int mii, rec_mii, stage_count, min_cycle; 1532 int64_t loop_count = 0; 1533 bool opt_sc_p; 1534 1535 if (! (g = g_arr[loop->num])) 1536 continue; 1537 1538 if (dump_file) 1539 { 1540 rtx_insn *insn = BB_END (loop->header); 1541 1542 fprintf (dump_file, "SMS loop num: %d", loop->num); 1543 dump_insn_location (insn); 1544 fprintf (dump_file, "\n"); 1545 1546 print_ddg (dump_file, g); 1547 } 1548 1549 get_ebb_head_tail (loop->header, loop->header, &head, &tail); 1550 1551 latch_edge = loop_latch_edge (loop); 1552 gcc_assert (single_exit (loop)); 1553 trip_count = get_estimated_loop_iterations_int (loop); 1554 max_trip_count = get_max_loop_iterations_int (loop); 1555 1556 if (dump_file) 1557 { 1558 dump_insn_location (tail); 1559 fprintf (dump_file, "\nSMS single-bb-loop\n"); 1560 if (profile_info && flag_branch_probabilities) 1561 { 1562 fprintf (dump_file, "SMS loop-count "); 1563 fprintf (dump_file, "%" PRId64, 1564 (int64_t) bb->count.to_gcov_type ()); 1565 fprintf (dump_file, "\n"); 1566 } 1567 fprintf (dump_file, "SMS doloop\n"); 1568 fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes); 1569 fprintf (dump_file, "SMS num-loads %d\n", g->num_loads); 1570 fprintf (dump_file, "SMS num-stores %d\n", g->num_stores); 1571 } 1572 1573 1574 /* In case of th loop have doloop register it gets special 1575 handling. */ 1576 count_init = NULL; 1577 if ((count_reg = doloop_register_get (head, tail))) 1578 { 1579 basic_block pre_header; 1580 1581 pre_header = loop_preheader_edge (loop)->src; 1582 count_init = const_iteration_count (count_reg, pre_header, 1583 &loop_count); 1584 } 1585 gcc_assert (count_reg); 1586 1587 if (dump_file && count_init) 1588 { 1589 fprintf (dump_file, "SMS const-doloop "); 1590 fprintf (dump_file, "%" PRId64, 1591 loop_count); 1592 fprintf (dump_file, "\n"); 1593 } 1594 1595 node_order = XNEWVEC (int, g->num_nodes); 1596 1597 mii = 1; /* Need to pass some estimate of mii. */ 1598 rec_mii = sms_order_nodes (g, mii, node_order, &max_asap); 1599 mii = MAX (res_MII (g), rec_mii); 1600 mii = MAX (mii, 1); 1601 maxii = MAX (max_asap, MAXII_FACTOR * mii); 1602 1603 if (dump_file) 1604 fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n", 1605 rec_mii, mii, maxii); 1606 1607 for (;;) 1608 { 1609 set_node_sched_params (g); 1610 1611 stage_count = 0; 1612 opt_sc_p = false; 1613 ps = sms_schedule_by_order (g, mii, maxii, node_order); 1614 1615 if (ps) 1616 { 1617 /* Try to achieve optimized SC by normalizing the partial 1618 schedule (having the cycles start from cycle zero). 1619 The branch location must be placed in row ii-1 in the 1620 final scheduling. If failed, shift all instructions to 1621 position the branch in row ii-1. */ 1622 opt_sc_p = optimize_sc (ps, g); 1623 if (opt_sc_p) 1624 stage_count = calculate_stage_count (ps, 0); 1625 else 1626 { 1627 /* Bring the branch to cycle ii-1. */ 1628 int amount = (SCHED_TIME (g->closing_branch->cuid) 1629 - (ps->ii - 1)); 1630 1631 if (dump_file) 1632 fprintf (dump_file, "SMS schedule branch at cycle ii-1\n"); 1633 1634 stage_count = calculate_stage_count (ps, amount); 1635 } 1636 1637 gcc_assert (stage_count >= 1); 1638 } 1639 1640 /* The default value of PARAM_SMS_MIN_SC is 2 as stage count of 1641 1 means that there is no interleaving between iterations thus 1642 we let the scheduling passes do the job in this case. */ 1643 if (stage_count < PARAM_VALUE (PARAM_SMS_MIN_SC) 1644 || (count_init && (loop_count <= stage_count)) 1645 || (max_trip_count >= 0 && max_trip_count <= stage_count) 1646 || (trip_count >= 0 && trip_count <= stage_count)) 1647 { 1648 if (dump_file) 1649 { 1650 fprintf (dump_file, "SMS failed... \n"); 1651 fprintf (dump_file, "SMS sched-failed (stage-count=%d," 1652 " loop-count=", stage_count); 1653 fprintf (dump_file, "%" PRId64, loop_count); 1654 fprintf (dump_file, ", trip-count="); 1655 fprintf (dump_file, "%" PRId64 "max %" PRId64, 1656 (int64_t) trip_count, (int64_t) max_trip_count); 1657 fprintf (dump_file, ")\n"); 1658 } 1659 break; 1660 } 1661 1662 if (!opt_sc_p) 1663 { 1664 /* Rotate the partial schedule to have the branch in row ii-1. */ 1665 int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1); 1666 1667 reset_sched_times (ps, amount); 1668 rotate_partial_schedule (ps, amount); 1669 } 1670 1671 set_columns_for_ps (ps); 1672 1673 min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii); 1674 if (!schedule_reg_moves (ps)) 1675 { 1676 mii = ps->ii + 1; 1677 free_partial_schedule (ps); 1678 continue; 1679 } 1680 1681 /* Moves that handle incoming values might have been added 1682 to a new first stage. Bump the stage count if so. 1683 1684 ??? Perhaps we could consider rotating the schedule here 1685 instead? */ 1686 if (PS_MIN_CYCLE (ps) < min_cycle) 1687 { 1688 reset_sched_times (ps, 0); 1689 stage_count++; 1690 } 1691 1692 /* The stage count should now be correct without rotation. */ 1693 gcc_checking_assert (stage_count == calculate_stage_count (ps, 0)); 1694 PS_STAGE_COUNT (ps) = stage_count; 1695 1696 canon_loop (loop); 1697 1698 if (dump_file) 1699 { 1700 dump_insn_location (tail); 1701 fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n", 1702 ps->ii, stage_count); 1703 print_partial_schedule (ps, dump_file); 1704 } 1705 1706 /* case the BCT count is not known , Do loop-versioning */ 1707 if (count_reg && ! count_init) 1708 { 1709 rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg, 1710 gen_int_mode (stage_count, 1711 GET_MODE (count_reg))); 1712 profile_probability prob = profile_probability::guessed_always () 1713 .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100); 1714 1715 loop_version (loop, comp_rtx, &condition_bb, 1716 prob, prob.invert (), 1717 prob, prob.invert (), true); 1718 } 1719 1720 /* Set new iteration count of loop kernel. */ 1721 if (count_reg && count_init) 1722 SET_SRC (single_set (count_init)) = GEN_INT (loop_count 1723 - stage_count + 1); 1724 1725 /* Now apply the scheduled kernel to the RTL of the loop. */ 1726 permute_partial_schedule (ps, g->closing_branch->first_note); 1727 1728 /* Mark this loop as software pipelined so the later 1729 scheduling passes don't touch it. */ 1730 if (! flag_resched_modulo_sched) 1731 mark_loop_unsched (loop); 1732 1733 /* The life-info is not valid any more. */ 1734 df_set_bb_dirty (g->bb); 1735 1736 apply_reg_moves (ps); 1737 if (dump_file) 1738 print_node_sched_params (dump_file, g->num_nodes, ps); 1739 /* Generate prolog and epilog. */ 1740 generate_prolog_epilog (ps, loop, count_reg, count_init); 1741 break; 1742 } 1743 1744 free_partial_schedule (ps); 1745 node_sched_param_vec.release (); 1746 free (node_order); 1747 free_ddg (g); 1748 } 1749 1750 free (g_arr); 1751 1752 /* Release scheduler data, needed until now because of DFA. */ 1753 haifa_sched_finish (); 1754 loop_optimizer_finalize (); 1755 } 1756 1757 /* The SMS scheduling algorithm itself 1758 ----------------------------------- 1759 Input: 'O' an ordered list of insns of a loop. 1760 Output: A scheduling of the loop - kernel, prolog, and epilogue. 1761 1762 'Q' is the empty Set 1763 'PS' is the partial schedule; it holds the currently scheduled nodes with 1764 their cycle/slot. 1765 'PSP' previously scheduled predecessors. 1766 'PSS' previously scheduled successors. 1767 't(u)' the cycle where u is scheduled. 1768 'l(u)' is the latency of u. 1769 'd(v,u)' is the dependence distance from v to u. 1770 'ASAP(u)' the earliest time at which u could be scheduled as computed in 1771 the node ordering phase. 1772 'check_hardware_resources_conflicts(u, PS, c)' 1773 run a trace around cycle/slot through DFA model 1774 to check resource conflicts involving instruction u 1775 at cycle c given the partial schedule PS. 1776 'add_to_partial_schedule_at_time(u, PS, c)' 1777 Add the node/instruction u to the partial schedule 1778 PS at time c. 1779 'calculate_register_pressure(PS)' 1780 Given a schedule of instructions, calculate the register 1781 pressure it implies. One implementation could be the 1782 maximum number of overlapping live ranges. 1783 'maxRP' The maximum allowed register pressure, it is usually derived from the number 1784 registers available in the hardware. 1785 1786 1. II = MII. 1787 2. PS = empty list 1788 3. for each node u in O in pre-computed order 1789 4. if (PSP(u) != Q && PSS(u) == Q) then 1790 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). 1791 6. start = Early_start; end = Early_start + II - 1; step = 1 1792 11. else if (PSP(u) == Q && PSS(u) != Q) then 1793 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). 1794 13. start = Late_start; end = Late_start - II + 1; step = -1 1795 14. else if (PSP(u) != Q && PSS(u) != Q) then 1796 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). 1797 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). 1798 17. start = Early_start; 1799 18. end = min(Early_start + II - 1 , Late_start); 1800 19. step = 1 1801 20. else "if (PSP(u) == Q && PSS(u) == Q)" 1802 21. start = ASAP(u); end = start + II - 1; step = 1 1803 22. endif 1804 1805 23. success = false 1806 24. for (c = start ; c != end ; c += step) 1807 25. if check_hardware_resources_conflicts(u, PS, c) then 1808 26. add_to_partial_schedule_at_time(u, PS, c) 1809 27. success = true 1810 28. break 1811 29. endif 1812 30. endfor 1813 31. if (success == false) then 1814 32. II = II + 1 1815 33. if (II > maxII) then 1816 34. finish - failed to schedule 1817 35. endif 1818 36. goto 2. 1819 37. endif 1820 38. endfor 1821 39. if (calculate_register_pressure(PS) > maxRP) then 1822 40. goto 32. 1823 41. endif 1824 42. compute epilogue & prologue 1825 43. finish - succeeded to schedule 1826 1827 ??? The algorithm restricts the scheduling window to II cycles. 1828 In rare cases, it may be better to allow windows of II+1 cycles. 1829 The window would then start and end on the same row, but with 1830 different "must precede" and "must follow" requirements. */ 1831 1832 /* A limit on the number of cycles that resource conflicts can span. ??? Should 1833 be provided by DFA, and be dependent on the type of insn scheduled. Currently 1834 set to 0 to save compile time. */ 1835 #define DFA_HISTORY SMS_DFA_HISTORY 1836 1837 /* A threshold for the number of repeated unsuccessful attempts to insert 1838 an empty row, before we flush the partial schedule and start over. */ 1839 #define MAX_SPLIT_NUM 10 1840 /* Given the partial schedule PS, this function calculates and returns the 1841 cycles in which we can schedule the node with the given index I. 1842 NOTE: Here we do the backtracking in SMS, in some special cases. We have 1843 noticed that there are several cases in which we fail to SMS the loop 1844 because the sched window of a node is empty due to tight data-deps. In 1845 such cases we want to unschedule some of the predecessors/successors 1846 until we get non-empty scheduling window. It returns -1 if the 1847 scheduling window is empty and zero otherwise. */ 1848 1849 static int 1850 get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node, 1851 sbitmap sched_nodes, int ii, int *start_p, int *step_p, 1852 int *end_p) 1853 { 1854 int start, step, end; 1855 int early_start, late_start; 1856 ddg_edge_ptr e; 1857 auto_sbitmap psp (ps->g->num_nodes); 1858 auto_sbitmap pss (ps->g->num_nodes); 1859 sbitmap u_node_preds = NODE_PREDECESSORS (u_node); 1860 sbitmap u_node_succs = NODE_SUCCESSORS (u_node); 1861 int psp_not_empty; 1862 int pss_not_empty; 1863 int count_preds; 1864 int count_succs; 1865 1866 /* 1. compute sched window for u (start, end, step). */ 1867 bitmap_clear (psp); 1868 bitmap_clear (pss); 1869 psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes); 1870 pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes); 1871 1872 /* We first compute a forward range (start <= end), then decide whether 1873 to reverse it. */ 1874 early_start = INT_MIN; 1875 late_start = INT_MAX; 1876 start = INT_MIN; 1877 end = INT_MAX; 1878 step = 1; 1879 1880 count_preds = 0; 1881 count_succs = 0; 1882 1883 if (dump_file && (psp_not_empty || pss_not_empty)) 1884 { 1885 fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)" 1886 "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii); 1887 fprintf (dump_file, "%11s %11s %11s %11s %5s\n", 1888 "start", "early start", "late start", "end", "time"); 1889 fprintf (dump_file, "=========== =========== =========== ===========" 1890 " =====\n"); 1891 } 1892 /* Calculate early_start and limit end. Both bounds are inclusive. */ 1893 if (psp_not_empty) 1894 for (e = u_node->in; e != 0; e = e->next_in) 1895 { 1896 int v = e->src->cuid; 1897 1898 if (bitmap_bit_p (sched_nodes, v)) 1899 { 1900 int p_st = SCHED_TIME (v); 1901 int earliest = p_st + e->latency - (e->distance * ii); 1902 int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX); 1903 1904 if (dump_file) 1905 { 1906 fprintf (dump_file, "%11s %11d %11s %11d %5d", 1907 "", earliest, "", latest, p_st); 1908 print_ddg_edge (dump_file, e); 1909 fprintf (dump_file, "\n"); 1910 } 1911 1912 early_start = MAX (early_start, earliest); 1913 end = MIN (end, latest); 1914 1915 if (e->type == TRUE_DEP && e->data_type == REG_DEP) 1916 count_preds++; 1917 } 1918 } 1919 1920 /* Calculate late_start and limit start. Both bounds are inclusive. */ 1921 if (pss_not_empty) 1922 for (e = u_node->out; e != 0; e = e->next_out) 1923 { 1924 int v = e->dest->cuid; 1925 1926 if (bitmap_bit_p (sched_nodes, v)) 1927 { 1928 int s_st = SCHED_TIME (v); 1929 int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN); 1930 int latest = s_st - e->latency + (e->distance * ii); 1931 1932 if (dump_file) 1933 { 1934 fprintf (dump_file, "%11d %11s %11d %11s %5d", 1935 earliest, "", latest, "", s_st); 1936 print_ddg_edge (dump_file, e); 1937 fprintf (dump_file, "\n"); 1938 } 1939 1940 start = MAX (start, earliest); 1941 late_start = MIN (late_start, latest); 1942 1943 if (e->type == TRUE_DEP && e->data_type == REG_DEP) 1944 count_succs++; 1945 } 1946 } 1947 1948 if (dump_file && (psp_not_empty || pss_not_empty)) 1949 { 1950 fprintf (dump_file, "----------- ----------- ----------- -----------" 1951 " -----\n"); 1952 fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n", 1953 start, early_start, late_start, end, "", 1954 "(max, max, min, min)"); 1955 } 1956 1957 /* Get a target scheduling window no bigger than ii. */ 1958 if (early_start == INT_MIN && late_start == INT_MAX) 1959 early_start = NODE_ASAP (u_node); 1960 else if (early_start == INT_MIN) 1961 early_start = late_start - (ii - 1); 1962 late_start = MIN (late_start, early_start + (ii - 1)); 1963 1964 /* Apply memory dependence limits. */ 1965 start = MAX (start, early_start); 1966 end = MIN (end, late_start); 1967 1968 if (dump_file && (psp_not_empty || pss_not_empty)) 1969 fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n", 1970 "", start, end, "", ""); 1971 1972 /* If there are at least as many successors as predecessors, schedule the 1973 node close to its successors. */ 1974 if (pss_not_empty && count_succs >= count_preds) 1975 { 1976 std::swap (start, end); 1977 step = -1; 1978 } 1979 1980 /* Now that we've finalized the window, make END an exclusive rather 1981 than an inclusive bound. */ 1982 end += step; 1983 1984 *start_p = start; 1985 *step_p = step; 1986 *end_p = end; 1987 1988 if ((start >= end && step == 1) || (start <= end && step == -1)) 1989 { 1990 if (dump_file) 1991 fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n", 1992 start, end, step); 1993 return -1; 1994 } 1995 1996 return 0; 1997 } 1998 1999 /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the 2000 node currently been scheduled. At the end of the calculation 2001 MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of 2002 U_NODE which are (1) already scheduled in the first/last row of 2003 U_NODE's scheduling window, (2) whose dependence inequality with U 2004 becomes an equality when U is scheduled in this same row, and (3) 2005 whose dependence latency is zero. 2006 2007 The first and last rows are calculated using the following parameters: 2008 START/END rows - The cycles that begins/ends the traversal on the window; 2009 searching for an empty cycle to schedule U_NODE. 2010 STEP - The direction in which we traverse the window. 2011 II - The initiation interval. */ 2012 2013 static void 2014 calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end, 2015 int step, int ii, sbitmap sched_nodes, 2016 sbitmap must_precede, sbitmap must_follow) 2017 { 2018 ddg_edge_ptr e; 2019 int first_cycle_in_window, last_cycle_in_window; 2020 2021 gcc_assert (must_precede && must_follow); 2022 2023 /* Consider the following scheduling window: 2024 {first_cycle_in_window, first_cycle_in_window+1, ..., 2025 last_cycle_in_window}. If step is 1 then the following will be 2026 the order we traverse the window: {start=first_cycle_in_window, 2027 first_cycle_in_window+1, ..., end=last_cycle_in_window+1}, 2028 or {start=last_cycle_in_window, last_cycle_in_window-1, ..., 2029 end=first_cycle_in_window-1} if step is -1. */ 2030 first_cycle_in_window = (step == 1) ? start : end - step; 2031 last_cycle_in_window = (step == 1) ? end - step : start; 2032 2033 bitmap_clear (must_precede); 2034 bitmap_clear (must_follow); 2035 2036 if (dump_file) 2037 fprintf (dump_file, "\nmust_precede: "); 2038 2039 /* Instead of checking if: 2040 (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window) 2041 && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) == 2042 first_cycle_in_window) 2043 && e->latency == 0 2044 we use the fact that latency is non-negative: 2045 SCHED_TIME (e->src) - (e->distance * ii) <= 2046 SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <= 2047 first_cycle_in_window 2048 and check only if 2049 SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */ 2050 for (e = u_node->in; e != 0; e = e->next_in) 2051 if (bitmap_bit_p (sched_nodes, e->src->cuid) 2052 && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) == 2053 first_cycle_in_window)) 2054 { 2055 if (dump_file) 2056 fprintf (dump_file, "%d ", e->src->cuid); 2057 2058 bitmap_set_bit (must_precede, e->src->cuid); 2059 } 2060 2061 if (dump_file) 2062 fprintf (dump_file, "\nmust_follow: "); 2063 2064 /* Instead of checking if: 2065 (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window) 2066 && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) == 2067 last_cycle_in_window) 2068 && e->latency == 0 2069 we use the fact that latency is non-negative: 2070 SCHED_TIME (e->dest) + (e->distance * ii) >= 2071 SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >= 2072 last_cycle_in_window 2073 and check only if 2074 SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */ 2075 for (e = u_node->out; e != 0; e = e->next_out) 2076 if (bitmap_bit_p (sched_nodes, e->dest->cuid) 2077 && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) == 2078 last_cycle_in_window)) 2079 { 2080 if (dump_file) 2081 fprintf (dump_file, "%d ", e->dest->cuid); 2082 2083 bitmap_set_bit (must_follow, e->dest->cuid); 2084 } 2085 2086 if (dump_file) 2087 fprintf (dump_file, "\n"); 2088 } 2089 2090 /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following 2091 parameters to decide if that's possible: 2092 PS - The partial schedule. 2093 U - The serial number of U_NODE. 2094 NUM_SPLITS - The number of row splits made so far. 2095 MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at 2096 the first row of the scheduling window) 2097 MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the 2098 last row of the scheduling window) */ 2099 2100 static bool 2101 try_scheduling_node_in_cycle (partial_schedule_ptr ps, 2102 int u, int cycle, sbitmap sched_nodes, 2103 int *num_splits, sbitmap must_precede, 2104 sbitmap must_follow) 2105 { 2106 ps_insn_ptr psi; 2107 bool success = 0; 2108 2109 verify_partial_schedule (ps, sched_nodes); 2110 psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow); 2111 if (psi) 2112 { 2113 SCHED_TIME (u) = cycle; 2114 bitmap_set_bit (sched_nodes, u); 2115 success = 1; 2116 *num_splits = 0; 2117 if (dump_file) 2118 fprintf (dump_file, "Scheduled w/o split in %d\n", cycle); 2119 2120 } 2121 2122 return success; 2123 } 2124 2125 /* This function implements the scheduling algorithm for SMS according to the 2126 above algorithm. */ 2127 static partial_schedule_ptr 2128 sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order) 2129 { 2130 int ii = mii; 2131 int i, c, success, num_splits = 0; 2132 int flush_and_start_over = true; 2133 int num_nodes = g->num_nodes; 2134 int start, end, step; /* Place together into one struct? */ 2135 auto_sbitmap sched_nodes (num_nodes); 2136 auto_sbitmap must_precede (num_nodes); 2137 auto_sbitmap must_follow (num_nodes); 2138 auto_sbitmap tobe_scheduled (num_nodes); 2139 2140 partial_schedule_ptr ps = create_partial_schedule (ii, g, DFA_HISTORY); 2141 2142 bitmap_ones (tobe_scheduled); 2143 bitmap_clear (sched_nodes); 2144 2145 while (flush_and_start_over && (ii < maxii)) 2146 { 2147 2148 if (dump_file) 2149 fprintf (dump_file, "Starting with ii=%d\n", ii); 2150 flush_and_start_over = false; 2151 bitmap_clear (sched_nodes); 2152 2153 for (i = 0; i < num_nodes; i++) 2154 { 2155 int u = nodes_order[i]; 2156 ddg_node_ptr u_node = &ps->g->nodes[u]; 2157 rtx_insn *insn = u_node->insn; 2158 2159 if (!NONDEBUG_INSN_P (insn)) 2160 { 2161 bitmap_clear_bit (tobe_scheduled, u); 2162 continue; 2163 } 2164 2165 if (bitmap_bit_p (sched_nodes, u)) 2166 continue; 2167 2168 /* Try to get non-empty scheduling window. */ 2169 success = 0; 2170 if (get_sched_window (ps, u_node, sched_nodes, ii, &start, 2171 &step, &end) == 0) 2172 { 2173 if (dump_file) 2174 fprintf (dump_file, "\nTrying to schedule node %d " 2175 "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID 2176 (g->nodes[u].insn)), start, end, step); 2177 2178 gcc_assert ((step > 0 && start < end) 2179 || (step < 0 && start > end)); 2180 2181 calculate_must_precede_follow (u_node, start, end, step, ii, 2182 sched_nodes, must_precede, 2183 must_follow); 2184 2185 for (c = start; c != end; c += step) 2186 { 2187 sbitmap tmp_precede, tmp_follow; 2188 2189 set_must_precede_follow (&tmp_follow, must_follow, 2190 &tmp_precede, must_precede, 2191 c, start, end, step); 2192 success = 2193 try_scheduling_node_in_cycle (ps, u, c, 2194 sched_nodes, 2195 &num_splits, tmp_precede, 2196 tmp_follow); 2197 if (success) 2198 break; 2199 } 2200 2201 verify_partial_schedule (ps, sched_nodes); 2202 } 2203 if (!success) 2204 { 2205 int split_row; 2206 2207 if (ii++ == maxii) 2208 break; 2209 2210 if (num_splits >= MAX_SPLIT_NUM) 2211 { 2212 num_splits = 0; 2213 flush_and_start_over = true; 2214 verify_partial_schedule (ps, sched_nodes); 2215 reset_partial_schedule (ps, ii); 2216 verify_partial_schedule (ps, sched_nodes); 2217 break; 2218 } 2219 2220 num_splits++; 2221 /* The scheduling window is exclusive of 'end' 2222 whereas compute_split_window() expects an inclusive, 2223 ordered range. */ 2224 if (step == 1) 2225 split_row = compute_split_row (sched_nodes, start, end - 1, 2226 ps->ii, u_node); 2227 else 2228 split_row = compute_split_row (sched_nodes, end + 1, start, 2229 ps->ii, u_node); 2230 2231 ps_insert_empty_row (ps, split_row, sched_nodes); 2232 i--; /* Go back and retry node i. */ 2233 2234 if (dump_file) 2235 fprintf (dump_file, "num_splits=%d\n", num_splits); 2236 } 2237 2238 /* ??? If (success), check register pressure estimates. */ 2239 } /* Continue with next node. */ 2240 } /* While flush_and_start_over. */ 2241 if (ii >= maxii) 2242 { 2243 free_partial_schedule (ps); 2244 ps = NULL; 2245 } 2246 else 2247 gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes)); 2248 2249 return ps; 2250 } 2251 2252 /* This function inserts a new empty row into PS at the position 2253 according to SPLITROW, keeping all already scheduled instructions 2254 intact and updating their SCHED_TIME and cycle accordingly. */ 2255 static void 2256 ps_insert_empty_row (partial_schedule_ptr ps, int split_row, 2257 sbitmap sched_nodes) 2258 { 2259 ps_insn_ptr crr_insn; 2260 ps_insn_ptr *rows_new; 2261 int ii = ps->ii; 2262 int new_ii = ii + 1; 2263 int row; 2264 int *rows_length_new; 2265 2266 verify_partial_schedule (ps, sched_nodes); 2267 2268 /* We normalize sched_time and rotate ps to have only non-negative sched 2269 times, for simplicity of updating cycles after inserting new row. */ 2270 split_row -= ps->min_cycle; 2271 split_row = SMODULO (split_row, ii); 2272 if (dump_file) 2273 fprintf (dump_file, "split_row=%d\n", split_row); 2274 2275 reset_sched_times (ps, PS_MIN_CYCLE (ps)); 2276 rotate_partial_schedule (ps, PS_MIN_CYCLE (ps)); 2277 2278 rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr)); 2279 rows_length_new = (int *) xcalloc (new_ii, sizeof (int)); 2280 for (row = 0; row < split_row; row++) 2281 { 2282 rows_new[row] = ps->rows[row]; 2283 rows_length_new[row] = ps->rows_length[row]; 2284 ps->rows[row] = NULL; 2285 for (crr_insn = rows_new[row]; 2286 crr_insn; crr_insn = crr_insn->next_in_row) 2287 { 2288 int u = crr_insn->id; 2289 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii); 2290 2291 SCHED_TIME (u) = new_time; 2292 crr_insn->cycle = new_time; 2293 SCHED_ROW (u) = new_time % new_ii; 2294 SCHED_STAGE (u) = new_time / new_ii; 2295 } 2296 2297 } 2298 2299 rows_new[split_row] = NULL; 2300 2301 for (row = split_row; row < ii; row++) 2302 { 2303 rows_new[row + 1] = ps->rows[row]; 2304 rows_length_new[row + 1] = ps->rows_length[row]; 2305 ps->rows[row] = NULL; 2306 for (crr_insn = rows_new[row + 1]; 2307 crr_insn; crr_insn = crr_insn->next_in_row) 2308 { 2309 int u = crr_insn->id; 2310 int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1; 2311 2312 SCHED_TIME (u) = new_time; 2313 crr_insn->cycle = new_time; 2314 SCHED_ROW (u) = new_time % new_ii; 2315 SCHED_STAGE (u) = new_time / new_ii; 2316 } 2317 } 2318 2319 /* Updating ps. */ 2320 ps->min_cycle = ps->min_cycle + ps->min_cycle / ii 2321 + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0); 2322 ps->max_cycle = ps->max_cycle + ps->max_cycle / ii 2323 + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0); 2324 free (ps->rows); 2325 ps->rows = rows_new; 2326 free (ps->rows_length); 2327 ps->rows_length = rows_length_new; 2328 ps->ii = new_ii; 2329 gcc_assert (ps->min_cycle >= 0); 2330 2331 verify_partial_schedule (ps, sched_nodes); 2332 2333 if (dump_file) 2334 fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle, 2335 ps->max_cycle); 2336 } 2337 2338 /* Given U_NODE which is the node that failed to be scheduled; LOW and 2339 UP which are the boundaries of it's scheduling window; compute using 2340 SCHED_NODES and II a row in the partial schedule that can be split 2341 which will separate a critical predecessor from a critical successor 2342 thereby expanding the window, and return it. */ 2343 static int 2344 compute_split_row (sbitmap sched_nodes, int low, int up, int ii, 2345 ddg_node_ptr u_node) 2346 { 2347 ddg_edge_ptr e; 2348 int lower = INT_MIN, upper = INT_MAX; 2349 int crit_pred = -1; 2350 int crit_succ = -1; 2351 int crit_cycle; 2352 2353 for (e = u_node->in; e != 0; e = e->next_in) 2354 { 2355 int v = e->src->cuid; 2356 2357 if (bitmap_bit_p (sched_nodes, v) 2358 && (low == SCHED_TIME (v) + e->latency - (e->distance * ii))) 2359 if (SCHED_TIME (v) > lower) 2360 { 2361 crit_pred = v; 2362 lower = SCHED_TIME (v); 2363 } 2364 } 2365 2366 if (crit_pred >= 0) 2367 { 2368 crit_cycle = SCHED_TIME (crit_pred) + 1; 2369 return SMODULO (crit_cycle, ii); 2370 } 2371 2372 for (e = u_node->out; e != 0; e = e->next_out) 2373 { 2374 int v = e->dest->cuid; 2375 2376 if (bitmap_bit_p (sched_nodes, v) 2377 && (up == SCHED_TIME (v) - e->latency + (e->distance * ii))) 2378 if (SCHED_TIME (v) < upper) 2379 { 2380 crit_succ = v; 2381 upper = SCHED_TIME (v); 2382 } 2383 } 2384 2385 if (crit_succ >= 0) 2386 { 2387 crit_cycle = SCHED_TIME (crit_succ); 2388 return SMODULO (crit_cycle, ii); 2389 } 2390 2391 if (dump_file) 2392 fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n"); 2393 2394 return SMODULO ((low + up + 1) / 2, ii); 2395 } 2396 2397 static void 2398 verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes) 2399 { 2400 int row; 2401 ps_insn_ptr crr_insn; 2402 2403 for (row = 0; row < ps->ii; row++) 2404 { 2405 int length = 0; 2406 2407 for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row) 2408 { 2409 int u = crr_insn->id; 2410 2411 length++; 2412 gcc_assert (bitmap_bit_p (sched_nodes, u)); 2413 /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by 2414 popcount (sched_nodes) == number of insns in ps. */ 2415 gcc_assert (SCHED_TIME (u) >= ps->min_cycle); 2416 gcc_assert (SCHED_TIME (u) <= ps->max_cycle); 2417 } 2418 2419 gcc_assert (ps->rows_length[row] == length); 2420 } 2421 } 2422 2423 2424 /* This page implements the algorithm for ordering the nodes of a DDG 2425 for modulo scheduling, activated through the 2426 "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */ 2427 2428 #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info) 2429 #define ASAP(x) (ORDER_PARAMS ((x))->asap) 2430 #define ALAP(x) (ORDER_PARAMS ((x))->alap) 2431 #define HEIGHT(x) (ORDER_PARAMS ((x))->height) 2432 #define MOB(x) (ALAP ((x)) - ASAP ((x))) 2433 #define DEPTH(x) (ASAP ((x))) 2434 2435 typedef struct node_order_params * nopa; 2436 2437 static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result); 2438 static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int); 2439 static nopa calculate_order_params (ddg_ptr, int, int *); 2440 static int find_max_asap (ddg_ptr, sbitmap); 2441 static int find_max_hv_min_mob (ddg_ptr, sbitmap); 2442 static int find_max_dv_min_mob (ddg_ptr, sbitmap); 2443 2444 enum sms_direction {BOTTOMUP, TOPDOWN}; 2445 2446 struct node_order_params 2447 { 2448 int asap; 2449 int alap; 2450 int height; 2451 }; 2452 2453 /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */ 2454 static void 2455 check_nodes_order (int *node_order, int num_nodes) 2456 { 2457 int i; 2458 auto_sbitmap tmp (num_nodes); 2459 2460 bitmap_clear (tmp); 2461 2462 if (dump_file) 2463 fprintf (dump_file, "SMS final nodes order: \n"); 2464 2465 for (i = 0; i < num_nodes; i++) 2466 { 2467 int u = node_order[i]; 2468 2469 if (dump_file) 2470 fprintf (dump_file, "%d ", u); 2471 gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u)); 2472 2473 bitmap_set_bit (tmp, u); 2474 } 2475 2476 if (dump_file) 2477 fprintf (dump_file, "\n"); 2478 } 2479 2480 /* Order the nodes of G for scheduling and pass the result in 2481 NODE_ORDER. Also set aux.count of each node to ASAP. 2482 Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */ 2483 static int 2484 sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap) 2485 { 2486 int i; 2487 int rec_mii = 0; 2488 ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g); 2489 2490 nopa nops = calculate_order_params (g, mii, pmax_asap); 2491 2492 if (dump_file) 2493 print_sccs (dump_file, sccs, g); 2494 2495 order_nodes_of_sccs (sccs, node_order); 2496 2497 if (sccs->num_sccs > 0) 2498 /* First SCC has the largest recurrence_length. */ 2499 rec_mii = sccs->sccs[0]->recurrence_length; 2500 2501 /* Save ASAP before destroying node_order_params. */ 2502 for (i = 0; i < g->num_nodes; i++) 2503 { 2504 ddg_node_ptr v = &g->nodes[i]; 2505 v->aux.count = ASAP (v); 2506 } 2507 2508 free (nops); 2509 free_ddg_all_sccs (sccs); 2510 check_nodes_order (node_order, g->num_nodes); 2511 2512 return rec_mii; 2513 } 2514 2515 static void 2516 order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order) 2517 { 2518 int i, pos = 0; 2519 ddg_ptr g = all_sccs->ddg; 2520 int num_nodes = g->num_nodes; 2521 auto_sbitmap prev_sccs (num_nodes); 2522 auto_sbitmap on_path (num_nodes); 2523 auto_sbitmap tmp (num_nodes); 2524 auto_sbitmap ones (num_nodes); 2525 2526 bitmap_clear (prev_sccs); 2527 bitmap_ones (ones); 2528 2529 /* Perform the node ordering starting from the SCC with the highest recMII. 2530 For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */ 2531 for (i = 0; i < all_sccs->num_sccs; i++) 2532 { 2533 ddg_scc_ptr scc = all_sccs->sccs[i]; 2534 2535 /* Add nodes on paths from previous SCCs to the current SCC. */ 2536 find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes); 2537 bitmap_ior (tmp, scc->nodes, on_path); 2538 2539 /* Add nodes on paths from the current SCC to previous SCCs. */ 2540 find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs); 2541 bitmap_ior (tmp, tmp, on_path); 2542 2543 /* Remove nodes of previous SCCs from current extended SCC. */ 2544 bitmap_and_compl (tmp, tmp, prev_sccs); 2545 2546 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); 2547 /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */ 2548 } 2549 2550 /* Handle the remaining nodes that do not belong to any scc. Each call 2551 to order_nodes_in_scc handles a single connected component. */ 2552 while (pos < g->num_nodes) 2553 { 2554 bitmap_and_compl (tmp, ones, prev_sccs); 2555 pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); 2556 } 2557 } 2558 2559 /* MII is needed if we consider backarcs (that do not close recursive cycles). */ 2560 static struct node_order_params * 2561 calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap) 2562 { 2563 int u; 2564 int max_asap; 2565 int num_nodes = g->num_nodes; 2566 ddg_edge_ptr e; 2567 /* Allocate a place to hold ordering params for each node in the DDG. */ 2568 nopa node_order_params_arr; 2569 2570 /* Initialize of ASAP/ALAP/HEIGHT to zero. */ 2571 node_order_params_arr = (nopa) xcalloc (num_nodes, 2572 sizeof (struct node_order_params)); 2573 2574 /* Set the aux pointer of each node to point to its order_params structure. */ 2575 for (u = 0; u < num_nodes; u++) 2576 g->nodes[u].aux.info = &node_order_params_arr[u]; 2577 2578 /* Disregarding a backarc from each recursive cycle to obtain a DAG, 2579 calculate ASAP, ALAP, mobility, distance, and height for each node 2580 in the dependence (direct acyclic) graph. */ 2581 2582 /* We assume that the nodes in the array are in topological order. */ 2583 2584 max_asap = 0; 2585 for (u = 0; u < num_nodes; u++) 2586 { 2587 ddg_node_ptr u_node = &g->nodes[u]; 2588 2589 ASAP (u_node) = 0; 2590 for (e = u_node->in; e; e = e->next_in) 2591 if (e->distance == 0) 2592 ASAP (u_node) = MAX (ASAP (u_node), 2593 ASAP (e->src) + e->latency); 2594 max_asap = MAX (max_asap, ASAP (u_node)); 2595 } 2596 2597 for (u = num_nodes - 1; u > -1; u--) 2598 { 2599 ddg_node_ptr u_node = &g->nodes[u]; 2600 2601 ALAP (u_node) = max_asap; 2602 HEIGHT (u_node) = 0; 2603 for (e = u_node->out; e; e = e->next_out) 2604 if (e->distance == 0) 2605 { 2606 ALAP (u_node) = MIN (ALAP (u_node), 2607 ALAP (e->dest) - e->latency); 2608 HEIGHT (u_node) = MAX (HEIGHT (u_node), 2609 HEIGHT (e->dest) + e->latency); 2610 } 2611 } 2612 if (dump_file) 2613 { 2614 fprintf (dump_file, "\nOrder params\n"); 2615 for (u = 0; u < num_nodes; u++) 2616 { 2617 ddg_node_ptr u_node = &g->nodes[u]; 2618 2619 fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u, 2620 ASAP (u_node), ALAP (u_node), HEIGHT (u_node)); 2621 } 2622 } 2623 2624 *pmax_asap = max_asap; 2625 return node_order_params_arr; 2626 } 2627 2628 static int 2629 find_max_asap (ddg_ptr g, sbitmap nodes) 2630 { 2631 unsigned int u = 0; 2632 int max_asap = -1; 2633 int result = -1; 2634 sbitmap_iterator sbi; 2635 2636 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi) 2637 { 2638 ddg_node_ptr u_node = &g->nodes[u]; 2639 2640 if (max_asap < ASAP (u_node)) 2641 { 2642 max_asap = ASAP (u_node); 2643 result = u; 2644 } 2645 } 2646 return result; 2647 } 2648 2649 static int 2650 find_max_hv_min_mob (ddg_ptr g, sbitmap nodes) 2651 { 2652 unsigned int u = 0; 2653 int max_hv = -1; 2654 int min_mob = INT_MAX; 2655 int result = -1; 2656 sbitmap_iterator sbi; 2657 2658 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi) 2659 { 2660 ddg_node_ptr u_node = &g->nodes[u]; 2661 2662 if (max_hv < HEIGHT (u_node)) 2663 { 2664 max_hv = HEIGHT (u_node); 2665 min_mob = MOB (u_node); 2666 result = u; 2667 } 2668 else if ((max_hv == HEIGHT (u_node)) 2669 && (min_mob > MOB (u_node))) 2670 { 2671 min_mob = MOB (u_node); 2672 result = u; 2673 } 2674 } 2675 return result; 2676 } 2677 2678 static int 2679 find_max_dv_min_mob (ddg_ptr g, sbitmap nodes) 2680 { 2681 unsigned int u = 0; 2682 int max_dv = -1; 2683 int min_mob = INT_MAX; 2684 int result = -1; 2685 sbitmap_iterator sbi; 2686 2687 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi) 2688 { 2689 ddg_node_ptr u_node = &g->nodes[u]; 2690 2691 if (max_dv < DEPTH (u_node)) 2692 { 2693 max_dv = DEPTH (u_node); 2694 min_mob = MOB (u_node); 2695 result = u; 2696 } 2697 else if ((max_dv == DEPTH (u_node)) 2698 && (min_mob > MOB (u_node))) 2699 { 2700 min_mob = MOB (u_node); 2701 result = u; 2702 } 2703 } 2704 return result; 2705 } 2706 2707 /* Places the nodes of SCC into the NODE_ORDER array starting 2708 at position POS, according to the SMS ordering algorithm. 2709 NODES_ORDERED (in&out parameter) holds the bitset of all nodes in 2710 the NODE_ORDER array, starting from position zero. */ 2711 static int 2712 order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc, 2713 int * node_order, int pos) 2714 { 2715 enum sms_direction dir; 2716 int num_nodes = g->num_nodes; 2717 auto_sbitmap workset (num_nodes); 2718 auto_sbitmap tmp (num_nodes); 2719 sbitmap zero_bitmap = sbitmap_alloc (num_nodes); 2720 auto_sbitmap predecessors (num_nodes); 2721 auto_sbitmap successors (num_nodes); 2722 2723 bitmap_clear (predecessors); 2724 find_predecessors (predecessors, g, nodes_ordered); 2725 2726 bitmap_clear (successors); 2727 find_successors (successors, g, nodes_ordered); 2728 2729 bitmap_clear (tmp); 2730 if (bitmap_and (tmp, predecessors, scc)) 2731 { 2732 bitmap_copy (workset, tmp); 2733 dir = BOTTOMUP; 2734 } 2735 else if (bitmap_and (tmp, successors, scc)) 2736 { 2737 bitmap_copy (workset, tmp); 2738 dir = TOPDOWN; 2739 } 2740 else 2741 { 2742 int u; 2743 2744 bitmap_clear (workset); 2745 if ((u = find_max_asap (g, scc)) >= 0) 2746 bitmap_set_bit (workset, u); 2747 dir = BOTTOMUP; 2748 } 2749 2750 bitmap_clear (zero_bitmap); 2751 while (!bitmap_equal_p (workset, zero_bitmap)) 2752 { 2753 int v; 2754 ddg_node_ptr v_node; 2755 sbitmap v_node_preds; 2756 sbitmap v_node_succs; 2757 2758 if (dir == TOPDOWN) 2759 { 2760 while (!bitmap_equal_p (workset, zero_bitmap)) 2761 { 2762 v = find_max_hv_min_mob (g, workset); 2763 v_node = &g->nodes[v]; 2764 node_order[pos++] = v; 2765 v_node_succs = NODE_SUCCESSORS (v_node); 2766 bitmap_and (tmp, v_node_succs, scc); 2767 2768 /* Don't consider the already ordered successors again. */ 2769 bitmap_and_compl (tmp, tmp, nodes_ordered); 2770 bitmap_ior (workset, workset, tmp); 2771 bitmap_clear_bit (workset, v); 2772 bitmap_set_bit (nodes_ordered, v); 2773 } 2774 dir = BOTTOMUP; 2775 bitmap_clear (predecessors); 2776 find_predecessors (predecessors, g, nodes_ordered); 2777 bitmap_and (workset, predecessors, scc); 2778 } 2779 else 2780 { 2781 while (!bitmap_equal_p (workset, zero_bitmap)) 2782 { 2783 v = find_max_dv_min_mob (g, workset); 2784 v_node = &g->nodes[v]; 2785 node_order[pos++] = v; 2786 v_node_preds = NODE_PREDECESSORS (v_node); 2787 bitmap_and (tmp, v_node_preds, scc); 2788 2789 /* Don't consider the already ordered predecessors again. */ 2790 bitmap_and_compl (tmp, tmp, nodes_ordered); 2791 bitmap_ior (workset, workset, tmp); 2792 bitmap_clear_bit (workset, v); 2793 bitmap_set_bit (nodes_ordered, v); 2794 } 2795 dir = TOPDOWN; 2796 bitmap_clear (successors); 2797 find_successors (successors, g, nodes_ordered); 2798 bitmap_and (workset, successors, scc); 2799 } 2800 } 2801 sbitmap_free (zero_bitmap); 2802 return pos; 2803 } 2804 2805 2806 /* This page contains functions for manipulating partial-schedules during 2807 modulo scheduling. */ 2808 2809 /* Create a partial schedule and allocate a memory to hold II rows. */ 2810 2811 static partial_schedule_ptr 2812 create_partial_schedule (int ii, ddg_ptr g, int history) 2813 { 2814 partial_schedule_ptr ps = XNEW (struct partial_schedule); 2815 ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr)); 2816 ps->rows_length = (int *) xcalloc (ii, sizeof (int)); 2817 ps->reg_moves.create (0); 2818 ps->ii = ii; 2819 ps->history = history; 2820 ps->min_cycle = INT_MAX; 2821 ps->max_cycle = INT_MIN; 2822 ps->g = g; 2823 2824 return ps; 2825 } 2826 2827 /* Free the PS_INSNs in rows array of the given partial schedule. 2828 ??? Consider caching the PS_INSN's. */ 2829 static void 2830 free_ps_insns (partial_schedule_ptr ps) 2831 { 2832 int i; 2833 2834 for (i = 0; i < ps->ii; i++) 2835 { 2836 while (ps->rows[i]) 2837 { 2838 ps_insn_ptr ps_insn = ps->rows[i]->next_in_row; 2839 2840 free (ps->rows[i]); 2841 ps->rows[i] = ps_insn; 2842 } 2843 ps->rows[i] = NULL; 2844 } 2845 } 2846 2847 /* Free all the memory allocated to the partial schedule. */ 2848 2849 static void 2850 free_partial_schedule (partial_schedule_ptr ps) 2851 { 2852 ps_reg_move_info *move; 2853 unsigned int i; 2854 2855 if (!ps) 2856 return; 2857 2858 FOR_EACH_VEC_ELT (ps->reg_moves, i, move) 2859 sbitmap_free (move->uses); 2860 ps->reg_moves.release (); 2861 2862 free_ps_insns (ps); 2863 free (ps->rows); 2864 free (ps->rows_length); 2865 free (ps); 2866 } 2867 2868 /* Clear the rows array with its PS_INSNs, and create a new one with 2869 NEW_II rows. */ 2870 2871 static void 2872 reset_partial_schedule (partial_schedule_ptr ps, int new_ii) 2873 { 2874 if (!ps) 2875 return; 2876 free_ps_insns (ps); 2877 if (new_ii == ps->ii) 2878 return; 2879 ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii 2880 * sizeof (ps_insn_ptr)); 2881 memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr)); 2882 ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int)); 2883 memset (ps->rows_length, 0, new_ii * sizeof (int)); 2884 ps->ii = new_ii; 2885 ps->min_cycle = INT_MAX; 2886 ps->max_cycle = INT_MIN; 2887 } 2888 2889 /* Prints the partial schedule as an ii rows array, for each rows 2890 print the ids of the insns in it. */ 2891 void 2892 print_partial_schedule (partial_schedule_ptr ps, FILE *dump) 2893 { 2894 int i; 2895 2896 for (i = 0; i < ps->ii; i++) 2897 { 2898 ps_insn_ptr ps_i = ps->rows[i]; 2899 2900 fprintf (dump, "\n[ROW %d ]: ", i); 2901 while (ps_i) 2902 { 2903 rtx_insn *insn = ps_rtl_insn (ps, ps_i->id); 2904 2905 if (JUMP_P (insn)) 2906 fprintf (dump, "%d (branch), ", INSN_UID (insn)); 2907 else 2908 fprintf (dump, "%d, ", INSN_UID (insn)); 2909 2910 ps_i = ps_i->next_in_row; 2911 } 2912 } 2913 } 2914 2915 /* Creates an object of PS_INSN and initializes it to the given parameters. */ 2916 static ps_insn_ptr 2917 create_ps_insn (int id, int cycle) 2918 { 2919 ps_insn_ptr ps_i = XNEW (struct ps_insn); 2920 2921 ps_i->id = id; 2922 ps_i->next_in_row = NULL; 2923 ps_i->prev_in_row = NULL; 2924 ps_i->cycle = cycle; 2925 2926 return ps_i; 2927 } 2928 2929 2930 /* Removes the given PS_INSN from the partial schedule. */ 2931 static void 2932 remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i) 2933 { 2934 int row; 2935 2936 gcc_assert (ps && ps_i); 2937 2938 row = SMODULO (ps_i->cycle, ps->ii); 2939 if (! ps_i->prev_in_row) 2940 { 2941 gcc_assert (ps_i == ps->rows[row]); 2942 ps->rows[row] = ps_i->next_in_row; 2943 if (ps->rows[row]) 2944 ps->rows[row]->prev_in_row = NULL; 2945 } 2946 else 2947 { 2948 ps_i->prev_in_row->next_in_row = ps_i->next_in_row; 2949 if (ps_i->next_in_row) 2950 ps_i->next_in_row->prev_in_row = ps_i->prev_in_row; 2951 } 2952 2953 ps->rows_length[row] -= 1; 2954 free (ps_i); 2955 return; 2956 } 2957 2958 /* Unlike what literature describes for modulo scheduling (which focuses 2959 on VLIW machines) the order of the instructions inside a cycle is 2960 important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know 2961 where the current instruction should go relative to the already 2962 scheduled instructions in the given cycle. Go over these 2963 instructions and find the first possible column to put it in. */ 2964 static bool 2965 ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i, 2966 sbitmap must_precede, sbitmap must_follow) 2967 { 2968 ps_insn_ptr next_ps_i; 2969 ps_insn_ptr first_must_follow = NULL; 2970 ps_insn_ptr last_must_precede = NULL; 2971 ps_insn_ptr last_in_row = NULL; 2972 int row; 2973 2974 if (! ps_i) 2975 return false; 2976 2977 row = SMODULO (ps_i->cycle, ps->ii); 2978 2979 /* Find the first must follow and the last must precede 2980 and insert the node immediately after the must precede 2981 but make sure that it there is no must follow after it. */ 2982 for (next_ps_i = ps->rows[row]; 2983 next_ps_i; 2984 next_ps_i = next_ps_i->next_in_row) 2985 { 2986 if (must_follow 2987 && bitmap_bit_p (must_follow, next_ps_i->id) 2988 && ! first_must_follow) 2989 first_must_follow = next_ps_i; 2990 if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id)) 2991 { 2992 /* If we have already met a node that must follow, then 2993 there is no possible column. */ 2994 if (first_must_follow) 2995 return false; 2996 else 2997 last_must_precede = next_ps_i; 2998 } 2999 /* The closing branch must be the last in the row. */ 3000 if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id))) 3001 return false; 3002 3003 last_in_row = next_ps_i; 3004 } 3005 3006 /* The closing branch is scheduled as well. Make sure there is no 3007 dependent instruction after it as the branch should be the last 3008 instruction in the row. */ 3009 if (JUMP_P (ps_rtl_insn (ps, ps_i->id))) 3010 { 3011 if (first_must_follow) 3012 return false; 3013 if (last_in_row) 3014 { 3015 /* Make the branch the last in the row. New instructions 3016 will be inserted at the beginning of the row or after the 3017 last must_precede instruction thus the branch is guaranteed 3018 to remain the last instruction in the row. */ 3019 last_in_row->next_in_row = ps_i; 3020 ps_i->prev_in_row = last_in_row; 3021 ps_i->next_in_row = NULL; 3022 } 3023 else 3024 ps->rows[row] = ps_i; 3025 return true; 3026 } 3027 3028 /* Now insert the node after INSERT_AFTER_PSI. */ 3029 3030 if (! last_must_precede) 3031 { 3032 ps_i->next_in_row = ps->rows[row]; 3033 ps_i->prev_in_row = NULL; 3034 if (ps_i->next_in_row) 3035 ps_i->next_in_row->prev_in_row = ps_i; 3036 ps->rows[row] = ps_i; 3037 } 3038 else 3039 { 3040 ps_i->next_in_row = last_must_precede->next_in_row; 3041 last_must_precede->next_in_row = ps_i; 3042 ps_i->prev_in_row = last_must_precede; 3043 if (ps_i->next_in_row) 3044 ps_i->next_in_row->prev_in_row = ps_i; 3045 } 3046 3047 return true; 3048 } 3049 3050 /* Advances the PS_INSN one column in its current row; returns false 3051 in failure and true in success. Bit N is set in MUST_FOLLOW if 3052 the node with cuid N must be come after the node pointed to by 3053 PS_I when scheduled in the same cycle. */ 3054 static int 3055 ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i, 3056 sbitmap must_follow) 3057 { 3058 ps_insn_ptr prev, next; 3059 int row; 3060 3061 if (!ps || !ps_i) 3062 return false; 3063 3064 row = SMODULO (ps_i->cycle, ps->ii); 3065 3066 if (! ps_i->next_in_row) 3067 return false; 3068 3069 /* Check if next_in_row is dependent on ps_i, both having same sched 3070 times (typically ANTI_DEP). If so, ps_i cannot skip over it. */ 3071 if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id)) 3072 return false; 3073 3074 /* Advance PS_I over its next_in_row in the doubly linked list. */ 3075 prev = ps_i->prev_in_row; 3076 next = ps_i->next_in_row; 3077 3078 if (ps_i == ps->rows[row]) 3079 ps->rows[row] = next; 3080 3081 ps_i->next_in_row = next->next_in_row; 3082 3083 if (next->next_in_row) 3084 next->next_in_row->prev_in_row = ps_i; 3085 3086 next->next_in_row = ps_i; 3087 ps_i->prev_in_row = next; 3088 3089 next->prev_in_row = prev; 3090 if (prev) 3091 prev->next_in_row = next; 3092 3093 return true; 3094 } 3095 3096 /* Inserts a DDG_NODE to the given partial schedule at the given cycle. 3097 Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is 3098 set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come 3099 before/after (respectively) the node pointed to by PS_I when scheduled 3100 in the same cycle. */ 3101 static ps_insn_ptr 3102 add_node_to_ps (partial_schedule_ptr ps, int id, int cycle, 3103 sbitmap must_precede, sbitmap must_follow) 3104 { 3105 ps_insn_ptr ps_i; 3106 int row = SMODULO (cycle, ps->ii); 3107 3108 if (ps->rows_length[row] >= issue_rate) 3109 return NULL; 3110 3111 ps_i = create_ps_insn (id, cycle); 3112 3113 /* Finds and inserts PS_I according to MUST_FOLLOW and 3114 MUST_PRECEDE. */ 3115 if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow)) 3116 { 3117 free (ps_i); 3118 return NULL; 3119 } 3120 3121 ps->rows_length[row] += 1; 3122 return ps_i; 3123 } 3124 3125 /* Advance time one cycle. Assumes DFA is being used. */ 3126 static void 3127 advance_one_cycle (void) 3128 { 3129 if (targetm.sched.dfa_pre_cycle_insn) 3130 state_transition (curr_state, 3131 targetm.sched.dfa_pre_cycle_insn ()); 3132 3133 state_transition (curr_state, NULL); 3134 3135 if (targetm.sched.dfa_post_cycle_insn) 3136 state_transition (curr_state, 3137 targetm.sched.dfa_post_cycle_insn ()); 3138 } 3139 3140 3141 3142 /* Checks if PS has resource conflicts according to DFA, starting from 3143 FROM cycle to TO cycle; returns true if there are conflicts and false 3144 if there are no conflicts. Assumes DFA is being used. */ 3145 static int 3146 ps_has_conflicts (partial_schedule_ptr ps, int from, int to) 3147 { 3148 int cycle; 3149 3150 state_reset (curr_state); 3151 3152 for (cycle = from; cycle <= to; cycle++) 3153 { 3154 ps_insn_ptr crr_insn; 3155 /* Holds the remaining issue slots in the current row. */ 3156 int can_issue_more = issue_rate; 3157 3158 /* Walk through the DFA for the current row. */ 3159 for (crr_insn = ps->rows[SMODULO (cycle, ps->ii)]; 3160 crr_insn; 3161 crr_insn = crr_insn->next_in_row) 3162 { 3163 rtx_insn *insn = ps_rtl_insn (ps, crr_insn->id); 3164 3165 if (!NONDEBUG_INSN_P (insn)) 3166 continue; 3167 3168 /* Check if there is room for the current insn. */ 3169 if (!can_issue_more || state_dead_lock_p (curr_state)) 3170 return true; 3171 3172 /* Update the DFA state and return with failure if the DFA found 3173 resource conflicts. */ 3174 if (state_transition (curr_state, insn) >= 0) 3175 return true; 3176 3177 if (targetm.sched.variable_issue) 3178 can_issue_more = 3179 targetm.sched.variable_issue (sched_dump, sched_verbose, 3180 insn, can_issue_more); 3181 /* A naked CLOBBER or USE generates no instruction, so don't 3182 let them consume issue slots. */ 3183 else if (GET_CODE (PATTERN (insn)) != USE 3184 && GET_CODE (PATTERN (insn)) != CLOBBER) 3185 can_issue_more--; 3186 } 3187 3188 /* Advance the DFA to the next cycle. */ 3189 advance_one_cycle (); 3190 } 3191 return false; 3192 } 3193 3194 /* Checks if the given node causes resource conflicts when added to PS at 3195 cycle C. If not the node is added to PS and returned; otherwise zero 3196 is returned. Bit N is set in MUST_PRECEDE/MUST_FOLLOW if the node with 3197 cuid N must be come before/after (respectively) the node pointed to by 3198 PS_I when scheduled in the same cycle. */ 3199 ps_insn_ptr 3200 ps_add_node_check_conflicts (partial_schedule_ptr ps, int n, 3201 int c, sbitmap must_precede, 3202 sbitmap must_follow) 3203 { 3204 int i, first, amount, has_conflicts = 0; 3205 ps_insn_ptr ps_i; 3206 3207 /* First add the node to the PS, if this succeeds check for 3208 conflicts, trying different issue slots in the same row. */ 3209 if (! (ps_i = add_node_to_ps (ps, n, c, must_precede, must_follow))) 3210 return NULL; /* Failed to insert the node at the given cycle. */ 3211 3212 while (1) 3213 { 3214 has_conflicts = ps_has_conflicts (ps, c, c); 3215 if (ps->history > 0 && !has_conflicts) 3216 { 3217 /* Check all 2h+1 intervals, starting from c-2h..c up to c..2h, 3218 but not more than ii intervals. */ 3219 first = c - ps->history; 3220 amount = 2 * ps->history + 1; 3221 if (amount > ps->ii) 3222 amount = ps->ii; 3223 for (i = first; i < first + amount; i++) 3224 { 3225 has_conflicts = ps_has_conflicts (ps, 3226 i - ps->history, 3227 i + ps->history); 3228 if (has_conflicts) 3229 break; 3230 } 3231 } 3232 if (!has_conflicts) 3233 break; 3234 /* Try different issue slots to find one that the given node can be 3235 scheduled in without conflicts. */ 3236 if (! ps_insn_advance_column (ps, ps_i, must_follow)) 3237 break; 3238 } 3239 3240 if (has_conflicts) 3241 { 3242 remove_node_from_ps (ps, ps_i); 3243 return NULL; 3244 } 3245 3246 ps->min_cycle = MIN (ps->min_cycle, c); 3247 ps->max_cycle = MAX (ps->max_cycle, c); 3248 return ps_i; 3249 } 3250 3251 /* Calculate the stage count of the partial schedule PS. The calculation 3252 takes into account the rotation amount passed in ROTATION_AMOUNT. */ 3253 int 3254 calculate_stage_count (partial_schedule_ptr ps, int rotation_amount) 3255 { 3256 int new_min_cycle = PS_MIN_CYCLE (ps) - rotation_amount; 3257 int new_max_cycle = PS_MAX_CYCLE (ps) - rotation_amount; 3258 int stage_count = CALC_STAGE_COUNT (-1, new_min_cycle, ps->ii); 3259 3260 /* The calculation of stage count is done adding the number of stages 3261 before cycle zero and after cycle zero. */ 3262 stage_count += CALC_STAGE_COUNT (new_max_cycle, 0, ps->ii); 3263 3264 return stage_count; 3265 } 3266 3267 /* Rotate the rows of PS such that insns scheduled at time 3268 START_CYCLE will appear in row 0. Updates max/min_cycles. */ 3269 void 3270 rotate_partial_schedule (partial_schedule_ptr ps, int start_cycle) 3271 { 3272 int i, row, backward_rotates; 3273 int last_row = ps->ii - 1; 3274 3275 if (start_cycle == 0) 3276 return; 3277 3278 backward_rotates = SMODULO (start_cycle, ps->ii); 3279 3280 /* Revisit later and optimize this into a single loop. */ 3281 for (i = 0; i < backward_rotates; i++) 3282 { 3283 ps_insn_ptr first_row = ps->rows[0]; 3284 int first_row_length = ps->rows_length[0]; 3285 3286 for (row = 0; row < last_row; row++) 3287 { 3288 ps->rows[row] = ps->rows[row + 1]; 3289 ps->rows_length[row] = ps->rows_length[row + 1]; 3290 } 3291 3292 ps->rows[last_row] = first_row; 3293 ps->rows_length[last_row] = first_row_length; 3294 } 3295 3296 ps->max_cycle -= start_cycle; 3297 ps->min_cycle -= start_cycle; 3298 } 3299 3300 #endif /* INSN_SCHEDULING */ 3301 3302 /* Run instruction scheduler. */ 3303 /* Perform SMS module scheduling. */ 3304 3305 namespace { 3306 3307 const pass_data pass_data_sms = 3308 { 3309 RTL_PASS, /* type */ 3310 "sms", /* name */ 3311 OPTGROUP_NONE, /* optinfo_flags */ 3312 TV_SMS, /* tv_id */ 3313 0, /* properties_required */ 3314 0, /* properties_provided */ 3315 0, /* properties_destroyed */ 3316 0, /* todo_flags_start */ 3317 TODO_df_finish, /* todo_flags_finish */ 3318 }; 3319 3320 class pass_sms : public rtl_opt_pass 3321 { 3322 public: 3323 pass_sms (gcc::context *ctxt) 3324 : rtl_opt_pass (pass_data_sms, ctxt) 3325 {} 3326 3327 /* opt_pass methods: */ 3328 virtual bool gate (function *) 3329 { 3330 return (optimize > 0 && flag_modulo_sched); 3331 } 3332 3333 virtual unsigned int execute (function *); 3334 3335 }; // class pass_sms 3336 3337 unsigned int 3338 pass_sms::execute (function *fun ATTRIBUTE_UNUSED) 3339 { 3340 #ifdef INSN_SCHEDULING 3341 basic_block bb; 3342 3343 /* Collect loop information to be used in SMS. */ 3344 cfg_layout_initialize (0); 3345 sms_schedule (); 3346 3347 /* Update the life information, because we add pseudos. */ 3348 max_regno = max_reg_num (); 3349 3350 /* Finalize layout changes. */ 3351 FOR_EACH_BB_FN (bb, fun) 3352 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (fun)) 3353 bb->aux = bb->next_bb; 3354 free_dominance_info (CDI_DOMINATORS); 3355 cfg_layout_finalize (); 3356 #endif /* INSN_SCHEDULING */ 3357 return 0; 3358 } 3359 3360 } // anon namespace 3361 3362 rtl_opt_pass * 3363 make_pass_sms (gcc::context *ctxt) 3364 { 3365 return new pass_sms (ctxt); 3366 } 3367