xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/mode-switching.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* CPU mode switching
2    Copyright (C) 1998-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "predict.h"
32 #include "vec.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "machmode.h"
36 #include "input.h"
37 #include "function.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "cfgrtl.h"
41 #include "cfganal.h"
42 #include "lcm.h"
43 #include "cfgcleanup.h"
44 #include "basic-block.h"
45 #include "tm_p.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "emit-rtl.h"
49 
50 /* We want target macros for the mode switching code to be able to refer
51    to instruction attribute values.  */
52 #include "insn-attr.h"
53 
54 #ifdef OPTIMIZE_MODE_SWITCHING
55 
56 /* The algorithm for setting the modes consists of scanning the insn list
57    and finding all the insns which require a specific mode.  Each insn gets
58    a unique struct seginfo element.  These structures are inserted into a list
59    for each basic block.  For each entity, there is an array of bb_info over
60    the flow graph basic blocks (local var 'bb_info'), which contains a list
61    of all insns within that basic block, in the order they are encountered.
62 
63    For each entity, any basic block WITHOUT any insns requiring a specific
64    mode are given a single entry without a mode (each basic block in the
65    flow graph must have at least one entry in the segment table).
66 
67    The LCM algorithm is then run over the flow graph to determine where to
68    place the sets to the highest-priority mode with respect to the first
69    insn in any one block.  Any adjustments required to the transparency
70    vectors are made, then the next iteration starts for the next-lower
71    priority mode, till for each entity all modes are exhausted.
72 
73    More details can be found in the code of optimize_mode_switching.  */
74 
75 /* This structure contains the information for each insn which requires
76    either single or double mode to be set.
77    MODE is the mode this insn must be executed in.
78    INSN_PTR is the insn to be executed (may be the note that marks the
79    beginning of a basic block).
80    BBNUM is the flow graph basic block this insn occurs in.
81    NEXT is the next insn in the same basic block.  */
82 struct seginfo
83 {
84   int mode;
85   rtx_insn *insn_ptr;
86   int bbnum;
87   struct seginfo *next;
88   HARD_REG_SET regs_live;
89 };
90 
91 struct bb_info
92 {
93   struct seginfo *seginfo;
94   int computing;
95   int mode_out;
96   int mode_in;
97 };
98 
99 static struct seginfo * new_seginfo (int, rtx_insn *, int, HARD_REG_SET);
100 static void add_seginfo (struct bb_info *, struct seginfo *);
101 static void reg_dies (rtx, HARD_REG_SET *);
102 static void reg_becomes_live (rtx, const_rtx, void *);
103 
104 /* Clear ode I from entity J in bitmap B.  */
105 #define clear_mode_bit(b, j, i) \
106        bitmap_clear_bit (b, (j * max_num_modes) + i)
107 
108 /* Test mode I from entity J in bitmap B.  */
109 #define mode_bit_p(b, j, i) \
110        bitmap_bit_p (b, (j * max_num_modes) + i)
111 
112 /* Set mode I from entity J in bitmal B.  */
113 #define set_mode_bit(b, j, i) \
114        bitmap_set_bit (b, (j * max_num_modes) + i)
115 
116 /* Emit modes segments from EDGE_LIST associated with entity E.
117    INFO gives mode availability for each mode.  */
118 
119 static bool
120 commit_mode_sets (struct edge_list *edge_list, int e, struct bb_info *info)
121 {
122   bool need_commit = false;
123 
124   for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
125     {
126       edge eg = INDEX_EDGE (edge_list, ed);
127       int mode;
128 
129       if ((mode = (int)(intptr_t)(eg->aux)) != -1)
130 	{
131 	  HARD_REG_SET live_at_edge;
132 	  basic_block src_bb = eg->src;
133 	  int cur_mode = info[src_bb->index].mode_out;
134 	  rtx mode_set;
135 
136 	  REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
137 
138 	  rtl_profile_for_edge (eg);
139 	  start_sequence ();
140 
141 	  targetm.mode_switching.emit (e, mode, cur_mode, live_at_edge);
142 
143 	  mode_set = get_insns ();
144 	  end_sequence ();
145 	  default_rtl_profile ();
146 
147 	  /* Do not bother to insert empty sequence.  */
148 	  if (mode_set == NULL_RTX)
149 	    continue;
150 
151 	  /* We should not get an abnormal edge here.  */
152 	  gcc_assert (! (eg->flags & EDGE_ABNORMAL));
153 
154 	  need_commit = true;
155 	  insert_insn_on_edge (mode_set, eg);
156 	}
157     }
158 
159   return need_commit;
160 }
161 
162 /* Allocate a new BBINFO structure, initialized with the MODE, INSN,
163    and basic block BB parameters.
164    INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
165    basic block; that allows us later to insert instructions in a FIFO-like
166    manner.  */
167 
168 static struct seginfo *
169 new_seginfo (int mode, rtx_insn *insn, int bb, HARD_REG_SET regs_live)
170 {
171   struct seginfo *ptr;
172 
173   gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
174 	      || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
175   ptr = XNEW (struct seginfo);
176   ptr->mode = mode;
177   ptr->insn_ptr = insn;
178   ptr->bbnum = bb;
179   ptr->next = NULL;
180   COPY_HARD_REG_SET (ptr->regs_live, regs_live);
181   return ptr;
182 }
183 
184 /* Add a seginfo element to the end of a list.
185    HEAD is a pointer to the list beginning.
186    INFO is the structure to be linked in.  */
187 
188 static void
189 add_seginfo (struct bb_info *head, struct seginfo *info)
190 {
191   struct seginfo *ptr;
192 
193   if (head->seginfo == NULL)
194     head->seginfo = info;
195   else
196     {
197       ptr = head->seginfo;
198       while (ptr->next != NULL)
199 	ptr = ptr->next;
200       ptr->next = info;
201     }
202 }
203 
204 /* Record in LIVE that register REG died.  */
205 
206 static void
207 reg_dies (rtx reg, HARD_REG_SET *live)
208 {
209   int regno;
210 
211   if (!REG_P (reg))
212     return;
213 
214   regno = REGNO (reg);
215   if (regno < FIRST_PSEUDO_REGISTER)
216     remove_from_hard_reg_set (live, GET_MODE (reg), regno);
217 }
218 
219 /* Record in LIVE that register REG became live.
220    This is called via note_stores.  */
221 
222 static void
223 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
224 {
225   int regno;
226 
227   if (GET_CODE (reg) == SUBREG)
228     reg = SUBREG_REG (reg);
229 
230   if (!REG_P (reg))
231     return;
232 
233   regno = REGNO (reg);
234   if (regno < FIRST_PSEUDO_REGISTER)
235     add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
236 }
237 
238 /* Split the fallthrough edge to the exit block, so that we can note
239    that there NORMAL_MODE is required.  Return the new block if it's
240    inserted before the exit block.  Otherwise return null.  */
241 
242 static basic_block
243 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
244 {
245   edge eg;
246   edge_iterator ei;
247   basic_block pre_exit;
248 
249   /* The only non-call predecessor at this stage is a block with a
250      fallthrough edge; there can be at most one, but there could be
251      none at all, e.g. when exit is called.  */
252   pre_exit = 0;
253   FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
254     if (eg->flags & EDGE_FALLTHRU)
255       {
256 	basic_block src_bb = eg->src;
257 	rtx_insn *last_insn;
258 	rtx ret_reg;
259 
260 	gcc_assert (!pre_exit);
261 	/* If this function returns a value at the end, we have to
262 	   insert the final mode switch before the return value copy
263 	   to its hard register.  */
264 	if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
265 	    && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
266 	    && GET_CODE (PATTERN (last_insn)) == USE
267 	    && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
268 	  {
269 	    int ret_start = REGNO (ret_reg);
270 	    int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
271 	    int ret_end = ret_start + nregs;
272 	    bool short_block = false;
273 	    bool multi_reg_return = false;
274 	    bool forced_late_switch = false;
275 	    rtx_insn *before_return_copy;
276 
277 	    do
278 	      {
279 		rtx_insn *return_copy = PREV_INSN (last_insn);
280 		rtx return_copy_pat, copy_reg;
281 		int copy_start, copy_num;
282 		int j;
283 
284 		if (NONDEBUG_INSN_P (return_copy))
285 		  {
286 		    /* When using SJLJ exceptions, the call to the
287 		       unregister function is inserted between the
288 		       clobber of the return value and the copy.
289 		       We do not want to split the block before this
290 		       or any other call; if we have not found the
291 		       copy yet, the copy must have been deleted.  */
292 		    if (CALL_P (return_copy))
293 		      {
294 			short_block = true;
295 			break;
296 		      }
297 		    return_copy_pat = PATTERN (return_copy);
298 		    switch (GET_CODE (return_copy_pat))
299 		      {
300 		      case USE:
301 			/* Skip USEs of multiple return registers.
302 			   __builtin_apply pattern is also handled here.  */
303 			if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
304 			    && (targetm.calls.function_value_regno_p
305 				(REGNO (XEXP (return_copy_pat, 0)))))
306 			  {
307 			    multi_reg_return = true;
308 			    last_insn = return_copy;
309 			    continue;
310 			  }
311 			break;
312 
313 		      case ASM_OPERANDS:
314 			/* Skip barrier insns.  */
315 			if (!MEM_VOLATILE_P (return_copy_pat))
316 			  break;
317 
318 			/* Fall through.  */
319 
320 		      case ASM_INPUT:
321 		      case UNSPEC_VOLATILE:
322 			last_insn = return_copy;
323 			continue;
324 
325 		      default:
326 			break;
327 		      }
328 
329 		    /* If the return register is not (in its entirety)
330 		       likely spilled, the return copy might be
331 		       partially or completely optimized away.  */
332 		    return_copy_pat = single_set (return_copy);
333 		    if (!return_copy_pat)
334 		      {
335 			return_copy_pat = PATTERN (return_copy);
336 			if (GET_CODE (return_copy_pat) != CLOBBER)
337 			  break;
338 			else if (!optimize)
339 			  {
340 			    /* This might be (clobber (reg [<result>]))
341 			       when not optimizing.  Then check if
342 			       the previous insn is the clobber for
343 			       the return register.  */
344 			    copy_reg = SET_DEST (return_copy_pat);
345 			    if (GET_CODE (copy_reg) == REG
346 				&& !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
347 			      {
348 				if (INSN_P (PREV_INSN (return_copy)))
349 				  {
350 				    return_copy = PREV_INSN (return_copy);
351 				    return_copy_pat = PATTERN (return_copy);
352 				    if (GET_CODE (return_copy_pat) != CLOBBER)
353 				      break;
354 				  }
355 			      }
356 			  }
357 		      }
358 		    copy_reg = SET_DEST (return_copy_pat);
359 		    if (GET_CODE (copy_reg) == REG)
360 		      copy_start = REGNO (copy_reg);
361 		    else if (GET_CODE (copy_reg) == SUBREG
362 			     && GET_CODE (SUBREG_REG (copy_reg)) == REG)
363 		      copy_start = REGNO (SUBREG_REG (copy_reg));
364 		    else
365 		      {
366 			/* When control reaches end of non-void function,
367 			   there are no return copy insns at all.  This
368 			   avoids an ice on that invalid function.  */
369 			if (ret_start + nregs == ret_end)
370 			  short_block = true;
371 			break;
372 		      }
373 		    if (!targetm.calls.function_value_regno_p (copy_start))
374 		      copy_num = 0;
375 		    else
376 		      copy_num
377 			= hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
378 
379 		    /* If the return register is not likely spilled, - as is
380 		       the case for floating point on SH4 - then it might
381 		       be set by an arithmetic operation that needs a
382 		       different mode than the exit block.  */
383 		    for (j = n_entities - 1; j >= 0; j--)
384 		      {
385 			int e = entity_map[j];
386 			int mode =
387 			  targetm.mode_switching.needed (e, return_copy);
388 
389 			if (mode != num_modes[e]
390 			    && mode != targetm.mode_switching.exit (e))
391 			  break;
392 		      }
393 		    if (j >= 0)
394 		      {
395 			/* __builtin_return emits a sequence of loads to all
396 			   return registers.  One of them might require
397 			   another mode than MODE_EXIT, even if it is
398 			   unrelated to the return value, so we want to put
399 			   the final mode switch after it.  */
400 			if (multi_reg_return
401 			    && targetm.calls.function_value_regno_p
402 			        (copy_start))
403 			  forced_late_switch = true;
404 
405 			/* For the SH4, floating point loads depend on fpscr,
406 			   thus we might need to put the final mode switch
407 			   after the return value copy.  That is still OK,
408 			   because a floating point return value does not
409 			   conflict with address reloads.  */
410 			if (copy_start >= ret_start
411 			    && copy_start + copy_num <= ret_end
412 			    && OBJECT_P (SET_SRC (return_copy_pat)))
413 			  forced_late_switch = true;
414 			break;
415 		      }
416 		    if (copy_num == 0)
417 		      {
418 			last_insn = return_copy;
419 			continue;
420 		      }
421 
422 		    if (copy_start >= ret_start
423 			&& copy_start + copy_num <= ret_end)
424 		      nregs -= copy_num;
425 		    else if (!multi_reg_return
426 			     || !targetm.calls.function_value_regno_p
427 				 (copy_start))
428 		      break;
429 		    last_insn = return_copy;
430 		  }
431 		/* ??? Exception handling can lead to the return value
432 		   copy being already separated from the return value use,
433 		   as in  unwind-dw2.c .
434 		   Similarly, conditionally returning without a value,
435 		   and conditionally using builtin_return can lead to an
436 		   isolated use.  */
437 		if (return_copy == BB_HEAD (src_bb))
438 		  {
439 		    short_block = true;
440 		    break;
441 		  }
442 		last_insn = return_copy;
443 	      }
444 	    while (nregs);
445 
446 	    /* If we didn't see a full return value copy, verify that there
447 	       is a plausible reason for this.  If some, but not all of the
448 	       return register is likely spilled, we can expect that there
449 	       is a copy for the likely spilled part.  */
450 	    gcc_assert (!nregs
451 			|| forced_late_switch
452 			|| short_block
453 			|| !(targetm.class_likely_spilled_p
454 			     (REGNO_REG_CLASS (ret_start)))
455 			|| (nregs
456 			    != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
457 			/* For multi-hard-register floating point
458 		   	   values, sometimes the likely-spilled part
459 		   	   is ordinarily copied first, then the other
460 		   	   part is set with an arithmetic operation.
461 		   	   This doesn't actually cause reload
462 		   	   failures, so let it pass.  */
463 			|| (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
464 			    && nregs != 1));
465 
466 	    if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
467 	      {
468 		before_return_copy
469 		  = emit_note_before (NOTE_INSN_DELETED, last_insn);
470 		/* Instructions preceding LAST_INSN in the same block might
471 		   require a different mode than MODE_EXIT, so if we might
472 		   have such instructions, keep them in a separate block
473 		   from pre_exit.  */
474 		src_bb = split_block (src_bb,
475 				      PREV_INSN (before_return_copy))->dest;
476 	      }
477 	    else
478 	      before_return_copy = last_insn;
479 	    pre_exit = split_block (src_bb, before_return_copy)->src;
480 	  }
481 	else
482 	  {
483 	    pre_exit = split_edge (eg);
484 	  }
485       }
486 
487   return pre_exit;
488 }
489 
490 /* Find all insns that need a particular mode setting, and insert the
491    necessary mode switches.  Return true if we did work.  */
492 
493 static int
494 optimize_mode_switching (void)
495 {
496   int e;
497   basic_block bb;
498   bool need_commit = false;
499   static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
500 #define N_ENTITIES ARRAY_SIZE (num_modes)
501   int entity_map[N_ENTITIES];
502   struct bb_info *bb_info[N_ENTITIES];
503   int i, j;
504   int n_entities = 0;
505   int max_num_modes = 0;
506   bool emitted ATTRIBUTE_UNUSED = false;
507   basic_block post_entry = 0;
508   basic_block pre_exit = 0;
509   struct edge_list *edge_list = 0;
510 
511   /* These bitmaps are used for the LCM algorithm.  */
512   sbitmap *kill, *del, *insert, *antic, *transp, *comp;
513   sbitmap *avin, *avout;
514 
515   for (e = N_ENTITIES - 1; e >= 0; e--)
516     if (OPTIMIZE_MODE_SWITCHING (e))
517       {
518 	int entry_exit_extra = 0;
519 
520 	/* Create the list of segments within each basic block.
521 	   If NORMAL_MODE is defined, allow for two extra
522 	   blocks split from the entry and exit block.  */
523 	if (targetm.mode_switching.entry && targetm.mode_switching.exit)
524 	  entry_exit_extra = 3;
525 
526 	bb_info[n_entities]
527 	  = XCNEWVEC (struct bb_info,
528 		      last_basic_block_for_fn (cfun) + entry_exit_extra);
529 	entity_map[n_entities++] = e;
530 	if (num_modes[e] > max_num_modes)
531 	  max_num_modes = num_modes[e];
532       }
533 
534   if (! n_entities)
535     return 0;
536 
537   /* Make sure if MODE_ENTRY is defined MODE_EXIT is defined.  */
538   gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
539 	      || (!targetm.mode_switching.entry
540 		  && !targetm.mode_switching.exit));
541 
542   if (targetm.mode_switching.entry && targetm.mode_switching.exit)
543     {
544       /* Split the edge from the entry block, so that we can note that
545 	 there NORMAL_MODE is supplied.  */
546       post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
547       pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
548     }
549 
550   df_analyze ();
551 
552   /* Create the bitmap vectors.  */
553   antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
554 				n_entities * max_num_modes);
555   transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
556 				 n_entities * max_num_modes);
557   comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
558 			       n_entities * max_num_modes);
559   avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
560 			       n_entities * max_num_modes);
561   avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
562 				n_entities * max_num_modes);
563   kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
564 			       n_entities * max_num_modes);
565 
566   bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
567   bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
568   bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
569 
570   for (j = n_entities - 1; j >= 0; j--)
571     {
572       int e = entity_map[j];
573       int no_mode = num_modes[e];
574       struct bb_info *info = bb_info[j];
575       rtx_insn *insn;
576 
577       /* Determine what the first use (if any) need for a mode of entity E is.
578 	 This will be the mode that is anticipatable for this block.
579 	 Also compute the initial transparency settings.  */
580       FOR_EACH_BB_FN (bb, cfun)
581 	{
582 	  struct seginfo *ptr;
583 	  int last_mode = no_mode;
584 	  bool any_set_required = false;
585 	  HARD_REG_SET live_now;
586 
587 	  info[bb->index].mode_out = info[bb->index].mode_in = no_mode;
588 
589 	  REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
590 
591 	  /* Pretend the mode is clobbered across abnormal edges.  */
592 	  {
593 	    edge_iterator ei;
594 	    edge eg;
595 	    FOR_EACH_EDGE (eg, ei, bb->preds)
596 	      if (eg->flags & EDGE_COMPLEX)
597 		break;
598 	    if (eg)
599 	      {
600 		rtx_insn *ins_pos = BB_HEAD (bb);
601 		if (LABEL_P (ins_pos))
602 		  ins_pos = NEXT_INSN (ins_pos);
603 		gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
604 		if (ins_pos != BB_END (bb))
605 		  ins_pos = NEXT_INSN (ins_pos);
606 		ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
607 		add_seginfo (info + bb->index, ptr);
608 		for (i = 0; i < no_mode; i++)
609 		  clear_mode_bit (transp[bb->index], j, i);
610 	      }
611 	  }
612 
613 	  FOR_BB_INSNS (bb, insn)
614 	    {
615 	      if (INSN_P (insn))
616 		{
617 		  int mode = targetm.mode_switching.needed (e, insn);
618 		  rtx link;
619 
620 		  if (mode != no_mode && mode != last_mode)
621 		    {
622 		      any_set_required = true;
623 		      last_mode = mode;
624 		      ptr = new_seginfo (mode, insn, bb->index, live_now);
625 		      add_seginfo (info + bb->index, ptr);
626 		      for (i = 0; i < no_mode; i++)
627 			clear_mode_bit (transp[bb->index], j, i);
628 		    }
629 
630 		  if (targetm.mode_switching.after)
631 		    last_mode = targetm.mode_switching.after (e, last_mode,
632 							      insn);
633 
634 		  /* Update LIVE_NOW.  */
635 		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
636 		    if (REG_NOTE_KIND (link) == REG_DEAD)
637 		      reg_dies (XEXP (link, 0), &live_now);
638 
639 		  note_stores (PATTERN (insn), reg_becomes_live, &live_now);
640 		  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
641 		    if (REG_NOTE_KIND (link) == REG_UNUSED)
642 		      reg_dies (XEXP (link, 0), &live_now);
643 		}
644 	    }
645 
646 	  info[bb->index].computing = last_mode;
647 	  /* Check for blocks without ANY mode requirements.
648 	     N.B. because of MODE_AFTER, last_mode might still
649 	     be different from no_mode, in which case we need to
650 	     mark the block as nontransparent.  */
651 	  if (!any_set_required)
652 	    {
653 	      ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
654 	      add_seginfo (info + bb->index, ptr);
655 	      if (last_mode != no_mode)
656 		for (i = 0; i < no_mode; i++)
657 		  clear_mode_bit (transp[bb->index], j, i);
658 	    }
659 	}
660       if (targetm.mode_switching.entry && targetm.mode_switching.exit)
661 	{
662 	  int mode = targetm.mode_switching.entry (e);
663 
664 	  info[post_entry->index].mode_out =
665 	    info[post_entry->index].mode_in = no_mode;
666 	  if (pre_exit)
667 	    {
668 	      info[pre_exit->index].mode_out =
669 		info[pre_exit->index].mode_in = no_mode;
670 	    }
671 
672 	  if (mode != no_mode)
673 	    {
674 	      bb = post_entry;
675 
676 	      /* By always making this nontransparent, we save
677 		 an extra check in make_preds_opaque.  We also
678 		 need this to avoid confusing pre_edge_lcm when
679 		 antic is cleared but transp and comp are set.  */
680 	      for (i = 0; i < no_mode; i++)
681 		clear_mode_bit (transp[bb->index], j, i);
682 
683 	      /* Insert a fake computing definition of MODE into entry
684 		 blocks which compute no mode. This represents the mode on
685 		 entry.  */
686 	      info[bb->index].computing = mode;
687 
688 	      if (pre_exit)
689 		info[pre_exit->index].seginfo->mode =
690 		  targetm.mode_switching.exit (e);
691 	    }
692 	}
693 
694       /* Set the anticipatable and computing arrays.  */
695       for (i = 0; i < no_mode; i++)
696 	{
697 	  int m = targetm.mode_switching.priority (entity_map[j], i);
698 
699 	  FOR_EACH_BB_FN (bb, cfun)
700 	    {
701 	      if (info[bb->index].seginfo->mode == m)
702 		set_mode_bit (antic[bb->index], j, m);
703 
704 	      if (info[bb->index].computing == m)
705 		set_mode_bit (comp[bb->index], j, m);
706 	    }
707 	}
708     }
709 
710   /* Calculate the optimal locations for the
711      placement mode switches to modes with priority I.  */
712 
713   FOR_EACH_BB_FN (bb, cfun)
714     bitmap_not (kill[bb->index], transp[bb->index]);
715 
716   edge_list = pre_edge_lcm_avs (n_entities * max_num_modes, transp, comp, antic,
717 				kill, avin, avout, &insert, &del);
718 
719   for (j = n_entities - 1; j >= 0; j--)
720     {
721       int no_mode = num_modes[entity_map[j]];
722 
723       /* Insert all mode sets that have been inserted by lcm.  */
724 
725       for (int ed = NUM_EDGES (edge_list) - 1; ed >= 0; ed--)
726 	{
727 	  edge eg = INDEX_EDGE (edge_list, ed);
728 
729 	  eg->aux = (void *)(intptr_t)-1;
730 
731 	  for (i = 0; i < no_mode; i++)
732 	    {
733 	      int m = targetm.mode_switching.priority (entity_map[j], i);
734 	      if (mode_bit_p (insert[ed], j, m))
735 		{
736 		  eg->aux = (void *)(intptr_t)m;
737 		  break;
738 		}
739 	    }
740 	}
741 
742       FOR_EACH_BB_FN (bb, cfun)
743 	{
744 	  struct bb_info *info = bb_info[j];
745 	  int last_mode = no_mode;
746 
747 	  /* intialize mode in availability for bb.  */
748 	  for (i = 0; i < no_mode; i++)
749 	    if (mode_bit_p (avout[bb->index], j, i))
750 	      {
751 		if (last_mode == no_mode)
752 		  last_mode = i;
753 		if (last_mode != i)
754 		  {
755 		    last_mode = no_mode;
756 		    break;
757 		  }
758 	      }
759 	  info[bb->index].mode_out = last_mode;
760 
761 	  /* intialize mode out availability for bb.  */
762 	  last_mode = no_mode;
763 	  for (i = 0; i < no_mode; i++)
764 	    if (mode_bit_p (avin[bb->index], j, i))
765 	      {
766 		if (last_mode == no_mode)
767 		  last_mode = i;
768 		if (last_mode != i)
769 		  {
770 		    last_mode = no_mode;
771 		    break;
772 		  }
773 	      }
774 	  info[bb->index].mode_in = last_mode;
775 
776 	  for (i = 0; i < no_mode; i++)
777 	    if (mode_bit_p (del[bb->index], j, i))
778 	      info[bb->index].seginfo->mode = no_mode;
779 	}
780 
781       /* Now output the remaining mode sets in all the segments.  */
782 
783       /* In case there was no mode inserted. the mode information on the edge
784 	 might not be complete.
785 	 Update mode info on edges and commit pending mode sets.  */
786       need_commit |= commit_mode_sets (edge_list, entity_map[j], bb_info[j]);
787 
788       /* Reset modes for next entity.  */
789       clear_aux_for_edges ();
790 
791       FOR_EACH_BB_FN (bb, cfun)
792 	{
793 	  struct seginfo *ptr, *next;
794 	  int cur_mode = bb_info[j][bb->index].mode_in;
795 
796 	  for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
797 	    {
798 	      next = ptr->next;
799 	      if (ptr->mode != no_mode)
800 		{
801 		  rtx_insn *mode_set;
802 
803 		  rtl_profile_for_bb (bb);
804 		  start_sequence ();
805 
806 		  targetm.mode_switching.emit (entity_map[j], ptr->mode,
807 					       cur_mode, ptr->regs_live);
808 		  mode_set = get_insns ();
809 		  end_sequence ();
810 
811 		  /* modes kill each other inside a basic block.  */
812 		  cur_mode = ptr->mode;
813 
814 		  /* Insert MODE_SET only if it is nonempty.  */
815 		  if (mode_set != NULL_RTX)
816 		    {
817 		      emitted = true;
818 		      if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
819 			/* We need to emit the insns in a FIFO-like manner,
820 			   i.e. the first to be emitted at our insertion
821 			   point ends up first in the instruction steam.
822 			   Because we made sure that NOTE_INSN_BASIC_BLOCK is
823 			   only used for initially empty basic blocks, we
824 			   can achieve this by appending at the end of
825 			   the block.  */
826 			emit_insn_after
827 			  (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
828 		      else
829 			emit_insn_before (mode_set, ptr->insn_ptr);
830 		    }
831 
832 		  default_rtl_profile ();
833 		}
834 
835 	      free (ptr);
836 	    }
837 	}
838 
839       free (bb_info[j]);
840     }
841 
842   free_edge_list (edge_list);
843 
844   /* Finished. Free up all the things we've allocated.  */
845   sbitmap_vector_free (del);
846   sbitmap_vector_free (insert);
847   sbitmap_vector_free (kill);
848   sbitmap_vector_free (antic);
849   sbitmap_vector_free (transp);
850   sbitmap_vector_free (comp);
851   sbitmap_vector_free (avin);
852   sbitmap_vector_free (avout);
853 
854   if (need_commit)
855     commit_edge_insertions ();
856 
857   if (targetm.mode_switching.entry && targetm.mode_switching.exit)
858     cleanup_cfg (CLEANUP_NO_INSN_DEL);
859   else if (!need_commit && !emitted)
860     return 0;
861 
862   return 1;
863 }
864 
865 #endif /* OPTIMIZE_MODE_SWITCHING */
866 
867 namespace {
868 
869 const pass_data pass_data_mode_switching =
870 {
871   RTL_PASS, /* type */
872   "mode_sw", /* name */
873   OPTGROUP_NONE, /* optinfo_flags */
874   TV_MODE_SWITCH, /* tv_id */
875   0, /* properties_required */
876   0, /* properties_provided */
877   0, /* properties_destroyed */
878   0, /* todo_flags_start */
879   TODO_df_finish, /* todo_flags_finish */
880 };
881 
882 class pass_mode_switching : public rtl_opt_pass
883 {
884 public:
885   pass_mode_switching (gcc::context *ctxt)
886     : rtl_opt_pass (pass_data_mode_switching, ctxt)
887   {}
888 
889   /* opt_pass methods: */
890   /* The epiphany backend creates a second instance of this pass, so we need
891      a clone method.  */
892   opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
893   virtual bool gate (function *)
894     {
895 #ifdef OPTIMIZE_MODE_SWITCHING
896       return true;
897 #else
898       return false;
899 #endif
900     }
901 
902   virtual unsigned int execute (function *)
903     {
904 #ifdef OPTIMIZE_MODE_SWITCHING
905       optimize_mode_switching ();
906 #endif /* OPTIMIZE_MODE_SWITCHING */
907       return 0;
908     }
909 
910 }; // class pass_mode_switching
911 
912 } // anon namespace
913 
914 rtl_opt_pass *
915 make_pass_mode_switching (gcc::context *ctxt)
916 {
917   return new pass_mode_switching (ctxt);
918 }
919