1 /* LRA (local register allocator) driver and LRA utilities. 2 Copyright (C) 2010-2015 Free Software Foundation, Inc. 3 Contributed by Vladimir Makarov <vmakarov@redhat.com>. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 22 /* The Local Register Allocator (LRA) is a replacement of former 23 reload pass. It is focused to simplify code solving the reload 24 pass tasks, to make the code maintenance easier, and to implement new 25 perspective optimizations. 26 27 The major LRA design solutions are: 28 o division small manageable, separated sub-tasks 29 o reflection of all transformations and decisions in RTL as more 30 as possible 31 o insn constraints as a primary source of the info (minimizing 32 number of target-depended macros/hooks) 33 34 In brief LRA works by iterative insn process with the final goal is 35 to satisfy all insn and address constraints: 36 o New reload insns (in brief reloads) and reload pseudos might be 37 generated; 38 o Some pseudos might be spilled to assign hard registers to 39 new reload pseudos; 40 o Recalculating spilled pseudo values (rematerialization); 41 o Changing spilled pseudos to stack memory or their equivalences; 42 o Allocation stack memory changes the address displacement and 43 new iteration is needed. 44 45 Here is block diagram of LRA passes: 46 47 ------------------------ 48 --------------- | Undo inheritance for | --------------- 49 | Memory-memory | | spilled pseudos, | | New (and old) | 50 | move coalesce |<---| splits for pseudos got |<-- | pseudos | 51 --------------- | the same hard regs, | | assignment | 52 Start | | and optional reloads | --------------- 53 | | ------------------------ ^ 54 V | ---------------- | 55 ----------- V | Update virtual | | 56 | Remove |----> ------------>| register | | 57 | scratches | ^ | displacements | | 58 ----------- | ---------------- | 59 | | | 60 | V New | 61 | ------------ pseudos ------------------- 62 | |Constraints:| or insns | Inheritance/split | 63 | | RTL |--------->| transformations | 64 | | transfor- | | in EBB scope | 65 | substi- | mations | ------------------- 66 | tutions ------------ 67 | | No change 68 ---------------- V 69 | Spilled pseudo | ------------------- 70 | to memory |<----| Rematerialization | 71 | substitution | ------------------- 72 ---------------- 73 | No susbtitions 74 V 75 ------------------------- 76 | Hard regs substitution, | 77 | devirtalization, and |------> Finish 78 | restoring scratches got | 79 | memory | 80 ------------------------- 81 82 To speed up the process: 83 o We process only insns affected by changes on previous 84 iterations; 85 o We don't use DFA-infrastructure because it results in much slower 86 compiler speed than a special IR described below does; 87 o We use a special insn representation for quick access to insn 88 info which is always *synchronized* with the current RTL; 89 o Insn IR is minimized by memory. It is divided on three parts: 90 o one specific for each insn in RTL (only operand locations); 91 o one common for all insns in RTL with the same insn code 92 (different operand attributes from machine descriptions); 93 o one oriented for maintenance of live info (list of pseudos). 94 o Pseudo data: 95 o all insns where the pseudo is referenced; 96 o live info (conflicting hard regs, live ranges, # of 97 references etc); 98 o data used for assigning (preferred hard regs, costs etc). 99 100 This file contains LRA driver, LRA utility functions and data, and 101 code for dealing with scratches. */ 102 103 #include "config.h" 104 #include "system.h" 105 #include "coretypes.h" 106 #include "tm.h" 107 #include "hard-reg-set.h" 108 #include "rtl.h" 109 #include "tm_p.h" 110 #include "regs.h" 111 #include "insn-config.h" 112 #include "insn-codes.h" 113 #include "recog.h" 114 #include "output.h" 115 #include "addresses.h" 116 #include "flags.h" 117 #include "hashtab.h" 118 #include "hash-set.h" 119 #include "vec.h" 120 #include "machmode.h" 121 #include "input.h" 122 #include "function.h" 123 #include "symtab.h" 124 #include "wide-int.h" 125 #include "inchash.h" 126 #include "tree.h" 127 #include "optabs.h" 128 #include "statistics.h" 129 #include "double-int.h" 130 #include "real.h" 131 #include "fixed-value.h" 132 #include "alias.h" 133 #include "expmed.h" 134 #include "dojump.h" 135 #include "explow.h" 136 #include "calls.h" 137 #include "emit-rtl.h" 138 #include "varasm.h" 139 #include "stmt.h" 140 #include "expr.h" 141 #include "predict.h" 142 #include "dominance.h" 143 #include "cfg.h" 144 #include "cfgrtl.h" 145 #include "cfgbuild.h" 146 #include "basic-block.h" 147 #include "except.h" 148 #include "tree-pass.h" 149 #include "timevar.h" 150 #include "target.h" 151 #include "ira.h" 152 #include "lra-int.h" 153 #include "df.h" 154 155 /* Dump bitmap SET with TITLE and BB INDEX. */ 156 void 157 lra_dump_bitmap_with_title (const char *title, bitmap set, int index) 158 { 159 unsigned int i; 160 int count; 161 bitmap_iterator bi; 162 static const int max_nums_on_line = 10; 163 164 if (bitmap_empty_p (set)) 165 return; 166 fprintf (lra_dump_file, " %s %d:", title, index); 167 fprintf (lra_dump_file, "\n"); 168 count = max_nums_on_line + 1; 169 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi) 170 { 171 if (count > max_nums_on_line) 172 { 173 fprintf (lra_dump_file, "\n "); 174 count = 0; 175 } 176 fprintf (lra_dump_file, " %4u", i); 177 count++; 178 } 179 fprintf (lra_dump_file, "\n"); 180 } 181 182 /* Hard registers currently not available for allocation. It can 183 changed after some hard registers become not eliminable. */ 184 HARD_REG_SET lra_no_alloc_regs; 185 186 static int get_new_reg_value (void); 187 static void expand_reg_info (void); 188 static void invalidate_insn_recog_data (int); 189 static int get_insn_freq (rtx_insn *); 190 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t, 191 rtx_insn *, int); 192 193 /* Expand all regno related info needed for LRA. */ 194 static void 195 expand_reg_data (int old) 196 { 197 resize_reg_info (); 198 expand_reg_info (); 199 ira_expand_reg_equiv (); 200 for (int i = (int) max_reg_num () - 1; i >= old; i--) 201 lra_change_class (i, ALL_REGS, " Set", true); 202 } 203 204 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL 205 or of VOIDmode, use MD_MODE for the new reg. Initialize its 206 register class to RCLASS. Print message about assigning class 207 RCLASS containing new register name TITLE unless it is NULL. Use 208 attributes of ORIGINAL if it is a register. The created register 209 will have unique held value. */ 210 rtx 211 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original, 212 enum reg_class rclass, const char *title) 213 { 214 machine_mode mode; 215 rtx new_reg; 216 217 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode) 218 mode = md_mode; 219 lra_assert (mode != VOIDmode); 220 new_reg = gen_reg_rtx (mode); 221 if (original == NULL_RTX || ! REG_P (original)) 222 { 223 if (lra_dump_file != NULL) 224 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg)); 225 } 226 else 227 { 228 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER) 229 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original); 230 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original); 231 REG_POINTER (new_reg) = REG_POINTER (original); 232 REG_ATTRS (new_reg) = REG_ATTRS (original); 233 if (lra_dump_file != NULL) 234 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i", 235 REGNO (new_reg), REGNO (original)); 236 } 237 if (lra_dump_file != NULL) 238 { 239 if (title != NULL) 240 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d", 241 reg_class_names[rclass], *title == '\0' ? "" : " ", 242 title, REGNO (new_reg)); 243 fprintf (lra_dump_file, "\n"); 244 } 245 expand_reg_data (max_reg_num ()); 246 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass); 247 return new_reg; 248 } 249 250 /* Analogous to the previous function but also inherits value of 251 ORIGINAL. */ 252 rtx 253 lra_create_new_reg (machine_mode md_mode, rtx original, 254 enum reg_class rclass, const char *title) 255 { 256 rtx new_reg; 257 258 new_reg 259 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title); 260 if (original != NULL_RTX && REG_P (original)) 261 lra_assign_reg_val (REGNO (original), REGNO (new_reg)); 262 return new_reg; 263 } 264 265 /* Set up for REGNO unique hold value. */ 266 void 267 lra_set_regno_unique_value (int regno) 268 { 269 lra_reg_info[regno].val = get_new_reg_value (); 270 } 271 272 /* Invalidate INSN related info used by LRA. The info should never be 273 used after that. */ 274 void 275 lra_invalidate_insn_data (rtx_insn *insn) 276 { 277 lra_invalidate_insn_regno_info (insn); 278 invalidate_insn_recog_data (INSN_UID (insn)); 279 } 280 281 /* Mark INSN deleted and invalidate the insn related info used by 282 LRA. */ 283 void 284 lra_set_insn_deleted (rtx_insn *insn) 285 { 286 lra_invalidate_insn_data (insn); 287 SET_INSN_DELETED (insn); 288 } 289 290 /* Delete an unneeded INSN and any previous insns who sole purpose is 291 loading data that is dead in INSN. */ 292 void 293 lra_delete_dead_insn (rtx_insn *insn) 294 { 295 rtx_insn *prev = prev_real_insn (insn); 296 rtx prev_dest; 297 298 /* If the previous insn sets a register that dies in our insn, 299 delete it too. */ 300 if (prev && GET_CODE (PATTERN (prev)) == SET 301 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest)) 302 && reg_mentioned_p (prev_dest, PATTERN (insn)) 303 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest)) 304 && ! side_effects_p (SET_SRC (PATTERN (prev)))) 305 lra_delete_dead_insn (prev); 306 307 lra_set_insn_deleted (insn); 308 } 309 310 /* Emit insn x = y + z. Return NULL if we failed to do it. 311 Otherwise, return the insn. We don't use gen_add3_insn as it might 312 clobber CC. */ 313 static rtx 314 emit_add3_insn (rtx x, rtx y, rtx z) 315 { 316 rtx_insn *last; 317 318 last = get_last_insn (); 319 320 if (have_addptr3_insn (x, y, z)) 321 { 322 rtx insn = gen_addptr3_insn (x, y, z); 323 324 /* If the target provides an "addptr" pattern it hopefully does 325 for a reason. So falling back to the normal add would be 326 a bug. */ 327 lra_assert (insn != NULL_RTX); 328 emit_insn (insn); 329 return insn; 330 } 331 332 rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, x, 333 gen_rtx_PLUS (GET_MODE (y), y, z))); 334 if (recog_memoized (insn) < 0) 335 { 336 delete_insns_since (last); 337 insn = NULL; 338 } 339 return insn; 340 } 341 342 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the 343 last resort. */ 344 static rtx 345 emit_add2_insn (rtx x, rtx y) 346 { 347 rtx insn; 348 349 insn = emit_add3_insn (x, x, y); 350 if (insn == NULL_RTX) 351 { 352 insn = gen_add2_insn (x, y); 353 if (insn != NULL_RTX) 354 emit_insn (insn); 355 } 356 return insn; 357 } 358 359 /* Target checks operands through operand predicates to recognize an 360 insn. We should have a special precaution to generate add insns 361 which are frequent results of elimination. 362 363 Emit insns for x = y + z. X can be used to store intermediate 364 values and should be not in Y and Z when we use X to store an 365 intermediate value. Y + Z should form [base] [+ index[ * scale]] [ 366 + disp] where base and index are registers, disp and scale are 367 constants. Y should contain base if it is present, Z should 368 contain disp if any. index[*scale] can be part of Y or Z. */ 369 void 370 lra_emit_add (rtx x, rtx y, rtx z) 371 { 372 int old; 373 rtx_insn *last; 374 rtx a1, a2, base, index, disp, scale, index_scale; 375 bool ok_p; 376 377 rtx add3_insn = emit_add3_insn (x, y, z); 378 old = max_reg_num (); 379 if (add3_insn != NULL) 380 ; 381 else 382 { 383 disp = a2 = NULL_RTX; 384 if (GET_CODE (y) == PLUS) 385 { 386 a1 = XEXP (y, 0); 387 a2 = XEXP (y, 1); 388 disp = z; 389 } 390 else 391 { 392 a1 = y; 393 if (CONSTANT_P (z)) 394 disp = z; 395 else 396 a2 = z; 397 } 398 index_scale = scale = NULL_RTX; 399 if (GET_CODE (a1) == MULT) 400 { 401 index_scale = a1; 402 index = XEXP (a1, 0); 403 scale = XEXP (a1, 1); 404 base = a2; 405 } 406 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT) 407 { 408 index_scale = a2; 409 index = XEXP (a2, 0); 410 scale = XEXP (a2, 1); 411 base = a1; 412 } 413 else 414 { 415 base = a1; 416 index = a2; 417 } 418 if (! (REG_P (base) || GET_CODE (base) == SUBREG) 419 || (index != NULL_RTX 420 && ! (REG_P (index) || GET_CODE (index) == SUBREG)) 421 || (disp != NULL_RTX && ! CONSTANT_P (disp)) 422 || (scale != NULL_RTX && ! CONSTANT_P (scale))) 423 { 424 /* Probably we have no 3 op add. Last chance is to use 2-op 425 add insn. To succeed, don't move Z to X as an address 426 segment always comes in Y. Otherwise, we might fail when 427 adding the address segment to register. */ 428 lra_assert (x != y && x != z); 429 emit_move_insn (x, y); 430 rtx insn = emit_add2_insn (x, z); 431 lra_assert (insn != NULL_RTX); 432 } 433 else 434 { 435 if (index_scale == NULL_RTX) 436 index_scale = index; 437 if (disp == NULL_RTX) 438 { 439 /* Generate x = index_scale; x = x + base. */ 440 lra_assert (index_scale != NULL_RTX && base != NULL_RTX); 441 emit_move_insn (x, index_scale); 442 rtx insn = emit_add2_insn (x, base); 443 lra_assert (insn != NULL_RTX); 444 } 445 else if (scale == NULL_RTX) 446 { 447 /* Try x = base + disp. */ 448 lra_assert (base != NULL_RTX); 449 last = get_last_insn (); 450 rtx_insn *move_insn = 451 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp)); 452 if (recog_memoized (move_insn) < 0) 453 { 454 delete_insns_since (last); 455 /* Generate x = disp; x = x + base. */ 456 emit_move_insn (x, disp); 457 rtx add2_insn = emit_add2_insn (x, base); 458 lra_assert (add2_insn != NULL_RTX); 459 } 460 /* Generate x = x + index. */ 461 if (index != NULL_RTX) 462 { 463 rtx insn = emit_add2_insn (x, index); 464 lra_assert (insn != NULL_RTX); 465 } 466 } 467 else 468 { 469 /* Try x = index_scale; x = x + disp; x = x + base. */ 470 last = get_last_insn (); 471 rtx_insn *move_insn = emit_move_insn (x, index_scale); 472 ok_p = false; 473 if (recog_memoized (move_insn) >= 0) 474 { 475 rtx insn = emit_add2_insn (x, disp); 476 if (insn != NULL_RTX) 477 { 478 insn = emit_add2_insn (x, base); 479 if (insn != NULL_RTX) 480 ok_p = true; 481 } 482 } 483 if (! ok_p) 484 { 485 delete_insns_since (last); 486 /* Generate x = disp; x = x + base; x = x + index_scale. */ 487 emit_move_insn (x, disp); 488 rtx insn = emit_add2_insn (x, base); 489 lra_assert (insn != NULL_RTX); 490 insn = emit_add2_insn (x, index_scale); 491 lra_assert (insn != NULL_RTX); 492 } 493 } 494 } 495 } 496 /* Functions emit_... can create pseudos -- so expand the pseudo 497 data. */ 498 if (old != max_reg_num ()) 499 expand_reg_data (old); 500 } 501 502 /* The number of emitted reload insns so far. */ 503 int lra_curr_reload_num; 504 505 /* Emit x := y, processing special case when y = u + v or y = u + v * 506 scale + w through emit_add (Y can be an address which is base + 507 index reg * scale + displacement in general case). X may be used 508 as intermediate result therefore it should be not in Y. */ 509 void 510 lra_emit_move (rtx x, rtx y) 511 { 512 int old; 513 514 if (GET_CODE (y) != PLUS) 515 { 516 if (rtx_equal_p (x, y)) 517 return; 518 old = max_reg_num (); 519 emit_move_insn (x, y); 520 if (REG_P (x)) 521 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num; 522 /* Function emit_move can create pseudos -- so expand the pseudo 523 data. */ 524 if (old != max_reg_num ()) 525 expand_reg_data (old); 526 return; 527 } 528 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1)); 529 } 530 531 /* Update insn operands which are duplication of operands whose 532 numbers are in array of NOPS (with end marker -1). The insn is 533 represented by its LRA internal representation ID. */ 534 void 535 lra_update_dups (lra_insn_recog_data_t id, signed char *nops) 536 { 537 int i, j, nop; 538 struct lra_static_insn_data *static_id = id->insn_static_data; 539 540 for (i = 0; i < static_id->n_dups; i++) 541 for (j = 0; (nop = nops[j]) >= 0; j++) 542 if (static_id->dup_num[i] == nop) 543 *id->dup_loc[i] = *id->operand_loc[nop]; 544 } 545 546 547 548 /* This page contains code dealing with info about registers in the 549 insns. */ 550 551 /* Pools for insn reg info. */ 552 static alloc_pool insn_reg_pool; 553 554 /* Initiate pool for insn reg info. */ 555 static void 556 init_insn_regs (void) 557 { 558 insn_reg_pool 559 = create_alloc_pool ("insn regs", sizeof (struct lra_insn_reg), 100); 560 } 561 562 /* Create LRA insn related info about a reference to REGNO in INSN with 563 TYPE (in/out/inout), biggest reference mode MODE, flag that it is 564 reference through subreg (SUBREG_P), flag that is early clobbered 565 in the insn (EARLY_CLOBBER), and reference to the next insn reg 566 info (NEXT). */ 567 static struct lra_insn_reg * 568 new_insn_reg (rtx_insn *insn, int regno, enum op_type type, 569 machine_mode mode, 570 bool subreg_p, bool early_clobber, struct lra_insn_reg *next) 571 { 572 struct lra_insn_reg *ir; 573 574 ir = (struct lra_insn_reg *) pool_alloc (insn_reg_pool); 575 ir->type = type; 576 ir->biggest_mode = mode; 577 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (lra_reg_info[regno].biggest_mode) 578 && NONDEBUG_INSN_P (insn)) 579 lra_reg_info[regno].biggest_mode = mode; 580 ir->subreg_p = subreg_p; 581 ir->early_clobber = early_clobber; 582 ir->regno = regno; 583 ir->next = next; 584 return ir; 585 } 586 587 /* Free insn reg info IR. */ 588 static void 589 free_insn_reg (struct lra_insn_reg *ir) 590 { 591 pool_free (insn_reg_pool, ir); 592 } 593 594 /* Free insn reg info list IR. */ 595 static void 596 free_insn_regs (struct lra_insn_reg *ir) 597 { 598 struct lra_insn_reg *next_ir; 599 600 for (; ir != NULL; ir = next_ir) 601 { 602 next_ir = ir->next; 603 free_insn_reg (ir); 604 } 605 } 606 607 /* Finish pool for insn reg info. */ 608 static void 609 finish_insn_regs (void) 610 { 611 free_alloc_pool (insn_reg_pool); 612 } 613 614 615 616 /* This page contains code dealing LRA insn info (or in other words 617 LRA internal insn representation). */ 618 619 /* Map INSN_CODE -> the static insn data. This info is valid during 620 all translation unit. */ 621 struct lra_static_insn_data *insn_code_data[LAST_INSN_CODE]; 622 623 /* Debug insns are represented as a special insn with one input 624 operand which is RTL expression in var_location. */ 625 626 /* The following data are used as static insn operand data for all 627 debug insns. If structure lra_operand_data is changed, the 628 initializer should be changed too. */ 629 static struct lra_operand_data debug_operand_data = 630 { 631 NULL, /* alternative */ 632 VOIDmode, /* We are not interesting in the operand mode. */ 633 OP_IN, 634 0, 0, 0, 0 635 }; 636 637 /* The following data are used as static insn data for all debug 638 insns. If structure lra_static_insn_data is changed, the 639 initializer should be changed too. */ 640 static struct lra_static_insn_data debug_insn_static_data = 641 { 642 &debug_operand_data, 643 0, /* Duplication operands #. */ 644 -1, /* Commutative operand #. */ 645 1, /* Operands #. There is only one operand which is debug RTL 646 expression. */ 647 0, /* Duplications #. */ 648 0, /* Alternatives #. We are not interesting in alternatives 649 because we does not proceed debug_insns for reloads. */ 650 NULL, /* Hard registers referenced in machine description. */ 651 NULL /* Descriptions of operands in alternatives. */ 652 }; 653 654 /* Called once per compiler work to initialize some LRA data related 655 to insns. */ 656 static void 657 init_insn_code_data_once (void) 658 { 659 memset (insn_code_data, 0, sizeof (insn_code_data)); 660 } 661 662 /* Called once per compiler work to finalize some LRA data related to 663 insns. */ 664 static void 665 finish_insn_code_data_once (void) 666 { 667 int i; 668 669 for (i = 0; i < LAST_INSN_CODE; i++) 670 { 671 if (insn_code_data[i] != NULL) 672 free (insn_code_data[i]); 673 } 674 } 675 676 /* Return static insn data, allocate and setup if necessary. Although 677 dup_num is static data (it depends only on icode), to set it up we 678 need to extract insn first. So recog_data should be valid for 679 normal insn (ICODE >= 0) before the call. */ 680 static struct lra_static_insn_data * 681 get_static_insn_data (int icode, int nop, int ndup, int nalt) 682 { 683 struct lra_static_insn_data *data; 684 size_t n_bytes; 685 686 lra_assert (icode < LAST_INSN_CODE); 687 if (icode >= 0 && (data = insn_code_data[icode]) != NULL) 688 return data; 689 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0); 690 n_bytes = sizeof (struct lra_static_insn_data) 691 + sizeof (struct lra_operand_data) * nop 692 + sizeof (int) * ndup; 693 data = XNEWVAR (struct lra_static_insn_data, n_bytes); 694 data->operand_alternative = NULL; 695 data->n_operands = nop; 696 data->n_dups = ndup; 697 data->n_alternatives = nalt; 698 data->operand = ((struct lra_operand_data *) 699 ((char *) data + sizeof (struct lra_static_insn_data))); 700 data->dup_num = ((int *) ((char *) data->operand 701 + sizeof (struct lra_operand_data) * nop)); 702 if (icode >= 0) 703 { 704 int i; 705 706 insn_code_data[icode] = data; 707 for (i = 0; i < nop; i++) 708 { 709 data->operand[i].constraint 710 = insn_data[icode].operand[i].constraint; 711 data->operand[i].mode = insn_data[icode].operand[i].mode; 712 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low; 713 data->operand[i].is_operator 714 = insn_data[icode].operand[i].is_operator; 715 data->operand[i].type 716 = (data->operand[i].constraint[0] == '=' ? OP_OUT 717 : data->operand[i].constraint[0] == '+' ? OP_INOUT 718 : OP_IN); 719 data->operand[i].is_address = false; 720 } 721 for (i = 0; i < ndup; i++) 722 data->dup_num[i] = recog_data.dup_num[i]; 723 } 724 return data; 725 } 726 727 /* The current length of the following array. */ 728 int lra_insn_recog_data_len; 729 730 /* Map INSN_UID -> the insn recog data (NULL if unknown). */ 731 lra_insn_recog_data_t *lra_insn_recog_data; 732 733 /* Initialize LRA data about insns. */ 734 static void 735 init_insn_recog_data (void) 736 { 737 lra_insn_recog_data_len = 0; 738 lra_insn_recog_data = NULL; 739 init_insn_regs (); 740 } 741 742 /* Expand, if necessary, LRA data about insns. */ 743 static void 744 check_and_expand_insn_recog_data (int index) 745 { 746 int i, old; 747 748 if (lra_insn_recog_data_len > index) 749 return; 750 old = lra_insn_recog_data_len; 751 lra_insn_recog_data_len = index * 3 / 2 + 1; 752 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t, 753 lra_insn_recog_data, 754 lra_insn_recog_data_len); 755 for (i = old; i < lra_insn_recog_data_len; i++) 756 lra_insn_recog_data[i] = NULL; 757 } 758 759 /* Finish LRA DATA about insn. */ 760 static void 761 free_insn_recog_data (lra_insn_recog_data_t data) 762 { 763 if (data->operand_loc != NULL) 764 free (data->operand_loc); 765 if (data->dup_loc != NULL) 766 free (data->dup_loc); 767 if (data->arg_hard_regs != NULL) 768 free (data->arg_hard_regs); 769 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn)) 770 { 771 if (data->insn_static_data->operand_alternative != NULL) 772 free (const_cast <operand_alternative *> 773 (data->insn_static_data->operand_alternative)); 774 free_insn_regs (data->insn_static_data->hard_regs); 775 free (data->insn_static_data); 776 } 777 free_insn_regs (data->regs); 778 data->regs = NULL; 779 free (data); 780 } 781 782 /* Finish LRA data about all insns. */ 783 static void 784 finish_insn_recog_data (void) 785 { 786 int i; 787 lra_insn_recog_data_t data; 788 789 for (i = 0; i < lra_insn_recog_data_len; i++) 790 if ((data = lra_insn_recog_data[i]) != NULL) 791 free_insn_recog_data (data); 792 finish_insn_regs (); 793 free (lra_insn_recog_data); 794 } 795 796 /* Setup info about operands in alternatives of LRA DATA of insn. */ 797 static void 798 setup_operand_alternative (lra_insn_recog_data_t data, 799 const operand_alternative *op_alt) 800 { 801 int i, j, nop, nalt; 802 int icode = data->icode; 803 struct lra_static_insn_data *static_data = data->insn_static_data; 804 805 static_data->commutative = -1; 806 nop = static_data->n_operands; 807 nalt = static_data->n_alternatives; 808 static_data->operand_alternative = op_alt; 809 for (i = 0; i < nop; i++) 810 { 811 static_data->operand[i].early_clobber = false; 812 static_data->operand[i].is_address = false; 813 if (static_data->operand[i].constraint[0] == '%') 814 { 815 /* We currently only support one commutative pair of operands. */ 816 if (static_data->commutative < 0) 817 static_data->commutative = i; 818 else 819 lra_assert (icode < 0); /* Asm */ 820 /* The last operand should not be marked commutative. */ 821 lra_assert (i != nop - 1); 822 } 823 } 824 for (j = 0; j < nalt; j++) 825 for (i = 0; i < nop; i++, op_alt++) 826 { 827 static_data->operand[i].early_clobber |= op_alt->earlyclobber; 828 static_data->operand[i].is_address |= op_alt->is_address; 829 } 830 } 831 832 /* Recursively process X and collect info about registers, which are 833 not the insn operands, in X with TYPE (in/out/inout) and flag that 834 it is early clobbered in the insn (EARLY_CLOBBER) and add the info 835 to LIST. X is a part of insn given by DATA. Return the result 836 list. */ 837 static struct lra_insn_reg * 838 collect_non_operand_hard_regs (rtx *x, lra_insn_recog_data_t data, 839 struct lra_insn_reg *list, 840 enum op_type type, bool early_clobber) 841 { 842 int i, j, regno, last; 843 bool subreg_p; 844 machine_mode mode; 845 struct lra_insn_reg *curr; 846 rtx op = *x; 847 enum rtx_code code = GET_CODE (op); 848 const char *fmt = GET_RTX_FORMAT (code); 849 850 for (i = 0; i < data->insn_static_data->n_operands; i++) 851 if (x == data->operand_loc[i]) 852 /* It is an operand loc. Stop here. */ 853 return list; 854 for (i = 0; i < data->insn_static_data->n_dups; i++) 855 if (x == data->dup_loc[i]) 856 /* It is a dup loc. Stop here. */ 857 return list; 858 mode = GET_MODE (op); 859 subreg_p = false; 860 if (code == SUBREG) 861 { 862 op = SUBREG_REG (op); 863 code = GET_CODE (op); 864 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (op))) 865 { 866 mode = GET_MODE (op); 867 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode)) 868 subreg_p = true; 869 } 870 } 871 if (REG_P (op)) 872 { 873 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER) 874 return list; 875 /* Process all regs even unallocatable ones as we need info 876 about all regs for rematerialization pass. */ 877 for (last = regno + hard_regno_nregs[regno][mode]; 878 regno < last; 879 regno++) 880 { 881 for (curr = list; curr != NULL; curr = curr->next) 882 if (curr->regno == regno && curr->subreg_p == subreg_p 883 && curr->biggest_mode == mode) 884 { 885 if (curr->type != type) 886 curr->type = OP_INOUT; 887 if (curr->early_clobber != early_clobber) 888 curr->early_clobber = true; 889 break; 890 } 891 if (curr == NULL) 892 { 893 /* This is a new hard regno or the info can not be 894 integrated into the found structure. */ 895 #ifdef STACK_REGS 896 early_clobber 897 = (early_clobber 898 /* This clobber is to inform popping floating 899 point stack only. */ 900 && ! (FIRST_STACK_REG <= regno 901 && regno <= LAST_STACK_REG)); 902 #endif 903 list = new_insn_reg (data->insn, regno, type, mode, subreg_p, 904 early_clobber, list); 905 } 906 } 907 return list; 908 } 909 switch (code) 910 { 911 case SET: 912 list = collect_non_operand_hard_regs (&SET_DEST (op), data, 913 list, OP_OUT, false); 914 list = collect_non_operand_hard_regs (&SET_SRC (op), data, 915 list, OP_IN, false); 916 break; 917 case CLOBBER: 918 /* We treat clobber of non-operand hard registers as early 919 clobber (the behavior is expected from asm). */ 920 list = collect_non_operand_hard_regs (&XEXP (op, 0), data, 921 list, OP_OUT, true); 922 break; 923 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: 924 list = collect_non_operand_hard_regs (&XEXP (op, 0), data, 925 list, OP_INOUT, false); 926 break; 927 case PRE_MODIFY: case POST_MODIFY: 928 list = collect_non_operand_hard_regs (&XEXP (op, 0), data, 929 list, OP_INOUT, false); 930 list = collect_non_operand_hard_regs (&XEXP (op, 1), data, 931 list, OP_IN, false); 932 break; 933 default: 934 fmt = GET_RTX_FORMAT (code); 935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 936 { 937 if (fmt[i] == 'e') 938 list = collect_non_operand_hard_regs (&XEXP (op, i), data, 939 list, OP_IN, false); 940 else if (fmt[i] == 'E') 941 for (j = XVECLEN (op, i) - 1; j >= 0; j--) 942 list = collect_non_operand_hard_regs (&XVECEXP (op, i, j), data, 943 list, OP_IN, false); 944 } 945 } 946 return list; 947 } 948 949 /* Set up and return info about INSN. Set up the info if it is not set up 950 yet. */ 951 lra_insn_recog_data_t 952 lra_set_insn_recog_data (rtx_insn *insn) 953 { 954 lra_insn_recog_data_t data; 955 int i, n, icode; 956 rtx **locs; 957 unsigned int uid = INSN_UID (insn); 958 struct lra_static_insn_data *insn_static_data; 959 960 check_and_expand_insn_recog_data (uid); 961 if (DEBUG_INSN_P (insn)) 962 icode = -1; 963 else 964 { 965 icode = INSN_CODE (insn); 966 if (icode < 0) 967 /* It might be a new simple insn which is not recognized yet. */ 968 INSN_CODE (insn) = icode = recog_memoized (insn); 969 } 970 data = XNEW (struct lra_insn_recog_data); 971 lra_insn_recog_data[uid] = data; 972 data->insn = insn; 973 data->used_insn_alternative = -1; 974 data->icode = icode; 975 data->regs = NULL; 976 if (DEBUG_INSN_P (insn)) 977 { 978 data->insn_static_data = &debug_insn_static_data; 979 data->dup_loc = NULL; 980 data->arg_hard_regs = NULL; 981 data->preferred_alternatives = ALL_ALTERNATIVES; 982 data->operand_loc = XNEWVEC (rtx *, 1); 983 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn); 984 return data; 985 } 986 if (icode < 0) 987 { 988 int nop, nalt; 989 machine_mode operand_mode[MAX_RECOG_OPERANDS]; 990 const char *constraints[MAX_RECOG_OPERANDS]; 991 992 nop = asm_noperands (PATTERN (insn)); 993 data->operand_loc = data->dup_loc = NULL; 994 nalt = 1; 995 if (nop < 0) 996 { 997 /* It is a special insn like USE or CLOBBER. We should 998 recognize any regular insn otherwise LRA can do nothing 999 with this insn. */ 1000 gcc_assert (GET_CODE (PATTERN (insn)) == USE 1001 || GET_CODE (PATTERN (insn)) == CLOBBER 1002 || GET_CODE (PATTERN (insn)) == ASM_INPUT); 1003 data->insn_static_data = insn_static_data 1004 = get_static_insn_data (-1, 0, 0, nalt); 1005 } 1006 else 1007 { 1008 /* expand_asm_operands makes sure there aren't too many 1009 operands. */ 1010 lra_assert (nop <= MAX_RECOG_OPERANDS); 1011 if (nop != 0) 1012 data->operand_loc = XNEWVEC (rtx *, nop); 1013 /* Now get the operand values and constraints out of the 1014 insn. */ 1015 decode_asm_operands (PATTERN (insn), NULL, 1016 data->operand_loc, 1017 constraints, operand_mode, NULL); 1018 if (nop > 0) 1019 { 1020 const char *p = recog_data.constraints[0]; 1021 1022 for (p = constraints[0]; *p; p++) 1023 nalt += *p == ','; 1024 } 1025 data->insn_static_data = insn_static_data 1026 = get_static_insn_data (-1, nop, 0, nalt); 1027 for (i = 0; i < nop; i++) 1028 { 1029 insn_static_data->operand[i].mode = operand_mode[i]; 1030 insn_static_data->operand[i].constraint = constraints[i]; 1031 insn_static_data->operand[i].strict_low = false; 1032 insn_static_data->operand[i].is_operator = false; 1033 insn_static_data->operand[i].is_address = false; 1034 } 1035 } 1036 for (i = 0; i < insn_static_data->n_operands; i++) 1037 insn_static_data->operand[i].type 1038 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT 1039 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT 1040 : OP_IN); 1041 data->preferred_alternatives = ALL_ALTERNATIVES; 1042 if (nop > 0) 1043 { 1044 operand_alternative *op_alt = XCNEWVEC (operand_alternative, 1045 nalt * nop); 1046 preprocess_constraints (nop, nalt, constraints, op_alt); 1047 setup_operand_alternative (data, op_alt); 1048 } 1049 } 1050 else 1051 { 1052 insn_extract (insn); 1053 data->insn_static_data = insn_static_data 1054 = get_static_insn_data (icode, insn_data[icode].n_operands, 1055 insn_data[icode].n_dups, 1056 insn_data[icode].n_alternatives); 1057 n = insn_static_data->n_operands; 1058 if (n == 0) 1059 locs = NULL; 1060 else 1061 { 1062 locs = XNEWVEC (rtx *, n); 1063 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *)); 1064 } 1065 data->operand_loc = locs; 1066 n = insn_static_data->n_dups; 1067 if (n == 0) 1068 locs = NULL; 1069 else 1070 { 1071 locs = XNEWVEC (rtx *, n); 1072 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *)); 1073 } 1074 data->dup_loc = locs; 1075 data->preferred_alternatives = get_preferred_alternatives (insn); 1076 const operand_alternative *op_alt = preprocess_insn_constraints (icode); 1077 if (!insn_static_data->operand_alternative) 1078 setup_operand_alternative (data, op_alt); 1079 else if (op_alt != insn_static_data->operand_alternative) 1080 insn_static_data->operand_alternative = op_alt; 1081 } 1082 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE) 1083 insn_static_data->hard_regs = NULL; 1084 else 1085 insn_static_data->hard_regs 1086 = collect_non_operand_hard_regs (&PATTERN (insn), data, 1087 NULL, OP_IN, false); 1088 data->arg_hard_regs = NULL; 1089 if (CALL_P (insn)) 1090 { 1091 bool use_p; 1092 rtx link; 1093 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER]; 1094 1095 n_hard_regs = 0; 1096 /* Finding implicit hard register usage. We believe it will be 1097 not changed whatever transformations are used. Call insns 1098 are such example. */ 1099 for (link = CALL_INSN_FUNCTION_USAGE (insn); 1100 link != NULL_RTX; 1101 link = XEXP (link, 1)) 1102 if (((use_p = GET_CODE (XEXP (link, 0)) == USE) 1103 || GET_CODE (XEXP (link, 0)) == CLOBBER) 1104 && REG_P (XEXP (XEXP (link, 0), 0))) 1105 { 1106 regno = REGNO (XEXP (XEXP (link, 0), 0)); 1107 lra_assert (regno < FIRST_PSEUDO_REGISTER); 1108 /* It is an argument register. */ 1109 for (i = (hard_regno_nregs 1110 [regno][GET_MODE (XEXP (XEXP (link, 0), 0))]) - 1; 1111 i >= 0; 1112 i--) 1113 arg_hard_regs[n_hard_regs++] 1114 = regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER); 1115 } 1116 if (n_hard_regs != 0) 1117 { 1118 arg_hard_regs[n_hard_regs++] = -1; 1119 data->arg_hard_regs = XNEWVEC (int, n_hard_regs); 1120 memcpy (data->arg_hard_regs, arg_hard_regs, 1121 sizeof (int) * n_hard_regs); 1122 } 1123 } 1124 /* Some output operand can be recognized only from the context not 1125 from the constraints which are empty in this case. Call insn may 1126 contain a hard register in set destination with empty constraint 1127 and extract_insn treats them as an input. */ 1128 for (i = 0; i < insn_static_data->n_operands; i++) 1129 { 1130 int j; 1131 rtx pat, set; 1132 struct lra_operand_data *operand = &insn_static_data->operand[i]; 1133 1134 /* ??? Should we treat 'X' the same way. It looks to me that 1135 'X' means anything and empty constraint means we do not 1136 care. */ 1137 if (operand->type != OP_IN || *operand->constraint != '\0' 1138 || operand->is_operator) 1139 continue; 1140 pat = PATTERN (insn); 1141 if (GET_CODE (pat) == SET) 1142 { 1143 if (data->operand_loc[i] != &SET_DEST (pat)) 1144 continue; 1145 } 1146 else if (GET_CODE (pat) == PARALLEL) 1147 { 1148 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--) 1149 { 1150 set = XVECEXP (PATTERN (insn), 0, j); 1151 if (GET_CODE (set) == SET 1152 && &SET_DEST (set) == data->operand_loc[i]) 1153 break; 1154 } 1155 if (j < 0) 1156 continue; 1157 } 1158 else 1159 continue; 1160 operand->type = OP_OUT; 1161 } 1162 return data; 1163 } 1164 1165 /* Return info about insn give by UID. The info should be already set 1166 up. */ 1167 static lra_insn_recog_data_t 1168 get_insn_recog_data_by_uid (int uid) 1169 { 1170 lra_insn_recog_data_t data; 1171 1172 data = lra_insn_recog_data[uid]; 1173 lra_assert (data != NULL); 1174 return data; 1175 } 1176 1177 /* Invalidate all info about insn given by its UID. */ 1178 static void 1179 invalidate_insn_recog_data (int uid) 1180 { 1181 lra_insn_recog_data_t data; 1182 1183 data = lra_insn_recog_data[uid]; 1184 lra_assert (data != NULL); 1185 free_insn_recog_data (data); 1186 lra_insn_recog_data[uid] = NULL; 1187 } 1188 1189 /* Update all the insn info about INSN. It is usually called when 1190 something in the insn was changed. Return the updated info. */ 1191 lra_insn_recog_data_t 1192 lra_update_insn_recog_data (rtx_insn *insn) 1193 { 1194 lra_insn_recog_data_t data; 1195 int n; 1196 unsigned int uid = INSN_UID (insn); 1197 struct lra_static_insn_data *insn_static_data; 1198 HOST_WIDE_INT sp_offset = 0; 1199 1200 check_and_expand_insn_recog_data (uid); 1201 if ((data = lra_insn_recog_data[uid]) != NULL 1202 && data->icode != INSN_CODE (insn)) 1203 { 1204 sp_offset = data->sp_offset; 1205 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn)); 1206 invalidate_insn_recog_data (uid); 1207 data = NULL; 1208 } 1209 if (data == NULL) 1210 { 1211 data = lra_get_insn_recog_data (insn); 1212 /* Initiate or restore SP offset. */ 1213 data->sp_offset = sp_offset; 1214 return data; 1215 } 1216 insn_static_data = data->insn_static_data; 1217 data->used_insn_alternative = -1; 1218 if (DEBUG_INSN_P (insn)) 1219 return data; 1220 if (data->icode < 0) 1221 { 1222 int nop; 1223 machine_mode operand_mode[MAX_RECOG_OPERANDS]; 1224 const char *constraints[MAX_RECOG_OPERANDS]; 1225 1226 nop = asm_noperands (PATTERN (insn)); 1227 if (nop >= 0) 1228 { 1229 lra_assert (nop == data->insn_static_data->n_operands); 1230 /* Now get the operand values and constraints out of the 1231 insn. */ 1232 decode_asm_operands (PATTERN (insn), NULL, 1233 data->operand_loc, 1234 constraints, operand_mode, NULL); 1235 #ifdef ENABLE_CHECKING 1236 { 1237 int i; 1238 1239 for (i = 0; i < nop; i++) 1240 lra_assert 1241 (insn_static_data->operand[i].mode == operand_mode[i] 1242 && insn_static_data->operand[i].constraint == constraints[i] 1243 && ! insn_static_data->operand[i].is_operator); 1244 } 1245 #endif 1246 } 1247 #ifdef ENABLE_CHECKING 1248 { 1249 int i; 1250 1251 for (i = 0; i < insn_static_data->n_operands; i++) 1252 lra_assert 1253 (insn_static_data->operand[i].type 1254 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT 1255 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT 1256 : OP_IN)); 1257 } 1258 #endif 1259 } 1260 else 1261 { 1262 insn_extract (insn); 1263 n = insn_static_data->n_operands; 1264 if (n != 0) 1265 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *)); 1266 n = insn_static_data->n_dups; 1267 if (n != 0) 1268 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *)); 1269 lra_assert (check_bool_attrs (insn)); 1270 } 1271 return data; 1272 } 1273 1274 /* Set up that INSN is using alternative ALT now. */ 1275 void 1276 lra_set_used_insn_alternative (rtx_insn *insn, int alt) 1277 { 1278 lra_insn_recog_data_t data; 1279 1280 data = lra_get_insn_recog_data (insn); 1281 data->used_insn_alternative = alt; 1282 } 1283 1284 /* Set up that insn with UID is using alternative ALT now. The insn 1285 info should be already set up. */ 1286 void 1287 lra_set_used_insn_alternative_by_uid (int uid, int alt) 1288 { 1289 lra_insn_recog_data_t data; 1290 1291 check_and_expand_insn_recog_data (uid); 1292 data = lra_insn_recog_data[uid]; 1293 lra_assert (data != NULL); 1294 data->used_insn_alternative = alt; 1295 } 1296 1297 1298 1299 /* This page contains code dealing with common register info and 1300 pseudo copies. */ 1301 1302 /* The size of the following array. */ 1303 static int reg_info_size; 1304 /* Common info about each register. */ 1305 struct lra_reg *lra_reg_info; 1306 1307 /* Last register value. */ 1308 static int last_reg_value; 1309 1310 /* Return new register value. */ 1311 static int 1312 get_new_reg_value (void) 1313 { 1314 return ++last_reg_value; 1315 } 1316 1317 /* Pools for copies. */ 1318 static alloc_pool copy_pool; 1319 1320 /* Vec referring to pseudo copies. */ 1321 static vec<lra_copy_t> copy_vec; 1322 1323 /* Initialize I-th element of lra_reg_info. */ 1324 static inline void 1325 initialize_lra_reg_info_element (int i) 1326 { 1327 bitmap_initialize (&lra_reg_info[i].insn_bitmap, ®_obstack); 1328 #ifdef STACK_REGS 1329 lra_reg_info[i].no_stack_p = false; 1330 #endif 1331 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs); 1332 CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set); 1333 lra_reg_info[i].preferred_hard_regno1 = -1; 1334 lra_reg_info[i].preferred_hard_regno2 = -1; 1335 lra_reg_info[i].preferred_hard_regno_profit1 = 0; 1336 lra_reg_info[i].preferred_hard_regno_profit2 = 0; 1337 lra_reg_info[i].biggest_mode = VOIDmode; 1338 lra_reg_info[i].live_ranges = NULL; 1339 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0; 1340 lra_reg_info[i].last_reload = 0; 1341 lra_reg_info[i].restore_regno = -1; 1342 lra_reg_info[i].val = get_new_reg_value (); 1343 lra_reg_info[i].offset = 0; 1344 lra_reg_info[i].copies = NULL; 1345 } 1346 1347 /* Initialize common reg info and copies. */ 1348 static void 1349 init_reg_info (void) 1350 { 1351 int i; 1352 1353 last_reg_value = 0; 1354 reg_info_size = max_reg_num () * 3 / 2 + 1; 1355 lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size); 1356 for (i = 0; i < reg_info_size; i++) 1357 initialize_lra_reg_info_element (i); 1358 copy_pool 1359 = create_alloc_pool ("lra copies", sizeof (struct lra_copy), 100); 1360 copy_vec.create (100); 1361 } 1362 1363 1364 /* Finish common reg info and copies. */ 1365 static void 1366 finish_reg_info (void) 1367 { 1368 int i; 1369 1370 for (i = 0; i < reg_info_size; i++) 1371 bitmap_clear (&lra_reg_info[i].insn_bitmap); 1372 free (lra_reg_info); 1373 reg_info_size = 0; 1374 free_alloc_pool (copy_pool); 1375 copy_vec.release (); 1376 } 1377 1378 /* Expand common reg info if it is necessary. */ 1379 static void 1380 expand_reg_info (void) 1381 { 1382 int i, old = reg_info_size; 1383 1384 if (reg_info_size > max_reg_num ()) 1385 return; 1386 reg_info_size = max_reg_num () * 3 / 2 + 1; 1387 lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size); 1388 for (i = old; i < reg_info_size; i++) 1389 initialize_lra_reg_info_element (i); 1390 } 1391 1392 /* Free all copies. */ 1393 void 1394 lra_free_copies (void) 1395 { 1396 lra_copy_t cp; 1397 1398 while (copy_vec.length () != 0) 1399 { 1400 cp = copy_vec.pop (); 1401 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL; 1402 pool_free (copy_pool, cp); 1403 } 1404 } 1405 1406 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution 1407 frequency is FREQ. */ 1408 void 1409 lra_create_copy (int regno1, int regno2, int freq) 1410 { 1411 bool regno1_dest_p; 1412 lra_copy_t cp; 1413 1414 lra_assert (regno1 != regno2); 1415 regno1_dest_p = true; 1416 if (regno1 > regno2) 1417 { 1418 int temp = regno2; 1419 1420 regno1_dest_p = false; 1421 regno2 = regno1; 1422 regno1 = temp; 1423 } 1424 cp = (lra_copy_t) pool_alloc (copy_pool); 1425 copy_vec.safe_push (cp); 1426 cp->regno1_dest_p = regno1_dest_p; 1427 cp->freq = freq; 1428 cp->regno1 = regno1; 1429 cp->regno2 = regno2; 1430 cp->regno1_next = lra_reg_info[regno1].copies; 1431 lra_reg_info[regno1].copies = cp; 1432 cp->regno2_next = lra_reg_info[regno2].copies; 1433 lra_reg_info[regno2].copies = cp; 1434 if (lra_dump_file != NULL) 1435 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n", 1436 regno1, regno1_dest_p ? "<-" : "->", regno2, freq); 1437 } 1438 1439 /* Return N-th (0, 1, ...) copy. If there is no copy, return 1440 NULL. */ 1441 lra_copy_t 1442 lra_get_copy (int n) 1443 { 1444 if (n >= (int) copy_vec.length ()) 1445 return NULL; 1446 return copy_vec[n]; 1447 } 1448 1449 1450 1451 /* This page contains code dealing with info about registers in 1452 insns. */ 1453 1454 /* Process X of insn UID recursively and add info (operand type is 1455 given by TYPE, flag of that it is early clobber is EARLY_CLOBBER) 1456 about registers in X to the insn DATA. */ 1457 static void 1458 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x, int uid, 1459 enum op_type type, bool early_clobber) 1460 { 1461 int i, j, regno; 1462 bool subreg_p; 1463 machine_mode mode; 1464 const char *fmt; 1465 enum rtx_code code; 1466 struct lra_insn_reg *curr; 1467 1468 code = GET_CODE (x); 1469 mode = GET_MODE (x); 1470 subreg_p = false; 1471 if (GET_CODE (x) == SUBREG) 1472 { 1473 x = SUBREG_REG (x); 1474 code = GET_CODE (x); 1475 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))) 1476 { 1477 mode = GET_MODE (x); 1478 if (GET_MODE_SIZE (mode) > REGMODE_NATURAL_SIZE (mode)) 1479 subreg_p = true; 1480 } 1481 } 1482 if (REG_P (x)) 1483 { 1484 regno = REGNO (x); 1485 /* Process all regs even unallocatable ones as we need info about 1486 all regs for rematerialization pass. */ 1487 expand_reg_info (); 1488 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, uid)) 1489 { 1490 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p, 1491 early_clobber, data->regs); 1492 return; 1493 } 1494 else 1495 { 1496 for (curr = data->regs; curr != NULL; curr = curr->next) 1497 if (curr->regno == regno) 1498 { 1499 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode) 1500 /* The info can not be integrated into the found 1501 structure. */ 1502 data->regs = new_insn_reg (data->insn, regno, type, mode, 1503 subreg_p, early_clobber, 1504 data->regs); 1505 else 1506 { 1507 if (curr->type != type) 1508 curr->type = OP_INOUT; 1509 if (curr->early_clobber != early_clobber) 1510 curr->early_clobber = true; 1511 } 1512 return; 1513 } 1514 gcc_unreachable (); 1515 } 1516 } 1517 1518 switch (code) 1519 { 1520 case SET: 1521 add_regs_to_insn_regno_info (data, SET_DEST (x), uid, OP_OUT, false); 1522 add_regs_to_insn_regno_info (data, SET_SRC (x), uid, OP_IN, false); 1523 break; 1524 case CLOBBER: 1525 /* We treat clobber of non-operand hard registers as early 1526 clobber (the behavior is expected from asm). */ 1527 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_OUT, true); 1528 break; 1529 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC: 1530 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false); 1531 break; 1532 case PRE_MODIFY: case POST_MODIFY: 1533 add_regs_to_insn_regno_info (data, XEXP (x, 0), uid, OP_INOUT, false); 1534 add_regs_to_insn_regno_info (data, XEXP (x, 1), uid, OP_IN, false); 1535 break; 1536 default: 1537 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT) 1538 /* Some targets place small structures in registers for return 1539 values of functions, and those registers are wrapped in 1540 PARALLEL that we may see as the destination of a SET. Here 1541 is an example: 1542 1543 (call_insn 13 12 14 2 (set (parallel:BLK [ 1544 (expr_list:REG_DEP_TRUE (reg:DI 0 ax) 1545 (const_int 0 [0])) 1546 (expr_list:REG_DEP_TRUE (reg:DI 1 dx) 1547 (const_int 8 [0x8])) 1548 ]) 1549 (call (mem:QI (symbol_ref:DI (... */ 1550 type = OP_IN; 1551 fmt = GET_RTX_FORMAT (code); 1552 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1553 { 1554 if (fmt[i] == 'e') 1555 add_regs_to_insn_regno_info (data, XEXP (x, i), uid, type, false); 1556 else if (fmt[i] == 'E') 1557 { 1558 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 1559 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), uid, 1560 type, false); 1561 } 1562 } 1563 } 1564 } 1565 1566 /* Return execution frequency of INSN. */ 1567 static int 1568 get_insn_freq (rtx_insn *insn) 1569 { 1570 basic_block bb = BLOCK_FOR_INSN (insn); 1571 1572 gcc_checking_assert (bb != NULL); 1573 return REG_FREQ_FROM_BB (bb); 1574 } 1575 1576 /* Invalidate all reg info of INSN with DATA and execution frequency 1577 FREQ. Update common info about the invalidated registers. */ 1578 static void 1579 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn, 1580 int freq) 1581 { 1582 int uid; 1583 bool debug_p; 1584 unsigned int i; 1585 struct lra_insn_reg *ir, *next_ir; 1586 1587 uid = INSN_UID (insn); 1588 debug_p = DEBUG_INSN_P (insn); 1589 for (ir = data->regs; ir != NULL; ir = next_ir) 1590 { 1591 i = ir->regno; 1592 next_ir = ir->next; 1593 free_insn_reg (ir); 1594 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid); 1595 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p) 1596 { 1597 lra_reg_info[i].nrefs--; 1598 lra_reg_info[i].freq -= freq; 1599 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0); 1600 } 1601 } 1602 data->regs = NULL; 1603 } 1604 1605 /* Invalidate all reg info of INSN. Update common info about the 1606 invalidated registers. */ 1607 void 1608 lra_invalidate_insn_regno_info (rtx_insn *insn) 1609 { 1610 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn, 1611 get_insn_freq (insn)); 1612 } 1613 1614 /* Update common reg info from reg info of insn given by its DATA and 1615 execution frequency FREQ. */ 1616 static void 1617 setup_insn_reg_info (lra_insn_recog_data_t data, int freq) 1618 { 1619 unsigned int i; 1620 struct lra_insn_reg *ir; 1621 1622 for (ir = data->regs; ir != NULL; ir = ir->next) 1623 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER) 1624 { 1625 lra_reg_info[i].nrefs++; 1626 lra_reg_info[i].freq += freq; 1627 } 1628 } 1629 1630 /* Set up insn reg info of INSN. Update common reg info from reg info 1631 of INSN. */ 1632 void 1633 lra_update_insn_regno_info (rtx_insn *insn) 1634 { 1635 int i, uid, freq; 1636 lra_insn_recog_data_t data; 1637 struct lra_static_insn_data *static_data; 1638 enum rtx_code code; 1639 rtx link; 1640 1641 if (! INSN_P (insn)) 1642 return; 1643 data = lra_get_insn_recog_data (insn); 1644 static_data = data->insn_static_data; 1645 freq = get_insn_freq (insn); 1646 invalidate_insn_data_regno_info (data, insn, freq); 1647 uid = INSN_UID (insn); 1648 for (i = static_data->n_operands - 1; i >= 0; i--) 1649 add_regs_to_insn_regno_info (data, *data->operand_loc[i], uid, 1650 static_data->operand[i].type, 1651 static_data->operand[i].early_clobber); 1652 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE) 1653 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), uid, 1654 code == USE ? OP_IN : OP_OUT, false); 1655 if (CALL_P (insn)) 1656 /* On some targets call insns can refer to pseudos in memory in 1657 CALL_INSN_FUNCTION_USAGE list. Process them in order to 1658 consider their occurrences in calls for different 1659 transformations (e.g. inheritance) with given pseudos. */ 1660 for (link = CALL_INSN_FUNCTION_USAGE (insn); 1661 link != NULL_RTX; 1662 link = XEXP (link, 1)) 1663 if (((code = GET_CODE (XEXP (link, 0))) == USE || code == CLOBBER) 1664 && MEM_P (XEXP (XEXP (link, 0), 0))) 1665 add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), uid, 1666 code == USE ? OP_IN : OP_OUT, false); 1667 if (NONDEBUG_INSN_P (insn)) 1668 setup_insn_reg_info (data, freq); 1669 } 1670 1671 /* Return reg info of insn given by it UID. */ 1672 struct lra_insn_reg * 1673 lra_get_insn_regs (int uid) 1674 { 1675 lra_insn_recog_data_t data; 1676 1677 data = get_insn_recog_data_by_uid (uid); 1678 return data->regs; 1679 } 1680 1681 1682 1683 /* This page contains code dealing with stack of the insns which 1684 should be processed by the next constraint pass. */ 1685 1686 /* Bitmap used to put an insn on the stack only in one exemplar. */ 1687 static sbitmap lra_constraint_insn_stack_bitmap; 1688 1689 /* The stack itself. */ 1690 vec<rtx_insn *> lra_constraint_insn_stack; 1691 1692 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg 1693 info for INSN, otherwise only update it if INSN is not already on the 1694 stack. */ 1695 static inline void 1696 lra_push_insn_1 (rtx_insn *insn, bool always_update) 1697 { 1698 unsigned int uid = INSN_UID (insn); 1699 if (always_update) 1700 lra_update_insn_regno_info (insn); 1701 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap)) 1702 lra_constraint_insn_stack_bitmap = 1703 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0); 1704 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid)) 1705 return; 1706 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid); 1707 if (! always_update) 1708 lra_update_insn_regno_info (insn); 1709 lra_constraint_insn_stack.safe_push (insn); 1710 } 1711 1712 /* Put INSN on the stack. */ 1713 void 1714 lra_push_insn (rtx_insn *insn) 1715 { 1716 lra_push_insn_1 (insn, false); 1717 } 1718 1719 /* Put INSN on the stack and update its reg info. */ 1720 void 1721 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn) 1722 { 1723 lra_push_insn_1 (insn, true); 1724 } 1725 1726 /* Put insn with UID on the stack. */ 1727 void 1728 lra_push_insn_by_uid (unsigned int uid) 1729 { 1730 lra_push_insn (lra_insn_recog_data[uid]->insn); 1731 } 1732 1733 /* Take the last-inserted insns off the stack and return it. */ 1734 rtx_insn * 1735 lra_pop_insn (void) 1736 { 1737 rtx_insn *insn = lra_constraint_insn_stack.pop (); 1738 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn)); 1739 return insn; 1740 } 1741 1742 /* Return the current size of the insn stack. */ 1743 unsigned int 1744 lra_insn_stack_length (void) 1745 { 1746 return lra_constraint_insn_stack.length (); 1747 } 1748 1749 /* Push insns FROM to TO (excluding it) going in reverse order. */ 1750 static void 1751 push_insns (rtx_insn *from, rtx_insn *to) 1752 { 1753 rtx_insn *insn; 1754 1755 if (from == NULL_RTX) 1756 return; 1757 for (insn = from; insn != to; insn = PREV_INSN (insn)) 1758 if (INSN_P (insn)) 1759 lra_push_insn (insn); 1760 } 1761 1762 /* Set up sp offset for insn in range [FROM, LAST]. The offset is 1763 taken from the next BB insn after LAST or zero if there in such 1764 insn. */ 1765 static void 1766 setup_sp_offset (rtx_insn *from, rtx_insn *last) 1767 { 1768 rtx_insn *before = next_nonnote_insn_bb (last); 1769 HOST_WIDE_INT offset = (before == NULL_RTX || ! INSN_P (before) 1770 ? 0 : lra_get_insn_recog_data (before)->sp_offset); 1771 1772 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn)) 1773 lra_get_insn_recog_data (insn)->sp_offset = offset; 1774 } 1775 1776 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the 1777 insns onto the stack. Print about emitting the insns with 1778 TITLE. */ 1779 void 1780 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after, 1781 const char *title) 1782 { 1783 rtx_insn *last; 1784 1785 if (before == NULL_RTX && after == NULL_RTX) 1786 return; 1787 if (lra_dump_file != NULL) 1788 { 1789 dump_insn_slim (lra_dump_file, insn); 1790 if (before != NULL_RTX) 1791 { 1792 fprintf (lra_dump_file," %s before:\n", title); 1793 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0); 1794 } 1795 if (after != NULL_RTX) 1796 { 1797 fprintf (lra_dump_file, " %s after:\n", title); 1798 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0); 1799 } 1800 fprintf (lra_dump_file, "\n"); 1801 } 1802 if (before != NULL_RTX) 1803 { 1804 if (cfun->can_throw_non_call_exceptions) 1805 copy_reg_eh_region_note_forward (insn, before, NULL); 1806 emit_insn_before (before, insn); 1807 push_insns (PREV_INSN (insn), PREV_INSN (before)); 1808 setup_sp_offset (before, PREV_INSN (insn)); 1809 } 1810 if (after != NULL_RTX) 1811 { 1812 if (cfun->can_throw_non_call_exceptions) 1813 copy_reg_eh_region_note_forward (insn, after, NULL); 1814 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last)) 1815 ; 1816 emit_insn_after (after, insn); 1817 push_insns (last, insn); 1818 setup_sp_offset (after, last); 1819 } 1820 if (cfun->can_throw_non_call_exceptions) 1821 { 1822 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX); 1823 if (note && !insn_could_throw_p (insn)) 1824 remove_note (insn, note); 1825 } 1826 } 1827 1828 1829 /* Replace all references to register OLD_REGNO in *LOC with pseudo 1830 register NEW_REG. Try to simplify subreg of constant if SUBREG_P. 1831 Return true if any change was made. */ 1832 bool 1833 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p) 1834 { 1835 rtx x = *loc; 1836 bool result = false; 1837 enum rtx_code code; 1838 const char *fmt; 1839 int i, j; 1840 1841 if (x == NULL_RTX) 1842 return false; 1843 1844 code = GET_CODE (x); 1845 if (code == SUBREG && subreg_p) 1846 { 1847 rtx subst, inner = SUBREG_REG (x); 1848 /* Transform subreg of constant while we still have inner mode 1849 of the subreg. The subreg internal should not be an insn 1850 operand. */ 1851 if (REG_P (inner) && (int) REGNO (inner) == old_regno 1852 && CONSTANT_P (new_reg) 1853 && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner), 1854 SUBREG_BYTE (x))) != NULL_RTX) 1855 { 1856 *loc = subst; 1857 return true; 1858 } 1859 1860 } 1861 else if (code == REG && (int) REGNO (x) == old_regno) 1862 { 1863 machine_mode mode = GET_MODE (x); 1864 machine_mode inner_mode = GET_MODE (new_reg); 1865 1866 if (mode != inner_mode 1867 && ! (CONST_INT_P (new_reg) && SCALAR_INT_MODE_P (mode))) 1868 { 1869 if (GET_MODE_SIZE (mode) >= GET_MODE_SIZE (inner_mode) 1870 || ! SCALAR_INT_MODE_P (inner_mode)) 1871 new_reg = gen_rtx_SUBREG (mode, new_reg, 0); 1872 else 1873 new_reg = gen_lowpart_SUBREG (mode, new_reg); 1874 } 1875 *loc = new_reg; 1876 return true; 1877 } 1878 1879 /* Scan all the operand sub-expressions. */ 1880 fmt = GET_RTX_FORMAT (code); 1881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1882 { 1883 if (fmt[i] == 'e') 1884 { 1885 if (lra_substitute_pseudo (&XEXP (x, i), old_regno, 1886 new_reg, subreg_p)) 1887 result = true; 1888 } 1889 else if (fmt[i] == 'E') 1890 { 1891 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 1892 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno, 1893 new_reg, subreg_p)) 1894 result = true; 1895 } 1896 } 1897 return result; 1898 } 1899 1900 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg 1901 of constant if SUBREG_P. This won't update the insn ptr, just the 1902 contents of the insn. */ 1903 bool 1904 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno, 1905 rtx new_reg, bool subreg_p) 1906 { 1907 rtx loc = insn; 1908 return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p); 1909 } 1910 1911 1912 1913 /* This page contains code dealing with scratches (changing them onto 1914 pseudos and restoring them from the pseudos). 1915 1916 We change scratches into pseudos at the beginning of LRA to 1917 simplify dealing with them (conflicts, hard register assignments). 1918 1919 If the pseudo denoting scratch was spilled it means that we do need 1920 a hard register for it. Such pseudos are transformed back to 1921 scratches at the end of LRA. */ 1922 1923 /* Description of location of a former scratch operand. */ 1924 struct sloc 1925 { 1926 rtx_insn *insn; /* Insn where the scratch was. */ 1927 int nop; /* Number of the operand which was a scratch. */ 1928 }; 1929 1930 typedef struct sloc *sloc_t; 1931 1932 /* Locations of the former scratches. */ 1933 static vec<sloc_t> scratches; 1934 1935 /* Bitmap of scratch regnos. */ 1936 static bitmap_head scratch_bitmap; 1937 1938 /* Bitmap of scratch operands. */ 1939 static bitmap_head scratch_operand_bitmap; 1940 1941 /* Return true if pseudo REGNO is made of SCRATCH. */ 1942 bool 1943 lra_former_scratch_p (int regno) 1944 { 1945 return bitmap_bit_p (&scratch_bitmap, regno); 1946 } 1947 1948 /* Return true if the operand NOP of INSN is a former scratch. */ 1949 bool 1950 lra_former_scratch_operand_p (rtx_insn *insn, int nop) 1951 { 1952 return bitmap_bit_p (&scratch_operand_bitmap, 1953 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0; 1954 } 1955 1956 /* Register operand NOP in INSN as a former scratch. It will be 1957 changed to scratch back, if it is necessary, at the LRA end. */ 1958 void 1959 lra_register_new_scratch_op (rtx_insn *insn, int nop) 1960 { 1961 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn); 1962 rtx op = *id->operand_loc[nop]; 1963 sloc_t loc = XNEW (struct sloc); 1964 lra_assert (REG_P (op)); 1965 loc->insn = insn; 1966 loc->nop = nop; 1967 scratches.safe_push (loc); 1968 bitmap_set_bit (&scratch_bitmap, REGNO (op)); 1969 bitmap_set_bit (&scratch_operand_bitmap, 1970 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop); 1971 add_reg_note (insn, REG_UNUSED, op); 1972 } 1973 1974 /* Change scratches onto pseudos and save their location. */ 1975 static void 1976 remove_scratches (void) 1977 { 1978 int i; 1979 bool insn_changed_p; 1980 basic_block bb; 1981 rtx_insn *insn; 1982 rtx reg; 1983 lra_insn_recog_data_t id; 1984 struct lra_static_insn_data *static_id; 1985 1986 scratches.create (get_max_uid ()); 1987 bitmap_initialize (&scratch_bitmap, ®_obstack); 1988 bitmap_initialize (&scratch_operand_bitmap, ®_obstack); 1989 FOR_EACH_BB_FN (bb, cfun) 1990 FOR_BB_INSNS (bb, insn) 1991 if (INSN_P (insn)) 1992 { 1993 id = lra_get_insn_recog_data (insn); 1994 static_id = id->insn_static_data; 1995 insn_changed_p = false; 1996 for (i = 0; i < static_id->n_operands; i++) 1997 if (GET_CODE (*id->operand_loc[i]) == SCRATCH 1998 && GET_MODE (*id->operand_loc[i]) != VOIDmode) 1999 { 2000 insn_changed_p = true; 2001 *id->operand_loc[i] = reg 2002 = lra_create_new_reg (static_id->operand[i].mode, 2003 *id->operand_loc[i], ALL_REGS, NULL); 2004 lra_register_new_scratch_op (insn, i); 2005 if (lra_dump_file != NULL) 2006 fprintf (lra_dump_file, 2007 "Removing SCRATCH in insn #%u (nop %d)\n", 2008 INSN_UID (insn), i); 2009 } 2010 if (insn_changed_p) 2011 /* Because we might use DF right after caller-saves sub-pass 2012 we need to keep DF info up to date. */ 2013 df_insn_rescan (insn); 2014 } 2015 } 2016 2017 /* Changes pseudos created by function remove_scratches onto scratches. */ 2018 static void 2019 restore_scratches (void) 2020 { 2021 int regno; 2022 unsigned i; 2023 sloc_t loc; 2024 rtx_insn *last = NULL; 2025 lra_insn_recog_data_t id = NULL; 2026 2027 for (i = 0; scratches.iterate (i, &loc); i++) 2028 { 2029 if (last != loc->insn) 2030 { 2031 last = loc->insn; 2032 id = lra_get_insn_recog_data (last); 2033 } 2034 if (REG_P (*id->operand_loc[loc->nop]) 2035 && ((regno = REGNO (*id->operand_loc[loc->nop])) 2036 >= FIRST_PSEUDO_REGISTER) 2037 && lra_get_regno_hard_regno (regno) < 0) 2038 { 2039 /* It should be only case when scratch register with chosen 2040 constraint 'X' did not get memory or hard register. */ 2041 lra_assert (lra_former_scratch_p (regno)); 2042 *id->operand_loc[loc->nop] 2043 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop])); 2044 lra_update_dup (id, loc->nop); 2045 if (lra_dump_file != NULL) 2046 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n", 2047 INSN_UID (loc->insn), loc->nop); 2048 } 2049 } 2050 for (i = 0; scratches.iterate (i, &loc); i++) 2051 free (loc); 2052 scratches.release (); 2053 bitmap_clear (&scratch_bitmap); 2054 bitmap_clear (&scratch_operand_bitmap); 2055 } 2056 2057 2058 2059 #ifdef ENABLE_CHECKING 2060 2061 /* Function checks RTL for correctness. If FINAL_P is true, it is 2062 done at the end of LRA and the check is more rigorous. */ 2063 static void 2064 check_rtl (bool final_p) 2065 { 2066 basic_block bb; 2067 rtx_insn *insn; 2068 2069 lra_assert (! final_p || reload_completed); 2070 FOR_EACH_BB_FN (bb, cfun) 2071 FOR_BB_INSNS (bb, insn) 2072 if (NONDEBUG_INSN_P (insn) 2073 && GET_CODE (PATTERN (insn)) != USE 2074 && GET_CODE (PATTERN (insn)) != CLOBBER 2075 && GET_CODE (PATTERN (insn)) != ASM_INPUT) 2076 { 2077 if (final_p) 2078 { 2079 #ifdef ENABLED_CHECKING 2080 extract_constrain_insn (insn); 2081 #endif 2082 continue; 2083 } 2084 /* LRA code is based on assumption that all addresses can be 2085 correctly decomposed. LRA can generate reloads for 2086 decomposable addresses. The decomposition code checks the 2087 correctness of the addresses. So we don't need to check 2088 the addresses here. Don't call insn_invalid_p here, it can 2089 change the code at this stage. */ 2090 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0) 2091 fatal_insn_not_found (insn); 2092 } 2093 } 2094 #endif /* #ifdef ENABLE_CHECKING */ 2095 2096 /* Determine if the current function has an exception receiver block 2097 that reaches the exit block via non-exceptional edges */ 2098 static bool 2099 has_nonexceptional_receiver (void) 2100 { 2101 edge e; 2102 edge_iterator ei; 2103 basic_block *tos, *worklist, bb; 2104 2105 /* If we're not optimizing, then just err on the safe side. */ 2106 if (!optimize) 2107 return true; 2108 2109 /* First determine which blocks can reach exit via normal paths. */ 2110 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1); 2111 2112 FOR_EACH_BB_FN (bb, cfun) 2113 bb->flags &= ~BB_REACHABLE; 2114 2115 /* Place the exit block on our worklist. */ 2116 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE; 2117 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun); 2118 2119 /* Iterate: find everything reachable from what we've already seen. */ 2120 while (tos != worklist) 2121 { 2122 bb = *--tos; 2123 2124 FOR_EACH_EDGE (e, ei, bb->preds) 2125 if (e->flags & EDGE_ABNORMAL) 2126 { 2127 free (worklist); 2128 return true; 2129 } 2130 else 2131 { 2132 basic_block src = e->src; 2133 2134 if (!(src->flags & BB_REACHABLE)) 2135 { 2136 src->flags |= BB_REACHABLE; 2137 *tos++ = src; 2138 } 2139 } 2140 } 2141 free (worklist); 2142 /* No exceptional block reached exit unexceptionally. */ 2143 return false; 2144 } 2145 2146 #ifdef AUTO_INC_DEC 2147 2148 /* Process recursively X of INSN and add REG_INC notes if necessary. */ 2149 static void 2150 add_auto_inc_notes (rtx_insn *insn, rtx x) 2151 { 2152 enum rtx_code code = GET_CODE (x); 2153 const char *fmt; 2154 int i, j; 2155 2156 if (code == MEM && auto_inc_p (XEXP (x, 0))) 2157 { 2158 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0)); 2159 return; 2160 } 2161 2162 /* Scan all X sub-expressions. */ 2163 fmt = GET_RTX_FORMAT (code); 2164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 2165 { 2166 if (fmt[i] == 'e') 2167 add_auto_inc_notes (insn, XEXP (x, i)); 2168 else if (fmt[i] == 'E') 2169 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 2170 add_auto_inc_notes (insn, XVECEXP (x, i, j)); 2171 } 2172 } 2173 2174 #endif 2175 2176 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC. 2177 We change pseudos by hard registers without notification of DF and 2178 that can make the notes obsolete. DF-infrastructure does not deal 2179 with REG_INC notes -- so we should regenerate them here. */ 2180 static void 2181 update_inc_notes (void) 2182 { 2183 rtx *pnote; 2184 basic_block bb; 2185 rtx_insn *insn; 2186 2187 FOR_EACH_BB_FN (bb, cfun) 2188 FOR_BB_INSNS (bb, insn) 2189 if (NONDEBUG_INSN_P (insn)) 2190 { 2191 pnote = ®_NOTES (insn); 2192 while (*pnote != 0) 2193 { 2194 if (REG_NOTE_KIND (*pnote) == REG_DEAD 2195 || REG_NOTE_KIND (*pnote) == REG_UNUSED 2196 || REG_NOTE_KIND (*pnote) == REG_INC) 2197 *pnote = XEXP (*pnote, 1); 2198 else 2199 pnote = &XEXP (*pnote, 1); 2200 } 2201 #ifdef AUTO_INC_DEC 2202 add_auto_inc_notes (insn, PATTERN (insn)); 2203 #endif 2204 } 2205 } 2206 2207 /* Set to 1 while in lra. */ 2208 int lra_in_progress; 2209 2210 /* Start of pseudo regnos before the LRA. */ 2211 int lra_new_regno_start; 2212 2213 /* Start of reload pseudo regnos before the new spill pass. */ 2214 int lra_constraint_new_regno_start; 2215 2216 /* Avoid spilling pseudos with regno more than the following value if 2217 it is possible. */ 2218 int lra_bad_spill_regno_start; 2219 2220 /* Inheritance pseudo regnos before the new spill pass. */ 2221 bitmap_head lra_inheritance_pseudos; 2222 2223 /* Split regnos before the new spill pass. */ 2224 bitmap_head lra_split_regs; 2225 2226 /* Reload pseudo regnos before the new assignmnet pass which still can 2227 be spilled after the assinment pass as memory is also accepted in 2228 insns for the reload pseudos. */ 2229 bitmap_head lra_optional_reload_pseudos; 2230 2231 /* Pseudo regnos used for subreg reloads before the new assignment 2232 pass. Such pseudos still can be spilled after the assinment 2233 pass. */ 2234 bitmap_head lra_subreg_reload_pseudos; 2235 2236 /* File used for output of LRA debug information. */ 2237 FILE *lra_dump_file; 2238 2239 /* True if we should try spill into registers of different classes 2240 instead of memory. */ 2241 bool lra_reg_spill_p; 2242 2243 /* Set up value LRA_REG_SPILL_P. */ 2244 static void 2245 setup_reg_spill_flag (void) 2246 { 2247 int cl, mode; 2248 2249 if (targetm.spill_class != NULL) 2250 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++) 2251 for (mode = 0; mode < MAX_MACHINE_MODE; mode++) 2252 if (targetm.spill_class ((enum reg_class) cl, 2253 (machine_mode) mode) != NO_REGS) 2254 { 2255 lra_reg_spill_p = true; 2256 return; 2257 } 2258 lra_reg_spill_p = false; 2259 } 2260 2261 /* True if the current function is too big to use regular algorithms 2262 in LRA. In other words, we should use simpler and faster algorithms 2263 in LRA. It also means we should not worry about generation code 2264 for caller saves. The value is set up in IRA. */ 2265 bool lra_simple_p; 2266 2267 /* Major LRA entry function. F is a file should be used to dump LRA 2268 debug info. */ 2269 void 2270 lra (FILE *f) 2271 { 2272 int i; 2273 bool live_p, scratch_p, inserted_p; 2274 2275 lra_dump_file = f; 2276 2277 timevar_push (TV_LRA); 2278 2279 /* Make sure that the last insn is a note. Some subsequent passes 2280 need it. */ 2281 emit_note (NOTE_INSN_DELETED); 2282 2283 COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs); 2284 2285 init_reg_info (); 2286 expand_reg_info (); 2287 2288 init_insn_recog_data (); 2289 2290 #ifdef ENABLE_CHECKING 2291 /* Some quick check on RTL generated by previous passes. */ 2292 check_rtl (false); 2293 #endif 2294 2295 lra_in_progress = 1; 2296 2297 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0; 2298 lra_assignment_iter = lra_assignment_iter_after_spill = 0; 2299 lra_inheritance_iter = lra_undo_inheritance_iter = 0; 2300 lra_rematerialization_iter = 0; 2301 2302 setup_reg_spill_flag (); 2303 2304 /* Function remove_scratches can creates new pseudos for clobbers -- 2305 so set up lra_constraint_new_regno_start before its call to 2306 permit changing reg classes for pseudos created by this 2307 simplification. */ 2308 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num (); 2309 lra_bad_spill_regno_start = INT_MAX; 2310 remove_scratches (); 2311 scratch_p = lra_constraint_new_regno_start != max_reg_num (); 2312 2313 /* A function that has a non-local label that can reach the exit 2314 block via non-exceptional paths must save all call-saved 2315 registers. */ 2316 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ()) 2317 crtl->saves_all_registers = 1; 2318 2319 if (crtl->saves_all_registers) 2320 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 2321 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i)) 2322 df_set_regs_ever_live (i, true); 2323 2324 /* We don't DF from now and avoid its using because it is to 2325 expensive when a lot of RTL changes are made. */ 2326 df_set_flags (DF_NO_INSN_RESCAN); 2327 lra_constraint_insn_stack.create (get_max_uid ()); 2328 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ()); 2329 bitmap_clear (lra_constraint_insn_stack_bitmap); 2330 lra_live_ranges_init (); 2331 lra_constraints_init (); 2332 lra_curr_reload_num = 0; 2333 push_insns (get_last_insn (), NULL); 2334 /* It is needed for the 1st coalescing. */ 2335 bitmap_initialize (&lra_inheritance_pseudos, ®_obstack); 2336 bitmap_initialize (&lra_split_regs, ®_obstack); 2337 bitmap_initialize (&lra_optional_reload_pseudos, ®_obstack); 2338 bitmap_initialize (&lra_subreg_reload_pseudos, ®_obstack); 2339 live_p = false; 2340 if (get_frame_size () != 0 && crtl->stack_alignment_needed) 2341 /* If we have a stack frame, we must align it now. The stack size 2342 may be a part of the offset computation for register 2343 elimination. */ 2344 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed); 2345 lra_init_equiv (); 2346 for (;;) 2347 { 2348 for (;;) 2349 { 2350 /* We should try to assign hard registers to scratches even 2351 if there were no RTL transformations in 2352 lra_constraints. */ 2353 if (! lra_constraints (lra_constraint_iter == 0) 2354 && (lra_constraint_iter > 1 2355 || (! scratch_p && ! caller_save_needed))) 2356 break; 2357 /* Constraint transformations may result in that eliminable 2358 hard regs become uneliminable and pseudos which use them 2359 should be spilled. It is better to do it before pseudo 2360 assignments. 2361 2362 For example, rs6000 can make 2363 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started 2364 to use a constant pool. */ 2365 lra_eliminate (false, false); 2366 /* Do inheritance only for regular algorithms. */ 2367 if (! lra_simple_p) 2368 { 2369 if (flag_ipa_ra) 2370 { 2371 if (live_p) 2372 lra_clear_live_ranges (); 2373 /* As a side-effect of lra_create_live_ranges, we calculate 2374 actual_call_used_reg_set, which is needed during 2375 lra_inheritance. */ 2376 lra_create_live_ranges (true, true); 2377 live_p = true; 2378 } 2379 lra_inheritance (); 2380 } 2381 if (live_p) 2382 lra_clear_live_ranges (); 2383 /* We need live ranges for lra_assign -- so build them. But 2384 don't remove dead insns or change global live info as we 2385 can undo inheritance transformations after inheritance 2386 pseudo assigning. */ 2387 lra_create_live_ranges (true, false); 2388 live_p = true; 2389 /* If we don't spill non-reload and non-inheritance pseudos, 2390 there is no sense to run memory-memory move coalescing. 2391 If inheritance pseudos were spilled, the memory-memory 2392 moves involving them will be removed by pass undoing 2393 inheritance. */ 2394 if (lra_simple_p) 2395 lra_assign (); 2396 else 2397 { 2398 bool spill_p = !lra_assign (); 2399 2400 if (lra_undo_inheritance ()) 2401 live_p = false; 2402 if (spill_p) 2403 { 2404 if (! live_p) 2405 { 2406 lra_create_live_ranges (true, true); 2407 live_p = true; 2408 } 2409 if (lra_coalesce ()) 2410 live_p = false; 2411 } 2412 if (! live_p) 2413 lra_clear_live_ranges (); 2414 } 2415 } 2416 /* Don't clear optional reloads bitmap until all constraints are 2417 satisfied as we need to differ them from regular reloads. */ 2418 bitmap_clear (&lra_optional_reload_pseudos); 2419 bitmap_clear (&lra_subreg_reload_pseudos); 2420 bitmap_clear (&lra_inheritance_pseudos); 2421 bitmap_clear (&lra_split_regs); 2422 if (! live_p) 2423 { 2424 /* We need full live info for spilling pseudos into 2425 registers instead of memory. */ 2426 lra_create_live_ranges (lra_reg_spill_p, true); 2427 live_p = true; 2428 } 2429 /* We should check necessity for spilling here as the above live 2430 range pass can remove spilled pseudos. */ 2431 if (! lra_need_for_spills_p ()) 2432 break; 2433 /* Now we know what pseudos should be spilled. Try to 2434 rematerialize them first. */ 2435 if (lra_remat ()) 2436 { 2437 /* We need full live info -- see the comment above. */ 2438 lra_create_live_ranges (lra_reg_spill_p, true); 2439 live_p = true; 2440 if (! lra_need_for_spills_p ()) 2441 break; 2442 } 2443 lra_spill (); 2444 /* Assignment of stack slots changes elimination offsets for 2445 some eliminations. So update the offsets here. */ 2446 lra_eliminate (false, false); 2447 lra_constraint_new_regno_start = max_reg_num (); 2448 if (lra_bad_spill_regno_start == INT_MAX 2449 && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES 2450 && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES) 2451 /* After switching off inheritance and rematerialization 2452 passes, avoid spilling reload pseudos will be created to 2453 prevent LRA cycling in some complicated cases. */ 2454 lra_bad_spill_regno_start = lra_constraint_new_regno_start; 2455 lra_assignment_iter_after_spill = 0; 2456 } 2457 restore_scratches (); 2458 lra_eliminate (true, false); 2459 lra_final_code_change (); 2460 lra_in_progress = 0; 2461 if (live_p) 2462 lra_clear_live_ranges (); 2463 lra_live_ranges_finish (); 2464 lra_constraints_finish (); 2465 finish_reg_info (); 2466 sbitmap_free (lra_constraint_insn_stack_bitmap); 2467 lra_constraint_insn_stack.release (); 2468 finish_insn_recog_data (); 2469 regstat_free_n_sets_and_refs (); 2470 regstat_free_ri (); 2471 reload_completed = 1; 2472 update_inc_notes (); 2473 2474 inserted_p = fixup_abnormal_edges (); 2475 2476 /* We've possibly turned single trapping insn into multiple ones. */ 2477 if (cfun->can_throw_non_call_exceptions) 2478 { 2479 sbitmap blocks; 2480 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun)); 2481 bitmap_ones (blocks); 2482 find_many_sub_basic_blocks (blocks); 2483 sbitmap_free (blocks); 2484 } 2485 2486 if (inserted_p) 2487 commit_edge_insertions (); 2488 2489 /* Replacing pseudos with their memory equivalents might have 2490 created shared rtx. Subsequent passes would get confused 2491 by this, so unshare everything here. */ 2492 unshare_all_rtl_again (get_insns ()); 2493 2494 #ifdef ENABLE_CHECKING 2495 check_rtl (true); 2496 #endif 2497 2498 timevar_pop (TV_LRA); 2499 } 2500 2501 /* Called once per compiler to initialize LRA data once. */ 2502 void 2503 lra_init_once (void) 2504 { 2505 init_insn_code_data_once (); 2506 } 2507 2508 /* Called once per compiler to finish LRA data which are initialize 2509 once. */ 2510 void 2511 lra_finish_once (void) 2512 { 2513 finish_insn_code_data_once (); 2514 } 2515