xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/lra-constraints.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /* Code for RTL transformations to satisfy insn constraints.
2    Copyright (C) 2010-2017 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it under
8    the terms of the GNU General Public License as published by the Free
9    Software Foundation; either version 3, or (at your option) any later
10    version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13    WARRANTY; without even the implied warranty of MERCHANTABILITY or
14    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15    for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 
22 /* This file contains code for 3 passes: constraint pass,
23    inheritance/split pass, and pass for undoing failed inheritance and
24    split.
25 
26    The major goal of constraint pass is to transform RTL to satisfy
27    insn and address constraints by:
28      o choosing insn alternatives;
29      o generating *reload insns* (or reloads in brief) and *reload
30        pseudos* which will get necessary hard registers later;
31      o substituting pseudos with equivalent values and removing the
32        instructions that initialized those pseudos.
33 
34    The constraint pass has biggest and most complicated code in LRA.
35    There are a lot of important details like:
36      o reuse of input reload pseudos to simplify reload pseudo
37        allocations;
38      o some heuristics to choose insn alternative to improve the
39        inheritance;
40      o early clobbers etc.
41 
42    The pass is mimicking former reload pass in alternative choosing
43    because the reload pass is oriented to current machine description
44    model.  It might be changed if the machine description model is
45    changed.
46 
47    There is special code for preventing all LRA and this pass cycling
48    in case of bugs.
49 
50    On the first iteration of the pass we process every instruction and
51    choose an alternative for each one.  On subsequent iterations we try
52    to avoid reprocessing instructions if we can be sure that the old
53    choice is still valid.
54 
55    The inheritance/spilt pass is to transform code to achieve
56    ineheritance and live range splitting.  It is done on backward
57    traversal of EBBs.
58 
59    The inheritance optimization goal is to reuse values in hard
60    registers. There is analogous optimization in old reload pass.  The
61    inheritance is achieved by following transformation:
62 
63        reload_p1 <- p	     reload_p1 <- p
64        ...		     new_p <- reload_p1
65        ...		=>   ...
66        reload_p2 <- p	     reload_p2 <- new_p
67 
68    where p is spilled and not changed between the insns.  Reload_p1 is
69    also called *original pseudo* and new_p is called *inheritance
70    pseudo*.
71 
72    The subsequent assignment pass will try to assign the same (or
73    another if it is not possible) hard register to new_p as to
74    reload_p1 or reload_p2.
75 
76    If the assignment pass fails to assign a hard register to new_p,
77    this file will undo the inheritance and restore the original code.
78    This is because implementing the above sequence with a spilled
79    new_p would make the code much worse.  The inheritance is done in
80    EBB scope.  The above is just a simplified example to get an idea
81    of the inheritance as the inheritance is also done for non-reload
82    insns.
83 
84    Splitting (transformation) is also done in EBB scope on the same
85    pass as the inheritance:
86 
87        r <- ... or ... <- r		 r <- ... or ... <- r
88        ...				 s <- r (new insn -- save)
89        ...			  =>
90        ...				 r <- s (new insn -- restore)
91        ... <- r				 ... <- r
92 
93     The *split pseudo* s is assigned to the hard register of the
94     original pseudo or hard register r.
95 
96     Splitting is done:
97       o In EBBs with high register pressure for global pseudos (living
98 	in at least 2 BBs) and assigned to hard registers when there
99 	are more one reloads needing the hard registers;
100       o for pseudos needing save/restore code around calls.
101 
102     If the split pseudo still has the same hard register as the
103     original pseudo after the subsequent assignment pass or the
104     original pseudo was split, the opposite transformation is done on
105     the same pass for undoing inheritance.  */
106 
107 #undef REG_OK_STRICT
108 
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
134 
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136    insn.  Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137    reload insns.  */
138 static int bb_reload_num;
139 
140 /* The current insn being processed and corresponding its single set
141    (NULL otherwise), its data (basic block, the insn data, the insn
142    static data, and the mode of each operand).  */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150    (e.g. constant) and whose subreg is given operand of the current
151    insn.  VOIDmode in all other cases.  */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
153 
154 
155 
156 /* Start numbers for new registers and insns at the current constraints
157    pass start.	*/
158 static int new_regno_start;
159 static int new_insn_uid_start;
160 
161 /* If LOC is nonnull, strip any outer subreg from it.  */
162 static inline rtx *
163 strip_subreg (rtx *loc)
164 {
165   return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
166 }
167 
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169    register, use a hard register from its allocno class.  */
170 static int
171 get_try_hard_regno (int regno)
172 {
173   int hard_regno;
174   enum reg_class rclass;
175 
176   if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177     hard_regno = lra_get_regno_hard_regno (regno);
178   if (hard_regno >= 0)
179     return hard_regno;
180   rclass = lra_get_allocno_class (regno);
181   if (rclass == NO_REGS)
182     return -1;
183   return ira_class_hard_regs[rclass][0];
184 }
185 
186 /* Return the hard regno of X after removing its subreg.  If X is not
187    a register or a subreg of a register, return -1.  If X is a pseudo,
188    use its assignment.  If FINAL_P return the final hard regno which will
189    be after elimination.  */
190 static int
191 get_hard_regno (rtx x, bool final_p)
192 {
193   rtx reg;
194   int hard_regno;
195 
196   reg = x;
197   if (SUBREG_P (x))
198     reg = SUBREG_REG (x);
199   if (! REG_P (reg))
200     return -1;
201   if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202     hard_regno = lra_get_regno_hard_regno (hard_regno);
203   if (hard_regno < 0)
204     return -1;
205   if (final_p)
206     hard_regno = lra_get_elimination_hard_regno (hard_regno);
207   if (SUBREG_P (x))
208     hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 				       SUBREG_BYTE (x),  GET_MODE (x));
210   return hard_regno;
211 }
212 
213 /* If REGNO is a hard register or has been allocated a hard register,
214    return the class of that register.  If REGNO is a reload pseudo
215    created by the current constraints pass, return its allocno class.
216    Return NO_REGS otherwise.  */
217 static enum reg_class
218 get_reg_class (int regno)
219 {
220   int hard_regno;
221 
222   if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223     hard_regno = lra_get_regno_hard_regno (regno);
224   if (hard_regno >= 0)
225     {
226       hard_regno = lra_get_elimination_hard_regno (hard_regno);
227       return REGNO_REG_CLASS (hard_regno);
228     }
229   if (regno >= new_regno_start)
230     return lra_get_allocno_class (regno);
231   return NO_REGS;
232 }
233 
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235    CL.  Use elimination first if REG is a hard register.  If REG is a
236    reload pseudo created by this constraints pass, assume that it will
237    be allocated a hard register from its allocno class, but allow that
238    class to be narrowed to CL if it is currently a superset of CL.
239 
240    If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241    REGNO (reg), or NO_REGS if no change in its class was needed.  */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
244 {
245   enum reg_class rclass, common_class;
246   machine_mode reg_mode;
247   int class_size, hard_regno, nregs, i, j;
248   int regno = REGNO (reg);
249 
250   if (new_class != NULL)
251     *new_class = NO_REGS;
252   if (regno < FIRST_PSEUDO_REGISTER)
253     {
254       rtx final_reg = reg;
255       rtx *final_loc = &final_reg;
256 
257       lra_eliminate_reg_if_possible (final_loc);
258       return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
259     }
260   reg_mode = GET_MODE (reg);
261   rclass = get_reg_class (regno);
262   if (regno < new_regno_start
263       /* Do not allow the constraints for reload instructions to
264 	 influence the classes of new pseudos.  These reloads are
265 	 typically moves that have many alternatives, and restricting
266 	 reload pseudos for one alternative may lead to situations
267 	 where other reload pseudos are no longer allocatable.  */
268       || (INSN_UID (curr_insn) >= new_insn_uid_start
269 	  && curr_insn_set != NULL
270 	  && ((OBJECT_P (SET_SRC (curr_insn_set))
271 	       && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 	      || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 		  && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 		  && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275     /* When we don't know what class will be used finally for reload
276        pseudos, we use ALL_REGS.  */
277     return ((regno >= new_regno_start && rclass == ALL_REGS)
278 	    || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 		&& ! hard_reg_set_subset_p (reg_class_contents[cl],
280 					    lra_no_alloc_regs)));
281   else
282     {
283       common_class = ira_reg_class_subset[rclass][cl];
284       if (new_class != NULL)
285 	*new_class = common_class;
286       if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 				 lra_no_alloc_regs))
288 	return false;
289       /* Check that there are enough allocatable regs.  */
290       class_size = ira_class_hard_regs_num[common_class];
291       for (i = 0; i < class_size; i++)
292 	{
293 	  hard_regno = ira_class_hard_regs[common_class][i];
294 	  nregs = hard_regno_nregs[hard_regno][reg_mode];
295 	  if (nregs == 1)
296 	    return true;
297 	  for (j = 0; j < nregs; j++)
298 	    if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 		|| ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 					hard_regno + j))
301 	      break;
302 	  if (j >= nregs)
303 	    return true;
304 	}
305       return false;
306     }
307 }
308 
309 /* Return true if REGNO satisfies a memory constraint.	*/
310 static bool
311 in_mem_p (int regno)
312 {
313   return get_reg_class (regno) == NO_REGS;
314 }
315 
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317    space AS, and check that each pseudo has the proper kind of hard
318    reg.	 */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 		 rtx addr, addr_space_t as)
322 {
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324   lra_assert (ADDR_SPACE_GENERIC_P (as));
325   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326   return 0;
327 
328  win:
329   return 1;
330 #else
331   return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
333 }
334 
335 namespace {
336   /* Temporarily eliminates registers in an address (for the lifetime of
337      the object).  */
338   class address_eliminator {
339   public:
340     address_eliminator (struct address_info *ad);
341     ~address_eliminator ();
342 
343   private:
344     struct address_info *m_ad;
345     rtx *m_base_loc;
346     rtx m_base_reg;
347     rtx *m_index_loc;
348     rtx m_index_reg;
349   };
350 }
351 
352 address_eliminator::address_eliminator (struct address_info *ad)
353   : m_ad (ad),
354     m_base_loc (strip_subreg (ad->base_term)),
355     m_base_reg (NULL_RTX),
356     m_index_loc (strip_subreg (ad->index_term)),
357     m_index_reg (NULL_RTX)
358 {
359   if (m_base_loc != NULL)
360     {
361       m_base_reg = *m_base_loc;
362       lra_eliminate_reg_if_possible (m_base_loc);
363       if (m_ad->base_term2 != NULL)
364 	*m_ad->base_term2 = *m_ad->base_term;
365     }
366   if (m_index_loc != NULL)
367     {
368       m_index_reg = *m_index_loc;
369       lra_eliminate_reg_if_possible (m_index_loc);
370     }
371 }
372 
373 address_eliminator::~address_eliminator ()
374 {
375   if (m_base_loc && *m_base_loc != m_base_reg)
376     {
377       *m_base_loc = m_base_reg;
378       if (m_ad->base_term2 != NULL)
379 	*m_ad->base_term2 = *m_ad->base_term;
380     }
381   if (m_index_loc && *m_index_loc != m_index_reg)
382     *m_index_loc = m_index_reg;
383 }
384 
385 /* Return true if the eliminated form of AD is a legitimate target address.  */
386 static bool
387 valid_address_p (struct address_info *ad)
388 {
389   address_eliminator eliminator (ad);
390   return valid_address_p (ad->mode, *ad->outer, ad->as);
391 }
392 
393 /* Return true if the eliminated form of memory reference OP satisfies
394    extra (special) memory constraint CONSTRAINT.  */
395 static bool
396 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
397 {
398   struct address_info ad;
399 
400   decompose_mem_address (&ad, op);
401   address_eliminator eliminator (&ad);
402   return constraint_satisfied_p (op, constraint);
403 }
404 
405 /* Return true if the eliminated form of address AD satisfies extra
406    address constraint CONSTRAINT.  */
407 static bool
408 satisfies_address_constraint_p (struct address_info *ad,
409 				enum constraint_num constraint)
410 {
411   address_eliminator eliminator (ad);
412   return constraint_satisfied_p (*ad->outer, constraint);
413 }
414 
415 /* Return true if the eliminated form of address OP satisfies extra
416    address constraint CONSTRAINT.  */
417 static bool
418 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
419 {
420   struct address_info ad;
421 
422   decompose_lea_address (&ad, &op);
423   return satisfies_address_constraint_p (&ad, constraint);
424 }
425 
426 /* Initiate equivalences for LRA.  As we keep original equivalences
427    before any elimination, we need to make copies otherwise any change
428    in insns might change the equivalences.  */
429 void
430 lra_init_equiv (void)
431 {
432   ira_expand_reg_equiv ();
433   for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
434     {
435       rtx res;
436 
437       if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
438 	ira_reg_equiv[i].memory = copy_rtx (res);
439       if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
440 	ira_reg_equiv[i].invariant = copy_rtx (res);
441     }
442 }
443 
444 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
445 
446 /* Update equivalence for REGNO.  We need to this as the equivalence
447    might contain other pseudos which are changed by their
448    equivalences.  */
449 static void
450 update_equiv (int regno)
451 {
452   rtx x;
453 
454   if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
455     ira_reg_equiv[regno].memory
456       = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
457 				 NULL_RTX);
458   if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
459     ira_reg_equiv[regno].invariant
460       = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
461 				 NULL_RTX);
462 }
463 
464 /* If we have decided to substitute X with another value, return that
465    value, otherwise return X.  */
466 static rtx
467 get_equiv (rtx x)
468 {
469   int regno;
470   rtx res;
471 
472   if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
473       || ! ira_reg_equiv[regno].defined_p
474       || ! ira_reg_equiv[regno].profitable_p
475       || lra_get_regno_hard_regno (regno) >= 0)
476     return x;
477   if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
478     {
479       if (targetm.cannot_substitute_mem_equiv_p (res))
480 	return x;
481       return res;
482     }
483   if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
484     return res;
485   if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
486     return res;
487   gcc_unreachable ();
488 }
489 
490 /* If we have decided to substitute X with the equivalent value,
491    return that value after elimination for INSN, otherwise return
492    X.  */
493 static rtx
494 get_equiv_with_elimination (rtx x, rtx_insn *insn)
495 {
496   rtx res = get_equiv (x);
497 
498   if (x == res || CONSTANT_P (res))
499     return res;
500   return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
501 			       false, false, 0, true);
502 }
503 
504 /* Set up curr_operand_mode.  */
505 static void
506 init_curr_operand_mode (void)
507 {
508   int nop = curr_static_id->n_operands;
509   for (int i = 0; i < nop; i++)
510     {
511       machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
512       if (mode == VOIDmode)
513 	{
514 	  /* The .md mode for address operands is the mode of the
515 	     addressed value rather than the mode of the address itself.  */
516 	  if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
517 	    mode = Pmode;
518 	  else
519 	    mode = curr_static_id->operand[i].mode;
520 	}
521       curr_operand_mode[i] = mode;
522     }
523 }
524 
525 
526 
527 /* The page contains code to reuse input reloads.  */
528 
529 /* Structure describes input reload of the current insns.  */
530 struct input_reload
531 {
532   /* True for input reload of matched operands.  */
533   bool match_p;
534   /* Reloaded value.  */
535   rtx input;
536   /* Reload pseudo used.  */
537   rtx reg;
538 };
539 
540 /* The number of elements in the following array.  */
541 static int curr_insn_input_reloads_num;
542 /* Array containing info about input reloads.  It is used to find the
543    same input reload and reuse the reload pseudo in this case.	*/
544 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
545 
546 /* Initiate data concerning reuse of input reloads for the current
547    insn.  */
548 static void
549 init_curr_insn_input_reloads (void)
550 {
551   curr_insn_input_reloads_num = 0;
552 }
553 
554 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
555    created input reload pseudo (only if TYPE is not OP_OUT).  Don't
556    reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
557    wrapped up in SUBREG.  The result pseudo is returned through
558    RESULT_REG.  Return TRUE if we created a new pseudo, FALSE if we
559    reused the already created input reload pseudo.  Use TITLE to
560    describe new registers for debug purposes.  */
561 static bool
562 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
563 		enum reg_class rclass, bool in_subreg_p,
564 		const char *title, rtx *result_reg)
565 {
566   int i, regno;
567   enum reg_class new_class;
568   bool unique_p = false;
569 
570   if (type == OP_OUT)
571     {
572       *result_reg
573 	= lra_create_new_reg_with_unique_value (mode, original, rclass, title);
574       return true;
575     }
576   /* Prevent reuse value of expression with side effects,
577      e.g. volatile memory.  */
578   if (! side_effects_p (original))
579     for (i = 0; i < curr_insn_input_reloads_num; i++)
580       {
581 	if (! curr_insn_input_reloads[i].match_p
582 	    && rtx_equal_p (curr_insn_input_reloads[i].input, original)
583 	    && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
584 	  {
585 	    rtx reg = curr_insn_input_reloads[i].reg;
586 	    regno = REGNO (reg);
587 	    /* If input is equal to original and both are VOIDmode,
588 	       GET_MODE (reg) might be still different from mode.
589 	       Ensure we don't return *result_reg with wrong mode.  */
590 	    if (GET_MODE (reg) != mode)
591 	      {
592 		if (in_subreg_p)
593 		  continue;
594 		if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
595 		  continue;
596 		reg = lowpart_subreg (mode, reg, GET_MODE (reg));
597 		if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
598 		  continue;
599 	      }
600 	    *result_reg = reg;
601 	    if (lra_dump_file != NULL)
602 	      {
603 		fprintf (lra_dump_file, "	 Reuse r%d for reload ", regno);
604 		dump_value_slim (lra_dump_file, original, 1);
605 	      }
606 	    if (new_class != lra_get_allocno_class (regno))
607 	      lra_change_class (regno, new_class, ", change to", false);
608 	    if (lra_dump_file != NULL)
609 	      fprintf (lra_dump_file, "\n");
610 	    return false;
611 	  }
612 	/* If we have an input reload with a different mode, make sure it
613 	   will get a different hard reg.  */
614 	else if (REG_P (original)
615 		 && REG_P (curr_insn_input_reloads[i].input)
616 		 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
617 		 && (GET_MODE (original)
618 		     != GET_MODE (curr_insn_input_reloads[i].input)))
619 	  unique_p = true;
620       }
621   *result_reg = (unique_p
622 		 ? lra_create_new_reg_with_unique_value
623 		 : lra_create_new_reg) (mode, original, rclass, title);
624   lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
625   curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
626   curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
627   curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
628   return true;
629 }
630 
631 
632 
633 /* The page contains code to extract memory address parts.  */
634 
635 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos.  */
636 static inline bool
637 ok_for_index_p_nonstrict (rtx reg)
638 {
639   unsigned regno = REGNO (reg);
640 
641   return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
642 }
643 
644 /* A version of regno_ok_for_base_p for use here, when all pseudos
645    should count as OK.	Arguments as for regno_ok_for_base_p.  */
646 static inline bool
647 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
648 			 enum rtx_code outer_code, enum rtx_code index_code)
649 {
650   unsigned regno = REGNO (reg);
651 
652   if (regno >= FIRST_PSEUDO_REGISTER)
653     return true;
654   return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
655 }
656 
657 
658 
659 /* The page contains major code to choose the current insn alternative
660    and generate reloads for it.	 */
661 
662 /* Return the offset from REGNO of the least significant register
663    in (reg:MODE REGNO).
664 
665    This function is used to tell whether two registers satisfy
666    a matching constraint.  (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
667 
668          REGNO1 + lra_constraint_offset (REGNO1, MODE1)
669 	 == REGNO2 + lra_constraint_offset (REGNO2, MODE2)  */
670 int
671 lra_constraint_offset (int regno, machine_mode mode)
672 {
673   lra_assert (regno < FIRST_PSEUDO_REGISTER);
674   if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
675       && SCALAR_INT_MODE_P (mode))
676     return hard_regno_nregs[regno][mode] - 1;
677   return 0;
678 }
679 
680 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
681    if they are the same hard reg, and has special hacks for
682    auto-increment and auto-decrement.  This is specifically intended for
683    process_alt_operands to use in determining whether two operands
684    match.  X is the operand whose number is the lower of the two.
685 
686    It is supposed that X is the output operand and Y is the input
687    operand.  Y_HARD_REGNO is the final hard regno of register Y or
688    register in subreg Y as we know it now.  Otherwise, it is a
689    negative value.  */
690 static bool
691 operands_match_p (rtx x, rtx y, int y_hard_regno)
692 {
693   int i;
694   RTX_CODE code = GET_CODE (x);
695   const char *fmt;
696 
697   if (x == y)
698     return true;
699   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
700       && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
701     {
702       int j;
703 
704       i = get_hard_regno (x, false);
705       if (i < 0)
706 	goto slow;
707 
708       if ((j = y_hard_regno) < 0)
709 	goto slow;
710 
711       i += lra_constraint_offset (i, GET_MODE (x));
712       j += lra_constraint_offset (j, GET_MODE (y));
713 
714       return i == j;
715     }
716 
717   /* If two operands must match, because they are really a single
718      operand of an assembler insn, then two post-increments are invalid
719      because the assembler insn would increment only once.  On the
720      other hand, a post-increment matches ordinary indexing if the
721      post-increment is the output operand.  */
722   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
723     return operands_match_p (XEXP (x, 0), y, y_hard_regno);
724 
725   /* Two pre-increments are invalid because the assembler insn would
726      increment only once.  On the other hand, a pre-increment matches
727      ordinary indexing if the pre-increment is the input operand.  */
728   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
729       || GET_CODE (y) == PRE_MODIFY)
730     return operands_match_p (x, XEXP (y, 0), -1);
731 
732  slow:
733 
734   if (code == REG && REG_P (y))
735     return REGNO (x) == REGNO (y);
736 
737   if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
738       && x == SUBREG_REG (y))
739     return true;
740   if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
741       && SUBREG_REG (x) == y)
742     return true;
743 
744   /* Now we have disposed of all the cases in which different rtx
745      codes can match.  */
746   if (code != GET_CODE (y))
747     return false;
748 
749   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
750   if (GET_MODE (x) != GET_MODE (y))
751     return false;
752 
753   switch (code)
754     {
755     CASE_CONST_UNIQUE:
756       return false;
757 
758     case LABEL_REF:
759       return label_ref_label (x) == label_ref_label (y);
760     case SYMBOL_REF:
761       return XSTR (x, 0) == XSTR (y, 0);
762 
763     default:
764       break;
765     }
766 
767   /* Compare the elements.  If any pair of corresponding elements fail
768      to match, return false for the whole things.  */
769 
770   fmt = GET_RTX_FORMAT (code);
771   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
772     {
773       int val, j;
774       switch (fmt[i])
775 	{
776 	case 'w':
777 	  if (XWINT (x, i) != XWINT (y, i))
778 	    return false;
779 	  break;
780 
781 	case 'i':
782 	  if (XINT (x, i) != XINT (y, i))
783 	    return false;
784 	  break;
785 
786 	case 'e':
787 	  val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
788 	  if (val == 0)
789 	    return false;
790 	  break;
791 
792 	case '0':
793 	  break;
794 
795 	case 'E':
796 	  if (XVECLEN (x, i) != XVECLEN (y, i))
797 	    return false;
798 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
799 	    {
800 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
801 	      if (val == 0)
802 		return false;
803 	    }
804 	  break;
805 
806 	  /* It is believed that rtx's at this level will never
807 	     contain anything but integers and other rtx's, except for
808 	     within LABEL_REFs and SYMBOL_REFs.	 */
809 	default:
810 	  gcc_unreachable ();
811 	}
812     }
813   return true;
814 }
815 
816 /* True if X is a constant that can be forced into the constant pool.
817    MODE is the mode of the operand, or VOIDmode if not known.  */
818 #define CONST_POOL_OK_P(MODE, X)		\
819   ((MODE) != VOIDmode				\
820    && CONSTANT_P (X)				\
821    && GET_CODE (X) != HIGH			\
822    && !targetm.cannot_force_const_mem (MODE, X))
823 
824 /* True if C is a non-empty register class that has too few registers
825    to be safely used as a reload target class.	*/
826 #define SMALL_REGISTER_CLASS_P(C)		\
827   (ira_class_hard_regs_num [(C)] == 1		\
828    || (ira_class_hard_regs_num [(C)] >= 1	\
829        && targetm.class_likely_spilled_p (C)))
830 
831 /* If REG is a reload pseudo, try to make its class satisfying CL.  */
832 static void
833 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
834 {
835   enum reg_class rclass;
836 
837   /* Do not make more accurate class from reloads generated.  They are
838      mostly moves with a lot of constraints.  Making more accurate
839      class may results in very narrow class and impossibility of find
840      registers for several reloads of one insn.	 */
841   if (INSN_UID (curr_insn) >= new_insn_uid_start)
842     return;
843   if (GET_CODE (reg) == SUBREG)
844     reg = SUBREG_REG (reg);
845   if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
846     return;
847   if (in_class_p (reg, cl, &rclass) && rclass != cl)
848     lra_change_class (REGNO (reg), rclass, "      Change to", true);
849 }
850 
851 /* Searches X for any reference to a reg with the same value as REGNO,
852    returning the rtx of the reference found if any.  Otherwise,
853    returns NULL_RTX.  */
854 static rtx
855 regno_val_use_in (unsigned int regno, rtx x)
856 {
857   const char *fmt;
858   int i, j;
859   rtx tem;
860 
861   if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
862     return x;
863 
864   fmt = GET_RTX_FORMAT (GET_CODE (x));
865   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
866     {
867       if (fmt[i] == 'e')
868 	{
869 	  if ((tem = regno_val_use_in (regno, XEXP (x, i))))
870 	    return tem;
871 	}
872       else if (fmt[i] == 'E')
873 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
874 	  if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
875 	    return tem;
876     }
877 
878   return NULL_RTX;
879 }
880 
881 /* Return true if all current insn non-output operands except INS (it
882    has a negaitve end marker) do not use pseudos with the same value
883    as REGNO.  */
884 static bool
885 check_conflict_input_operands (int regno, signed char *ins)
886 {
887   int in;
888   int n_operands = curr_static_id->n_operands;
889 
890   for (int nop = 0; nop < n_operands; nop++)
891     if (! curr_static_id->operand[nop].is_operator
892 	&& curr_static_id->operand[nop].type != OP_OUT)
893       {
894 	for (int i = 0; (in = ins[i]) >= 0; i++)
895 	  if (in == nop)
896 	    break;
897 	if (in < 0
898 	    && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
899 	  return false;
900       }
901   return true;
902 }
903 
904 /* Generate reloads for matching OUT and INS (array of input operand
905    numbers with end marker -1) with reg class GOAL_CLASS, considering
906    output operands OUTS (similar array to INS) needing to be in different
907    registers.  Add input and output reloads correspondingly to the lists
908    *BEFORE and *AFTER.  OUT might be negative.  In this case we generate
909    input reloads for matched input operands INS.  EARLY_CLOBBER_P is a flag
910    that the output operand is early clobbered for chosen alternative.  */
911 static void
912 match_reload (signed char out, signed char *ins, signed char *outs,
913 	      enum reg_class goal_class, rtx_insn **before,
914 	      rtx_insn **after, bool early_clobber_p)
915 {
916   bool out_conflict;
917   int i, in;
918   rtx new_in_reg, new_out_reg, reg;
919   machine_mode inmode, outmode;
920   rtx in_rtx = *curr_id->operand_loc[ins[0]];
921   rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
922 
923   inmode = curr_operand_mode[ins[0]];
924   outmode = out < 0 ? inmode : curr_operand_mode[out];
925   push_to_sequence (*before);
926   if (inmode != outmode)
927     {
928       if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
929 	{
930 	  reg = new_in_reg
931 	    = lra_create_new_reg_with_unique_value (inmode, in_rtx,
932 						    goal_class, "");
933 	  if (SCALAR_INT_MODE_P (inmode))
934 	    new_out_reg = gen_lowpart_SUBREG (outmode, reg);
935 	  else
936 	    new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
937 	  LRA_SUBREG_P (new_out_reg) = 1;
938 	  /* If the input reg is dying here, we can use the same hard
939 	     register for REG and IN_RTX.  We do it only for original
940 	     pseudos as reload pseudos can die although original
941 	     pseudos still live where reload pseudos dies.  */
942 	  if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
943 	      && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
944 	      && (!early_clobber_p
945 		  || check_conflict_input_operands(REGNO (in_rtx), ins)))
946 	    lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
947 	}
948       else
949 	{
950 	  reg = new_out_reg
951 	    = lra_create_new_reg_with_unique_value (outmode, out_rtx,
952 						    goal_class, "");
953 	  if (SCALAR_INT_MODE_P (outmode))
954 	    new_in_reg = gen_lowpart_SUBREG (inmode, reg);
955 	  else
956 	    new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
957 	  /* NEW_IN_REG is non-paradoxical subreg.  We don't want
958 	     NEW_OUT_REG living above.  We add clobber clause for
959 	     this.  This is just a temporary clobber.  We can remove
960 	     it at the end of LRA work.  */
961 	  rtx_insn *clobber = emit_clobber (new_out_reg);
962 	  LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
963 	  LRA_SUBREG_P (new_in_reg) = 1;
964 	  if (GET_CODE (in_rtx) == SUBREG)
965 	    {
966 	      rtx subreg_reg = SUBREG_REG (in_rtx);
967 
968 	      /* If SUBREG_REG is dying here and sub-registers IN_RTX
969 		 and NEW_IN_REG are similar, we can use the same hard
970 		 register for REG and SUBREG_REG.  */
971 	      if (REG_P (subreg_reg)
972 		  && (int) REGNO (subreg_reg) < lra_new_regno_start
973 		  && GET_MODE (subreg_reg) == outmode
974 		  && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
975 		  && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
976 		  && (! early_clobber_p
977 		      || check_conflict_input_operands (REGNO (subreg_reg),
978 							ins)))
979 		lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
980 	    }
981 	}
982     }
983   else
984     {
985       /* Pseudos have values -- see comments for lra_reg_info.
986 	 Different pseudos with the same value do not conflict even if
987 	 they live in the same place.  When we create a pseudo we
988 	 assign value of original pseudo (if any) from which we
989 	 created the new pseudo.  If we create the pseudo from the
990 	 input pseudo, the new pseudo will have no conflict with the
991 	 input pseudo which is wrong when the input pseudo lives after
992 	 the insn and as the new pseudo value is changed by the insn
993 	 output.  Therefore we create the new pseudo from the output
994 	 except the case when we have single matched dying input
995 	 pseudo.
996 
997 	 We cannot reuse the current output register because we might
998 	 have a situation like "a <- a op b", where the constraints
999 	 force the second input operand ("b") to match the output
1000 	 operand ("a").  "b" must then be copied into a new register
1001 	 so that it doesn't clobber the current value of "a".
1002 
1003 	 We can not use the same value if the output pseudo is
1004 	 early clobbered or the input pseudo is mentioned in the
1005 	 output, e.g. as an address part in memory, because
1006 	 output reload will actually extend the pseudo liveness.
1007 	 We don't care about eliminable hard regs here as we are
1008 	 interesting only in pseudos.  */
1009 
1010       /* Matching input's register value is the same as one of the other
1011 	 output operand.  Output operands in a parallel insn must be in
1012 	 different registers.  */
1013       out_conflict = false;
1014       if (REG_P (in_rtx))
1015 	{
1016 	  for (i = 0; outs[i] >= 0; i++)
1017 	    {
1018 	      rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1019 	      if (REG_P (other_out_rtx)
1020 		  && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1021 		      != NULL_RTX))
1022 		{
1023 		  out_conflict = true;
1024 		  break;
1025 		}
1026 	    }
1027 	}
1028 
1029       new_in_reg = new_out_reg
1030 	= (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1031 	   && (int) REGNO (in_rtx) < lra_new_regno_start
1032 	   && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1033 	   && (! early_clobber_p
1034 	       || check_conflict_input_operands (REGNO (in_rtx), ins))
1035 	   && (out < 0
1036 	       || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1037 	   && !out_conflict
1038 	   ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1039 	   : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1040 						   goal_class, ""));
1041     }
1042   /* In operand can be got from transformations before processing insn
1043      constraints.  One example of such transformations is subreg
1044      reloading (see function simplify_operand_subreg).  The new
1045      pseudos created by the transformations might have inaccurate
1046      class (ALL_REGS) and we should make their classes more
1047      accurate.  */
1048   narrow_reload_pseudo_class (in_rtx, goal_class);
1049   lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1050   *before = get_insns ();
1051   end_sequence ();
1052   /* Add the new pseudo to consider values of subsequent input reload
1053      pseudos.  */
1054   lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1055   curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1056   curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1057   curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1058   for (i = 0; (in = ins[i]) >= 0; i++)
1059     {
1060       lra_assert
1061 	(GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1062 	 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1063       *curr_id->operand_loc[in] = new_in_reg;
1064     }
1065   lra_update_dups (curr_id, ins);
1066   if (out < 0)
1067     return;
1068   /* See a comment for the input operand above.  */
1069   narrow_reload_pseudo_class (out_rtx, goal_class);
1070   if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1071     {
1072       start_sequence ();
1073       lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1074       emit_insn (*after);
1075       *after = get_insns ();
1076       end_sequence ();
1077     }
1078   *curr_id->operand_loc[out] = new_out_reg;
1079   lra_update_dup (curr_id, out);
1080 }
1081 
1082 /* Return register class which is union of all reg classes in insn
1083    constraint alternative string starting with P.  */
1084 static enum reg_class
1085 reg_class_from_constraints (const char *p)
1086 {
1087   int c, len;
1088   enum reg_class op_class = NO_REGS;
1089 
1090   do
1091     switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1092       {
1093       case '#':
1094       case ',':
1095 	return op_class;
1096 
1097       case 'g':
1098 	op_class = reg_class_subunion[op_class][GENERAL_REGS];
1099 	break;
1100 
1101       default:
1102 	enum constraint_num cn = lookup_constraint (p);
1103 	enum reg_class cl = reg_class_for_constraint (cn);
1104 	if (cl == NO_REGS)
1105 	  {
1106 	    if (insn_extra_address_constraint (cn))
1107 	      op_class
1108 		= (reg_class_subunion
1109 		   [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1110 					      ADDRESS, SCRATCH)]);
1111 	    break;
1112 	  }
1113 
1114 	op_class = reg_class_subunion[op_class][cl];
1115  	break;
1116       }
1117   while ((p += len), c);
1118   return op_class;
1119 }
1120 
1121 /* If OP is a register, return the class of the register as per
1122    get_reg_class, otherwise return NO_REGS.  */
1123 static inline enum reg_class
1124 get_op_class (rtx op)
1125 {
1126   return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1127 }
1128 
1129 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1130    otherwise.  If modes of MEM_PSEUDO and VAL are different, use
1131    SUBREG for VAL to make them equal.  */
1132 static rtx_insn *
1133 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1134 {
1135   if (GET_MODE (mem_pseudo) != GET_MODE (val))
1136     {
1137       /* Usually size of mem_pseudo is greater than val size but in
1138 	 rare cases it can be less as it can be defined by target
1139 	 dependent macro HARD_REGNO_CALLER_SAVE_MODE.  */
1140       if (! MEM_P (val))
1141 	{
1142 	  val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1143 				    GET_CODE (val) == SUBREG
1144 				    ? SUBREG_REG (val) : val);
1145 	  LRA_SUBREG_P (val) = 1;
1146 	}
1147       else
1148 	{
1149 	  mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1150 	  LRA_SUBREG_P (mem_pseudo) = 1;
1151 	}
1152     }
1153   return to_p ? gen_move_insn (mem_pseudo, val)
1154 	      : gen_move_insn (val, mem_pseudo);
1155 }
1156 
1157 /* Process a special case insn (register move), return true if we
1158    don't need to process it anymore.  INSN should be a single set
1159    insn.  Set up that RTL was changed through CHANGE_P and macro
1160    SECONDARY_MEMORY_NEEDED says to use secondary memory through
1161    SEC_MEM_P.  */
1162 static bool
1163 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1164 {
1165   int sregno, dregno;
1166   rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1167   rtx_insn *before;
1168   enum reg_class dclass, sclass, secondary_class;
1169   secondary_reload_info sri;
1170 
1171   lra_assert (curr_insn_set != NULL_RTX);
1172   dreg = dest = SET_DEST (curr_insn_set);
1173   sreg = src = SET_SRC (curr_insn_set);
1174   if (GET_CODE (dest) == SUBREG)
1175     dreg = SUBREG_REG (dest);
1176   if (GET_CODE (src) == SUBREG)
1177     sreg = SUBREG_REG (src);
1178   if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1179     return false;
1180   sclass = dclass = NO_REGS;
1181   if (REG_P (dreg))
1182     dclass = get_reg_class (REGNO (dreg));
1183   gcc_assert (dclass < LIM_REG_CLASSES);
1184   if (dclass == ALL_REGS)
1185     /* ALL_REGS is used for new pseudos created by transformations
1186        like reload of SUBREG_REG (see function
1187        simplify_operand_subreg).  We don't know their class yet.  We
1188        should figure out the class from processing the insn
1189        constraints not in this fast path function.  Even if ALL_REGS
1190        were a right class for the pseudo, secondary_... hooks usually
1191        are not define for ALL_REGS.  */
1192     return false;
1193   if (REG_P (sreg))
1194     sclass = get_reg_class (REGNO (sreg));
1195   gcc_assert (sclass < LIM_REG_CLASSES);
1196   if (sclass == ALL_REGS)
1197     /* See comments above.  */
1198     return false;
1199   if (sclass == NO_REGS && dclass == NO_REGS)
1200     return false;
1201 #ifdef SECONDARY_MEMORY_NEEDED
1202   if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
1203 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1204       && ((sclass != NO_REGS && dclass != NO_REGS)
1205 	  || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
1206 #endif
1207       )
1208     {
1209       *sec_mem_p = true;
1210       return false;
1211     }
1212 #endif
1213   if (! REG_P (dreg) || ! REG_P (sreg))
1214     return false;
1215   sri.prev_sri = NULL;
1216   sri.icode = CODE_FOR_nothing;
1217   sri.extra_cost = 0;
1218   secondary_class = NO_REGS;
1219   /* Set up hard register for a reload pseudo for hook
1220      secondary_reload because some targets just ignore unassigned
1221      pseudos in the hook.  */
1222   if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1223     {
1224       dregno = REGNO (dreg);
1225       reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1226     }
1227   else
1228     dregno = -1;
1229   if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1230     {
1231       sregno = REGNO (sreg);
1232       reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1233     }
1234   else
1235     sregno = -1;
1236   if (sclass != NO_REGS)
1237     secondary_class
1238       = (enum reg_class) targetm.secondary_reload (false, dest,
1239 						   (reg_class_t) sclass,
1240 						   GET_MODE (src), &sri);
1241   if (sclass == NO_REGS
1242       || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1243 	  && dclass != NO_REGS))
1244     {
1245       enum reg_class old_sclass = secondary_class;
1246       secondary_reload_info old_sri = sri;
1247 
1248       sri.prev_sri = NULL;
1249       sri.icode = CODE_FOR_nothing;
1250       sri.extra_cost = 0;
1251       secondary_class
1252 	= (enum reg_class) targetm.secondary_reload (true, src,
1253 						     (reg_class_t) dclass,
1254 						     GET_MODE (src), &sri);
1255       /* Check the target hook consistency.  */
1256       lra_assert
1257 	((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1258 	 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1259 	 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1260     }
1261   if (sregno >= 0)
1262     reg_renumber [sregno] = -1;
1263   if (dregno >= 0)
1264     reg_renumber [dregno] = -1;
1265   if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1266     return false;
1267   *change_p = true;
1268   new_reg = NULL_RTX;
1269   if (secondary_class != NO_REGS)
1270     new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1271 						    secondary_class,
1272 						    "secondary");
1273   start_sequence ();
1274   if (sri.icode == CODE_FOR_nothing)
1275     lra_emit_move (new_reg, src);
1276   else
1277     {
1278       enum reg_class scratch_class;
1279 
1280       scratch_class = (reg_class_from_constraints
1281 		       (insn_data[sri.icode].operand[2].constraint));
1282       scratch_reg = (lra_create_new_reg_with_unique_value
1283 		     (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1284 		      scratch_class, "scratch"));
1285       emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1286 				      src, scratch_reg));
1287     }
1288   before = get_insns ();
1289   end_sequence ();
1290   lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1291   if (new_reg != NULL_RTX)
1292     SET_SRC (curr_insn_set) = new_reg;
1293   else
1294     {
1295       if (lra_dump_file != NULL)
1296 	{
1297 	  fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1298 	  dump_insn_slim (lra_dump_file, curr_insn);
1299 	}
1300       lra_set_insn_deleted (curr_insn);
1301       return true;
1302     }
1303   return false;
1304 }
1305 
1306 /* The following data describe the result of process_alt_operands.
1307    The data are used in curr_insn_transform to generate reloads.  */
1308 
1309 /* The chosen reg classes which should be used for the corresponding
1310    operands.  */
1311 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1312 /* True if the operand should be the same as another operand and that
1313    other operand does not need a reload.  */
1314 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1315 /* True if the operand does not need a reload.	*/
1316 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1317 /* True if the operand can be offsetable memory.  */
1318 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1319 /* The number of an operand to which given operand can be matched to.  */
1320 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1321 /* The number of elements in the following array.  */
1322 static int goal_alt_dont_inherit_ops_num;
1323 /* Numbers of operands whose reload pseudos should not be inherited.  */
1324 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1325 /* True if the insn commutative operands should be swapped.  */
1326 static bool goal_alt_swapped;
1327 /* The chosen insn alternative.	 */
1328 static int goal_alt_number;
1329 
1330 /* True if the corresponding operand is the result of an equivalence
1331    substitution.  */
1332 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1333 
1334 /* The following five variables are used to choose the best insn
1335    alternative.	 They reflect final characteristics of the best
1336    alternative.	 */
1337 
1338 /* Number of necessary reloads and overall cost reflecting the
1339    previous value and other unpleasantness of the best alternative.  */
1340 static int best_losers, best_overall;
1341 /* Overall number hard registers used for reloads.  For example, on
1342    some targets we need 2 general registers to reload DFmode and only
1343    one floating point register.	 */
1344 static int best_reload_nregs;
1345 /* Overall number reflecting distances of previous reloading the same
1346    value.  The distances are counted from the current BB start.  It is
1347    used to improve inheritance chances.  */
1348 static int best_reload_sum;
1349 
1350 /* True if the current insn should have no correspondingly input or
1351    output reloads.  */
1352 static bool no_input_reloads_p, no_output_reloads_p;
1353 
1354 /* True if we swapped the commutative operands in the current
1355    insn.  */
1356 static int curr_swapped;
1357 
1358 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1359    register of class CL.  Add any input reloads to list BEFORE.  AFTER
1360    is nonnull if *LOC is an automodified value; handle that case by
1361    adding the required output reloads to list AFTER.  Return true if
1362    the RTL was changed.
1363 
1364    if CHECK_ONLY_P is true, check that the *LOC is a correct address
1365    register.  Return false if the address register is correct.  */
1366 static bool
1367 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1368 		  enum reg_class cl)
1369 {
1370   int regno;
1371   enum reg_class rclass, new_class;
1372   rtx reg;
1373   rtx new_reg;
1374   machine_mode mode;
1375   bool subreg_p, before_p = false;
1376 
1377   subreg_p = GET_CODE (*loc) == SUBREG;
1378   if (subreg_p)
1379     {
1380       reg = SUBREG_REG (*loc);
1381       mode = GET_MODE (reg);
1382 
1383       /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1384 	 between two registers with different classes, but there normally will
1385 	 be "mov" which transfers element of vector register into the general
1386 	 register, and this normally will be a subreg which should be reloaded
1387 	 as a whole.  This is particularly likely to be triggered when
1388 	 -fno-split-wide-types specified.  */
1389       if (!REG_P (reg)
1390 	  || in_class_p (reg, cl, &new_class)
1391 	  || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (ptr_mode))
1392        loc = &SUBREG_REG (*loc);
1393     }
1394 
1395   reg = *loc;
1396   mode = GET_MODE (reg);
1397   if (! REG_P (reg))
1398     {
1399       if (check_only_p)
1400 	return true;
1401       /* Always reload memory in an address even if the target supports
1402 	 such addresses.  */
1403       new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1404       before_p = true;
1405     }
1406   else
1407     {
1408       regno = REGNO (reg);
1409       rclass = get_reg_class (regno);
1410       if (! check_only_p
1411 	  && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1412 	{
1413 	  if (lra_dump_file != NULL)
1414 	    {
1415 	      fprintf (lra_dump_file,
1416 		       "Changing pseudo %d in address of insn %u on equiv ",
1417 		       REGNO (reg), INSN_UID (curr_insn));
1418 	      dump_value_slim (lra_dump_file, *loc, 1);
1419 	      fprintf (lra_dump_file, "\n");
1420 	    }
1421 	  *loc = copy_rtx (*loc);
1422 	}
1423       if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1424 	{
1425 	  if (check_only_p)
1426 	    return true;
1427 	  reg = *loc;
1428 	  if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1429 			      mode, reg, cl, subreg_p, "address", &new_reg))
1430 	    before_p = true;
1431 	}
1432       else if (new_class != NO_REGS && rclass != new_class)
1433 	{
1434 	  if (check_only_p)
1435 	    return true;
1436 	  lra_change_class (regno, new_class, "	   Change to", true);
1437 	  return false;
1438 	}
1439       else
1440 	return false;
1441     }
1442   if (before_p)
1443     {
1444       push_to_sequence (*before);
1445       lra_emit_move (new_reg, reg);
1446       *before = get_insns ();
1447       end_sequence ();
1448     }
1449   *loc = new_reg;
1450   if (after != NULL)
1451     {
1452       start_sequence ();
1453       lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1454       emit_insn (*after);
1455       *after = get_insns ();
1456       end_sequence ();
1457     }
1458   return true;
1459 }
1460 
1461 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1462    the insn to be inserted before curr insn. AFTER returns the
1463    the insn to be inserted after curr insn.  ORIGREG and NEWREG
1464    are the original reg and new reg for reload.  */
1465 static void
1466 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1467 			rtx newreg)
1468 {
1469   if (before)
1470     {
1471       push_to_sequence (*before);
1472       lra_emit_move (newreg, origreg);
1473       *before = get_insns ();
1474       end_sequence ();
1475     }
1476   if (after)
1477     {
1478       start_sequence ();
1479       lra_emit_move (origreg, newreg);
1480       emit_insn (*after);
1481       *after = get_insns ();
1482       end_sequence ();
1483     }
1484 }
1485 
1486 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1487 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1488 
1489 /* Make reloads for subreg in operand NOP with internal subreg mode
1490    REG_MODE, add new reloads for further processing.  Return true if
1491    any change was done.  */
1492 static bool
1493 simplify_operand_subreg (int nop, machine_mode reg_mode)
1494 {
1495   int hard_regno;
1496   rtx_insn *before, *after;
1497   machine_mode mode, innermode;
1498   rtx reg, new_reg;
1499   rtx operand = *curr_id->operand_loc[nop];
1500   enum reg_class regclass;
1501   enum op_type type;
1502 
1503   before = after = NULL;
1504 
1505   if (GET_CODE (operand) != SUBREG)
1506     return false;
1507 
1508   mode = GET_MODE (operand);
1509   reg = SUBREG_REG (operand);
1510   innermode = GET_MODE (reg);
1511   type = curr_static_id->operand[nop].type;
1512   if (MEM_P (reg))
1513     {
1514       const bool addr_was_valid
1515 	= valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1516       alter_subreg (curr_id->operand_loc[nop], false);
1517       rtx subst = *curr_id->operand_loc[nop];
1518       lra_assert (MEM_P (subst));
1519 
1520       if (!addr_was_valid
1521 	  || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1522 			      MEM_ADDR_SPACE (subst))
1523 	  || ((get_constraint_type (lookup_constraint
1524 				    (curr_static_id->operand[nop].constraint))
1525 	       != CT_SPECIAL_MEMORY)
1526 	      /* We still can reload address and if the address is
1527 		 valid, we can remove subreg without reloading its
1528 		 inner memory.  */
1529 	      && valid_address_p (GET_MODE (subst),
1530 				  regno_reg_rtx
1531 				  [ira_class_hard_regs
1532 				   [base_reg_class (GET_MODE (subst),
1533 						    MEM_ADDR_SPACE (subst),
1534 						    ADDRESS, SCRATCH)][0]],
1535 				  MEM_ADDR_SPACE (subst))))
1536 	{
1537 	  /* If we change the address for a paradoxical subreg of memory, the
1538 	     new address might violate the necessary alignment or the access
1539 	     might be slow; take this into consideration.  We need not worry
1540 	     about accesses beyond allocated memory for paradoxical memory
1541 	     subregs as we don't substitute such equiv memory (see processing
1542 	     equivalences in function lra_constraints) and because for spilled
1543 	     pseudos we allocate stack memory enough for the biggest
1544 	     corresponding paradoxical subreg.
1545 
1546 	     However, do not blindly simplify a (subreg (mem ...)) for
1547 	     WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1548 	     data into a register when the inner is narrower than outer or
1549 	     missing important data from memory when the inner is wider than
1550 	     outer.  This rule only applies to modes that are no wider than
1551 	     a word.  */
1552 	  if (!(GET_MODE_PRECISION (mode) != GET_MODE_PRECISION (innermode)
1553 		&& GET_MODE_SIZE (mode) <= UNITS_PER_WORD
1554 		&& GET_MODE_SIZE (innermode) <= UNITS_PER_WORD
1555 		&& WORD_REGISTER_OPERATIONS)
1556 	      && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1557 		    && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (subst)))
1558 		  || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1559 		      && SLOW_UNALIGNED_ACCESS (innermode, MEM_ALIGN (reg)))))
1560 	    return true;
1561 
1562 	  *curr_id->operand_loc[nop] = operand;
1563 
1564 	  /* But if the address was not valid, we cannot reload the MEM without
1565 	     reloading the address first.  */
1566 	  if (!addr_was_valid)
1567 	    process_address (nop, false, &before, &after);
1568 
1569 	  /* INNERMODE is fast, MODE slow.  Reload the mem in INNERMODE.  */
1570 	  enum reg_class rclass
1571 	    = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1572 	  if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1573 			      reg, rclass, TRUE, "slow mem", &new_reg))
1574 	    {
1575 	      bool insert_before, insert_after;
1576 	      bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1577 
1578 	      insert_before = (type != OP_OUT
1579 			       || GET_MODE_SIZE (innermode)
1580 				    > GET_MODE_SIZE (mode));
1581 	      insert_after = type != OP_IN;
1582 	      insert_move_for_subreg (insert_before ? &before : NULL,
1583 				      insert_after ? &after : NULL,
1584 				      reg, new_reg);
1585 	    }
1586 	  SUBREG_REG (operand) = new_reg;
1587 
1588 	  /* Convert to MODE.  */
1589 	  reg = operand;
1590 	  rclass
1591 	    = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1592 	  if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1593 			      rclass, TRUE, "slow mem", &new_reg))
1594 	    {
1595 	      bool insert_before, insert_after;
1596 	      bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1597 
1598 	      insert_before = type != OP_OUT;
1599 	      insert_after = type != OP_IN;
1600 	      insert_move_for_subreg (insert_before ? &before : NULL,
1601 				      insert_after ? &after : NULL,
1602 				      reg, new_reg);
1603 	    }
1604 	  *curr_id->operand_loc[nop] = new_reg;
1605 	  lra_process_new_insns (curr_insn, before, after,
1606 				 "Inserting slow mem reload");
1607 	  return true;
1608 	}
1609 
1610       /* If the address was valid and became invalid, prefer to reload
1611 	 the memory.  Typical case is when the index scale should
1612 	 correspond the memory.  */
1613       *curr_id->operand_loc[nop] = operand;
1614       /* Do not return false here as the MEM_P (reg) will be processed
1615 	 later in this function.  */
1616     }
1617   else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1618     {
1619       alter_subreg (curr_id->operand_loc[nop], false);
1620       return true;
1621     }
1622   else if (CONSTANT_P (reg))
1623     {
1624       /* Try to simplify subreg of constant.  It is usually result of
1625 	 equivalence substitution.  */
1626       if (innermode == VOIDmode
1627 	  && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1628 	innermode = curr_static_id->operand[nop].mode;
1629       if ((new_reg = simplify_subreg (mode, reg, innermode,
1630 				      SUBREG_BYTE (operand))) != NULL_RTX)
1631 	{
1632 	  *curr_id->operand_loc[nop] = new_reg;
1633 	  return true;
1634 	}
1635     }
1636   /* Put constant into memory when we have mixed modes.  It generates
1637      a better code in most cases as it does not need a secondary
1638      reload memory.  It also prevents LRA looping when LRA is using
1639      secondary reload memory again and again.  */
1640   if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1641       && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1642     {
1643       SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1644       alter_subreg (curr_id->operand_loc[nop], false);
1645       return true;
1646     }
1647   /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1648      if there may be a problem accessing OPERAND in the outer
1649      mode.  */
1650   if ((REG_P (reg)
1651        && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1652        && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1653        /* Don't reload paradoxical subregs because we could be looping
1654 	  having repeatedly final regno out of hard regs range.  */
1655        && (hard_regno_nregs[hard_regno][innermode]
1656 	   >= hard_regno_nregs[hard_regno][mode])
1657        && simplify_subreg_regno (hard_regno, innermode,
1658 				 SUBREG_BYTE (operand), mode) < 0
1659        /* Don't reload subreg for matching reload.  It is actually
1660 	  valid subreg in LRA.  */
1661        && ! LRA_SUBREG_P (operand))
1662       || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1663     {
1664       enum reg_class rclass;
1665 
1666       if (REG_P (reg))
1667 	/* There is a big probability that we will get the same class
1668 	   for the new pseudo and we will get the same insn which
1669 	   means infinite looping.  So spill the new pseudo.  */
1670 	rclass = NO_REGS;
1671       else
1672 	/* The class will be defined later in curr_insn_transform.  */
1673 	rclass
1674 	  = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1675 
1676       if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1677 			  rclass, TRUE, "subreg reg", &new_reg))
1678 	{
1679 	  bool insert_before, insert_after;
1680 	  bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1681 
1682 	  insert_before = (type != OP_OUT
1683 			   || GET_MODE_SIZE (innermode) > GET_MODE_SIZE (mode));
1684 	  insert_after = (type != OP_IN);
1685 	  insert_move_for_subreg (insert_before ? &before : NULL,
1686 				  insert_after ? &after : NULL,
1687 				  reg, new_reg);
1688 	}
1689       SUBREG_REG (operand) = new_reg;
1690       lra_process_new_insns (curr_insn, before, after,
1691 			     "Inserting subreg reload");
1692       return true;
1693     }
1694   /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1695      IRA allocates hardreg to the inner pseudo reg according to its mode
1696      instead of the outermode, so the size of the hardreg may not be enough
1697      to contain the outermode operand, in that case we may need to insert
1698      reload for the reg. For the following two types of paradoxical subreg,
1699      we need to insert reload:
1700      1. If the op_type is OP_IN, and the hardreg could not be paired with
1701         other hardreg to contain the outermode operand
1702         (checked by in_hard_reg_set_p), we need to insert the reload.
1703      2. If the op_type is OP_OUT or OP_INOUT.
1704 
1705      Here is a paradoxical subreg example showing how the reload is generated:
1706 
1707      (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1708         (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1709 
1710      In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1711      here, if reg107 is assigned to hardreg R15, because R15 is the last
1712      hardreg, compiler cannot find another hardreg to pair with R15 to
1713      contain TImode data. So we insert a TImode reload reg180 for it.
1714      After reload is inserted:
1715 
1716      (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1717         (reg:DI 107 [ __comp ])) -1
1718      (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1719         (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1720 
1721      Two reload hard registers will be allocated to reg180 to save TImode data
1722      in LRA_assign.  */
1723   else if (REG_P (reg)
1724 	   && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1725 	   && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1726 	   && (hard_regno_nregs[hard_regno][innermode]
1727 	       < hard_regno_nregs[hard_regno][mode])
1728 	   && (regclass = lra_get_allocno_class (REGNO (reg)))
1729 	   && (type != OP_IN
1730 	       || !in_hard_reg_set_p (reg_class_contents[regclass],
1731 				      mode, hard_regno)))
1732     {
1733       /* The class will be defined later in curr_insn_transform.  */
1734       enum reg_class rclass
1735 	= (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1736 
1737       if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1738                           rclass, TRUE, "paradoxical subreg", &new_reg))
1739         {
1740 	  rtx subreg;
1741 	  bool insert_before, insert_after;
1742 
1743 	  PUT_MODE (new_reg, mode);
1744           subreg = gen_lowpart_SUBREG (innermode, new_reg);
1745 	  bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1746 
1747 	  insert_before = (type != OP_OUT);
1748 	  insert_after = (type != OP_IN);
1749 	  insert_move_for_subreg (insert_before ? &before : NULL,
1750 				  insert_after ? &after : NULL,
1751 				  reg, subreg);
1752 	}
1753       SUBREG_REG (operand) = new_reg;
1754       lra_process_new_insns (curr_insn, before, after,
1755                              "Inserting paradoxical subreg reload");
1756       return true;
1757     }
1758   return false;
1759 }
1760 
1761 /* Return TRUE if X refers for a hard register from SET.  */
1762 static bool
1763 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1764 {
1765   int i, j, x_hard_regno;
1766   machine_mode mode;
1767   const char *fmt;
1768   enum rtx_code code;
1769 
1770   if (x == NULL_RTX)
1771     return false;
1772   code = GET_CODE (x);
1773   mode = GET_MODE (x);
1774   if (code == SUBREG)
1775     {
1776       x = SUBREG_REG (x);
1777       code = GET_CODE (x);
1778       if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1779 	mode = GET_MODE (x);
1780     }
1781 
1782   if (REG_P (x))
1783     {
1784       x_hard_regno = get_hard_regno (x, true);
1785       return (x_hard_regno >= 0
1786 	      && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1787     }
1788   if (MEM_P (x))
1789     {
1790       struct address_info ad;
1791 
1792       decompose_mem_address (&ad, x);
1793       if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1794 	return true;
1795       if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1796 	return true;
1797     }
1798   fmt = GET_RTX_FORMAT (code);
1799   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1800     {
1801       if (fmt[i] == 'e')
1802 	{
1803 	  if (uses_hard_regs_p (XEXP (x, i), set))
1804 	    return true;
1805 	}
1806       else if (fmt[i] == 'E')
1807 	{
1808 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1809 	    if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1810 	      return true;
1811 	}
1812     }
1813   return false;
1814 }
1815 
1816 /* Return true if OP is a spilled pseudo. */
1817 static inline bool
1818 spilled_pseudo_p (rtx op)
1819 {
1820   return (REG_P (op)
1821 	  && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1822 }
1823 
1824 /* Return true if X is a general constant.  */
1825 static inline bool
1826 general_constant_p (rtx x)
1827 {
1828   return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1829 }
1830 
1831 static bool
1832 reg_in_class_p (rtx reg, enum reg_class cl)
1833 {
1834   if (cl == NO_REGS)
1835     return get_reg_class (REGNO (reg)) == NO_REGS;
1836   return in_class_p (reg, cl, NULL);
1837 }
1838 
1839 /* Return true if SET of RCLASS contains no hard regs which can be
1840    used in MODE.  */
1841 static bool
1842 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1843 				 HARD_REG_SET &set,
1844 				 enum machine_mode mode)
1845 {
1846   HARD_REG_SET temp;
1847 
1848   lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1849   COPY_HARD_REG_SET (temp, set);
1850   AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1851   return (hard_reg_set_subset_p
1852 	  (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1853 }
1854 
1855 
1856 /* Used to check validity info about small class input operands.  It
1857    should be incremented at start of processing an insn
1858    alternative.  */
1859 static unsigned int curr_small_class_check = 0;
1860 
1861 /* Update number of used inputs of class OP_CLASS for operand NOP.
1862    Return true if we have more such class operands than the number of
1863    available regs.  */
1864 static bool
1865 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1866 {
1867   static unsigned int small_class_check[LIM_REG_CLASSES];
1868   static int small_class_input_nums[LIM_REG_CLASSES];
1869 
1870   if (SMALL_REGISTER_CLASS_P (op_class)
1871       /* We are interesting in classes became small because of fixing
1872 	 some hard regs, e.g. by an user through GCC options.  */
1873       && hard_reg_set_intersect_p (reg_class_contents[op_class],
1874 				   ira_no_alloc_regs)
1875       && (curr_static_id->operand[nop].type != OP_OUT
1876 	  || curr_static_id->operand[nop].early_clobber))
1877     {
1878       if (small_class_check[op_class] == curr_small_class_check)
1879 	small_class_input_nums[op_class]++;
1880       else
1881 	{
1882 	  small_class_check[op_class] = curr_small_class_check;
1883 	  small_class_input_nums[op_class] = 1;
1884 	}
1885       if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1886 	return true;
1887     }
1888   return false;
1889 }
1890 
1891 /* Major function to choose the current insn alternative and what
1892    operands should be reloaded and how.	 If ONLY_ALTERNATIVE is not
1893    negative we should consider only this alternative.  Return false if
1894    we can not choose the alternative or find how to reload the
1895    operands.  */
1896 static bool
1897 process_alt_operands (int only_alternative)
1898 {
1899   bool ok_p = false;
1900   int nop, overall, nalt;
1901   int n_alternatives = curr_static_id->n_alternatives;
1902   int n_operands = curr_static_id->n_operands;
1903   /* LOSERS counts the operands that don't fit this alternative and
1904      would require loading.  */
1905   int losers;
1906   int addr_losers;
1907   /* REJECT is a count of how undesirable this alternative says it is
1908      if any reloading is required.  If the alternative matches exactly
1909      then REJECT is ignored, but otherwise it gets this much counted
1910      against it in addition to the reloading needed.  */
1911   int reject;
1912   /* This is defined by '!' or '?' alternative constraint and added to
1913      reject.  But in some cases it can be ignored.  */
1914   int static_reject;
1915   int op_reject;
1916   /* The number of elements in the following array.  */
1917   int early_clobbered_regs_num;
1918   /* Numbers of operands which are early clobber registers.  */
1919   int early_clobbered_nops[MAX_RECOG_OPERANDS];
1920   enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1921   HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1922   bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1923   bool curr_alt_win[MAX_RECOG_OPERANDS];
1924   bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1925   int curr_alt_matches[MAX_RECOG_OPERANDS];
1926   /* The number of elements in the following array.  */
1927   int curr_alt_dont_inherit_ops_num;
1928   /* Numbers of operands whose reload pseudos should not be inherited.	*/
1929   int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1930   rtx op;
1931   /* The register when the operand is a subreg of register, otherwise the
1932      operand itself.  */
1933   rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1934   /* The register if the operand is a register or subreg of register,
1935      otherwise NULL.  */
1936   rtx operand_reg[MAX_RECOG_OPERANDS];
1937   int hard_regno[MAX_RECOG_OPERANDS];
1938   machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1939   int reload_nregs, reload_sum;
1940   bool costly_p;
1941   enum reg_class cl;
1942 
1943   /* Calculate some data common for all alternatives to speed up the
1944      function.	*/
1945   for (nop = 0; nop < n_operands; nop++)
1946     {
1947       rtx reg;
1948 
1949       op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1950       /* The real hard regno of the operand after the allocation.  */
1951       hard_regno[nop] = get_hard_regno (op, true);
1952 
1953       operand_reg[nop] = reg = op;
1954       biggest_mode[nop] = GET_MODE (op);
1955       if (GET_CODE (op) == SUBREG)
1956 	{
1957 	  operand_reg[nop] = reg = SUBREG_REG (op);
1958 	  if (GET_MODE_SIZE (biggest_mode[nop])
1959 	      < GET_MODE_SIZE (GET_MODE (reg)))
1960 	    biggest_mode[nop] = GET_MODE (reg);
1961 	}
1962       if (! REG_P (reg))
1963 	operand_reg[nop] = NULL_RTX;
1964       else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1965 	       || ((int) REGNO (reg)
1966 		   == lra_get_elimination_hard_regno (REGNO (reg))))
1967 	no_subreg_reg_operand[nop] = reg;
1968       else
1969 	operand_reg[nop] = no_subreg_reg_operand[nop]
1970 	  /* Just use natural mode for elimination result.  It should
1971 	     be enough for extra constraints hooks.  */
1972 	  = regno_reg_rtx[hard_regno[nop]];
1973     }
1974 
1975   /* The constraints are made of several alternatives.	Each operand's
1976      constraint looks like foo,bar,... with commas separating the
1977      alternatives.  The first alternatives for all operands go
1978      together, the second alternatives go together, etc.
1979 
1980      First loop over alternatives.  */
1981   alternative_mask preferred = curr_id->preferred_alternatives;
1982   if (only_alternative >= 0)
1983     preferred &= ALTERNATIVE_BIT (only_alternative);
1984 
1985   for (nalt = 0; nalt < n_alternatives; nalt++)
1986     {
1987       /* Loop over operands for one constraint alternative.  */
1988       if (!TEST_BIT (preferred, nalt))
1989 	continue;
1990 
1991       curr_small_class_check++;
1992       overall = losers = addr_losers = 0;
1993       static_reject = reject = reload_nregs = reload_sum = 0;
1994       for (nop = 0; nop < n_operands; nop++)
1995 	{
1996 	  int inc = (curr_static_id
1997 		     ->operand_alternative[nalt * n_operands + nop].reject);
1998 	  if (lra_dump_file != NULL && inc != 0)
1999 	    fprintf (lra_dump_file,
2000 		     "            Staticly defined alt reject+=%d\n", inc);
2001 	  static_reject += inc;
2002 	}
2003       reject += static_reject;
2004       early_clobbered_regs_num = 0;
2005 
2006       for (nop = 0; nop < n_operands; nop++)
2007 	{
2008 	  const char *p;
2009 	  char *end;
2010 	  int len, c, m, i, opalt_num, this_alternative_matches;
2011 	  bool win, did_match, offmemok, early_clobber_p;
2012 	  /* false => this operand can be reloaded somehow for this
2013 	     alternative.  */
2014 	  bool badop;
2015 	  /* true => this operand can be reloaded if the alternative
2016 	     allows regs.  */
2017 	  bool winreg;
2018 	  /* True if a constant forced into memory would be OK for
2019 	     this operand.  */
2020 	  bool constmemok;
2021 	  enum reg_class this_alternative, this_costly_alternative;
2022 	  HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2023 	  bool this_alternative_match_win, this_alternative_win;
2024 	  bool this_alternative_offmemok;
2025 	  bool scratch_p;
2026 	  machine_mode mode;
2027 	  enum constraint_num cn;
2028 
2029 	  opalt_num = nalt * n_operands + nop;
2030 	  if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2031 	    {
2032 	      /* Fast track for no constraints at all.	*/
2033 	      curr_alt[nop] = NO_REGS;
2034 	      CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2035 	      curr_alt_win[nop] = true;
2036 	      curr_alt_match_win[nop] = false;
2037 	      curr_alt_offmemok[nop] = false;
2038 	      curr_alt_matches[nop] = -1;
2039 	      continue;
2040 	    }
2041 
2042 	  op = no_subreg_reg_operand[nop];
2043 	  mode = curr_operand_mode[nop];
2044 
2045 	  win = did_match = winreg = offmemok = constmemok = false;
2046 	  badop = true;
2047 
2048 	  early_clobber_p = false;
2049 	  p = curr_static_id->operand_alternative[opalt_num].constraint;
2050 
2051 	  this_costly_alternative = this_alternative = NO_REGS;
2052 	  /* We update set of possible hard regs besides its class
2053 	     because reg class might be inaccurate.  For example,
2054 	     union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2055 	     is translated in HI_REGS because classes are merged by
2056 	     pairs and there is no accurate intermediate class.	 */
2057 	  CLEAR_HARD_REG_SET (this_alternative_set);
2058 	  CLEAR_HARD_REG_SET (this_costly_alternative_set);
2059 	  this_alternative_win = false;
2060 	  this_alternative_match_win = false;
2061 	  this_alternative_offmemok = false;
2062 	  this_alternative_matches = -1;
2063 
2064 	  /* An empty constraint should be excluded by the fast
2065 	     track.  */
2066 	  lra_assert (*p != 0 && *p != ',');
2067 
2068 	  op_reject = 0;
2069 	  /* Scan this alternative's specs for this operand; set WIN
2070 	     if the operand fits any letter in this alternative.
2071 	     Otherwise, clear BADOP if this operand could fit some
2072 	     letter after reloads, or set WINREG if this operand could
2073 	     fit after reloads provided the constraint allows some
2074 	     registers.	 */
2075 	  costly_p = false;
2076 	  do
2077 	    {
2078 	      switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2079 		{
2080 		case '\0':
2081 		  len = 0;
2082 		  break;
2083 		case ',':
2084 		  c = '\0';
2085 		  break;
2086 
2087 		case '&':
2088 		  early_clobber_p = true;
2089 		  break;
2090 
2091 		case '$':
2092 		  op_reject += LRA_MAX_REJECT;
2093 		  break;
2094 		case '^':
2095 		  op_reject += LRA_LOSER_COST_FACTOR;
2096 		  break;
2097 
2098 		case '#':
2099 		  /* Ignore rest of this alternative.  */
2100 		  c = '\0';
2101 		  break;
2102 
2103 		case '0':  case '1':  case '2':	 case '3':  case '4':
2104 		case '5':  case '6':  case '7':	 case '8':  case '9':
2105 		  {
2106 		    int m_hregno;
2107 		    bool match_p;
2108 
2109 		    m = strtoul (p, &end, 10);
2110 		    p = end;
2111 		    len = 0;
2112 		    lra_assert (nop > m);
2113 
2114 		    this_alternative_matches = m;
2115 		    m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2116 		    /* We are supposed to match a previous operand.
2117 		       If we do, we win if that one did.  If we do
2118 		       not, count both of the operands as losers.
2119 		       (This is too conservative, since most of the
2120 		       time only a single reload insn will be needed
2121 		       to make the two operands win.  As a result,
2122 		       this alternative may be rejected when it is
2123 		       actually desirable.)  */
2124 		    match_p = false;
2125 		    if (operands_match_p (*curr_id->operand_loc[nop],
2126 					  *curr_id->operand_loc[m], m_hregno))
2127 		      {
2128 			/* We should reject matching of an early
2129 			   clobber operand if the matching operand is
2130 			   not dying in the insn.  */
2131 			if (! curr_static_id->operand[m].early_clobber
2132 			    || operand_reg[nop] == NULL_RTX
2133 			    || (find_regno_note (curr_insn, REG_DEAD,
2134 						 REGNO (op))
2135 				|| REGNO (op) == REGNO (operand_reg[m])))
2136 			  match_p = true;
2137 		      }
2138 		    if (match_p)
2139 		      {
2140 			/* If we are matching a non-offsettable
2141 			   address where an offsettable address was
2142 			   expected, then we must reject this
2143 			   combination, because we can't reload
2144 			   it.	*/
2145 			if (curr_alt_offmemok[m]
2146 			    && MEM_P (*curr_id->operand_loc[m])
2147 			    && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2148 			  continue;
2149 		      }
2150 		    else
2151 		      {
2152 			/* Operands don't match.  Both operands must
2153 			   allow a reload register, otherwise we
2154 			   cannot make them match.  */
2155 			if (curr_alt[m] == NO_REGS)
2156 			  break;
2157 			/* Retroactively mark the operand we had to
2158 			   match as a loser, if it wasn't already and
2159 			   it wasn't matched to a register constraint
2160 			   (e.g it might be matched by memory). */
2161 			if (curr_alt_win[m]
2162 			    && (operand_reg[m] == NULL_RTX
2163 				|| hard_regno[m] < 0))
2164 			  {
2165 			    losers++;
2166 			    reload_nregs
2167 			      += (ira_reg_class_max_nregs[curr_alt[m]]
2168 				  [GET_MODE (*curr_id->operand_loc[m])]);
2169 			  }
2170 
2171 			/* Prefer matching earlyclobber alternative as
2172 			   it results in less hard regs required for
2173 			   the insn than a non-matching earlyclobber
2174 			   alternative.  */
2175 			if (curr_static_id->operand[m].early_clobber)
2176 			  {
2177 			    if (lra_dump_file != NULL)
2178 			      fprintf
2179 				(lra_dump_file,
2180 				 "            %d Matching earlyclobber alt:"
2181 				 " reject--\n",
2182 				 nop);
2183 			    reject--;
2184 			  }
2185 			/* Otherwise we prefer no matching
2186 			   alternatives because it gives more freedom
2187 			   in RA.  */
2188 			else if (operand_reg[nop] == NULL_RTX
2189 				 || (find_regno_note (curr_insn, REG_DEAD,
2190 						      REGNO (operand_reg[nop]))
2191 				     == NULL_RTX))
2192 			  {
2193 			    if (lra_dump_file != NULL)
2194 			      fprintf
2195 				(lra_dump_file,
2196 				 "            %d Matching alt: reject+=2\n",
2197 				 nop);
2198 			    reject += 2;
2199 			  }
2200 		      }
2201 		    /* If we have to reload this operand and some
2202 		       previous operand also had to match the same
2203 		       thing as this operand, we don't know how to do
2204 		       that.  */
2205 		    if (!match_p || !curr_alt_win[m])
2206 		      {
2207 			for (i = 0; i < nop; i++)
2208 			  if (curr_alt_matches[i] == m)
2209 			    break;
2210 			if (i < nop)
2211 			  break;
2212 		      }
2213 		    else
2214 		      did_match = true;
2215 
2216 		    /* This can be fixed with reloads if the operand
2217 		       we are supposed to match can be fixed with
2218 		       reloads. */
2219 		    badop = false;
2220 		    this_alternative = curr_alt[m];
2221 		    COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2222 		    winreg = this_alternative != NO_REGS;
2223 		    break;
2224 		  }
2225 
2226 		case 'g':
2227 		  if (MEM_P (op)
2228 		      || general_constant_p (op)
2229 		      || spilled_pseudo_p (op))
2230 		    win = true;
2231 		  cl = GENERAL_REGS;
2232 		  goto reg;
2233 
2234 		default:
2235 		  cn = lookup_constraint (p);
2236 		  switch (get_constraint_type (cn))
2237 		    {
2238 		    case CT_REGISTER:
2239 		      cl = reg_class_for_constraint (cn);
2240 		      if (cl != NO_REGS)
2241 			goto reg;
2242 		      break;
2243 
2244 		    case CT_CONST_INT:
2245 		      if (CONST_INT_P (op)
2246 			  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2247 			win = true;
2248 		      break;
2249 
2250 		    case CT_MEMORY:
2251 		      if (MEM_P (op)
2252 			  && satisfies_memory_constraint_p (op, cn))
2253 			win = true;
2254 		      else if (spilled_pseudo_p (op))
2255 			win = true;
2256 
2257 		      /* If we didn't already win, we can reload constants
2258 			 via force_const_mem or put the pseudo value into
2259 			 memory, or make other memory by reloading the
2260 			 address like for 'o'.  */
2261 		      if (CONST_POOL_OK_P (mode, op)
2262 			  || MEM_P (op) || REG_P (op)
2263 			  /* We can restore the equiv insn by a
2264 			     reload.  */
2265 			  || equiv_substition_p[nop])
2266 			badop = false;
2267 		      constmemok = true;
2268 		      offmemok = true;
2269 		      break;
2270 
2271 		    case CT_ADDRESS:
2272 		      /* If we didn't already win, we can reload the address
2273 			 into a base register.  */
2274 		      if (satisfies_address_constraint_p (op, cn))
2275 			win = true;
2276 		      cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2277 					   ADDRESS, SCRATCH);
2278 		      badop = false;
2279 		      goto reg;
2280 
2281 		    case CT_FIXED_FORM:
2282 		      if (constraint_satisfied_p (op, cn))
2283 			win = true;
2284 		      break;
2285 
2286 		    case CT_SPECIAL_MEMORY:
2287 		      if (MEM_P (op)
2288 			  && satisfies_memory_constraint_p (op, cn))
2289 			win = true;
2290 		      else if (spilled_pseudo_p (op))
2291 			win = true;
2292 		      break;
2293 		    }
2294 		  break;
2295 
2296 		reg:
2297 		  this_alternative = reg_class_subunion[this_alternative][cl];
2298 		  IOR_HARD_REG_SET (this_alternative_set,
2299 				    reg_class_contents[cl]);
2300 		  if (costly_p)
2301 		    {
2302 		      this_costly_alternative
2303 			= reg_class_subunion[this_costly_alternative][cl];
2304 		      IOR_HARD_REG_SET (this_costly_alternative_set,
2305 					reg_class_contents[cl]);
2306 		    }
2307 		  if (mode == BLKmode)
2308 		    break;
2309 		  winreg = true;
2310 		  if (REG_P (op))
2311 		    {
2312 		      if (hard_regno[nop] >= 0
2313 			  && in_hard_reg_set_p (this_alternative_set,
2314 						mode, hard_regno[nop]))
2315 			win = true;
2316 		      else if (hard_regno[nop] < 0
2317 			       && in_class_p (op, this_alternative, NULL))
2318 			win = true;
2319 		    }
2320 		  break;
2321 		}
2322 	      if (c != ' ' && c != '\t')
2323 		costly_p = c == '*';
2324 	    }
2325 	  while ((p += len), c);
2326 
2327 	  scratch_p = (operand_reg[nop] != NULL_RTX
2328 		       && lra_former_scratch_p (REGNO (operand_reg[nop])));
2329 	  /* Record which operands fit this alternative.  */
2330 	  if (win)
2331 	    {
2332 	      this_alternative_win = true;
2333 	      if (operand_reg[nop] != NULL_RTX)
2334 		{
2335 		  if (hard_regno[nop] >= 0)
2336 		    {
2337 		      if (in_hard_reg_set_p (this_costly_alternative_set,
2338 					     mode, hard_regno[nop]))
2339 			{
2340 			  if (lra_dump_file != NULL)
2341 			    fprintf (lra_dump_file,
2342 				     "            %d Costly set: reject++\n",
2343 				     nop);
2344 			  reject++;
2345 			}
2346 		    }
2347 		  else
2348 		    {
2349 		      /* Prefer won reg to spilled pseudo under other
2350 			 equal conditions for possibe inheritance.  */
2351 		      if (! scratch_p)
2352 			{
2353 			  if (lra_dump_file != NULL)
2354 			    fprintf
2355 			      (lra_dump_file,
2356 			       "            %d Non pseudo reload: reject++\n",
2357 			       nop);
2358 			  reject++;
2359 			}
2360 		      if (in_class_p (operand_reg[nop],
2361 				      this_costly_alternative, NULL))
2362 			{
2363 			  if (lra_dump_file != NULL)
2364 			    fprintf
2365 			      (lra_dump_file,
2366 			       "            %d Non pseudo costly reload:"
2367 			       " reject++\n",
2368 			       nop);
2369 			  reject++;
2370 			}
2371 		    }
2372 		  /* We simulate the behavior of old reload here.
2373 		     Although scratches need hard registers and it
2374 		     might result in spilling other pseudos, no reload
2375 		     insns are generated for the scratches.  So it
2376 		     might cost something but probably less than old
2377 		     reload pass believes.  */
2378 		  if (scratch_p)
2379 		    {
2380 		      if (lra_dump_file != NULL)
2381 			fprintf (lra_dump_file,
2382 				 "            %d Scratch win: reject+=2\n",
2383 				 nop);
2384 		      reject += 2;
2385 		    }
2386 		}
2387 	    }
2388 	  else if (did_match)
2389 	    this_alternative_match_win = true;
2390 	  else
2391 	    {
2392 	      int const_to_mem = 0;
2393 	      bool no_regs_p;
2394 
2395 	      reject += op_reject;
2396 	      /* Never do output reload of stack pointer.  It makes
2397 		 impossible to do elimination when SP is changed in
2398 		 RTL.  */
2399 	      if (op == stack_pointer_rtx && ! frame_pointer_needed
2400 		  && curr_static_id->operand[nop].type != OP_IN)
2401 		goto fail;
2402 
2403 	      /* If this alternative asks for a specific reg class, see if there
2404 		 is at least one allocatable register in that class.  */
2405 	      no_regs_p
2406 		= (this_alternative == NO_REGS
2407 		   || (hard_reg_set_subset_p
2408 		       (reg_class_contents[this_alternative],
2409 			lra_no_alloc_regs)));
2410 
2411 	      /* For asms, verify that the class for this alternative is possible
2412 		 for the mode that is specified.  */
2413 	      if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2414 		{
2415 		  int i;
2416 		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2417 		    if (HARD_REGNO_MODE_OK (i, mode)
2418 			&& in_hard_reg_set_p (reg_class_contents[this_alternative],
2419 					      mode, i))
2420 		      break;
2421 		  if (i == FIRST_PSEUDO_REGISTER)
2422 		    winreg = false;
2423 		}
2424 
2425 	      /* If this operand accepts a register, and if the
2426 		 register class has at least one allocatable register,
2427 		 then this operand can be reloaded.  */
2428 	      if (winreg && !no_regs_p)
2429 		badop = false;
2430 
2431 	      if (badop)
2432 		{
2433 		  if (lra_dump_file != NULL)
2434 		    fprintf (lra_dump_file,
2435 			     "            alt=%d: Bad operand -- refuse\n",
2436 			     nalt);
2437 		  goto fail;
2438 		}
2439 
2440 	      if (this_alternative != NO_REGS)
2441 		{
2442 		  HARD_REG_SET available_regs;
2443 
2444 		  COPY_HARD_REG_SET (available_regs,
2445 				     reg_class_contents[this_alternative]);
2446 		  AND_COMPL_HARD_REG_SET
2447 		    (available_regs,
2448 		     ira_prohibited_class_mode_regs[this_alternative][mode]);
2449 		  AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2450 		  if (hard_reg_set_empty_p (available_regs))
2451 		    {
2452 		      /* There are no hard regs holding a value of given
2453 			 mode.  */
2454 		      if (offmemok)
2455 			{
2456 			  this_alternative = NO_REGS;
2457 			  if (lra_dump_file != NULL)
2458 			    fprintf (lra_dump_file,
2459 				     "            %d Using memory because of"
2460 				     " a bad mode: reject+=2\n",
2461 				     nop);
2462 			  reject += 2;
2463 			}
2464 		      else
2465 			{
2466 			  if (lra_dump_file != NULL)
2467 			    fprintf (lra_dump_file,
2468 				     "            alt=%d: Wrong mode -- refuse\n",
2469 				     nalt);
2470 			  goto fail;
2471 			}
2472 		    }
2473 		}
2474 
2475 	      /* If not assigned pseudo has a class which a subset of
2476 		 required reg class, it is a less costly alternative
2477 		 as the pseudo still can get a hard reg of necessary
2478 		 class.  */
2479 	      if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2480 		  && (cl = get_reg_class (REGNO (op))) != NO_REGS
2481 		  && ira_class_subset_p[this_alternative][cl])
2482 		{
2483 		  if (lra_dump_file != NULL)
2484 		    fprintf
2485 		      (lra_dump_file,
2486 		       "            %d Super set class reg: reject-=3\n", nop);
2487 		  reject -= 3;
2488 		}
2489 
2490 	      this_alternative_offmemok = offmemok;
2491 	      if (this_costly_alternative != NO_REGS)
2492 		{
2493 		  if (lra_dump_file != NULL)
2494 		    fprintf (lra_dump_file,
2495 			     "            %d Costly loser: reject++\n", nop);
2496 		  reject++;
2497 		}
2498 	      /* If the operand is dying, has a matching constraint,
2499 		 and satisfies constraints of the matched operand
2500 		 which failed to satisfy the own constraints, most probably
2501 		 the reload for this operand will be gone.  */
2502 	      if (this_alternative_matches >= 0
2503 		  && !curr_alt_win[this_alternative_matches]
2504 		  && REG_P (op)
2505 		  && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2506 		  && (hard_regno[nop] >= 0
2507 		      ? in_hard_reg_set_p (this_alternative_set,
2508 					   mode, hard_regno[nop])
2509 		      : in_class_p (op, this_alternative, NULL)))
2510 		{
2511 		  if (lra_dump_file != NULL)
2512 		    fprintf
2513 		      (lra_dump_file,
2514 		       "            %d Dying matched operand reload: reject++\n",
2515 		       nop);
2516 		  reject++;
2517 		}
2518 	      else
2519 		{
2520 		  /* Strict_low_part requires to reload the register
2521 		     not the sub-register.  In this case we should
2522 		     check that a final reload hard reg can hold the
2523 		     value mode.  */
2524 		  if (curr_static_id->operand[nop].strict_low
2525 		      && REG_P (op)
2526 		      && hard_regno[nop] < 0
2527 		      && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2528 		      && ira_class_hard_regs_num[this_alternative] > 0
2529 		      && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2530 					       [this_alternative][0],
2531 					       GET_MODE
2532 					       (*curr_id->operand_loc[nop])))
2533 		    {
2534 		      if (lra_dump_file != NULL)
2535 			fprintf
2536 			  (lra_dump_file,
2537 			   "            alt=%d: Strict low subreg reload -- refuse\n",
2538 			   nalt);
2539 		      goto fail;
2540 		    }
2541 		  losers++;
2542 		}
2543 	      if (operand_reg[nop] != NULL_RTX
2544 		  /* Output operands and matched input operands are
2545 		     not inherited.  The following conditions do not
2546 		     exactly describe the previous statement but they
2547 		     are pretty close.  */
2548 		  && curr_static_id->operand[nop].type != OP_OUT
2549 		  && (this_alternative_matches < 0
2550 		      || curr_static_id->operand[nop].type != OP_IN))
2551 		{
2552 		  int last_reload = (lra_reg_info[ORIGINAL_REGNO
2553 						  (operand_reg[nop])]
2554 				     .last_reload);
2555 
2556 		  /* The value of reload_sum has sense only if we
2557 		     process insns in their order.  It happens only on
2558 		     the first constraints sub-pass when we do most of
2559 		     reload work.  */
2560 		  if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2561 		    reload_sum += last_reload - bb_reload_num;
2562 		}
2563 	      /* If this is a constant that is reloaded into the
2564 		 desired class by copying it to memory first, count
2565 		 that as another reload.  This is consistent with
2566 		 other code and is required to avoid choosing another
2567 		 alternative when the constant is moved into memory.
2568 		 Note that the test here is precisely the same as in
2569 		 the code below that calls force_const_mem.  */
2570 	      if (CONST_POOL_OK_P (mode, op)
2571 		  && ((targetm.preferred_reload_class
2572 		       (op, this_alternative) == NO_REGS)
2573 		      || no_input_reloads_p))
2574 		{
2575 		  const_to_mem = 1;
2576 		  if (! no_regs_p)
2577 		    losers++;
2578 		}
2579 
2580 	      /* Alternative loses if it requires a type of reload not
2581 		 permitted for this insn.  We can always reload
2582 		 objects with a REG_UNUSED note.  */
2583 	      if ((curr_static_id->operand[nop].type != OP_IN
2584 		   && no_output_reloads_p
2585 		   && ! find_reg_note (curr_insn, REG_UNUSED, op))
2586 		  || (curr_static_id->operand[nop].type != OP_OUT
2587 		      && no_input_reloads_p && ! const_to_mem)
2588 		  || (this_alternative_matches >= 0
2589 		      && (no_input_reloads_p
2590 			  || (no_output_reloads_p
2591 			      && (curr_static_id->operand
2592 				  [this_alternative_matches].type != OP_IN)
2593 			      && ! find_reg_note (curr_insn, REG_UNUSED,
2594 						  no_subreg_reg_operand
2595 						  [this_alternative_matches])))))
2596 		{
2597 		  if (lra_dump_file != NULL)
2598 		    fprintf
2599 		      (lra_dump_file,
2600 		       "            alt=%d: No input/otput reload -- refuse\n",
2601 		       nalt);
2602 		  goto fail;
2603 		}
2604 
2605 	      /* Alternative loses if it required class pseudo can not
2606 		 hold value of required mode.  Such insns can be
2607 		 described by insn definitions with mode iterators.  */
2608 	      if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2609 		  && ! hard_reg_set_empty_p (this_alternative_set)
2610 		  /* It is common practice for constraints to use a
2611 		     class which does not have actually enough regs to
2612 		     hold the value (e.g. x86 AREG for mode requiring
2613 		     more one general reg).  Therefore we have 2
2614 		     conditions to check that the reload pseudo can
2615 		     not hold the mode value.  */
2616 		  && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2617 					   [this_alternative][0],
2618 					   GET_MODE (*curr_id->operand_loc[nop]))
2619 		  /* The above condition is not enough as the first
2620 		     reg in ira_class_hard_regs can be not aligned for
2621 		     multi-words mode values.  */
2622 		  && (prohibited_class_reg_set_mode_p
2623 		      (this_alternative, this_alternative_set,
2624 		       GET_MODE (*curr_id->operand_loc[nop]))))
2625 		{
2626 		  if (lra_dump_file != NULL)
2627 		    fprintf (lra_dump_file,
2628 			     "            alt=%d: reload pseudo for op %d "
2629 			     " can not hold the mode value -- refuse\n",
2630 			     nalt, nop);
2631 		  goto fail;
2632 		}
2633 
2634 	      /* Check strong discouragement of reload of non-constant
2635 		 into class THIS_ALTERNATIVE.  */
2636 	      if (! CONSTANT_P (op) && ! no_regs_p
2637 		  && (targetm.preferred_reload_class
2638 		      (op, this_alternative) == NO_REGS
2639 		      || (curr_static_id->operand[nop].type == OP_OUT
2640 			  && (targetm.preferred_output_reload_class
2641 			      (op, this_alternative) == NO_REGS))))
2642 		{
2643 		  if (lra_dump_file != NULL)
2644 		    fprintf (lra_dump_file,
2645 			     "            %d Non-prefered reload: reject+=%d\n",
2646 			     nop, LRA_MAX_REJECT);
2647 		  reject += LRA_MAX_REJECT;
2648 		}
2649 
2650 	      if (! (MEM_P (op) && offmemok)
2651 		  && ! (const_to_mem && constmemok))
2652 		{
2653 		  /* We prefer to reload pseudos over reloading other
2654 		     things, since such reloads may be able to be
2655 		     eliminated later.  So bump REJECT in other cases.
2656 		     Don't do this in the case where we are forcing a
2657 		     constant into memory and it will then win since
2658 		     we don't want to have a different alternative
2659 		     match then.  */
2660 		  if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2661 		    {
2662 		      if (lra_dump_file != NULL)
2663 			fprintf
2664 			  (lra_dump_file,
2665 			   "            %d Non-pseudo reload: reject+=2\n",
2666 			   nop);
2667 		      reject += 2;
2668 		    }
2669 
2670 		  if (! no_regs_p)
2671 		    reload_nregs
2672 		      += ira_reg_class_max_nregs[this_alternative][mode];
2673 
2674 		  if (SMALL_REGISTER_CLASS_P (this_alternative))
2675 		    {
2676 		      if (lra_dump_file != NULL)
2677 			fprintf
2678 			  (lra_dump_file,
2679 			   "            %d Small class reload: reject+=%d\n",
2680 			   nop, LRA_LOSER_COST_FACTOR / 2);
2681 		      reject += LRA_LOSER_COST_FACTOR / 2;
2682 		    }
2683 		}
2684 
2685 	      /* We are trying to spill pseudo into memory.  It is
2686 		 usually more costly than moving to a hard register
2687 		 although it might takes the same number of
2688 		 reloads.
2689 
2690 		 Non-pseudo spill may happen also.  Suppose a target allows both
2691 		 register and memory in the operand constraint alternatives,
2692 		 then it's typical that an eliminable register has a substition
2693 		 of "base + offset" which can either be reloaded by a simple
2694 		 "new_reg <= base + offset" which will match the register
2695 		 constraint, or a similar reg addition followed by further spill
2696 		 to and reload from memory which will match the memory
2697 		 constraint, but this memory spill will be much more costly
2698 		 usually.
2699 
2700 		 Code below increases the reject for both pseudo and non-pseudo
2701 		 spill.  */
2702 	      if (no_regs_p
2703 		  && !(MEM_P (op) && offmemok)
2704 		  && !(REG_P (op) && hard_regno[nop] < 0))
2705 		{
2706 		  if (lra_dump_file != NULL)
2707 		    fprintf
2708 		      (lra_dump_file,
2709 		       "            %d Spill %spseudo into memory: reject+=3\n",
2710 		       nop, REG_P (op) ? "" : "Non-");
2711 		  reject += 3;
2712 		  if (VECTOR_MODE_P (mode))
2713 		    {
2714 		      /* Spilling vectors into memory is usually more
2715 			 costly as they contain big values.  */
2716 		      if (lra_dump_file != NULL)
2717 			fprintf
2718 			  (lra_dump_file,
2719 			   "            %d Spill vector pseudo: reject+=2\n",
2720 			   nop);
2721 		      reject += 2;
2722 		    }
2723 		}
2724 
2725 	      /* When we use an operand requiring memory in given
2726 		 alternative, the insn should write *and* read the
2727 		 value to/from memory it is costly in comparison with
2728 		 an insn alternative which does not use memory
2729 		 (e.g. register or immediate operand).  We exclude
2730 		 memory operand for such case as we can satisfy the
2731 		 memory constraints by reloading address.  */
2732 	      if (no_regs_p && offmemok && !MEM_P (op))
2733 		{
2734 		  if (lra_dump_file != NULL)
2735 		    fprintf
2736 		      (lra_dump_file,
2737 		       "            Using memory insn operand %d: reject+=3\n",
2738 		       nop);
2739 		  reject += 3;
2740 		}
2741 
2742 #ifdef SECONDARY_MEMORY_NEEDED
2743 	      /* If reload requires moving value through secondary
2744 		 memory, it will need one more insn at least.  */
2745 	      if (this_alternative != NO_REGS
2746 		  && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2747 		  && ((curr_static_id->operand[nop].type != OP_OUT
2748 		       && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2749 						   GET_MODE (op)))
2750 		      || (curr_static_id->operand[nop].type != OP_IN
2751 			  && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2752 						      GET_MODE (op)))))
2753 		losers++;
2754 #endif
2755 	      /* Input reloads can be inherited more often than output
2756 		 reloads can be removed, so penalize output
2757 		 reloads.  */
2758 	      if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2759 		{
2760 		  if (lra_dump_file != NULL)
2761 		    fprintf
2762 		      (lra_dump_file,
2763 		       "            %d Non input pseudo reload: reject++\n",
2764 		       nop);
2765 		  reject++;
2766 		}
2767 
2768 	      if (MEM_P (op) && offmemok)
2769 		addr_losers++;
2770 	      else if (curr_static_id->operand[nop].type == OP_INOUT)
2771 		{
2772 		  if (lra_dump_file != NULL)
2773 		    fprintf
2774 		      (lra_dump_file,
2775 		       "            %d Input/Output reload: reject+=%d\n",
2776 		       nop, LRA_LOSER_COST_FACTOR);
2777 		  reject += LRA_LOSER_COST_FACTOR;
2778 		}
2779 	    }
2780 
2781 	  if (early_clobber_p && ! scratch_p)
2782 	    {
2783 	      if (lra_dump_file != NULL)
2784 		fprintf (lra_dump_file,
2785 			 "            %d Early clobber: reject++\n", nop);
2786 	      reject++;
2787 	    }
2788 	  /* ??? We check early clobbers after processing all operands
2789 	     (see loop below) and there we update the costs more.
2790 	     Should we update the cost (may be approximately) here
2791 	     because of early clobber register reloads or it is a rare
2792 	     or non-important thing to be worth to do it.  */
2793 	  overall = (losers * LRA_LOSER_COST_FACTOR + reject
2794 		     - (addr_losers == losers ? static_reject : 0));
2795 	  if ((best_losers == 0 || losers != 0) && best_overall < overall)
2796             {
2797               if (lra_dump_file != NULL)
2798 		fprintf (lra_dump_file,
2799 			 "            alt=%d,overall=%d,losers=%d -- refuse\n",
2800 			 nalt, overall, losers);
2801               goto fail;
2802             }
2803 
2804 	  if (update_and_check_small_class_inputs (nop, this_alternative))
2805 	    {
2806 	      if (lra_dump_file != NULL)
2807 		fprintf (lra_dump_file,
2808 			 "            alt=%d, not enough small class regs -- refuse\n",
2809 			 nalt);
2810 	      goto fail;
2811 	    }
2812 	  curr_alt[nop] = this_alternative;
2813 	  COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2814 	  curr_alt_win[nop] = this_alternative_win;
2815 	  curr_alt_match_win[nop] = this_alternative_match_win;
2816 	  curr_alt_offmemok[nop] = this_alternative_offmemok;
2817 	  curr_alt_matches[nop] = this_alternative_matches;
2818 
2819 	  if (this_alternative_matches >= 0
2820 	      && !did_match && !this_alternative_win)
2821 	    curr_alt_win[this_alternative_matches] = false;
2822 
2823 	  if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2824 	    early_clobbered_nops[early_clobbered_regs_num++] = nop;
2825 	}
2826 
2827       if (curr_insn_set != NULL_RTX && n_operands == 2
2828 	  /* Prevent processing non-move insns.  */
2829 	  && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2830 	      || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2831 	  && ((! curr_alt_win[0] && ! curr_alt_win[1]
2832 	       && REG_P (no_subreg_reg_operand[0])
2833 	       && REG_P (no_subreg_reg_operand[1])
2834 	       && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2835 		   || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2836 	      || (! curr_alt_win[0] && curr_alt_win[1]
2837 		  && REG_P (no_subreg_reg_operand[1])
2838 		  /* Check that we reload memory not the memory
2839 		     address.  */
2840 		  && ! (curr_alt_offmemok[0]
2841 			&& MEM_P (no_subreg_reg_operand[0]))
2842 		  && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2843 	      || (curr_alt_win[0] && ! curr_alt_win[1]
2844 		  && REG_P (no_subreg_reg_operand[0])
2845 		  /* Check that we reload memory not the memory
2846 		     address.  */
2847 		  && ! (curr_alt_offmemok[1]
2848 			&& MEM_P (no_subreg_reg_operand[1]))
2849 		  && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2850 		  && (! CONST_POOL_OK_P (curr_operand_mode[1],
2851 					 no_subreg_reg_operand[1])
2852 		      || (targetm.preferred_reload_class
2853 			  (no_subreg_reg_operand[1],
2854 			   (enum reg_class) curr_alt[1]) != NO_REGS))
2855 		  /* If it is a result of recent elimination in move
2856 		     insn we can transform it into an add still by
2857 		     using this alternative.  */
2858 		  && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2859 	{
2860 	  /* We have a move insn and a new reload insn will be similar
2861 	     to the current insn.  We should avoid such situation as
2862 	     it results in LRA cycling.  */
2863 	  if (lra_dump_file != NULL)
2864 	    fprintf (lra_dump_file,
2865 		     "            Cycle danger: overall += LRA_MAX_REJECT\n");
2866 	  overall += LRA_MAX_REJECT;
2867 	}
2868       ok_p = true;
2869       curr_alt_dont_inherit_ops_num = 0;
2870       for (nop = 0; nop < early_clobbered_regs_num; nop++)
2871 	{
2872 	  int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2873 	  HARD_REG_SET temp_set;
2874 
2875 	  i = early_clobbered_nops[nop];
2876 	  if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2877 	      || hard_regno[i] < 0)
2878 	    continue;
2879 	  lra_assert (operand_reg[i] != NULL_RTX);
2880 	  clobbered_hard_regno = hard_regno[i];
2881 	  CLEAR_HARD_REG_SET (temp_set);
2882 	  add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2883 	  first_conflict_j = last_conflict_j = -1;
2884 	  for (j = 0; j < n_operands; j++)
2885 	    if (j == i
2886 		/* We don't want process insides of match_operator and
2887 		   match_parallel because otherwise we would process
2888 		   their operands once again generating a wrong
2889 		   code.  */
2890 		|| curr_static_id->operand[j].is_operator)
2891 	      continue;
2892 	    else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2893 		     || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2894 	      continue;
2895 	    /* If we don't reload j-th operand, check conflicts.  */
2896 	    else if ((curr_alt_win[j] || curr_alt_match_win[j])
2897 		     && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2898 	      {
2899 		if (first_conflict_j < 0)
2900 		  first_conflict_j = j;
2901 		last_conflict_j = j;
2902 	      }
2903 	  if (last_conflict_j < 0)
2904 	    continue;
2905 	  /* If earlyclobber operand conflicts with another
2906 	     non-matching operand which is actually the same register
2907 	     as the earlyclobber operand, it is better to reload the
2908 	     another operand as an operand matching the earlyclobber
2909 	     operand can be also the same.  */
2910 	  if (first_conflict_j == last_conflict_j
2911 	      && operand_reg[last_conflict_j] != NULL_RTX
2912 	      && ! curr_alt_match_win[last_conflict_j]
2913 	      && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2914 	    {
2915 	      curr_alt_win[last_conflict_j] = false;
2916 	      curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2917 		= last_conflict_j;
2918 	      losers++;
2919 	      /* Early clobber was already reflected in REJECT. */
2920 	      lra_assert (reject > 0);
2921 	      if (lra_dump_file != NULL)
2922 		fprintf
2923 		  (lra_dump_file,
2924 		   "            %d Conflict early clobber reload: reject--\n",
2925 		   i);
2926 	      reject--;
2927 	      overall += LRA_LOSER_COST_FACTOR - 1;
2928 	    }
2929 	  else
2930 	    {
2931 	      /* We need to reload early clobbered register and the
2932 		 matched registers.  */
2933 	      for (j = 0; j < n_operands; j++)
2934 		if (curr_alt_matches[j] == i)
2935 		  {
2936 		    curr_alt_match_win[j] = false;
2937 		    losers++;
2938 		    overall += LRA_LOSER_COST_FACTOR;
2939 		  }
2940 	      if (! curr_alt_match_win[i])
2941 		curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2942 	      else
2943 		{
2944 		  /* Remember pseudos used for match reloads are never
2945 		     inherited.  */
2946 		  lra_assert (curr_alt_matches[i] >= 0);
2947 		  curr_alt_win[curr_alt_matches[i]] = false;
2948 		}
2949 	      curr_alt_win[i] = curr_alt_match_win[i] = false;
2950 	      losers++;
2951 	      /* Early clobber was already reflected in REJECT. */
2952 	      lra_assert (reject > 0);
2953 	      if (lra_dump_file != NULL)
2954 		fprintf
2955 		  (lra_dump_file,
2956 		   "            %d Matched conflict early clobber reloads: "
2957 		   "reject--\n",
2958 		   i);
2959 	      reject--;
2960 	      overall += LRA_LOSER_COST_FACTOR - 1;
2961 	    }
2962 	}
2963       if (lra_dump_file != NULL)
2964 	fprintf (lra_dump_file, "          alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2965 		 nalt, overall, losers, reload_nregs);
2966 
2967       /* If this alternative can be made to work by reloading, and it
2968 	 needs less reloading than the others checked so far, record
2969 	 it as the chosen goal for reloading.  */
2970       if ((best_losers != 0 && losers == 0)
2971 	  || (((best_losers == 0 && losers == 0)
2972 	       || (best_losers != 0 && losers != 0))
2973 	      && (best_overall > overall
2974 		  || (best_overall == overall
2975 		      /* If the cost of the reloads is the same,
2976 			 prefer alternative which requires minimal
2977 			 number of reload regs.  */
2978 		      && (reload_nregs < best_reload_nregs
2979 			  || (reload_nregs == best_reload_nregs
2980 			      && (best_reload_sum < reload_sum
2981 				  || (best_reload_sum == reload_sum
2982 				      && nalt < goal_alt_number))))))))
2983 	{
2984 	  for (nop = 0; nop < n_operands; nop++)
2985 	    {
2986 	      goal_alt_win[nop] = curr_alt_win[nop];
2987 	      goal_alt_match_win[nop] = curr_alt_match_win[nop];
2988 	      goal_alt_matches[nop] = curr_alt_matches[nop];
2989 	      goal_alt[nop] = curr_alt[nop];
2990 	      goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2991 	    }
2992 	  goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2993 	  for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2994 	    goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2995 	  goal_alt_swapped = curr_swapped;
2996 	  best_overall = overall;
2997 	  best_losers = losers;
2998 	  best_reload_nregs = reload_nregs;
2999 	  best_reload_sum = reload_sum;
3000 	  goal_alt_number = nalt;
3001 	}
3002       if (losers == 0)
3003 	/* Everything is satisfied.  Do not process alternatives
3004 	   anymore.  */
3005 	break;
3006     fail:
3007       ;
3008     }
3009   return ok_p;
3010 }
3011 
3012 /* Make reload base reg from address AD.  */
3013 static rtx
3014 base_to_reg (struct address_info *ad)
3015 {
3016   enum reg_class cl;
3017   int code = -1;
3018   rtx new_inner = NULL_RTX;
3019   rtx new_reg = NULL_RTX;
3020   rtx_insn *insn;
3021   rtx_insn *last_insn = get_last_insn();
3022 
3023   lra_assert (ad->disp == ad->disp_term);
3024   cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3025                        get_index_code (ad));
3026   new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3027                                 cl, "base");
3028   new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3029                                    ad->disp_term == NULL
3030                                    ? const0_rtx
3031                                    : *ad->disp_term);
3032   if (!valid_address_p (ad->mode, new_inner, ad->as))
3033     return NULL_RTX;
3034   insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3035   code = recog_memoized (insn);
3036   if (code < 0)
3037     {
3038       delete_insns_since (last_insn);
3039       return NULL_RTX;
3040     }
3041 
3042   return new_inner;
3043 }
3044 
3045 /* Make reload base reg + disp from address AD.  Return the new pseudo.  */
3046 static rtx
3047 base_plus_disp_to_reg (struct address_info *ad)
3048 {
3049   enum reg_class cl;
3050   rtx new_reg;
3051 
3052   lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
3053   cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3054 		       get_index_code (ad));
3055   new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3056 				cl, "base + disp");
3057   lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
3058   return new_reg;
3059 }
3060 
3061 /* Make reload of index part of address AD.  Return the new
3062    pseudo.  */
3063 static rtx
3064 index_part_to_reg (struct address_info *ad)
3065 {
3066   rtx new_reg;
3067 
3068   new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3069 				INDEX_REG_CLASS, "index term");
3070   expand_mult (GET_MODE (*ad->index), *ad->index_term,
3071 	       GEN_INT (get_index_scale (ad)), new_reg, 1);
3072   return new_reg;
3073 }
3074 
3075 /* Return true if we can add a displacement to address AD, even if that
3076    makes the address invalid.  The fix-up code requires any new address
3077    to be the sum of the BASE_TERM, INDEX and DISP_TERM fields.  */
3078 static bool
3079 can_add_disp_p (struct address_info *ad)
3080 {
3081   return (!ad->autoinc_p
3082 	  && ad->segment == NULL
3083 	  && ad->base == ad->base_term
3084 	  && ad->disp == ad->disp_term);
3085 }
3086 
3087 /* Make equiv substitution in address AD.  Return true if a substitution
3088    was made.  */
3089 static bool
3090 equiv_address_substitution (struct address_info *ad)
3091 {
3092   rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3093   HOST_WIDE_INT disp, scale;
3094   bool change_p;
3095 
3096   base_term = strip_subreg (ad->base_term);
3097   if (base_term == NULL)
3098     base_reg = new_base_reg = NULL_RTX;
3099   else
3100     {
3101       base_reg = *base_term;
3102       new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3103     }
3104   index_term = strip_subreg (ad->index_term);
3105   if (index_term == NULL)
3106     index_reg = new_index_reg = NULL_RTX;
3107   else
3108     {
3109       index_reg = *index_term;
3110       new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3111     }
3112   if (base_reg == new_base_reg && index_reg == new_index_reg)
3113     return false;
3114   disp = 0;
3115   change_p = false;
3116   if (lra_dump_file != NULL)
3117     {
3118       fprintf (lra_dump_file, "Changing address in insn %d ",
3119 	       INSN_UID (curr_insn));
3120       dump_value_slim (lra_dump_file, *ad->outer, 1);
3121     }
3122   if (base_reg != new_base_reg)
3123     {
3124       if (REG_P (new_base_reg))
3125 	{
3126 	  *base_term = new_base_reg;
3127 	  change_p = true;
3128 	}
3129       else if (GET_CODE (new_base_reg) == PLUS
3130 	       && REG_P (XEXP (new_base_reg, 0))
3131 	       && CONST_INT_P (XEXP (new_base_reg, 1))
3132 	       && can_add_disp_p (ad))
3133 	{
3134 	  disp += INTVAL (XEXP (new_base_reg, 1));
3135 	  *base_term = XEXP (new_base_reg, 0);
3136 	  change_p = true;
3137 	}
3138       if (ad->base_term2 != NULL)
3139 	*ad->base_term2 = *ad->base_term;
3140     }
3141   if (index_reg != new_index_reg)
3142     {
3143       if (REG_P (new_index_reg))
3144 	{
3145 	  *index_term = new_index_reg;
3146 	  change_p = true;
3147 	}
3148       else if (GET_CODE (new_index_reg) == PLUS
3149 	       && REG_P (XEXP (new_index_reg, 0))
3150 	       && CONST_INT_P (XEXP (new_index_reg, 1))
3151 	       && can_add_disp_p (ad)
3152 	       && (scale = get_index_scale (ad)))
3153 	{
3154 	  disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
3155 	  *index_term = XEXP (new_index_reg, 0);
3156 	  change_p = true;
3157 	}
3158     }
3159   if (disp != 0)
3160     {
3161       if (ad->disp != NULL)
3162 	*ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3163       else
3164 	{
3165 	  *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3166 	  update_address (ad);
3167 	}
3168       change_p = true;
3169     }
3170   if (lra_dump_file != NULL)
3171     {
3172       if (! change_p)
3173 	fprintf (lra_dump_file, " -- no change\n");
3174       else
3175 	{
3176 	  fprintf (lra_dump_file, " on equiv ");
3177 	  dump_value_slim (lra_dump_file, *ad->outer, 1);
3178 	  fprintf (lra_dump_file, "\n");
3179 	}
3180     }
3181   return change_p;
3182 }
3183 
3184 /* Major function to make reloads for an address in operand NOP or
3185    check its correctness (If CHECK_ONLY_P is true). The supported
3186    cases are:
3187 
3188    1) an address that existed before LRA started, at which point it
3189    must have been valid.  These addresses are subject to elimination
3190    and may have become invalid due to the elimination offset being out
3191    of range.
3192 
3193    2) an address created by forcing a constant to memory
3194    (force_const_to_mem).  The initial form of these addresses might
3195    not be valid, and it is this function's job to make them valid.
3196 
3197    3) a frame address formed from a register and a (possibly zero)
3198    constant offset.  As above, these addresses might not be valid and
3199    this function must make them so.
3200 
3201    Add reloads to the lists *BEFORE and *AFTER.  We might need to add
3202    reloads to *AFTER because of inc/dec, {pre, post} modify in the
3203    address.  Return true for any RTL change.
3204 
3205    The function is a helper function which does not produce all
3206    transformations (when CHECK_ONLY_P is false) which can be
3207    necessary.  It does just basic steps.  To do all necessary
3208    transformations use function process_address.  */
3209 static bool
3210 process_address_1 (int nop, bool check_only_p,
3211 		   rtx_insn **before, rtx_insn **after)
3212 {
3213   struct address_info ad;
3214   rtx new_reg;
3215   HOST_WIDE_INT scale;
3216   rtx op = *curr_id->operand_loc[nop];
3217   const char *constraint = curr_static_id->operand[nop].constraint;
3218   enum constraint_num cn = lookup_constraint (constraint);
3219   bool change_p = false;
3220 
3221   if (MEM_P (op)
3222       && GET_MODE (op) == BLKmode
3223       && GET_CODE (XEXP (op, 0)) == SCRATCH)
3224     return false;
3225 
3226   if (insn_extra_address_constraint (cn))
3227     decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3228   /* Do not attempt to decompose arbitrary addresses generated by combine
3229      for asm operands with loose constraints, e.g 'X'.  */
3230   else if (MEM_P (op)
3231 	   && !(get_constraint_type (cn) == CT_FIXED_FORM
3232 	        && constraint_satisfied_p (op, cn)))
3233     decompose_mem_address (&ad, op);
3234   else if (GET_CODE (op) == SUBREG
3235 	   && MEM_P (SUBREG_REG (op)))
3236     decompose_mem_address (&ad, SUBREG_REG (op));
3237   else
3238     return false;
3239   /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3240      index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3241      when INDEX_REG_CLASS is a single register class.  */
3242   if (ad.base_term != NULL
3243       && ad.index_term != NULL
3244       && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3245       && REG_P (*ad.base_term)
3246       && REG_P (*ad.index_term)
3247       && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3248       && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3249     {
3250       std::swap (ad.base, ad.index);
3251       std::swap (ad.base_term, ad.index_term);
3252     }
3253   if (! check_only_p)
3254     change_p = equiv_address_substitution (&ad);
3255   if (ad.base_term != NULL
3256       && (process_addr_reg
3257 	  (ad.base_term, check_only_p, before,
3258 	   (ad.autoinc_p
3259 	    && !(REG_P (*ad.base_term)
3260 		 && find_regno_note (curr_insn, REG_DEAD,
3261 				     REGNO (*ad.base_term)) != NULL_RTX)
3262 	    ? after : NULL),
3263 	   base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3264 			   get_index_code (&ad)))))
3265     {
3266       change_p = true;
3267       if (ad.base_term2 != NULL)
3268 	*ad.base_term2 = *ad.base_term;
3269     }
3270   if (ad.index_term != NULL
3271       && process_addr_reg (ad.index_term, check_only_p,
3272 			   before, NULL, INDEX_REG_CLASS))
3273     change_p = true;
3274 
3275   /* Target hooks sometimes don't treat extra-constraint addresses as
3276      legitimate address_operands, so handle them specially.  */
3277   if (insn_extra_address_constraint (cn)
3278       && satisfies_address_constraint_p (&ad, cn))
3279     return change_p;
3280 
3281   if (check_only_p)
3282     return change_p;
3283 
3284   /* There are three cases where the shape of *AD.INNER may now be invalid:
3285 
3286      1) the original address was valid, but either elimination or
3287      equiv_address_substitution was applied and that made
3288      the address invalid.
3289 
3290      2) the address is an invalid symbolic address created by
3291      force_const_to_mem.
3292 
3293      3) the address is a frame address with an invalid offset.
3294 
3295      4) the address is a frame address with an invalid base.
3296 
3297      All these cases involve a non-autoinc address, so there is no
3298      point revalidating other types.  */
3299   if (ad.autoinc_p || valid_address_p (&ad))
3300     return change_p;
3301 
3302   /* Any index existed before LRA started, so we can assume that the
3303      presence and shape of the index is valid.  */
3304   push_to_sequence (*before);
3305   lra_assert (ad.disp == ad.disp_term);
3306   if (ad.base == NULL)
3307     {
3308       if (ad.index == NULL)
3309 	{
3310 	  rtx_insn *insn;
3311 	  rtx_insn *last = get_last_insn ();
3312 	  int code = -1;
3313 	  enum reg_class cl = base_reg_class (ad.mode, ad.as,
3314 					      SCRATCH, SCRATCH);
3315 	  rtx addr = *ad.inner;
3316 
3317 	  new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3318 	  if (HAVE_lo_sum)
3319 	    {
3320 	      /* addr => lo_sum (new_base, addr), case (2) above.  */
3321 	      insn = emit_insn (gen_rtx_SET
3322 				(new_reg,
3323 				 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3324 	      code = recog_memoized (insn);
3325 	      if (code >= 0)
3326 		{
3327 		  *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3328 		  if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3329 		    {
3330 		      /* Try to put lo_sum into register.  */
3331 		      insn = emit_insn (gen_rtx_SET
3332 					(new_reg,
3333 					 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3334 		      code = recog_memoized (insn);
3335 		      if (code >= 0)
3336 			{
3337 			  *ad.inner = new_reg;
3338 			  if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3339 			    {
3340 			      *ad.inner = addr;
3341 			      code = -1;
3342 			    }
3343 			}
3344 
3345 		    }
3346 		}
3347 	      if (code < 0)
3348 		delete_insns_since (last);
3349 	    }
3350 
3351 	  if (code < 0)
3352 	    {
3353 	      /* addr => new_base, case (2) above.  */
3354 	      lra_emit_move (new_reg, addr);
3355 
3356 	      for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3357 		   insn != NULL_RTX;
3358 		   insn = NEXT_INSN (insn))
3359 		if (recog_memoized (insn) < 0)
3360 		  break;
3361 	      if (insn != NULL_RTX)
3362 		{
3363 		  /* Do nothing if we cannot generate right insns.
3364 		     This is analogous to reload pass behavior.  */
3365 		  delete_insns_since (last);
3366 		  end_sequence ();
3367 		  return false;
3368 		}
3369 	      *ad.inner = new_reg;
3370 	    }
3371 	}
3372       else
3373 	{
3374 	  /* index * scale + disp => new base + index * scale,
3375 	     case (1) above.  */
3376 	  enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3377 					      GET_CODE (*ad.index));
3378 
3379 	  lra_assert (INDEX_REG_CLASS != NO_REGS);
3380 	  new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3381 	  lra_emit_move (new_reg, *ad.disp);
3382 	  *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3383 					   new_reg, *ad.index);
3384 	}
3385     }
3386   else if (ad.index == NULL)
3387     {
3388       int regno;
3389       enum reg_class cl;
3390       rtx set;
3391       rtx_insn *insns, *last_insn;
3392       /* Try to reload base into register only if the base is invalid
3393          for the address but with valid offset, case (4) above.  */
3394       start_sequence ();
3395       new_reg = base_to_reg (&ad);
3396 
3397       /* base + disp => new base, cases (1) and (3) above.  */
3398       /* Another option would be to reload the displacement into an
3399 	 index register.  However, postreload has code to optimize
3400 	 address reloads that have the same base and different
3401 	 displacements, so reloading into an index register would
3402 	 not necessarily be a win.  */
3403       if (new_reg == NULL_RTX)
3404         new_reg = base_plus_disp_to_reg (&ad);
3405       insns = get_insns ();
3406       last_insn = get_last_insn ();
3407       /* If we generated at least two insns, try last insn source as
3408 	 an address.  If we succeed, we generate one less insn.  */
3409       if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
3410 	  && GET_CODE (SET_SRC (set)) == PLUS
3411 	  && REG_P (XEXP (SET_SRC (set), 0))
3412 	  && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3413 	{
3414 	  *ad.inner = SET_SRC (set);
3415 	  if (valid_address_p (ad.mode, *ad.outer, ad.as))
3416 	    {
3417 	      *ad.base_term = XEXP (SET_SRC (set), 0);
3418 	      *ad.disp_term = XEXP (SET_SRC (set), 1);
3419 	      cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3420 				   get_index_code (&ad));
3421 	      regno = REGNO (*ad.base_term);
3422 	      if (regno >= FIRST_PSEUDO_REGISTER
3423 		  && cl != lra_get_allocno_class (regno))
3424 		lra_change_class (regno, cl, "      Change to", true);
3425 	      new_reg = SET_SRC (set);
3426 	      delete_insns_since (PREV_INSN (last_insn));
3427 	    }
3428 	}
3429       /* Try if target can split displacement into legitimite new disp
3430 	 and offset.  If it's the case, we replace the last insn with
3431 	 insns for base + offset => new_reg and set new_reg + new disp
3432 	 to *ad.inner.  */
3433       last_insn = get_last_insn ();
3434       if ((set = single_set (last_insn)) != NULL_RTX
3435 	  && GET_CODE (SET_SRC (set)) == PLUS
3436 	  && REG_P (XEXP (SET_SRC (set), 0))
3437 	  && REGNO (XEXP (SET_SRC (set), 0)) < FIRST_PSEUDO_REGISTER
3438 	  && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3439 	{
3440 	  rtx addend, disp = XEXP (SET_SRC (set), 1);
3441 	  if (targetm.legitimize_address_displacement (&disp, &addend,
3442 						       ad.mode))
3443 	    {
3444 	      rtx_insn *new_insns;
3445 	      start_sequence ();
3446 	      lra_emit_add (new_reg, XEXP (SET_SRC (set), 0), addend);
3447 	      new_insns = get_insns ();
3448 	      end_sequence ();
3449 	      new_reg = gen_rtx_PLUS (Pmode, new_reg, disp);
3450 	      delete_insns_since (PREV_INSN (last_insn));
3451 	      add_insn (new_insns);
3452 	      insns = get_insns ();
3453 	    }
3454 	}
3455       end_sequence ();
3456       emit_insn (insns);
3457       *ad.inner = new_reg;
3458     }
3459   else if (ad.disp_term != NULL)
3460     {
3461       /* base + scale * index + disp => new base + scale * index,
3462 	 case (1) above.  */
3463       new_reg = base_plus_disp_to_reg (&ad);
3464       *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3465 				       new_reg, *ad.index);
3466     }
3467   else if ((scale = get_index_scale (&ad)) == 1)
3468     {
3469       /* The last transformation to one reg will be made in
3470 	 curr_insn_transform function.  */
3471       end_sequence ();
3472       return false;
3473     }
3474   else if (scale != 0)
3475     {
3476       /* base + scale * index => base + new_reg,
3477 	 case (1) above.
3478       Index part of address may become invalid.  For example, we
3479       changed pseudo on the equivalent memory and a subreg of the
3480       pseudo onto the memory of different mode for which the scale is
3481       prohibitted.  */
3482       new_reg = index_part_to_reg (&ad);
3483       *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3484 				       *ad.base_term, new_reg);
3485     }
3486   else
3487     {
3488       enum reg_class cl = base_reg_class (ad.mode, ad.as,
3489 					  SCRATCH, SCRATCH);
3490       rtx addr = *ad.inner;
3491 
3492       new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3493       /* addr => new_base.  */
3494       lra_emit_move (new_reg, addr);
3495       *ad.inner = new_reg;
3496     }
3497   *before = get_insns ();
3498   end_sequence ();
3499   return true;
3500 }
3501 
3502 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3503    Use process_address_1 as a helper function.  Return true for any
3504    RTL changes.
3505 
3506    If CHECK_ONLY_P is true, just check address correctness.  Return
3507    false if the address correct.  */
3508 static bool
3509 process_address (int nop, bool check_only_p,
3510 		 rtx_insn **before, rtx_insn **after)
3511 {
3512   bool res = false;
3513 
3514   while (process_address_1 (nop, check_only_p, before, after))
3515     {
3516       if (check_only_p)
3517 	return true;
3518       res = true;
3519     }
3520   return res;
3521 }
3522 
3523 /* Emit insns to reload VALUE into a new register.  VALUE is an
3524    auto-increment or auto-decrement RTX whose operand is a register or
3525    memory location; so reloading involves incrementing that location.
3526    IN is either identical to VALUE, or some cheaper place to reload
3527    value being incremented/decremented from.
3528 
3529    INC_AMOUNT is the number to increment or decrement by (always
3530    positive and ignored for POST_MODIFY/PRE_MODIFY).
3531 
3532    Return pseudo containing the result.	 */
3533 static rtx
3534 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
3535 {
3536   /* REG or MEM to be copied and incremented.  */
3537   rtx incloc = XEXP (value, 0);
3538   /* Nonzero if increment after copying.  */
3539   int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3540 	      || GET_CODE (value) == POST_MODIFY);
3541   rtx_insn *last;
3542   rtx inc;
3543   rtx_insn *add_insn;
3544   int code;
3545   rtx real_in = in == value ? incloc : in;
3546   rtx result;
3547   bool plus_p = true;
3548 
3549   if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3550     {
3551       lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3552 		  || GET_CODE (XEXP (value, 1)) == MINUS);
3553       lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3554       plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3555       inc = XEXP (XEXP (value, 1), 1);
3556     }
3557   else
3558     {
3559       if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3560 	inc_amount = -inc_amount;
3561 
3562       inc = GEN_INT (inc_amount);
3563     }
3564 
3565   if (! post && REG_P (incloc))
3566     result = incloc;
3567   else
3568     result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3569 				 "INC/DEC result");
3570 
3571   if (real_in != result)
3572     {
3573       /* First copy the location to the result register.  */
3574       lra_assert (REG_P (result));
3575       emit_insn (gen_move_insn (result, real_in));
3576     }
3577 
3578   /* We suppose that there are insns to add/sub with the constant
3579      increment permitted in {PRE/POST)_{DEC/INC/MODIFY}.  At least the
3580      old reload worked with this assumption.  If the assumption
3581      becomes wrong, we should use approach in function
3582      base_plus_disp_to_reg.  */
3583   if (in == value)
3584     {
3585       /* See if we can directly increment INCLOC.  */
3586       last = get_last_insn ();
3587       add_insn = emit_insn (plus_p
3588 			    ? gen_add2_insn (incloc, inc)
3589 			    : gen_sub2_insn (incloc, inc));
3590 
3591       code = recog_memoized (add_insn);
3592       if (code >= 0)
3593 	{
3594 	  if (! post && result != incloc)
3595 	    emit_insn (gen_move_insn (result, incloc));
3596 	  return result;
3597 	}
3598       delete_insns_since (last);
3599     }
3600 
3601   /* If couldn't do the increment directly, must increment in RESULT.
3602      The way we do this depends on whether this is pre- or
3603      post-increment.  For pre-increment, copy INCLOC to the reload
3604      register, increment it there, then save back.  */
3605   if (! post)
3606     {
3607       if (real_in != result)
3608 	emit_insn (gen_move_insn (result, real_in));
3609       if (plus_p)
3610 	emit_insn (gen_add2_insn (result, inc));
3611       else
3612 	emit_insn (gen_sub2_insn (result, inc));
3613       if (result != incloc)
3614 	emit_insn (gen_move_insn (incloc, result));
3615     }
3616   else
3617     {
3618       /* Post-increment.
3619 
3620 	 Because this might be a jump insn or a compare, and because
3621 	 RESULT may not be available after the insn in an input
3622 	 reload, we must do the incrementing before the insn being
3623 	 reloaded for.
3624 
3625 	 We have already copied IN to RESULT.  Increment the copy in
3626 	 RESULT, save that back, then decrement RESULT so it has
3627 	 the original value.  */
3628       if (plus_p)
3629 	emit_insn (gen_add2_insn (result, inc));
3630       else
3631 	emit_insn (gen_sub2_insn (result, inc));
3632       emit_insn (gen_move_insn (incloc, result));
3633       /* Restore non-modified value for the result.  We prefer this
3634 	 way because it does not require an additional hard
3635 	 register.  */
3636       if (plus_p)
3637 	{
3638 	  if (CONST_INT_P (inc))
3639 	    emit_insn (gen_add2_insn (result,
3640 				      gen_int_mode (-INTVAL (inc),
3641 						    GET_MODE (result))));
3642 	  else
3643 	    emit_insn (gen_sub2_insn (result, inc));
3644 	}
3645       else
3646 	emit_insn (gen_add2_insn (result, inc));
3647     }
3648   return result;
3649 }
3650 
3651 /* Return true if the current move insn does not need processing as we
3652    already know that it satisfies its constraints.  */
3653 static bool
3654 simple_move_p (void)
3655 {
3656   rtx dest, src;
3657   enum reg_class dclass, sclass;
3658 
3659   lra_assert (curr_insn_set != NULL_RTX);
3660   dest = SET_DEST (curr_insn_set);
3661   src = SET_SRC (curr_insn_set);
3662 
3663   /* If the instruction has multiple sets we need to process it even if it
3664      is single_set.  This can happen if one or more of the SETs are dead.
3665      See PR73650.  */
3666   if (multiple_sets (curr_insn))
3667     return false;
3668 
3669   return ((dclass = get_op_class (dest)) != NO_REGS
3670 	  && (sclass = get_op_class (src)) != NO_REGS
3671 	  /* The backend guarantees that register moves of cost 2
3672 	     never need reloads.  */
3673 	  && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3674  }
3675 
3676 /* Swap operands NOP and NOP + 1. */
3677 static inline void
3678 swap_operands (int nop)
3679 {
3680   std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3681   std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3682   std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3683   std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3684   /* Swap the duplicates too.  */
3685   lra_update_dup (curr_id, nop);
3686   lra_update_dup (curr_id, nop + 1);
3687 }
3688 
3689 /* Main entry point of the constraint code: search the body of the
3690    current insn to choose the best alternative.  It is mimicking insn
3691    alternative cost calculation model of former reload pass.  That is
3692    because machine descriptions were written to use this model.  This
3693    model can be changed in future.  Make commutative operand exchange
3694    if it is chosen.
3695 
3696    if CHECK_ONLY_P is false, do RTL changes to satisfy the
3697    constraints.  Return true if any change happened during function
3698    call.
3699 
3700    If CHECK_ONLY_P is true then don't do any transformation.  Just
3701    check that the insn satisfies all constraints.  If the insn does
3702    not satisfy any constraint, return true.  */
3703 static bool
3704 curr_insn_transform (bool check_only_p)
3705 {
3706   int i, j, k;
3707   int n_operands;
3708   int n_alternatives;
3709   int n_outputs;
3710   int commutative;
3711   signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3712   signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3713   signed char outputs[MAX_RECOG_OPERANDS + 1];
3714   rtx_insn *before, *after;
3715   bool alt_p = false;
3716   /* Flag that the insn has been changed through a transformation.  */
3717   bool change_p;
3718   bool sec_mem_p;
3719 #ifdef SECONDARY_MEMORY_NEEDED
3720   bool use_sec_mem_p;
3721 #endif
3722   int max_regno_before;
3723   int reused_alternative_num;
3724 
3725   curr_insn_set = single_set (curr_insn);
3726   if (curr_insn_set != NULL_RTX && simple_move_p ())
3727     {
3728       /* We assume that the corresponding insn alternative has no
3729 	 earlier clobbers.  If it is not the case, don't define move
3730 	 cost equal to 2 for the corresponding register classes.  */
3731       lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3732       return false;
3733     }
3734 
3735   no_input_reloads_p = no_output_reloads_p = false;
3736   goal_alt_number = -1;
3737   change_p = sec_mem_p = false;
3738   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3739      reloads; neither are insns that SET cc0.  Insns that use CC0 are
3740      not allowed to have any input reloads.  */
3741   if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3742     no_output_reloads_p = true;
3743 
3744   if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3745     no_input_reloads_p = true;
3746   if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3747     no_output_reloads_p = true;
3748 
3749   n_operands = curr_static_id->n_operands;
3750   n_alternatives = curr_static_id->n_alternatives;
3751 
3752   /* Just return "no reloads" if insn has no operands with
3753      constraints.  */
3754   if (n_operands == 0 || n_alternatives == 0)
3755     return false;
3756 
3757   max_regno_before = max_reg_num ();
3758 
3759   for (i = 0; i < n_operands; i++)
3760     {
3761       goal_alt_matched[i][0] = -1;
3762       goal_alt_matches[i] = -1;
3763     }
3764 
3765   commutative = curr_static_id->commutative;
3766 
3767   /* Now see what we need for pseudos that didn't get hard regs or got
3768      the wrong kind of hard reg.  For this, we must consider all the
3769      operands together against the register constraints.  */
3770 
3771   best_losers = best_overall = INT_MAX;
3772   best_reload_sum = 0;
3773 
3774   curr_swapped = false;
3775   goal_alt_swapped = false;
3776 
3777   if (! check_only_p)
3778     /* Make equivalence substitution and memory subreg elimination
3779        before address processing because an address legitimacy can
3780        depend on memory mode.  */
3781     for (i = 0; i < n_operands; i++)
3782       {
3783 	rtx op, subst, old;
3784 	bool op_change_p = false;
3785 
3786 	if (curr_static_id->operand[i].is_operator)
3787 	  continue;
3788 
3789 	old = op = *curr_id->operand_loc[i];
3790 	if (GET_CODE (old) == SUBREG)
3791 	  old = SUBREG_REG (old);
3792 	subst = get_equiv_with_elimination (old, curr_insn);
3793 	original_subreg_reg_mode[i] = VOIDmode;
3794 	equiv_substition_p[i] = false;
3795 	if (subst != old)
3796 	  {
3797 	    equiv_substition_p[i] = true;
3798 	    subst = copy_rtx (subst);
3799 	    lra_assert (REG_P (old));
3800 	    if (GET_CODE (op) != SUBREG)
3801 	      *curr_id->operand_loc[i] = subst;
3802 	    else
3803 	      {
3804 		SUBREG_REG (op) = subst;
3805 		if (GET_MODE (subst) == VOIDmode)
3806 		  original_subreg_reg_mode[i] = GET_MODE (old);
3807 	      }
3808 	    if (lra_dump_file != NULL)
3809 	      {
3810 		fprintf (lra_dump_file,
3811 			 "Changing pseudo %d in operand %i of insn %u on equiv ",
3812 			 REGNO (old), i, INSN_UID (curr_insn));
3813 		dump_value_slim (lra_dump_file, subst, 1);
3814 		fprintf (lra_dump_file, "\n");
3815 	      }
3816 	    op_change_p = change_p = true;
3817 	  }
3818 	if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3819 	  {
3820 	    change_p = true;
3821 	    lra_update_dup (curr_id, i);
3822 	  }
3823       }
3824 
3825   /* Reload address registers and displacements.  We do it before
3826      finding an alternative because of memory constraints.  */
3827   before = after = NULL;
3828   for (i = 0; i < n_operands; i++)
3829     if (! curr_static_id->operand[i].is_operator
3830 	&& process_address (i, check_only_p, &before, &after))
3831       {
3832 	if (check_only_p)
3833 	  return true;
3834 	change_p = true;
3835 	lra_update_dup (curr_id, i);
3836       }
3837 
3838   if (change_p)
3839     /* If we've changed the instruction then any alternative that
3840        we chose previously may no longer be valid.  */
3841     lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3842 
3843   if (! check_only_p && curr_insn_set != NULL_RTX
3844       && check_and_process_move (&change_p, &sec_mem_p))
3845     return change_p;
3846 
3847  try_swapped:
3848 
3849   reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
3850   if (lra_dump_file != NULL && reused_alternative_num >= 0)
3851     fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3852 	     reused_alternative_num, INSN_UID (curr_insn));
3853 
3854   if (process_alt_operands (reused_alternative_num))
3855     alt_p = true;
3856 
3857   if (check_only_p)
3858     return ! alt_p || best_losers != 0;
3859 
3860   /* If insn is commutative (it's safe to exchange a certain pair of
3861      operands) then we need to try each alternative twice, the second
3862      time matching those two operands as if we had exchanged them.  To
3863      do this, really exchange them in operands.
3864 
3865      If we have just tried the alternatives the second time, return
3866      operands to normal and drop through.  */
3867 
3868   if (reused_alternative_num < 0 && commutative >= 0)
3869     {
3870       curr_swapped = !curr_swapped;
3871       if (curr_swapped)
3872 	{
3873 	  swap_operands (commutative);
3874 	  goto try_swapped;
3875 	}
3876       else
3877 	swap_operands (commutative);
3878     }
3879 
3880   if (! alt_p && ! sec_mem_p)
3881     {
3882       /* No alternative works with reloads??  */
3883       if (INSN_CODE (curr_insn) >= 0)
3884 	fatal_insn ("unable to generate reloads for:", curr_insn);
3885       error_for_asm (curr_insn,
3886 		     "inconsistent operand constraints in an %<asm%>");
3887       /* Avoid further trouble with this insn.  Don't generate use
3888 	 pattern here as we could use the insn SP offset.  */
3889       lra_set_insn_deleted (curr_insn);
3890       return true;
3891     }
3892 
3893   /* If the best alternative is with operands 1 and 2 swapped, swap
3894      them.  Update the operand numbers of any reloads already
3895      pushed.  */
3896 
3897   if (goal_alt_swapped)
3898     {
3899       if (lra_dump_file != NULL)
3900 	fprintf (lra_dump_file, "  Commutative operand exchange in insn %u\n",
3901 		 INSN_UID (curr_insn));
3902 
3903       /* Swap the duplicates too.  */
3904       swap_operands (commutative);
3905       change_p = true;
3906     }
3907 
3908 #ifdef SECONDARY_MEMORY_NEEDED
3909   /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3910      too conservatively.  So we use the secondary memory only if there
3911      is no any alternative without reloads.  */
3912   use_sec_mem_p = false;
3913   if (! alt_p)
3914     use_sec_mem_p = true;
3915   else if (sec_mem_p)
3916     {
3917       for (i = 0; i < n_operands; i++)
3918 	if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3919 	  break;
3920       use_sec_mem_p = i < n_operands;
3921     }
3922 
3923   if (use_sec_mem_p)
3924     {
3925       int in = -1, out = -1;
3926       rtx new_reg, src, dest, rld;
3927       machine_mode sec_mode, rld_mode;
3928 
3929       lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
3930       dest = SET_DEST (curr_insn_set);
3931       src = SET_SRC (curr_insn_set);
3932       for (i = 0; i < n_operands; i++)
3933 	if (*curr_id->operand_loc[i] == dest)
3934 	  out = i;
3935 	else if (*curr_id->operand_loc[i] == src)
3936 	  in = i;
3937       for (i = 0; i < curr_static_id->n_dups; i++)
3938 	if (out < 0 && *curr_id->dup_loc[i] == dest)
3939 	  out = curr_static_id->dup_num[i];
3940 	else if (in < 0 && *curr_id->dup_loc[i] == src)
3941 	  in = curr_static_id->dup_num[i];
3942       lra_assert (out >= 0 && in >= 0
3943 		  && curr_static_id->operand[out].type == OP_OUT
3944 		  && curr_static_id->operand[in].type == OP_IN);
3945       rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3946 	     ? dest : src);
3947       rld_mode = GET_MODE (rld);
3948 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3949       sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3950 #else
3951       sec_mode = rld_mode;
3952 #endif
3953       new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3954 				    NO_REGS, "secondary");
3955       /* If the mode is changed, it should be wider.  */
3956       lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3957       if (sec_mode != rld_mode)
3958         {
3959 	  /* If the target says specifically to use another mode for
3960 	     secondary memory moves we can not reuse the original
3961 	     insn.  */
3962 	  after = emit_spill_move (false, new_reg, dest);
3963 	  lra_process_new_insns (curr_insn, NULL, after,
3964 				 "Inserting the sec. move");
3965 	  /* We may have non null BEFORE here (e.g. after address
3966 	     processing.  */
3967 	  push_to_sequence (before);
3968 	  before = emit_spill_move (true, new_reg, src);
3969 	  emit_insn (before);
3970 	  before = get_insns ();
3971 	  end_sequence ();
3972 	  lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3973 	  lra_set_insn_deleted (curr_insn);
3974 	}
3975       else if (dest == rld)
3976         {
3977 	  *curr_id->operand_loc[out] = new_reg;
3978 	  lra_update_dup (curr_id, out);
3979 	  after = emit_spill_move (false, new_reg, dest);
3980 	  lra_process_new_insns (curr_insn, NULL, after,
3981 				 "Inserting the sec. move");
3982 	}
3983       else
3984 	{
3985 	  *curr_id->operand_loc[in] = new_reg;
3986 	  lra_update_dup (curr_id, in);
3987 	  /* See comments above.  */
3988 	  push_to_sequence (before);
3989 	  before = emit_spill_move (true, new_reg, src);
3990 	  emit_insn (before);
3991 	  before = get_insns ();
3992 	  end_sequence ();
3993 	  lra_process_new_insns (curr_insn, before, NULL,
3994 				 "Inserting the sec. move");
3995 	}
3996       lra_update_insn_regno_info (curr_insn);
3997       return true;
3998     }
3999 #endif
4000 
4001   lra_assert (goal_alt_number >= 0);
4002   lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4003 
4004   if (lra_dump_file != NULL)
4005     {
4006       const char *p;
4007 
4008       fprintf (lra_dump_file, "	 Choosing alt %d in insn %u:",
4009 	       goal_alt_number, INSN_UID (curr_insn));
4010       for (i = 0; i < n_operands; i++)
4011 	{
4012 	  p = (curr_static_id->operand_alternative
4013 	       [goal_alt_number * n_operands + i].constraint);
4014 	  if (*p == '\0')
4015 	    continue;
4016 	  fprintf (lra_dump_file, "  (%d) ", i);
4017 	  for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4018 	    fputc (*p, lra_dump_file);
4019 	}
4020       if (INSN_CODE (curr_insn) >= 0
4021           && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4022         fprintf (lra_dump_file, " {%s}", p);
4023       if (curr_id->sp_offset != 0)
4024         fprintf (lra_dump_file, " (sp_off=%" HOST_WIDE_INT_PRINT "d)",
4025 		 curr_id->sp_offset);
4026        fprintf (lra_dump_file, "\n");
4027     }
4028 
4029   /* Right now, for any pair of operands I and J that are required to
4030      match, with J < I, goal_alt_matches[I] is J.  Add I to
4031      goal_alt_matched[J].  */
4032 
4033   for (i = 0; i < n_operands; i++)
4034     if ((j = goal_alt_matches[i]) >= 0)
4035       {
4036 	for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4037 	  ;
4038 	/* We allow matching one output operand and several input
4039 	   operands.  */
4040 	lra_assert (k == 0
4041 		    || (curr_static_id->operand[j].type == OP_OUT
4042 			&& curr_static_id->operand[i].type == OP_IN
4043 			&& (curr_static_id->operand
4044 			    [goal_alt_matched[j][0]].type == OP_IN)));
4045 	goal_alt_matched[j][k] = i;
4046 	goal_alt_matched[j][k + 1] = -1;
4047       }
4048 
4049   for (i = 0; i < n_operands; i++)
4050     goal_alt_win[i] |= goal_alt_match_win[i];
4051 
4052   /* Any constants that aren't allowed and can't be reloaded into
4053      registers are here changed into memory references.	 */
4054   for (i = 0; i < n_operands; i++)
4055     if (goal_alt_win[i])
4056       {
4057 	int regno;
4058 	enum reg_class new_class;
4059 	rtx reg = *curr_id->operand_loc[i];
4060 
4061 	if (GET_CODE (reg) == SUBREG)
4062 	  reg = SUBREG_REG (reg);
4063 
4064 	if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4065 	  {
4066 	    bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4067 
4068 	    if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4069 	      {
4070 		lra_assert (ok_p);
4071 		lra_change_class (regno, new_class, "      Change to", true);
4072 	      }
4073 	  }
4074       }
4075     else
4076       {
4077 	const char *constraint;
4078 	char c;
4079 	rtx op = *curr_id->operand_loc[i];
4080 	rtx subreg = NULL_RTX;
4081 	machine_mode mode = curr_operand_mode[i];
4082 
4083 	if (GET_CODE (op) == SUBREG)
4084 	  {
4085 	    subreg = op;
4086 	    op = SUBREG_REG (op);
4087 	    mode = GET_MODE (op);
4088 	  }
4089 
4090 	if (CONST_POOL_OK_P (mode, op)
4091 	    && ((targetm.preferred_reload_class
4092 		 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4093 		|| no_input_reloads_p))
4094 	  {
4095 	    rtx tem = force_const_mem (mode, op);
4096 
4097 	    change_p = true;
4098 	    if (subreg != NULL_RTX)
4099 	      tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4100 
4101 	    *curr_id->operand_loc[i] = tem;
4102 	    lra_update_dup (curr_id, i);
4103 	    process_address (i, false, &before, &after);
4104 
4105 	    /* If the alternative accepts constant pool refs directly
4106 	       there will be no reload needed at all.  */
4107 	    if (subreg != NULL_RTX)
4108 	      continue;
4109 	    /* Skip alternatives before the one requested.  */
4110 	    constraint = (curr_static_id->operand_alternative
4111 			  [goal_alt_number * n_operands + i].constraint);
4112 	    for (;
4113 		 (c = *constraint) && c != ',' && c != '#';
4114 		 constraint += CONSTRAINT_LEN (c, constraint))
4115 	      {
4116 		enum constraint_num cn = lookup_constraint (constraint);
4117 		if ((insn_extra_memory_constraint (cn)
4118 		     || insn_extra_special_memory_constraint (cn))
4119 		    && satisfies_memory_constraint_p (tem, cn))
4120 		  break;
4121 	      }
4122 	    if (c == '\0' || c == ',' || c == '#')
4123 	      continue;
4124 
4125 	    goal_alt_win[i] = true;
4126 	  }
4127       }
4128 
4129   n_outputs = 0;
4130   outputs[0] = -1;
4131   for (i = 0; i < n_operands; i++)
4132     {
4133       int regno;
4134       bool optional_p = false;
4135       rtx old, new_reg;
4136       rtx op = *curr_id->operand_loc[i];
4137 
4138       if (goal_alt_win[i])
4139 	{
4140 	  if (goal_alt[i] == NO_REGS
4141 	      && REG_P (op)
4142 	      /* When we assign NO_REGS it means that we will not
4143 		 assign a hard register to the scratch pseudo by
4144 		 assigment pass and the scratch pseudo will be
4145 		 spilled.  Spilled scratch pseudos are transformed
4146 		 back to scratches at the LRA end.  */
4147 	      && lra_former_scratch_operand_p (curr_insn, i)
4148 	      && lra_former_scratch_p (REGNO (op)))
4149 	    {
4150 	      int regno = REGNO (op);
4151 	      lra_change_class (regno, NO_REGS, "      Change to", true);
4152 	      if (lra_get_regno_hard_regno (regno) >= 0)
4153 		/* We don't have to mark all insn affected by the
4154 		   spilled pseudo as there is only one such insn, the
4155 		   current one.  */
4156 		reg_renumber[regno] = -1;
4157 	      lra_assert (bitmap_single_bit_set_p
4158 			  (&lra_reg_info[REGNO (op)].insn_bitmap));
4159 	    }
4160 	  /* We can do an optional reload.  If the pseudo got a hard
4161 	     reg, we might improve the code through inheritance.  If
4162 	     it does not get a hard register we coalesce memory/memory
4163 	     moves later.  Ignore move insns to avoid cycling.  */
4164 	  if (! lra_simple_p
4165 	      && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4166 	      && goal_alt[i] != NO_REGS && REG_P (op)
4167 	      && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4168 	      && regno < new_regno_start
4169 	      && ! lra_former_scratch_p (regno)
4170 	      && reg_renumber[regno] < 0
4171 	      /* Check that the optional reload pseudo will be able to
4172 		 hold given mode value.  */
4173 	      && ! (prohibited_class_reg_set_mode_p
4174 		    (goal_alt[i], reg_class_contents[goal_alt[i]],
4175 		     PSEUDO_REGNO_MODE (regno)))
4176 	      && (curr_insn_set == NULL_RTX
4177 		  || !((REG_P (SET_SRC (curr_insn_set))
4178 			|| MEM_P (SET_SRC (curr_insn_set))
4179 			|| GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4180 		       && (REG_P (SET_DEST (curr_insn_set))
4181 			   || MEM_P (SET_DEST (curr_insn_set))
4182 			   || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4183 	    optional_p = true;
4184 	  else
4185 	    continue;
4186 	}
4187 
4188       /* Operands that match previous ones have already been handled.  */
4189       if (goal_alt_matches[i] >= 0)
4190 	continue;
4191 
4192       /* We should not have an operand with a non-offsettable address
4193 	 appearing where an offsettable address will do.  It also may
4194 	 be a case when the address should be special in other words
4195 	 not a general one (e.g. it needs no index reg).  */
4196       if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4197 	{
4198 	  enum reg_class rclass;
4199 	  rtx *loc = &XEXP (op, 0);
4200 	  enum rtx_code code = GET_CODE (*loc);
4201 
4202 	  push_to_sequence (before);
4203 	  rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4204 				   MEM, SCRATCH);
4205 	  if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4206 	    new_reg = emit_inc (rclass, *loc, *loc,
4207 				/* This value does not matter for MODIFY.  */
4208 				GET_MODE_SIZE (GET_MODE (op)));
4209 	  else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4210 				   "offsetable address", &new_reg))
4211 	    lra_emit_move (new_reg, *loc);
4212 	  before = get_insns ();
4213 	  end_sequence ();
4214 	  *loc = new_reg;
4215 	  lra_update_dup (curr_id, i);
4216 	}
4217       else if (goal_alt_matched[i][0] == -1)
4218 	{
4219 	  machine_mode mode;
4220 	  rtx reg, *loc;
4221 	  int hard_regno, byte;
4222 	  enum op_type type = curr_static_id->operand[i].type;
4223 
4224 	  loc = curr_id->operand_loc[i];
4225 	  mode = curr_operand_mode[i];
4226 	  if (GET_CODE (*loc) == SUBREG)
4227 	    {
4228 	      reg = SUBREG_REG (*loc);
4229 	      byte = SUBREG_BYTE (*loc);
4230 	      if (REG_P (reg)
4231 		  /* Strict_low_part requires reloading the register and not
4232 		     just the subreg.  Likewise for a strict subreg no wider
4233 		     than a word for WORD_REGISTER_OPERATIONS targets.  */
4234 		  && (curr_static_id->operand[i].strict_low
4235 		      || (GET_MODE_SIZE (mode)
4236 			  <= GET_MODE_SIZE (GET_MODE (reg))
4237 			  && (hard_regno
4238 			      = get_try_hard_regno (REGNO (reg))) >= 0
4239 			  && (simplify_subreg_regno
4240 			      (hard_regno,
4241 			       GET_MODE (reg), byte, mode) < 0)
4242 			  && (goal_alt[i] == NO_REGS
4243 			      || (simplify_subreg_regno
4244 				  (ira_class_hard_regs[goal_alt[i]][0],
4245 				   GET_MODE (reg), byte, mode) >= 0)))
4246 		      || (GET_MODE_PRECISION (mode)
4247 			  < GET_MODE_PRECISION (GET_MODE (reg))
4248 			  && GET_MODE_SIZE (GET_MODE (reg)) <= UNITS_PER_WORD
4249 			  && WORD_REGISTER_OPERATIONS)))
4250 		{
4251 		  /* An OP_INOUT is required when reloading a subreg of a
4252 		     mode wider than a word to ensure that data beyond the
4253 		     word being reloaded is preserved.  Also automatically
4254 		     ensure that strict_low_part reloads are made into
4255 		     OP_INOUT which should already be true from the backend
4256 		     constraints.  */
4257 		  if (type == OP_OUT
4258 		      && (curr_static_id->operand[i].strict_low
4259 			  || (GET_MODE_SIZE (GET_MODE (reg)) > UNITS_PER_WORD
4260 			      && (GET_MODE_SIZE (mode)
4261 				  < GET_MODE_SIZE (GET_MODE (reg))))))
4262 		    type = OP_INOUT;
4263 		  loc = &SUBREG_REG (*loc);
4264 		  mode = GET_MODE (*loc);
4265 		}
4266 	    }
4267 	  old = *loc;
4268 	  if (get_reload_reg (type, mode, old, goal_alt[i],
4269 			      loc != curr_id->operand_loc[i], "", &new_reg)
4270 	      && type != OP_OUT)
4271 	    {
4272 	      push_to_sequence (before);
4273 	      lra_emit_move (new_reg, old);
4274 	      before = get_insns ();
4275 	      end_sequence ();
4276 	    }
4277 	  *loc = new_reg;
4278 	  if (type != OP_IN
4279 	      && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4280 	    {
4281 	      start_sequence ();
4282 	      lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4283 	      emit_insn (after);
4284 	      after = get_insns ();
4285 	      end_sequence ();
4286 	      *loc = new_reg;
4287 	    }
4288 	  for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4289 	    if (goal_alt_dont_inherit_ops[j] == i)
4290 	      {
4291 		lra_set_regno_unique_value (REGNO (new_reg));
4292 		break;
4293 	      }
4294 	  lra_update_dup (curr_id, i);
4295 	}
4296       else if (curr_static_id->operand[i].type == OP_IN
4297 	       && (curr_static_id->operand[goal_alt_matched[i][0]].type
4298 		   == OP_OUT
4299 		   || (curr_static_id->operand[goal_alt_matched[i][0]].type
4300 		       == OP_INOUT
4301 		       && (operands_match_p
4302 			   (*curr_id->operand_loc[i],
4303 			    *curr_id->operand_loc[goal_alt_matched[i][0]],
4304 			    -1)))))
4305 	{
4306 	  /* generate reloads for input and matched outputs.  */
4307 	  match_inputs[0] = i;
4308 	  match_inputs[1] = -1;
4309 	  match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4310 			goal_alt[i], &before, &after,
4311 			curr_static_id->operand_alternative
4312 			[goal_alt_number * n_operands + goal_alt_matched[i][0]]
4313 			.earlyclobber);
4314 	}
4315       else if ((curr_static_id->operand[i].type == OP_OUT
4316 		|| (curr_static_id->operand[i].type == OP_INOUT
4317 		    && (operands_match_p
4318 			(*curr_id->operand_loc[i],
4319 			 *curr_id->operand_loc[goal_alt_matched[i][0]],
4320 			 -1))))
4321 	       && (curr_static_id->operand[goal_alt_matched[i][0]].type
4322 		    == OP_IN))
4323 	/* Generate reloads for output and matched inputs.  */
4324 	match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4325 		      &after, curr_static_id->operand_alternative
4326 			      [goal_alt_number * n_operands + i].earlyclobber);
4327       else if (curr_static_id->operand[i].type == OP_IN
4328 	       && (curr_static_id->operand[goal_alt_matched[i][0]].type
4329 		   == OP_IN))
4330 	{
4331 	  /* Generate reloads for matched inputs.  */
4332 	  match_inputs[0] = i;
4333 	  for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4334 	    match_inputs[j + 1] = k;
4335 	  match_inputs[j + 1] = -1;
4336 	  match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4337 			&after, false);
4338 	}
4339       else
4340 	/* We must generate code in any case when function
4341 	   process_alt_operands decides that it is possible.  */
4342 	gcc_unreachable ();
4343 
4344       /* Memorise processed outputs so that output remaining to be processed
4345 	 can avoid using the same register value (see match_reload).  */
4346       if (curr_static_id->operand[i].type == OP_OUT)
4347 	{
4348 	  outputs[n_outputs++] = i;
4349 	  outputs[n_outputs] = -1;
4350 	}
4351 
4352       if (optional_p)
4353 	{
4354 	  rtx reg = op;
4355 
4356 	  lra_assert (REG_P (reg));
4357 	  regno = REGNO (reg);
4358 	  op = *curr_id->operand_loc[i]; /* Substitution.  */
4359 	  if (GET_CODE (op) == SUBREG)
4360 	    op = SUBREG_REG (op);
4361 	  gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4362 	  bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4363 	  lra_reg_info[REGNO (op)].restore_rtx = reg;
4364 	  if (lra_dump_file != NULL)
4365 	    fprintf (lra_dump_file,
4366 		     "      Making reload reg %d for reg %d optional\n",
4367 		     REGNO (op), regno);
4368 	}
4369     }
4370   if (before != NULL_RTX || after != NULL_RTX
4371       || max_regno_before != max_reg_num ())
4372     change_p = true;
4373   if (change_p)
4374     {
4375       lra_update_operator_dups (curr_id);
4376       /* Something changes -- process the insn.	 */
4377       lra_update_insn_regno_info (curr_insn);
4378     }
4379   lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4380   return change_p;
4381 }
4382 
4383 /* Return true if INSN satisfies all constraints.  In other words, no
4384    reload insns are needed.  */
4385 bool
4386 lra_constrain_insn (rtx_insn *insn)
4387 {
4388   int saved_new_regno_start = new_regno_start;
4389   int saved_new_insn_uid_start = new_insn_uid_start;
4390   bool change_p;
4391 
4392   curr_insn = insn;
4393   curr_id = lra_get_insn_recog_data (curr_insn);
4394   curr_static_id = curr_id->insn_static_data;
4395   new_insn_uid_start = get_max_uid ();
4396   new_regno_start = max_reg_num ();
4397   change_p = curr_insn_transform (true);
4398   new_regno_start = saved_new_regno_start;
4399   new_insn_uid_start = saved_new_insn_uid_start;
4400   return ! change_p;
4401 }
4402 
4403 /* Return true if X is in LIST.	 */
4404 static bool
4405 in_list_p (rtx x, rtx list)
4406 {
4407   for (; list != NULL_RTX; list = XEXP (list, 1))
4408     if (XEXP (list, 0) == x)
4409       return true;
4410   return false;
4411 }
4412 
4413 /* Return true if X contains an allocatable hard register (if
4414    HARD_REG_P) or a (spilled if SPILLED_P) pseudo.  */
4415 static bool
4416 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4417 {
4418   int i, j;
4419   const char *fmt;
4420   enum rtx_code code;
4421 
4422   code = GET_CODE (x);
4423   if (REG_P (x))
4424     {
4425       int regno = REGNO (x);
4426       HARD_REG_SET alloc_regs;
4427 
4428       if (hard_reg_p)
4429 	{
4430 	  if (regno >= FIRST_PSEUDO_REGISTER)
4431 	    regno = lra_get_regno_hard_regno (regno);
4432 	  if (regno < 0)
4433 	    return false;
4434 	  COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4435 	  return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4436 	}
4437       else
4438 	{
4439 	  if (regno < FIRST_PSEUDO_REGISTER)
4440 	    return false;
4441 	  if (! spilled_p)
4442 	    return true;
4443 	  return lra_get_regno_hard_regno (regno) < 0;
4444 	}
4445     }
4446   fmt = GET_RTX_FORMAT (code);
4447   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4448     {
4449       if (fmt[i] == 'e')
4450 	{
4451 	  if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4452 	    return true;
4453 	}
4454       else if (fmt[i] == 'E')
4455 	{
4456 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4457 	    if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4458 	      return true;
4459 	}
4460     }
4461   return false;
4462 }
4463 
4464 /* Process all regs in location *LOC and change them on equivalent
4465    substitution.  Return true if any change was done.  */
4466 static bool
4467 loc_equivalence_change_p (rtx *loc)
4468 {
4469   rtx subst, reg, x = *loc;
4470   bool result = false;
4471   enum rtx_code code = GET_CODE (x);
4472   const char *fmt;
4473   int i, j;
4474 
4475   if (code == SUBREG)
4476     {
4477       reg = SUBREG_REG (x);
4478       if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4479 	  && GET_MODE (subst) == VOIDmode)
4480 	{
4481 	  /* We cannot reload debug location.  Simplify subreg here
4482 	     while we know the inner mode.  */
4483 	  *loc = simplify_gen_subreg (GET_MODE (x), subst,
4484 				      GET_MODE (reg), SUBREG_BYTE (x));
4485 	  return true;
4486 	}
4487     }
4488   if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4489     {
4490       *loc = subst;
4491       return true;
4492     }
4493 
4494   /* Scan all the operand sub-expressions.  */
4495   fmt = GET_RTX_FORMAT (code);
4496   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4497     {
4498       if (fmt[i] == 'e')
4499 	result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4500       else if (fmt[i] == 'E')
4501 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4502 	  result
4503 	    = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4504     }
4505   return result;
4506 }
4507 
4508 /* Similar to loc_equivalence_change_p, but for use as
4509    simplify_replace_fn_rtx callback.  DATA is insn for which the
4510    elimination is done.  If it null we don't do the elimination.  */
4511 static rtx
4512 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4513 {
4514   if (!REG_P (loc))
4515     return NULL_RTX;
4516 
4517   rtx subst = (data == NULL
4518 	       ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4519   if (subst != loc)
4520     return subst;
4521 
4522   return NULL_RTX;
4523 }
4524 
4525 /* Maximum number of generated reload insns per an insn.  It is for
4526    preventing this pass cycling in a bug case.	*/
4527 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4528 
4529 /* The current iteration number of this LRA pass.  */
4530 int lra_constraint_iter;
4531 
4532 /* True if we substituted equiv which needs checking register
4533    allocation correctness because the equivalent value contains
4534    allocatable hard registers or when we restore multi-register
4535    pseudo.  */
4536 bool lra_risky_transformations_p;
4537 
4538 /* Return true if REGNO is referenced in more than one block.  */
4539 static bool
4540 multi_block_pseudo_p (int regno)
4541 {
4542   basic_block bb = NULL;
4543   unsigned int uid;
4544   bitmap_iterator bi;
4545 
4546   if (regno < FIRST_PSEUDO_REGISTER)
4547     return false;
4548 
4549     EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4550       if (bb == NULL)
4551 	bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4552       else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4553 	return true;
4554     return false;
4555 }
4556 
4557 /* Return true if LIST contains a deleted insn.  */
4558 static bool
4559 contains_deleted_insn_p (rtx_insn_list *list)
4560 {
4561   for (; list != NULL_RTX; list = list->next ())
4562     if (NOTE_P (list->insn ())
4563 	&& NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4564       return true;
4565   return false;
4566 }
4567 
4568 /* Return true if X contains a pseudo dying in INSN.  */
4569 static bool
4570 dead_pseudo_p (rtx x, rtx_insn *insn)
4571 {
4572   int i, j;
4573   const char *fmt;
4574   enum rtx_code code;
4575 
4576   if (REG_P (x))
4577     return (insn != NULL_RTX
4578 	    && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4579   code = GET_CODE (x);
4580   fmt = GET_RTX_FORMAT (code);
4581   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4582     {
4583       if (fmt[i] == 'e')
4584 	{
4585 	  if (dead_pseudo_p (XEXP (x, i), insn))
4586 	    return true;
4587 	}
4588       else if (fmt[i] == 'E')
4589 	{
4590 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4591 	    if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4592 	      return true;
4593 	}
4594     }
4595   return false;
4596 }
4597 
4598 /* Return true if INSN contains a dying pseudo in INSN right hand
4599    side.  */
4600 static bool
4601 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4602 {
4603   rtx set = single_set (insn);
4604 
4605   gcc_assert (set != NULL);
4606   return dead_pseudo_p (SET_SRC (set), insn);
4607 }
4608 
4609 /* Return true if any init insn of REGNO contains a dying pseudo in
4610    insn right hand side.  */
4611 static bool
4612 init_insn_rhs_dead_pseudo_p (int regno)
4613 {
4614   rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4615 
4616   if (insns == NULL)
4617     return false;
4618   for (; insns != NULL_RTX; insns = insns->next ())
4619     if (insn_rhs_dead_pseudo_p (insns->insn ()))
4620       return true;
4621   return false;
4622 }
4623 
4624 /* Return TRUE if REGNO has a reverse equivalence.  The equivalence is
4625    reverse only if we have one init insn with given REGNO as a
4626    source.  */
4627 static bool
4628 reverse_equiv_p (int regno)
4629 {
4630   rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4631   rtx set;
4632 
4633   if (insns == NULL)
4634     return false;
4635   if (! INSN_P (insns->insn ())
4636       || insns->next () != NULL)
4637     return false;
4638   if ((set = single_set (insns->insn ())) == NULL_RTX)
4639     return false;
4640   return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4641 }
4642 
4643 /* Return TRUE if REGNO was reloaded in an equivalence init insn.  We
4644    call this function only for non-reverse equivalence.  */
4645 static bool
4646 contains_reloaded_insn_p (int regno)
4647 {
4648   rtx set;
4649   rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4650 
4651   for (; list != NULL; list = list->next ())
4652     if ((set = single_set (list->insn ())) == NULL_RTX
4653 	|| ! REG_P (SET_DEST (set))
4654 	|| (int) REGNO (SET_DEST (set)) != regno)
4655       return true;
4656   return false;
4657 }
4658 
4659 /* Entry function of LRA constraint pass.  Return true if the
4660    constraint pass did change the code.	 */
4661 bool
4662 lra_constraints (bool first_p)
4663 {
4664   bool changed_p;
4665   int i, hard_regno, new_insns_num;
4666   unsigned int min_len, new_min_len, uid;
4667   rtx set, x, reg, dest_reg;
4668   basic_block last_bb;
4669   bitmap_head equiv_insn_bitmap;
4670   bitmap_iterator bi;
4671 
4672   lra_constraint_iter++;
4673   if (lra_dump_file != NULL)
4674     fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4675 	     lra_constraint_iter);
4676   changed_p = false;
4677   if (pic_offset_table_rtx
4678       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4679     lra_risky_transformations_p = true;
4680   else
4681     /* On the first iteration we should check IRA assignment
4682        correctness.  In rare cases, the assignments can be wrong as
4683        early clobbers operands are ignored in IRA.  */
4684     lra_risky_transformations_p = first_p;
4685   new_insn_uid_start = get_max_uid ();
4686   new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4687   /* Mark used hard regs for target stack size calulations.  */
4688   for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4689     if (lra_reg_info[i].nrefs != 0
4690 	&& (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4691       {
4692 	int j, nregs;
4693 
4694 	nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
4695 	for (j = 0; j < nregs; j++)
4696 	  df_set_regs_ever_live (hard_regno + j, true);
4697       }
4698   /* Do elimination before the equivalence processing as we can spill
4699      some pseudos during elimination.  */
4700   lra_eliminate (false, first_p);
4701   bitmap_initialize (&equiv_insn_bitmap, &reg_obstack);
4702   for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4703     if (lra_reg_info[i].nrefs != 0)
4704       {
4705 	ira_reg_equiv[i].profitable_p = true;
4706 	reg = regno_reg_rtx[i];
4707 	if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4708 	  {
4709 	    bool pseudo_p = contains_reg_p (x, false, false);
4710 
4711 	    /* After RTL transformation, we can not guarantee that
4712 	       pseudo in the substitution was not reloaded which might
4713 	       make equivalence invalid.  For example, in reverse
4714 	       equiv of p0
4715 
4716 	       p0 <- ...
4717 	       ...
4718 	       equiv_mem <- p0
4719 
4720 	       the memory address register was reloaded before the 2nd
4721 	       insn.  */
4722 	    if ((! first_p && pseudo_p)
4723 		/* We don't use DF for compilation speed sake.  So it
4724 		   is problematic to update live info when we use an
4725 		   equivalence containing pseudos in more than one
4726 		   BB.  */
4727 		|| (pseudo_p && multi_block_pseudo_p (i))
4728 		/* If an init insn was deleted for some reason, cancel
4729 		   the equiv.  We could update the equiv insns after
4730 		   transformations including an equiv insn deletion
4731 		   but it is not worthy as such cases are extremely
4732 		   rare.  */
4733 		|| contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4734 		/* If it is not a reverse equivalence, we check that a
4735 		   pseudo in rhs of the init insn is not dying in the
4736 		   insn.  Otherwise, the live info at the beginning of
4737 		   the corresponding BB might be wrong after we
4738 		   removed the insn.  When the equiv can be a
4739 		   constant, the right hand side of the init insn can
4740 		   be a pseudo.  */
4741 		|| (! reverse_equiv_p (i)
4742 		    && (init_insn_rhs_dead_pseudo_p (i)
4743 			/* If we reloaded the pseudo in an equivalence
4744 			   init insn, we can not remove the equiv init
4745 			   insns and the init insns might write into
4746 			   const memory in this case.  */
4747 			|| contains_reloaded_insn_p (i)))
4748 		/* Prevent access beyond equivalent memory for
4749 		   paradoxical subregs.  */
4750 		|| (MEM_P (x)
4751 		    && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
4752 			> GET_MODE_SIZE (GET_MODE (x))))
4753 		|| (pic_offset_table_rtx
4754 		    && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4755 			 && (targetm.preferred_reload_class
4756 			     (x, lra_get_allocno_class (i)) == NO_REGS))
4757 			|| contains_symbol_ref_p (x))))
4758 	      ira_reg_equiv[i].defined_p = false;
4759 	    if (contains_reg_p (x, false, true))
4760 	      ira_reg_equiv[i].profitable_p = false;
4761 	    if (get_equiv (reg) != reg)
4762 	      bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4763 	  }
4764       }
4765   for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4766     update_equiv (i);
4767   /* We should add all insns containing pseudos which should be
4768      substituted by their equivalences.  */
4769   EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi)
4770     lra_push_insn_by_uid (uid);
4771   min_len = lra_insn_stack_length ();
4772   new_insns_num = 0;
4773   last_bb = NULL;
4774   changed_p = false;
4775   while ((new_min_len = lra_insn_stack_length ()) != 0)
4776     {
4777       curr_insn = lra_pop_insn ();
4778       --new_min_len;
4779       curr_bb = BLOCK_FOR_INSN (curr_insn);
4780       if (curr_bb != last_bb)
4781 	{
4782 	  last_bb = curr_bb;
4783 	  bb_reload_num = lra_curr_reload_num;
4784 	}
4785       if (min_len > new_min_len)
4786 	{
4787 	  min_len = new_min_len;
4788 	  new_insns_num = 0;
4789 	}
4790       if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4791 	internal_error
4792 	  ("Max. number of generated reload insns per insn is achieved (%d)\n",
4793 	   MAX_RELOAD_INSNS_NUMBER);
4794       new_insns_num++;
4795       if (DEBUG_INSN_P (curr_insn))
4796 	{
4797 	  /* We need to check equivalence in debug insn and change
4798 	     pseudo to the equivalent value if necessary.  */
4799 	  curr_id = lra_get_insn_recog_data (curr_insn);
4800 	  if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)))
4801 	    {
4802 	      rtx old = *curr_id->operand_loc[0];
4803 	      *curr_id->operand_loc[0]
4804 		= simplify_replace_fn_rtx (old, NULL_RTX,
4805 					   loc_equivalence_callback, curr_insn);
4806 	      if (old != *curr_id->operand_loc[0])
4807 		{
4808 		  lra_update_insn_regno_info (curr_insn);
4809 		  changed_p = true;
4810 		}
4811 	    }
4812 	}
4813       else if (INSN_P (curr_insn))
4814 	{
4815 	  if ((set = single_set (curr_insn)) != NULL_RTX)
4816 	    {
4817 	      dest_reg = SET_DEST (set);
4818 	      /* The equivalence pseudo could be set up as SUBREG in a
4819 		 case when it is a call restore insn in a mode
4820 		 different from the pseudo mode.  */
4821 	      if (GET_CODE (dest_reg) == SUBREG)
4822 		dest_reg = SUBREG_REG (dest_reg);
4823 	      if ((REG_P (dest_reg)
4824 		   && (x = get_equiv (dest_reg)) != dest_reg
4825 		   /* Remove insns which set up a pseudo whose value
4826 		      can not be changed.  Such insns might be not in
4827 		      init_insns because we don't update equiv data
4828 		      during insn transformations.
4829 
4830 		      As an example, let suppose that a pseudo got
4831 		      hard register and on the 1st pass was not
4832 		      changed to equivalent constant.  We generate an
4833 		      additional insn setting up the pseudo because of
4834 		      secondary memory movement.  Then the pseudo is
4835 		      spilled and we use the equiv constant.  In this
4836 		      case we should remove the additional insn and
4837 		      this insn is not init_insns list.  */
4838 		   && (! MEM_P (x) || MEM_READONLY_P (x)
4839 		       /* Check that this is actually an insn setting
4840 			  up the equivalence.  */
4841 		       || in_list_p (curr_insn,
4842 				     ira_reg_equiv
4843 				     [REGNO (dest_reg)].init_insns)))
4844 		  || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4845 		      && in_list_p (curr_insn,
4846 				    ira_reg_equiv
4847 				    [REGNO (SET_SRC (set))].init_insns)))
4848 		{
4849 		  /* This is equiv init insn of pseudo which did not get a
4850 		     hard register -- remove the insn.	*/
4851 		  if (lra_dump_file != NULL)
4852 		    {
4853 		      fprintf (lra_dump_file,
4854 			       "      Removing equiv init insn %i (freq=%d)\n",
4855 			       INSN_UID (curr_insn),
4856 			       REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4857 		      dump_insn_slim (lra_dump_file, curr_insn);
4858 		    }
4859 		  if (contains_reg_p (x, true, false))
4860 		    lra_risky_transformations_p = true;
4861 		  lra_set_insn_deleted (curr_insn);
4862 		  continue;
4863 		}
4864 	    }
4865 	  curr_id = lra_get_insn_recog_data (curr_insn);
4866 	  curr_static_id = curr_id->insn_static_data;
4867 	  init_curr_insn_input_reloads ();
4868 	  init_curr_operand_mode ();
4869 	  if (curr_insn_transform (false))
4870 	    changed_p = true;
4871 	  /* Check non-transformed insns too for equiv change as USE
4872 	     or CLOBBER don't need reloads but can contain pseudos
4873 	     being changed on their equivalences.  */
4874 	  else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))
4875 		   && loc_equivalence_change_p (&PATTERN (curr_insn)))
4876 	    {
4877 	      lra_update_insn_regno_info (curr_insn);
4878 	      changed_p = true;
4879 	    }
4880 	}
4881     }
4882   bitmap_clear (&equiv_insn_bitmap);
4883   /* If we used a new hard regno, changed_p should be true because the
4884      hard reg is assigned to a new pseudo.  */
4885   if (flag_checking && !changed_p)
4886     {
4887       for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4888 	if (lra_reg_info[i].nrefs != 0
4889 	    && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4890 	  {
4891 	    int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
4892 
4893 	    for (j = 0; j < nregs; j++)
4894 	      lra_assert (df_regs_ever_live_p (hard_regno + j));
4895 	  }
4896     }
4897   return changed_p;
4898 }
4899 
4900 static void initiate_invariants (void);
4901 static void finish_invariants (void);
4902 
4903 /* Initiate the LRA constraint pass.  It is done once per
4904    function.  */
4905 void
4906 lra_constraints_init (void)
4907 {
4908   initiate_invariants ();
4909 }
4910 
4911 /* Finalize the LRA constraint pass.  It is done once per
4912    function.  */
4913 void
4914 lra_constraints_finish (void)
4915 {
4916   finish_invariants ();
4917 }
4918 
4919 
4920 
4921 /* Structure describes invariants for ineheritance.  */
4922 struct lra_invariant
4923 {
4924   /* The order number of the invariant.  */
4925   int num;
4926   /* The invariant RTX.  */
4927   rtx invariant_rtx;
4928   /* The origin insn of the invariant.  */
4929   rtx_insn *insn;
4930 };
4931 
4932 typedef lra_invariant invariant_t;
4933 typedef invariant_t *invariant_ptr_t;
4934 typedef const invariant_t *const_invariant_ptr_t;
4935 
4936 /* Pointer to the inheritance invariants.  */
4937 static vec<invariant_ptr_t> invariants;
4938 
4939 /* Allocation pool for the invariants.  */
4940 static object_allocator<lra_invariant> *invariants_pool;
4941 
4942 /* Hash table for the invariants.  */
4943 static htab_t invariant_table;
4944 
4945 /* Hash function for INVARIANT.  */
4946 static hashval_t
4947 invariant_hash (const void *invariant)
4948 {
4949   rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
4950   return lra_rtx_hash (inv);
4951 }
4952 
4953 /* Equal function for invariants INVARIANT1 and INVARIANT2.  */
4954 static int
4955 invariant_eq_p (const void *invariant1, const void *invariant2)
4956 {
4957   rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
4958   rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
4959 
4960   return rtx_equal_p (inv1, inv2);
4961 }
4962 
4963 /* Insert INVARIANT_RTX into the table if it is not there yet.  Return
4964    invariant which is in the table.  */
4965 static invariant_ptr_t
4966 insert_invariant (rtx invariant_rtx)
4967 {
4968   void **entry_ptr;
4969   invariant_t invariant;
4970   invariant_ptr_t invariant_ptr;
4971 
4972   invariant.invariant_rtx = invariant_rtx;
4973   entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
4974   if (*entry_ptr == NULL)
4975     {
4976       invariant_ptr = invariants_pool->allocate ();
4977       invariant_ptr->invariant_rtx = invariant_rtx;
4978       invariant_ptr->insn = NULL;
4979       invariants.safe_push (invariant_ptr);
4980       *entry_ptr = (void *) invariant_ptr;
4981     }
4982   return (invariant_ptr_t) *entry_ptr;
4983 }
4984 
4985 /* Initiate the invariant table.  */
4986 static void
4987 initiate_invariants (void)
4988 {
4989   invariants.create (100);
4990   invariants_pool
4991     = new object_allocator<lra_invariant> ("Inheritance invariants");
4992   invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
4993 }
4994 
4995 /* Finish the invariant table.  */
4996 static void
4997 finish_invariants (void)
4998 {
4999   htab_delete (invariant_table);
5000   delete invariants_pool;
5001   invariants.release ();
5002 }
5003 
5004 /* Make the invariant table empty.  */
5005 static void
5006 clear_invariants (void)
5007 {
5008   htab_empty (invariant_table);
5009   invariants_pool->release ();
5010   invariants.truncate (0);
5011 }
5012 
5013 
5014 
5015 /* This page contains code to do inheritance/split
5016    transformations.  */
5017 
5018 /* Number of reloads passed so far in current EBB.  */
5019 static int reloads_num;
5020 
5021 /* Number of calls passed so far in current EBB.  */
5022 static int calls_num;
5023 
5024 /* Current reload pseudo check for validity of elements in
5025    USAGE_INSNS.	 */
5026 static int curr_usage_insns_check;
5027 
5028 /* Info about last usage of registers in EBB to do inheritance/split
5029    transformation.  Inheritance transformation is done from a spilled
5030    pseudo and split transformations from a hard register or a pseudo
5031    assigned to a hard register.	 */
5032 struct usage_insns
5033 {
5034   /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5035      value INSNS is valid.  The insns is chain of optional debug insns
5036      and a finishing non-debug insn using the corresponding reg.  The
5037      value is also used to mark the registers which are set up in the
5038      current insn.  The negated insn uid is used for this.  */
5039   int check;
5040   /* Value of global reloads_num at the last insn in INSNS.  */
5041   int reloads_num;
5042   /* Value of global reloads_nums at the last insn in INSNS.  */
5043   int calls_num;
5044   /* It can be true only for splitting.	 And it means that the restore
5045      insn should be put after insn given by the following member.  */
5046   bool after_p;
5047   /* Next insns in the current EBB which use the original reg and the
5048      original reg value is not changed between the current insn and
5049      the next insns.  In order words, e.g. for inheritance, if we need
5050      to use the original reg value again in the next insns we can try
5051      to use the value in a hard register from a reload insn of the
5052      current insn.  */
5053   rtx insns;
5054 };
5055 
5056 /* Map: regno -> corresponding pseudo usage insns.  */
5057 static struct usage_insns *usage_insns;
5058 
5059 static void
5060 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5061 {
5062   usage_insns[regno].check = curr_usage_insns_check;
5063   usage_insns[regno].insns = insn;
5064   usage_insns[regno].reloads_num = reloads_num;
5065   usage_insns[regno].calls_num = calls_num;
5066   usage_insns[regno].after_p = after_p;
5067 }
5068 
5069 /* The function is used to form list REGNO usages which consists of
5070    optional debug insns finished by a non-debug insn using REGNO.
5071    RELOADS_NUM is current number of reload insns processed so far.  */
5072 static void
5073 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5074 {
5075   rtx next_usage_insns;
5076 
5077   if (usage_insns[regno].check == curr_usage_insns_check
5078       && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5079       && DEBUG_INSN_P (insn))
5080     {
5081       /* Check that we did not add the debug insn yet.	*/
5082       if (next_usage_insns != insn
5083 	  && (GET_CODE (next_usage_insns) != INSN_LIST
5084 	      || XEXP (next_usage_insns, 0) != insn))
5085 	usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5086 						      next_usage_insns);
5087     }
5088   else if (NONDEBUG_INSN_P (insn))
5089     setup_next_usage_insn (regno, insn, reloads_num, false);
5090   else
5091     usage_insns[regno].check = 0;
5092 }
5093 
5094 /* Return first non-debug insn in list USAGE_INSNS.  */
5095 static rtx_insn *
5096 skip_usage_debug_insns (rtx usage_insns)
5097 {
5098   rtx insn;
5099 
5100   /* Skip debug insns.  */
5101   for (insn = usage_insns;
5102        insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5103        insn = XEXP (insn, 1))
5104     ;
5105   return safe_as_a <rtx_insn *> (insn);
5106 }
5107 
5108 /* Return true if we need secondary memory moves for insn in
5109    USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5110    into the insn.  */
5111 static bool
5112 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5113 				 rtx usage_insns ATTRIBUTE_UNUSED)
5114 {
5115 #ifndef SECONDARY_MEMORY_NEEDED
5116   return false;
5117 #else
5118   rtx_insn *insn;
5119   rtx set, dest;
5120   enum reg_class cl;
5121 
5122   if (inher_cl == ALL_REGS
5123       || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5124     return false;
5125   lra_assert (INSN_P (insn));
5126   if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5127     return false;
5128   dest = SET_DEST (set);
5129   if (! REG_P (dest))
5130     return false;
5131   lra_assert (inher_cl != NO_REGS);
5132   cl = get_reg_class (REGNO (dest));
5133   return (cl != NO_REGS && cl != ALL_REGS
5134 	  && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
5135 #endif
5136 }
5137 
5138 /* Registers involved in inheritance/split in the current EBB
5139    (inheritance/split pseudos and original registers).	*/
5140 static bitmap_head check_only_regs;
5141 
5142 /* Reload pseudos can not be involded in invariant inheritance in the
5143    current EBB.  */
5144 static bitmap_head invalid_invariant_regs;
5145 
5146 /* Do inheritance transformations for insn INSN, which defines (if
5147    DEF_P) or uses ORIGINAL_REGNO.  NEXT_USAGE_INSNS specifies which
5148    instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5149    form as the "insns" field of usage_insns.  Return true if we
5150    succeed in such transformation.
5151 
5152    The transformations look like:
5153 
5154      p <- ...		  i <- ...
5155      ...		  p <- i    (new insn)
5156      ...	     =>
5157      <- ... p ...	  <- ... i ...
5158    or
5159      ...		  i <- p    (new insn)
5160      <- ... p ...	  <- ... i ...
5161      ...	     =>
5162      <- ... p ...	  <- ... i ...
5163    where p is a spilled original pseudo and i is a new inheritance pseudo.
5164 
5165 
5166    The inheritance pseudo has the smallest class of two classes CL and
5167    class of ORIGINAL REGNO.  */
5168 static bool
5169 inherit_reload_reg (bool def_p, int original_regno,
5170 		    enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5171 {
5172   if (optimize_function_for_size_p (cfun))
5173     return false;
5174 
5175   enum reg_class rclass = lra_get_allocno_class (original_regno);
5176   rtx original_reg = regno_reg_rtx[original_regno];
5177   rtx new_reg, usage_insn;
5178   rtx_insn *new_insns;
5179 
5180   lra_assert (! usage_insns[original_regno].after_p);
5181   if (lra_dump_file != NULL)
5182     fprintf (lra_dump_file,
5183 	     "    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5184   if (! ira_reg_classes_intersect_p[cl][rclass])
5185     {
5186       if (lra_dump_file != NULL)
5187 	{
5188 	  fprintf (lra_dump_file,
5189 		   "    Rejecting inheritance for %d "
5190 		   "because of disjoint classes %s and %s\n",
5191 		   original_regno, reg_class_names[cl],
5192 		   reg_class_names[rclass]);
5193 	  fprintf (lra_dump_file,
5194 		   "    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5195 	}
5196       return false;
5197     }
5198   if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5199       /* We don't use a subset of two classes because it can be
5200 	 NO_REGS.  This transformation is still profitable in most
5201 	 cases even if the classes are not intersected as register
5202 	 move is probably cheaper than a memory load.  */
5203       || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5204     {
5205       if (lra_dump_file != NULL)
5206 	fprintf (lra_dump_file, "    Use smallest class of %s and %s\n",
5207 		 reg_class_names[cl], reg_class_names[rclass]);
5208 
5209       rclass = cl;
5210     }
5211   if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5212     {
5213       /* Reject inheritance resulting in secondary memory moves.
5214 	 Otherwise, there is a danger in LRA cycling.  Also such
5215 	 transformation will be unprofitable.  */
5216       if (lra_dump_file != NULL)
5217 	{
5218 	  rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5219 	  rtx set = single_set (insn);
5220 
5221 	  lra_assert (set != NULL_RTX);
5222 
5223 	  rtx dest = SET_DEST (set);
5224 
5225 	  lra_assert (REG_P (dest));
5226 	  fprintf (lra_dump_file,
5227 		   "    Rejecting inheritance for insn %d(%s)<-%d(%s) "
5228 		   "as secondary mem is needed\n",
5229 		   REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5230 		   original_regno, reg_class_names[rclass]);
5231 	  fprintf (lra_dump_file,
5232 		   "    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5233 	}
5234       return false;
5235     }
5236   new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5237 				rclass, "inheritance");
5238   start_sequence ();
5239   if (def_p)
5240     lra_emit_move (original_reg, new_reg);
5241   else
5242     lra_emit_move (new_reg, original_reg);
5243   new_insns = get_insns ();
5244   end_sequence ();
5245   if (NEXT_INSN (new_insns) != NULL_RTX)
5246     {
5247       if (lra_dump_file != NULL)
5248 	{
5249 	  fprintf (lra_dump_file,
5250 		   "    Rejecting inheritance %d->%d "
5251 		   "as it results in 2 or more insns:\n",
5252 		   original_regno, REGNO (new_reg));
5253 	  dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5254 	  fprintf (lra_dump_file,
5255 		   "	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5256 	}
5257       return false;
5258     }
5259   lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5260   lra_update_insn_regno_info (insn);
5261   if (! def_p)
5262     /* We now have a new usage insn for original regno.  */
5263     setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5264   if (lra_dump_file != NULL)
5265     fprintf (lra_dump_file, "    Original reg change %d->%d (bb%d):\n",
5266 	     original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5267   lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5268   bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5269   bitmap_set_bit (&check_only_regs, original_regno);
5270   bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5271   if (def_p)
5272     lra_process_new_insns (insn, NULL, new_insns,
5273 			   "Add original<-inheritance");
5274   else
5275     lra_process_new_insns (insn, new_insns, NULL,
5276 			   "Add inheritance<-original");
5277   while (next_usage_insns != NULL_RTX)
5278     {
5279       if (GET_CODE (next_usage_insns) != INSN_LIST)
5280 	{
5281 	  usage_insn = next_usage_insns;
5282 	  lra_assert (NONDEBUG_INSN_P (usage_insn));
5283 	  next_usage_insns = NULL;
5284 	}
5285       else
5286 	{
5287 	  usage_insn = XEXP (next_usage_insns, 0);
5288 	  lra_assert (DEBUG_INSN_P (usage_insn));
5289 	  next_usage_insns = XEXP (next_usage_insns, 1);
5290 	}
5291       lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5292       lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5293       if (lra_dump_file != NULL)
5294 	{
5295 	  fprintf (lra_dump_file,
5296 		   "    Inheritance reuse change %d->%d (bb%d):\n",
5297 		   original_regno, REGNO (new_reg),
5298 		   BLOCK_FOR_INSN (usage_insn)->index);
5299 	  dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5300 	}
5301     }
5302   if (lra_dump_file != NULL)
5303     fprintf (lra_dump_file,
5304 	     "	  >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5305   return true;
5306 }
5307 
5308 /* Return true if we need a caller save/restore for pseudo REGNO which
5309    was assigned to a hard register.  */
5310 static inline bool
5311 need_for_call_save_p (int regno)
5312 {
5313   lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5314   return (usage_insns[regno].calls_num < calls_num
5315 	  && (overlaps_hard_reg_set_p
5316 	      ((flag_ipa_ra &&
5317 		! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5318 	       ? lra_reg_info[regno].actual_call_used_reg_set
5319 	       : call_used_reg_set,
5320 	       PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5321 	      || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber[regno],
5322 						 PSEUDO_REGNO_MODE (regno))));
5323 }
5324 
5325 /* Global registers occurring in the current EBB.  */
5326 static bitmap_head ebb_global_regs;
5327 
5328 /* Return true if we need a split for hard register REGNO or pseudo
5329    REGNO which was assigned to a hard register.
5330    POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5331    used for reloads since the EBB end.	It is an approximation of the
5332    used hard registers in the split range.  The exact value would
5333    require expensive calculations.  If we were aggressive with
5334    splitting because of the approximation, the split pseudo will save
5335    the same hard register assignment and will be removed in the undo
5336    pass.  We still need the approximation because too aggressive
5337    splitting would result in too inaccurate cost calculation in the
5338    assignment pass because of too many generated moves which will be
5339    probably removed in the undo pass.  */
5340 static inline bool
5341 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5342 {
5343   int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5344 
5345   lra_assert (hard_regno >= 0);
5346   return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5347 	   /* Don't split eliminable hard registers, otherwise we can
5348 	      split hard registers like hard frame pointer, which
5349 	      lives on BB start/end according to DF-infrastructure,
5350 	      when there is a pseudo assigned to the register and
5351 	      living in the same BB.  */
5352 	   && (regno >= FIRST_PSEUDO_REGISTER
5353 	       || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5354 	   && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5355 	   /* Don't split call clobbered hard regs living through
5356 	      calls, otherwise we might have a check problem in the
5357 	      assign sub-pass as in the most cases (exception is a
5358 	      situation when lra_risky_transformations_p value is
5359 	      true) the assign pass assumes that all pseudos living
5360 	      through calls are assigned to call saved hard regs.  */
5361 	   && (regno >= FIRST_PSEUDO_REGISTER
5362 	       || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5363 	       || usage_insns[regno].calls_num == calls_num)
5364 	   /* We need at least 2 reloads to make pseudo splitting
5365 	      profitable.  We should provide hard regno splitting in
5366 	      any case to solve 1st insn scheduling problem when
5367 	      moving hard register definition up might result in
5368 	      impossibility to find hard register for reload pseudo of
5369 	      small register class.  */
5370 	   && (usage_insns[regno].reloads_num
5371 	       + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5372 	   && (regno < FIRST_PSEUDO_REGISTER
5373 	       /* For short living pseudos, spilling + inheritance can
5374 		  be considered a substitution for splitting.
5375 		  Therefore we do not splitting for local pseudos.  It
5376 		  decreases also aggressiveness of splitting.  The
5377 		  minimal number of references is chosen taking into
5378 		  account that for 2 references splitting has no sense
5379 		  as we can just spill the pseudo.  */
5380 	       || (regno >= FIRST_PSEUDO_REGISTER
5381 		   && lra_reg_info[regno].nrefs > 3
5382 		   && bitmap_bit_p (&ebb_global_regs, regno))))
5383 	  || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5384 }
5385 
5386 /* Return class for the split pseudo created from original pseudo with
5387    ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO.	 We
5388    choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5389    results in no secondary memory movements.  */
5390 static enum reg_class
5391 choose_split_class (enum reg_class allocno_class,
5392 		    int hard_regno ATTRIBUTE_UNUSED,
5393 		    machine_mode mode ATTRIBUTE_UNUSED)
5394 {
5395 #ifndef SECONDARY_MEMORY_NEEDED
5396   return allocno_class;
5397 #else
5398   int i;
5399   enum reg_class cl, best_cl = NO_REGS;
5400   enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5401     = REGNO_REG_CLASS (hard_regno);
5402 
5403   if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
5404       && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5405     return allocno_class;
5406   for (i = 0;
5407        (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5408        i++)
5409     if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
5410 	&& ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
5411 	&& TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5412 	&& (best_cl == NO_REGS
5413 	    || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5414       best_cl = cl;
5415   return best_cl;
5416 #endif
5417 }
5418 
5419 /* Do split transformations for insn INSN, which defines or uses
5420    ORIGINAL_REGNO.  NEXT_USAGE_INSNS specifies which instruction in
5421    the EBB next uses ORIGINAL_REGNO; it has the same form as the
5422    "insns" field of usage_insns.
5423 
5424    The transformations look like:
5425 
5426      p <- ...		  p <- ...
5427      ...		  s <- p    (new insn -- save)
5428      ...	     =>
5429      ...		  p <- s    (new insn -- restore)
5430      <- ... p ...	  <- ... p ...
5431    or
5432      <- ... p ...	  <- ... p ...
5433      ...		  s <- p    (new insn -- save)
5434      ...	     =>
5435      ...		  p <- s    (new insn -- restore)
5436      <- ... p ...	  <- ... p ...
5437 
5438    where p is an original pseudo got a hard register or a hard
5439    register and s is a new split pseudo.  The save is put before INSN
5440    if BEFORE_P is true.	 Return true if we succeed in such
5441    transformation.  */
5442 static bool
5443 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5444 	   rtx next_usage_insns)
5445 {
5446   enum reg_class rclass;
5447   rtx original_reg;
5448   int hard_regno, nregs;
5449   rtx new_reg, usage_insn;
5450   rtx_insn *restore, *save;
5451   bool after_p;
5452   bool call_save_p;
5453   machine_mode mode;
5454 
5455   if (original_regno < FIRST_PSEUDO_REGISTER)
5456     {
5457       rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5458       hard_regno = original_regno;
5459       call_save_p = false;
5460       nregs = 1;
5461       mode = lra_reg_info[hard_regno].biggest_mode;
5462       machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5463       /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5464 	 as part of a multi-word register.  In that case, or if the biggest
5465 	 mode was larger than a register, just use the reg_rtx.  Otherwise,
5466 	 limit the size to that of the biggest access in the function.  */
5467       if (mode == VOIDmode
5468 	  || GET_MODE_SIZE (mode) > GET_MODE_SIZE (reg_rtx_mode))
5469 	{
5470 	  original_reg = regno_reg_rtx[hard_regno];
5471 	  mode = reg_rtx_mode;
5472 	}
5473       else
5474 	original_reg = gen_rtx_REG (mode, hard_regno);
5475     }
5476   else
5477     {
5478       mode = PSEUDO_REGNO_MODE (original_regno);
5479       hard_regno = reg_renumber[original_regno];
5480       nregs = hard_regno_nregs[hard_regno][mode];
5481       rclass = lra_get_allocno_class (original_regno);
5482       original_reg = regno_reg_rtx[original_regno];
5483       call_save_p = need_for_call_save_p (original_regno);
5484     }
5485   lra_assert (hard_regno >= 0);
5486   if (lra_dump_file != NULL)
5487     fprintf (lra_dump_file,
5488 	     "	  ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5489 
5490   if (call_save_p)
5491     {
5492       mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5493 					  hard_regno_nregs[hard_regno][mode],
5494 					  mode);
5495       new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5496     }
5497   else
5498     {
5499       rclass = choose_split_class (rclass, hard_regno, mode);
5500       if (rclass == NO_REGS)
5501 	{
5502 	  if (lra_dump_file != NULL)
5503 	    {
5504 	      fprintf (lra_dump_file,
5505 		       "    Rejecting split of %d(%s): "
5506 		       "no good reg class for %d(%s)\n",
5507 		       original_regno,
5508 		       reg_class_names[lra_get_allocno_class (original_regno)],
5509 		       hard_regno,
5510 		       reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5511 	      fprintf
5512 		(lra_dump_file,
5513 		 "    ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5514 	    }
5515 	  return false;
5516 	}
5517       /* Split_if_necessary can split hard registers used as part of a
5518 	 multi-register mode but splits each register individually.  The
5519 	 mode used for each independent register may not be supported
5520 	 so reject the split.  Splitting the wider mode should theoretically
5521 	 be possible but is not implemented.  */
5522       if (! HARD_REGNO_MODE_OK (hard_regno, mode))
5523 	{
5524 	  if (lra_dump_file != NULL)
5525 	    {
5526 	      fprintf (lra_dump_file,
5527 		       "    Rejecting split of %d(%s): unsuitable mode %s\n",
5528 		       original_regno,
5529 		       reg_class_names[lra_get_allocno_class (original_regno)],
5530 		       GET_MODE_NAME (mode));
5531 	      fprintf
5532 		(lra_dump_file,
5533 		 "    ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5534 	    }
5535 	  return false;
5536 	}
5537       new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5538       reg_renumber[REGNO (new_reg)] = hard_regno;
5539     }
5540   save = emit_spill_move (true, new_reg, original_reg);
5541   if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5542     {
5543       if (lra_dump_file != NULL)
5544 	{
5545 	  fprintf
5546 	    (lra_dump_file,
5547 	     "	  Rejecting split %d->%d resulting in > 2 save insns:\n",
5548 	     original_regno, REGNO (new_reg));
5549 	  dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5550 	  fprintf (lra_dump_file,
5551 		   "	))))))))))))))))))))))))))))))))))))))))))))))))\n");
5552 	}
5553       return false;
5554     }
5555   restore = emit_spill_move (false, new_reg, original_reg);
5556   if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5557     {
5558       if (lra_dump_file != NULL)
5559 	{
5560 	  fprintf (lra_dump_file,
5561 		   "	Rejecting split %d->%d "
5562 		   "resulting in > 2 restore insns:\n",
5563 		   original_regno, REGNO (new_reg));
5564 	  dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5565 	  fprintf (lra_dump_file,
5566 		   "	))))))))))))))))))))))))))))))))))))))))))))))))\n");
5567 	}
5568       return false;
5569     }
5570   after_p = usage_insns[original_regno].after_p;
5571   lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5572   bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5573   bitmap_set_bit (&check_only_regs, original_regno);
5574   bitmap_set_bit (&lra_split_regs, REGNO (new_reg));
5575   for (;;)
5576     {
5577       if (GET_CODE (next_usage_insns) != INSN_LIST)
5578 	{
5579 	  usage_insn = next_usage_insns;
5580 	  break;
5581 	}
5582       usage_insn = XEXP (next_usage_insns, 0);
5583       lra_assert (DEBUG_INSN_P (usage_insn));
5584       next_usage_insns = XEXP (next_usage_insns, 1);
5585       lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false);
5586       lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5587       if (lra_dump_file != NULL)
5588 	{
5589 	  fprintf (lra_dump_file, "    Split reuse change %d->%d:\n",
5590 		   original_regno, REGNO (new_reg));
5591 	  dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5592 	}
5593     }
5594   lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5595   lra_assert (usage_insn != insn || (after_p && before_p));
5596   lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5597 			 after_p ? NULL : restore,
5598 			 after_p ? restore : NULL,
5599 			 call_save_p
5600 			 ?  "Add reg<-save" : "Add reg<-split");
5601   lra_process_new_insns (insn, before_p ? save : NULL,
5602 			 before_p ? NULL : save,
5603 			 call_save_p
5604 			 ?  "Add save<-reg" : "Add split<-reg");
5605   if (nregs > 1)
5606     /* If we are trying to split multi-register.  We should check
5607        conflicts on the next assignment sub-pass.  IRA can allocate on
5608        sub-register levels, LRA do this on pseudos level right now and
5609        this discrepancy may create allocation conflicts after
5610        splitting.  */
5611     lra_risky_transformations_p = true;
5612   if (lra_dump_file != NULL)
5613     fprintf (lra_dump_file,
5614 	     "	  ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5615   return true;
5616 }
5617 
5618 /* Recognize that we need a split transformation for insn INSN, which
5619    defines or uses REGNO in its insn biggest MODE (we use it only if
5620    REGNO is a hard register).  POTENTIAL_RELOAD_HARD_REGS contains
5621    hard registers which might be used for reloads since the EBB end.
5622    Put the save before INSN if BEFORE_P is true.  MAX_UID is maximla
5623    uid before starting INSN processing.  Return true if we succeed in
5624    such transformation.  */
5625 static bool
5626 split_if_necessary (int regno, machine_mode mode,
5627 		    HARD_REG_SET potential_reload_hard_regs,
5628 		    bool before_p, rtx_insn *insn, int max_uid)
5629 {
5630   bool res = false;
5631   int i, nregs = 1;
5632   rtx next_usage_insns;
5633 
5634   if (regno < FIRST_PSEUDO_REGISTER)
5635     nregs = hard_regno_nregs[regno][mode];
5636   for (i = 0; i < nregs; i++)
5637     if (usage_insns[regno + i].check == curr_usage_insns_check
5638 	&& (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5639 	/* To avoid processing the register twice or more.  */
5640 	&& ((GET_CODE (next_usage_insns) != INSN_LIST
5641 	     && INSN_UID (next_usage_insns) < max_uid)
5642 	    || (GET_CODE (next_usage_insns) == INSN_LIST
5643 		&& (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5644 	&& need_for_split_p (potential_reload_hard_regs, regno + i)
5645 	&& split_reg (before_p, regno + i, insn, next_usage_insns))
5646     res = true;
5647   return res;
5648 }
5649 
5650 /* Return TRUE if rtx X is considered as an invariant for
5651    inheritance.  */
5652 static bool
5653 invariant_p (const_rtx x)
5654 {
5655   machine_mode mode;
5656   const char *fmt;
5657   enum rtx_code code;
5658   int i, j;
5659 
5660   code = GET_CODE (x);
5661   mode = GET_MODE (x);
5662   if (code == SUBREG)
5663     {
5664       x = SUBREG_REG (x);
5665       code = GET_CODE (x);
5666       if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
5667 	mode = GET_MODE (x);
5668     }
5669 
5670   if (MEM_P (x))
5671     return false;
5672 
5673   if (REG_P (x))
5674     {
5675       int i, nregs, regno = REGNO (x);
5676 
5677       if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5678 	  || TEST_HARD_REG_BIT (eliminable_regset, regno)
5679 	  || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5680 	return false;
5681       nregs = hard_regno_nregs[regno][mode];
5682       for (i = 0; i < nregs; i++)
5683 	if (! fixed_regs[regno + i]
5684 	    /* A hard register may be clobbered in the current insn
5685 	       but we can ignore this case because if the hard
5686 	       register is used it should be set somewhere after the
5687 	       clobber.  */
5688 	    || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5689 	  return false;
5690     }
5691   fmt = GET_RTX_FORMAT (code);
5692   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5693     {
5694       if (fmt[i] == 'e')
5695 	{
5696 	  if (! invariant_p (XEXP (x, i)))
5697 	    return false;
5698 	}
5699       else if (fmt[i] == 'E')
5700 	{
5701 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5702 	    if (! invariant_p (XVECEXP (x, i, j)))
5703 	      return false;
5704 	}
5705     }
5706   return true;
5707 }
5708 
5709 /* We have 'dest_reg <- invariant'.  Let us try to make an invariant
5710    inheritance transformation (using dest_reg instead invariant in a
5711    subsequent insn).  */
5712 static bool
5713 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5714 {
5715   invariant_ptr_t invariant_ptr;
5716   rtx_insn *insn, *new_insns;
5717   rtx insn_set, insn_reg, new_reg;
5718   int insn_regno;
5719   bool succ_p = false;
5720   int dst_regno = REGNO (dst_reg);
5721   enum machine_mode dst_mode = GET_MODE (dst_reg);
5722   enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5723 
5724   invariant_ptr = insert_invariant (invariant_rtx);
5725   if ((insn = invariant_ptr->insn) != NULL_RTX)
5726     {
5727       /* We have a subsequent insn using the invariant.  */
5728       insn_set = single_set (insn);
5729       lra_assert (insn_set != NULL);
5730       insn_reg = SET_DEST (insn_set);
5731       lra_assert (REG_P (insn_reg));
5732       insn_regno = REGNO (insn_reg);
5733       insn_reg_cl = lra_get_allocno_class (insn_regno);
5734 
5735       if (dst_mode == GET_MODE (insn_reg)
5736 	  /* We should consider only result move reg insns which are
5737 	     cheap.  */
5738 	  && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5739 	  && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5740 	{
5741 	  if (lra_dump_file != NULL)
5742 	    fprintf (lra_dump_file,
5743 		     "    [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5744 	  new_reg = lra_create_new_reg (dst_mode, dst_reg,
5745 					cl, "invariant inheritance");
5746 	  bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5747 	  bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5748 	  lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5749 	  start_sequence ();
5750 	  lra_emit_move (new_reg, dst_reg);
5751 	  new_insns = get_insns ();
5752 	  end_sequence ();
5753 	  lra_process_new_insns (curr_insn, NULL, new_insns,
5754 				 "Add invariant inheritance<-original");
5755 	  start_sequence ();
5756 	  lra_emit_move (SET_DEST (insn_set), new_reg);
5757 	  new_insns = get_insns ();
5758 	  end_sequence ();
5759 	  lra_process_new_insns (insn, NULL, new_insns,
5760 				 "Changing reload<-inheritance");
5761 	  lra_set_insn_deleted (insn);
5762 	  succ_p = true;
5763 	  if (lra_dump_file != NULL)
5764 	    {
5765 	      fprintf (lra_dump_file,
5766 		       "    Invariant inheritance reuse change %d (bb%d):\n",
5767 		       REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5768 	      dump_insn_slim (lra_dump_file, insn);
5769 	      fprintf (lra_dump_file,
5770 		       "	  ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5771 	    }
5772 	}
5773     }
5774   invariant_ptr->insn = curr_insn;
5775   return succ_p;
5776 }
5777 
5778 /* Check only registers living at the current program point in the
5779    current EBB.	 */
5780 static bitmap_head live_regs;
5781 
5782 /* Update live info in EBB given by its HEAD and TAIL insns after
5783    inheritance/split transformation.  The function removes dead moves
5784    too.	 */
5785 static void
5786 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5787 {
5788   unsigned int j;
5789   int i, regno;
5790   bool live_p;
5791   rtx_insn *prev_insn;
5792   rtx set;
5793   bool remove_p;
5794   basic_block last_bb, prev_bb, curr_bb;
5795   bitmap_iterator bi;
5796   struct lra_insn_reg *reg;
5797   edge e;
5798   edge_iterator ei;
5799 
5800   last_bb = BLOCK_FOR_INSN (tail);
5801   prev_bb = NULL;
5802   for (curr_insn = tail;
5803        curr_insn != PREV_INSN (head);
5804        curr_insn = prev_insn)
5805     {
5806       prev_insn = PREV_INSN (curr_insn);
5807       /* We need to process empty blocks too.  They contain
5808 	 NOTE_INSN_BASIC_BLOCK referring for the basic block.  */
5809       if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
5810 	continue;
5811       curr_bb = BLOCK_FOR_INSN (curr_insn);
5812       if (curr_bb != prev_bb)
5813 	{
5814 	  if (prev_bb != NULL)
5815 	    {
5816 	      /* Update df_get_live_in (prev_bb):  */
5817 	      EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5818 		if (bitmap_bit_p (&live_regs, j))
5819 		  bitmap_set_bit (df_get_live_in (prev_bb), j);
5820 		else
5821 		  bitmap_clear_bit (df_get_live_in (prev_bb), j);
5822 	    }
5823 	  if (curr_bb != last_bb)
5824 	    {
5825 	      /* Update df_get_live_out (curr_bb):  */
5826 	      EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5827 		{
5828 		  live_p = bitmap_bit_p (&live_regs, j);
5829 		  if (! live_p)
5830 		    FOR_EACH_EDGE (e, ei, curr_bb->succs)
5831 		      if (bitmap_bit_p (df_get_live_in (e->dest), j))
5832 			{
5833 			  live_p = true;
5834 			  break;
5835 			}
5836 		  if (live_p)
5837 		    bitmap_set_bit (df_get_live_out (curr_bb), j);
5838 		  else
5839 		    bitmap_clear_bit (df_get_live_out (curr_bb), j);
5840 		}
5841 	    }
5842 	  prev_bb = curr_bb;
5843 	  bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5844 	}
5845       if (! NONDEBUG_INSN_P (curr_insn))
5846 	continue;
5847       curr_id = lra_get_insn_recog_data (curr_insn);
5848       curr_static_id = curr_id->insn_static_data;
5849       remove_p = false;
5850       if ((set = single_set (curr_insn)) != NULL_RTX
5851 	  && REG_P (SET_DEST (set))
5852 	  && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5853 	  && SET_DEST (set) != pic_offset_table_rtx
5854 	  && bitmap_bit_p (&check_only_regs, regno)
5855 	  && ! bitmap_bit_p (&live_regs, regno))
5856 	remove_p = true;
5857       /* See which defined values die here.  */
5858       for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5859 	if (reg->type == OP_OUT && ! reg->subreg_p)
5860 	  bitmap_clear_bit (&live_regs, reg->regno);
5861       for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5862 	if (reg->type == OP_OUT && ! reg->subreg_p)
5863 	  bitmap_clear_bit (&live_regs, reg->regno);
5864       if (curr_id->arg_hard_regs != NULL)
5865 	/* Make clobbered argument hard registers die.  */
5866 	for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5867 	  if (regno >= FIRST_PSEUDO_REGISTER)
5868 	    bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
5869       /* Mark each used value as live.  */
5870       for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5871 	if (reg->type != OP_OUT
5872 	    && bitmap_bit_p (&check_only_regs, reg->regno))
5873 	  bitmap_set_bit (&live_regs, reg->regno);
5874       for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5875 	if (reg->type != OP_OUT
5876 	    && bitmap_bit_p (&check_only_regs, reg->regno))
5877 	  bitmap_set_bit (&live_regs, reg->regno);
5878       if (curr_id->arg_hard_regs != NULL)
5879 	/* Make used argument hard registers live.  */
5880 	for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5881 	  if (regno < FIRST_PSEUDO_REGISTER
5882 	      && bitmap_bit_p (&check_only_regs, regno))
5883 	    bitmap_set_bit (&live_regs, regno);
5884       /* It is quite important to remove dead move insns because it
5885 	 means removing dead store.  We don't need to process them for
5886 	 constraints.  */
5887       if (remove_p)
5888 	{
5889 	  if (lra_dump_file != NULL)
5890 	    {
5891 	      fprintf (lra_dump_file, "	    Removing dead insn:\n ");
5892 	      dump_insn_slim (lra_dump_file, curr_insn);
5893 	    }
5894 	  lra_set_insn_deleted (curr_insn);
5895 	}
5896     }
5897 }
5898 
5899 /* The structure describes info to do an inheritance for the current
5900    insn.  We need to collect such info first before doing the
5901    transformations because the transformations change the insn
5902    internal representation.  */
5903 struct to_inherit
5904 {
5905   /* Original regno.  */
5906   int regno;
5907   /* Subsequent insns which can inherit original reg value.  */
5908   rtx insns;
5909 };
5910 
5911 /* Array containing all info for doing inheritance from the current
5912    insn.  */
5913 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5914 
5915 /* Number elements in the previous array.  */
5916 static int to_inherit_num;
5917 
5918 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5919    structure to_inherit.  */
5920 static void
5921 add_to_inherit (int regno, rtx insns)
5922 {
5923   int i;
5924 
5925   for (i = 0; i < to_inherit_num; i++)
5926     if (to_inherit[i].regno == regno)
5927       return;
5928   lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5929   to_inherit[to_inherit_num].regno = regno;
5930   to_inherit[to_inherit_num++].insns = insns;
5931 }
5932 
5933 /* Return the last non-debug insn in basic block BB, or the block begin
5934    note if none.  */
5935 static rtx_insn *
5936 get_last_insertion_point (basic_block bb)
5937 {
5938   rtx_insn *insn;
5939 
5940   FOR_BB_INSNS_REVERSE (bb, insn)
5941     if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5942       return insn;
5943   gcc_unreachable ();
5944 }
5945 
5946 /* Set up RES by registers living on edges FROM except the edge (FROM,
5947    TO) or by registers set up in a jump insn in BB FROM.  */
5948 static void
5949 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5950 {
5951   rtx_insn *last;
5952   struct lra_insn_reg *reg;
5953   edge e;
5954   edge_iterator ei;
5955 
5956   lra_assert (to != NULL);
5957   bitmap_clear (res);
5958   FOR_EACH_EDGE (e, ei, from->succs)
5959     if (e->dest != to)
5960       bitmap_ior_into (res, df_get_live_in (e->dest));
5961   last = get_last_insertion_point (from);
5962   if (! JUMP_P (last))
5963     return;
5964   curr_id = lra_get_insn_recog_data (last);
5965   for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5966     if (reg->type != OP_IN)
5967       bitmap_set_bit (res, reg->regno);
5968 }
5969 
5970 /* Used as a temporary results of some bitmap calculations.  */
5971 static bitmap_head temp_bitmap;
5972 
5973 /* We split for reloads of small class of hard regs.  The following
5974    defines how many hard regs the class should have to be qualified as
5975    small.  The code is mostly oriented to x86/x86-64 architecture
5976    where some insns need to use only specific register or pair of
5977    registers and these register can live in RTL explicitly, e.g. for
5978    parameter passing.  */
5979 static const int max_small_class_regs_num = 2;
5980 
5981 /* Do inheritance/split transformations in EBB starting with HEAD and
5982    finishing on TAIL.  We process EBB insns in the reverse order.
5983    Return true if we did any inheritance/split transformation in the
5984    EBB.
5985 
5986    We should avoid excessive splitting which results in worse code
5987    because of inaccurate cost calculations for spilling new split
5988    pseudos in such case.  To achieve this we do splitting only if
5989    register pressure is high in given basic block and there are reload
5990    pseudos requiring hard registers.  We could do more register
5991    pressure calculations at any given program point to avoid necessary
5992    splitting even more but it is to expensive and the current approach
5993    works well enough.  */
5994 static bool
5995 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
5996 {
5997   int i, src_regno, dst_regno, nregs;
5998   bool change_p, succ_p, update_reloads_num_p;
5999   rtx_insn *prev_insn, *last_insn;
6000   rtx next_usage_insns, curr_set;
6001   enum reg_class cl;
6002   struct lra_insn_reg *reg;
6003   basic_block last_processed_bb, curr_bb = NULL;
6004   HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6005   bitmap to_process;
6006   unsigned int j;
6007   bitmap_iterator bi;
6008   bool head_p, after_p;
6009 
6010   change_p = false;
6011   curr_usage_insns_check++;
6012   clear_invariants ();
6013   reloads_num = calls_num = 0;
6014   bitmap_clear (&check_only_regs);
6015   bitmap_clear (&invalid_invariant_regs);
6016   last_processed_bb = NULL;
6017   CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6018   COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6019   IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6020   /* We don't process new insns generated in the loop.	*/
6021   for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6022     {
6023       prev_insn = PREV_INSN (curr_insn);
6024       if (BLOCK_FOR_INSN (curr_insn) != NULL)
6025 	curr_bb = BLOCK_FOR_INSN (curr_insn);
6026       if (last_processed_bb != curr_bb)
6027 	{
6028 	  /* We are at the end of BB.  Add qualified living
6029 	     pseudos for potential splitting.  */
6030 	  to_process = df_get_live_out (curr_bb);
6031 	  if (last_processed_bb != NULL)
6032 	    {
6033 	      /* We are somewhere in the middle of EBB.	 */
6034 	      get_live_on_other_edges (curr_bb, last_processed_bb,
6035 				       &temp_bitmap);
6036 	      to_process = &temp_bitmap;
6037 	    }
6038 	  last_processed_bb = curr_bb;
6039 	  last_insn = get_last_insertion_point (curr_bb);
6040 	  after_p = (! JUMP_P (last_insn)
6041 		     && (! CALL_P (last_insn)
6042 			 || (find_reg_note (last_insn,
6043 					   REG_NORETURN, NULL_RTX) == NULL_RTX
6044 			     && ! SIBLING_CALL_P (last_insn))));
6045 	  CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6046 	  EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6047 	    {
6048 	      if ((int) j >= lra_constraint_new_regno_start)
6049 		break;
6050 	      if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6051 		{
6052 		  if (j < FIRST_PSEUDO_REGISTER)
6053 		    SET_HARD_REG_BIT (live_hard_regs, j);
6054 		  else
6055 		    add_to_hard_reg_set (&live_hard_regs,
6056 					 PSEUDO_REGNO_MODE (j),
6057 					 reg_renumber[j]);
6058 		  setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6059 		}
6060 	    }
6061 	}
6062       src_regno = dst_regno = -1;
6063       curr_set = single_set (curr_insn);
6064       if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6065 	dst_regno = REGNO (SET_DEST (curr_set));
6066       if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6067 	src_regno = REGNO (SET_SRC (curr_set));
6068       update_reloads_num_p = true;
6069       if (src_regno < lra_constraint_new_regno_start
6070 	  && src_regno >= FIRST_PSEUDO_REGISTER
6071 	  && reg_renumber[src_regno] < 0
6072 	  && dst_regno >= lra_constraint_new_regno_start
6073 	  && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6074 	{
6075 	  /* 'reload_pseudo <- original_pseudo'.  */
6076 	  if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6077 	    reloads_num++;
6078 	  update_reloads_num_p = false;
6079 	  succ_p = false;
6080 	  if (usage_insns[src_regno].check == curr_usage_insns_check
6081 	      && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6082 	    succ_p = inherit_reload_reg (false, src_regno, cl,
6083 					 curr_insn, next_usage_insns);
6084 	  if (succ_p)
6085 	    change_p = true;
6086 	  else
6087 	    setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6088 	  if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6089 	    IOR_HARD_REG_SET (potential_reload_hard_regs,
6090 			      reg_class_contents[cl]);
6091 	}
6092       else if (src_regno < 0
6093 	       && dst_regno >= lra_constraint_new_regno_start
6094 	       && invariant_p (SET_SRC (curr_set))
6095 	       && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6096 	       && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6097 	       && ! bitmap_bit_p (&invalid_invariant_regs,
6098 				  ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6099 	{
6100 	  /* 'reload_pseudo <- invariant'.  */
6101 	  if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6102 	    reloads_num++;
6103 	  update_reloads_num_p = false;
6104 	  if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6105 	    change_p = true;
6106 	  if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6107 	    IOR_HARD_REG_SET (potential_reload_hard_regs,
6108 			      reg_class_contents[cl]);
6109 	}
6110       else if (src_regno >= lra_constraint_new_regno_start
6111 	       && dst_regno < lra_constraint_new_regno_start
6112 	       && dst_regno >= FIRST_PSEUDO_REGISTER
6113 	       && reg_renumber[dst_regno] < 0
6114 	       && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6115 	       && usage_insns[dst_regno].check == curr_usage_insns_check
6116 	       && (next_usage_insns
6117 		   = usage_insns[dst_regno].insns) != NULL_RTX)
6118 	{
6119 	  if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6120 	    reloads_num++;
6121 	  update_reloads_num_p = false;
6122 	  /* 'original_pseudo <- reload_pseudo'.  */
6123 	  if (! JUMP_P (curr_insn)
6124 	      && inherit_reload_reg (true, dst_regno, cl,
6125 				     curr_insn, next_usage_insns))
6126 	    change_p = true;
6127 	  /* Invalidate.  */
6128 	  usage_insns[dst_regno].check = 0;
6129 	  if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6130 	    IOR_HARD_REG_SET (potential_reload_hard_regs,
6131 			      reg_class_contents[cl]);
6132 	}
6133       else if (INSN_P (curr_insn))
6134 	{
6135 	  int iter;
6136 	  int max_uid = get_max_uid ();
6137 
6138 	  curr_id = lra_get_insn_recog_data (curr_insn);
6139 	  curr_static_id = curr_id->insn_static_data;
6140 	  to_inherit_num = 0;
6141 	  /* Process insn definitions.	*/
6142 	  for (iter = 0; iter < 2; iter++)
6143 	    for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6144 		 reg != NULL;
6145 		 reg = reg->next)
6146 	      if (reg->type != OP_IN
6147 		  && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6148 		{
6149 		  if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6150 		      && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6151 		      && usage_insns[dst_regno].check == curr_usage_insns_check
6152 		      && (next_usage_insns
6153 			  = usage_insns[dst_regno].insns) != NULL_RTX)
6154 		    {
6155 		      struct lra_insn_reg *r;
6156 
6157 		      for (r = curr_id->regs; r != NULL; r = r->next)
6158 			if (r->type != OP_OUT && r->regno == dst_regno)
6159 			  break;
6160 		      /* Don't do inheritance if the pseudo is also
6161 			 used in the insn.  */
6162 		      if (r == NULL)
6163 			/* We can not do inheritance right now
6164 			   because the current insn reg info (chain
6165 			   regs) can change after that.  */
6166 			add_to_inherit (dst_regno, next_usage_insns);
6167 		    }
6168 		  /* We can not process one reg twice here because of
6169 		     usage_insns invalidation.  */
6170 		  if ((dst_regno < FIRST_PSEUDO_REGISTER
6171 		       || reg_renumber[dst_regno] >= 0)
6172 		      && ! reg->subreg_p && reg->type != OP_IN)
6173 		    {
6174 		      HARD_REG_SET s;
6175 
6176 		      if (split_if_necessary (dst_regno, reg->biggest_mode,
6177 					      potential_reload_hard_regs,
6178 					      false, curr_insn, max_uid))
6179 			change_p = true;
6180 		      CLEAR_HARD_REG_SET (s);
6181 		      if (dst_regno < FIRST_PSEUDO_REGISTER)
6182 			add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6183 		      else
6184 			add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6185 					     reg_renumber[dst_regno]);
6186 		      AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6187 		    }
6188 		  /* We should invalidate potential inheritance or
6189 		     splitting for the current insn usages to the next
6190 		     usage insns (see code below) as the output pseudo
6191 		     prevents this.  */
6192 		  if ((dst_regno >= FIRST_PSEUDO_REGISTER
6193 		       && reg_renumber[dst_regno] < 0)
6194 		      || (reg->type == OP_OUT && ! reg->subreg_p
6195 			  && (dst_regno < FIRST_PSEUDO_REGISTER
6196 			      || reg_renumber[dst_regno] >= 0)))
6197 		    {
6198 		      /* Invalidate and mark definitions.  */
6199 		      if (dst_regno >= FIRST_PSEUDO_REGISTER)
6200 			usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6201 		      else
6202 			{
6203 			  nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
6204 			  for (i = 0; i < nregs; i++)
6205 			    usage_insns[dst_regno + i].check
6206 			      = -(int) INSN_UID (curr_insn);
6207 			}
6208 		    }
6209 		}
6210 	  /* Process clobbered call regs.  */
6211 	  if (curr_id->arg_hard_regs != NULL)
6212 	    for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6213 	      if (dst_regno >= FIRST_PSEUDO_REGISTER)
6214 		usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6215 		  = -(int) INSN_UID (curr_insn);
6216 	  if (! JUMP_P (curr_insn))
6217 	    for (i = 0; i < to_inherit_num; i++)
6218 	      if (inherit_reload_reg (true, to_inherit[i].regno,
6219 				      ALL_REGS, curr_insn,
6220 				      to_inherit[i].insns))
6221 	      change_p = true;
6222 	  if (CALL_P (curr_insn))
6223 	    {
6224 	      rtx cheap, pat, dest;
6225 	      rtx_insn *restore;
6226 	      int regno, hard_regno;
6227 
6228 	      calls_num++;
6229 	      if ((cheap = find_reg_note (curr_insn,
6230 					  REG_RETURNED, NULL_RTX)) != NULL_RTX
6231 		  && ((cheap = XEXP (cheap, 0)), true)
6232 		  && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6233 		  && (hard_regno = reg_renumber[regno]) >= 0
6234 		  /* If there are pending saves/restores, the
6235 		     optimization is not worth.	 */
6236 		  && usage_insns[regno].calls_num == calls_num - 1
6237 		  && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6238 		{
6239 		  /* Restore the pseudo from the call result as
6240 		     REG_RETURNED note says that the pseudo value is
6241 		     in the call result and the pseudo is an argument
6242 		     of the call.  */
6243 		  pat = PATTERN (curr_insn);
6244 		  if (GET_CODE (pat) == PARALLEL)
6245 		    pat = XVECEXP (pat, 0, 0);
6246 		  dest = SET_DEST (pat);
6247 		  /* For multiple return values dest is PARALLEL.
6248 		     Currently we handle only single return value case.  */
6249 		  if (REG_P (dest))
6250 		    {
6251 		      start_sequence ();
6252 		      emit_move_insn (cheap, copy_rtx (dest));
6253 		      restore = get_insns ();
6254 		      end_sequence ();
6255 		      lra_process_new_insns (curr_insn, NULL, restore,
6256 					     "Inserting call parameter restore");
6257 		      /* We don't need to save/restore of the pseudo from
6258 			 this call.	 */
6259 		      usage_insns[regno].calls_num = calls_num;
6260 		      bitmap_set_bit (&check_only_regs, regno);
6261 		    }
6262 		}
6263 	    }
6264 	  to_inherit_num = 0;
6265 	  /* Process insn usages.  */
6266 	  for (iter = 0; iter < 2; iter++)
6267 	    for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6268 		 reg != NULL;
6269 		 reg = reg->next)
6270 	      if ((reg->type != OP_OUT
6271 		   || (reg->type == OP_OUT && reg->subreg_p))
6272 		  && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6273 		{
6274 		  if (src_regno >= FIRST_PSEUDO_REGISTER
6275 		      && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6276 		    {
6277 		      if (usage_insns[src_regno].check == curr_usage_insns_check
6278 			  && (next_usage_insns
6279 			      = usage_insns[src_regno].insns) != NULL_RTX
6280 			  && NONDEBUG_INSN_P (curr_insn))
6281 			add_to_inherit (src_regno, next_usage_insns);
6282 		      else if (usage_insns[src_regno].check
6283 			       != -(int) INSN_UID (curr_insn))
6284 			/* Add usages but only if the reg is not set up
6285 			   in the same insn.  */
6286 			add_next_usage_insn (src_regno, curr_insn, reloads_num);
6287 		    }
6288 		  else if (src_regno < FIRST_PSEUDO_REGISTER
6289 			   || reg_renumber[src_regno] >= 0)
6290 		    {
6291 		      bool before_p;
6292 		      rtx_insn *use_insn = curr_insn;
6293 
6294 		      before_p = (JUMP_P (curr_insn)
6295 				  || (CALL_P (curr_insn) && reg->type == OP_IN));
6296 		      if (NONDEBUG_INSN_P (curr_insn)
6297 			  && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6298 			  && split_if_necessary (src_regno, reg->biggest_mode,
6299 						 potential_reload_hard_regs,
6300 						 before_p, curr_insn, max_uid))
6301 			{
6302 			  if (reg->subreg_p)
6303 			    lra_risky_transformations_p = true;
6304 			  change_p = true;
6305 			  /* Invalidate. */
6306 			  usage_insns[src_regno].check = 0;
6307 			  if (before_p)
6308 			    use_insn = PREV_INSN (curr_insn);
6309 			}
6310 		      if (NONDEBUG_INSN_P (curr_insn))
6311 			{
6312 			  if (src_regno < FIRST_PSEUDO_REGISTER)
6313 			    add_to_hard_reg_set (&live_hard_regs,
6314 						 reg->biggest_mode, src_regno);
6315 			  else
6316 			    add_to_hard_reg_set (&live_hard_regs,
6317 						 PSEUDO_REGNO_MODE (src_regno),
6318 						 reg_renumber[src_regno]);
6319 			}
6320 		      add_next_usage_insn (src_regno, use_insn, reloads_num);
6321 		    }
6322 		}
6323 	  /* Process used call regs.  */
6324 	  if (curr_id->arg_hard_regs != NULL)
6325 	    for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6326 	      if (src_regno < FIRST_PSEUDO_REGISTER)
6327 		{
6328 	           SET_HARD_REG_BIT (live_hard_regs, src_regno);
6329 	           add_next_usage_insn (src_regno, curr_insn, reloads_num);
6330 		}
6331 	  for (i = 0; i < to_inherit_num; i++)
6332 	    {
6333 	      src_regno = to_inherit[i].regno;
6334 	      if (inherit_reload_reg (false, src_regno, ALL_REGS,
6335 				      curr_insn, to_inherit[i].insns))
6336 		change_p = true;
6337 	      else
6338 		setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6339 	    }
6340 	}
6341       if (update_reloads_num_p
6342 	  && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6343 	{
6344 	  int regno = -1;
6345 	  if ((REG_P (SET_DEST (curr_set))
6346 	       && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6347 	       && reg_renumber[regno] < 0
6348 	       && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6349 	      || (REG_P (SET_SRC (curr_set))
6350 	          && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6351 	          && reg_renumber[regno] < 0
6352 	          && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6353 	    {
6354 	      if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6355 		reloads_num++;
6356 	      if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6357 		IOR_HARD_REG_SET (potential_reload_hard_regs,
6358 	                          reg_class_contents[cl]);
6359 	    }
6360 	}
6361       if (NONDEBUG_INSN_P (curr_insn))
6362 	{
6363 	  int regno;
6364 
6365 	  /* Invalidate invariants with changed regs.  */
6366 	  curr_id = lra_get_insn_recog_data (curr_insn);
6367 	  for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6368 	    if (reg->type != OP_IN)
6369 	      {
6370 		bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6371 		bitmap_set_bit (&invalid_invariant_regs,
6372 				ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6373 	      }
6374 	  curr_static_id = curr_id->insn_static_data;
6375 	  for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6376 	    if (reg->type != OP_IN)
6377 	      bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6378 	  if (curr_id->arg_hard_regs != NULL)
6379 	    for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6380 	      if (regno >= FIRST_PSEUDO_REGISTER)
6381 		bitmap_set_bit (&invalid_invariant_regs,
6382 				regno - FIRST_PSEUDO_REGISTER);
6383 	}
6384       /* We reached the start of the current basic block.  */
6385       if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6386 	  || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6387 	{
6388 	  /* We reached the beginning of the current block -- do
6389 	     rest of spliting in the current BB.  */
6390 	  to_process = df_get_live_in (curr_bb);
6391 	  if (BLOCK_FOR_INSN (head) != curr_bb)
6392 	    {
6393 	      /* We are somewhere in the middle of EBB.	 */
6394 	      get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6395 				       curr_bb, &temp_bitmap);
6396 	      to_process = &temp_bitmap;
6397 	    }
6398 	  head_p = true;
6399 	  EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6400 	    {
6401 	      if ((int) j >= lra_constraint_new_regno_start)
6402 		break;
6403 	      if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6404 		  && usage_insns[j].check == curr_usage_insns_check
6405 		  && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6406 		{
6407 		  if (need_for_split_p (potential_reload_hard_regs, j))
6408 		    {
6409 		      if (lra_dump_file != NULL && head_p)
6410 			{
6411 			  fprintf (lra_dump_file,
6412 				   "  ----------------------------------\n");
6413 			  head_p = false;
6414 			}
6415 		      if (split_reg (false, j, bb_note (curr_bb),
6416 				     next_usage_insns))
6417 			change_p = true;
6418 		    }
6419 		  usage_insns[j].check = 0;
6420 		}
6421 	    }
6422 	}
6423     }
6424   return change_p;
6425 }
6426 
6427 /* This value affects EBB forming.  If probability of edge from EBB to
6428    a BB is not greater than the following value, we don't add the BB
6429    to EBB.  */
6430 #define EBB_PROBABILITY_CUTOFF \
6431   ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6432 
6433 /* Current number of inheritance/split iteration.  */
6434 int lra_inheritance_iter;
6435 
6436 /* Entry function for inheritance/split pass.  */
6437 void
6438 lra_inheritance (void)
6439 {
6440   int i;
6441   basic_block bb, start_bb;
6442   edge e;
6443 
6444   lra_inheritance_iter++;
6445   if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6446     return;
6447   timevar_push (TV_LRA_INHERITANCE);
6448   if (lra_dump_file != NULL)
6449     fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6450 	     lra_inheritance_iter);
6451   curr_usage_insns_check = 0;
6452   usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6453   for (i = 0; i < lra_constraint_new_regno_start; i++)
6454     usage_insns[i].check = 0;
6455   bitmap_initialize (&check_only_regs, &reg_obstack);
6456   bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6457   bitmap_initialize (&live_regs, &reg_obstack);
6458   bitmap_initialize (&temp_bitmap, &reg_obstack);
6459   bitmap_initialize (&ebb_global_regs, &reg_obstack);
6460   FOR_EACH_BB_FN (bb, cfun)
6461     {
6462       start_bb = bb;
6463       if (lra_dump_file != NULL)
6464 	fprintf (lra_dump_file, "EBB");
6465       /* Form a EBB starting with BB.  */
6466       bitmap_clear (&ebb_global_regs);
6467       bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6468       for (;;)
6469 	{
6470 	  if (lra_dump_file != NULL)
6471 	    fprintf (lra_dump_file, " %d", bb->index);
6472 	  if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6473 	      || LABEL_P (BB_HEAD (bb->next_bb)))
6474 	    break;
6475 	  e = find_fallthru_edge (bb->succs);
6476 	  if (! e)
6477 	    break;
6478 	  if (e->probability < EBB_PROBABILITY_CUTOFF)
6479 	    break;
6480 	  bb = bb->next_bb;
6481 	}
6482       bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6483       if (lra_dump_file != NULL)
6484 	fprintf (lra_dump_file, "\n");
6485       if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6486 	/* Remember that the EBB head and tail can change in
6487 	   inherit_in_ebb.  */
6488 	update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6489     }
6490   bitmap_clear (&ebb_global_regs);
6491   bitmap_clear (&temp_bitmap);
6492   bitmap_clear (&live_regs);
6493   bitmap_clear (&invalid_invariant_regs);
6494   bitmap_clear (&check_only_regs);
6495   free (usage_insns);
6496 
6497   timevar_pop (TV_LRA_INHERITANCE);
6498 }
6499 
6500 
6501 
6502 /* This page contains code to undo failed inheritance/split
6503    transformations.  */
6504 
6505 /* Current number of iteration undoing inheritance/split.  */
6506 int lra_undo_inheritance_iter;
6507 
6508 /* Fix BB live info LIVE after removing pseudos created on pass doing
6509    inheritance/split which are REMOVED_PSEUDOS.	 */
6510 static void
6511 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6512 {
6513   unsigned int regno;
6514   bitmap_iterator bi;
6515 
6516   EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6517     if (bitmap_clear_bit (live, regno)
6518 	&& REG_P (lra_reg_info[regno].restore_rtx))
6519       bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6520 }
6521 
6522 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6523    number.  */
6524 static int
6525 get_regno (rtx reg)
6526 {
6527   if (GET_CODE (reg) == SUBREG)
6528     reg = SUBREG_REG (reg);
6529   if (REG_P (reg))
6530     return REGNO (reg);
6531   return -1;
6532 }
6533 
6534 /* Delete a move INSN with destination reg DREGNO and a previous
6535    clobber insn with the same regno.  The inheritance/split code can
6536    generate moves with preceding clobber and when we delete such moves
6537    we should delete the clobber insn too to keep the correct life
6538    info.  */
6539 static void
6540 delete_move_and_clobber (rtx_insn *insn, int dregno)
6541 {
6542   rtx_insn *prev_insn = PREV_INSN (insn);
6543 
6544   lra_set_insn_deleted (insn);
6545   lra_assert (dregno >= 0);
6546   if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6547       && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6548       && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6549     lra_set_insn_deleted (prev_insn);
6550 }
6551 
6552 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6553    return true if we did any change.  The undo transformations for
6554    inheritance looks like
6555       i <- i2
6556       p <- i	  =>   p <- i2
6557    or removing
6558       p <- i, i <- p, and i <- i3
6559    where p is original pseudo from which inheritance pseudo i was
6560    created, i and i3 are removed inheritance pseudos, i2 is another
6561    not removed inheritance pseudo.  All split pseudos or other
6562    occurrences of removed inheritance pseudos are changed on the
6563    corresponding original pseudos.
6564 
6565    The function also schedules insns changed and created during
6566    inheritance/split pass for processing by the subsequent constraint
6567    pass.  */
6568 static bool
6569 remove_inheritance_pseudos (bitmap remove_pseudos)
6570 {
6571   basic_block bb;
6572   int regno, sregno, prev_sregno, dregno;
6573   rtx restore_rtx;
6574   rtx set, prev_set;
6575   rtx_insn *prev_insn;
6576   bool change_p, done_p;
6577 
6578   change_p = ! bitmap_empty_p (remove_pseudos);
6579   /* We can not finish the function right away if CHANGE_P is true
6580      because we need to marks insns affected by previous
6581      inheritance/split pass for processing by the subsequent
6582      constraint pass.  */
6583   FOR_EACH_BB_FN (bb, cfun)
6584     {
6585       fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6586       fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6587       FOR_BB_INSNS_REVERSE (bb, curr_insn)
6588 	{
6589 	  if (! INSN_P (curr_insn))
6590 	    continue;
6591 	  done_p = false;
6592 	  sregno = dregno = -1;
6593 	  if (change_p && NONDEBUG_INSN_P (curr_insn)
6594 	      && (set = single_set (curr_insn)) != NULL_RTX)
6595 	    {
6596 	      dregno = get_regno (SET_DEST (set));
6597 	      sregno = get_regno (SET_SRC (set));
6598 	    }
6599 
6600 	  if (sregno >= 0 && dregno >= 0)
6601 	    {
6602 	      if (bitmap_bit_p (remove_pseudos, dregno)
6603 		  && ! REG_P (lra_reg_info[dregno].restore_rtx))
6604 		{
6605 		  /* invariant inheritance pseudo <- original pseudo */
6606 		  if (lra_dump_file != NULL)
6607 		    {
6608 		      fprintf (lra_dump_file, "	   Removing invariant inheritance:\n");
6609 		      dump_insn_slim (lra_dump_file, curr_insn);
6610 		      fprintf (lra_dump_file, "\n");
6611 		    }
6612 		  delete_move_and_clobber (curr_insn, dregno);
6613 		  done_p = true;
6614 		}
6615 	      else if (bitmap_bit_p (remove_pseudos, sregno)
6616 		       && ! REG_P (lra_reg_info[sregno].restore_rtx))
6617 		{
6618 		  /* reload pseudo <- invariant inheritance pseudo */
6619 		  start_sequence ();
6620 		  /* We can not just change the source.  It might be
6621 		     an insn different from the move.  */
6622 		  emit_insn (lra_reg_info[sregno].restore_rtx);
6623 		  rtx_insn *new_insns = get_insns ();
6624 		  end_sequence ();
6625 		  lra_assert (single_set (new_insns) != NULL
6626 			      && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6627 		  lra_process_new_insns (curr_insn, NULL, new_insns,
6628 					 "Changing reload<-invariant inheritance");
6629 		  delete_move_and_clobber (curr_insn, dregno);
6630 		  done_p = true;
6631 		}
6632 	      else if ((bitmap_bit_p (remove_pseudos, sregno)
6633 			&& (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6634 			    || (bitmap_bit_p (remove_pseudos, dregno)
6635 				&& get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6636 				&& (get_regno (lra_reg_info[sregno].restore_rtx)
6637 				    == get_regno (lra_reg_info[dregno].restore_rtx)))))
6638 		       || (bitmap_bit_p (remove_pseudos, dregno)
6639 			   && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6640 		/* One of the following cases:
6641 		     original <- removed inheritance pseudo
6642 		     removed inherit pseudo <- another removed inherit pseudo
6643 		     removed inherit pseudo <- original pseudo
6644 		   Or
6645 		     removed_split_pseudo <- original_reg
6646 		     original_reg <- removed_split_pseudo */
6647 		{
6648 		  if (lra_dump_file != NULL)
6649 		    {
6650 		      fprintf (lra_dump_file, "	   Removing %s:\n",
6651 			       bitmap_bit_p (&lra_split_regs, sregno)
6652 			       || bitmap_bit_p (&lra_split_regs, dregno)
6653 			       ? "split" : "inheritance");
6654 		      dump_insn_slim (lra_dump_file, curr_insn);
6655 		    }
6656 		  delete_move_and_clobber (curr_insn, dregno);
6657 		  done_p = true;
6658 		}
6659 	      else if (bitmap_bit_p (remove_pseudos, sregno)
6660 		       && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6661 		{
6662 		  /* Search the following pattern:
6663 		       inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6664 		       original_pseudo <- inherit_or_split_pseudo1
6665 		    where the 2nd insn is the current insn and
6666 		    inherit_or_split_pseudo2 is not removed.  If it is found,
6667 		    change the current insn onto:
6668 		       original_pseudo <- inherit_or_split_pseudo2.  */
6669 		  for (prev_insn = PREV_INSN (curr_insn);
6670 		       prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6671 		       prev_insn = PREV_INSN (prev_insn))
6672 		    ;
6673 		  if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6674 		      && (prev_set = single_set (prev_insn)) != NULL_RTX
6675 		      /* There should be no subregs in insn we are
6676 			 searching because only the original reg might
6677 			 be in subreg when we changed the mode of
6678 			 load/store for splitting.  */
6679 		      && REG_P (SET_DEST (prev_set))
6680 		      && REG_P (SET_SRC (prev_set))
6681 		      && (int) REGNO (SET_DEST (prev_set)) == sregno
6682 		      && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6683 			  >= FIRST_PSEUDO_REGISTER)
6684 		      && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6685 			  ||
6686 			  /* As we consider chain of inheritance or
6687 			     splitting described in above comment we should
6688 			     check that sregno and prev_sregno were
6689 			     inheritance/split pseudos created from the
6690 			     same original regno.  */
6691 			  (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6692 			   && (get_regno (lra_reg_info[sregno].restore_rtx)
6693 			       == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6694 		      && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6695 		    {
6696 		      lra_assert (GET_MODE (SET_SRC (prev_set))
6697 				  == GET_MODE (regno_reg_rtx[sregno]));
6698 		      if (GET_CODE (SET_SRC (set)) == SUBREG)
6699 			SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
6700 		      else
6701 			SET_SRC (set) = SET_SRC (prev_set);
6702 		      /* As we are finishing with processing the insn
6703 			 here, check the destination too as it might
6704 			 inheritance pseudo for another pseudo.  */
6705 		      if (bitmap_bit_p (remove_pseudos, dregno)
6706 			  && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6707 			  && (restore_rtx
6708 			      = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6709 			{
6710 			  if (GET_CODE (SET_DEST (set)) == SUBREG)
6711 			    SUBREG_REG (SET_DEST (set)) = restore_rtx;
6712 			  else
6713 			    SET_DEST (set) = restore_rtx;
6714 			}
6715 		      lra_push_insn_and_update_insn_regno_info (curr_insn);
6716 		      lra_set_used_insn_alternative_by_uid
6717 			(INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6718 		      done_p = true;
6719 		      if (lra_dump_file != NULL)
6720 			{
6721 			  fprintf (lra_dump_file, "    Change reload insn:\n");
6722 			  dump_insn_slim (lra_dump_file, curr_insn);
6723 			}
6724 		    }
6725 		}
6726 	    }
6727 	  if (! done_p)
6728 	    {
6729 	      struct lra_insn_reg *reg;
6730 	      bool restored_regs_p = false;
6731 	      bool kept_regs_p = false;
6732 
6733 	      curr_id = lra_get_insn_recog_data (curr_insn);
6734 	      for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6735 		{
6736 		  regno = reg->regno;
6737 		  restore_rtx = lra_reg_info[regno].restore_rtx;
6738 		  if (restore_rtx != NULL_RTX)
6739 		    {
6740 		      if (change_p && bitmap_bit_p (remove_pseudos, regno))
6741 			{
6742 			  lra_substitute_pseudo_within_insn
6743 			    (curr_insn, regno, restore_rtx, false);
6744 			  restored_regs_p = true;
6745 			}
6746 		      else
6747 			kept_regs_p = true;
6748 		    }
6749 		}
6750 	      if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6751 		{
6752 		  /* The instruction has changed since the previous
6753 		     constraints pass.  */
6754 		  lra_push_insn_and_update_insn_regno_info (curr_insn);
6755 		  lra_set_used_insn_alternative_by_uid
6756 		    (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6757 		}
6758 	      else if (restored_regs_p)
6759 		/* The instruction has been restored to the form that
6760 		   it had during the previous constraints pass.  */
6761 		lra_update_insn_regno_info (curr_insn);
6762 	      if (restored_regs_p && lra_dump_file != NULL)
6763 		{
6764 		  fprintf (lra_dump_file, "   Insn after restoring regs:\n");
6765 		  dump_insn_slim (lra_dump_file, curr_insn);
6766 		}
6767 	    }
6768 	}
6769     }
6770   return change_p;
6771 }
6772 
6773 /* If optional reload pseudos failed to get a hard register or was not
6774    inherited, it is better to remove optional reloads.  We do this
6775    transformation after undoing inheritance to figure out necessity to
6776    remove optional reloads easier.  Return true if we do any
6777    change.  */
6778 static bool
6779 undo_optional_reloads (void)
6780 {
6781   bool change_p, keep_p;
6782   unsigned int regno, uid;
6783   bitmap_iterator bi, bi2;
6784   rtx_insn *insn;
6785   rtx set, src, dest;
6786   bitmap_head removed_optional_reload_pseudos, insn_bitmap;
6787 
6788   bitmap_initialize (&removed_optional_reload_pseudos, &reg_obstack);
6789   bitmap_copy (&removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
6790   EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6791     {
6792       keep_p = false;
6793       /* Keep optional reloads from previous subpasses.  */
6794       if (lra_reg_info[regno].restore_rtx == NULL_RTX
6795 	  /* If the original pseudo changed its allocation, just
6796 	     removing the optional pseudo is dangerous as the original
6797 	     pseudo will have longer live range.  */
6798 	  || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
6799 	keep_p = true;
6800       else if (reg_renumber[regno] >= 0)
6801 	EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
6802 	  {
6803 	    insn = lra_insn_recog_data[uid]->insn;
6804 	    if ((set = single_set (insn)) == NULL_RTX)
6805 	      continue;
6806 	    src = SET_SRC (set);
6807 	    dest = SET_DEST (set);
6808 	    if (! REG_P (src) || ! REG_P (dest))
6809 	      continue;
6810 	    if (REGNO (dest) == regno
6811 		/* Ignore insn for optional reloads itself.  */
6812 		&& REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
6813 		/* Check only inheritance on last inheritance pass.  */
6814 		&& (int) REGNO (src) >= new_regno_start
6815 		/* Check that the optional reload was inherited.  */
6816 		&& bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
6817 	      {
6818 		keep_p = true;
6819 		break;
6820 	      }
6821 	  }
6822       if (keep_p)
6823 	{
6824 	  bitmap_clear_bit (&removed_optional_reload_pseudos, regno);
6825 	  if (lra_dump_file != NULL)
6826 	    fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
6827 	}
6828     }
6829   change_p = ! bitmap_empty_p (&removed_optional_reload_pseudos);
6830   bitmap_initialize (&insn_bitmap, &reg_obstack);
6831   EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos, 0, regno, bi)
6832     {
6833       if (lra_dump_file != NULL)
6834 	fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
6835       bitmap_copy (&insn_bitmap, &lra_reg_info[regno].insn_bitmap);
6836       EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap, 0, uid, bi2)
6837 	{
6838 	  insn = lra_insn_recog_data[uid]->insn;
6839 	  if ((set = single_set (insn)) != NULL_RTX)
6840 	    {
6841 	      src = SET_SRC (set);
6842 	      dest = SET_DEST (set);
6843 	      if (REG_P (src) && REG_P (dest)
6844 		  && ((REGNO (src) == regno
6845 		       && (REGNO (lra_reg_info[regno].restore_rtx)
6846 			   == REGNO (dest)))
6847 		      || (REGNO (dest) == regno
6848 			  && (REGNO (lra_reg_info[regno].restore_rtx)
6849 			      == REGNO (src)))))
6850 		{
6851 		  if (lra_dump_file != NULL)
6852 		    {
6853 		      fprintf (lra_dump_file, "  Deleting move %u\n",
6854 			       INSN_UID (insn));
6855 		      dump_insn_slim (lra_dump_file, insn);
6856 		    }
6857 		  delete_move_and_clobber (insn, REGNO (dest));
6858 		  continue;
6859 		}
6860 	      /* We should not worry about generation memory-memory
6861 		 moves here as if the corresponding inheritance did
6862 		 not work (inheritance pseudo did not get a hard reg),
6863 		 we remove the inheritance pseudo and the optional
6864 		 reload.  */
6865 	    }
6866 	  lra_substitute_pseudo_within_insn
6867 	    (insn, regno, lra_reg_info[regno].restore_rtx, false);
6868 	  lra_update_insn_regno_info (insn);
6869 	  if (lra_dump_file != NULL)
6870 	    {
6871 	      fprintf (lra_dump_file,
6872 		       "  Restoring original insn:\n");
6873 	      dump_insn_slim (lra_dump_file, insn);
6874 	    }
6875 	}
6876     }
6877   /* Clear restore_regnos.  */
6878   EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
6879     lra_reg_info[regno].restore_rtx = NULL_RTX;
6880   bitmap_clear (&insn_bitmap);
6881   bitmap_clear (&removed_optional_reload_pseudos);
6882   return change_p;
6883 }
6884 
6885 /* Entry function for undoing inheritance/split transformation.	 Return true
6886    if we did any RTL change in this pass.  */
6887 bool
6888 lra_undo_inheritance (void)
6889 {
6890   unsigned int regno;
6891   int hard_regno;
6892   int n_all_inherit, n_inherit, n_all_split, n_split;
6893   rtx restore_rtx;
6894   bitmap_head remove_pseudos;
6895   bitmap_iterator bi;
6896   bool change_p;
6897 
6898   lra_undo_inheritance_iter++;
6899   if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6900     return false;
6901   if (lra_dump_file != NULL)
6902     fprintf (lra_dump_file,
6903 	     "\n********** Undoing inheritance #%d: **********\n\n",
6904 	     lra_undo_inheritance_iter);
6905   bitmap_initialize (&remove_pseudos, &reg_obstack);
6906   n_inherit = n_all_inherit = 0;
6907   EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6908     if (lra_reg_info[regno].restore_rtx != NULL_RTX)
6909       {
6910 	n_all_inherit++;
6911 	if (reg_renumber[regno] < 0
6912 	    /* If the original pseudo changed its allocation, just
6913 	       removing inheritance is dangerous as for changing
6914 	       allocation we used shorter live-ranges.  */
6915 	    && (! REG_P (lra_reg_info[regno].restore_rtx)
6916 		|| reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
6917 	  bitmap_set_bit (&remove_pseudos, regno);
6918 	else
6919 	  n_inherit++;
6920       }
6921   if (lra_dump_file != NULL && n_all_inherit != 0)
6922     fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
6923 	     n_inherit, n_all_inherit,
6924 	     (double) n_inherit / n_all_inherit * 100);
6925   n_split = n_all_split = 0;
6926   EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6927     if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
6928       {
6929 	int restore_regno = REGNO (restore_rtx);
6930 
6931 	n_all_split++;
6932 	hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
6933 		      ? reg_renumber[restore_regno] : restore_regno);
6934 	if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
6935 	  bitmap_set_bit (&remove_pseudos, regno);
6936 	else
6937 	  {
6938 	    n_split++;
6939 	    if (lra_dump_file != NULL)
6940 	      fprintf (lra_dump_file, "	     Keep split r%d (orig=r%d)\n",
6941 		       regno, restore_regno);
6942 	  }
6943       }
6944   if (lra_dump_file != NULL && n_all_split != 0)
6945     fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
6946 	     n_split, n_all_split,
6947 	     (double) n_split / n_all_split * 100);
6948   change_p = remove_inheritance_pseudos (&remove_pseudos);
6949   bitmap_clear (&remove_pseudos);
6950   /* Clear restore_regnos.  */
6951   EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6952     lra_reg_info[regno].restore_rtx = NULL_RTX;
6953   EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6954     lra_reg_info[regno].restore_rtx = NULL_RTX;
6955   change_p = undo_optional_reloads () || change_p;
6956   return change_p;
6957 }
6958