xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/lra-constraints.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Code for RTL transformations to satisfy insn constraints.
2    Copyright (C) 2010-2019 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it under
8    the terms of the GNU General Public License as published by the Free
9    Software Foundation; either version 3, or (at your option) any later
10    version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13    WARRANTY; without even the implied warranty of MERCHANTABILITY or
14    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15    for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 
22 /* This file contains code for 3 passes: constraint pass,
23    inheritance/split pass, and pass for undoing failed inheritance and
24    split.
25 
26    The major goal of constraint pass is to transform RTL to satisfy
27    insn and address constraints by:
28      o choosing insn alternatives;
29      o generating *reload insns* (or reloads in brief) and *reload
30        pseudos* which will get necessary hard registers later;
31      o substituting pseudos with equivalent values and removing the
32        instructions that initialized those pseudos.
33 
34    The constraint pass has biggest and most complicated code in LRA.
35    There are a lot of important details like:
36      o reuse of input reload pseudos to simplify reload pseudo
37        allocations;
38      o some heuristics to choose insn alternative to improve the
39        inheritance;
40      o early clobbers etc.
41 
42    The pass is mimicking former reload pass in alternative choosing
43    because the reload pass is oriented to current machine description
44    model.  It might be changed if the machine description model is
45    changed.
46 
47    There is special code for preventing all LRA and this pass cycling
48    in case of bugs.
49 
50    On the first iteration of the pass we process every instruction and
51    choose an alternative for each one.  On subsequent iterations we try
52    to avoid reprocessing instructions if we can be sure that the old
53    choice is still valid.
54 
55    The inheritance/spilt pass is to transform code to achieve
56    ineheritance and live range splitting.  It is done on backward
57    traversal of EBBs.
58 
59    The inheritance optimization goal is to reuse values in hard
60    registers. There is analogous optimization in old reload pass.  The
61    inheritance is achieved by following transformation:
62 
63        reload_p1 <- p	     reload_p1 <- p
64        ...		     new_p <- reload_p1
65        ...		=>   ...
66        reload_p2 <- p	     reload_p2 <- new_p
67 
68    where p is spilled and not changed between the insns.  Reload_p1 is
69    also called *original pseudo* and new_p is called *inheritance
70    pseudo*.
71 
72    The subsequent assignment pass will try to assign the same (or
73    another if it is not possible) hard register to new_p as to
74    reload_p1 or reload_p2.
75 
76    If the assignment pass fails to assign a hard register to new_p,
77    this file will undo the inheritance and restore the original code.
78    This is because implementing the above sequence with a spilled
79    new_p would make the code much worse.  The inheritance is done in
80    EBB scope.  The above is just a simplified example to get an idea
81    of the inheritance as the inheritance is also done for non-reload
82    insns.
83 
84    Splitting (transformation) is also done in EBB scope on the same
85    pass as the inheritance:
86 
87        r <- ... or ... <- r		 r <- ... or ... <- r
88        ...				 s <- r (new insn -- save)
89        ...			  =>
90        ...				 r <- s (new insn -- restore)
91        ... <- r				 ... <- r
92 
93     The *split pseudo* s is assigned to the hard register of the
94     original pseudo or hard register r.
95 
96     Splitting is done:
97       o In EBBs with high register pressure for global pseudos (living
98 	in at least 2 BBs) and assigned to hard registers when there
99 	are more one reloads needing the hard registers;
100       o for pseudos needing save/restore code around calls.
101 
102     If the split pseudo still has the same hard register as the
103     original pseudo after the subsequent assignment pass or the
104     original pseudo was split, the opposite transformation is done on
105     the same pass for undoing inheritance.  */
106 
107 #undef REG_OK_STRICT
108 
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
134 
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136    insn.  Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137    reload insns.  */
138 static int bb_reload_num;
139 
140 /* The current insn being processed and corresponding its single set
141    (NULL otherwise), its data (basic block, the insn data, the insn
142    static data, and the mode of each operand).  */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150    (e.g. constant) and whose subreg is given operand of the current
151    insn.  VOIDmode in all other cases.  */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
153 
154 
155 
156 /* Start numbers for new registers and insns at the current constraints
157    pass start.	*/
158 static int new_regno_start;
159 static int new_insn_uid_start;
160 
161 /* If LOC is nonnull, strip any outer subreg from it.  */
162 static inline rtx *
163 strip_subreg (rtx *loc)
164 {
165   return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
166 }
167 
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169    register, use a hard register from its allocno class.  */
170 static int
171 get_try_hard_regno (int regno)
172 {
173   int hard_regno;
174   enum reg_class rclass;
175 
176   if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177     hard_regno = lra_get_regno_hard_regno (regno);
178   if (hard_regno >= 0)
179     return hard_regno;
180   rclass = lra_get_allocno_class (regno);
181   if (rclass == NO_REGS)
182     return -1;
183   return ira_class_hard_regs[rclass][0];
184 }
185 
186 /* Return the hard regno of X after removing its subreg.  If X is not
187    a register or a subreg of a register, return -1.  If X is a pseudo,
188    use its assignment.  If FINAL_P return the final hard regno which will
189    be after elimination.  */
190 static int
191 get_hard_regno (rtx x, bool final_p)
192 {
193   rtx reg;
194   int hard_regno;
195 
196   reg = x;
197   if (SUBREG_P (x))
198     reg = SUBREG_REG (x);
199   if (! REG_P (reg))
200     return -1;
201   if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202     hard_regno = lra_get_regno_hard_regno (hard_regno);
203   if (hard_regno < 0)
204     return -1;
205   if (final_p)
206     hard_regno = lra_get_elimination_hard_regno (hard_regno);
207   if (SUBREG_P (x))
208     hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 				       SUBREG_BYTE (x),  GET_MODE (x));
210   return hard_regno;
211 }
212 
213 /* If REGNO is a hard register or has been allocated a hard register,
214    return the class of that register.  If REGNO is a reload pseudo
215    created by the current constraints pass, return its allocno class.
216    Return NO_REGS otherwise.  */
217 static enum reg_class
218 get_reg_class (int regno)
219 {
220   int hard_regno;
221 
222   if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223     hard_regno = lra_get_regno_hard_regno (regno);
224   if (hard_regno >= 0)
225     {
226       hard_regno = lra_get_elimination_hard_regno (hard_regno);
227       return REGNO_REG_CLASS (hard_regno);
228     }
229   if (regno >= new_regno_start)
230     return lra_get_allocno_class (regno);
231   return NO_REGS;
232 }
233 
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235    CL.  Use elimination first if REG is a hard register.  If REG is a
236    reload pseudo created by this constraints pass, assume that it will
237    be allocated a hard register from its allocno class, but allow that
238    class to be narrowed to CL if it is currently a superset of CL.
239 
240    If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241    REGNO (reg), or NO_REGS if no change in its class was needed.  */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
244 {
245   enum reg_class rclass, common_class;
246   machine_mode reg_mode;
247   int class_size, hard_regno, nregs, i, j;
248   int regno = REGNO (reg);
249 
250   if (new_class != NULL)
251     *new_class = NO_REGS;
252   if (regno < FIRST_PSEUDO_REGISTER)
253     {
254       rtx final_reg = reg;
255       rtx *final_loc = &final_reg;
256 
257       lra_eliminate_reg_if_possible (final_loc);
258       return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
259     }
260   reg_mode = GET_MODE (reg);
261   rclass = get_reg_class (regno);
262   if (regno < new_regno_start
263       /* Do not allow the constraints for reload instructions to
264 	 influence the classes of new pseudos.  These reloads are
265 	 typically moves that have many alternatives, and restricting
266 	 reload pseudos for one alternative may lead to situations
267 	 where other reload pseudos are no longer allocatable.  */
268       || (INSN_UID (curr_insn) >= new_insn_uid_start
269 	  && curr_insn_set != NULL
270 	  && ((OBJECT_P (SET_SRC (curr_insn_set))
271 	       && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 	      || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 		  && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 		  && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275     /* When we don't know what class will be used finally for reload
276        pseudos, we use ALL_REGS.  */
277     return ((regno >= new_regno_start && rclass == ALL_REGS)
278 	    || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 		&& ! hard_reg_set_subset_p (reg_class_contents[cl],
280 					    lra_no_alloc_regs)));
281   else
282     {
283       common_class = ira_reg_class_subset[rclass][cl];
284       if (new_class != NULL)
285 	*new_class = common_class;
286       if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 				 lra_no_alloc_regs))
288 	return false;
289       /* Check that there are enough allocatable regs.  */
290       class_size = ira_class_hard_regs_num[common_class];
291       for (i = 0; i < class_size; i++)
292 	{
293 	  hard_regno = ira_class_hard_regs[common_class][i];
294 	  nregs = hard_regno_nregs (hard_regno, reg_mode);
295 	  if (nregs == 1)
296 	    return true;
297 	  for (j = 0; j < nregs; j++)
298 	    if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 		|| ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 					hard_regno + j))
301 	      break;
302 	  if (j >= nregs)
303 	    return true;
304 	}
305       return false;
306     }
307 }
308 
309 /* Return true if REGNO satisfies a memory constraint.	*/
310 static bool
311 in_mem_p (int regno)
312 {
313   return get_reg_class (regno) == NO_REGS;
314 }
315 
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317    space AS, and check that each pseudo has the proper kind of hard
318    reg.	 */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 		 rtx addr, addr_space_t as)
322 {
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324   lra_assert (ADDR_SPACE_GENERIC_P (as));
325   GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326   return 0;
327 
328  win:
329   return 1;
330 #else
331   return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
333 }
334 
335 namespace {
336   /* Temporarily eliminates registers in an address (for the lifetime of
337      the object).  */
338   class address_eliminator {
339   public:
340     address_eliminator (struct address_info *ad);
341     ~address_eliminator ();
342 
343   private:
344     struct address_info *m_ad;
345     rtx *m_base_loc;
346     rtx m_base_reg;
347     rtx *m_index_loc;
348     rtx m_index_reg;
349   };
350 }
351 
352 address_eliminator::address_eliminator (struct address_info *ad)
353   : m_ad (ad),
354     m_base_loc (strip_subreg (ad->base_term)),
355     m_base_reg (NULL_RTX),
356     m_index_loc (strip_subreg (ad->index_term)),
357     m_index_reg (NULL_RTX)
358 {
359   if (m_base_loc != NULL)
360     {
361       m_base_reg = *m_base_loc;
362       /* If we have non-legitimate address which is decomposed not in
363 	 the way we expected, don't do elimination here.  In such case
364 	 the address will be reloaded and elimination will be done in
365 	 reload insn finally.  */
366       if (REG_P (m_base_reg))
367 	lra_eliminate_reg_if_possible (m_base_loc);
368       if (m_ad->base_term2 != NULL)
369 	*m_ad->base_term2 = *m_ad->base_term;
370     }
371   if (m_index_loc != NULL)
372     {
373       m_index_reg = *m_index_loc;
374       if (REG_P (m_index_reg))
375 	lra_eliminate_reg_if_possible (m_index_loc);
376     }
377 }
378 
379 address_eliminator::~address_eliminator ()
380 {
381   if (m_base_loc && *m_base_loc != m_base_reg)
382     {
383       *m_base_loc = m_base_reg;
384       if (m_ad->base_term2 != NULL)
385 	*m_ad->base_term2 = *m_ad->base_term;
386     }
387   if (m_index_loc && *m_index_loc != m_index_reg)
388     *m_index_loc = m_index_reg;
389 }
390 
391 /* Return true if the eliminated form of AD is a legitimate target address.  */
392 static bool
393 valid_address_p (struct address_info *ad)
394 {
395   address_eliminator eliminator (ad);
396   return valid_address_p (ad->mode, *ad->outer, ad->as);
397 }
398 
399 /* Return true if the eliminated form of memory reference OP satisfies
400    extra (special) memory constraint CONSTRAINT.  */
401 static bool
402 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
403 {
404   struct address_info ad;
405 
406   decompose_mem_address (&ad, op);
407   address_eliminator eliminator (&ad);
408   return constraint_satisfied_p (op, constraint);
409 }
410 
411 /* Return true if the eliminated form of address AD satisfies extra
412    address constraint CONSTRAINT.  */
413 static bool
414 satisfies_address_constraint_p (struct address_info *ad,
415 				enum constraint_num constraint)
416 {
417   address_eliminator eliminator (ad);
418   return constraint_satisfied_p (*ad->outer, constraint);
419 }
420 
421 /* Return true if the eliminated form of address OP satisfies extra
422    address constraint CONSTRAINT.  */
423 static bool
424 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
425 {
426   struct address_info ad;
427 
428   decompose_lea_address (&ad, &op);
429   return satisfies_address_constraint_p (&ad, constraint);
430 }
431 
432 /* Initiate equivalences for LRA.  As we keep original equivalences
433    before any elimination, we need to make copies otherwise any change
434    in insns might change the equivalences.  */
435 void
436 lra_init_equiv (void)
437 {
438   ira_expand_reg_equiv ();
439   for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
440     {
441       rtx res;
442 
443       if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
444 	ira_reg_equiv[i].memory = copy_rtx (res);
445       if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
446 	ira_reg_equiv[i].invariant = copy_rtx (res);
447     }
448 }
449 
450 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
451 
452 /* Update equivalence for REGNO.  We need to this as the equivalence
453    might contain other pseudos which are changed by their
454    equivalences.  */
455 static void
456 update_equiv (int regno)
457 {
458   rtx x;
459 
460   if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
461     ira_reg_equiv[regno].memory
462       = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
463 				 NULL_RTX);
464   if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
465     ira_reg_equiv[regno].invariant
466       = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
467 				 NULL_RTX);
468 }
469 
470 /* If we have decided to substitute X with another value, return that
471    value, otherwise return X.  */
472 static rtx
473 get_equiv (rtx x)
474 {
475   int regno;
476   rtx res;
477 
478   if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
479       || ! ira_reg_equiv[regno].defined_p
480       || ! ira_reg_equiv[regno].profitable_p
481       || lra_get_regno_hard_regno (regno) >= 0)
482     return x;
483   if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
484     {
485       if (targetm.cannot_substitute_mem_equiv_p (res))
486 	return x;
487       return res;
488     }
489   if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
490     return res;
491   if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
492     return res;
493   gcc_unreachable ();
494 }
495 
496 /* If we have decided to substitute X with the equivalent value,
497    return that value after elimination for INSN, otherwise return
498    X.  */
499 static rtx
500 get_equiv_with_elimination (rtx x, rtx_insn *insn)
501 {
502   rtx res = get_equiv (x);
503 
504   if (x == res || CONSTANT_P (res))
505     return res;
506   return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
507 			       false, false, 0, true);
508 }
509 
510 /* Set up curr_operand_mode.  */
511 static void
512 init_curr_operand_mode (void)
513 {
514   int nop = curr_static_id->n_operands;
515   for (int i = 0; i < nop; i++)
516     {
517       machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
518       if (mode == VOIDmode)
519 	{
520 	  /* The .md mode for address operands is the mode of the
521 	     addressed value rather than the mode of the address itself.  */
522 	  if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
523 	    mode = Pmode;
524 	  else
525 	    mode = curr_static_id->operand[i].mode;
526 	}
527       curr_operand_mode[i] = mode;
528     }
529 }
530 
531 
532 
533 /* The page contains code to reuse input reloads.  */
534 
535 /* Structure describes input reload of the current insns.  */
536 struct input_reload
537 {
538   /* True for input reload of matched operands.  */
539   bool match_p;
540   /* Reloaded value.  */
541   rtx input;
542   /* Reload pseudo used.  */
543   rtx reg;
544 };
545 
546 /* The number of elements in the following array.  */
547 static int curr_insn_input_reloads_num;
548 /* Array containing info about input reloads.  It is used to find the
549    same input reload and reuse the reload pseudo in this case.	*/
550 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
551 
552 /* Initiate data concerning reuse of input reloads for the current
553    insn.  */
554 static void
555 init_curr_insn_input_reloads (void)
556 {
557   curr_insn_input_reloads_num = 0;
558 }
559 
560 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
561    created input reload pseudo (only if TYPE is not OP_OUT).  Don't
562    reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
563    wrapped up in SUBREG.  The result pseudo is returned through
564    RESULT_REG.  Return TRUE if we created a new pseudo, FALSE if we
565    reused the already created input reload pseudo.  Use TITLE to
566    describe new registers for debug purposes.  */
567 static bool
568 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
569 		enum reg_class rclass, bool in_subreg_p,
570 		const char *title, rtx *result_reg)
571 {
572   int i, regno;
573   enum reg_class new_class;
574   bool unique_p = false;
575 
576   if (type == OP_OUT)
577     {
578       *result_reg
579 	= lra_create_new_reg_with_unique_value (mode, original, rclass, title);
580       return true;
581     }
582   /* Prevent reuse value of expression with side effects,
583      e.g. volatile memory.  */
584   if (! side_effects_p (original))
585     for (i = 0; i < curr_insn_input_reloads_num; i++)
586       {
587 	if (! curr_insn_input_reloads[i].match_p
588 	    && rtx_equal_p (curr_insn_input_reloads[i].input, original)
589 	    && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
590 	  {
591 	    rtx reg = curr_insn_input_reloads[i].reg;
592 	    regno = REGNO (reg);
593 	    /* If input is equal to original and both are VOIDmode,
594 	       GET_MODE (reg) might be still different from mode.
595 	       Ensure we don't return *result_reg with wrong mode.  */
596 	    if (GET_MODE (reg) != mode)
597 	      {
598 		if (in_subreg_p)
599 		  continue;
600 		if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
601 			      GET_MODE_SIZE (mode)))
602 		  continue;
603 		reg = lowpart_subreg (mode, reg, GET_MODE (reg));
604 		if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
605 		  continue;
606 	      }
607 	    *result_reg = reg;
608 	    if (lra_dump_file != NULL)
609 	      {
610 		fprintf (lra_dump_file, "	 Reuse r%d for reload ", regno);
611 		dump_value_slim (lra_dump_file, original, 1);
612 	      }
613 	    if (new_class != lra_get_allocno_class (regno))
614 	      lra_change_class (regno, new_class, ", change to", false);
615 	    if (lra_dump_file != NULL)
616 	      fprintf (lra_dump_file, "\n");
617 	    return false;
618 	  }
619 	/* If we have an input reload with a different mode, make sure it
620 	   will get a different hard reg.  */
621 	else if (REG_P (original)
622 		 && REG_P (curr_insn_input_reloads[i].input)
623 		 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
624 		 && (GET_MODE (original)
625 		     != GET_MODE (curr_insn_input_reloads[i].input)))
626 	  unique_p = true;
627       }
628   *result_reg = (unique_p
629 		 ? lra_create_new_reg_with_unique_value
630 		 : lra_create_new_reg) (mode, original, rclass, title);
631   lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
632   curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
633   curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
634   curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
635   return true;
636 }
637 
638 
639 /* The page contains major code to choose the current insn alternative
640    and generate reloads for it.	 */
641 
642 /* Return the offset from REGNO of the least significant register
643    in (reg:MODE REGNO).
644 
645    This function is used to tell whether two registers satisfy
646    a matching constraint.  (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
647 
648          REGNO1 + lra_constraint_offset (REGNO1, MODE1)
649 	 == REGNO2 + lra_constraint_offset (REGNO2, MODE2)  */
650 int
651 lra_constraint_offset (int regno, machine_mode mode)
652 {
653   lra_assert (regno < FIRST_PSEUDO_REGISTER);
654 
655   scalar_int_mode int_mode;
656   if (WORDS_BIG_ENDIAN
657       && is_a <scalar_int_mode> (mode, &int_mode)
658       && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
659     return hard_regno_nregs (regno, mode) - 1;
660   return 0;
661 }
662 
663 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
664    if they are the same hard reg, and has special hacks for
665    auto-increment and auto-decrement.  This is specifically intended for
666    process_alt_operands to use in determining whether two operands
667    match.  X is the operand whose number is the lower of the two.
668 
669    It is supposed that X is the output operand and Y is the input
670    operand.  Y_HARD_REGNO is the final hard regno of register Y or
671    register in subreg Y as we know it now.  Otherwise, it is a
672    negative value.  */
673 static bool
674 operands_match_p (rtx x, rtx y, int y_hard_regno)
675 {
676   int i;
677   RTX_CODE code = GET_CODE (x);
678   const char *fmt;
679 
680   if (x == y)
681     return true;
682   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
683       && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
684     {
685       int j;
686 
687       i = get_hard_regno (x, false);
688       if (i < 0)
689 	goto slow;
690 
691       if ((j = y_hard_regno) < 0)
692 	goto slow;
693 
694       i += lra_constraint_offset (i, GET_MODE (x));
695       j += lra_constraint_offset (j, GET_MODE (y));
696 
697       return i == j;
698     }
699 
700   /* If two operands must match, because they are really a single
701      operand of an assembler insn, then two post-increments are invalid
702      because the assembler insn would increment only once.  On the
703      other hand, a post-increment matches ordinary indexing if the
704      post-increment is the output operand.  */
705   if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
706     return operands_match_p (XEXP (x, 0), y, y_hard_regno);
707 
708   /* Two pre-increments are invalid because the assembler insn would
709      increment only once.  On the other hand, a pre-increment matches
710      ordinary indexing if the pre-increment is the input operand.  */
711   if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
712       || GET_CODE (y) == PRE_MODIFY)
713     return operands_match_p (x, XEXP (y, 0), -1);
714 
715  slow:
716 
717   if (code == REG && REG_P (y))
718     return REGNO (x) == REGNO (y);
719 
720   if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
721       && x == SUBREG_REG (y))
722     return true;
723   if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
724       && SUBREG_REG (x) == y)
725     return true;
726 
727   /* Now we have disposed of all the cases in which different rtx
728      codes can match.  */
729   if (code != GET_CODE (y))
730     return false;
731 
732   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
733   if (GET_MODE (x) != GET_MODE (y))
734     return false;
735 
736   switch (code)
737     {
738     CASE_CONST_UNIQUE:
739       return false;
740 
741     case LABEL_REF:
742       return label_ref_label (x) == label_ref_label (y);
743     case SYMBOL_REF:
744       return XSTR (x, 0) == XSTR (y, 0);
745 
746     default:
747       break;
748     }
749 
750   /* Compare the elements.  If any pair of corresponding elements fail
751      to match, return false for the whole things.  */
752 
753   fmt = GET_RTX_FORMAT (code);
754   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
755     {
756       int val, j;
757       switch (fmt[i])
758 	{
759 	case 'w':
760 	  if (XWINT (x, i) != XWINT (y, i))
761 	    return false;
762 	  break;
763 
764 	case 'i':
765 	  if (XINT (x, i) != XINT (y, i))
766 	    return false;
767 	  break;
768 
769 	case 'p':
770 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
771 	    return false;
772 	  break;
773 
774 	case 'e':
775 	  val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
776 	  if (val == 0)
777 	    return false;
778 	  break;
779 
780 	case '0':
781 	  break;
782 
783 	case 'E':
784 	  if (XVECLEN (x, i) != XVECLEN (y, i))
785 	    return false;
786 	  for (j = XVECLEN (x, i) - 1; j >= 0; --j)
787 	    {
788 	      val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
789 	      if (val == 0)
790 		return false;
791 	    }
792 	  break;
793 
794 	  /* It is believed that rtx's at this level will never
795 	     contain anything but integers and other rtx's, except for
796 	     within LABEL_REFs and SYMBOL_REFs.	 */
797 	default:
798 	  gcc_unreachable ();
799 	}
800     }
801   return true;
802 }
803 
804 /* True if X is a constant that can be forced into the constant pool.
805    MODE is the mode of the operand, or VOIDmode if not known.  */
806 #define CONST_POOL_OK_P(MODE, X)		\
807   ((MODE) != VOIDmode				\
808    && CONSTANT_P (X)				\
809    && GET_CODE (X) != HIGH			\
810    && GET_MODE_SIZE (MODE).is_constant ()	\
811    && !targetm.cannot_force_const_mem (MODE, X))
812 
813 /* True if C is a non-empty register class that has too few registers
814    to be safely used as a reload target class.	*/
815 #define SMALL_REGISTER_CLASS_P(C)		\
816   (ira_class_hard_regs_num [(C)] == 1		\
817    || (ira_class_hard_regs_num [(C)] >= 1	\
818        && targetm.class_likely_spilled_p (C)))
819 
820 /* If REG is a reload pseudo, try to make its class satisfying CL.  */
821 static void
822 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
823 {
824   enum reg_class rclass;
825 
826   /* Do not make more accurate class from reloads generated.  They are
827      mostly moves with a lot of constraints.  Making more accurate
828      class may results in very narrow class and impossibility of find
829      registers for several reloads of one insn.	 */
830   if (INSN_UID (curr_insn) >= new_insn_uid_start)
831     return;
832   if (GET_CODE (reg) == SUBREG)
833     reg = SUBREG_REG (reg);
834   if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
835     return;
836   if (in_class_p (reg, cl, &rclass) && rclass != cl)
837     lra_change_class (REGNO (reg), rclass, "      Change to", true);
838 }
839 
840 /* Searches X for any reference to a reg with the same value as REGNO,
841    returning the rtx of the reference found if any.  Otherwise,
842    returns NULL_RTX.  */
843 static rtx
844 regno_val_use_in (unsigned int regno, rtx x)
845 {
846   const char *fmt;
847   int i, j;
848   rtx tem;
849 
850   if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
851     return x;
852 
853   fmt = GET_RTX_FORMAT (GET_CODE (x));
854   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
855     {
856       if (fmt[i] == 'e')
857 	{
858 	  if ((tem = regno_val_use_in (regno, XEXP (x, i))))
859 	    return tem;
860 	}
861       else if (fmt[i] == 'E')
862 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
863 	  if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
864 	    return tem;
865     }
866 
867   return NULL_RTX;
868 }
869 
870 /* Return true if all current insn non-output operands except INS (it
871    has a negaitve end marker) do not use pseudos with the same value
872    as REGNO.  */
873 static bool
874 check_conflict_input_operands (int regno, signed char *ins)
875 {
876   int in;
877   int n_operands = curr_static_id->n_operands;
878 
879   for (int nop = 0; nop < n_operands; nop++)
880     if (! curr_static_id->operand[nop].is_operator
881 	&& curr_static_id->operand[nop].type != OP_OUT)
882       {
883 	for (int i = 0; (in = ins[i]) >= 0; i++)
884 	  if (in == nop)
885 	    break;
886 	if (in < 0
887 	    && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
888 	  return false;
889       }
890   return true;
891 }
892 
893 /* Generate reloads for matching OUT and INS (array of input operand
894    numbers with end marker -1) with reg class GOAL_CLASS, considering
895    output operands OUTS (similar array to INS) needing to be in different
896    registers.  Add input and output reloads correspondingly to the lists
897    *BEFORE and *AFTER.  OUT might be negative.  In this case we generate
898    input reloads for matched input operands INS.  EARLY_CLOBBER_P is a flag
899    that the output operand is early clobbered for chosen alternative.  */
900 static void
901 match_reload (signed char out, signed char *ins, signed char *outs,
902 	      enum reg_class goal_class, rtx_insn **before,
903 	      rtx_insn **after, bool early_clobber_p)
904 {
905   bool out_conflict;
906   int i, in;
907   rtx new_in_reg, new_out_reg, reg;
908   machine_mode inmode, outmode;
909   rtx in_rtx = *curr_id->operand_loc[ins[0]];
910   rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
911 
912   inmode = curr_operand_mode[ins[0]];
913   outmode = out < 0 ? inmode : curr_operand_mode[out];
914   push_to_sequence (*before);
915   if (inmode != outmode)
916     {
917       /* process_alt_operands has already checked that the mode sizes
918 	 are ordered.  */
919       if (partial_subreg_p (outmode, inmode))
920 	{
921 	  reg = new_in_reg
922 	    = lra_create_new_reg_with_unique_value (inmode, in_rtx,
923 						    goal_class, "");
924 	  new_out_reg = gen_lowpart_SUBREG (outmode, reg);
925 	  LRA_SUBREG_P (new_out_reg) = 1;
926 	  /* If the input reg is dying here, we can use the same hard
927 	     register for REG and IN_RTX.  We do it only for original
928 	     pseudos as reload pseudos can die although original
929 	     pseudos still live where reload pseudos dies.  */
930 	  if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
931 	      && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
932 	      && (!early_clobber_p
933 		  || check_conflict_input_operands(REGNO (in_rtx), ins)))
934 	    lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
935 	}
936       else
937 	{
938 	  reg = new_out_reg
939 	    = lra_create_new_reg_with_unique_value (outmode, out_rtx,
940 						    goal_class, "");
941 	  new_in_reg = gen_lowpart_SUBREG (inmode, reg);
942 	  /* NEW_IN_REG is non-paradoxical subreg.  We don't want
943 	     NEW_OUT_REG living above.  We add clobber clause for
944 	     this.  This is just a temporary clobber.  We can remove
945 	     it at the end of LRA work.  */
946 	  rtx_insn *clobber = emit_clobber (new_out_reg);
947 	  LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
948 	  LRA_SUBREG_P (new_in_reg) = 1;
949 	  if (GET_CODE (in_rtx) == SUBREG)
950 	    {
951 	      rtx subreg_reg = SUBREG_REG (in_rtx);
952 
953 	      /* If SUBREG_REG is dying here and sub-registers IN_RTX
954 		 and NEW_IN_REG are similar, we can use the same hard
955 		 register for REG and SUBREG_REG.  */
956 	      if (REG_P (subreg_reg)
957 		  && (int) REGNO (subreg_reg) < lra_new_regno_start
958 		  && GET_MODE (subreg_reg) == outmode
959 		  && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
960 		  && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
961 		  && (! early_clobber_p
962 		      || check_conflict_input_operands (REGNO (subreg_reg),
963 							ins)))
964 		lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
965 	    }
966 	}
967     }
968   else
969     {
970       /* Pseudos have values -- see comments for lra_reg_info.
971 	 Different pseudos with the same value do not conflict even if
972 	 they live in the same place.  When we create a pseudo we
973 	 assign value of original pseudo (if any) from which we
974 	 created the new pseudo.  If we create the pseudo from the
975 	 input pseudo, the new pseudo will have no conflict with the
976 	 input pseudo which is wrong when the input pseudo lives after
977 	 the insn and as the new pseudo value is changed by the insn
978 	 output.  Therefore we create the new pseudo from the output
979 	 except the case when we have single matched dying input
980 	 pseudo.
981 
982 	 We cannot reuse the current output register because we might
983 	 have a situation like "a <- a op b", where the constraints
984 	 force the second input operand ("b") to match the output
985 	 operand ("a").  "b" must then be copied into a new register
986 	 so that it doesn't clobber the current value of "a".
987 
988 	 We cannot use the same value if the output pseudo is
989 	 early clobbered or the input pseudo is mentioned in the
990 	 output, e.g. as an address part in memory, because
991 	 output reload will actually extend the pseudo liveness.
992 	 We don't care about eliminable hard regs here as we are
993 	 interesting only in pseudos.  */
994 
995       /* Matching input's register value is the same as one of the other
996 	 output operand.  Output operands in a parallel insn must be in
997 	 different registers.  */
998       out_conflict = false;
999       if (REG_P (in_rtx))
1000 	{
1001 	  for (i = 0; outs[i] >= 0; i++)
1002 	    {
1003 	      rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1004 	      if (REG_P (other_out_rtx)
1005 		  && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1006 		      != NULL_RTX))
1007 		{
1008 		  out_conflict = true;
1009 		  break;
1010 		}
1011 	    }
1012 	}
1013 
1014       new_in_reg = new_out_reg
1015 	= (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1016 	   && (int) REGNO (in_rtx) < lra_new_regno_start
1017 	   && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1018 	   && (! early_clobber_p
1019 	       || check_conflict_input_operands (REGNO (in_rtx), ins))
1020 	   && (out < 0
1021 	       || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1022 	   && !out_conflict
1023 	   ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1024 	   : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1025 						   goal_class, ""));
1026     }
1027   /* In operand can be got from transformations before processing insn
1028      constraints.  One example of such transformations is subreg
1029      reloading (see function simplify_operand_subreg).  The new
1030      pseudos created by the transformations might have inaccurate
1031      class (ALL_REGS) and we should make their classes more
1032      accurate.  */
1033   narrow_reload_pseudo_class (in_rtx, goal_class);
1034   lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1035   *before = get_insns ();
1036   end_sequence ();
1037   /* Add the new pseudo to consider values of subsequent input reload
1038      pseudos.  */
1039   lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1040   curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1041   curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1042   curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1043   for (i = 0; (in = ins[i]) >= 0; i++)
1044     {
1045       lra_assert
1046 	(GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1047 	 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1048       *curr_id->operand_loc[in] = new_in_reg;
1049     }
1050   lra_update_dups (curr_id, ins);
1051   if (out < 0)
1052     return;
1053   /* See a comment for the input operand above.  */
1054   narrow_reload_pseudo_class (out_rtx, goal_class);
1055   if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1056     {
1057       start_sequence ();
1058       lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1059       emit_insn (*after);
1060       *after = get_insns ();
1061       end_sequence ();
1062     }
1063   *curr_id->operand_loc[out] = new_out_reg;
1064   lra_update_dup (curr_id, out);
1065 }
1066 
1067 /* Return register class which is union of all reg classes in insn
1068    constraint alternative string starting with P.  */
1069 static enum reg_class
1070 reg_class_from_constraints (const char *p)
1071 {
1072   int c, len;
1073   enum reg_class op_class = NO_REGS;
1074 
1075   do
1076     switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1077       {
1078       case '#':
1079       case ',':
1080 	return op_class;
1081 
1082       case 'g':
1083 	op_class = reg_class_subunion[op_class][GENERAL_REGS];
1084 	break;
1085 
1086       default:
1087 	enum constraint_num cn = lookup_constraint (p);
1088 	enum reg_class cl = reg_class_for_constraint (cn);
1089 	if (cl == NO_REGS)
1090 	  {
1091 	    if (insn_extra_address_constraint (cn))
1092 	      op_class
1093 		= (reg_class_subunion
1094 		   [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1095 					      ADDRESS, SCRATCH)]);
1096 	    break;
1097 	  }
1098 
1099 	op_class = reg_class_subunion[op_class][cl];
1100  	break;
1101       }
1102   while ((p += len), c);
1103   return op_class;
1104 }
1105 
1106 /* If OP is a register, return the class of the register as per
1107    get_reg_class, otherwise return NO_REGS.  */
1108 static inline enum reg_class
1109 get_op_class (rtx op)
1110 {
1111   return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1112 }
1113 
1114 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1115    otherwise.  If modes of MEM_PSEUDO and VAL are different, use
1116    SUBREG for VAL to make them equal.  */
1117 static rtx_insn *
1118 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1119 {
1120   if (GET_MODE (mem_pseudo) != GET_MODE (val))
1121     {
1122       /* Usually size of mem_pseudo is greater than val size but in
1123 	 rare cases it can be less as it can be defined by target
1124 	 dependent macro HARD_REGNO_CALLER_SAVE_MODE.  */
1125       if (! MEM_P (val))
1126 	{
1127 	  val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1128 				    GET_CODE (val) == SUBREG
1129 				    ? SUBREG_REG (val) : val);
1130 	  LRA_SUBREG_P (val) = 1;
1131 	}
1132       else
1133 	{
1134 	  mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1135 	  LRA_SUBREG_P (mem_pseudo) = 1;
1136 	}
1137     }
1138   return to_p ? gen_move_insn (mem_pseudo, val)
1139 	      : gen_move_insn (val, mem_pseudo);
1140 }
1141 
1142 /* Process a special case insn (register move), return true if we
1143    don't need to process it anymore.  INSN should be a single set
1144    insn.  Set up that RTL was changed through CHANGE_P and that hook
1145    TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1146    SEC_MEM_P.  */
1147 static bool
1148 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1149 {
1150   int sregno, dregno;
1151   rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1152   rtx_insn *before;
1153   enum reg_class dclass, sclass, secondary_class;
1154   secondary_reload_info sri;
1155 
1156   lra_assert (curr_insn_set != NULL_RTX);
1157   dreg = dest = SET_DEST (curr_insn_set);
1158   sreg = src = SET_SRC (curr_insn_set);
1159   if (GET_CODE (dest) == SUBREG)
1160     dreg = SUBREG_REG (dest);
1161   if (GET_CODE (src) == SUBREG)
1162     sreg = SUBREG_REG (src);
1163   if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1164     return false;
1165   sclass = dclass = NO_REGS;
1166   if (REG_P (dreg))
1167     dclass = get_reg_class (REGNO (dreg));
1168   gcc_assert (dclass < LIM_REG_CLASSES);
1169   if (dclass == ALL_REGS)
1170     /* ALL_REGS is used for new pseudos created by transformations
1171        like reload of SUBREG_REG (see function
1172        simplify_operand_subreg).  We don't know their class yet.  We
1173        should figure out the class from processing the insn
1174        constraints not in this fast path function.  Even if ALL_REGS
1175        were a right class for the pseudo, secondary_... hooks usually
1176        are not define for ALL_REGS.  */
1177     return false;
1178   if (REG_P (sreg))
1179     sclass = get_reg_class (REGNO (sreg));
1180   gcc_assert (sclass < LIM_REG_CLASSES);
1181   if (sclass == ALL_REGS)
1182     /* See comments above.  */
1183     return false;
1184   if (sclass == NO_REGS && dclass == NO_REGS)
1185     return false;
1186   if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1187       && ((sclass != NO_REGS && dclass != NO_REGS)
1188 	  || (GET_MODE (src)
1189 	      != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1190     {
1191       *sec_mem_p = true;
1192       return false;
1193     }
1194   if (! REG_P (dreg) || ! REG_P (sreg))
1195     return false;
1196   sri.prev_sri = NULL;
1197   sri.icode = CODE_FOR_nothing;
1198   sri.extra_cost = 0;
1199   secondary_class = NO_REGS;
1200   /* Set up hard register for a reload pseudo for hook
1201      secondary_reload because some targets just ignore unassigned
1202      pseudos in the hook.  */
1203   if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1204     {
1205       dregno = REGNO (dreg);
1206       reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1207     }
1208   else
1209     dregno = -1;
1210   if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1211     {
1212       sregno = REGNO (sreg);
1213       reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1214     }
1215   else
1216     sregno = -1;
1217   if (sclass != NO_REGS)
1218     secondary_class
1219       = (enum reg_class) targetm.secondary_reload (false, dest,
1220 						   (reg_class_t) sclass,
1221 						   GET_MODE (src), &sri);
1222   if (sclass == NO_REGS
1223       || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1224 	  && dclass != NO_REGS))
1225     {
1226       enum reg_class old_sclass = secondary_class;
1227       secondary_reload_info old_sri = sri;
1228 
1229       sri.prev_sri = NULL;
1230       sri.icode = CODE_FOR_nothing;
1231       sri.extra_cost = 0;
1232       secondary_class
1233 	= (enum reg_class) targetm.secondary_reload (true, src,
1234 						     (reg_class_t) dclass,
1235 						     GET_MODE (src), &sri);
1236       /* Check the target hook consistency.  */
1237       lra_assert
1238 	((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1239 	 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1240 	 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1241     }
1242   if (sregno >= 0)
1243     reg_renumber [sregno] = -1;
1244   if (dregno >= 0)
1245     reg_renumber [dregno] = -1;
1246   if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1247     return false;
1248   *change_p = true;
1249   new_reg = NULL_RTX;
1250   if (secondary_class != NO_REGS)
1251     new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1252 						    secondary_class,
1253 						    "secondary");
1254   start_sequence ();
1255   if (sri.icode == CODE_FOR_nothing)
1256     lra_emit_move (new_reg, src);
1257   else
1258     {
1259       enum reg_class scratch_class;
1260 
1261       scratch_class = (reg_class_from_constraints
1262 		       (insn_data[sri.icode].operand[2].constraint));
1263       scratch_reg = (lra_create_new_reg_with_unique_value
1264 		     (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1265 		      scratch_class, "scratch"));
1266       emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1267 				      src, scratch_reg));
1268     }
1269   before = get_insns ();
1270   end_sequence ();
1271   lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1272   if (new_reg != NULL_RTX)
1273     SET_SRC (curr_insn_set) = new_reg;
1274   else
1275     {
1276       if (lra_dump_file != NULL)
1277 	{
1278 	  fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1279 	  dump_insn_slim (lra_dump_file, curr_insn);
1280 	}
1281       lra_set_insn_deleted (curr_insn);
1282       return true;
1283     }
1284   return false;
1285 }
1286 
1287 /* The following data describe the result of process_alt_operands.
1288    The data are used in curr_insn_transform to generate reloads.  */
1289 
1290 /* The chosen reg classes which should be used for the corresponding
1291    operands.  */
1292 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1293 /* True if the operand should be the same as another operand and that
1294    other operand does not need a reload.  */
1295 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1296 /* True if the operand does not need a reload.	*/
1297 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1298 /* True if the operand can be offsetable memory.  */
1299 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1300 /* The number of an operand to which given operand can be matched to.  */
1301 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1302 /* The number of elements in the following array.  */
1303 static int goal_alt_dont_inherit_ops_num;
1304 /* Numbers of operands whose reload pseudos should not be inherited.  */
1305 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1306 /* True if the insn commutative operands should be swapped.  */
1307 static bool goal_alt_swapped;
1308 /* The chosen insn alternative.	 */
1309 static int goal_alt_number;
1310 
1311 /* True if the corresponding operand is the result of an equivalence
1312    substitution.  */
1313 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1314 
1315 /* The following five variables are used to choose the best insn
1316    alternative.	 They reflect final characteristics of the best
1317    alternative.	 */
1318 
1319 /* Number of necessary reloads and overall cost reflecting the
1320    previous value and other unpleasantness of the best alternative.  */
1321 static int best_losers, best_overall;
1322 /* Overall number hard registers used for reloads.  For example, on
1323    some targets we need 2 general registers to reload DFmode and only
1324    one floating point register.	 */
1325 static int best_reload_nregs;
1326 /* Overall number reflecting distances of previous reloading the same
1327    value.  The distances are counted from the current BB start.  It is
1328    used to improve inheritance chances.  */
1329 static int best_reload_sum;
1330 
1331 /* True if the current insn should have no correspondingly input or
1332    output reloads.  */
1333 static bool no_input_reloads_p, no_output_reloads_p;
1334 
1335 /* True if we swapped the commutative operands in the current
1336    insn.  */
1337 static int curr_swapped;
1338 
1339 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1340    register of class CL.  Add any input reloads to list BEFORE.  AFTER
1341    is nonnull if *LOC is an automodified value; handle that case by
1342    adding the required output reloads to list AFTER.  Return true if
1343    the RTL was changed.
1344 
1345    if CHECK_ONLY_P is true, check that the *LOC is a correct address
1346    register.  Return false if the address register is correct.  */
1347 static bool
1348 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1349 		  enum reg_class cl)
1350 {
1351   int regno;
1352   enum reg_class rclass, new_class;
1353   rtx reg;
1354   rtx new_reg;
1355   machine_mode mode;
1356   bool subreg_p, before_p = false;
1357 
1358   subreg_p = GET_CODE (*loc) == SUBREG;
1359   if (subreg_p)
1360     {
1361       reg = SUBREG_REG (*loc);
1362       mode = GET_MODE (reg);
1363 
1364       /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1365 	 between two registers with different classes, but there normally will
1366 	 be "mov" which transfers element of vector register into the general
1367 	 register, and this normally will be a subreg which should be reloaded
1368 	 as a whole.  This is particularly likely to be triggered when
1369 	 -fno-split-wide-types specified.  */
1370       if (!REG_P (reg)
1371 	  || in_class_p (reg, cl, &new_class)
1372 	  || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1373        loc = &SUBREG_REG (*loc);
1374     }
1375 
1376   reg = *loc;
1377   mode = GET_MODE (reg);
1378   if (! REG_P (reg))
1379     {
1380       if (check_only_p)
1381 	return true;
1382       /* Always reload memory in an address even if the target supports
1383 	 such addresses.  */
1384       new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1385       before_p = true;
1386     }
1387   else
1388     {
1389       regno = REGNO (reg);
1390       rclass = get_reg_class (regno);
1391       if (! check_only_p
1392 	  && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1393 	{
1394 	  if (lra_dump_file != NULL)
1395 	    {
1396 	      fprintf (lra_dump_file,
1397 		       "Changing pseudo %d in address of insn %u on equiv ",
1398 		       REGNO (reg), INSN_UID (curr_insn));
1399 	      dump_value_slim (lra_dump_file, *loc, 1);
1400 	      fprintf (lra_dump_file, "\n");
1401 	    }
1402 	  *loc = copy_rtx (*loc);
1403 	}
1404       if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1405 	{
1406 	  if (check_only_p)
1407 	    return true;
1408 	  reg = *loc;
1409 	  if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1410 			      mode, reg, cl, subreg_p, "address", &new_reg))
1411 	    before_p = true;
1412 	}
1413       else if (new_class != NO_REGS && rclass != new_class)
1414 	{
1415 	  if (check_only_p)
1416 	    return true;
1417 	  lra_change_class (regno, new_class, "	   Change to", true);
1418 	  return false;
1419 	}
1420       else
1421 	return false;
1422     }
1423   if (before_p)
1424     {
1425       push_to_sequence (*before);
1426       lra_emit_move (new_reg, reg);
1427       *before = get_insns ();
1428       end_sequence ();
1429     }
1430   *loc = new_reg;
1431   if (after != NULL)
1432     {
1433       start_sequence ();
1434       lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1435       emit_insn (*after);
1436       *after = get_insns ();
1437       end_sequence ();
1438     }
1439   return true;
1440 }
1441 
1442 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1443    the insn to be inserted before curr insn. AFTER returns the
1444    the insn to be inserted after curr insn.  ORIGREG and NEWREG
1445    are the original reg and new reg for reload.  */
1446 static void
1447 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1448 			rtx newreg)
1449 {
1450   if (before)
1451     {
1452       push_to_sequence (*before);
1453       lra_emit_move (newreg, origreg);
1454       *before = get_insns ();
1455       end_sequence ();
1456     }
1457   if (after)
1458     {
1459       start_sequence ();
1460       lra_emit_move (origreg, newreg);
1461       emit_insn (*after);
1462       *after = get_insns ();
1463       end_sequence ();
1464     }
1465 }
1466 
1467 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1468 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1469 
1470 /* Make reloads for subreg in operand NOP with internal subreg mode
1471    REG_MODE, add new reloads for further processing.  Return true if
1472    any change was done.  */
1473 static bool
1474 simplify_operand_subreg (int nop, machine_mode reg_mode)
1475 {
1476   int hard_regno;
1477   rtx_insn *before, *after;
1478   machine_mode mode, innermode;
1479   rtx reg, new_reg;
1480   rtx operand = *curr_id->operand_loc[nop];
1481   enum reg_class regclass;
1482   enum op_type type;
1483 
1484   before = after = NULL;
1485 
1486   if (GET_CODE (operand) != SUBREG)
1487     return false;
1488 
1489   mode = GET_MODE (operand);
1490   reg = SUBREG_REG (operand);
1491   innermode = GET_MODE (reg);
1492   type = curr_static_id->operand[nop].type;
1493   if (MEM_P (reg))
1494     {
1495       const bool addr_was_valid
1496 	= valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1497       alter_subreg (curr_id->operand_loc[nop], false);
1498       rtx subst = *curr_id->operand_loc[nop];
1499       lra_assert (MEM_P (subst));
1500       const bool addr_is_valid = valid_address_p (GET_MODE (subst),
1501 						  XEXP (subst, 0),
1502 						  MEM_ADDR_SPACE (subst));
1503       if (!addr_was_valid
1504 	  || addr_is_valid
1505 	  || ((get_constraint_type (lookup_constraint
1506 				    (curr_static_id->operand[nop].constraint))
1507 	       != CT_SPECIAL_MEMORY)
1508 	      /* We still can reload address and if the address is
1509 		 valid, we can remove subreg without reloading its
1510 		 inner memory.  */
1511 	      && valid_address_p (GET_MODE (subst),
1512 				  regno_reg_rtx
1513 				  [ira_class_hard_regs
1514 				   [base_reg_class (GET_MODE (subst),
1515 						    MEM_ADDR_SPACE (subst),
1516 						    ADDRESS, SCRATCH)][0]],
1517 				  MEM_ADDR_SPACE (subst))))
1518 	{
1519 	  /* If we change the address for a paradoxical subreg of memory, the
1520 	     new address might violate the necessary alignment or the access
1521 	     might be slow; take this into consideration.  We need not worry
1522 	     about accesses beyond allocated memory for paradoxical memory
1523 	     subregs as we don't substitute such equiv memory (see processing
1524 	     equivalences in function lra_constraints) and because for spilled
1525 	     pseudos we allocate stack memory enough for the biggest
1526 	     corresponding paradoxical subreg.
1527 
1528 	     However, do not blindly simplify a (subreg (mem ...)) for
1529 	     WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1530 	     data into a register when the inner is narrower than outer or
1531 	     missing important data from memory when the inner is wider than
1532 	     outer.  This rule only applies to modes that are no wider than
1533 	     a word.
1534 
1535 	     If valid memory becomes invalid after subreg elimination
1536 	     and address might be different we still have to reload
1537 	     memory.
1538 	  */
1539 	  if ((! addr_was_valid
1540 	       || addr_is_valid
1541 	       || known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (innermode)))
1542 	      && !(maybe_ne (GET_MODE_PRECISION (mode),
1543 			     GET_MODE_PRECISION (innermode))
1544 		   && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1545 		   && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1546 		   && WORD_REGISTER_OPERATIONS)
1547 	      && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1548 		    && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1549 		  || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1550 		      && targetm.slow_unaligned_access (innermode,
1551 							MEM_ALIGN (reg)))))
1552 	    return true;
1553 
1554 	  *curr_id->operand_loc[nop] = operand;
1555 
1556 	  /* But if the address was not valid, we cannot reload the MEM without
1557 	     reloading the address first.  */
1558 	  if (!addr_was_valid)
1559 	    process_address (nop, false, &before, &after);
1560 
1561 	  /* INNERMODE is fast, MODE slow.  Reload the mem in INNERMODE.  */
1562 	  enum reg_class rclass
1563 	    = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1564 	  if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1565 			      reg, rclass, TRUE, "slow/invalid mem", &new_reg))
1566 	    {
1567 	      bool insert_before, insert_after;
1568 	      bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1569 
1570 	      insert_before = (type != OP_OUT
1571 			       || partial_subreg_p (mode, innermode));
1572 	      insert_after = type != OP_IN;
1573 	      insert_move_for_subreg (insert_before ? &before : NULL,
1574 				      insert_after ? &after : NULL,
1575 				      reg, new_reg);
1576 	    }
1577 	  SUBREG_REG (operand) = new_reg;
1578 
1579 	  /* Convert to MODE.  */
1580 	  reg = operand;
1581 	  rclass
1582 	    = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1583 	  if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1584 			      rclass, TRUE, "slow/invalid mem", &new_reg))
1585 	    {
1586 	      bool insert_before, insert_after;
1587 	      bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1588 
1589 	      insert_before = type != OP_OUT;
1590 	      insert_after = type != OP_IN;
1591 	      insert_move_for_subreg (insert_before ? &before : NULL,
1592 				      insert_after ? &after : NULL,
1593 				      reg, new_reg);
1594 	    }
1595 	  *curr_id->operand_loc[nop] = new_reg;
1596 	  lra_process_new_insns (curr_insn, before, after,
1597 				 "Inserting slow/invalid mem reload");
1598 	  return true;
1599 	}
1600 
1601       /* If the address was valid and became invalid, prefer to reload
1602 	 the memory.  Typical case is when the index scale should
1603 	 correspond the memory.  */
1604       *curr_id->operand_loc[nop] = operand;
1605       /* Do not return false here as the MEM_P (reg) will be processed
1606 	 later in this function.  */
1607     }
1608   else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1609     {
1610       alter_subreg (curr_id->operand_loc[nop], false);
1611       return true;
1612     }
1613   else if (CONSTANT_P (reg))
1614     {
1615       /* Try to simplify subreg of constant.  It is usually result of
1616 	 equivalence substitution.  */
1617       if (innermode == VOIDmode
1618 	  && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1619 	innermode = curr_static_id->operand[nop].mode;
1620       if ((new_reg = simplify_subreg (mode, reg, innermode,
1621 				      SUBREG_BYTE (operand))) != NULL_RTX)
1622 	{
1623 	  *curr_id->operand_loc[nop] = new_reg;
1624 	  return true;
1625 	}
1626     }
1627   /* Put constant into memory when we have mixed modes.  It generates
1628      a better code in most cases as it does not need a secondary
1629      reload memory.  It also prevents LRA looping when LRA is using
1630      secondary reload memory again and again.  */
1631   if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1632       && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1633     {
1634       SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1635       alter_subreg (curr_id->operand_loc[nop], false);
1636       return true;
1637     }
1638   /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1639      if there may be a problem accessing OPERAND in the outer
1640      mode.  */
1641   if ((REG_P (reg)
1642        && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1643        && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1644        /* Don't reload paradoxical subregs because we could be looping
1645 	  having repeatedly final regno out of hard regs range.  */
1646        && (hard_regno_nregs (hard_regno, innermode)
1647 	   >= hard_regno_nregs (hard_regno, mode))
1648        && simplify_subreg_regno (hard_regno, innermode,
1649 				 SUBREG_BYTE (operand), mode) < 0
1650        /* Don't reload subreg for matching reload.  It is actually
1651 	  valid subreg in LRA.  */
1652        && ! LRA_SUBREG_P (operand))
1653       || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1654     {
1655       enum reg_class rclass;
1656 
1657       if (REG_P (reg))
1658 	/* There is a big probability that we will get the same class
1659 	   for the new pseudo and we will get the same insn which
1660 	   means infinite looping.  So spill the new pseudo.  */
1661 	rclass = NO_REGS;
1662       else
1663 	/* The class will be defined later in curr_insn_transform.  */
1664 	rclass
1665 	  = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1666 
1667       if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1668 			  rclass, TRUE, "subreg reg", &new_reg))
1669 	{
1670 	  bool insert_before, insert_after;
1671 	  bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1672 
1673 	  insert_before = (type != OP_OUT
1674 			   || read_modify_subreg_p (operand));
1675 	  insert_after = (type != OP_IN);
1676 	  insert_move_for_subreg (insert_before ? &before : NULL,
1677 				  insert_after ? &after : NULL,
1678 				  reg, new_reg);
1679 	}
1680       SUBREG_REG (operand) = new_reg;
1681       lra_process_new_insns (curr_insn, before, after,
1682 			     "Inserting subreg reload");
1683       return true;
1684     }
1685   /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1686      IRA allocates hardreg to the inner pseudo reg according to its mode
1687      instead of the outermode, so the size of the hardreg may not be enough
1688      to contain the outermode operand, in that case we may need to insert
1689      reload for the reg. For the following two types of paradoxical subreg,
1690      we need to insert reload:
1691      1. If the op_type is OP_IN, and the hardreg could not be paired with
1692         other hardreg to contain the outermode operand
1693         (checked by in_hard_reg_set_p), we need to insert the reload.
1694      2. If the op_type is OP_OUT or OP_INOUT.
1695 
1696      Here is a paradoxical subreg example showing how the reload is generated:
1697 
1698      (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1699         (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1700 
1701      In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1702      here, if reg107 is assigned to hardreg R15, because R15 is the last
1703      hardreg, compiler cannot find another hardreg to pair with R15 to
1704      contain TImode data. So we insert a TImode reload reg180 for it.
1705      After reload is inserted:
1706 
1707      (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1708         (reg:DI 107 [ __comp ])) -1
1709      (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1710         (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1711 
1712      Two reload hard registers will be allocated to reg180 to save TImode data
1713      in LRA_assign.
1714 
1715      For LRA pseudos this should normally be handled by the biggest_mode
1716      mechanism.  However, it's possible for new uses of an LRA pseudo
1717      to be introduced after we've allocated it, such as when undoing
1718      inheritance, and the allocated register might not then be appropriate
1719      for the new uses.  */
1720   else if (REG_P (reg)
1721 	   && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1722 	   && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1723 	   && (hard_regno_nregs (hard_regno, innermode)
1724 	       < hard_regno_nregs (hard_regno, mode))
1725 	   && (regclass = lra_get_allocno_class (REGNO (reg)))
1726 	   && (type != OP_IN
1727 	       || !in_hard_reg_set_p (reg_class_contents[regclass],
1728 				      mode, hard_regno)
1729 	       || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1730 					   mode, hard_regno)))
1731     {
1732       /* The class will be defined later in curr_insn_transform.  */
1733       enum reg_class rclass
1734 	= (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1735 
1736       if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1737                           rclass, TRUE, "paradoxical subreg", &new_reg))
1738         {
1739 	  rtx subreg;
1740 	  bool insert_before, insert_after;
1741 
1742 	  PUT_MODE (new_reg, mode);
1743           subreg = gen_lowpart_SUBREG (innermode, new_reg);
1744 	  bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1745 
1746 	  insert_before = (type != OP_OUT);
1747 	  insert_after = (type != OP_IN);
1748 	  insert_move_for_subreg (insert_before ? &before : NULL,
1749 				  insert_after ? &after : NULL,
1750 				  reg, subreg);
1751 	}
1752       SUBREG_REG (operand) = new_reg;
1753       lra_process_new_insns (curr_insn, before, after,
1754                              "Inserting paradoxical subreg reload");
1755       return true;
1756     }
1757   return false;
1758 }
1759 
1760 /* Return TRUE if X refers for a hard register from SET.  */
1761 static bool
1762 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1763 {
1764   int i, j, x_hard_regno;
1765   machine_mode mode;
1766   const char *fmt;
1767   enum rtx_code code;
1768 
1769   if (x == NULL_RTX)
1770     return false;
1771   code = GET_CODE (x);
1772   mode = GET_MODE (x);
1773 
1774   if (code == SUBREG)
1775     {
1776       /* For all SUBREGs we want to check whether the full multi-register
1777 	 overlaps the set.  For normal SUBREGs this means 'get_hard_regno' of
1778 	 the inner register, for paradoxical SUBREGs this means the
1779 	 'get_hard_regno' of the full SUBREG and for complete SUBREGs either is
1780 	 fine.  Use the wider mode for all cases.  */
1781       rtx subreg = SUBREG_REG (x);
1782       mode = wider_subreg_mode (x);
1783       if (mode == GET_MODE (subreg))
1784 	{
1785 	  x = subreg;
1786 	  code = GET_CODE (x);
1787 	}
1788     }
1789 
1790   if (REG_P (x) || SUBREG_P (x))
1791     {
1792       x_hard_regno = get_hard_regno (x, true);
1793       return (x_hard_regno >= 0
1794 	      && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1795     }
1796   if (MEM_P (x))
1797     {
1798       struct address_info ad;
1799 
1800       decompose_mem_address (&ad, x);
1801       if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1802 	return true;
1803       if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1804 	return true;
1805     }
1806   fmt = GET_RTX_FORMAT (code);
1807   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1808     {
1809       if (fmt[i] == 'e')
1810 	{
1811 	  if (uses_hard_regs_p (XEXP (x, i), set))
1812 	    return true;
1813 	}
1814       else if (fmt[i] == 'E')
1815 	{
1816 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1817 	    if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1818 	      return true;
1819 	}
1820     }
1821   return false;
1822 }
1823 
1824 /* Return true if OP is a spilled pseudo. */
1825 static inline bool
1826 spilled_pseudo_p (rtx op)
1827 {
1828   return (REG_P (op)
1829 	  && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1830 }
1831 
1832 /* Return true if X is a general constant.  */
1833 static inline bool
1834 general_constant_p (rtx x)
1835 {
1836   return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1837 }
1838 
1839 static bool
1840 reg_in_class_p (rtx reg, enum reg_class cl)
1841 {
1842   if (cl == NO_REGS)
1843     return get_reg_class (REGNO (reg)) == NO_REGS;
1844   return in_class_p (reg, cl, NULL);
1845 }
1846 
1847 /* Return true if SET of RCLASS contains no hard regs which can be
1848    used in MODE.  */
1849 static bool
1850 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1851 				 HARD_REG_SET &set,
1852 				 machine_mode mode)
1853 {
1854   HARD_REG_SET temp;
1855 
1856   lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1857   COPY_HARD_REG_SET (temp, set);
1858   AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1859   return (hard_reg_set_subset_p
1860 	  (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1861 }
1862 
1863 
1864 /* Used to check validity info about small class input operands.  It
1865    should be incremented at start of processing an insn
1866    alternative.  */
1867 static unsigned int curr_small_class_check = 0;
1868 
1869 /* Update number of used inputs of class OP_CLASS for operand NOP.
1870    Return true if we have more such class operands than the number of
1871    available regs.  */
1872 static bool
1873 update_and_check_small_class_inputs (int nop, enum reg_class op_class)
1874 {
1875   static unsigned int small_class_check[LIM_REG_CLASSES];
1876   static int small_class_input_nums[LIM_REG_CLASSES];
1877 
1878   if (SMALL_REGISTER_CLASS_P (op_class)
1879       /* We are interesting in classes became small because of fixing
1880 	 some hard regs, e.g. by an user through GCC options.  */
1881       && hard_reg_set_intersect_p (reg_class_contents[op_class],
1882 				   ira_no_alloc_regs)
1883       && (curr_static_id->operand[nop].type != OP_OUT
1884 	  || curr_static_id->operand[nop].early_clobber))
1885     {
1886       if (small_class_check[op_class] == curr_small_class_check)
1887 	small_class_input_nums[op_class]++;
1888       else
1889 	{
1890 	  small_class_check[op_class] = curr_small_class_check;
1891 	  small_class_input_nums[op_class] = 1;
1892 	}
1893       if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1894 	return true;
1895     }
1896   return false;
1897 }
1898 
1899 /* Major function to choose the current insn alternative and what
1900    operands should be reloaded and how.	 If ONLY_ALTERNATIVE is not
1901    negative we should consider only this alternative.  Return false if
1902    we cannot choose the alternative or find how to reload the
1903    operands.  */
1904 static bool
1905 process_alt_operands (int only_alternative)
1906 {
1907   bool ok_p = false;
1908   int nop, overall, nalt;
1909   int n_alternatives = curr_static_id->n_alternatives;
1910   int n_operands = curr_static_id->n_operands;
1911   /* LOSERS counts the operands that don't fit this alternative and
1912      would require loading.  */
1913   int losers;
1914   int addr_losers;
1915   /* REJECT is a count of how undesirable this alternative says it is
1916      if any reloading is required.  If the alternative matches exactly
1917      then REJECT is ignored, but otherwise it gets this much counted
1918      against it in addition to the reloading needed.  */
1919   int reject;
1920   /* This is defined by '!' or '?' alternative constraint and added to
1921      reject.  But in some cases it can be ignored.  */
1922   int static_reject;
1923   int op_reject;
1924   /* The number of elements in the following array.  */
1925   int early_clobbered_regs_num;
1926   /* Numbers of operands which are early clobber registers.  */
1927   int early_clobbered_nops[MAX_RECOG_OPERANDS];
1928   enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1929   HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1930   bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1931   bool curr_alt_win[MAX_RECOG_OPERANDS];
1932   bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1933   int curr_alt_matches[MAX_RECOG_OPERANDS];
1934   /* The number of elements in the following array.  */
1935   int curr_alt_dont_inherit_ops_num;
1936   /* Numbers of operands whose reload pseudos should not be inherited.	*/
1937   int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1938   rtx op;
1939   /* The register when the operand is a subreg of register, otherwise the
1940      operand itself.  */
1941   rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1942   /* The register if the operand is a register or subreg of register,
1943      otherwise NULL.  */
1944   rtx operand_reg[MAX_RECOG_OPERANDS];
1945   int hard_regno[MAX_RECOG_OPERANDS];
1946   machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1947   int reload_nregs, reload_sum;
1948   bool costly_p;
1949   enum reg_class cl;
1950 
1951   /* Calculate some data common for all alternatives to speed up the
1952      function.	*/
1953   for (nop = 0; nop < n_operands; nop++)
1954     {
1955       rtx reg;
1956 
1957       op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1958       /* The real hard regno of the operand after the allocation.  */
1959       hard_regno[nop] = get_hard_regno (op, true);
1960 
1961       operand_reg[nop] = reg = op;
1962       biggest_mode[nop] = GET_MODE (op);
1963       if (GET_CODE (op) == SUBREG)
1964 	{
1965 	  biggest_mode[nop] = wider_subreg_mode (op);
1966 	  operand_reg[nop] = reg = SUBREG_REG (op);
1967 	}
1968       if (! REG_P (reg))
1969 	operand_reg[nop] = NULL_RTX;
1970       else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1971 	       || ((int) REGNO (reg)
1972 		   == lra_get_elimination_hard_regno (REGNO (reg))))
1973 	no_subreg_reg_operand[nop] = reg;
1974       else
1975 	operand_reg[nop] = no_subreg_reg_operand[nop]
1976 	  /* Just use natural mode for elimination result.  It should
1977 	     be enough for extra constraints hooks.  */
1978 	  = regno_reg_rtx[hard_regno[nop]];
1979     }
1980 
1981   /* The constraints are made of several alternatives.	Each operand's
1982      constraint looks like foo,bar,... with commas separating the
1983      alternatives.  The first alternatives for all operands go
1984      together, the second alternatives go together, etc.
1985 
1986      First loop over alternatives.  */
1987   alternative_mask preferred = curr_id->preferred_alternatives;
1988   if (only_alternative >= 0)
1989     preferred &= ALTERNATIVE_BIT (only_alternative);
1990 
1991   for (nalt = 0; nalt < n_alternatives; nalt++)
1992     {
1993       /* Loop over operands for one constraint alternative.  */
1994       if (!TEST_BIT (preferred, nalt))
1995 	continue;
1996 
1997       bool matching_early_clobber[MAX_RECOG_OPERANDS];
1998       curr_small_class_check++;
1999       overall = losers = addr_losers = 0;
2000       static_reject = reject = reload_nregs = reload_sum = 0;
2001       for (nop = 0; nop < n_operands; nop++)
2002 	{
2003 	  int inc = (curr_static_id
2004 		     ->operand_alternative[nalt * n_operands + nop].reject);
2005 	  if (lra_dump_file != NULL && inc != 0)
2006 	    fprintf (lra_dump_file,
2007 		     "            Staticly defined alt reject+=%d\n", inc);
2008 	  static_reject += inc;
2009 	  matching_early_clobber[nop] = 0;
2010 	}
2011       reject += static_reject;
2012       early_clobbered_regs_num = 0;
2013 
2014       for (nop = 0; nop < n_operands; nop++)
2015 	{
2016 	  const char *p;
2017 	  char *end;
2018 	  int len, c, m, i, opalt_num, this_alternative_matches;
2019 	  bool win, did_match, offmemok, early_clobber_p;
2020 	  /* false => this operand can be reloaded somehow for this
2021 	     alternative.  */
2022 	  bool badop;
2023 	  /* true => this operand can be reloaded if the alternative
2024 	     allows regs.  */
2025 	  bool winreg;
2026 	  /* True if a constant forced into memory would be OK for
2027 	     this operand.  */
2028 	  bool constmemok;
2029 	  enum reg_class this_alternative, this_costly_alternative;
2030 	  HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2031 	  bool this_alternative_match_win, this_alternative_win;
2032 	  bool this_alternative_offmemok;
2033 	  bool scratch_p;
2034 	  machine_mode mode;
2035 	  enum constraint_num cn;
2036 
2037 	  opalt_num = nalt * n_operands + nop;
2038 	  if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2039 	    {
2040 	      /* Fast track for no constraints at all.	*/
2041 	      curr_alt[nop] = NO_REGS;
2042 	      CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2043 	      curr_alt_win[nop] = true;
2044 	      curr_alt_match_win[nop] = false;
2045 	      curr_alt_offmemok[nop] = false;
2046 	      curr_alt_matches[nop] = -1;
2047 	      continue;
2048 	    }
2049 
2050 	  op = no_subreg_reg_operand[nop];
2051 	  mode = curr_operand_mode[nop];
2052 
2053 	  win = did_match = winreg = offmemok = constmemok = false;
2054 	  badop = true;
2055 
2056 	  early_clobber_p = false;
2057 	  p = curr_static_id->operand_alternative[opalt_num].constraint;
2058 
2059 	  this_costly_alternative = this_alternative = NO_REGS;
2060 	  /* We update set of possible hard regs besides its class
2061 	     because reg class might be inaccurate.  For example,
2062 	     union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2063 	     is translated in HI_REGS because classes are merged by
2064 	     pairs and there is no accurate intermediate class.	 */
2065 	  CLEAR_HARD_REG_SET (this_alternative_set);
2066 	  CLEAR_HARD_REG_SET (this_costly_alternative_set);
2067 	  this_alternative_win = false;
2068 	  this_alternative_match_win = false;
2069 	  this_alternative_offmemok = false;
2070 	  this_alternative_matches = -1;
2071 
2072 	  /* An empty constraint should be excluded by the fast
2073 	     track.  */
2074 	  lra_assert (*p != 0 && *p != ',');
2075 
2076 	  op_reject = 0;
2077 	  /* Scan this alternative's specs for this operand; set WIN
2078 	     if the operand fits any letter in this alternative.
2079 	     Otherwise, clear BADOP if this operand could fit some
2080 	     letter after reloads, or set WINREG if this operand could
2081 	     fit after reloads provided the constraint allows some
2082 	     registers.	 */
2083 	  costly_p = false;
2084 	  do
2085 	    {
2086 	      switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2087 		{
2088 		case '\0':
2089 		  len = 0;
2090 		  break;
2091 		case ',':
2092 		  c = '\0';
2093 		  break;
2094 
2095 		case '&':
2096 		  early_clobber_p = true;
2097 		  break;
2098 
2099 		case '$':
2100 		  op_reject += LRA_MAX_REJECT;
2101 		  break;
2102 		case '^':
2103 		  op_reject += LRA_LOSER_COST_FACTOR;
2104 		  break;
2105 
2106 		case '#':
2107 		  /* Ignore rest of this alternative.  */
2108 		  c = '\0';
2109 		  break;
2110 
2111 		case '0':  case '1':  case '2':	 case '3':  case '4':
2112 		case '5':  case '6':  case '7':	 case '8':  case '9':
2113 		  {
2114 		    int m_hregno;
2115 		    bool match_p;
2116 
2117 		    m = strtoul (p, &end, 10);
2118 		    p = end;
2119 		    len = 0;
2120 		    lra_assert (nop > m);
2121 
2122 		    /* Reject matches if we don't know which operand is
2123 		       bigger.  This situation would arguably be a bug in
2124 		       an .md pattern, but could also occur in a user asm.  */
2125 		    if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2126 				    GET_MODE_SIZE (biggest_mode[nop])))
2127 		      break;
2128 
2129 		    /* Don't match wrong asm insn operands for proper
2130 		       diagnostic later.  */
2131 		    if (INSN_CODE (curr_insn) < 0
2132 			&& (curr_operand_mode[m] == BLKmode
2133 			    || curr_operand_mode[nop] == BLKmode)
2134 			&& curr_operand_mode[m] != curr_operand_mode[nop])
2135 		      break;
2136 
2137 		    m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2138 		    /* We are supposed to match a previous operand.
2139 		       If we do, we win if that one did.  If we do
2140 		       not, count both of the operands as losers.
2141 		       (This is too conservative, since most of the
2142 		       time only a single reload insn will be needed
2143 		       to make the two operands win.  As a result,
2144 		       this alternative may be rejected when it is
2145 		       actually desirable.)  */
2146 		    match_p = false;
2147 		    if (operands_match_p (*curr_id->operand_loc[nop],
2148 					  *curr_id->operand_loc[m], m_hregno))
2149 		      {
2150 			/* We should reject matching of an early
2151 			   clobber operand if the matching operand is
2152 			   not dying in the insn.  */
2153 			if (! curr_static_id->operand[m].early_clobber
2154 			    || operand_reg[nop] == NULL_RTX
2155 			    || (find_regno_note (curr_insn, REG_DEAD,
2156 						 REGNO (op))
2157 				|| REGNO (op) == REGNO (operand_reg[m])))
2158 			  match_p = true;
2159 		      }
2160 		    if (match_p)
2161 		      {
2162 			/* If we are matching a non-offsettable
2163 			   address where an offsettable address was
2164 			   expected, then we must reject this
2165 			   combination, because we can't reload
2166 			   it.	*/
2167 			if (curr_alt_offmemok[m]
2168 			    && MEM_P (*curr_id->operand_loc[m])
2169 			    && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2170 			  continue;
2171 		      }
2172 		    else
2173 		      {
2174 			/* Operands don't match.  If the operands are
2175 			   different user defined explicit hard registers,
2176 			   then we cannot make them match.  */
2177 			if ((REG_P (*curr_id->operand_loc[nop])
2178 			     || SUBREG_P (*curr_id->operand_loc[nop]))
2179 			    && (REG_P (*curr_id->operand_loc[m])
2180 				|| SUBREG_P (*curr_id->operand_loc[m])))
2181 			  {
2182 			    rtx nop_reg = *curr_id->operand_loc[nop];
2183 			    if (SUBREG_P (nop_reg))
2184 			      nop_reg = SUBREG_REG (nop_reg);
2185 			    rtx m_reg = *curr_id->operand_loc[m];
2186 			    if (SUBREG_P (m_reg))
2187 			      m_reg = SUBREG_REG (m_reg);
2188 
2189 			    if (REG_P (nop_reg)
2190 				&& HARD_REGISTER_P (nop_reg)
2191 				&& REG_USERVAR_P (nop_reg)
2192 				&& REG_P (m_reg)
2193 				&& HARD_REGISTER_P (m_reg)
2194 				&& REG_USERVAR_P (m_reg))
2195 			      break;
2196 			  }
2197 
2198 			/* Both operands must allow a reload register,
2199 			   otherwise we cannot make them match.  */
2200 			if (curr_alt[m] == NO_REGS)
2201 			  break;
2202 			/* Retroactively mark the operand we had to
2203 			   match as a loser, if it wasn't already and
2204 			   it wasn't matched to a register constraint
2205 			   (e.g it might be matched by memory). */
2206 			if (curr_alt_win[m]
2207 			    && (operand_reg[m] == NULL_RTX
2208 				|| hard_regno[m] < 0))
2209 			  {
2210 			    losers++;
2211 			    reload_nregs
2212 			      += (ira_reg_class_max_nregs[curr_alt[m]]
2213 				  [GET_MODE (*curr_id->operand_loc[m])]);
2214 			  }
2215 
2216 			/* Prefer matching earlyclobber alternative as
2217 			   it results in less hard regs required for
2218 			   the insn than a non-matching earlyclobber
2219 			   alternative.  */
2220 			if (curr_static_id->operand[m].early_clobber)
2221 			  {
2222 			    if (lra_dump_file != NULL)
2223 			      fprintf
2224 				(lra_dump_file,
2225 				 "            %d Matching earlyclobber alt:"
2226 				 " reject--\n",
2227 				 nop);
2228 			    if (!matching_early_clobber[m])
2229 			      {
2230 				reject--;
2231 				matching_early_clobber[m] = 1;
2232 			      }
2233 			  }
2234 			/* Otherwise we prefer no matching
2235 			   alternatives because it gives more freedom
2236 			   in RA.  */
2237 			else if (operand_reg[nop] == NULL_RTX
2238 				 || (find_regno_note (curr_insn, REG_DEAD,
2239 						      REGNO (operand_reg[nop]))
2240 				     == NULL_RTX))
2241 			  {
2242 			    if (lra_dump_file != NULL)
2243 			      fprintf
2244 				(lra_dump_file,
2245 				 "            %d Matching alt: reject+=2\n",
2246 				 nop);
2247 			    reject += 2;
2248 			  }
2249 		      }
2250 		    /* If we have to reload this operand and some
2251 		       previous operand also had to match the same
2252 		       thing as this operand, we don't know how to do
2253 		       that.  */
2254 		    if (!match_p || !curr_alt_win[m])
2255 		      {
2256 			for (i = 0; i < nop; i++)
2257 			  if (curr_alt_matches[i] == m)
2258 			    break;
2259 			if (i < nop)
2260 			  break;
2261 		      }
2262 		    else
2263 		      did_match = true;
2264 
2265 		    this_alternative_matches = m;
2266 		    /* This can be fixed with reloads if the operand
2267 		       we are supposed to match can be fixed with
2268 		       reloads. */
2269 		    badop = false;
2270 		    this_alternative = curr_alt[m];
2271 		    COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2272 		    winreg = this_alternative != NO_REGS;
2273 		    break;
2274 		  }
2275 
2276 		case 'g':
2277 		  if (MEM_P (op)
2278 		      || general_constant_p (op)
2279 		      || spilled_pseudo_p (op))
2280 		    win = true;
2281 		  cl = GENERAL_REGS;
2282 		  goto reg;
2283 
2284 		default:
2285 		  cn = lookup_constraint (p);
2286 		  switch (get_constraint_type (cn))
2287 		    {
2288 		    case CT_REGISTER:
2289 		      cl = reg_class_for_constraint (cn);
2290 		      if (cl != NO_REGS)
2291 			goto reg;
2292 		      break;
2293 
2294 		    case CT_CONST_INT:
2295 		      if (CONST_INT_P (op)
2296 			  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2297 			win = true;
2298 		      break;
2299 
2300 		    case CT_MEMORY:
2301 		      if (MEM_P (op)
2302 			  && satisfies_memory_constraint_p (op, cn))
2303 			win = true;
2304 		      else if (spilled_pseudo_p (op))
2305 			win = true;
2306 
2307 		      /* If we didn't already win, we can reload constants
2308 			 via force_const_mem or put the pseudo value into
2309 			 memory, or make other memory by reloading the
2310 			 address like for 'o'.  */
2311 		      if (CONST_POOL_OK_P (mode, op)
2312 			  || MEM_P (op) || REG_P (op)
2313 			  /* We can restore the equiv insn by a
2314 			     reload.  */
2315 			  || equiv_substition_p[nop])
2316 			badop = false;
2317 		      constmemok = true;
2318 		      offmemok = true;
2319 		      break;
2320 
2321 		    case CT_ADDRESS:
2322 		      /* An asm operand with an address constraint
2323 			 that doesn't satisfy address_operand has
2324 			 is_address cleared, so that we don't try to
2325 			 make a non-address fit.  */
2326 		      if (!curr_static_id->operand[nop].is_address)
2327 			break;
2328 		      /* If we didn't already win, we can reload the address
2329 			 into a base register.  */
2330 		      if (satisfies_address_constraint_p (op, cn))
2331 			win = true;
2332 		      cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2333 					   ADDRESS, SCRATCH);
2334 		      badop = false;
2335 		      goto reg;
2336 
2337 		    case CT_FIXED_FORM:
2338 		      if (constraint_satisfied_p (op, cn))
2339 			win = true;
2340 		      break;
2341 
2342 		    case CT_SPECIAL_MEMORY:
2343 		      if (MEM_P (op)
2344 			  && satisfies_memory_constraint_p (op, cn))
2345 			win = true;
2346 		      else if (spilled_pseudo_p (op))
2347 			win = true;
2348 		      break;
2349 		    }
2350 		  break;
2351 
2352 		reg:
2353 		  if (mode == BLKmode)
2354 		    break;
2355 		  this_alternative = reg_class_subunion[this_alternative][cl];
2356 		  IOR_HARD_REG_SET (this_alternative_set,
2357 				    reg_class_contents[cl]);
2358 		  if (costly_p)
2359 		    {
2360 		      this_costly_alternative
2361 			= reg_class_subunion[this_costly_alternative][cl];
2362 		      IOR_HARD_REG_SET (this_costly_alternative_set,
2363 					reg_class_contents[cl]);
2364 		    }
2365 		  winreg = true;
2366 		  if (REG_P (op))
2367 		    {
2368 		      if (hard_regno[nop] >= 0
2369 			  && in_hard_reg_set_p (this_alternative_set,
2370 						mode, hard_regno[nop]))
2371 			win = true;
2372 		      else if (hard_regno[nop] < 0
2373 			       && in_class_p (op, this_alternative, NULL))
2374 			win = true;
2375 		    }
2376 		  break;
2377 		}
2378 	      if (c != ' ' && c != '\t')
2379 		costly_p = c == '*';
2380 	    }
2381 	  while ((p += len), c);
2382 
2383 	  scratch_p = (operand_reg[nop] != NULL_RTX
2384 		       && lra_former_scratch_p (REGNO (operand_reg[nop])));
2385 	  /* Record which operands fit this alternative.  */
2386 	  if (win)
2387 	    {
2388 	      this_alternative_win = true;
2389 	      if (operand_reg[nop] != NULL_RTX)
2390 		{
2391 		  if (hard_regno[nop] >= 0)
2392 		    {
2393 		      if (in_hard_reg_set_p (this_costly_alternative_set,
2394 					     mode, hard_regno[nop]))
2395 			{
2396 			  if (lra_dump_file != NULL)
2397 			    fprintf (lra_dump_file,
2398 				     "            %d Costly set: reject++\n",
2399 				     nop);
2400 			  reject++;
2401 			}
2402 		    }
2403 		  else
2404 		    {
2405 		      /* Prefer won reg to spilled pseudo under other
2406 			 equal conditions for possibe inheritance.  */
2407 		      if (! scratch_p)
2408 			{
2409 			  if (lra_dump_file != NULL)
2410 			    fprintf
2411 			      (lra_dump_file,
2412 			       "            %d Non pseudo reload: reject++\n",
2413 			       nop);
2414 			  reject++;
2415 			}
2416 		      if (in_class_p (operand_reg[nop],
2417 				      this_costly_alternative, NULL))
2418 			{
2419 			  if (lra_dump_file != NULL)
2420 			    fprintf
2421 			      (lra_dump_file,
2422 			       "            %d Non pseudo costly reload:"
2423 			       " reject++\n",
2424 			       nop);
2425 			  reject++;
2426 			}
2427 		    }
2428 		  /* We simulate the behavior of old reload here.
2429 		     Although scratches need hard registers and it
2430 		     might result in spilling other pseudos, no reload
2431 		     insns are generated for the scratches.  So it
2432 		     might cost something but probably less than old
2433 		     reload pass believes.  */
2434 		  if (scratch_p)
2435 		    {
2436 		      if (lra_dump_file != NULL)
2437 			fprintf (lra_dump_file,
2438 				 "            %d Scratch win: reject+=2\n",
2439 				 nop);
2440 		      reject += 2;
2441 		    }
2442 		}
2443 	    }
2444 	  else if (did_match)
2445 	    this_alternative_match_win = true;
2446 	  else
2447 	    {
2448 	      int const_to_mem = 0;
2449 	      bool no_regs_p;
2450 
2451 	      reject += op_reject;
2452 	      /* Never do output reload of stack pointer.  It makes
2453 		 impossible to do elimination when SP is changed in
2454 		 RTL.  */
2455 	      if (op == stack_pointer_rtx && ! frame_pointer_needed
2456 		  && curr_static_id->operand[nop].type != OP_IN)
2457 		goto fail;
2458 
2459 	      /* If this alternative asks for a specific reg class, see if there
2460 		 is at least one allocatable register in that class.  */
2461 	      no_regs_p
2462 		= (this_alternative == NO_REGS
2463 		   || (hard_reg_set_subset_p
2464 		       (reg_class_contents[this_alternative],
2465 			lra_no_alloc_regs)));
2466 
2467 	      /* For asms, verify that the class for this alternative is possible
2468 		 for the mode that is specified.  */
2469 	      if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2470 		{
2471 		  int i;
2472 		  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2473 		    if (targetm.hard_regno_mode_ok (i, mode)
2474 			&& in_hard_reg_set_p (reg_class_contents[this_alternative],
2475 					      mode, i))
2476 		      break;
2477 		  if (i == FIRST_PSEUDO_REGISTER)
2478 		    winreg = false;
2479 		}
2480 
2481 	      /* If this operand accepts a register, and if the
2482 		 register class has at least one allocatable register,
2483 		 then this operand can be reloaded.  */
2484 	      if (winreg && !no_regs_p)
2485 		badop = false;
2486 
2487 	      if (badop)
2488 		{
2489 		  if (lra_dump_file != NULL)
2490 		    fprintf (lra_dump_file,
2491 			     "            alt=%d: Bad operand -- refuse\n",
2492 			     nalt);
2493 		  goto fail;
2494 		}
2495 
2496 	      if (this_alternative != NO_REGS)
2497 		{
2498 		  HARD_REG_SET available_regs;
2499 
2500 		  COPY_HARD_REG_SET (available_regs,
2501 				     reg_class_contents[this_alternative]);
2502 		  AND_COMPL_HARD_REG_SET
2503 		    (available_regs,
2504 		     ira_prohibited_class_mode_regs[this_alternative][mode]);
2505 		  AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2506 		  if (hard_reg_set_empty_p (available_regs))
2507 		    {
2508 		      /* There are no hard regs holding a value of given
2509 			 mode.  */
2510 		      if (offmemok)
2511 			{
2512 			  this_alternative = NO_REGS;
2513 			  if (lra_dump_file != NULL)
2514 			    fprintf (lra_dump_file,
2515 				     "            %d Using memory because of"
2516 				     " a bad mode: reject+=2\n",
2517 				     nop);
2518 			  reject += 2;
2519 			}
2520 		      else
2521 			{
2522 			  if (lra_dump_file != NULL)
2523 			    fprintf (lra_dump_file,
2524 				     "            alt=%d: Wrong mode -- refuse\n",
2525 				     nalt);
2526 			  goto fail;
2527 			}
2528 		    }
2529 		}
2530 
2531 	      /* If not assigned pseudo has a class which a subset of
2532 		 required reg class, it is a less costly alternative
2533 		 as the pseudo still can get a hard reg of necessary
2534 		 class.  */
2535 	      if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2536 		  && (cl = get_reg_class (REGNO (op))) != NO_REGS
2537 		  && ira_class_subset_p[this_alternative][cl])
2538 		{
2539 		  if (lra_dump_file != NULL)
2540 		    fprintf
2541 		      (lra_dump_file,
2542 		       "            %d Super set class reg: reject-=3\n", nop);
2543 		  reject -= 3;
2544 		}
2545 
2546 	      this_alternative_offmemok = offmemok;
2547 	      if (this_costly_alternative != NO_REGS)
2548 		{
2549 		  if (lra_dump_file != NULL)
2550 		    fprintf (lra_dump_file,
2551 			     "            %d Costly loser: reject++\n", nop);
2552 		  reject++;
2553 		}
2554 	      /* If the operand is dying, has a matching constraint,
2555 		 and satisfies constraints of the matched operand
2556 		 which failed to satisfy the own constraints, most probably
2557 		 the reload for this operand will be gone.  */
2558 	      if (this_alternative_matches >= 0
2559 		  && !curr_alt_win[this_alternative_matches]
2560 		  && REG_P (op)
2561 		  && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2562 		  && (hard_regno[nop] >= 0
2563 		      ? in_hard_reg_set_p (this_alternative_set,
2564 					   mode, hard_regno[nop])
2565 		      : in_class_p (op, this_alternative, NULL)))
2566 		{
2567 		  if (lra_dump_file != NULL)
2568 		    fprintf
2569 		      (lra_dump_file,
2570 		       "            %d Dying matched operand reload: reject++\n",
2571 		       nop);
2572 		  reject++;
2573 		}
2574 	      else
2575 		{
2576 		  /* Strict_low_part requires to reload the register
2577 		     not the sub-register.  In this case we should
2578 		     check that a final reload hard reg can hold the
2579 		     value mode.  */
2580 		  if (curr_static_id->operand[nop].strict_low
2581 		      && REG_P (op)
2582 		      && hard_regno[nop] < 0
2583 		      && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2584 		      && ira_class_hard_regs_num[this_alternative] > 0
2585 		      && (!targetm.hard_regno_mode_ok
2586 			  (ira_class_hard_regs[this_alternative][0],
2587 			   GET_MODE (*curr_id->operand_loc[nop]))))
2588 		    {
2589 		      if (lra_dump_file != NULL)
2590 			fprintf
2591 			  (lra_dump_file,
2592 			   "            alt=%d: Strict low subreg reload -- refuse\n",
2593 			   nalt);
2594 		      goto fail;
2595 		    }
2596 		  losers++;
2597 		}
2598 	      if (operand_reg[nop] != NULL_RTX
2599 		  /* Output operands and matched input operands are
2600 		     not inherited.  The following conditions do not
2601 		     exactly describe the previous statement but they
2602 		     are pretty close.  */
2603 		  && curr_static_id->operand[nop].type != OP_OUT
2604 		  && (this_alternative_matches < 0
2605 		      || curr_static_id->operand[nop].type != OP_IN))
2606 		{
2607 		  int last_reload = (lra_reg_info[ORIGINAL_REGNO
2608 						  (operand_reg[nop])]
2609 				     .last_reload);
2610 
2611 		  /* The value of reload_sum has sense only if we
2612 		     process insns in their order.  It happens only on
2613 		     the first constraints sub-pass when we do most of
2614 		     reload work.  */
2615 		  if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2616 		    reload_sum += last_reload - bb_reload_num;
2617 		}
2618 	      /* If this is a constant that is reloaded into the
2619 		 desired class by copying it to memory first, count
2620 		 that as another reload.  This is consistent with
2621 		 other code and is required to avoid choosing another
2622 		 alternative when the constant is moved into memory.
2623 		 Note that the test here is precisely the same as in
2624 		 the code below that calls force_const_mem.  */
2625 	      if (CONST_POOL_OK_P (mode, op)
2626 		  && ((targetm.preferred_reload_class
2627 		       (op, this_alternative) == NO_REGS)
2628 		      || no_input_reloads_p))
2629 		{
2630 		  const_to_mem = 1;
2631 		  if (! no_regs_p)
2632 		    losers++;
2633 		}
2634 
2635 	      /* Alternative loses if it requires a type of reload not
2636 		 permitted for this insn.  We can always reload
2637 		 objects with a REG_UNUSED note.  */
2638 	      if ((curr_static_id->operand[nop].type != OP_IN
2639 		   && no_output_reloads_p
2640 		   && ! find_reg_note (curr_insn, REG_UNUSED, op))
2641 		  || (curr_static_id->operand[nop].type != OP_OUT
2642 		      && no_input_reloads_p && ! const_to_mem)
2643 		  || (this_alternative_matches >= 0
2644 		      && (no_input_reloads_p
2645 			  || (no_output_reloads_p
2646 			      && (curr_static_id->operand
2647 				  [this_alternative_matches].type != OP_IN)
2648 			      && ! find_reg_note (curr_insn, REG_UNUSED,
2649 						  no_subreg_reg_operand
2650 						  [this_alternative_matches])))))
2651 		{
2652 		  if (lra_dump_file != NULL)
2653 		    fprintf
2654 		      (lra_dump_file,
2655 		       "            alt=%d: No input/otput reload -- refuse\n",
2656 		       nalt);
2657 		  goto fail;
2658 		}
2659 
2660 	      /* Alternative loses if it required class pseudo cannot
2661 		 hold value of required mode.  Such insns can be
2662 		 described by insn definitions with mode iterators.  */
2663 	      if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2664 		  && ! hard_reg_set_empty_p (this_alternative_set)
2665 		  /* It is common practice for constraints to use a
2666 		     class which does not have actually enough regs to
2667 		     hold the value (e.g. x86 AREG for mode requiring
2668 		     more one general reg).  Therefore we have 2
2669 		     conditions to check that the reload pseudo cannot
2670 		     hold the mode value.  */
2671 		  && (!targetm.hard_regno_mode_ok
2672 		      (ira_class_hard_regs[this_alternative][0],
2673 		       GET_MODE (*curr_id->operand_loc[nop])))
2674 		  /* The above condition is not enough as the first
2675 		     reg in ira_class_hard_regs can be not aligned for
2676 		     multi-words mode values.  */
2677 		  && (prohibited_class_reg_set_mode_p
2678 		      (this_alternative, this_alternative_set,
2679 		       GET_MODE (*curr_id->operand_loc[nop]))))
2680 		{
2681 		  if (lra_dump_file != NULL)
2682 		    fprintf (lra_dump_file,
2683 			     "            alt=%d: reload pseudo for op %d "
2684 			     "cannot hold the mode value -- refuse\n",
2685 			     nalt, nop);
2686 		  goto fail;
2687 		}
2688 
2689 	      /* Check strong discouragement of reload of non-constant
2690 		 into class THIS_ALTERNATIVE.  */
2691 	      if (! CONSTANT_P (op) && ! no_regs_p
2692 		  && (targetm.preferred_reload_class
2693 		      (op, this_alternative) == NO_REGS
2694 		      || (curr_static_id->operand[nop].type == OP_OUT
2695 			  && (targetm.preferred_output_reload_class
2696 			      (op, this_alternative) == NO_REGS))))
2697 		{
2698 		  if (lra_dump_file != NULL)
2699 		    fprintf (lra_dump_file,
2700 			     "            %d Non-prefered reload: reject+=%d\n",
2701 			     nop, LRA_MAX_REJECT);
2702 		  reject += LRA_MAX_REJECT;
2703 		}
2704 
2705 	      if (! (MEM_P (op) && offmemok)
2706 		  && ! (const_to_mem && constmemok))
2707 		{
2708 		  /* We prefer to reload pseudos over reloading other
2709 		     things, since such reloads may be able to be
2710 		     eliminated later.  So bump REJECT in other cases.
2711 		     Don't do this in the case where we are forcing a
2712 		     constant into memory and it will then win since
2713 		     we don't want to have a different alternative
2714 		     match then.  */
2715 		  if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2716 		    {
2717 		      if (lra_dump_file != NULL)
2718 			fprintf
2719 			  (lra_dump_file,
2720 			   "            %d Non-pseudo reload: reject+=2\n",
2721 			   nop);
2722 		      reject += 2;
2723 		    }
2724 
2725 		  if (! no_regs_p)
2726 		    reload_nregs
2727 		      += ira_reg_class_max_nregs[this_alternative][mode];
2728 
2729 		  if (SMALL_REGISTER_CLASS_P (this_alternative))
2730 		    {
2731 		      if (lra_dump_file != NULL)
2732 			fprintf
2733 			  (lra_dump_file,
2734 			   "            %d Small class reload: reject+=%d\n",
2735 			   nop, LRA_LOSER_COST_FACTOR / 2);
2736 		      reject += LRA_LOSER_COST_FACTOR / 2;
2737 		    }
2738 		}
2739 
2740 	      /* We are trying to spill pseudo into memory.  It is
2741 		 usually more costly than moving to a hard register
2742 		 although it might takes the same number of
2743 		 reloads.
2744 
2745 		 Non-pseudo spill may happen also.  Suppose a target allows both
2746 		 register and memory in the operand constraint alternatives,
2747 		 then it's typical that an eliminable register has a substition
2748 		 of "base + offset" which can either be reloaded by a simple
2749 		 "new_reg <= base + offset" which will match the register
2750 		 constraint, or a similar reg addition followed by further spill
2751 		 to and reload from memory which will match the memory
2752 		 constraint, but this memory spill will be much more costly
2753 		 usually.
2754 
2755 		 Code below increases the reject for both pseudo and non-pseudo
2756 		 spill.  */
2757 	      if (no_regs_p
2758 		  && !(MEM_P (op) && offmemok)
2759 		  && !(REG_P (op) && hard_regno[nop] < 0))
2760 		{
2761 		  if (lra_dump_file != NULL)
2762 		    fprintf
2763 		      (lra_dump_file,
2764 		       "            %d Spill %spseudo into memory: reject+=3\n",
2765 		       nop, REG_P (op) ? "" : "Non-");
2766 		  reject += 3;
2767 		  if (VECTOR_MODE_P (mode))
2768 		    {
2769 		      /* Spilling vectors into memory is usually more
2770 			 costly as they contain big values.  */
2771 		      if (lra_dump_file != NULL)
2772 			fprintf
2773 			  (lra_dump_file,
2774 			   "            %d Spill vector pseudo: reject+=2\n",
2775 			   nop);
2776 		      reject += 2;
2777 		    }
2778 		}
2779 
2780 	      /* When we use an operand requiring memory in given
2781 		 alternative, the insn should write *and* read the
2782 		 value to/from memory it is costly in comparison with
2783 		 an insn alternative which does not use memory
2784 		 (e.g. register or immediate operand).  We exclude
2785 		 memory operand for such case as we can satisfy the
2786 		 memory constraints by reloading address.  */
2787 	      if (no_regs_p && offmemok && !MEM_P (op))
2788 		{
2789 		  if (lra_dump_file != NULL)
2790 		    fprintf
2791 		      (lra_dump_file,
2792 		       "            Using memory insn operand %d: reject+=3\n",
2793 		       nop);
2794 		  reject += 3;
2795 		}
2796 
2797 	      /* If reload requires moving value through secondary
2798 		 memory, it will need one more insn at least.  */
2799 	      if (this_alternative != NO_REGS
2800 		  && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2801 		  && ((curr_static_id->operand[nop].type != OP_OUT
2802 		       && targetm.secondary_memory_needed (GET_MODE (op), cl,
2803 							   this_alternative))
2804 		      || (curr_static_id->operand[nop].type != OP_IN
2805 			  && (targetm.secondary_memory_needed
2806 			      (GET_MODE (op), this_alternative, cl)))))
2807 		losers++;
2808 
2809 	      if (MEM_P (op) && offmemok)
2810 		addr_losers++;
2811 	      else
2812 		{
2813 		  /* Input reloads can be inherited more often than
2814 		     output reloads can be removed, so penalize output
2815 		     reloads.  */
2816 		  if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2817 		    {
2818 		      if (lra_dump_file != NULL)
2819 			fprintf
2820 			  (lra_dump_file,
2821 			   "            %d Non input pseudo reload: reject++\n",
2822 			   nop);
2823 		      reject++;
2824 		    }
2825 
2826 		  if (curr_static_id->operand[nop].type == OP_INOUT)
2827 		    {
2828 		      if (lra_dump_file != NULL)
2829 			fprintf
2830 			  (lra_dump_file,
2831 			   "            %d Input/Output reload: reject+=%d\n",
2832 			   nop, LRA_LOSER_COST_FACTOR);
2833 		      reject += LRA_LOSER_COST_FACTOR;
2834 		    }
2835 		}
2836 	    }
2837 
2838 	  if (early_clobber_p && ! scratch_p)
2839 	    {
2840 	      if (lra_dump_file != NULL)
2841 		fprintf (lra_dump_file,
2842 			 "            %d Early clobber: reject++\n", nop);
2843 	      reject++;
2844 	    }
2845 	  /* ??? We check early clobbers after processing all operands
2846 	     (see loop below) and there we update the costs more.
2847 	     Should we update the cost (may be approximately) here
2848 	     because of early clobber register reloads or it is a rare
2849 	     or non-important thing to be worth to do it.  */
2850 	  overall = (losers * LRA_LOSER_COST_FACTOR + reject
2851 		     - (addr_losers == losers ? static_reject : 0));
2852 	  if ((best_losers == 0 || losers != 0) && best_overall < overall)
2853             {
2854               if (lra_dump_file != NULL)
2855 		fprintf (lra_dump_file,
2856 			 "            alt=%d,overall=%d,losers=%d -- refuse\n",
2857 			 nalt, overall, losers);
2858               goto fail;
2859             }
2860 
2861 	  if (update_and_check_small_class_inputs (nop, this_alternative))
2862 	    {
2863 	      if (lra_dump_file != NULL)
2864 		fprintf (lra_dump_file,
2865 			 "            alt=%d, not enough small class regs -- refuse\n",
2866 			 nalt);
2867 	      goto fail;
2868 	    }
2869 	  curr_alt[nop] = this_alternative;
2870 	  COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2871 	  curr_alt_win[nop] = this_alternative_win;
2872 	  curr_alt_match_win[nop] = this_alternative_match_win;
2873 	  curr_alt_offmemok[nop] = this_alternative_offmemok;
2874 	  curr_alt_matches[nop] = this_alternative_matches;
2875 
2876 	  if (this_alternative_matches >= 0
2877 	      && !did_match && !this_alternative_win)
2878 	    curr_alt_win[this_alternative_matches] = false;
2879 
2880 	  if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2881 	    early_clobbered_nops[early_clobbered_regs_num++] = nop;
2882 	}
2883 
2884       if (curr_insn_set != NULL_RTX && n_operands == 2
2885 	  /* Prevent processing non-move insns.  */
2886 	  && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2887 	      || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2888 	  && ((! curr_alt_win[0] && ! curr_alt_win[1]
2889 	       && REG_P (no_subreg_reg_operand[0])
2890 	       && REG_P (no_subreg_reg_operand[1])
2891 	       && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2892 		   || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2893 	      || (! curr_alt_win[0] && curr_alt_win[1]
2894 		  && REG_P (no_subreg_reg_operand[1])
2895 		  /* Check that we reload memory not the memory
2896 		     address.  */
2897 		  && ! (curr_alt_offmemok[0]
2898 			&& MEM_P (no_subreg_reg_operand[0]))
2899 		  && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2900 	      || (curr_alt_win[0] && ! curr_alt_win[1]
2901 		  && REG_P (no_subreg_reg_operand[0])
2902 		  /* Check that we reload memory not the memory
2903 		     address.  */
2904 		  && ! (curr_alt_offmemok[1]
2905 			&& MEM_P (no_subreg_reg_operand[1]))
2906 		  && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2907 		  && (! CONST_POOL_OK_P (curr_operand_mode[1],
2908 					 no_subreg_reg_operand[1])
2909 		      || (targetm.preferred_reload_class
2910 			  (no_subreg_reg_operand[1],
2911 			   (enum reg_class) curr_alt[1]) != NO_REGS))
2912 		  /* If it is a result of recent elimination in move
2913 		     insn we can transform it into an add still by
2914 		     using this alternative.  */
2915 		  && GET_CODE (no_subreg_reg_operand[1]) != PLUS
2916 		  /* Likewise if the source has been replaced with an
2917 		     equivalent value.  This only happens once -- the reload
2918 		     will use the equivalent value instead of the register it
2919 		     replaces -- so there should be no danger of cycling.  */
2920 		  && !equiv_substition_p[1])))
2921 	{
2922 	  /* We have a move insn and a new reload insn will be similar
2923 	     to the current insn.  We should avoid such situation as
2924 	     it results in LRA cycling.  */
2925 	  if (lra_dump_file != NULL)
2926 	    fprintf (lra_dump_file,
2927 		     "            Cycle danger: overall += LRA_MAX_REJECT\n");
2928 	  overall += LRA_MAX_REJECT;
2929 	}
2930       ok_p = true;
2931       curr_alt_dont_inherit_ops_num = 0;
2932       for (nop = 0; nop < early_clobbered_regs_num; nop++)
2933 	{
2934 	  int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2935 	  HARD_REG_SET temp_set;
2936 
2937 	  i = early_clobbered_nops[nop];
2938 	  if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2939 	      || hard_regno[i] < 0)
2940 	    continue;
2941 	  lra_assert (operand_reg[i] != NULL_RTX);
2942 	  clobbered_hard_regno = hard_regno[i];
2943 	  CLEAR_HARD_REG_SET (temp_set);
2944 	  add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2945 	  first_conflict_j = last_conflict_j = -1;
2946 	  for (j = 0; j < n_operands; j++)
2947 	    if (j == i
2948 		/* We don't want process insides of match_operator and
2949 		   match_parallel because otherwise we would process
2950 		   their operands once again generating a wrong
2951 		   code.  */
2952 		|| curr_static_id->operand[j].is_operator)
2953 	      continue;
2954 	    else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2955 		     || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2956 	      continue;
2957 	    /* If we don't reload j-th operand, check conflicts.  */
2958 	    else if ((curr_alt_win[j] || curr_alt_match_win[j])
2959 		     && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2960 	      {
2961 		if (first_conflict_j < 0)
2962 		  first_conflict_j = j;
2963 		last_conflict_j = j;
2964 		/* Both the earlyclobber operand and conflicting operand
2965 		   cannot both be user defined hard registers.  */
2966 		if (HARD_REGISTER_P (operand_reg[i])
2967 		    && REG_USERVAR_P (operand_reg[i])
2968 		    && operand_reg[j] != NULL_RTX
2969 		    && HARD_REGISTER_P (operand_reg[j])
2970 		    && REG_USERVAR_P (operand_reg[j]))
2971 		  fatal_insn ("unable to generate reloads for "
2972 			      "impossible constraints:", curr_insn);
2973 	      }
2974 	  if (last_conflict_j < 0)
2975 	    continue;
2976 
2977 	  /* If an earlyclobber operand conflicts with another non-matching
2978 	     operand (ie, they have been assigned the same hard register),
2979 	     then it is better to reload the other operand, as there may
2980 	     exist yet another operand with a matching constraint associated
2981 	     with the earlyclobber operand.  However, if one of the operands
2982 	     is an explicit use of a hard register, then we must reload the
2983 	     other non-hard register operand.  */
2984 	  if (HARD_REGISTER_P (operand_reg[i])
2985 	      || (first_conflict_j == last_conflict_j
2986 		  && operand_reg[last_conflict_j] != NULL_RTX
2987 		  && !curr_alt_match_win[last_conflict_j]
2988 		  && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
2989 	    {
2990 	      curr_alt_win[last_conflict_j] = false;
2991 	      curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2992 		= last_conflict_j;
2993 	      losers++;
2994 	      if (lra_dump_file != NULL)
2995 		fprintf
2996 		  (lra_dump_file,
2997 		   "            %d Conflict early clobber reload: reject--\n",
2998 		   i);
2999 	    }
3000 	  else
3001 	    {
3002 	      /* We need to reload early clobbered register and the
3003 		 matched registers.  */
3004 	      for (j = 0; j < n_operands; j++)
3005 		if (curr_alt_matches[j] == i)
3006 		  {
3007 		    curr_alt_match_win[j] = false;
3008 		    losers++;
3009 		    overall += LRA_LOSER_COST_FACTOR;
3010 		  }
3011 	      if (! curr_alt_match_win[i])
3012 		curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
3013 	      else
3014 		{
3015 		  /* Remember pseudos used for match reloads are never
3016 		     inherited.  */
3017 		  lra_assert (curr_alt_matches[i] >= 0);
3018 		  curr_alt_win[curr_alt_matches[i]] = false;
3019 		}
3020 	      curr_alt_win[i] = curr_alt_match_win[i] = false;
3021 	      losers++;
3022 	      if (lra_dump_file != NULL)
3023 		fprintf
3024 		  (lra_dump_file,
3025 		   "            %d Matched conflict early clobber reloads: "
3026 		   "reject--\n",
3027 		   i);
3028 	    }
3029 	  /* Early clobber was already reflected in REJECT. */
3030 	  if (!matching_early_clobber[i])
3031 	    {
3032 	      lra_assert (reject > 0);
3033 	      reject--;
3034 	      matching_early_clobber[i] = 1;
3035 	    }
3036 	  overall += LRA_LOSER_COST_FACTOR - 1;
3037 	}
3038       if (lra_dump_file != NULL)
3039 	fprintf (lra_dump_file, "          alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
3040 		 nalt, overall, losers, reload_nregs);
3041 
3042       /* If this alternative can be made to work by reloading, and it
3043 	 needs less reloading than the others checked so far, record
3044 	 it as the chosen goal for reloading.  */
3045       if ((best_losers != 0 && losers == 0)
3046 	  || (((best_losers == 0 && losers == 0)
3047 	       || (best_losers != 0 && losers != 0))
3048 	      && (best_overall > overall
3049 		  || (best_overall == overall
3050 		      /* If the cost of the reloads is the same,
3051 			 prefer alternative which requires minimal
3052 			 number of reload regs.  */
3053 		      && (reload_nregs < best_reload_nregs
3054 			  || (reload_nregs == best_reload_nregs
3055 			      && (best_reload_sum < reload_sum
3056 				  || (best_reload_sum == reload_sum
3057 				      && nalt < goal_alt_number))))))))
3058 	{
3059 	  for (nop = 0; nop < n_operands; nop++)
3060 	    {
3061 	      goal_alt_win[nop] = curr_alt_win[nop];
3062 	      goal_alt_match_win[nop] = curr_alt_match_win[nop];
3063 	      goal_alt_matches[nop] = curr_alt_matches[nop];
3064 	      goal_alt[nop] = curr_alt[nop];
3065 	      goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3066 	    }
3067 	  goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3068 	  for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3069 	    goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3070 	  goal_alt_swapped = curr_swapped;
3071 	  best_overall = overall;
3072 	  best_losers = losers;
3073 	  best_reload_nregs = reload_nregs;
3074 	  best_reload_sum = reload_sum;
3075 	  goal_alt_number = nalt;
3076 	}
3077       if (losers == 0)
3078 	/* Everything is satisfied.  Do not process alternatives
3079 	   anymore.  */
3080 	break;
3081     fail:
3082       ;
3083     }
3084   return ok_p;
3085 }
3086 
3087 /* Make reload base reg from address AD.  */
3088 static rtx
3089 base_to_reg (struct address_info *ad)
3090 {
3091   enum reg_class cl;
3092   int code = -1;
3093   rtx new_inner = NULL_RTX;
3094   rtx new_reg = NULL_RTX;
3095   rtx_insn *insn;
3096   rtx_insn *last_insn = get_last_insn();
3097 
3098   lra_assert (ad->disp == ad->disp_term);
3099   cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3100                        get_index_code (ad));
3101   new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3102                                 cl, "base");
3103   new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3104                                    ad->disp_term == NULL
3105                                    ? const0_rtx
3106                                    : *ad->disp_term);
3107   if (!valid_address_p (ad->mode, new_inner, ad->as))
3108     return NULL_RTX;
3109   insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3110   code = recog_memoized (insn);
3111   if (code < 0)
3112     {
3113       delete_insns_since (last_insn);
3114       return NULL_RTX;
3115     }
3116 
3117   return new_inner;
3118 }
3119 
3120 /* Make reload base reg + DISP from address AD.  Return the new pseudo.  */
3121 static rtx
3122 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3123 {
3124   enum reg_class cl;
3125   rtx new_reg;
3126 
3127   lra_assert (ad->base == ad->base_term);
3128   cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3129 		       get_index_code (ad));
3130   new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3131 				cl, "base + disp");
3132   lra_emit_add (new_reg, *ad->base_term, disp);
3133   return new_reg;
3134 }
3135 
3136 /* Make reload of index part of address AD.  Return the new
3137    pseudo.  */
3138 static rtx
3139 index_part_to_reg (struct address_info *ad)
3140 {
3141   rtx new_reg;
3142 
3143   new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3144 				INDEX_REG_CLASS, "index term");
3145   expand_mult (GET_MODE (*ad->index), *ad->index_term,
3146 	       GEN_INT (get_index_scale (ad)), new_reg, 1);
3147   return new_reg;
3148 }
3149 
3150 /* Return true if we can add a displacement to address AD, even if that
3151    makes the address invalid.  The fix-up code requires any new address
3152    to be the sum of the BASE_TERM, INDEX and DISP_TERM fields.  */
3153 static bool
3154 can_add_disp_p (struct address_info *ad)
3155 {
3156   return (!ad->autoinc_p
3157 	  && ad->segment == NULL
3158 	  && ad->base == ad->base_term
3159 	  && ad->disp == ad->disp_term);
3160 }
3161 
3162 /* Make equiv substitution in address AD.  Return true if a substitution
3163    was made.  */
3164 static bool
3165 equiv_address_substitution (struct address_info *ad)
3166 {
3167   rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3168   poly_int64 disp;
3169   HOST_WIDE_INT scale;
3170   bool change_p;
3171 
3172   base_term = strip_subreg (ad->base_term);
3173   if (base_term == NULL)
3174     base_reg = new_base_reg = NULL_RTX;
3175   else
3176     {
3177       base_reg = *base_term;
3178       new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3179     }
3180   index_term = strip_subreg (ad->index_term);
3181   if (index_term == NULL)
3182     index_reg = new_index_reg = NULL_RTX;
3183   else
3184     {
3185       index_reg = *index_term;
3186       new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3187     }
3188   if (base_reg == new_base_reg && index_reg == new_index_reg)
3189     return false;
3190   disp = 0;
3191   change_p = false;
3192   if (lra_dump_file != NULL)
3193     {
3194       fprintf (lra_dump_file, "Changing address in insn %d ",
3195 	       INSN_UID (curr_insn));
3196       dump_value_slim (lra_dump_file, *ad->outer, 1);
3197     }
3198   if (base_reg != new_base_reg)
3199     {
3200       poly_int64 offset;
3201       if (REG_P (new_base_reg))
3202 	{
3203 	  *base_term = new_base_reg;
3204 	  change_p = true;
3205 	}
3206       else if (GET_CODE (new_base_reg) == PLUS
3207 	       && REG_P (XEXP (new_base_reg, 0))
3208 	       && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3209 	       && can_add_disp_p (ad))
3210 	{
3211 	  disp += offset;
3212 	  *base_term = XEXP (new_base_reg, 0);
3213 	  change_p = true;
3214 	}
3215       if (ad->base_term2 != NULL)
3216 	*ad->base_term2 = *ad->base_term;
3217     }
3218   if (index_reg != new_index_reg)
3219     {
3220       poly_int64 offset;
3221       if (REG_P (new_index_reg))
3222 	{
3223 	  *index_term = new_index_reg;
3224 	  change_p = true;
3225 	}
3226       else if (GET_CODE (new_index_reg) == PLUS
3227 	       && REG_P (XEXP (new_index_reg, 0))
3228 	       && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3229 	       && can_add_disp_p (ad)
3230 	       && (scale = get_index_scale (ad)))
3231 	{
3232 	  disp += offset * scale;
3233 	  *index_term = XEXP (new_index_reg, 0);
3234 	  change_p = true;
3235 	}
3236     }
3237   if (maybe_ne (disp, 0))
3238     {
3239       if (ad->disp != NULL)
3240 	*ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3241       else
3242 	{
3243 	  *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3244 	  update_address (ad);
3245 	}
3246       change_p = true;
3247     }
3248   if (lra_dump_file != NULL)
3249     {
3250       if (! change_p)
3251 	fprintf (lra_dump_file, " -- no change\n");
3252       else
3253 	{
3254 	  fprintf (lra_dump_file, " on equiv ");
3255 	  dump_value_slim (lra_dump_file, *ad->outer, 1);
3256 	  fprintf (lra_dump_file, "\n");
3257 	}
3258     }
3259   return change_p;
3260 }
3261 
3262 /* Major function to make reloads for an address in operand NOP or
3263    check its correctness (If CHECK_ONLY_P is true). The supported
3264    cases are:
3265 
3266    1) an address that existed before LRA started, at which point it
3267    must have been valid.  These addresses are subject to elimination
3268    and may have become invalid due to the elimination offset being out
3269    of range.
3270 
3271    2) an address created by forcing a constant to memory
3272    (force_const_to_mem).  The initial form of these addresses might
3273    not be valid, and it is this function's job to make them valid.
3274 
3275    3) a frame address formed from a register and a (possibly zero)
3276    constant offset.  As above, these addresses might not be valid and
3277    this function must make them so.
3278 
3279    Add reloads to the lists *BEFORE and *AFTER.  We might need to add
3280    reloads to *AFTER because of inc/dec, {pre, post} modify in the
3281    address.  Return true for any RTL change.
3282 
3283    The function is a helper function which does not produce all
3284    transformations (when CHECK_ONLY_P is false) which can be
3285    necessary.  It does just basic steps.  To do all necessary
3286    transformations use function process_address.  */
3287 static bool
3288 process_address_1 (int nop, bool check_only_p,
3289 		   rtx_insn **before, rtx_insn **after)
3290 {
3291   struct address_info ad;
3292   rtx new_reg;
3293   HOST_WIDE_INT scale;
3294   rtx op = *curr_id->operand_loc[nop];
3295   const char *constraint = curr_static_id->operand[nop].constraint;
3296   enum constraint_num cn = lookup_constraint (constraint);
3297   bool change_p = false;
3298 
3299   if (MEM_P (op)
3300       && GET_MODE (op) == BLKmode
3301       && GET_CODE (XEXP (op, 0)) == SCRATCH)
3302     return false;
3303 
3304   if (insn_extra_address_constraint (cn)
3305       /* When we find an asm operand with an address constraint that
3306 	 doesn't satisfy address_operand to begin with, we clear
3307 	 is_address, so that we don't try to make a non-address fit.
3308 	 If the asm statement got this far, it's because other
3309 	 constraints are available, and we'll use them, disregarding
3310 	 the unsatisfiable address ones.  */
3311       && curr_static_id->operand[nop].is_address)
3312     decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3313   /* Do not attempt to decompose arbitrary addresses generated by combine
3314      for asm operands with loose constraints, e.g 'X'.  */
3315   else if (MEM_P (op)
3316 	   && !(INSN_CODE (curr_insn) < 0
3317 		&& get_constraint_type (cn) == CT_FIXED_FORM
3318 	        && constraint_satisfied_p (op, cn)))
3319     decompose_mem_address (&ad, op);
3320   else if (GET_CODE (op) == SUBREG
3321 	   && MEM_P (SUBREG_REG (op)))
3322     decompose_mem_address (&ad, SUBREG_REG (op));
3323   else
3324     return false;
3325   /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3326      index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3327      when INDEX_REG_CLASS is a single register class.  */
3328   if (ad.base_term != NULL
3329       && ad.index_term != NULL
3330       && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3331       && REG_P (*ad.base_term)
3332       && REG_P (*ad.index_term)
3333       && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3334       && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3335     {
3336       std::swap (ad.base, ad.index);
3337       std::swap (ad.base_term, ad.index_term);
3338     }
3339   if (! check_only_p)
3340     change_p = equiv_address_substitution (&ad);
3341   if (ad.base_term != NULL
3342       && (process_addr_reg
3343 	  (ad.base_term, check_only_p, before,
3344 	   (ad.autoinc_p
3345 	    && !(REG_P (*ad.base_term)
3346 		 && find_regno_note (curr_insn, REG_DEAD,
3347 				     REGNO (*ad.base_term)) != NULL_RTX)
3348 	    ? after : NULL),
3349 	   base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3350 			   get_index_code (&ad)))))
3351     {
3352       change_p = true;
3353       if (ad.base_term2 != NULL)
3354 	*ad.base_term2 = *ad.base_term;
3355     }
3356   if (ad.index_term != NULL
3357       && process_addr_reg (ad.index_term, check_only_p,
3358 			   before, NULL, INDEX_REG_CLASS))
3359     change_p = true;
3360 
3361   /* Target hooks sometimes don't treat extra-constraint addresses as
3362      legitimate address_operands, so handle them specially.  */
3363   if (insn_extra_address_constraint (cn)
3364       && satisfies_address_constraint_p (&ad, cn))
3365     return change_p;
3366 
3367   if (check_only_p)
3368     return change_p;
3369 
3370   /* There are three cases where the shape of *AD.INNER may now be invalid:
3371 
3372      1) the original address was valid, but either elimination or
3373      equiv_address_substitution was applied and that made
3374      the address invalid.
3375 
3376      2) the address is an invalid symbolic address created by
3377      force_const_to_mem.
3378 
3379      3) the address is a frame address with an invalid offset.
3380 
3381      4) the address is a frame address with an invalid base.
3382 
3383      All these cases involve a non-autoinc address, so there is no
3384      point revalidating other types.  */
3385   if (ad.autoinc_p || valid_address_p (&ad))
3386     return change_p;
3387 
3388   /* Any index existed before LRA started, so we can assume that the
3389      presence and shape of the index is valid.  */
3390   push_to_sequence (*before);
3391   lra_assert (ad.disp == ad.disp_term);
3392   if (ad.base == NULL)
3393     {
3394       if (ad.index == NULL)
3395 	{
3396 	  rtx_insn *insn;
3397 	  rtx_insn *last = get_last_insn ();
3398 	  int code = -1;
3399 	  enum reg_class cl = base_reg_class (ad.mode, ad.as,
3400 					      SCRATCH, SCRATCH);
3401 	  rtx addr = *ad.inner;
3402 
3403 	  new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3404 	  if (HAVE_lo_sum)
3405 	    {
3406 	      /* addr => lo_sum (new_base, addr), case (2) above.  */
3407 	      insn = emit_insn (gen_rtx_SET
3408 				(new_reg,
3409 				 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3410 	      code = recog_memoized (insn);
3411 	      if (code >= 0)
3412 		{
3413 		  *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3414 		  if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3415 		    {
3416 		      /* Try to put lo_sum into register.  */
3417 		      insn = emit_insn (gen_rtx_SET
3418 					(new_reg,
3419 					 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3420 		      code = recog_memoized (insn);
3421 		      if (code >= 0)
3422 			{
3423 			  *ad.inner = new_reg;
3424 			  if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3425 			    {
3426 			      *ad.inner = addr;
3427 			      code = -1;
3428 			    }
3429 			}
3430 
3431 		    }
3432 		}
3433 	      if (code < 0)
3434 		delete_insns_since (last);
3435 	    }
3436 
3437 	  if (code < 0)
3438 	    {
3439 	      /* addr => new_base, case (2) above.  */
3440 	      lra_emit_move (new_reg, addr);
3441 
3442 	      for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3443 		   insn != NULL_RTX;
3444 		   insn = NEXT_INSN (insn))
3445 		if (recog_memoized (insn) < 0)
3446 		  break;
3447 	      if (insn != NULL_RTX)
3448 		{
3449 		  /* Do nothing if we cannot generate right insns.
3450 		     This is analogous to reload pass behavior.  */
3451 		  delete_insns_since (last);
3452 		  end_sequence ();
3453 		  return false;
3454 		}
3455 	      *ad.inner = new_reg;
3456 	    }
3457 	}
3458       else
3459 	{
3460 	  /* index * scale + disp => new base + index * scale,
3461 	     case (1) above.  */
3462 	  enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3463 					      GET_CODE (*ad.index));
3464 
3465 	  lra_assert (INDEX_REG_CLASS != NO_REGS);
3466 	  new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3467 	  lra_emit_move (new_reg, *ad.disp);
3468 	  *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3469 					   new_reg, *ad.index);
3470 	}
3471     }
3472   else if (ad.index == NULL)
3473     {
3474       int regno;
3475       enum reg_class cl;
3476       rtx set;
3477       rtx_insn *insns, *last_insn;
3478       /* Try to reload base into register only if the base is invalid
3479          for the address but with valid offset, case (4) above.  */
3480       start_sequence ();
3481       new_reg = base_to_reg (&ad);
3482 
3483       /* base + disp => new base, cases (1) and (3) above.  */
3484       /* Another option would be to reload the displacement into an
3485 	 index register.  However, postreload has code to optimize
3486 	 address reloads that have the same base and different
3487 	 displacements, so reloading into an index register would
3488 	 not necessarily be a win.  */
3489       if (new_reg == NULL_RTX)
3490 	{
3491 	  /* See if the target can split the displacement into a
3492 	     legitimate new displacement from a local anchor.  */
3493 	  gcc_assert (ad.disp == ad.disp_term);
3494 	  poly_int64 orig_offset;
3495 	  rtx offset1, offset2;
3496 	  if (poly_int_rtx_p (*ad.disp, &orig_offset)
3497 	      && targetm.legitimize_address_displacement (&offset1, &offset2,
3498 							  orig_offset,
3499 							  ad.mode))
3500 	    {
3501 	      new_reg = base_plus_disp_to_reg (&ad, offset1);
3502 	      new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3503 	    }
3504 	  else
3505 	    new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3506 	}
3507       insns = get_insns ();
3508       last_insn = get_last_insn ();
3509       /* If we generated at least two insns, try last insn source as
3510 	 an address.  If we succeed, we generate one less insn.  */
3511       if (REG_P (new_reg)
3512 	  && last_insn != insns
3513 	  && (set = single_set (last_insn)) != NULL_RTX
3514 	  && GET_CODE (SET_SRC (set)) == PLUS
3515 	  && REG_P (XEXP (SET_SRC (set), 0))
3516 	  && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3517 	{
3518 	  *ad.inner = SET_SRC (set);
3519 	  if (valid_address_p (ad.mode, *ad.outer, ad.as))
3520 	    {
3521 	      *ad.base_term = XEXP (SET_SRC (set), 0);
3522 	      *ad.disp_term = XEXP (SET_SRC (set), 1);
3523 	      cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3524 				   get_index_code (&ad));
3525 	      regno = REGNO (*ad.base_term);
3526 	      if (regno >= FIRST_PSEUDO_REGISTER
3527 		  && cl != lra_get_allocno_class (regno))
3528 		lra_change_class (regno, cl, "      Change to", true);
3529 	      new_reg = SET_SRC (set);
3530 	      delete_insns_since (PREV_INSN (last_insn));
3531 	    }
3532 	}
3533       end_sequence ();
3534       emit_insn (insns);
3535       *ad.inner = new_reg;
3536     }
3537   else if (ad.disp_term != NULL)
3538     {
3539       /* base + scale * index + disp => new base + scale * index,
3540 	 case (1) above.  */
3541       gcc_assert (ad.disp == ad.disp_term);
3542       new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3543       *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3544 				       new_reg, *ad.index);
3545     }
3546   else if ((scale = get_index_scale (&ad)) == 1)
3547     {
3548       /* The last transformation to one reg will be made in
3549 	 curr_insn_transform function.  */
3550       end_sequence ();
3551       return false;
3552     }
3553   else if (scale != 0)
3554     {
3555       /* base + scale * index => base + new_reg,
3556 	 case (1) above.
3557       Index part of address may become invalid.  For example, we
3558       changed pseudo on the equivalent memory and a subreg of the
3559       pseudo onto the memory of different mode for which the scale is
3560       prohibitted.  */
3561       new_reg = index_part_to_reg (&ad);
3562       *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3563 				       *ad.base_term, new_reg);
3564     }
3565   else
3566     {
3567       enum reg_class cl = base_reg_class (ad.mode, ad.as,
3568 					  SCRATCH, SCRATCH);
3569       rtx addr = *ad.inner;
3570 
3571       new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3572       /* addr => new_base.  */
3573       lra_emit_move (new_reg, addr);
3574       *ad.inner = new_reg;
3575     }
3576   *before = get_insns ();
3577   end_sequence ();
3578   return true;
3579 }
3580 
3581 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3582    Use process_address_1 as a helper function.  Return true for any
3583    RTL changes.
3584 
3585    If CHECK_ONLY_P is true, just check address correctness.  Return
3586    false if the address correct.  */
3587 static bool
3588 process_address (int nop, bool check_only_p,
3589 		 rtx_insn **before, rtx_insn **after)
3590 {
3591   bool res = false;
3592 
3593   while (process_address_1 (nop, check_only_p, before, after))
3594     {
3595       if (check_only_p)
3596 	return true;
3597       res = true;
3598     }
3599   return res;
3600 }
3601 
3602 /* Emit insns to reload VALUE into a new register.  VALUE is an
3603    auto-increment or auto-decrement RTX whose operand is a register or
3604    memory location; so reloading involves incrementing that location.
3605    IN is either identical to VALUE, or some cheaper place to reload
3606    value being incremented/decremented from.
3607 
3608    INC_AMOUNT is the number to increment or decrement by (always
3609    positive and ignored for POST_MODIFY/PRE_MODIFY).
3610 
3611    Return pseudo containing the result.	 */
3612 static rtx
3613 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3614 {
3615   /* REG or MEM to be copied and incremented.  */
3616   rtx incloc = XEXP (value, 0);
3617   /* Nonzero if increment after copying.  */
3618   int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3619 	      || GET_CODE (value) == POST_MODIFY);
3620   rtx_insn *last;
3621   rtx inc;
3622   rtx_insn *add_insn;
3623   int code;
3624   rtx real_in = in == value ? incloc : in;
3625   rtx result;
3626   bool plus_p = true;
3627 
3628   if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3629     {
3630       lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3631 		  || GET_CODE (XEXP (value, 1)) == MINUS);
3632       lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3633       plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3634       inc = XEXP (XEXP (value, 1), 1);
3635     }
3636   else
3637     {
3638       if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3639 	inc_amount = -inc_amount;
3640 
3641       inc = gen_int_mode (inc_amount, GET_MODE (value));
3642     }
3643 
3644   if (! post && REG_P (incloc))
3645     result = incloc;
3646   else
3647     result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3648 				 "INC/DEC result");
3649 
3650   if (real_in != result)
3651     {
3652       /* First copy the location to the result register.  */
3653       lra_assert (REG_P (result));
3654       emit_insn (gen_move_insn (result, real_in));
3655     }
3656 
3657   /* We suppose that there are insns to add/sub with the constant
3658      increment permitted in {PRE/POST)_{DEC/INC/MODIFY}.  At least the
3659      old reload worked with this assumption.  If the assumption
3660      becomes wrong, we should use approach in function
3661      base_plus_disp_to_reg.  */
3662   if (in == value)
3663     {
3664       /* See if we can directly increment INCLOC.  */
3665       last = get_last_insn ();
3666       add_insn = emit_insn (plus_p
3667 			    ? gen_add2_insn (incloc, inc)
3668 			    : gen_sub2_insn (incloc, inc));
3669 
3670       code = recog_memoized (add_insn);
3671       if (code >= 0)
3672 	{
3673 	  if (! post && result != incloc)
3674 	    emit_insn (gen_move_insn (result, incloc));
3675 	  return result;
3676 	}
3677       delete_insns_since (last);
3678     }
3679 
3680   /* If couldn't do the increment directly, must increment in RESULT.
3681      The way we do this depends on whether this is pre- or
3682      post-increment.  For pre-increment, copy INCLOC to the reload
3683      register, increment it there, then save back.  */
3684   if (! post)
3685     {
3686       if (real_in != result)
3687 	emit_insn (gen_move_insn (result, real_in));
3688       if (plus_p)
3689 	emit_insn (gen_add2_insn (result, inc));
3690       else
3691 	emit_insn (gen_sub2_insn (result, inc));
3692       if (result != incloc)
3693 	emit_insn (gen_move_insn (incloc, result));
3694     }
3695   else
3696     {
3697       /* Post-increment.
3698 
3699 	 Because this might be a jump insn or a compare, and because
3700 	 RESULT may not be available after the insn in an input
3701 	 reload, we must do the incrementing before the insn being
3702 	 reloaded for.
3703 
3704 	 We have already copied IN to RESULT.  Increment the copy in
3705 	 RESULT, save that back, then decrement RESULT so it has
3706 	 the original value.  */
3707       if (plus_p)
3708 	emit_insn (gen_add2_insn (result, inc));
3709       else
3710 	emit_insn (gen_sub2_insn (result, inc));
3711       emit_insn (gen_move_insn (incloc, result));
3712       /* Restore non-modified value for the result.  We prefer this
3713 	 way because it does not require an additional hard
3714 	 register.  */
3715       if (plus_p)
3716 	{
3717 	  poly_int64 offset;
3718 	  if (poly_int_rtx_p (inc, &offset))
3719 	    emit_insn (gen_add2_insn (result,
3720 				      gen_int_mode (-offset,
3721 						    GET_MODE (result))));
3722 	  else
3723 	    emit_insn (gen_sub2_insn (result, inc));
3724 	}
3725       else
3726 	emit_insn (gen_add2_insn (result, inc));
3727     }
3728   return result;
3729 }
3730 
3731 /* Return true if the current move insn does not need processing as we
3732    already know that it satisfies its constraints.  */
3733 static bool
3734 simple_move_p (void)
3735 {
3736   rtx dest, src;
3737   enum reg_class dclass, sclass;
3738 
3739   lra_assert (curr_insn_set != NULL_RTX);
3740   dest = SET_DEST (curr_insn_set);
3741   src = SET_SRC (curr_insn_set);
3742 
3743   /* If the instruction has multiple sets we need to process it even if it
3744      is single_set.  This can happen if one or more of the SETs are dead.
3745      See PR73650.  */
3746   if (multiple_sets (curr_insn))
3747     return false;
3748 
3749   return ((dclass = get_op_class (dest)) != NO_REGS
3750 	  && (sclass = get_op_class (src)) != NO_REGS
3751 	  /* The backend guarantees that register moves of cost 2
3752 	     never need reloads.  */
3753 	  && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3754  }
3755 
3756 /* Swap operands NOP and NOP + 1. */
3757 static inline void
3758 swap_operands (int nop)
3759 {
3760   std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3761   std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3762   std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3763   std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3764   /* Swap the duplicates too.  */
3765   lra_update_dup (curr_id, nop);
3766   lra_update_dup (curr_id, nop + 1);
3767 }
3768 
3769 /* Main entry point of the constraint code: search the body of the
3770    current insn to choose the best alternative.  It is mimicking insn
3771    alternative cost calculation model of former reload pass.  That is
3772    because machine descriptions were written to use this model.  This
3773    model can be changed in future.  Make commutative operand exchange
3774    if it is chosen.
3775 
3776    if CHECK_ONLY_P is false, do RTL changes to satisfy the
3777    constraints.  Return true if any change happened during function
3778    call.
3779 
3780    If CHECK_ONLY_P is true then don't do any transformation.  Just
3781    check that the insn satisfies all constraints.  If the insn does
3782    not satisfy any constraint, return true.  */
3783 static bool
3784 curr_insn_transform (bool check_only_p)
3785 {
3786   int i, j, k;
3787   int n_operands;
3788   int n_alternatives;
3789   int n_outputs;
3790   int commutative;
3791   signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3792   signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3793   signed char outputs[MAX_RECOG_OPERANDS + 1];
3794   rtx_insn *before, *after;
3795   bool alt_p = false;
3796   /* Flag that the insn has been changed through a transformation.  */
3797   bool change_p;
3798   bool sec_mem_p;
3799   bool use_sec_mem_p;
3800   int max_regno_before;
3801   int reused_alternative_num;
3802 
3803   curr_insn_set = single_set (curr_insn);
3804   if (curr_insn_set != NULL_RTX && simple_move_p ())
3805     {
3806       /* We assume that the corresponding insn alternative has no
3807 	 earlier clobbers.  If it is not the case, don't define move
3808 	 cost equal to 2 for the corresponding register classes.  */
3809       lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3810       return false;
3811     }
3812 
3813   no_input_reloads_p = no_output_reloads_p = false;
3814   goal_alt_number = -1;
3815   change_p = sec_mem_p = false;
3816   /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3817      reloads; neither are insns that SET cc0.  Insns that use CC0 are
3818      not allowed to have any input reloads.  */
3819   if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3820     no_output_reloads_p = true;
3821 
3822   if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3823     no_input_reloads_p = true;
3824   if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3825     no_output_reloads_p = true;
3826 
3827   n_operands = curr_static_id->n_operands;
3828   n_alternatives = curr_static_id->n_alternatives;
3829 
3830   /* Just return "no reloads" if insn has no operands with
3831      constraints.  */
3832   if (n_operands == 0 || n_alternatives == 0)
3833     return false;
3834 
3835   max_regno_before = max_reg_num ();
3836 
3837   for (i = 0; i < n_operands; i++)
3838     {
3839       goal_alt_matched[i][0] = -1;
3840       goal_alt_matches[i] = -1;
3841     }
3842 
3843   commutative = curr_static_id->commutative;
3844 
3845   /* Now see what we need for pseudos that didn't get hard regs or got
3846      the wrong kind of hard reg.  For this, we must consider all the
3847      operands together against the register constraints.  */
3848 
3849   best_losers = best_overall = INT_MAX;
3850   best_reload_sum = 0;
3851 
3852   curr_swapped = false;
3853   goal_alt_swapped = false;
3854 
3855   if (! check_only_p)
3856     /* Make equivalence substitution and memory subreg elimination
3857        before address processing because an address legitimacy can
3858        depend on memory mode.  */
3859     for (i = 0; i < n_operands; i++)
3860       {
3861 	rtx op, subst, old;
3862 	bool op_change_p = false;
3863 
3864 	if (curr_static_id->operand[i].is_operator)
3865 	  continue;
3866 
3867 	old = op = *curr_id->operand_loc[i];
3868 	if (GET_CODE (old) == SUBREG)
3869 	  old = SUBREG_REG (old);
3870 	subst = get_equiv_with_elimination (old, curr_insn);
3871 	original_subreg_reg_mode[i] = VOIDmode;
3872 	equiv_substition_p[i] = false;
3873 	if (subst != old)
3874 	  {
3875 	    equiv_substition_p[i] = true;
3876 	    subst = copy_rtx (subst);
3877 	    lra_assert (REG_P (old));
3878 	    if (GET_CODE (op) != SUBREG)
3879 	      *curr_id->operand_loc[i] = subst;
3880 	    else
3881 	      {
3882 		SUBREG_REG (op) = subst;
3883 		if (GET_MODE (subst) == VOIDmode)
3884 		  original_subreg_reg_mode[i] = GET_MODE (old);
3885 	      }
3886 	    if (lra_dump_file != NULL)
3887 	      {
3888 		fprintf (lra_dump_file,
3889 			 "Changing pseudo %d in operand %i of insn %u on equiv ",
3890 			 REGNO (old), i, INSN_UID (curr_insn));
3891 		dump_value_slim (lra_dump_file, subst, 1);
3892 		fprintf (lra_dump_file, "\n");
3893 	      }
3894 	    op_change_p = change_p = true;
3895 	  }
3896 	if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3897 	  {
3898 	    change_p = true;
3899 	    lra_update_dup (curr_id, i);
3900 	  }
3901       }
3902 
3903   /* Reload address registers and displacements.  We do it before
3904      finding an alternative because of memory constraints.  */
3905   before = after = NULL;
3906   for (i = 0; i < n_operands; i++)
3907     if (! curr_static_id->operand[i].is_operator
3908 	&& process_address (i, check_only_p, &before, &after))
3909       {
3910 	if (check_only_p)
3911 	  return true;
3912 	change_p = true;
3913 	lra_update_dup (curr_id, i);
3914       }
3915 
3916   if (change_p)
3917     /* If we've changed the instruction then any alternative that
3918        we chose previously may no longer be valid.  */
3919     lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3920 
3921   if (! check_only_p && curr_insn_set != NULL_RTX
3922       && check_and_process_move (&change_p, &sec_mem_p))
3923     return change_p;
3924 
3925  try_swapped:
3926 
3927   reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
3928   if (lra_dump_file != NULL && reused_alternative_num >= 0)
3929     fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3930 	     reused_alternative_num, INSN_UID (curr_insn));
3931 
3932   if (process_alt_operands (reused_alternative_num))
3933     alt_p = true;
3934 
3935   if (check_only_p)
3936     return ! alt_p || best_losers != 0;
3937 
3938   /* If insn is commutative (it's safe to exchange a certain pair of
3939      operands) then we need to try each alternative twice, the second
3940      time matching those two operands as if we had exchanged them.  To
3941      do this, really exchange them in operands.
3942 
3943      If we have just tried the alternatives the second time, return
3944      operands to normal and drop through.  */
3945 
3946   if (reused_alternative_num < 0 && commutative >= 0)
3947     {
3948       curr_swapped = !curr_swapped;
3949       if (curr_swapped)
3950 	{
3951 	  swap_operands (commutative);
3952 	  goto try_swapped;
3953 	}
3954       else
3955 	swap_operands (commutative);
3956     }
3957 
3958   if (! alt_p && ! sec_mem_p)
3959     {
3960       /* No alternative works with reloads??  */
3961       if (INSN_CODE (curr_insn) >= 0)
3962 	fatal_insn ("unable to generate reloads for:", curr_insn);
3963       error_for_asm (curr_insn,
3964 		     "inconsistent operand constraints in an %<asm%>");
3965       lra_asm_error_p = true;
3966       /* Avoid further trouble with this insn.  Don't generate use
3967 	 pattern here as we could use the insn SP offset.  */
3968       lra_set_insn_deleted (curr_insn);
3969       return true;
3970     }
3971 
3972   /* If the best alternative is with operands 1 and 2 swapped, swap
3973      them.  Update the operand numbers of any reloads already
3974      pushed.  */
3975 
3976   if (goal_alt_swapped)
3977     {
3978       if (lra_dump_file != NULL)
3979 	fprintf (lra_dump_file, "  Commutative operand exchange in insn %u\n",
3980 		 INSN_UID (curr_insn));
3981 
3982       /* Swap the duplicates too.  */
3983       swap_operands (commutative);
3984       change_p = true;
3985     }
3986 
3987   /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3988      too conservatively.  So we use the secondary memory only if there
3989      is no any alternative without reloads.  */
3990   use_sec_mem_p = false;
3991   if (! alt_p)
3992     use_sec_mem_p = true;
3993   else if (sec_mem_p)
3994     {
3995       for (i = 0; i < n_operands; i++)
3996 	if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3997 	  break;
3998       use_sec_mem_p = i < n_operands;
3999     }
4000 
4001   if (use_sec_mem_p)
4002     {
4003       int in = -1, out = -1;
4004       rtx new_reg, src, dest, rld;
4005       machine_mode sec_mode, rld_mode;
4006 
4007       lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
4008       dest = SET_DEST (curr_insn_set);
4009       src = SET_SRC (curr_insn_set);
4010       for (i = 0; i < n_operands; i++)
4011 	if (*curr_id->operand_loc[i] == dest)
4012 	  out = i;
4013 	else if (*curr_id->operand_loc[i] == src)
4014 	  in = i;
4015       for (i = 0; i < curr_static_id->n_dups; i++)
4016 	if (out < 0 && *curr_id->dup_loc[i] == dest)
4017 	  out = curr_static_id->dup_num[i];
4018 	else if (in < 0 && *curr_id->dup_loc[i] == src)
4019 	  in = curr_static_id->dup_num[i];
4020       lra_assert (out >= 0 && in >= 0
4021 		  && curr_static_id->operand[out].type == OP_OUT
4022 		  && curr_static_id->operand[in].type == OP_IN);
4023       rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
4024       rld_mode = GET_MODE (rld);
4025       sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
4026       new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
4027 				    NO_REGS, "secondary");
4028       /* If the mode is changed, it should be wider.  */
4029       lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4030       if (sec_mode != rld_mode)
4031         {
4032 	  /* If the target says specifically to use another mode for
4033 	     secondary memory moves we cannot reuse the original
4034 	     insn.  */
4035 	  after = emit_spill_move (false, new_reg, dest);
4036 	  lra_process_new_insns (curr_insn, NULL, after,
4037 				 "Inserting the sec. move");
4038 	  /* We may have non null BEFORE here (e.g. after address
4039 	     processing.  */
4040 	  push_to_sequence (before);
4041 	  before = emit_spill_move (true, new_reg, src);
4042 	  emit_insn (before);
4043 	  before = get_insns ();
4044 	  end_sequence ();
4045 	  lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4046 	  lra_set_insn_deleted (curr_insn);
4047 	}
4048       else if (dest == rld)
4049         {
4050 	  *curr_id->operand_loc[out] = new_reg;
4051 	  lra_update_dup (curr_id, out);
4052 	  after = emit_spill_move (false, new_reg, dest);
4053 	  lra_process_new_insns (curr_insn, NULL, after,
4054 				 "Inserting the sec. move");
4055 	}
4056       else
4057 	{
4058 	  *curr_id->operand_loc[in] = new_reg;
4059 	  lra_update_dup (curr_id, in);
4060 	  /* See comments above.  */
4061 	  push_to_sequence (before);
4062 	  before = emit_spill_move (true, new_reg, src);
4063 	  emit_insn (before);
4064 	  before = get_insns ();
4065 	  end_sequence ();
4066 	  lra_process_new_insns (curr_insn, before, NULL,
4067 				 "Inserting the sec. move");
4068 	}
4069       lra_update_insn_regno_info (curr_insn);
4070       return true;
4071     }
4072 
4073   lra_assert (goal_alt_number >= 0);
4074   lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4075 
4076   if (lra_dump_file != NULL)
4077     {
4078       const char *p;
4079 
4080       fprintf (lra_dump_file, "	 Choosing alt %d in insn %u:",
4081 	       goal_alt_number, INSN_UID (curr_insn));
4082       for (i = 0; i < n_operands; i++)
4083 	{
4084 	  p = (curr_static_id->operand_alternative
4085 	       [goal_alt_number * n_operands + i].constraint);
4086 	  if (*p == '\0')
4087 	    continue;
4088 	  fprintf (lra_dump_file, "  (%d) ", i);
4089 	  for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4090 	    fputc (*p, lra_dump_file);
4091 	}
4092       if (INSN_CODE (curr_insn) >= 0
4093           && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4094         fprintf (lra_dump_file, " {%s}", p);
4095       if (maybe_ne (curr_id->sp_offset, 0))
4096 	{
4097 	  fprintf (lra_dump_file, " (sp_off=");
4098 	  print_dec (curr_id->sp_offset, lra_dump_file);
4099 	  fprintf (lra_dump_file, ")");
4100 	}
4101       fprintf (lra_dump_file, "\n");
4102     }
4103 
4104   /* Right now, for any pair of operands I and J that are required to
4105      match, with J < I, goal_alt_matches[I] is J.  Add I to
4106      goal_alt_matched[J].  */
4107 
4108   for (i = 0; i < n_operands; i++)
4109     if ((j = goal_alt_matches[i]) >= 0)
4110       {
4111 	for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4112 	  ;
4113 	/* We allow matching one output operand and several input
4114 	   operands.  */
4115 	lra_assert (k == 0
4116 		    || (curr_static_id->operand[j].type == OP_OUT
4117 			&& curr_static_id->operand[i].type == OP_IN
4118 			&& (curr_static_id->operand
4119 			    [goal_alt_matched[j][0]].type == OP_IN)));
4120 	goal_alt_matched[j][k] = i;
4121 	goal_alt_matched[j][k + 1] = -1;
4122       }
4123 
4124   for (i = 0; i < n_operands; i++)
4125     goal_alt_win[i] |= goal_alt_match_win[i];
4126 
4127   /* Any constants that aren't allowed and can't be reloaded into
4128      registers are here changed into memory references.	 */
4129   for (i = 0; i < n_operands; i++)
4130     if (goal_alt_win[i])
4131       {
4132 	int regno;
4133 	enum reg_class new_class;
4134 	rtx reg = *curr_id->operand_loc[i];
4135 
4136 	if (GET_CODE (reg) == SUBREG)
4137 	  reg = SUBREG_REG (reg);
4138 
4139 	if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4140 	  {
4141 	    bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4142 
4143 	    if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4144 	      {
4145 		lra_assert (ok_p);
4146 		lra_change_class (regno, new_class, "      Change to", true);
4147 	      }
4148 	  }
4149       }
4150     else
4151       {
4152 	const char *constraint;
4153 	char c;
4154 	rtx op = *curr_id->operand_loc[i];
4155 	rtx subreg = NULL_RTX;
4156 	machine_mode mode = curr_operand_mode[i];
4157 
4158 	if (GET_CODE (op) == SUBREG)
4159 	  {
4160 	    subreg = op;
4161 	    op = SUBREG_REG (op);
4162 	    mode = GET_MODE (op);
4163 	  }
4164 
4165 	if (CONST_POOL_OK_P (mode, op)
4166 	    && ((targetm.preferred_reload_class
4167 		 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4168 		|| no_input_reloads_p))
4169 	  {
4170 	    rtx tem = force_const_mem (mode, op);
4171 
4172 	    change_p = true;
4173 	    if (subreg != NULL_RTX)
4174 	      tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4175 
4176 	    *curr_id->operand_loc[i] = tem;
4177 	    lra_update_dup (curr_id, i);
4178 	    process_address (i, false, &before, &after);
4179 
4180 	    /* If the alternative accepts constant pool refs directly
4181 	       there will be no reload needed at all.  */
4182 	    if (subreg != NULL_RTX)
4183 	      continue;
4184 	    /* Skip alternatives before the one requested.  */
4185 	    constraint = (curr_static_id->operand_alternative
4186 			  [goal_alt_number * n_operands + i].constraint);
4187 	    for (;
4188 		 (c = *constraint) && c != ',' && c != '#';
4189 		 constraint += CONSTRAINT_LEN (c, constraint))
4190 	      {
4191 		enum constraint_num cn = lookup_constraint (constraint);
4192 		if ((insn_extra_memory_constraint (cn)
4193 		     || insn_extra_special_memory_constraint (cn))
4194 		    && satisfies_memory_constraint_p (tem, cn))
4195 		  break;
4196 	      }
4197 	    if (c == '\0' || c == ',' || c == '#')
4198 	      continue;
4199 
4200 	    goal_alt_win[i] = true;
4201 	  }
4202       }
4203 
4204   n_outputs = 0;
4205   outputs[0] = -1;
4206   for (i = 0; i < n_operands; i++)
4207     {
4208       int regno;
4209       bool optional_p = false;
4210       rtx old, new_reg;
4211       rtx op = *curr_id->operand_loc[i];
4212 
4213       if (goal_alt_win[i])
4214 	{
4215 	  if (goal_alt[i] == NO_REGS
4216 	      && REG_P (op)
4217 	      /* When we assign NO_REGS it means that we will not
4218 		 assign a hard register to the scratch pseudo by
4219 		 assigment pass and the scratch pseudo will be
4220 		 spilled.  Spilled scratch pseudos are transformed
4221 		 back to scratches at the LRA end.  */
4222 	      && lra_former_scratch_operand_p (curr_insn, i)
4223 	      && lra_former_scratch_p (REGNO (op)))
4224 	    {
4225 	      int regno = REGNO (op);
4226 	      lra_change_class (regno, NO_REGS, "      Change to", true);
4227 	      if (lra_get_regno_hard_regno (regno) >= 0)
4228 		/* We don't have to mark all insn affected by the
4229 		   spilled pseudo as there is only one such insn, the
4230 		   current one.  */
4231 		reg_renumber[regno] = -1;
4232 	      lra_assert (bitmap_single_bit_set_p
4233 			  (&lra_reg_info[REGNO (op)].insn_bitmap));
4234 	    }
4235 	  /* We can do an optional reload.  If the pseudo got a hard
4236 	     reg, we might improve the code through inheritance.  If
4237 	     it does not get a hard register we coalesce memory/memory
4238 	     moves later.  Ignore move insns to avoid cycling.  */
4239 	  if (! lra_simple_p
4240 	      && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4241 	      && goal_alt[i] != NO_REGS && REG_P (op)
4242 	      && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4243 	      && regno < new_regno_start
4244 	      && ! lra_former_scratch_p (regno)
4245 	      && reg_renumber[regno] < 0
4246 	      /* Check that the optional reload pseudo will be able to
4247 		 hold given mode value.  */
4248 	      && ! (prohibited_class_reg_set_mode_p
4249 		    (goal_alt[i], reg_class_contents[goal_alt[i]],
4250 		     PSEUDO_REGNO_MODE (regno)))
4251 	      && (curr_insn_set == NULL_RTX
4252 		  || !((REG_P (SET_SRC (curr_insn_set))
4253 			|| MEM_P (SET_SRC (curr_insn_set))
4254 			|| GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4255 		       && (REG_P (SET_DEST (curr_insn_set))
4256 			   || MEM_P (SET_DEST (curr_insn_set))
4257 			   || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4258 	    optional_p = true;
4259 	  else if (goal_alt_matched[i][0] != -1
4260 		   && curr_static_id->operand[i].type == OP_OUT
4261 		   && (curr_static_id->operand_alternative
4262 		       [goal_alt_number * n_operands + i].earlyclobber)
4263 		   && REG_P (op))
4264 	    {
4265 	      for (j = 0; goal_alt_matched[i][j] != -1; j++)
4266 		{
4267 		  rtx op2 = *curr_id->operand_loc[goal_alt_matched[i][j]];
4268 
4269 		  if (REG_P (op2) && REGNO (op) != REGNO (op2))
4270 		    break;
4271 		}
4272 	      if (goal_alt_matched[i][j] != -1)
4273 		{
4274 		  /* Generate reloads for different output and matched
4275 		     input registers.  This is the easiest way to avoid
4276 		     creation of non-existing register conflicts in
4277 		     lra-lives.c.  */
4278 		  match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4279 				&after, TRUE);
4280 		  outputs[n_outputs++] = i;
4281 		  outputs[n_outputs] = -1;
4282 		}
4283 	      continue;
4284 	    }
4285 	  else
4286 	    continue;
4287 	}
4288 
4289       /* Operands that match previous ones have already been handled.  */
4290       if (goal_alt_matches[i] >= 0)
4291 	continue;
4292 
4293       /* We should not have an operand with a non-offsettable address
4294 	 appearing where an offsettable address will do.  It also may
4295 	 be a case when the address should be special in other words
4296 	 not a general one (e.g. it needs no index reg).  */
4297       if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4298 	{
4299 	  enum reg_class rclass;
4300 	  rtx *loc = &XEXP (op, 0);
4301 	  enum rtx_code code = GET_CODE (*loc);
4302 
4303 	  push_to_sequence (before);
4304 	  rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4305 				   MEM, SCRATCH);
4306 	  if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4307 	    new_reg = emit_inc (rclass, *loc, *loc,
4308 				/* This value does not matter for MODIFY.  */
4309 				GET_MODE_SIZE (GET_MODE (op)));
4310 	  else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4311 				   "offsetable address", &new_reg))
4312 	    {
4313 	      rtx addr = *loc;
4314 	      enum rtx_code code = GET_CODE (addr);
4315 
4316 	      if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4317 		/* (and ... (const_int -X)) is used to align to X bytes.  */
4318 		addr = XEXP (*loc, 0);
4319 	      lra_emit_move (new_reg, addr);
4320 	      if (addr != *loc)
4321 		emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4322 	    }
4323 	  before = get_insns ();
4324 	  end_sequence ();
4325 	  *loc = new_reg;
4326 	  lra_update_dup (curr_id, i);
4327 	}
4328       else if (goal_alt_matched[i][0] == -1)
4329 	{
4330 	  machine_mode mode;
4331 	  rtx reg, *loc;
4332 	  int hard_regno;
4333 	  enum op_type type = curr_static_id->operand[i].type;
4334 
4335 	  loc = curr_id->operand_loc[i];
4336 	  mode = curr_operand_mode[i];
4337 	  if (GET_CODE (*loc) == SUBREG)
4338 	    {
4339 	      reg = SUBREG_REG (*loc);
4340 	      poly_int64 byte = SUBREG_BYTE (*loc);
4341 	      if (REG_P (reg)
4342 		  /* Strict_low_part requires reloading the register and not
4343 		     just the subreg.  Likewise for a strict subreg no wider
4344 		     than a word for WORD_REGISTER_OPERATIONS targets.  */
4345 		  && (curr_static_id->operand[i].strict_low
4346 		      || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4347 			  && (hard_regno
4348 			      = get_try_hard_regno (REGNO (reg))) >= 0
4349 			  && (simplify_subreg_regno
4350 			      (hard_regno,
4351 			       GET_MODE (reg), byte, mode) < 0)
4352 			  && (goal_alt[i] == NO_REGS
4353 			      || (simplify_subreg_regno
4354 				  (ira_class_hard_regs[goal_alt[i]][0],
4355 				   GET_MODE (reg), byte, mode) >= 0)))
4356 		      || (partial_subreg_p (mode, GET_MODE (reg))
4357 			  && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4358 				       UNITS_PER_WORD)
4359 			  && WORD_REGISTER_OPERATIONS)))
4360 		{
4361 		  /* An OP_INOUT is required when reloading a subreg of a
4362 		     mode wider than a word to ensure that data beyond the
4363 		     word being reloaded is preserved.  Also automatically
4364 		     ensure that strict_low_part reloads are made into
4365 		     OP_INOUT which should already be true from the backend
4366 		     constraints.  */
4367 		  if (type == OP_OUT
4368 		      && (curr_static_id->operand[i].strict_low
4369 			  || read_modify_subreg_p (*loc)))
4370 		    type = OP_INOUT;
4371 		  loc = &SUBREG_REG (*loc);
4372 		  mode = GET_MODE (*loc);
4373 		}
4374 	    }
4375 	  old = *loc;
4376 	  if (get_reload_reg (type, mode, old, goal_alt[i],
4377 			      loc != curr_id->operand_loc[i], "", &new_reg)
4378 	      && type != OP_OUT)
4379 	    {
4380 	      push_to_sequence (before);
4381 	      lra_emit_move (new_reg, old);
4382 	      before = get_insns ();
4383 	      end_sequence ();
4384 	    }
4385 	  *loc = new_reg;
4386 	  if (type != OP_IN
4387 	      && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4388 	    {
4389 	      start_sequence ();
4390 	      lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4391 	      emit_insn (after);
4392 	      after = get_insns ();
4393 	      end_sequence ();
4394 	      *loc = new_reg;
4395 	    }
4396 	  for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4397 	    if (goal_alt_dont_inherit_ops[j] == i)
4398 	      {
4399 		lra_set_regno_unique_value (REGNO (new_reg));
4400 		break;
4401 	      }
4402 	  lra_update_dup (curr_id, i);
4403 	}
4404       else if (curr_static_id->operand[i].type == OP_IN
4405 	       && (curr_static_id->operand[goal_alt_matched[i][0]].type
4406 		   == OP_OUT
4407 		   || (curr_static_id->operand[goal_alt_matched[i][0]].type
4408 		       == OP_INOUT
4409 		       && (operands_match_p
4410 			   (*curr_id->operand_loc[i],
4411 			    *curr_id->operand_loc[goal_alt_matched[i][0]],
4412 			    -1)))))
4413 	{
4414 	  /* generate reloads for input and matched outputs.  */
4415 	  match_inputs[0] = i;
4416 	  match_inputs[1] = -1;
4417 	  match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4418 			goal_alt[i], &before, &after,
4419 			curr_static_id->operand_alternative
4420 			[goal_alt_number * n_operands + goal_alt_matched[i][0]]
4421 			.earlyclobber);
4422 	}
4423       else if ((curr_static_id->operand[i].type == OP_OUT
4424 		|| (curr_static_id->operand[i].type == OP_INOUT
4425 		    && (operands_match_p
4426 			(*curr_id->operand_loc[i],
4427 			 *curr_id->operand_loc[goal_alt_matched[i][0]],
4428 			 -1))))
4429 	       && (curr_static_id->operand[goal_alt_matched[i][0]].type
4430 		    == OP_IN))
4431 	/* Generate reloads for output and matched inputs.  */
4432 	match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4433 		      &after, curr_static_id->operand_alternative
4434 			      [goal_alt_number * n_operands + i].earlyclobber);
4435       else if (curr_static_id->operand[i].type == OP_IN
4436 	       && (curr_static_id->operand[goal_alt_matched[i][0]].type
4437 		   == OP_IN))
4438 	{
4439 	  /* Generate reloads for matched inputs.  */
4440 	  match_inputs[0] = i;
4441 	  for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4442 	    match_inputs[j + 1] = k;
4443 	  match_inputs[j + 1] = -1;
4444 	  match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4445 			&after, false);
4446 	}
4447       else
4448 	/* We must generate code in any case when function
4449 	   process_alt_operands decides that it is possible.  */
4450 	gcc_unreachable ();
4451 
4452       /* Memorise processed outputs so that output remaining to be processed
4453 	 can avoid using the same register value (see match_reload).  */
4454       if (curr_static_id->operand[i].type == OP_OUT)
4455 	{
4456 	  outputs[n_outputs++] = i;
4457 	  outputs[n_outputs] = -1;
4458 	}
4459 
4460       if (optional_p)
4461 	{
4462 	  rtx reg = op;
4463 
4464 	  lra_assert (REG_P (reg));
4465 	  regno = REGNO (reg);
4466 	  op = *curr_id->operand_loc[i]; /* Substitution.  */
4467 	  if (GET_CODE (op) == SUBREG)
4468 	    op = SUBREG_REG (op);
4469 	  gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4470 	  bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4471 	  lra_reg_info[REGNO (op)].restore_rtx = reg;
4472 	  if (lra_dump_file != NULL)
4473 	    fprintf (lra_dump_file,
4474 		     "      Making reload reg %d for reg %d optional\n",
4475 		     REGNO (op), regno);
4476 	}
4477     }
4478   if (before != NULL_RTX || after != NULL_RTX
4479       || max_regno_before != max_reg_num ())
4480     change_p = true;
4481   if (change_p)
4482     {
4483       lra_update_operator_dups (curr_id);
4484       /* Something changes -- process the insn.	 */
4485       lra_update_insn_regno_info (curr_insn);
4486     }
4487   lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4488   return change_p;
4489 }
4490 
4491 /* Return true if INSN satisfies all constraints.  In other words, no
4492    reload insns are needed.  */
4493 bool
4494 lra_constrain_insn (rtx_insn *insn)
4495 {
4496   int saved_new_regno_start = new_regno_start;
4497   int saved_new_insn_uid_start = new_insn_uid_start;
4498   bool change_p;
4499 
4500   curr_insn = insn;
4501   curr_id = lra_get_insn_recog_data (curr_insn);
4502   curr_static_id = curr_id->insn_static_data;
4503   new_insn_uid_start = get_max_uid ();
4504   new_regno_start = max_reg_num ();
4505   change_p = curr_insn_transform (true);
4506   new_regno_start = saved_new_regno_start;
4507   new_insn_uid_start = saved_new_insn_uid_start;
4508   return ! change_p;
4509 }
4510 
4511 /* Return true if X is in LIST.	 */
4512 static bool
4513 in_list_p (rtx x, rtx list)
4514 {
4515   for (; list != NULL_RTX; list = XEXP (list, 1))
4516     if (XEXP (list, 0) == x)
4517       return true;
4518   return false;
4519 }
4520 
4521 /* Return true if X contains an allocatable hard register (if
4522    HARD_REG_P) or a (spilled if SPILLED_P) pseudo.  */
4523 static bool
4524 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4525 {
4526   int i, j;
4527   const char *fmt;
4528   enum rtx_code code;
4529 
4530   code = GET_CODE (x);
4531   if (REG_P (x))
4532     {
4533       int regno = REGNO (x);
4534       HARD_REG_SET alloc_regs;
4535 
4536       if (hard_reg_p)
4537 	{
4538 	  if (regno >= FIRST_PSEUDO_REGISTER)
4539 	    regno = lra_get_regno_hard_regno (regno);
4540 	  if (regno < 0)
4541 	    return false;
4542 	  COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4543 	  return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4544 	}
4545       else
4546 	{
4547 	  if (regno < FIRST_PSEUDO_REGISTER)
4548 	    return false;
4549 	  if (! spilled_p)
4550 	    return true;
4551 	  return lra_get_regno_hard_regno (regno) < 0;
4552 	}
4553     }
4554   fmt = GET_RTX_FORMAT (code);
4555   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4556     {
4557       if (fmt[i] == 'e')
4558 	{
4559 	  if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4560 	    return true;
4561 	}
4562       else if (fmt[i] == 'E')
4563 	{
4564 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4565 	    if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4566 	      return true;
4567 	}
4568     }
4569   return false;
4570 }
4571 
4572 /* Process all regs in location *LOC and change them on equivalent
4573    substitution.  Return true if any change was done.  */
4574 static bool
4575 loc_equivalence_change_p (rtx *loc)
4576 {
4577   rtx subst, reg, x = *loc;
4578   bool result = false;
4579   enum rtx_code code = GET_CODE (x);
4580   const char *fmt;
4581   int i, j;
4582 
4583   if (code == SUBREG)
4584     {
4585       reg = SUBREG_REG (x);
4586       if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4587 	  && GET_MODE (subst) == VOIDmode)
4588 	{
4589 	  /* We cannot reload debug location.  Simplify subreg here
4590 	     while we know the inner mode.  */
4591 	  *loc = simplify_gen_subreg (GET_MODE (x), subst,
4592 				      GET_MODE (reg), SUBREG_BYTE (x));
4593 	  return true;
4594 	}
4595     }
4596   if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4597     {
4598       *loc = subst;
4599       return true;
4600     }
4601 
4602   /* Scan all the operand sub-expressions.  */
4603   fmt = GET_RTX_FORMAT (code);
4604   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4605     {
4606       if (fmt[i] == 'e')
4607 	result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4608       else if (fmt[i] == 'E')
4609 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4610 	  result
4611 	    = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4612     }
4613   return result;
4614 }
4615 
4616 /* Similar to loc_equivalence_change_p, but for use as
4617    simplify_replace_fn_rtx callback.  DATA is insn for which the
4618    elimination is done.  If it null we don't do the elimination.  */
4619 static rtx
4620 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4621 {
4622   if (!REG_P (loc))
4623     return NULL_RTX;
4624 
4625   rtx subst = (data == NULL
4626 	       ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4627   if (subst != loc)
4628     return subst;
4629 
4630   return NULL_RTX;
4631 }
4632 
4633 /* Maximum number of generated reload insns per an insn.  It is for
4634    preventing this pass cycling in a bug case.	*/
4635 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4636 
4637 /* The current iteration number of this LRA pass.  */
4638 int lra_constraint_iter;
4639 
4640 /* True if we substituted equiv which needs checking register
4641    allocation correctness because the equivalent value contains
4642    allocatable hard registers or when we restore multi-register
4643    pseudo.  */
4644 bool lra_risky_transformations_p;
4645 
4646 /* Return true if REGNO is referenced in more than one block.  */
4647 static bool
4648 multi_block_pseudo_p (int regno)
4649 {
4650   basic_block bb = NULL;
4651   unsigned int uid;
4652   bitmap_iterator bi;
4653 
4654   if (regno < FIRST_PSEUDO_REGISTER)
4655     return false;
4656 
4657     EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4658       if (bb == NULL)
4659 	bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4660       else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4661 	return true;
4662     return false;
4663 }
4664 
4665 /* Return true if LIST contains a deleted insn.  */
4666 static bool
4667 contains_deleted_insn_p (rtx_insn_list *list)
4668 {
4669   for (; list != NULL_RTX; list = list->next ())
4670     if (NOTE_P (list->insn ())
4671 	&& NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4672       return true;
4673   return false;
4674 }
4675 
4676 /* Return true if X contains a pseudo dying in INSN.  */
4677 static bool
4678 dead_pseudo_p (rtx x, rtx_insn *insn)
4679 {
4680   int i, j;
4681   const char *fmt;
4682   enum rtx_code code;
4683 
4684   if (REG_P (x))
4685     return (insn != NULL_RTX
4686 	    && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4687   code = GET_CODE (x);
4688   fmt = GET_RTX_FORMAT (code);
4689   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4690     {
4691       if (fmt[i] == 'e')
4692 	{
4693 	  if (dead_pseudo_p (XEXP (x, i), insn))
4694 	    return true;
4695 	}
4696       else if (fmt[i] == 'E')
4697 	{
4698 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4699 	    if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4700 	      return true;
4701 	}
4702     }
4703   return false;
4704 }
4705 
4706 /* Return true if INSN contains a dying pseudo in INSN right hand
4707    side.  */
4708 static bool
4709 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4710 {
4711   rtx set = single_set (insn);
4712 
4713   gcc_assert (set != NULL);
4714   return dead_pseudo_p (SET_SRC (set), insn);
4715 }
4716 
4717 /* Return true if any init insn of REGNO contains a dying pseudo in
4718    insn right hand side.  */
4719 static bool
4720 init_insn_rhs_dead_pseudo_p (int regno)
4721 {
4722   rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4723 
4724   if (insns == NULL)
4725     return false;
4726   for (; insns != NULL_RTX; insns = insns->next ())
4727     if (insn_rhs_dead_pseudo_p (insns->insn ()))
4728       return true;
4729   return false;
4730 }
4731 
4732 /* Return TRUE if REGNO has a reverse equivalence.  The equivalence is
4733    reverse only if we have one init insn with given REGNO as a
4734    source.  */
4735 static bool
4736 reverse_equiv_p (int regno)
4737 {
4738   rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4739   rtx set;
4740 
4741   if (insns == NULL)
4742     return false;
4743   if (! INSN_P (insns->insn ())
4744       || insns->next () != NULL)
4745     return false;
4746   if ((set = single_set (insns->insn ())) == NULL_RTX)
4747     return false;
4748   return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4749 }
4750 
4751 /* Return TRUE if REGNO was reloaded in an equivalence init insn.  We
4752    call this function only for non-reverse equivalence.  */
4753 static bool
4754 contains_reloaded_insn_p (int regno)
4755 {
4756   rtx set;
4757   rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4758 
4759   for (; list != NULL; list = list->next ())
4760     if ((set = single_set (list->insn ())) == NULL_RTX
4761 	|| ! REG_P (SET_DEST (set))
4762 	|| (int) REGNO (SET_DEST (set)) != regno)
4763       return true;
4764   return false;
4765 }
4766 
4767 /* Entry function of LRA constraint pass.  Return true if the
4768    constraint pass did change the code.	 */
4769 bool
4770 lra_constraints (bool first_p)
4771 {
4772   bool changed_p;
4773   int i, hard_regno, new_insns_num;
4774   unsigned int min_len, new_min_len, uid;
4775   rtx set, x, reg, dest_reg;
4776   basic_block last_bb;
4777   bitmap_iterator bi;
4778 
4779   lra_constraint_iter++;
4780   if (lra_dump_file != NULL)
4781     fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4782 	     lra_constraint_iter);
4783   changed_p = false;
4784   if (pic_offset_table_rtx
4785       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4786     lra_risky_transformations_p = true;
4787   else
4788     /* On the first iteration we should check IRA assignment
4789        correctness.  In rare cases, the assignments can be wrong as
4790        early clobbers operands are ignored in IRA or usages of
4791        paradoxical sub-registers are not taken into account by
4792        IRA.  */
4793     lra_risky_transformations_p = first_p;
4794   new_insn_uid_start = get_max_uid ();
4795   new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4796   /* Mark used hard regs for target stack size calulations.  */
4797   for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4798     if (lra_reg_info[i].nrefs != 0
4799 	&& (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4800       {
4801 	int j, nregs;
4802 
4803 	nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
4804 	for (j = 0; j < nregs; j++)
4805 	  df_set_regs_ever_live (hard_regno + j, true);
4806       }
4807   /* Do elimination before the equivalence processing as we can spill
4808      some pseudos during elimination.  */
4809   lra_eliminate (false, first_p);
4810   auto_bitmap equiv_insn_bitmap (&reg_obstack);
4811   for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4812     if (lra_reg_info[i].nrefs != 0)
4813       {
4814 	ira_reg_equiv[i].profitable_p = true;
4815 	reg = regno_reg_rtx[i];
4816 	if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4817 	  {
4818 	    bool pseudo_p = contains_reg_p (x, false, false);
4819 
4820 	    /* After RTL transformation, we cannot guarantee that
4821 	       pseudo in the substitution was not reloaded which might
4822 	       make equivalence invalid.  For example, in reverse
4823 	       equiv of p0
4824 
4825 	       p0 <- ...
4826 	       ...
4827 	       equiv_mem <- p0
4828 
4829 	       the memory address register was reloaded before the 2nd
4830 	       insn.  */
4831 	    if ((! first_p && pseudo_p)
4832 		/* We don't use DF for compilation speed sake.  So it
4833 		   is problematic to update live info when we use an
4834 		   equivalence containing pseudos in more than one
4835 		   BB.  */
4836 		|| (pseudo_p && multi_block_pseudo_p (i))
4837 		/* If an init insn was deleted for some reason, cancel
4838 		   the equiv.  We could update the equiv insns after
4839 		   transformations including an equiv insn deletion
4840 		   but it is not worthy as such cases are extremely
4841 		   rare.  */
4842 		|| contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4843 		/* If it is not a reverse equivalence, we check that a
4844 		   pseudo in rhs of the init insn is not dying in the
4845 		   insn.  Otherwise, the live info at the beginning of
4846 		   the corresponding BB might be wrong after we
4847 		   removed the insn.  When the equiv can be a
4848 		   constant, the right hand side of the init insn can
4849 		   be a pseudo.  */
4850 		|| (! reverse_equiv_p (i)
4851 		    && (init_insn_rhs_dead_pseudo_p (i)
4852 			/* If we reloaded the pseudo in an equivalence
4853 			   init insn, we cannot remove the equiv init
4854 			   insns and the init insns might write into
4855 			   const memory in this case.  */
4856 			|| contains_reloaded_insn_p (i)))
4857 		/* Prevent access beyond equivalent memory for
4858 		   paradoxical subregs.  */
4859 		|| (MEM_P (x)
4860 		    && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
4861 				 GET_MODE_SIZE (GET_MODE (x))))
4862 		|| (pic_offset_table_rtx
4863 		    && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4864 			 && (targetm.preferred_reload_class
4865 			     (x, lra_get_allocno_class (i)) == NO_REGS))
4866 			|| contains_symbol_ref_p (x))))
4867 	      ira_reg_equiv[i].defined_p = false;
4868 	    if (contains_reg_p (x, false, true))
4869 	      ira_reg_equiv[i].profitable_p = false;
4870 	    if (get_equiv (reg) != reg)
4871 	      bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4872 	  }
4873       }
4874   for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4875     update_equiv (i);
4876   /* We should add all insns containing pseudos which should be
4877      substituted by their equivalences.  */
4878   EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4879     lra_push_insn_by_uid (uid);
4880   min_len = lra_insn_stack_length ();
4881   new_insns_num = 0;
4882   last_bb = NULL;
4883   changed_p = false;
4884   while ((new_min_len = lra_insn_stack_length ()) != 0)
4885     {
4886       curr_insn = lra_pop_insn ();
4887       --new_min_len;
4888       curr_bb = BLOCK_FOR_INSN (curr_insn);
4889       if (curr_bb != last_bb)
4890 	{
4891 	  last_bb = curr_bb;
4892 	  bb_reload_num = lra_curr_reload_num;
4893 	}
4894       if (min_len > new_min_len)
4895 	{
4896 	  min_len = new_min_len;
4897 	  new_insns_num = 0;
4898 	}
4899       if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4900 	internal_error
4901 	  ("Max. number of generated reload insns per insn is achieved (%d)\n",
4902 	   MAX_RELOAD_INSNS_NUMBER);
4903       new_insns_num++;
4904       if (DEBUG_INSN_P (curr_insn))
4905 	{
4906 	  /* We need to check equivalence in debug insn and change
4907 	     pseudo to the equivalent value if necessary.  */
4908 	  curr_id = lra_get_insn_recog_data (curr_insn);
4909 	  if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4910 	    {
4911 	      rtx old = *curr_id->operand_loc[0];
4912 	      *curr_id->operand_loc[0]
4913 		= simplify_replace_fn_rtx (old, NULL_RTX,
4914 					   loc_equivalence_callback, curr_insn);
4915 	      if (old != *curr_id->operand_loc[0])
4916 		{
4917 		  lra_update_insn_regno_info (curr_insn);
4918 		  changed_p = true;
4919 		}
4920 	    }
4921 	}
4922       else if (INSN_P (curr_insn))
4923 	{
4924 	  if ((set = single_set (curr_insn)) != NULL_RTX)
4925 	    {
4926 	      dest_reg = SET_DEST (set);
4927 	      /* The equivalence pseudo could be set up as SUBREG in a
4928 		 case when it is a call restore insn in a mode
4929 		 different from the pseudo mode.  */
4930 	      if (GET_CODE (dest_reg) == SUBREG)
4931 		dest_reg = SUBREG_REG (dest_reg);
4932 	      if ((REG_P (dest_reg)
4933 		   && (x = get_equiv (dest_reg)) != dest_reg
4934 		   /* Remove insns which set up a pseudo whose value
4935 		      cannot be changed.  Such insns might be not in
4936 		      init_insns because we don't update equiv data
4937 		      during insn transformations.
4938 
4939 		      As an example, let suppose that a pseudo got
4940 		      hard register and on the 1st pass was not
4941 		      changed to equivalent constant.  We generate an
4942 		      additional insn setting up the pseudo because of
4943 		      secondary memory movement.  Then the pseudo is
4944 		      spilled and we use the equiv constant.  In this
4945 		      case we should remove the additional insn and
4946 		      this insn is not init_insns list.  */
4947 		   && (! MEM_P (x) || MEM_READONLY_P (x)
4948 		       /* Check that this is actually an insn setting
4949 			  up the equivalence.  */
4950 		       || in_list_p (curr_insn,
4951 				     ira_reg_equiv
4952 				     [REGNO (dest_reg)].init_insns)))
4953 		  || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4954 		      && in_list_p (curr_insn,
4955 				    ira_reg_equiv
4956 				    [REGNO (SET_SRC (set))].init_insns)))
4957 		{
4958 		  /* This is equiv init insn of pseudo which did not get a
4959 		     hard register -- remove the insn.	*/
4960 		  if (lra_dump_file != NULL)
4961 		    {
4962 		      fprintf (lra_dump_file,
4963 			       "      Removing equiv init insn %i (freq=%d)\n",
4964 			       INSN_UID (curr_insn),
4965 			       REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4966 		      dump_insn_slim (lra_dump_file, curr_insn);
4967 		    }
4968 		  if (contains_reg_p (x, true, false))
4969 		    lra_risky_transformations_p = true;
4970 		  lra_set_insn_deleted (curr_insn);
4971 		  continue;
4972 		}
4973 	    }
4974 	  curr_id = lra_get_insn_recog_data (curr_insn);
4975 	  curr_static_id = curr_id->insn_static_data;
4976 	  init_curr_insn_input_reloads ();
4977 	  init_curr_operand_mode ();
4978 	  if (curr_insn_transform (false))
4979 	    changed_p = true;
4980 	  /* Check non-transformed insns too for equiv change as USE
4981 	     or CLOBBER don't need reloads but can contain pseudos
4982 	     being changed on their equivalences.  */
4983 	  else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
4984 		   && loc_equivalence_change_p (&PATTERN (curr_insn)))
4985 	    {
4986 	      lra_update_insn_regno_info (curr_insn);
4987 	      changed_p = true;
4988 	    }
4989 	}
4990     }
4991 
4992   /* If we used a new hard regno, changed_p should be true because the
4993      hard reg is assigned to a new pseudo.  */
4994   if (flag_checking && !changed_p)
4995     {
4996       for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4997 	if (lra_reg_info[i].nrefs != 0
4998 	    && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4999 	  {
5000 	    int j, nregs = hard_regno_nregs (hard_regno,
5001 					     PSEUDO_REGNO_MODE (i));
5002 
5003 	    for (j = 0; j < nregs; j++)
5004 	      lra_assert (df_regs_ever_live_p (hard_regno + j));
5005 	  }
5006     }
5007   return changed_p;
5008 }
5009 
5010 static void initiate_invariants (void);
5011 static void finish_invariants (void);
5012 
5013 /* Initiate the LRA constraint pass.  It is done once per
5014    function.  */
5015 void
5016 lra_constraints_init (void)
5017 {
5018   initiate_invariants ();
5019 }
5020 
5021 /* Finalize the LRA constraint pass.  It is done once per
5022    function.  */
5023 void
5024 lra_constraints_finish (void)
5025 {
5026   finish_invariants ();
5027 }
5028 
5029 
5030 
5031 /* Structure describes invariants for ineheritance.  */
5032 struct lra_invariant
5033 {
5034   /* The order number of the invariant.  */
5035   int num;
5036   /* The invariant RTX.  */
5037   rtx invariant_rtx;
5038   /* The origin insn of the invariant.  */
5039   rtx_insn *insn;
5040 };
5041 
5042 typedef lra_invariant invariant_t;
5043 typedef invariant_t *invariant_ptr_t;
5044 typedef const invariant_t *const_invariant_ptr_t;
5045 
5046 /* Pointer to the inheritance invariants.  */
5047 static vec<invariant_ptr_t> invariants;
5048 
5049 /* Allocation pool for the invariants.  */
5050 static object_allocator<lra_invariant> *invariants_pool;
5051 
5052 /* Hash table for the invariants.  */
5053 static htab_t invariant_table;
5054 
5055 /* Hash function for INVARIANT.  */
5056 static hashval_t
5057 invariant_hash (const void *invariant)
5058 {
5059   rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5060   return lra_rtx_hash (inv);
5061 }
5062 
5063 /* Equal function for invariants INVARIANT1 and INVARIANT2.  */
5064 static int
5065 invariant_eq_p (const void *invariant1, const void *invariant2)
5066 {
5067   rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5068   rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5069 
5070   return rtx_equal_p (inv1, inv2);
5071 }
5072 
5073 /* Insert INVARIANT_RTX into the table if it is not there yet.  Return
5074    invariant which is in the table.  */
5075 static invariant_ptr_t
5076 insert_invariant (rtx invariant_rtx)
5077 {
5078   void **entry_ptr;
5079   invariant_t invariant;
5080   invariant_ptr_t invariant_ptr;
5081 
5082   invariant.invariant_rtx = invariant_rtx;
5083   entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5084   if (*entry_ptr == NULL)
5085     {
5086       invariant_ptr = invariants_pool->allocate ();
5087       invariant_ptr->invariant_rtx = invariant_rtx;
5088       invariant_ptr->insn = NULL;
5089       invariants.safe_push (invariant_ptr);
5090       *entry_ptr = (void *) invariant_ptr;
5091     }
5092   return (invariant_ptr_t) *entry_ptr;
5093 }
5094 
5095 /* Initiate the invariant table.  */
5096 static void
5097 initiate_invariants (void)
5098 {
5099   invariants.create (100);
5100   invariants_pool
5101     = new object_allocator<lra_invariant> ("Inheritance invariants");
5102   invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5103 }
5104 
5105 /* Finish the invariant table.  */
5106 static void
5107 finish_invariants (void)
5108 {
5109   htab_delete (invariant_table);
5110   delete invariants_pool;
5111   invariants.release ();
5112 }
5113 
5114 /* Make the invariant table empty.  */
5115 static void
5116 clear_invariants (void)
5117 {
5118   htab_empty (invariant_table);
5119   invariants_pool->release ();
5120   invariants.truncate (0);
5121 }
5122 
5123 
5124 
5125 /* This page contains code to do inheritance/split
5126    transformations.  */
5127 
5128 /* Number of reloads passed so far in current EBB.  */
5129 static int reloads_num;
5130 
5131 /* Number of calls passed so far in current EBB.  */
5132 static int calls_num;
5133 
5134 /* Current reload pseudo check for validity of elements in
5135    USAGE_INSNS.	 */
5136 static int curr_usage_insns_check;
5137 
5138 /* Info about last usage of registers in EBB to do inheritance/split
5139    transformation.  Inheritance transformation is done from a spilled
5140    pseudo and split transformations from a hard register or a pseudo
5141    assigned to a hard register.	 */
5142 struct usage_insns
5143 {
5144   /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5145      value INSNS is valid.  The insns is chain of optional debug insns
5146      and a finishing non-debug insn using the corresponding reg.  The
5147      value is also used to mark the registers which are set up in the
5148      current insn.  The negated insn uid is used for this.  */
5149   int check;
5150   /* Value of global reloads_num at the last insn in INSNS.  */
5151   int reloads_num;
5152   /* Value of global reloads_nums at the last insn in INSNS.  */
5153   int calls_num;
5154   /* It can be true only for splitting.	 And it means that the restore
5155      insn should be put after insn given by the following member.  */
5156   bool after_p;
5157   /* Next insns in the current EBB which use the original reg and the
5158      original reg value is not changed between the current insn and
5159      the next insns.  In order words, e.g. for inheritance, if we need
5160      to use the original reg value again in the next insns we can try
5161      to use the value in a hard register from a reload insn of the
5162      current insn.  */
5163   rtx insns;
5164 };
5165 
5166 /* Map: regno -> corresponding pseudo usage insns.  */
5167 static struct usage_insns *usage_insns;
5168 
5169 static void
5170 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5171 {
5172   usage_insns[regno].check = curr_usage_insns_check;
5173   usage_insns[regno].insns = insn;
5174   usage_insns[regno].reloads_num = reloads_num;
5175   usage_insns[regno].calls_num = calls_num;
5176   usage_insns[regno].after_p = after_p;
5177 }
5178 
5179 /* The function is used to form list REGNO usages which consists of
5180    optional debug insns finished by a non-debug insn using REGNO.
5181    RELOADS_NUM is current number of reload insns processed so far.  */
5182 static void
5183 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5184 {
5185   rtx next_usage_insns;
5186 
5187   if (usage_insns[regno].check == curr_usage_insns_check
5188       && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5189       && DEBUG_INSN_P (insn))
5190     {
5191       /* Check that we did not add the debug insn yet.	*/
5192       if (next_usage_insns != insn
5193 	  && (GET_CODE (next_usage_insns) != INSN_LIST
5194 	      || XEXP (next_usage_insns, 0) != insn))
5195 	usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5196 						      next_usage_insns);
5197     }
5198   else if (NONDEBUG_INSN_P (insn))
5199     setup_next_usage_insn (regno, insn, reloads_num, false);
5200   else
5201     usage_insns[regno].check = 0;
5202 }
5203 
5204 /* Return first non-debug insn in list USAGE_INSNS.  */
5205 static rtx_insn *
5206 skip_usage_debug_insns (rtx usage_insns)
5207 {
5208   rtx insn;
5209 
5210   /* Skip debug insns.  */
5211   for (insn = usage_insns;
5212        insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5213        insn = XEXP (insn, 1))
5214     ;
5215   return safe_as_a <rtx_insn *> (insn);
5216 }
5217 
5218 /* Return true if we need secondary memory moves for insn in
5219    USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5220    into the insn.  */
5221 static bool
5222 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5223 				 rtx usage_insns ATTRIBUTE_UNUSED)
5224 {
5225   rtx_insn *insn;
5226   rtx set, dest;
5227   enum reg_class cl;
5228 
5229   if (inher_cl == ALL_REGS
5230       || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5231     return false;
5232   lra_assert (INSN_P (insn));
5233   if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5234     return false;
5235   dest = SET_DEST (set);
5236   if (! REG_P (dest))
5237     return false;
5238   lra_assert (inher_cl != NO_REGS);
5239   cl = get_reg_class (REGNO (dest));
5240   return (cl != NO_REGS && cl != ALL_REGS
5241 	  && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5242 }
5243 
5244 /* Registers involved in inheritance/split in the current EBB
5245    (inheritance/split pseudos and original registers).	*/
5246 static bitmap_head check_only_regs;
5247 
5248 /* Reload pseudos cannot be involded in invariant inheritance in the
5249    current EBB.  */
5250 static bitmap_head invalid_invariant_regs;
5251 
5252 /* Do inheritance transformations for insn INSN, which defines (if
5253    DEF_P) or uses ORIGINAL_REGNO.  NEXT_USAGE_INSNS specifies which
5254    instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5255    form as the "insns" field of usage_insns.  Return true if we
5256    succeed in such transformation.
5257 
5258    The transformations look like:
5259 
5260      p <- ...		  i <- ...
5261      ...		  p <- i    (new insn)
5262      ...	     =>
5263      <- ... p ...	  <- ... i ...
5264    or
5265      ...		  i <- p    (new insn)
5266      <- ... p ...	  <- ... i ...
5267      ...	     =>
5268      <- ... p ...	  <- ... i ...
5269    where p is a spilled original pseudo and i is a new inheritance pseudo.
5270 
5271 
5272    The inheritance pseudo has the smallest class of two classes CL and
5273    class of ORIGINAL REGNO.  */
5274 static bool
5275 inherit_reload_reg (bool def_p, int original_regno,
5276 		    enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5277 {
5278   if (optimize_function_for_size_p (cfun))
5279     return false;
5280 
5281   enum reg_class rclass = lra_get_allocno_class (original_regno);
5282   rtx original_reg = regno_reg_rtx[original_regno];
5283   rtx new_reg, usage_insn;
5284   rtx_insn *new_insns;
5285 
5286   lra_assert (! usage_insns[original_regno].after_p);
5287   if (lra_dump_file != NULL)
5288     fprintf (lra_dump_file,
5289 	     "    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5290   if (! ira_reg_classes_intersect_p[cl][rclass])
5291     {
5292       if (lra_dump_file != NULL)
5293 	{
5294 	  fprintf (lra_dump_file,
5295 		   "    Rejecting inheritance for %d "
5296 		   "because of disjoint classes %s and %s\n",
5297 		   original_regno, reg_class_names[cl],
5298 		   reg_class_names[rclass]);
5299 	  fprintf (lra_dump_file,
5300 		   "    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5301 	}
5302       return false;
5303     }
5304   if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5305       /* We don't use a subset of two classes because it can be
5306 	 NO_REGS.  This transformation is still profitable in most
5307 	 cases even if the classes are not intersected as register
5308 	 move is probably cheaper than a memory load.  */
5309       || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5310     {
5311       if (lra_dump_file != NULL)
5312 	fprintf (lra_dump_file, "    Use smallest class of %s and %s\n",
5313 		 reg_class_names[cl], reg_class_names[rclass]);
5314 
5315       rclass = cl;
5316     }
5317   if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5318     {
5319       /* Reject inheritance resulting in secondary memory moves.
5320 	 Otherwise, there is a danger in LRA cycling.  Also such
5321 	 transformation will be unprofitable.  */
5322       if (lra_dump_file != NULL)
5323 	{
5324 	  rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5325 	  rtx set = single_set (insn);
5326 
5327 	  lra_assert (set != NULL_RTX);
5328 
5329 	  rtx dest = SET_DEST (set);
5330 
5331 	  lra_assert (REG_P (dest));
5332 	  fprintf (lra_dump_file,
5333 		   "    Rejecting inheritance for insn %d(%s)<-%d(%s) "
5334 		   "as secondary mem is needed\n",
5335 		   REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5336 		   original_regno, reg_class_names[rclass]);
5337 	  fprintf (lra_dump_file,
5338 		   "    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5339 	}
5340       return false;
5341     }
5342   new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5343 				rclass, "inheritance");
5344   start_sequence ();
5345   if (def_p)
5346     lra_emit_move (original_reg, new_reg);
5347   else
5348     lra_emit_move (new_reg, original_reg);
5349   new_insns = get_insns ();
5350   end_sequence ();
5351   if (NEXT_INSN (new_insns) != NULL_RTX)
5352     {
5353       if (lra_dump_file != NULL)
5354 	{
5355 	  fprintf (lra_dump_file,
5356 		   "    Rejecting inheritance %d->%d "
5357 		   "as it results in 2 or more insns:\n",
5358 		   original_regno, REGNO (new_reg));
5359 	  dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5360 	  fprintf (lra_dump_file,
5361 		   "	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5362 	}
5363       return false;
5364     }
5365   lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5366   lra_update_insn_regno_info (insn);
5367   if (! def_p)
5368     /* We now have a new usage insn for original regno.  */
5369     setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5370   if (lra_dump_file != NULL)
5371     fprintf (lra_dump_file, "    Original reg change %d->%d (bb%d):\n",
5372 	     original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5373   lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5374   bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5375   bitmap_set_bit (&check_only_regs, original_regno);
5376   bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5377   if (def_p)
5378     lra_process_new_insns (insn, NULL, new_insns,
5379 			   "Add original<-inheritance");
5380   else
5381     lra_process_new_insns (insn, new_insns, NULL,
5382 			   "Add inheritance<-original");
5383   while (next_usage_insns != NULL_RTX)
5384     {
5385       if (GET_CODE (next_usage_insns) != INSN_LIST)
5386 	{
5387 	  usage_insn = next_usage_insns;
5388 	  lra_assert (NONDEBUG_INSN_P (usage_insn));
5389 	  next_usage_insns = NULL;
5390 	}
5391       else
5392 	{
5393 	  usage_insn = XEXP (next_usage_insns, 0);
5394 	  lra_assert (DEBUG_INSN_P (usage_insn));
5395 	  next_usage_insns = XEXP (next_usage_insns, 1);
5396 	}
5397       lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5398 			     DEBUG_INSN_P (usage_insn));
5399       lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5400       if (lra_dump_file != NULL)
5401 	{
5402 	  basic_block bb = BLOCK_FOR_INSN (usage_insn);
5403 	  fprintf (lra_dump_file,
5404 		   "    Inheritance reuse change %d->%d (bb%d):\n",
5405 		   original_regno, REGNO (new_reg),
5406 		   bb ? bb->index : -1);
5407 	  dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5408 	}
5409     }
5410   if (lra_dump_file != NULL)
5411     fprintf (lra_dump_file,
5412 	     "	  >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5413   return true;
5414 }
5415 
5416 /* Return true if we need a caller save/restore for pseudo REGNO which
5417    was assigned to a hard register.  */
5418 static inline bool
5419 need_for_call_save_p (int regno)
5420 {
5421   lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5422   return (usage_insns[regno].calls_num < calls_num
5423 	  && (overlaps_hard_reg_set_p
5424 	      ((flag_ipa_ra &&
5425 		! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5426 	       ? lra_reg_info[regno].actual_call_used_reg_set
5427 	       : call_used_reg_set,
5428 	       PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5429 	      || (targetm.hard_regno_call_part_clobbered
5430 		  (lra_reg_info[regno].call_insn,
5431 		   reg_renumber[regno], PSEUDO_REGNO_MODE (regno)))));
5432 }
5433 
5434 /* Global registers occurring in the current EBB.  */
5435 static bitmap_head ebb_global_regs;
5436 
5437 /* Return true if we need a split for hard register REGNO or pseudo
5438    REGNO which was assigned to a hard register.
5439    POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5440    used for reloads since the EBB end.	It is an approximation of the
5441    used hard registers in the split range.  The exact value would
5442    require expensive calculations.  If we were aggressive with
5443    splitting because of the approximation, the split pseudo will save
5444    the same hard register assignment and will be removed in the undo
5445    pass.  We still need the approximation because too aggressive
5446    splitting would result in too inaccurate cost calculation in the
5447    assignment pass because of too many generated moves which will be
5448    probably removed in the undo pass.  */
5449 static inline bool
5450 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5451 {
5452   int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5453 
5454   lra_assert (hard_regno >= 0);
5455   return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5456 	   /* Don't split eliminable hard registers, otherwise we can
5457 	      split hard registers like hard frame pointer, which
5458 	      lives on BB start/end according to DF-infrastructure,
5459 	      when there is a pseudo assigned to the register and
5460 	      living in the same BB.  */
5461 	   && (regno >= FIRST_PSEUDO_REGISTER
5462 	       || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5463 	   && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5464 	   /* Don't split call clobbered hard regs living through
5465 	      calls, otherwise we might have a check problem in the
5466 	      assign sub-pass as in the most cases (exception is a
5467 	      situation when lra_risky_transformations_p value is
5468 	      true) the assign pass assumes that all pseudos living
5469 	      through calls are assigned to call saved hard regs.  */
5470 	   && (regno >= FIRST_PSEUDO_REGISTER
5471 	       || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5472 	       || usage_insns[regno].calls_num == calls_num)
5473 	   /* We need at least 2 reloads to make pseudo splitting
5474 	      profitable.  We should provide hard regno splitting in
5475 	      any case to solve 1st insn scheduling problem when
5476 	      moving hard register definition up might result in
5477 	      impossibility to find hard register for reload pseudo of
5478 	      small register class.  */
5479 	   && (usage_insns[regno].reloads_num
5480 	       + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5481 	   && (regno < FIRST_PSEUDO_REGISTER
5482 	       /* For short living pseudos, spilling + inheritance can
5483 		  be considered a substitution for splitting.
5484 		  Therefore we do not splitting for local pseudos.  It
5485 		  decreases also aggressiveness of splitting.  The
5486 		  minimal number of references is chosen taking into
5487 		  account that for 2 references splitting has no sense
5488 		  as we can just spill the pseudo.  */
5489 	       || (regno >= FIRST_PSEUDO_REGISTER
5490 		   && lra_reg_info[regno].nrefs > 3
5491 		   && bitmap_bit_p (&ebb_global_regs, regno))))
5492 	  || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5493 }
5494 
5495 /* Return class for the split pseudo created from original pseudo with
5496    ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO.	 We
5497    choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5498    results in no secondary memory movements.  */
5499 static enum reg_class
5500 choose_split_class (enum reg_class allocno_class,
5501 		    int hard_regno ATTRIBUTE_UNUSED,
5502 		    machine_mode mode ATTRIBUTE_UNUSED)
5503 {
5504   int i;
5505   enum reg_class cl, best_cl = NO_REGS;
5506   enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5507     = REGNO_REG_CLASS (hard_regno);
5508 
5509   if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5510       && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5511     return allocno_class;
5512   for (i = 0;
5513        (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5514        i++)
5515     if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5516 	&& ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5517 	&& TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5518 	&& (best_cl == NO_REGS
5519 	    || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5520       best_cl = cl;
5521   return best_cl;
5522 }
5523 
5524 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5525    It only makes sense to call this function if NEW_REGNO is always
5526    equal to ORIGINAL_REGNO.  */
5527 
5528 static void
5529 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5530 {
5531   if (!ira_reg_equiv[original_regno].defined_p)
5532     return;
5533 
5534   ira_expand_reg_equiv ();
5535   ira_reg_equiv[new_regno].defined_p = true;
5536   if (ira_reg_equiv[original_regno].memory)
5537     ira_reg_equiv[new_regno].memory
5538       = copy_rtx (ira_reg_equiv[original_regno].memory);
5539   if (ira_reg_equiv[original_regno].constant)
5540     ira_reg_equiv[new_regno].constant
5541       = copy_rtx (ira_reg_equiv[original_regno].constant);
5542   if (ira_reg_equiv[original_regno].invariant)
5543     ira_reg_equiv[new_regno].invariant
5544       = copy_rtx (ira_reg_equiv[original_regno].invariant);
5545 }
5546 
5547 /* Do split transformations for insn INSN, which defines or uses
5548    ORIGINAL_REGNO.  NEXT_USAGE_INSNS specifies which instruction in
5549    the EBB next uses ORIGINAL_REGNO; it has the same form as the
5550    "insns" field of usage_insns.  If TO is not NULL, we don't use
5551    usage_insns, we put restore insns after TO insn.  It is a case when
5552    we call it from lra_split_hard_reg_for, outside the inheritance
5553    pass.
5554 
5555    The transformations look like:
5556 
5557      p <- ...		  p <- ...
5558      ...		  s <- p    (new insn -- save)
5559      ...	     =>
5560      ...		  p <- s    (new insn -- restore)
5561      <- ... p ...	  <- ... p ...
5562    or
5563      <- ... p ...	  <- ... p ...
5564      ...		  s <- p    (new insn -- save)
5565      ...	     =>
5566      ...		  p <- s    (new insn -- restore)
5567      <- ... p ...	  <- ... p ...
5568 
5569    where p is an original pseudo got a hard register or a hard
5570    register and s is a new split pseudo.  The save is put before INSN
5571    if BEFORE_P is true.	 Return true if we succeed in such
5572    transformation.  */
5573 static bool
5574 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5575 	   rtx next_usage_insns, rtx_insn *to)
5576 {
5577   enum reg_class rclass;
5578   rtx original_reg;
5579   int hard_regno, nregs;
5580   rtx new_reg, usage_insn;
5581   rtx_insn *restore, *save;
5582   bool after_p;
5583   bool call_save_p;
5584   machine_mode mode;
5585 
5586   if (original_regno < FIRST_PSEUDO_REGISTER)
5587     {
5588       rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5589       hard_regno = original_regno;
5590       call_save_p = false;
5591       nregs = 1;
5592       mode = lra_reg_info[hard_regno].biggest_mode;
5593       machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5594       /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5595 	 as part of a multi-word register.  In that case, or if the biggest
5596 	 mode was larger than a register, just use the reg_rtx.  Otherwise,
5597 	 limit the size to that of the biggest access in the function.  */
5598       if (mode == VOIDmode
5599 	  || paradoxical_subreg_p (mode, reg_rtx_mode))
5600 	{
5601 	  original_reg = regno_reg_rtx[hard_regno];
5602 	  mode = reg_rtx_mode;
5603 	}
5604       else
5605 	original_reg = gen_rtx_REG (mode, hard_regno);
5606     }
5607   else
5608     {
5609       mode = PSEUDO_REGNO_MODE (original_regno);
5610       hard_regno = reg_renumber[original_regno];
5611       nregs = hard_regno_nregs (hard_regno, mode);
5612       rclass = lra_get_allocno_class (original_regno);
5613       original_reg = regno_reg_rtx[original_regno];
5614       call_save_p = need_for_call_save_p (original_regno);
5615     }
5616   lra_assert (hard_regno >= 0);
5617   if (lra_dump_file != NULL)
5618     fprintf (lra_dump_file,
5619 	     "	  ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5620 
5621   if (call_save_p)
5622     {
5623       mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5624 					  hard_regno_nregs (hard_regno, mode),
5625 					  mode);
5626       new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5627     }
5628   else
5629     {
5630       rclass = choose_split_class (rclass, hard_regno, mode);
5631       if (rclass == NO_REGS)
5632 	{
5633 	  if (lra_dump_file != NULL)
5634 	    {
5635 	      fprintf (lra_dump_file,
5636 		       "    Rejecting split of %d(%s): "
5637 		       "no good reg class for %d(%s)\n",
5638 		       original_regno,
5639 		       reg_class_names[lra_get_allocno_class (original_regno)],
5640 		       hard_regno,
5641 		       reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5642 	      fprintf
5643 		(lra_dump_file,
5644 		 "    ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5645 	    }
5646 	  return false;
5647 	}
5648       /* Split_if_necessary can split hard registers used as part of a
5649 	 multi-register mode but splits each register individually.  The
5650 	 mode used for each independent register may not be supported
5651 	 so reject the split.  Splitting the wider mode should theoretically
5652 	 be possible but is not implemented.  */
5653       if (!targetm.hard_regno_mode_ok (hard_regno, mode))
5654 	{
5655 	  if (lra_dump_file != NULL)
5656 	    {
5657 	      fprintf (lra_dump_file,
5658 		       "    Rejecting split of %d(%s): unsuitable mode %s\n",
5659 		       original_regno,
5660 		       reg_class_names[lra_get_allocno_class (original_regno)],
5661 		       GET_MODE_NAME (mode));
5662 	      fprintf
5663 		(lra_dump_file,
5664 		 "    ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5665 	    }
5666 	  return false;
5667 	}
5668       new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5669       reg_renumber[REGNO (new_reg)] = hard_regno;
5670     }
5671   int new_regno = REGNO (new_reg);
5672   save = emit_spill_move (true, new_reg, original_reg);
5673   if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5674     {
5675       if (lra_dump_file != NULL)
5676 	{
5677 	  fprintf
5678 	    (lra_dump_file,
5679 	     "	  Rejecting split %d->%d resulting in > 2 save insns:\n",
5680 	     original_regno, new_regno);
5681 	  dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5682 	  fprintf (lra_dump_file,
5683 		   "	))))))))))))))))))))))))))))))))))))))))))))))))\n");
5684 	}
5685       return false;
5686     }
5687   restore = emit_spill_move (false, new_reg, original_reg);
5688   if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5689     {
5690       if (lra_dump_file != NULL)
5691 	{
5692 	  fprintf (lra_dump_file,
5693 		   "	Rejecting split %d->%d "
5694 		   "resulting in > 2 restore insns:\n",
5695 		   original_regno, new_regno);
5696 	  dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5697 	  fprintf (lra_dump_file,
5698 		   "	))))))))))))))))))))))))))))))))))))))))))))))))\n");
5699 	}
5700       return false;
5701     }
5702   /* Transfer equivalence information to the spill register, so that
5703      if we fail to allocate the spill register, we have the option of
5704      rematerializing the original value instead of spilling to the stack.  */
5705   if (!HARD_REGISTER_NUM_P (original_regno)
5706       && mode == PSEUDO_REGNO_MODE (original_regno))
5707     lra_copy_reg_equiv (new_regno, original_regno);
5708   lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5709   bitmap_set_bit (&lra_split_regs, new_regno);
5710   if (to != NULL)
5711     {
5712       lra_assert (next_usage_insns == NULL);
5713       usage_insn = to;
5714       after_p = TRUE;
5715     }
5716   else
5717     {
5718       /* We need check_only_regs only inside the inheritance pass.  */
5719       bitmap_set_bit (&check_only_regs, new_regno);
5720       bitmap_set_bit (&check_only_regs, original_regno);
5721       after_p = usage_insns[original_regno].after_p;
5722       for (;;)
5723 	{
5724 	  if (GET_CODE (next_usage_insns) != INSN_LIST)
5725 	    {
5726 	      usage_insn = next_usage_insns;
5727 	      break;
5728 	    }
5729 	  usage_insn = XEXP (next_usage_insns, 0);
5730 	  lra_assert (DEBUG_INSN_P (usage_insn));
5731 	  next_usage_insns = XEXP (next_usage_insns, 1);
5732 	  lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5733 				 true);
5734 	  lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5735 	  if (lra_dump_file != NULL)
5736 	    {
5737 	      fprintf (lra_dump_file, "    Split reuse change %d->%d:\n",
5738 		       original_regno, new_regno);
5739 	      dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5740 	    }
5741 	}
5742     }
5743   lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5744   lra_assert (usage_insn != insn || (after_p && before_p));
5745   lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5746 			 after_p ? NULL : restore,
5747 			 after_p ? restore : NULL,
5748 			 call_save_p
5749 			 ?  "Add reg<-save" : "Add reg<-split");
5750   lra_process_new_insns (insn, before_p ? save : NULL,
5751 			 before_p ? NULL : save,
5752 			 call_save_p
5753 			 ?  "Add save<-reg" : "Add split<-reg");
5754   if (nregs > 1)
5755     /* If we are trying to split multi-register.  We should check
5756        conflicts on the next assignment sub-pass.  IRA can allocate on
5757        sub-register levels, LRA do this on pseudos level right now and
5758        this discrepancy may create allocation conflicts after
5759        splitting.  */
5760     lra_risky_transformations_p = true;
5761   if (lra_dump_file != NULL)
5762     fprintf (lra_dump_file,
5763 	     "	  ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5764   return true;
5765 }
5766 
5767 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5768    in the range [FROM, TO].  Return true if did a split.  Otherwise,
5769    return false.  */
5770 bool
5771 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
5772 {
5773   int i, hard_regno;
5774   int rclass_size;
5775   rtx_insn *insn;
5776   unsigned int uid;
5777   bitmap_iterator bi;
5778   HARD_REG_SET ignore;
5779 
5780   lra_assert (from != NULL && to != NULL);
5781   CLEAR_HARD_REG_SET (ignore);
5782   EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5783     {
5784       lra_insn_recog_data_t id = lra_insn_recog_data[uid];
5785       struct lra_static_insn_data *static_id = id->insn_static_data;
5786       struct lra_insn_reg *reg;
5787 
5788       for (reg = id->regs; reg != NULL; reg = reg->next)
5789 	if (reg->regno < FIRST_PSEUDO_REGISTER)
5790 	  SET_HARD_REG_BIT (ignore, reg->regno);
5791       for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5792 	SET_HARD_REG_BIT (ignore, reg->regno);
5793     }
5794   rclass_size = ira_class_hard_regs_num[rclass];
5795   for (i = 0; i < rclass_size; i++)
5796     {
5797       hard_regno = ira_class_hard_regs[rclass][i];
5798       if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
5799 	  || TEST_HARD_REG_BIT (ignore, hard_regno))
5800 	continue;
5801       for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
5802 	{
5803 	  struct lra_static_insn_data *static_id;
5804 	  struct lra_insn_reg *reg;
5805 
5806 	  if (!INSN_P (insn))
5807 	      continue;
5808 	  if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
5809 			    INSN_UID (insn)))
5810 	    break;
5811 	  static_id = lra_get_insn_recog_data (insn)->insn_static_data;
5812 	  for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5813 	    if (reg->regno == hard_regno)
5814 	      break;
5815 	  if (reg != NULL)
5816 	    break;
5817 	}
5818       if (insn != NEXT_INSN (to))
5819 	continue;
5820       if (split_reg (TRUE, hard_regno, from, NULL, to))
5821 	return true;
5822     }
5823   return false;
5824 }
5825 
5826 /* Recognize that we need a split transformation for insn INSN, which
5827    defines or uses REGNO in its insn biggest MODE (we use it only if
5828    REGNO is a hard register).  POTENTIAL_RELOAD_HARD_REGS contains
5829    hard registers which might be used for reloads since the EBB end.
5830    Put the save before INSN if BEFORE_P is true.  MAX_UID is maximla
5831    uid before starting INSN processing.  Return true if we succeed in
5832    such transformation.  */
5833 static bool
5834 split_if_necessary (int regno, machine_mode mode,
5835 		    HARD_REG_SET potential_reload_hard_regs,
5836 		    bool before_p, rtx_insn *insn, int max_uid)
5837 {
5838   bool res = false;
5839   int i, nregs = 1;
5840   rtx next_usage_insns;
5841 
5842   if (regno < FIRST_PSEUDO_REGISTER)
5843     nregs = hard_regno_nregs (regno, mode);
5844   for (i = 0; i < nregs; i++)
5845     if (usage_insns[regno + i].check == curr_usage_insns_check
5846 	&& (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5847 	/* To avoid processing the register twice or more.  */
5848 	&& ((GET_CODE (next_usage_insns) != INSN_LIST
5849 	     && INSN_UID (next_usage_insns) < max_uid)
5850 	    || (GET_CODE (next_usage_insns) == INSN_LIST
5851 		&& (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5852 	&& need_for_split_p (potential_reload_hard_regs, regno + i)
5853 	&& split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
5854     res = true;
5855   return res;
5856 }
5857 
5858 /* Return TRUE if rtx X is considered as an invariant for
5859    inheritance.  */
5860 static bool
5861 invariant_p (const_rtx x)
5862 {
5863   machine_mode mode;
5864   const char *fmt;
5865   enum rtx_code code;
5866   int i, j;
5867 
5868   if (side_effects_p (x))
5869     return false;
5870 
5871   code = GET_CODE (x);
5872   mode = GET_MODE (x);
5873   if (code == SUBREG)
5874     {
5875       x = SUBREG_REG (x);
5876       code = GET_CODE (x);
5877       mode = wider_subreg_mode (mode, GET_MODE (x));
5878     }
5879 
5880   if (MEM_P (x))
5881     return false;
5882 
5883   if (REG_P (x))
5884     {
5885       int i, nregs, regno = REGNO (x);
5886 
5887       if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5888 	  || TEST_HARD_REG_BIT (eliminable_regset, regno)
5889 	  || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5890 	return false;
5891       nregs = hard_regno_nregs (regno, mode);
5892       for (i = 0; i < nregs; i++)
5893 	if (! fixed_regs[regno + i]
5894 	    /* A hard register may be clobbered in the current insn
5895 	       but we can ignore this case because if the hard
5896 	       register is used it should be set somewhere after the
5897 	       clobber.  */
5898 	    || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5899 	  return false;
5900     }
5901   fmt = GET_RTX_FORMAT (code);
5902   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5903     {
5904       if (fmt[i] == 'e')
5905 	{
5906 	  if (! invariant_p (XEXP (x, i)))
5907 	    return false;
5908 	}
5909       else if (fmt[i] == 'E')
5910 	{
5911 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5912 	    if (! invariant_p (XVECEXP (x, i, j)))
5913 	      return false;
5914 	}
5915     }
5916   return true;
5917 }
5918 
5919 /* We have 'dest_reg <- invariant'.  Let us try to make an invariant
5920    inheritance transformation (using dest_reg instead invariant in a
5921    subsequent insn).  */
5922 static bool
5923 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5924 {
5925   invariant_ptr_t invariant_ptr;
5926   rtx_insn *insn, *new_insns;
5927   rtx insn_set, insn_reg, new_reg;
5928   int insn_regno;
5929   bool succ_p = false;
5930   int dst_regno = REGNO (dst_reg);
5931   machine_mode dst_mode = GET_MODE (dst_reg);
5932   enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5933 
5934   invariant_ptr = insert_invariant (invariant_rtx);
5935   if ((insn = invariant_ptr->insn) != NULL_RTX)
5936     {
5937       /* We have a subsequent insn using the invariant.  */
5938       insn_set = single_set (insn);
5939       lra_assert (insn_set != NULL);
5940       insn_reg = SET_DEST (insn_set);
5941       lra_assert (REG_P (insn_reg));
5942       insn_regno = REGNO (insn_reg);
5943       insn_reg_cl = lra_get_allocno_class (insn_regno);
5944 
5945       if (dst_mode == GET_MODE (insn_reg)
5946 	  /* We should consider only result move reg insns which are
5947 	     cheap.  */
5948 	  && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5949 	  && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5950 	{
5951 	  if (lra_dump_file != NULL)
5952 	    fprintf (lra_dump_file,
5953 		     "    [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5954 	  new_reg = lra_create_new_reg (dst_mode, dst_reg,
5955 					cl, "invariant inheritance");
5956 	  bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5957 	  bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5958 	  lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5959 	  start_sequence ();
5960 	  lra_emit_move (new_reg, dst_reg);
5961 	  new_insns = get_insns ();
5962 	  end_sequence ();
5963 	  lra_process_new_insns (curr_insn, NULL, new_insns,
5964 				 "Add invariant inheritance<-original");
5965 	  start_sequence ();
5966 	  lra_emit_move (SET_DEST (insn_set), new_reg);
5967 	  new_insns = get_insns ();
5968 	  end_sequence ();
5969 	  lra_process_new_insns (insn, NULL, new_insns,
5970 				 "Changing reload<-inheritance");
5971 	  lra_set_insn_deleted (insn);
5972 	  succ_p = true;
5973 	  if (lra_dump_file != NULL)
5974 	    {
5975 	      fprintf (lra_dump_file,
5976 		       "    Invariant inheritance reuse change %d (bb%d):\n",
5977 		       REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5978 	      dump_insn_slim (lra_dump_file, insn);
5979 	      fprintf (lra_dump_file,
5980 		       "	  ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
5981 	    }
5982 	}
5983     }
5984   invariant_ptr->insn = curr_insn;
5985   return succ_p;
5986 }
5987 
5988 /* Check only registers living at the current program point in the
5989    current EBB.	 */
5990 static bitmap_head live_regs;
5991 
5992 /* Update live info in EBB given by its HEAD and TAIL insns after
5993    inheritance/split transformation.  The function removes dead moves
5994    too.	 */
5995 static void
5996 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
5997 {
5998   unsigned int j;
5999   int i, regno;
6000   bool live_p;
6001   rtx_insn *prev_insn;
6002   rtx set;
6003   bool remove_p;
6004   basic_block last_bb, prev_bb, curr_bb;
6005   bitmap_iterator bi;
6006   struct lra_insn_reg *reg;
6007   edge e;
6008   edge_iterator ei;
6009 
6010   last_bb = BLOCK_FOR_INSN (tail);
6011   prev_bb = NULL;
6012   for (curr_insn = tail;
6013        curr_insn != PREV_INSN (head);
6014        curr_insn = prev_insn)
6015     {
6016       prev_insn = PREV_INSN (curr_insn);
6017       /* We need to process empty blocks too.  They contain
6018 	 NOTE_INSN_BASIC_BLOCK referring for the basic block.  */
6019       if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
6020 	continue;
6021       curr_bb = BLOCK_FOR_INSN (curr_insn);
6022       if (curr_bb != prev_bb)
6023 	{
6024 	  if (prev_bb != NULL)
6025 	    {
6026 	      /* Update df_get_live_in (prev_bb):  */
6027 	      EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6028 		if (bitmap_bit_p (&live_regs, j))
6029 		  bitmap_set_bit (df_get_live_in (prev_bb), j);
6030 		else
6031 		  bitmap_clear_bit (df_get_live_in (prev_bb), j);
6032 	    }
6033 	  if (curr_bb != last_bb)
6034 	    {
6035 	      /* Update df_get_live_out (curr_bb):  */
6036 	      EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6037 		{
6038 		  live_p = bitmap_bit_p (&live_regs, j);
6039 		  if (! live_p)
6040 		    FOR_EACH_EDGE (e, ei, curr_bb->succs)
6041 		      if (bitmap_bit_p (df_get_live_in (e->dest), j))
6042 			{
6043 			  live_p = true;
6044 			  break;
6045 			}
6046 		  if (live_p)
6047 		    bitmap_set_bit (df_get_live_out (curr_bb), j);
6048 		  else
6049 		    bitmap_clear_bit (df_get_live_out (curr_bb), j);
6050 		}
6051 	    }
6052 	  prev_bb = curr_bb;
6053 	  bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
6054 	}
6055       if (! NONDEBUG_INSN_P (curr_insn))
6056 	continue;
6057       curr_id = lra_get_insn_recog_data (curr_insn);
6058       curr_static_id = curr_id->insn_static_data;
6059       remove_p = false;
6060       if ((set = single_set (curr_insn)) != NULL_RTX
6061 	  && REG_P (SET_DEST (set))
6062 	  && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
6063 	  && SET_DEST (set) != pic_offset_table_rtx
6064 	  && bitmap_bit_p (&check_only_regs, regno)
6065 	  && ! bitmap_bit_p (&live_regs, regno))
6066 	remove_p = true;
6067       /* See which defined values die here.  */
6068       for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6069 	if (reg->type == OP_OUT && ! reg->subreg_p)
6070 	  bitmap_clear_bit (&live_regs, reg->regno);
6071       for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6072 	if (reg->type == OP_OUT && ! reg->subreg_p)
6073 	  bitmap_clear_bit (&live_regs, reg->regno);
6074       if (curr_id->arg_hard_regs != NULL)
6075 	/* Make clobbered argument hard registers die.  */
6076 	for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6077 	  if (regno >= FIRST_PSEUDO_REGISTER)
6078 	    bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6079       /* Mark each used value as live.  */
6080       for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6081 	if (reg->type != OP_OUT
6082 	    && bitmap_bit_p (&check_only_regs, reg->regno))
6083 	  bitmap_set_bit (&live_regs, reg->regno);
6084       for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6085 	if (reg->type != OP_OUT
6086 	    && bitmap_bit_p (&check_only_regs, reg->regno))
6087 	  bitmap_set_bit (&live_regs, reg->regno);
6088       if (curr_id->arg_hard_regs != NULL)
6089 	/* Make used argument hard registers live.  */
6090 	for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6091 	  if (regno < FIRST_PSEUDO_REGISTER
6092 	      && bitmap_bit_p (&check_only_regs, regno))
6093 	    bitmap_set_bit (&live_regs, regno);
6094       /* It is quite important to remove dead move insns because it
6095 	 means removing dead store.  We don't need to process them for
6096 	 constraints.  */
6097       if (remove_p)
6098 	{
6099 	  if (lra_dump_file != NULL)
6100 	    {
6101 	      fprintf (lra_dump_file, "	    Removing dead insn:\n ");
6102 	      dump_insn_slim (lra_dump_file, curr_insn);
6103 	    }
6104 	  lra_set_insn_deleted (curr_insn);
6105 	}
6106     }
6107 }
6108 
6109 /* The structure describes info to do an inheritance for the current
6110    insn.  We need to collect such info first before doing the
6111    transformations because the transformations change the insn
6112    internal representation.  */
6113 struct to_inherit
6114 {
6115   /* Original regno.  */
6116   int regno;
6117   /* Subsequent insns which can inherit original reg value.  */
6118   rtx insns;
6119 };
6120 
6121 /* Array containing all info for doing inheritance from the current
6122    insn.  */
6123 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6124 
6125 /* Number elements in the previous array.  */
6126 static int to_inherit_num;
6127 
6128 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6129    structure to_inherit.  */
6130 static void
6131 add_to_inherit (int regno, rtx insns)
6132 {
6133   int i;
6134 
6135   for (i = 0; i < to_inherit_num; i++)
6136     if (to_inherit[i].regno == regno)
6137       return;
6138   lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6139   to_inherit[to_inherit_num].regno = regno;
6140   to_inherit[to_inherit_num++].insns = insns;
6141 }
6142 
6143 /* Return the last non-debug insn in basic block BB, or the block begin
6144    note if none.  */
6145 static rtx_insn *
6146 get_last_insertion_point (basic_block bb)
6147 {
6148   rtx_insn *insn;
6149 
6150   FOR_BB_INSNS_REVERSE (bb, insn)
6151     if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6152       return insn;
6153   gcc_unreachable ();
6154 }
6155 
6156 /* Set up RES by registers living on edges FROM except the edge (FROM,
6157    TO) or by registers set up in a jump insn in BB FROM.  */
6158 static void
6159 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6160 {
6161   rtx_insn *last;
6162   struct lra_insn_reg *reg;
6163   edge e;
6164   edge_iterator ei;
6165 
6166   lra_assert (to != NULL);
6167   bitmap_clear (res);
6168   FOR_EACH_EDGE (e, ei, from->succs)
6169     if (e->dest != to)
6170       bitmap_ior_into (res, df_get_live_in (e->dest));
6171   last = get_last_insertion_point (from);
6172   if (! JUMP_P (last))
6173     return;
6174   curr_id = lra_get_insn_recog_data (last);
6175   for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6176     if (reg->type != OP_IN)
6177       bitmap_set_bit (res, reg->regno);
6178 }
6179 
6180 /* Used as a temporary results of some bitmap calculations.  */
6181 static bitmap_head temp_bitmap;
6182 
6183 /* We split for reloads of small class of hard regs.  The following
6184    defines how many hard regs the class should have to be qualified as
6185    small.  The code is mostly oriented to x86/x86-64 architecture
6186    where some insns need to use only specific register or pair of
6187    registers and these register can live in RTL explicitly, e.g. for
6188    parameter passing.  */
6189 static const int max_small_class_regs_num = 2;
6190 
6191 /* Do inheritance/split transformations in EBB starting with HEAD and
6192    finishing on TAIL.  We process EBB insns in the reverse order.
6193    Return true if we did any inheritance/split transformation in the
6194    EBB.
6195 
6196    We should avoid excessive splitting which results in worse code
6197    because of inaccurate cost calculations for spilling new split
6198    pseudos in such case.  To achieve this we do splitting only if
6199    register pressure is high in given basic block and there are reload
6200    pseudos requiring hard registers.  We could do more register
6201    pressure calculations at any given program point to avoid necessary
6202    splitting even more but it is to expensive and the current approach
6203    works well enough.  */
6204 static bool
6205 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6206 {
6207   int i, src_regno, dst_regno, nregs;
6208   bool change_p, succ_p, update_reloads_num_p;
6209   rtx_insn *prev_insn, *last_insn;
6210   rtx next_usage_insns, curr_set;
6211   enum reg_class cl;
6212   struct lra_insn_reg *reg;
6213   basic_block last_processed_bb, curr_bb = NULL;
6214   HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6215   bitmap to_process;
6216   unsigned int j;
6217   bitmap_iterator bi;
6218   bool head_p, after_p;
6219 
6220   change_p = false;
6221   curr_usage_insns_check++;
6222   clear_invariants ();
6223   reloads_num = calls_num = 0;
6224   bitmap_clear (&check_only_regs);
6225   bitmap_clear (&invalid_invariant_regs);
6226   last_processed_bb = NULL;
6227   CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6228   COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6229   IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6230   /* We don't process new insns generated in the loop.	*/
6231   for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6232     {
6233       prev_insn = PREV_INSN (curr_insn);
6234       if (BLOCK_FOR_INSN (curr_insn) != NULL)
6235 	curr_bb = BLOCK_FOR_INSN (curr_insn);
6236       if (last_processed_bb != curr_bb)
6237 	{
6238 	  /* We are at the end of BB.  Add qualified living
6239 	     pseudos for potential splitting.  */
6240 	  to_process = df_get_live_out (curr_bb);
6241 	  if (last_processed_bb != NULL)
6242 	    {
6243 	      /* We are somewhere in the middle of EBB.	 */
6244 	      get_live_on_other_edges (curr_bb, last_processed_bb,
6245 				       &temp_bitmap);
6246 	      to_process = &temp_bitmap;
6247 	    }
6248 	  last_processed_bb = curr_bb;
6249 	  last_insn = get_last_insertion_point (curr_bb);
6250 	  after_p = (! JUMP_P (last_insn)
6251 		     && (! CALL_P (last_insn)
6252 			 || (find_reg_note (last_insn,
6253 					   REG_NORETURN, NULL_RTX) == NULL_RTX
6254 			     && ! SIBLING_CALL_P (last_insn))));
6255 	  CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6256 	  EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6257 	    {
6258 	      if ((int) j >= lra_constraint_new_regno_start)
6259 		break;
6260 	      if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6261 		{
6262 		  if (j < FIRST_PSEUDO_REGISTER)
6263 		    SET_HARD_REG_BIT (live_hard_regs, j);
6264 		  else
6265 		    add_to_hard_reg_set (&live_hard_regs,
6266 					 PSEUDO_REGNO_MODE (j),
6267 					 reg_renumber[j]);
6268 		  setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6269 		}
6270 	    }
6271 	}
6272       src_regno = dst_regno = -1;
6273       curr_set = single_set (curr_insn);
6274       if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6275 	dst_regno = REGNO (SET_DEST (curr_set));
6276       if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6277 	src_regno = REGNO (SET_SRC (curr_set));
6278       update_reloads_num_p = true;
6279       if (src_regno < lra_constraint_new_regno_start
6280 	  && src_regno >= FIRST_PSEUDO_REGISTER
6281 	  && reg_renumber[src_regno] < 0
6282 	  && dst_regno >= lra_constraint_new_regno_start
6283 	  && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6284 	{
6285 	  /* 'reload_pseudo <- original_pseudo'.  */
6286 	  if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6287 	    reloads_num++;
6288 	  update_reloads_num_p = false;
6289 	  succ_p = false;
6290 	  if (usage_insns[src_regno].check == curr_usage_insns_check
6291 	      && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6292 	    succ_p = inherit_reload_reg (false, src_regno, cl,
6293 					 curr_insn, next_usage_insns);
6294 	  if (succ_p)
6295 	    change_p = true;
6296 	  else
6297 	    setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6298 	  if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6299 	    IOR_HARD_REG_SET (potential_reload_hard_regs,
6300 			      reg_class_contents[cl]);
6301 	}
6302       else if (src_regno < 0
6303 	       && dst_regno >= lra_constraint_new_regno_start
6304 	       && invariant_p (SET_SRC (curr_set))
6305 	       && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6306 	       && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6307 	       && ! bitmap_bit_p (&invalid_invariant_regs,
6308 				  ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6309 	{
6310 	  /* 'reload_pseudo <- invariant'.  */
6311 	  if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6312 	    reloads_num++;
6313 	  update_reloads_num_p = false;
6314 	  if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6315 	    change_p = true;
6316 	  if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6317 	    IOR_HARD_REG_SET (potential_reload_hard_regs,
6318 			      reg_class_contents[cl]);
6319 	}
6320       else if (src_regno >= lra_constraint_new_regno_start
6321 	       && dst_regno < lra_constraint_new_regno_start
6322 	       && dst_regno >= FIRST_PSEUDO_REGISTER
6323 	       && reg_renumber[dst_regno] < 0
6324 	       && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6325 	       && usage_insns[dst_regno].check == curr_usage_insns_check
6326 	       && (next_usage_insns
6327 		   = usage_insns[dst_regno].insns) != NULL_RTX)
6328 	{
6329 	  if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6330 	    reloads_num++;
6331 	  update_reloads_num_p = false;
6332 	  /* 'original_pseudo <- reload_pseudo'.  */
6333 	  if (! JUMP_P (curr_insn)
6334 	      && inherit_reload_reg (true, dst_regno, cl,
6335 				     curr_insn, next_usage_insns))
6336 	    change_p = true;
6337 	  /* Invalidate.  */
6338 	  usage_insns[dst_regno].check = 0;
6339 	  if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6340 	    IOR_HARD_REG_SET (potential_reload_hard_regs,
6341 			      reg_class_contents[cl]);
6342 	}
6343       else if (INSN_P (curr_insn))
6344 	{
6345 	  int iter;
6346 	  int max_uid = get_max_uid ();
6347 
6348 	  curr_id = lra_get_insn_recog_data (curr_insn);
6349 	  curr_static_id = curr_id->insn_static_data;
6350 	  to_inherit_num = 0;
6351 	  /* Process insn definitions.	*/
6352 	  for (iter = 0; iter < 2; iter++)
6353 	    for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6354 		 reg != NULL;
6355 		 reg = reg->next)
6356 	      if (reg->type != OP_IN
6357 		  && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6358 		{
6359 		  if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6360 		      && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6361 		      && usage_insns[dst_regno].check == curr_usage_insns_check
6362 		      && (next_usage_insns
6363 			  = usage_insns[dst_regno].insns) != NULL_RTX)
6364 		    {
6365 		      struct lra_insn_reg *r;
6366 
6367 		      for (r = curr_id->regs; r != NULL; r = r->next)
6368 			if (r->type != OP_OUT && r->regno == dst_regno)
6369 			  break;
6370 		      /* Don't do inheritance if the pseudo is also
6371 			 used in the insn.  */
6372 		      if (r == NULL)
6373 			/* We cannot do inheritance right now
6374 			   because the current insn reg info (chain
6375 			   regs) can change after that.  */
6376 			add_to_inherit (dst_regno, next_usage_insns);
6377 		    }
6378 		  /* We cannot process one reg twice here because of
6379 		     usage_insns invalidation.  */
6380 		  if ((dst_regno < FIRST_PSEUDO_REGISTER
6381 		       || reg_renumber[dst_regno] >= 0)
6382 		      && ! reg->subreg_p && reg->type != OP_IN)
6383 		    {
6384 		      HARD_REG_SET s;
6385 
6386 		      if (split_if_necessary (dst_regno, reg->biggest_mode,
6387 					      potential_reload_hard_regs,
6388 					      false, curr_insn, max_uid))
6389 			change_p = true;
6390 		      CLEAR_HARD_REG_SET (s);
6391 		      if (dst_regno < FIRST_PSEUDO_REGISTER)
6392 			add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6393 		      else
6394 			add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6395 					     reg_renumber[dst_regno]);
6396 		      AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6397 		      AND_COMPL_HARD_REG_SET (potential_reload_hard_regs, s);
6398 		    }
6399 		  /* We should invalidate potential inheritance or
6400 		     splitting for the current insn usages to the next
6401 		     usage insns (see code below) as the output pseudo
6402 		     prevents this.  */
6403 		  if ((dst_regno >= FIRST_PSEUDO_REGISTER
6404 		       && reg_renumber[dst_regno] < 0)
6405 		      || (reg->type == OP_OUT && ! reg->subreg_p
6406 			  && (dst_regno < FIRST_PSEUDO_REGISTER
6407 			      || reg_renumber[dst_regno] >= 0)))
6408 		    {
6409 		      /* Invalidate and mark definitions.  */
6410 		      if (dst_regno >= FIRST_PSEUDO_REGISTER)
6411 			usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6412 		      else
6413 			{
6414 			  nregs = hard_regno_nregs (dst_regno,
6415 						    reg->biggest_mode);
6416 			  for (i = 0; i < nregs; i++)
6417 			    usage_insns[dst_regno + i].check
6418 			      = -(int) INSN_UID (curr_insn);
6419 			}
6420 		    }
6421 		}
6422 	  /* Process clobbered call regs.  */
6423 	  if (curr_id->arg_hard_regs != NULL)
6424 	    for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6425 	      if (dst_regno >= FIRST_PSEUDO_REGISTER)
6426 		usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6427 		  = -(int) INSN_UID (curr_insn);
6428 	  if (! JUMP_P (curr_insn))
6429 	    for (i = 0; i < to_inherit_num; i++)
6430 	      if (inherit_reload_reg (true, to_inherit[i].regno,
6431 				      ALL_REGS, curr_insn,
6432 				      to_inherit[i].insns))
6433 	      change_p = true;
6434 	  if (CALL_P (curr_insn))
6435 	    {
6436 	      rtx cheap, pat, dest;
6437 	      rtx_insn *restore;
6438 	      int regno, hard_regno;
6439 
6440 	      calls_num++;
6441 	      if ((cheap = find_reg_note (curr_insn,
6442 					  REG_RETURNED, NULL_RTX)) != NULL_RTX
6443 		  && ((cheap = XEXP (cheap, 0)), true)
6444 		  && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6445 		  && (hard_regno = reg_renumber[regno]) >= 0
6446 		  && usage_insns[regno].check == curr_usage_insns_check
6447 		  /* If there are pending saves/restores, the
6448 		     optimization is not worth.	 */
6449 		  && usage_insns[regno].calls_num == calls_num - 1
6450 		  && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6451 		{
6452 		  /* Restore the pseudo from the call result as
6453 		     REG_RETURNED note says that the pseudo value is
6454 		     in the call result and the pseudo is an argument
6455 		     of the call.  */
6456 		  pat = PATTERN (curr_insn);
6457 		  if (GET_CODE (pat) == PARALLEL)
6458 		    pat = XVECEXP (pat, 0, 0);
6459 		  dest = SET_DEST (pat);
6460 		  /* For multiple return values dest is PARALLEL.
6461 		     Currently we handle only single return value case.  */
6462 		  if (REG_P (dest))
6463 		    {
6464 		      start_sequence ();
6465 		      emit_move_insn (cheap, copy_rtx (dest));
6466 		      restore = get_insns ();
6467 		      end_sequence ();
6468 		      lra_process_new_insns (curr_insn, NULL, restore,
6469 					     "Inserting call parameter restore");
6470 		      /* We don't need to save/restore of the pseudo from
6471 			 this call.	 */
6472 		      usage_insns[regno].calls_num = calls_num;
6473 		      bitmap_set_bit (&check_only_regs, regno);
6474 		    }
6475 		}
6476 	    }
6477 	  to_inherit_num = 0;
6478 	  /* Process insn usages.  */
6479 	  for (iter = 0; iter < 2; iter++)
6480 	    for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6481 		 reg != NULL;
6482 		 reg = reg->next)
6483 	      if ((reg->type != OP_OUT
6484 		   || (reg->type == OP_OUT && reg->subreg_p))
6485 		  && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6486 		{
6487 		  if (src_regno >= FIRST_PSEUDO_REGISTER
6488 		      && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6489 		    {
6490 		      if (usage_insns[src_regno].check == curr_usage_insns_check
6491 			  && (next_usage_insns
6492 			      = usage_insns[src_regno].insns) != NULL_RTX
6493 			  && NONDEBUG_INSN_P (curr_insn))
6494 			add_to_inherit (src_regno, next_usage_insns);
6495 		      else if (usage_insns[src_regno].check
6496 			       != -(int) INSN_UID (curr_insn))
6497 			/* Add usages but only if the reg is not set up
6498 			   in the same insn.  */
6499 			add_next_usage_insn (src_regno, curr_insn, reloads_num);
6500 		    }
6501 		  else if (src_regno < FIRST_PSEUDO_REGISTER
6502 			   || reg_renumber[src_regno] >= 0)
6503 		    {
6504 		      bool before_p;
6505 		      rtx_insn *use_insn = curr_insn;
6506 
6507 		      before_p = (JUMP_P (curr_insn)
6508 				  || (CALL_P (curr_insn) && reg->type == OP_IN));
6509 		      if (NONDEBUG_INSN_P (curr_insn)
6510 			  && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6511 			  && split_if_necessary (src_regno, reg->biggest_mode,
6512 						 potential_reload_hard_regs,
6513 						 before_p, curr_insn, max_uid))
6514 			{
6515 			  if (reg->subreg_p)
6516 			    lra_risky_transformations_p = true;
6517 			  change_p = true;
6518 			  /* Invalidate. */
6519 			  usage_insns[src_regno].check = 0;
6520 			  if (before_p)
6521 			    use_insn = PREV_INSN (curr_insn);
6522 			}
6523 		      if (NONDEBUG_INSN_P (curr_insn))
6524 			{
6525 			  if (src_regno < FIRST_PSEUDO_REGISTER)
6526 			    add_to_hard_reg_set (&live_hard_regs,
6527 						 reg->biggest_mode, src_regno);
6528 			  else
6529 			    add_to_hard_reg_set (&live_hard_regs,
6530 						 PSEUDO_REGNO_MODE (src_regno),
6531 						 reg_renumber[src_regno]);
6532 			}
6533 		      if (src_regno >= FIRST_PSEUDO_REGISTER)
6534 			add_next_usage_insn (src_regno, use_insn, reloads_num);
6535 		      else
6536 			{
6537 			  for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
6538 			    add_next_usage_insn (src_regno + i, use_insn, reloads_num);
6539 			}
6540 		    }
6541 		}
6542 	  /* Process used call regs.  */
6543 	  if (curr_id->arg_hard_regs != NULL)
6544 	    for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6545 	      if (src_regno < FIRST_PSEUDO_REGISTER)
6546 		{
6547 	           SET_HARD_REG_BIT (live_hard_regs, src_regno);
6548 	           add_next_usage_insn (src_regno, curr_insn, reloads_num);
6549 		}
6550 	  for (i = 0; i < to_inherit_num; i++)
6551 	    {
6552 	      src_regno = to_inherit[i].regno;
6553 	      if (inherit_reload_reg (false, src_regno, ALL_REGS,
6554 				      curr_insn, to_inherit[i].insns))
6555 		change_p = true;
6556 	      else
6557 		setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6558 	    }
6559 	}
6560       if (update_reloads_num_p
6561 	  && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6562 	{
6563 	  int regno = -1;
6564 	  if ((REG_P (SET_DEST (curr_set))
6565 	       && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6566 	       && reg_renumber[regno] < 0
6567 	       && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6568 	      || (REG_P (SET_SRC (curr_set))
6569 	          && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6570 	          && reg_renumber[regno] < 0
6571 	          && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6572 	    {
6573 	      if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6574 		reloads_num++;
6575 	      if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6576 		IOR_HARD_REG_SET (potential_reload_hard_regs,
6577 	                          reg_class_contents[cl]);
6578 	    }
6579 	}
6580       if (NONDEBUG_INSN_P (curr_insn))
6581 	{
6582 	  int regno;
6583 
6584 	  /* Invalidate invariants with changed regs.  */
6585 	  curr_id = lra_get_insn_recog_data (curr_insn);
6586 	  for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6587 	    if (reg->type != OP_IN)
6588 	      {
6589 		bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6590 		bitmap_set_bit (&invalid_invariant_regs,
6591 				ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6592 	      }
6593 	  curr_static_id = curr_id->insn_static_data;
6594 	  for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6595 	    if (reg->type != OP_IN)
6596 	      bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6597 	  if (curr_id->arg_hard_regs != NULL)
6598 	    for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6599 	      if (regno >= FIRST_PSEUDO_REGISTER)
6600 		bitmap_set_bit (&invalid_invariant_regs,
6601 				regno - FIRST_PSEUDO_REGISTER);
6602 	}
6603       /* We reached the start of the current basic block.  */
6604       if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6605 	  || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6606 	{
6607 	  /* We reached the beginning of the current block -- do
6608 	     rest of spliting in the current BB.  */
6609 	  to_process = df_get_live_in (curr_bb);
6610 	  if (BLOCK_FOR_INSN (head) != curr_bb)
6611 	    {
6612 	      /* We are somewhere in the middle of EBB.	 */
6613 	      get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6614 				       curr_bb, &temp_bitmap);
6615 	      to_process = &temp_bitmap;
6616 	    }
6617 	  head_p = true;
6618 	  EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6619 	    {
6620 	      if ((int) j >= lra_constraint_new_regno_start)
6621 		break;
6622 	      if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6623 		  && usage_insns[j].check == curr_usage_insns_check
6624 		  && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6625 		{
6626 		  if (need_for_split_p (potential_reload_hard_regs, j))
6627 		    {
6628 		      if (lra_dump_file != NULL && head_p)
6629 			{
6630 			  fprintf (lra_dump_file,
6631 				   "  ----------------------------------\n");
6632 			  head_p = false;
6633 			}
6634 		      if (split_reg (false, j, bb_note (curr_bb),
6635 				     next_usage_insns, NULL))
6636 			change_p = true;
6637 		    }
6638 		  usage_insns[j].check = 0;
6639 		}
6640 	    }
6641 	}
6642     }
6643   return change_p;
6644 }
6645 
6646 /* This value affects EBB forming.  If probability of edge from EBB to
6647    a BB is not greater than the following value, we don't add the BB
6648    to EBB.  */
6649 #define EBB_PROBABILITY_CUTOFF \
6650   ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6651 
6652 /* Current number of inheritance/split iteration.  */
6653 int lra_inheritance_iter;
6654 
6655 /* Entry function for inheritance/split pass.  */
6656 void
6657 lra_inheritance (void)
6658 {
6659   int i;
6660   basic_block bb, start_bb;
6661   edge e;
6662 
6663   lra_inheritance_iter++;
6664   if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6665     return;
6666   timevar_push (TV_LRA_INHERITANCE);
6667   if (lra_dump_file != NULL)
6668     fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6669 	     lra_inheritance_iter);
6670   curr_usage_insns_check = 0;
6671   usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6672   for (i = 0; i < lra_constraint_new_regno_start; i++)
6673     usage_insns[i].check = 0;
6674   bitmap_initialize (&check_only_regs, &reg_obstack);
6675   bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6676   bitmap_initialize (&live_regs, &reg_obstack);
6677   bitmap_initialize (&temp_bitmap, &reg_obstack);
6678   bitmap_initialize (&ebb_global_regs, &reg_obstack);
6679   FOR_EACH_BB_FN (bb, cfun)
6680     {
6681       start_bb = bb;
6682       if (lra_dump_file != NULL)
6683 	fprintf (lra_dump_file, "EBB");
6684       /* Form a EBB starting with BB.  */
6685       bitmap_clear (&ebb_global_regs);
6686       bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6687       for (;;)
6688 	{
6689 	  if (lra_dump_file != NULL)
6690 	    fprintf (lra_dump_file, " %d", bb->index);
6691 	  if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6692 	      || LABEL_P (BB_HEAD (bb->next_bb)))
6693 	    break;
6694 	  e = find_fallthru_edge (bb->succs);
6695 	  if (! e)
6696 	    break;
6697 	  if (e->probability.initialized_p ()
6698 	      && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6699 	    break;
6700 	  bb = bb->next_bb;
6701 	}
6702       bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6703       if (lra_dump_file != NULL)
6704 	fprintf (lra_dump_file, "\n");
6705       if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6706 	/* Remember that the EBB head and tail can change in
6707 	   inherit_in_ebb.  */
6708 	update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6709     }
6710   bitmap_release (&ebb_global_regs);
6711   bitmap_release (&temp_bitmap);
6712   bitmap_release (&live_regs);
6713   bitmap_release (&invalid_invariant_regs);
6714   bitmap_release (&check_only_regs);
6715   free (usage_insns);
6716 
6717   timevar_pop (TV_LRA_INHERITANCE);
6718 }
6719 
6720 
6721 
6722 /* This page contains code to undo failed inheritance/split
6723    transformations.  */
6724 
6725 /* Current number of iteration undoing inheritance/split.  */
6726 int lra_undo_inheritance_iter;
6727 
6728 /* Fix BB live info LIVE after removing pseudos created on pass doing
6729    inheritance/split which are REMOVED_PSEUDOS.	 */
6730 static void
6731 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6732 {
6733   unsigned int regno;
6734   bitmap_iterator bi;
6735 
6736   EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6737     if (bitmap_clear_bit (live, regno)
6738 	&& REG_P (lra_reg_info[regno].restore_rtx))
6739       bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6740 }
6741 
6742 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6743    number.  */
6744 static int
6745 get_regno (rtx reg)
6746 {
6747   if (GET_CODE (reg) == SUBREG)
6748     reg = SUBREG_REG (reg);
6749   if (REG_P (reg))
6750     return REGNO (reg);
6751   return -1;
6752 }
6753 
6754 /* Delete a move INSN with destination reg DREGNO and a previous
6755    clobber insn with the same regno.  The inheritance/split code can
6756    generate moves with preceding clobber and when we delete such moves
6757    we should delete the clobber insn too to keep the correct life
6758    info.  */
6759 static void
6760 delete_move_and_clobber (rtx_insn *insn, int dregno)
6761 {
6762   rtx_insn *prev_insn = PREV_INSN (insn);
6763 
6764   lra_set_insn_deleted (insn);
6765   lra_assert (dregno >= 0);
6766   if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6767       && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6768       && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6769     lra_set_insn_deleted (prev_insn);
6770 }
6771 
6772 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6773    return true if we did any change.  The undo transformations for
6774    inheritance looks like
6775       i <- i2
6776       p <- i	  =>   p <- i2
6777    or removing
6778       p <- i, i <- p, and i <- i3
6779    where p is original pseudo from which inheritance pseudo i was
6780    created, i and i3 are removed inheritance pseudos, i2 is another
6781    not removed inheritance pseudo.  All split pseudos or other
6782    occurrences of removed inheritance pseudos are changed on the
6783    corresponding original pseudos.
6784 
6785    The function also schedules insns changed and created during
6786    inheritance/split pass for processing by the subsequent constraint
6787    pass.  */
6788 static bool
6789 remove_inheritance_pseudos (bitmap remove_pseudos)
6790 {
6791   basic_block bb;
6792   int regno, sregno, prev_sregno, dregno;
6793   rtx restore_rtx;
6794   rtx set, prev_set;
6795   rtx_insn *prev_insn;
6796   bool change_p, done_p;
6797 
6798   change_p = ! bitmap_empty_p (remove_pseudos);
6799   /* We cannot finish the function right away if CHANGE_P is true
6800      because we need to marks insns affected by previous
6801      inheritance/split pass for processing by the subsequent
6802      constraint pass.  */
6803   FOR_EACH_BB_FN (bb, cfun)
6804     {
6805       fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6806       fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6807       FOR_BB_INSNS_REVERSE (bb, curr_insn)
6808 	{
6809 	  if (! INSN_P (curr_insn))
6810 	    continue;
6811 	  done_p = false;
6812 	  sregno = dregno = -1;
6813 	  if (change_p && NONDEBUG_INSN_P (curr_insn)
6814 	      && (set = single_set (curr_insn)) != NULL_RTX)
6815 	    {
6816 	      dregno = get_regno (SET_DEST (set));
6817 	      sregno = get_regno (SET_SRC (set));
6818 	    }
6819 
6820 	  if (sregno >= 0 && dregno >= 0)
6821 	    {
6822 	      if (bitmap_bit_p (remove_pseudos, dregno)
6823 		  && ! REG_P (lra_reg_info[dregno].restore_rtx))
6824 		{
6825 		  /* invariant inheritance pseudo <- original pseudo */
6826 		  if (lra_dump_file != NULL)
6827 		    {
6828 		      fprintf (lra_dump_file, "	   Removing invariant inheritance:\n");
6829 		      dump_insn_slim (lra_dump_file, curr_insn);
6830 		      fprintf (lra_dump_file, "\n");
6831 		    }
6832 		  delete_move_and_clobber (curr_insn, dregno);
6833 		  done_p = true;
6834 		}
6835 	      else if (bitmap_bit_p (remove_pseudos, sregno)
6836 		       && ! REG_P (lra_reg_info[sregno].restore_rtx))
6837 		{
6838 		  /* reload pseudo <- invariant inheritance pseudo */
6839 		  start_sequence ();
6840 		  /* We cannot just change the source.  It might be
6841 		     an insn different from the move.  */
6842 		  emit_insn (lra_reg_info[sregno].restore_rtx);
6843 		  rtx_insn *new_insns = get_insns ();
6844 		  end_sequence ();
6845 		  lra_assert (single_set (new_insns) != NULL
6846 			      && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6847 		  lra_process_new_insns (curr_insn, NULL, new_insns,
6848 					 "Changing reload<-invariant inheritance");
6849 		  delete_move_and_clobber (curr_insn, dregno);
6850 		  done_p = true;
6851 		}
6852 	      else if ((bitmap_bit_p (remove_pseudos, sregno)
6853 			&& (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6854 			    || (bitmap_bit_p (remove_pseudos, dregno)
6855 				&& get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6856 				&& (get_regno (lra_reg_info[sregno].restore_rtx)
6857 				    == get_regno (lra_reg_info[dregno].restore_rtx)))))
6858 		       || (bitmap_bit_p (remove_pseudos, dregno)
6859 			   && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6860 		/* One of the following cases:
6861 		     original <- removed inheritance pseudo
6862 		     removed inherit pseudo <- another removed inherit pseudo
6863 		     removed inherit pseudo <- original pseudo
6864 		   Or
6865 		     removed_split_pseudo <- original_reg
6866 		     original_reg <- removed_split_pseudo */
6867 		{
6868 		  if (lra_dump_file != NULL)
6869 		    {
6870 		      fprintf (lra_dump_file, "	   Removing %s:\n",
6871 			       bitmap_bit_p (&lra_split_regs, sregno)
6872 			       || bitmap_bit_p (&lra_split_regs, dregno)
6873 			       ? "split" : "inheritance");
6874 		      dump_insn_slim (lra_dump_file, curr_insn);
6875 		    }
6876 		  delete_move_and_clobber (curr_insn, dregno);
6877 		  done_p = true;
6878 		}
6879 	      else if (bitmap_bit_p (remove_pseudos, sregno)
6880 		       && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6881 		{
6882 		  /* Search the following pattern:
6883 		       inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6884 		       original_pseudo <- inherit_or_split_pseudo1
6885 		    where the 2nd insn is the current insn and
6886 		    inherit_or_split_pseudo2 is not removed.  If it is found,
6887 		    change the current insn onto:
6888 		       original_pseudo <- inherit_or_split_pseudo2.  */
6889 		  for (prev_insn = PREV_INSN (curr_insn);
6890 		       prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6891 		       prev_insn = PREV_INSN (prev_insn))
6892 		    ;
6893 		  if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6894 		      && (prev_set = single_set (prev_insn)) != NULL_RTX
6895 		      /* There should be no subregs in insn we are
6896 			 searching because only the original reg might
6897 			 be in subreg when we changed the mode of
6898 			 load/store for splitting.  */
6899 		      && REG_P (SET_DEST (prev_set))
6900 		      && REG_P (SET_SRC (prev_set))
6901 		      && (int) REGNO (SET_DEST (prev_set)) == sregno
6902 		      && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6903 			  >= FIRST_PSEUDO_REGISTER)
6904 		      && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6905 			  ||
6906 			  /* As we consider chain of inheritance or
6907 			     splitting described in above comment we should
6908 			     check that sregno and prev_sregno were
6909 			     inheritance/split pseudos created from the
6910 			     same original regno.  */
6911 			  (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6912 			   && (get_regno (lra_reg_info[sregno].restore_rtx)
6913 			       == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6914 		      && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6915 		    {
6916 		      lra_assert (GET_MODE (SET_SRC (prev_set))
6917 				  == GET_MODE (regno_reg_rtx[sregno]));
6918 		      /* Although we have a single set, the insn can
6919 			 contain more one sregno register occurrence
6920 			 as a source.  Change all occurrences.  */
6921 		      lra_substitute_pseudo_within_insn (curr_insn, sregno,
6922 							 SET_SRC (prev_set),
6923 							 false);
6924 		      /* As we are finishing with processing the insn
6925 			 here, check the destination too as it might
6926 			 inheritance pseudo for another pseudo.  */
6927 		      if (bitmap_bit_p (remove_pseudos, dregno)
6928 			  && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6929 			  && (restore_rtx
6930 			      = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6931 			{
6932 			  if (GET_CODE (SET_DEST (set)) == SUBREG)
6933 			    SUBREG_REG (SET_DEST (set)) = restore_rtx;
6934 			  else
6935 			    SET_DEST (set) = restore_rtx;
6936 			}
6937 		      lra_push_insn_and_update_insn_regno_info (curr_insn);
6938 		      lra_set_used_insn_alternative_by_uid
6939 			(INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6940 		      done_p = true;
6941 		      if (lra_dump_file != NULL)
6942 			{
6943 			  fprintf (lra_dump_file, "    Change reload insn:\n");
6944 			  dump_insn_slim (lra_dump_file, curr_insn);
6945 			}
6946 		    }
6947 		}
6948 	    }
6949 	  if (! done_p)
6950 	    {
6951 	      struct lra_insn_reg *reg;
6952 	      bool restored_regs_p = false;
6953 	      bool kept_regs_p = false;
6954 
6955 	      curr_id = lra_get_insn_recog_data (curr_insn);
6956 	      for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6957 		{
6958 		  regno = reg->regno;
6959 		  restore_rtx = lra_reg_info[regno].restore_rtx;
6960 		  if (restore_rtx != NULL_RTX)
6961 		    {
6962 		      if (change_p && bitmap_bit_p (remove_pseudos, regno))
6963 			{
6964 			  lra_substitute_pseudo_within_insn
6965 			    (curr_insn, regno, restore_rtx, false);
6966 			  restored_regs_p = true;
6967 			}
6968 		      else
6969 			kept_regs_p = true;
6970 		    }
6971 		}
6972 	      if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6973 		{
6974 		  /* The instruction has changed since the previous
6975 		     constraints pass.  */
6976 		  lra_push_insn_and_update_insn_regno_info (curr_insn);
6977 		  lra_set_used_insn_alternative_by_uid
6978 		    (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6979 		}
6980 	      else if (restored_regs_p)
6981 		/* The instruction has been restored to the form that
6982 		   it had during the previous constraints pass.  */
6983 		lra_update_insn_regno_info (curr_insn);
6984 	      if (restored_regs_p && lra_dump_file != NULL)
6985 		{
6986 		  fprintf (lra_dump_file, "   Insn after restoring regs:\n");
6987 		  dump_insn_slim (lra_dump_file, curr_insn);
6988 		}
6989 	    }
6990 	}
6991     }
6992   return change_p;
6993 }
6994 
6995 /* If optional reload pseudos failed to get a hard register or was not
6996    inherited, it is better to remove optional reloads.  We do this
6997    transformation after undoing inheritance to figure out necessity to
6998    remove optional reloads easier.  Return true if we do any
6999    change.  */
7000 static bool
7001 undo_optional_reloads (void)
7002 {
7003   bool change_p, keep_p;
7004   unsigned int regno, uid;
7005   bitmap_iterator bi, bi2;
7006   rtx_insn *insn;
7007   rtx set, src, dest;
7008   auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
7009 
7010   bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
7011   EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7012     {
7013       keep_p = false;
7014       /* Keep optional reloads from previous subpasses.  */
7015       if (lra_reg_info[regno].restore_rtx == NULL_RTX
7016 	  /* If the original pseudo changed its allocation, just
7017 	     removing the optional pseudo is dangerous as the original
7018 	     pseudo will have longer live range.  */
7019 	  || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
7020 	keep_p = true;
7021       else if (reg_renumber[regno] >= 0)
7022 	EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
7023 	  {
7024 	    insn = lra_insn_recog_data[uid]->insn;
7025 	    if ((set = single_set (insn)) == NULL_RTX)
7026 	      continue;
7027 	    src = SET_SRC (set);
7028 	    dest = SET_DEST (set);
7029 	    if (! REG_P (src) || ! REG_P (dest))
7030 	      continue;
7031 	    if (REGNO (dest) == regno
7032 		/* Ignore insn for optional reloads itself.  */
7033 		&& REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
7034 		/* Check only inheritance on last inheritance pass.  */
7035 		&& (int) REGNO (src) >= new_regno_start
7036 		/* Check that the optional reload was inherited.  */
7037 		&& bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
7038 	      {
7039 		keep_p = true;
7040 		break;
7041 	      }
7042 	  }
7043       if (keep_p)
7044 	{
7045 	  bitmap_clear_bit (removed_optional_reload_pseudos, regno);
7046 	  if (lra_dump_file != NULL)
7047 	    fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
7048 	}
7049     }
7050   change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
7051   auto_bitmap insn_bitmap (&reg_obstack);
7052   EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
7053     {
7054       if (lra_dump_file != NULL)
7055 	fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
7056       bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
7057       EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
7058 	{
7059 	  insn = lra_insn_recog_data[uid]->insn;
7060 	  if ((set = single_set (insn)) != NULL_RTX)
7061 	    {
7062 	      src = SET_SRC (set);
7063 	      dest = SET_DEST (set);
7064 	      if (REG_P (src) && REG_P (dest)
7065 		  && ((REGNO (src) == regno
7066 		       && (REGNO (lra_reg_info[regno].restore_rtx)
7067 			   == REGNO (dest)))
7068 		      || (REGNO (dest) == regno
7069 			  && (REGNO (lra_reg_info[regno].restore_rtx)
7070 			      == REGNO (src)))))
7071 		{
7072 		  if (lra_dump_file != NULL)
7073 		    {
7074 		      fprintf (lra_dump_file, "  Deleting move %u\n",
7075 			       INSN_UID (insn));
7076 		      dump_insn_slim (lra_dump_file, insn);
7077 		    }
7078 		  delete_move_and_clobber (insn, REGNO (dest));
7079 		  continue;
7080 		}
7081 	      /* We should not worry about generation memory-memory
7082 		 moves here as if the corresponding inheritance did
7083 		 not work (inheritance pseudo did not get a hard reg),
7084 		 we remove the inheritance pseudo and the optional
7085 		 reload.  */
7086 	    }
7087 	  lra_substitute_pseudo_within_insn
7088 	    (insn, regno, lra_reg_info[regno].restore_rtx, false);
7089 	  lra_update_insn_regno_info (insn);
7090 	  if (lra_dump_file != NULL)
7091 	    {
7092 	      fprintf (lra_dump_file,
7093 		       "  Restoring original insn:\n");
7094 	      dump_insn_slim (lra_dump_file, insn);
7095 	    }
7096 	}
7097     }
7098   /* Clear restore_regnos.  */
7099   EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7100     lra_reg_info[regno].restore_rtx = NULL_RTX;
7101   return change_p;
7102 }
7103 
7104 /* Entry function for undoing inheritance/split transformation.	 Return true
7105    if we did any RTL change in this pass.  */
7106 bool
7107 lra_undo_inheritance (void)
7108 {
7109   unsigned int regno;
7110   int hard_regno;
7111   int n_all_inherit, n_inherit, n_all_split, n_split;
7112   rtx restore_rtx;
7113   bitmap_iterator bi;
7114   bool change_p;
7115 
7116   lra_undo_inheritance_iter++;
7117   if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7118     return false;
7119   if (lra_dump_file != NULL)
7120     fprintf (lra_dump_file,
7121 	     "\n********** Undoing inheritance #%d: **********\n\n",
7122 	     lra_undo_inheritance_iter);
7123   auto_bitmap remove_pseudos (&reg_obstack);
7124   n_inherit = n_all_inherit = 0;
7125   EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7126     if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7127       {
7128 	n_all_inherit++;
7129 	if (reg_renumber[regno] < 0
7130 	    /* If the original pseudo changed its allocation, just
7131 	       removing inheritance is dangerous as for changing
7132 	       allocation we used shorter live-ranges.  */
7133 	    && (! REG_P (lra_reg_info[regno].restore_rtx)
7134 		|| reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7135 	  bitmap_set_bit (remove_pseudos, regno);
7136 	else
7137 	  n_inherit++;
7138       }
7139   if (lra_dump_file != NULL && n_all_inherit != 0)
7140     fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7141 	     n_inherit, n_all_inherit,
7142 	     (double) n_inherit / n_all_inherit * 100);
7143   n_split = n_all_split = 0;
7144   EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7145     if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7146       {
7147 	int restore_regno = REGNO (restore_rtx);
7148 
7149 	n_all_split++;
7150 	hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7151 		      ? reg_renumber[restore_regno] : restore_regno);
7152 	if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7153 	  bitmap_set_bit (remove_pseudos, regno);
7154 	else
7155 	  {
7156 	    n_split++;
7157 	    if (lra_dump_file != NULL)
7158 	      fprintf (lra_dump_file, "	     Keep split r%d (orig=r%d)\n",
7159 		       regno, restore_regno);
7160 	  }
7161       }
7162   if (lra_dump_file != NULL && n_all_split != 0)
7163     fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7164 	     n_split, n_all_split,
7165 	     (double) n_split / n_all_split * 100);
7166   change_p = remove_inheritance_pseudos (remove_pseudos);
7167   /* Clear restore_regnos.  */
7168   EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7169     lra_reg_info[regno].restore_rtx = NULL_RTX;
7170   EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7171     lra_reg_info[regno].restore_rtx = NULL_RTX;
7172   change_p = undo_optional_reloads () || change_p;
7173   return change_p;
7174 }
7175