1 /* Rtl-level induction variable analysis. 2 Copyright (C) 2004-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the 8 Free Software Foundation; either version 3, or (at your option) any 9 later version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This is a simple analysis of induction variables of the loop. The major use 21 is for determining the number of iterations of a loop for loop unrolling, 22 doloop optimization and branch prediction. The iv information is computed 23 on demand. 24 25 Induction variables are analyzed by walking the use-def chains. When 26 a basic induction variable (biv) is found, it is cached in the bivs 27 hash table. When register is proved to be a biv, its description 28 is stored to DF_REF_DATA of the def reference. 29 30 The analysis works always with one loop -- you must call 31 iv_analysis_loop_init (loop) for it. All the other functions then work with 32 this loop. When you need to work with another loop, just call 33 iv_analysis_loop_init for it. When you no longer need iv analysis, call 34 iv_analysis_done () to clean up the memory. 35 36 The available functions are: 37 38 iv_analyze (insn, reg, iv): Stores the description of the induction variable 39 corresponding to the use of register REG in INSN to IV. Returns true if 40 REG is an induction variable in INSN. false otherwise. 41 If use of REG is not found in INSN, following insns are scanned (so that 42 we may call this function on insn returned by get_condition). 43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv 44 corresponding to DEF, which is a register defined in INSN. 45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv 46 corresponding to expression EXPR evaluated at INSN. All registers used bu 47 EXPR must also be used in INSN. 48 */ 49 50 #include "config.h" 51 #include "system.h" 52 #include "coretypes.h" 53 #include "backend.h" 54 #include "rtl.h" 55 #include "df.h" 56 #include "memmodel.h" 57 #include "emit-rtl.h" 58 #include "diagnostic-core.h" 59 #include "cfgloop.h" 60 #include "intl.h" 61 #include "dumpfile.h" 62 #include "rtl-iter.h" 63 64 /* Possible return values of iv_get_reaching_def. */ 65 66 enum iv_grd_result 67 { 68 /* More than one reaching def, or reaching def that does not 69 dominate the use. */ 70 GRD_INVALID, 71 72 /* The use is trivial invariant of the loop, i.e. is not changed 73 inside the loop. */ 74 GRD_INVARIANT, 75 76 /* The use is reached by initial value and a value from the 77 previous iteration. */ 78 GRD_MAYBE_BIV, 79 80 /* The use has single dominating def. */ 81 GRD_SINGLE_DOM 82 }; 83 84 /* Information about a biv. */ 85 86 struct biv_entry 87 { 88 unsigned regno; /* The register of the biv. */ 89 struct rtx_iv iv; /* Value of the biv. */ 90 }; 91 92 static bool clean_slate = true; 93 94 static unsigned int iv_ref_table_size = 0; 95 96 /* Table of rtx_ivs indexed by the df_ref uid field. */ 97 static struct rtx_iv ** iv_ref_table; 98 99 /* Induction variable stored at the reference. */ 100 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)] 101 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV) 102 103 /* The current loop. */ 104 105 static struct loop *current_loop; 106 107 /* Hashtable helper. */ 108 109 struct biv_entry_hasher : free_ptr_hash <biv_entry> 110 { 111 typedef rtx_def *compare_type; 112 static inline hashval_t hash (const biv_entry *); 113 static inline bool equal (const biv_entry *, const rtx_def *); 114 }; 115 116 /* Returns hash value for biv B. */ 117 118 inline hashval_t 119 biv_entry_hasher::hash (const biv_entry *b) 120 { 121 return b->regno; 122 } 123 124 /* Compares biv B and register R. */ 125 126 inline bool 127 biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r) 128 { 129 return b->regno == REGNO (r); 130 } 131 132 /* Bivs of the current loop. */ 133 134 static hash_table<biv_entry_hasher> *bivs; 135 136 static bool iv_analyze_op (rtx_insn *, rtx, struct rtx_iv *); 137 138 /* Return the RTX code corresponding to the IV extend code EXTEND. */ 139 static inline enum rtx_code 140 iv_extend_to_rtx_code (enum iv_extend_code extend) 141 { 142 switch (extend) 143 { 144 case IV_SIGN_EXTEND: 145 return SIGN_EXTEND; 146 case IV_ZERO_EXTEND: 147 return ZERO_EXTEND; 148 case IV_UNKNOWN_EXTEND: 149 return UNKNOWN; 150 } 151 gcc_unreachable (); 152 } 153 154 /* Dumps information about IV to FILE. */ 155 156 extern void dump_iv_info (FILE *, struct rtx_iv *); 157 void 158 dump_iv_info (FILE *file, struct rtx_iv *iv) 159 { 160 if (!iv->base) 161 { 162 fprintf (file, "not simple"); 163 return; 164 } 165 166 if (iv->step == const0_rtx 167 && !iv->first_special) 168 fprintf (file, "invariant "); 169 170 print_rtl (file, iv->base); 171 if (iv->step != const0_rtx) 172 { 173 fprintf (file, " + "); 174 print_rtl (file, iv->step); 175 fprintf (file, " * iteration"); 176 } 177 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode)); 178 179 if (iv->mode != iv->extend_mode) 180 fprintf (file, " %s to %s", 181 rtx_name[iv_extend_to_rtx_code (iv->extend)], 182 GET_MODE_NAME (iv->extend_mode)); 183 184 if (iv->mult != const1_rtx) 185 { 186 fprintf (file, " * "); 187 print_rtl (file, iv->mult); 188 } 189 if (iv->delta != const0_rtx) 190 { 191 fprintf (file, " + "); 192 print_rtl (file, iv->delta); 193 } 194 if (iv->first_special) 195 fprintf (file, " (first special)"); 196 } 197 198 static void 199 check_iv_ref_table_size (void) 200 { 201 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ()) 202 { 203 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4); 204 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size); 205 memset (&iv_ref_table[iv_ref_table_size], 0, 206 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *)); 207 iv_ref_table_size = new_size; 208 } 209 } 210 211 212 /* Checks whether REG is a well-behaved register. */ 213 214 static bool 215 simple_reg_p (rtx reg) 216 { 217 unsigned r; 218 219 if (GET_CODE (reg) == SUBREG) 220 { 221 if (!subreg_lowpart_p (reg)) 222 return false; 223 reg = SUBREG_REG (reg); 224 } 225 226 if (!REG_P (reg)) 227 return false; 228 229 r = REGNO (reg); 230 if (HARD_REGISTER_NUM_P (r)) 231 return false; 232 233 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT) 234 return false; 235 236 return true; 237 } 238 239 /* Clears the information about ivs stored in df. */ 240 241 static void 242 clear_iv_info (void) 243 { 244 unsigned i, n_defs = DF_DEFS_TABLE_SIZE (); 245 struct rtx_iv *iv; 246 247 check_iv_ref_table_size (); 248 for (i = 0; i < n_defs; i++) 249 { 250 iv = iv_ref_table[i]; 251 if (iv) 252 { 253 free (iv); 254 iv_ref_table[i] = NULL; 255 } 256 } 257 258 bivs->empty (); 259 } 260 261 262 /* Prepare the data for an induction variable analysis of a LOOP. */ 263 264 void 265 iv_analysis_loop_init (struct loop *loop) 266 { 267 current_loop = loop; 268 269 /* Clear the information from the analysis of the previous loop. */ 270 if (clean_slate) 271 { 272 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN); 273 bivs = new hash_table<biv_entry_hasher> (10); 274 clean_slate = false; 275 } 276 else 277 clear_iv_info (); 278 279 /* Get rid of the ud chains before processing the rescans. Then add 280 the problem back. */ 281 df_remove_problem (df_chain); 282 df_process_deferred_rescans (); 283 df_set_flags (DF_RD_PRUNE_DEAD_DEFS); 284 df_chain_add_problem (DF_UD_CHAIN); 285 df_note_add_problem (); 286 df_analyze_loop (loop); 287 if (dump_file) 288 df_dump_region (dump_file); 289 290 check_iv_ref_table_size (); 291 } 292 293 /* Finds the definition of REG that dominates loop latch and stores 294 it to DEF. Returns false if there is not a single definition 295 dominating the latch. If REG has no definition in loop, DEF 296 is set to NULL and true is returned. */ 297 298 static bool 299 latch_dominating_def (rtx reg, df_ref *def) 300 { 301 df_ref single_rd = NULL, adef; 302 unsigned regno = REGNO (reg); 303 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch); 304 305 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef)) 306 { 307 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef)) 308 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef))) 309 continue; 310 311 /* More than one reaching definition. */ 312 if (single_rd) 313 return false; 314 315 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef))) 316 return false; 317 318 single_rd = adef; 319 } 320 321 *def = single_rd; 322 return true; 323 } 324 325 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */ 326 327 static enum iv_grd_result 328 iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def) 329 { 330 df_ref use, adef; 331 basic_block def_bb, use_bb; 332 rtx_insn *def_insn; 333 bool dom_p; 334 335 *def = NULL; 336 if (!simple_reg_p (reg)) 337 return GRD_INVALID; 338 if (GET_CODE (reg) == SUBREG) 339 reg = SUBREG_REG (reg); 340 gcc_assert (REG_P (reg)); 341 342 use = df_find_use (insn, reg); 343 gcc_assert (use != NULL); 344 345 if (!DF_REF_CHAIN (use)) 346 return GRD_INVARIANT; 347 348 /* More than one reaching def. */ 349 if (DF_REF_CHAIN (use)->next) 350 return GRD_INVALID; 351 352 adef = DF_REF_CHAIN (use)->ref; 353 354 /* We do not handle setting only part of the register. */ 355 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE) 356 return GRD_INVALID; 357 358 def_insn = DF_REF_INSN (adef); 359 def_bb = DF_REF_BB (adef); 360 use_bb = BLOCK_FOR_INSN (insn); 361 362 if (use_bb == def_bb) 363 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn)); 364 else 365 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb); 366 367 if (dom_p) 368 { 369 *def = adef; 370 return GRD_SINGLE_DOM; 371 } 372 373 /* The definition does not dominate the use. This is still OK if 374 this may be a use of a biv, i.e. if the def_bb dominates loop 375 latch. */ 376 if (just_once_each_iteration_p (current_loop, def_bb)) 377 return GRD_MAYBE_BIV; 378 379 return GRD_INVALID; 380 } 381 382 /* Sets IV to invariant CST in MODE. Always returns true (just for 383 consistency with other iv manipulation functions that may fail). */ 384 385 static bool 386 iv_constant (struct rtx_iv *iv, rtx cst, machine_mode mode) 387 { 388 if (mode == VOIDmode) 389 mode = GET_MODE (cst); 390 391 iv->mode = mode; 392 iv->base = cst; 393 iv->step = const0_rtx; 394 iv->first_special = false; 395 iv->extend = IV_UNKNOWN_EXTEND; 396 iv->extend_mode = iv->mode; 397 iv->delta = const0_rtx; 398 iv->mult = const1_rtx; 399 400 return true; 401 } 402 403 /* Evaluates application of subreg to MODE on IV. */ 404 405 static bool 406 iv_subreg (struct rtx_iv *iv, machine_mode mode) 407 { 408 /* If iv is invariant, just calculate the new value. */ 409 if (iv->step == const0_rtx 410 && !iv->first_special) 411 { 412 rtx val = get_iv_value (iv, const0_rtx); 413 val = lowpart_subreg (mode, val, 414 iv->extend == IV_UNKNOWN_EXTEND 415 ? iv->mode : iv->extend_mode); 416 417 iv->base = val; 418 iv->extend = IV_UNKNOWN_EXTEND; 419 iv->mode = iv->extend_mode = mode; 420 iv->delta = const0_rtx; 421 iv->mult = const1_rtx; 422 return true; 423 } 424 425 if (iv->extend_mode == mode) 426 return true; 427 428 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode)) 429 return false; 430 431 iv->extend = IV_UNKNOWN_EXTEND; 432 iv->mode = mode; 433 434 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta, 435 simplify_gen_binary (MULT, iv->extend_mode, 436 iv->base, iv->mult)); 437 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult); 438 iv->mult = const1_rtx; 439 iv->delta = const0_rtx; 440 iv->first_special = false; 441 442 return true; 443 } 444 445 /* Evaluates application of EXTEND to MODE on IV. */ 446 447 static bool 448 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, machine_mode mode) 449 { 450 /* If iv is invariant, just calculate the new value. */ 451 if (iv->step == const0_rtx 452 && !iv->first_special) 453 { 454 rtx val = get_iv_value (iv, const0_rtx); 455 if (iv->extend_mode != iv->mode 456 && iv->extend != IV_UNKNOWN_EXTEND 457 && iv->extend != extend) 458 val = lowpart_subreg (iv->mode, val, iv->extend_mode); 459 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode, 460 val, 461 iv->extend == extend 462 ? iv->extend_mode : iv->mode); 463 iv->base = val; 464 iv->extend = IV_UNKNOWN_EXTEND; 465 iv->mode = iv->extend_mode = mode; 466 iv->delta = const0_rtx; 467 iv->mult = const1_rtx; 468 return true; 469 } 470 471 if (mode != iv->extend_mode) 472 return false; 473 474 if (iv->extend != IV_UNKNOWN_EXTEND 475 && iv->extend != extend) 476 return false; 477 478 iv->extend = extend; 479 480 return true; 481 } 482 483 /* Evaluates negation of IV. */ 484 485 static bool 486 iv_neg (struct rtx_iv *iv) 487 { 488 if (iv->extend == IV_UNKNOWN_EXTEND) 489 { 490 iv->base = simplify_gen_unary (NEG, iv->extend_mode, 491 iv->base, iv->extend_mode); 492 iv->step = simplify_gen_unary (NEG, iv->extend_mode, 493 iv->step, iv->extend_mode); 494 } 495 else 496 { 497 iv->delta = simplify_gen_unary (NEG, iv->extend_mode, 498 iv->delta, iv->extend_mode); 499 iv->mult = simplify_gen_unary (NEG, iv->extend_mode, 500 iv->mult, iv->extend_mode); 501 } 502 503 return true; 504 } 505 506 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */ 507 508 static bool 509 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op) 510 { 511 machine_mode mode; 512 rtx arg; 513 514 /* Extend the constant to extend_mode of the other operand if necessary. */ 515 if (iv0->extend == IV_UNKNOWN_EXTEND 516 && iv0->mode == iv0->extend_mode 517 && iv0->step == const0_rtx 518 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode)) 519 { 520 iv0->extend_mode = iv1->extend_mode; 521 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode, 522 iv0->base, iv0->mode); 523 } 524 if (iv1->extend == IV_UNKNOWN_EXTEND 525 && iv1->mode == iv1->extend_mode 526 && iv1->step == const0_rtx 527 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode)) 528 { 529 iv1->extend_mode = iv0->extend_mode; 530 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode, 531 iv1->base, iv1->mode); 532 } 533 534 mode = iv0->extend_mode; 535 if (mode != iv1->extend_mode) 536 return false; 537 538 if (iv0->extend == IV_UNKNOWN_EXTEND 539 && iv1->extend == IV_UNKNOWN_EXTEND) 540 { 541 if (iv0->mode != iv1->mode) 542 return false; 543 544 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base); 545 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step); 546 547 return true; 548 } 549 550 /* Handle addition of constant. */ 551 if (iv1->extend == IV_UNKNOWN_EXTEND 552 && iv1->mode == mode 553 && iv1->step == const0_rtx) 554 { 555 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base); 556 return true; 557 } 558 559 if (iv0->extend == IV_UNKNOWN_EXTEND 560 && iv0->mode == mode 561 && iv0->step == const0_rtx) 562 { 563 arg = iv0->base; 564 *iv0 = *iv1; 565 if (op == MINUS 566 && !iv_neg (iv0)) 567 return false; 568 569 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg); 570 return true; 571 } 572 573 return false; 574 } 575 576 /* Evaluates multiplication of IV by constant CST. */ 577 578 static bool 579 iv_mult (struct rtx_iv *iv, rtx mby) 580 { 581 machine_mode mode = iv->extend_mode; 582 583 if (GET_MODE (mby) != VOIDmode 584 && GET_MODE (mby) != mode) 585 return false; 586 587 if (iv->extend == IV_UNKNOWN_EXTEND) 588 { 589 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby); 590 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby); 591 } 592 else 593 { 594 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby); 595 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby); 596 } 597 598 return true; 599 } 600 601 /* Evaluates shift of IV by constant CST. */ 602 603 static bool 604 iv_shift (struct rtx_iv *iv, rtx mby) 605 { 606 machine_mode mode = iv->extend_mode; 607 608 if (GET_MODE (mby) != VOIDmode 609 && GET_MODE (mby) != mode) 610 return false; 611 612 if (iv->extend == IV_UNKNOWN_EXTEND) 613 { 614 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby); 615 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby); 616 } 617 else 618 { 619 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby); 620 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby); 621 } 622 623 return true; 624 } 625 626 /* The recursive part of get_biv_step. Gets the value of the single value 627 defined by DEF wrto initial value of REG inside loop, in shape described 628 at get_biv_step. */ 629 630 static bool 631 get_biv_step_1 (df_ref def, rtx reg, 632 rtx *inner_step, machine_mode *inner_mode, 633 enum iv_extend_code *extend, machine_mode outer_mode, 634 rtx *outer_step) 635 { 636 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX; 637 rtx next, nextr; 638 enum rtx_code code; 639 rtx_insn *insn = DF_REF_INSN (def); 640 df_ref next_def; 641 enum iv_grd_result res; 642 643 set = single_set (insn); 644 if (!set) 645 return false; 646 647 rhs = find_reg_equal_equiv_note (insn); 648 if (rhs) 649 rhs = XEXP (rhs, 0); 650 else 651 rhs = SET_SRC (set); 652 653 code = GET_CODE (rhs); 654 switch (code) 655 { 656 case SUBREG: 657 case REG: 658 next = rhs; 659 break; 660 661 case PLUS: 662 case MINUS: 663 op0 = XEXP (rhs, 0); 664 op1 = XEXP (rhs, 1); 665 666 if (code == PLUS && CONSTANT_P (op0)) 667 std::swap (op0, op1); 668 669 if (!simple_reg_p (op0) 670 || !CONSTANT_P (op1)) 671 return false; 672 673 if (GET_MODE (rhs) != outer_mode) 674 { 675 /* ppc64 uses expressions like 676 677 (set x:SI (plus:SI (subreg:SI y:DI) 1)). 678 679 this is equivalent to 680 681 (set x':DI (plus:DI y:DI 1)) 682 (set x:SI (subreg:SI (x':DI)). */ 683 if (GET_CODE (op0) != SUBREG) 684 return false; 685 if (GET_MODE (SUBREG_REG (op0)) != outer_mode) 686 return false; 687 } 688 689 next = op0; 690 break; 691 692 case SIGN_EXTEND: 693 case ZERO_EXTEND: 694 if (GET_MODE (rhs) != outer_mode) 695 return false; 696 697 op0 = XEXP (rhs, 0); 698 if (!simple_reg_p (op0)) 699 return false; 700 701 next = op0; 702 break; 703 704 default: 705 return false; 706 } 707 708 if (GET_CODE (next) == SUBREG) 709 { 710 if (!subreg_lowpart_p (next)) 711 return false; 712 713 nextr = SUBREG_REG (next); 714 if (GET_MODE (nextr) != outer_mode) 715 return false; 716 } 717 else 718 nextr = next; 719 720 res = iv_get_reaching_def (insn, nextr, &next_def); 721 722 if (res == GRD_INVALID || res == GRD_INVARIANT) 723 return false; 724 725 if (res == GRD_MAYBE_BIV) 726 { 727 if (!rtx_equal_p (nextr, reg)) 728 return false; 729 730 *inner_step = const0_rtx; 731 *extend = IV_UNKNOWN_EXTEND; 732 *inner_mode = outer_mode; 733 *outer_step = const0_rtx; 734 } 735 else if (!get_biv_step_1 (next_def, reg, 736 inner_step, inner_mode, extend, outer_mode, 737 outer_step)) 738 return false; 739 740 if (GET_CODE (next) == SUBREG) 741 { 742 machine_mode amode = GET_MODE (next); 743 744 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode)) 745 return false; 746 747 *inner_mode = amode; 748 *inner_step = simplify_gen_binary (PLUS, outer_mode, 749 *inner_step, *outer_step); 750 *outer_step = const0_rtx; 751 *extend = IV_UNKNOWN_EXTEND; 752 } 753 754 switch (code) 755 { 756 case REG: 757 case SUBREG: 758 break; 759 760 case PLUS: 761 case MINUS: 762 if (*inner_mode == outer_mode 763 /* See comment in previous switch. */ 764 || GET_MODE (rhs) != outer_mode) 765 *inner_step = simplify_gen_binary (code, outer_mode, 766 *inner_step, op1); 767 else 768 *outer_step = simplify_gen_binary (code, outer_mode, 769 *outer_step, op1); 770 break; 771 772 case SIGN_EXTEND: 773 case ZERO_EXTEND: 774 gcc_assert (GET_MODE (op0) == *inner_mode 775 && *extend == IV_UNKNOWN_EXTEND 776 && *outer_step == const0_rtx); 777 778 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND; 779 break; 780 781 default: 782 return false; 783 } 784 785 return true; 786 } 787 788 /* Gets the operation on register REG inside loop, in shape 789 790 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP)) 791 792 If the operation cannot be described in this shape, return false. 793 LAST_DEF is the definition of REG that dominates loop latch. */ 794 795 static bool 796 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step, 797 machine_mode *inner_mode, enum iv_extend_code *extend, 798 machine_mode *outer_mode, rtx *outer_step) 799 { 800 *outer_mode = GET_MODE (reg); 801 802 if (!get_biv_step_1 (last_def, reg, 803 inner_step, inner_mode, extend, *outer_mode, 804 outer_step)) 805 return false; 806 807 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND)); 808 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx); 809 810 return true; 811 } 812 813 /* Records information that DEF is induction variable IV. */ 814 815 static void 816 record_iv (df_ref def, struct rtx_iv *iv) 817 { 818 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv); 819 820 *recorded_iv = *iv; 821 check_iv_ref_table_size (); 822 DF_REF_IV_SET (def, recorded_iv); 823 } 824 825 /* If DEF was already analyzed for bivness, store the description of the biv to 826 IV and return true. Otherwise return false. */ 827 828 static bool 829 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv) 830 { 831 struct biv_entry *biv = bivs->find_with_hash (def, REGNO (def)); 832 833 if (!biv) 834 return false; 835 836 *iv = biv->iv; 837 return true; 838 } 839 840 static void 841 record_biv (rtx def, struct rtx_iv *iv) 842 { 843 struct biv_entry *biv = XNEW (struct biv_entry); 844 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT); 845 846 biv->regno = REGNO (def); 847 biv->iv = *iv; 848 gcc_assert (!*slot); 849 *slot = biv; 850 } 851 852 /* Determines whether DEF is a biv and if so, stores its description 853 to *IV. */ 854 855 static bool 856 iv_analyze_biv (rtx def, struct rtx_iv *iv) 857 { 858 rtx inner_step, outer_step; 859 machine_mode inner_mode, outer_mode; 860 enum iv_extend_code extend; 861 df_ref last_def; 862 863 if (dump_file) 864 { 865 fprintf (dump_file, "Analyzing "); 866 print_rtl (dump_file, def); 867 fprintf (dump_file, " for bivness.\n"); 868 } 869 870 if (!REG_P (def)) 871 { 872 if (!CONSTANT_P (def)) 873 return false; 874 875 return iv_constant (iv, def, VOIDmode); 876 } 877 878 if (!latch_dominating_def (def, &last_def)) 879 { 880 if (dump_file) 881 fprintf (dump_file, " not simple.\n"); 882 return false; 883 } 884 885 if (!last_def) 886 return iv_constant (iv, def, VOIDmode); 887 888 if (analyzed_for_bivness_p (def, iv)) 889 { 890 if (dump_file) 891 fprintf (dump_file, " already analysed.\n"); 892 return iv->base != NULL_RTX; 893 } 894 895 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend, 896 &outer_mode, &outer_step)) 897 { 898 iv->base = NULL_RTX; 899 goto end; 900 } 901 902 /* Loop transforms base to es (base + inner_step) + outer_step, 903 where es means extend of subreg between inner_mode and outer_mode. 904 The corresponding induction variable is 905 906 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */ 907 908 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step); 909 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step); 910 iv->mode = inner_mode; 911 iv->extend_mode = outer_mode; 912 iv->extend = extend; 913 iv->mult = const1_rtx; 914 iv->delta = outer_step; 915 iv->first_special = inner_mode != outer_mode; 916 917 end: 918 if (dump_file) 919 { 920 fprintf (dump_file, " "); 921 dump_iv_info (dump_file, iv); 922 fprintf (dump_file, "\n"); 923 } 924 925 record_biv (def, iv); 926 return iv->base != NULL_RTX; 927 } 928 929 /* Analyzes expression RHS used at INSN and stores the result to *IV. 930 The mode of the induction variable is MODE. */ 931 932 bool 933 iv_analyze_expr (rtx_insn *insn, rtx rhs, machine_mode mode, 934 struct rtx_iv *iv) 935 { 936 rtx mby = NULL_RTX; 937 rtx op0 = NULL_RTX, op1 = NULL_RTX; 938 struct rtx_iv iv0, iv1; 939 enum rtx_code code = GET_CODE (rhs); 940 machine_mode omode = mode; 941 942 iv->mode = VOIDmode; 943 iv->base = NULL_RTX; 944 iv->step = NULL_RTX; 945 946 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode); 947 948 if (CONSTANT_P (rhs) 949 || REG_P (rhs) 950 || code == SUBREG) 951 { 952 if (!iv_analyze_op (insn, rhs, iv)) 953 return false; 954 955 if (iv->mode == VOIDmode) 956 { 957 iv->mode = mode; 958 iv->extend_mode = mode; 959 } 960 961 return true; 962 } 963 964 switch (code) 965 { 966 case REG: 967 op0 = rhs; 968 break; 969 970 case SIGN_EXTEND: 971 case ZERO_EXTEND: 972 case NEG: 973 op0 = XEXP (rhs, 0); 974 omode = GET_MODE (op0); 975 break; 976 977 case PLUS: 978 case MINUS: 979 op0 = XEXP (rhs, 0); 980 op1 = XEXP (rhs, 1); 981 break; 982 983 case MULT: 984 op0 = XEXP (rhs, 0); 985 mby = XEXP (rhs, 1); 986 if (!CONSTANT_P (mby)) 987 std::swap (op0, mby); 988 if (!CONSTANT_P (mby)) 989 return false; 990 break; 991 992 case ASHIFT: 993 op0 = XEXP (rhs, 0); 994 mby = XEXP (rhs, 1); 995 if (!CONSTANT_P (mby)) 996 return false; 997 break; 998 999 default: 1000 return false; 1001 } 1002 1003 if (op0 1004 && !iv_analyze_expr (insn, op0, omode, &iv0)) 1005 return false; 1006 1007 if (op1 1008 && !iv_analyze_expr (insn, op1, omode, &iv1)) 1009 return false; 1010 1011 switch (code) 1012 { 1013 case SIGN_EXTEND: 1014 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode)) 1015 return false; 1016 break; 1017 1018 case ZERO_EXTEND: 1019 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode)) 1020 return false; 1021 break; 1022 1023 case NEG: 1024 if (!iv_neg (&iv0)) 1025 return false; 1026 break; 1027 1028 case PLUS: 1029 case MINUS: 1030 if (!iv_add (&iv0, &iv1, code)) 1031 return false; 1032 break; 1033 1034 case MULT: 1035 if (!iv_mult (&iv0, mby)) 1036 return false; 1037 break; 1038 1039 case ASHIFT: 1040 if (!iv_shift (&iv0, mby)) 1041 return false; 1042 break; 1043 1044 default: 1045 break; 1046 } 1047 1048 *iv = iv0; 1049 return iv->base != NULL_RTX; 1050 } 1051 1052 /* Analyzes iv DEF and stores the result to *IV. */ 1053 1054 static bool 1055 iv_analyze_def (df_ref def, struct rtx_iv *iv) 1056 { 1057 rtx_insn *insn = DF_REF_INSN (def); 1058 rtx reg = DF_REF_REG (def); 1059 rtx set, rhs; 1060 1061 if (dump_file) 1062 { 1063 fprintf (dump_file, "Analyzing def of "); 1064 print_rtl (dump_file, reg); 1065 fprintf (dump_file, " in insn "); 1066 print_rtl_single (dump_file, insn); 1067 } 1068 1069 check_iv_ref_table_size (); 1070 if (DF_REF_IV (def)) 1071 { 1072 if (dump_file) 1073 fprintf (dump_file, " already analysed.\n"); 1074 *iv = *DF_REF_IV (def); 1075 return iv->base != NULL_RTX; 1076 } 1077 1078 iv->mode = VOIDmode; 1079 iv->base = NULL_RTX; 1080 iv->step = NULL_RTX; 1081 1082 if (!REG_P (reg)) 1083 return false; 1084 1085 set = single_set (insn); 1086 if (!set) 1087 return false; 1088 1089 if (!REG_P (SET_DEST (set))) 1090 return false; 1091 1092 gcc_assert (SET_DEST (set) == reg); 1093 rhs = find_reg_equal_equiv_note (insn); 1094 if (rhs) 1095 rhs = XEXP (rhs, 0); 1096 else 1097 rhs = SET_SRC (set); 1098 1099 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv); 1100 record_iv (def, iv); 1101 1102 if (dump_file) 1103 { 1104 print_rtl (dump_file, reg); 1105 fprintf (dump_file, " in insn "); 1106 print_rtl_single (dump_file, insn); 1107 fprintf (dump_file, " is "); 1108 dump_iv_info (dump_file, iv); 1109 fprintf (dump_file, "\n"); 1110 } 1111 1112 return iv->base != NULL_RTX; 1113 } 1114 1115 /* Analyzes operand OP of INSN and stores the result to *IV. */ 1116 1117 static bool 1118 iv_analyze_op (rtx_insn *insn, rtx op, struct rtx_iv *iv) 1119 { 1120 df_ref def = NULL; 1121 enum iv_grd_result res; 1122 1123 if (dump_file) 1124 { 1125 fprintf (dump_file, "Analyzing operand "); 1126 print_rtl (dump_file, op); 1127 fprintf (dump_file, " of insn "); 1128 print_rtl_single (dump_file, insn); 1129 } 1130 1131 if (function_invariant_p (op)) 1132 res = GRD_INVARIANT; 1133 else if (GET_CODE (op) == SUBREG) 1134 { 1135 if (!subreg_lowpart_p (op)) 1136 return false; 1137 1138 if (!iv_analyze_op (insn, SUBREG_REG (op), iv)) 1139 return false; 1140 1141 return iv_subreg (iv, GET_MODE (op)); 1142 } 1143 else 1144 { 1145 res = iv_get_reaching_def (insn, op, &def); 1146 if (res == GRD_INVALID) 1147 { 1148 if (dump_file) 1149 fprintf (dump_file, " not simple.\n"); 1150 return false; 1151 } 1152 } 1153 1154 if (res == GRD_INVARIANT) 1155 { 1156 iv_constant (iv, op, VOIDmode); 1157 1158 if (dump_file) 1159 { 1160 fprintf (dump_file, " "); 1161 dump_iv_info (dump_file, iv); 1162 fprintf (dump_file, "\n"); 1163 } 1164 return true; 1165 } 1166 1167 if (res == GRD_MAYBE_BIV) 1168 return iv_analyze_biv (op, iv); 1169 1170 return iv_analyze_def (def, iv); 1171 } 1172 1173 /* Analyzes value VAL at INSN and stores the result to *IV. */ 1174 1175 bool 1176 iv_analyze (rtx_insn *insn, rtx val, struct rtx_iv *iv) 1177 { 1178 rtx reg; 1179 1180 /* We must find the insn in that val is used, so that we get to UD chains. 1181 Since the function is sometimes called on result of get_condition, 1182 this does not necessarily have to be directly INSN; scan also the 1183 following insns. */ 1184 if (simple_reg_p (val)) 1185 { 1186 if (GET_CODE (val) == SUBREG) 1187 reg = SUBREG_REG (val); 1188 else 1189 reg = val; 1190 1191 while (!df_find_use (insn, reg)) 1192 insn = NEXT_INSN (insn); 1193 } 1194 1195 return iv_analyze_op (insn, val, iv); 1196 } 1197 1198 /* Analyzes definition of DEF in INSN and stores the result to IV. */ 1199 1200 bool 1201 iv_analyze_result (rtx_insn *insn, rtx def, struct rtx_iv *iv) 1202 { 1203 df_ref adef; 1204 1205 adef = df_find_def (insn, def); 1206 if (!adef) 1207 return false; 1208 1209 return iv_analyze_def (adef, iv); 1210 } 1211 1212 /* Checks whether definition of register REG in INSN is a basic induction 1213 variable. IV analysis must have been initialized (via a call to 1214 iv_analysis_loop_init) for this function to produce a result. */ 1215 1216 bool 1217 biv_p (rtx_insn *insn, rtx reg) 1218 { 1219 struct rtx_iv iv; 1220 df_ref def, last_def; 1221 1222 if (!simple_reg_p (reg)) 1223 return false; 1224 1225 def = df_find_def (insn, reg); 1226 gcc_assert (def != NULL); 1227 if (!latch_dominating_def (reg, &last_def)) 1228 return false; 1229 if (last_def != def) 1230 return false; 1231 1232 if (!iv_analyze_biv (reg, &iv)) 1233 return false; 1234 1235 return iv.step != const0_rtx; 1236 } 1237 1238 /* Calculates value of IV at ITERATION-th iteration. */ 1239 1240 rtx 1241 get_iv_value (struct rtx_iv *iv, rtx iteration) 1242 { 1243 rtx val; 1244 1245 /* We would need to generate some if_then_else patterns, and so far 1246 it is not needed anywhere. */ 1247 gcc_assert (!iv->first_special); 1248 1249 if (iv->step != const0_rtx && iteration != const0_rtx) 1250 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base, 1251 simplify_gen_binary (MULT, iv->extend_mode, 1252 iv->step, iteration)); 1253 else 1254 val = iv->base; 1255 1256 if (iv->extend_mode == iv->mode) 1257 return val; 1258 1259 val = lowpart_subreg (iv->mode, val, iv->extend_mode); 1260 1261 if (iv->extend == IV_UNKNOWN_EXTEND) 1262 return val; 1263 1264 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend), 1265 iv->extend_mode, val, iv->mode); 1266 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta, 1267 simplify_gen_binary (MULT, iv->extend_mode, 1268 iv->mult, val)); 1269 1270 return val; 1271 } 1272 1273 /* Free the data for an induction variable analysis. */ 1274 1275 void 1276 iv_analysis_done (void) 1277 { 1278 if (!clean_slate) 1279 { 1280 clear_iv_info (); 1281 clean_slate = true; 1282 df_finish_pass (true); 1283 delete bivs; 1284 bivs = NULL; 1285 free (iv_ref_table); 1286 iv_ref_table = NULL; 1287 iv_ref_table_size = 0; 1288 } 1289 } 1290 1291 /* Computes inverse to X modulo (1 << MOD). */ 1292 1293 static uint64_t 1294 inverse (uint64_t x, int mod) 1295 { 1296 uint64_t mask = 1297 ((uint64_t) 1 << (mod - 1) << 1) - 1; 1298 uint64_t rslt = 1; 1299 int i; 1300 1301 for (i = 0; i < mod - 1; i++) 1302 { 1303 rslt = (rslt * x) & mask; 1304 x = (x * x) & mask; 1305 } 1306 1307 return rslt; 1308 } 1309 1310 /* Checks whether any register in X is in set ALT. */ 1311 1312 static bool 1313 altered_reg_used (const_rtx x, bitmap alt) 1314 { 1315 subrtx_iterator::array_type array; 1316 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 1317 { 1318 const_rtx x = *iter; 1319 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x))) 1320 return true; 1321 } 1322 return false; 1323 } 1324 1325 /* Marks registers altered by EXPR in set ALT. */ 1326 1327 static void 1328 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt) 1329 { 1330 if (GET_CODE (expr) == SUBREG) 1331 expr = SUBREG_REG (expr); 1332 if (!REG_P (expr)) 1333 return; 1334 1335 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr)); 1336 } 1337 1338 /* Checks whether RHS is simple enough to process. */ 1339 1340 static bool 1341 simple_rhs_p (rtx rhs) 1342 { 1343 rtx op0, op1; 1344 1345 if (function_invariant_p (rhs) 1346 || (REG_P (rhs) && !HARD_REGISTER_P (rhs))) 1347 return true; 1348 1349 switch (GET_CODE (rhs)) 1350 { 1351 case PLUS: 1352 case MINUS: 1353 case AND: 1354 op0 = XEXP (rhs, 0); 1355 op1 = XEXP (rhs, 1); 1356 /* Allow reg OP const and reg OP reg. */ 1357 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)) 1358 && !function_invariant_p (op0)) 1359 return false; 1360 if (!(REG_P (op1) && !HARD_REGISTER_P (op1)) 1361 && !function_invariant_p (op1)) 1362 return false; 1363 1364 return true; 1365 1366 case ASHIFT: 1367 case ASHIFTRT: 1368 case LSHIFTRT: 1369 case MULT: 1370 op0 = XEXP (rhs, 0); 1371 op1 = XEXP (rhs, 1); 1372 /* Allow reg OP const. */ 1373 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))) 1374 return false; 1375 if (!function_invariant_p (op1)) 1376 return false; 1377 1378 return true; 1379 1380 default: 1381 return false; 1382 } 1383 } 1384 1385 /* If REGNO has a single definition, return its known value, otherwise return 1386 null. */ 1387 1388 static rtx 1389 find_single_def_src (unsigned int regno) 1390 { 1391 df_ref adef; 1392 rtx set, src; 1393 1394 for (;;) 1395 { 1396 rtx note; 1397 adef = DF_REG_DEF_CHAIN (regno); 1398 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL 1399 || DF_REF_IS_ARTIFICIAL (adef)) 1400 return NULL_RTX; 1401 1402 set = single_set (DF_REF_INSN (adef)); 1403 if (set == NULL || !REG_P (SET_DEST (set)) 1404 || REGNO (SET_DEST (set)) != regno) 1405 return NULL_RTX; 1406 1407 note = find_reg_equal_equiv_note (DF_REF_INSN (adef)); 1408 1409 if (note && function_invariant_p (XEXP (note, 0))) 1410 { 1411 src = XEXP (note, 0); 1412 break; 1413 } 1414 src = SET_SRC (set); 1415 1416 if (REG_P (src)) 1417 { 1418 regno = REGNO (src); 1419 continue; 1420 } 1421 break; 1422 } 1423 if (!function_invariant_p (src)) 1424 return NULL_RTX; 1425 1426 return src; 1427 } 1428 1429 /* If any registers in *EXPR that have a single definition, try to replace 1430 them with the known-equivalent values. */ 1431 1432 static void 1433 replace_single_def_regs (rtx *expr) 1434 { 1435 subrtx_var_iterator::array_type array; 1436 repeat: 1437 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST) 1438 { 1439 rtx x = *iter; 1440 if (REG_P (x)) 1441 if (rtx new_x = find_single_def_src (REGNO (x))) 1442 { 1443 *expr = simplify_replace_rtx (*expr, x, new_x); 1444 goto repeat; 1445 } 1446 } 1447 } 1448 1449 /* A subroutine of simplify_using_initial_values, this function examines INSN 1450 to see if it contains a suitable set that we can use to make a replacement. 1451 If it is suitable, return true and set DEST and SRC to the lhs and rhs of 1452 the set; return false otherwise. */ 1453 1454 static bool 1455 suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src) 1456 { 1457 rtx set = single_set (insn); 1458 rtx lhs = NULL_RTX, rhs; 1459 1460 if (!set) 1461 return false; 1462 1463 lhs = SET_DEST (set); 1464 if (!REG_P (lhs)) 1465 return false; 1466 1467 rhs = find_reg_equal_equiv_note (insn); 1468 if (rhs) 1469 rhs = XEXP (rhs, 0); 1470 else 1471 rhs = SET_SRC (set); 1472 1473 if (!simple_rhs_p (rhs)) 1474 return false; 1475 1476 *dest = lhs; 1477 *src = rhs; 1478 return true; 1479 } 1480 1481 /* Using the data returned by suitable_set_for_replacement, replace DEST 1482 with SRC in *EXPR and return the new expression. Also call 1483 replace_single_def_regs if the replacement changed something. */ 1484 static void 1485 replace_in_expr (rtx *expr, rtx dest, rtx src) 1486 { 1487 rtx old = *expr; 1488 *expr = simplify_replace_rtx (*expr, dest, src); 1489 if (old == *expr) 1490 return; 1491 replace_single_def_regs (expr); 1492 } 1493 1494 /* Checks whether A implies B. */ 1495 1496 static bool 1497 implies_p (rtx a, rtx b) 1498 { 1499 rtx op0, op1, opb0, opb1; 1500 machine_mode mode; 1501 1502 if (rtx_equal_p (a, b)) 1503 return true; 1504 1505 if (GET_CODE (a) == EQ) 1506 { 1507 op0 = XEXP (a, 0); 1508 op1 = XEXP (a, 1); 1509 1510 if (REG_P (op0) 1511 || (GET_CODE (op0) == SUBREG 1512 && REG_P (SUBREG_REG (op0)))) 1513 { 1514 rtx r = simplify_replace_rtx (b, op0, op1); 1515 if (r == const_true_rtx) 1516 return true; 1517 } 1518 1519 if (REG_P (op1) 1520 || (GET_CODE (op1) == SUBREG 1521 && REG_P (SUBREG_REG (op1)))) 1522 { 1523 rtx r = simplify_replace_rtx (b, op1, op0); 1524 if (r == const_true_rtx) 1525 return true; 1526 } 1527 } 1528 1529 if (b == const_true_rtx) 1530 return true; 1531 1532 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE 1533 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE) 1534 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE 1535 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE)) 1536 return false; 1537 1538 op0 = XEXP (a, 0); 1539 op1 = XEXP (a, 1); 1540 opb0 = XEXP (b, 0); 1541 opb1 = XEXP (b, 1); 1542 1543 mode = GET_MODE (op0); 1544 if (mode != GET_MODE (opb0)) 1545 mode = VOIDmode; 1546 else if (mode == VOIDmode) 1547 { 1548 mode = GET_MODE (op1); 1549 if (mode != GET_MODE (opb1)) 1550 mode = VOIDmode; 1551 } 1552 1553 /* A < B implies A + 1 <= B. */ 1554 if ((GET_CODE (a) == GT || GET_CODE (a) == LT) 1555 && (GET_CODE (b) == GE || GET_CODE (b) == LE)) 1556 { 1557 1558 if (GET_CODE (a) == GT) 1559 std::swap (op0, op1); 1560 1561 if (GET_CODE (b) == GE) 1562 std::swap (opb0, opb1); 1563 1564 if (SCALAR_INT_MODE_P (mode) 1565 && rtx_equal_p (op1, opb1) 1566 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx) 1567 return true; 1568 return false; 1569 } 1570 1571 /* A < B or A > B imply A != B. TODO: Likewise 1572 A + n < B implies A != B + n if neither wraps. */ 1573 if (GET_CODE (b) == NE 1574 && (GET_CODE (a) == GT || GET_CODE (a) == GTU 1575 || GET_CODE (a) == LT || GET_CODE (a) == LTU)) 1576 { 1577 if (rtx_equal_p (op0, opb0) 1578 && rtx_equal_p (op1, opb1)) 1579 return true; 1580 } 1581 1582 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */ 1583 if (GET_CODE (a) == NE 1584 && op1 == const0_rtx) 1585 { 1586 if ((GET_CODE (b) == GTU 1587 && opb1 == const0_rtx) 1588 || (GET_CODE (b) == GEU 1589 && opb1 == const1_rtx)) 1590 return rtx_equal_p (op0, opb0); 1591 } 1592 1593 /* A != N is equivalent to A - (N + 1) <u -1. */ 1594 if (GET_CODE (a) == NE 1595 && CONST_INT_P (op1) 1596 && GET_CODE (b) == LTU 1597 && opb1 == constm1_rtx 1598 && GET_CODE (opb0) == PLUS 1599 && CONST_INT_P (XEXP (opb0, 1)) 1600 /* Avoid overflows. */ 1601 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1)) 1602 != ((unsigned HOST_WIDE_INT)1 1603 << (HOST_BITS_PER_WIDE_INT - 1)) - 1) 1604 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1)) 1605 return rtx_equal_p (op0, XEXP (opb0, 0)); 1606 1607 /* Likewise, A != N implies A - N > 0. */ 1608 if (GET_CODE (a) == NE 1609 && CONST_INT_P (op1)) 1610 { 1611 if (GET_CODE (b) == GTU 1612 && GET_CODE (opb0) == PLUS 1613 && opb1 == const0_rtx 1614 && CONST_INT_P (XEXP (opb0, 1)) 1615 /* Avoid overflows. */ 1616 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1)) 1617 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1))) 1618 && rtx_equal_p (XEXP (opb0, 0), op0)) 1619 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1)); 1620 if (GET_CODE (b) == GEU 1621 && GET_CODE (opb0) == PLUS 1622 && opb1 == const1_rtx 1623 && CONST_INT_P (XEXP (opb0, 1)) 1624 /* Avoid overflows. */ 1625 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1)) 1626 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1))) 1627 && rtx_equal_p (XEXP (opb0, 0), op0)) 1628 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1)); 1629 } 1630 1631 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */ 1632 if ((GET_CODE (a) == GT || GET_CODE (a) == GE) 1633 && CONST_INT_P (op1) 1634 && ((GET_CODE (a) == GT && op1 == constm1_rtx) 1635 || INTVAL (op1) >= 0) 1636 && GET_CODE (b) == LTU 1637 && CONST_INT_P (opb1) 1638 && rtx_equal_p (op0, opb0)) 1639 return INTVAL (opb1) < 0; 1640 1641 return false; 1642 } 1643 1644 /* Canonicalizes COND so that 1645 1646 (1) Ensure that operands are ordered according to 1647 swap_commutative_operands_p. 1648 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly 1649 for GE, GEU, and LEU. */ 1650 1651 rtx 1652 canon_condition (rtx cond) 1653 { 1654 rtx op0, op1; 1655 enum rtx_code code; 1656 machine_mode mode; 1657 1658 code = GET_CODE (cond); 1659 op0 = XEXP (cond, 0); 1660 op1 = XEXP (cond, 1); 1661 1662 if (swap_commutative_operands_p (op0, op1)) 1663 { 1664 code = swap_condition (code); 1665 std::swap (op0, op1); 1666 } 1667 1668 mode = GET_MODE (op0); 1669 if (mode == VOIDmode) 1670 mode = GET_MODE (op1); 1671 gcc_assert (mode != VOIDmode); 1672 1673 if (CONST_SCALAR_INT_P (op1) && GET_MODE_CLASS (mode) != MODE_CC) 1674 { 1675 rtx_mode_t const_val (op1, mode); 1676 1677 switch (code) 1678 { 1679 case LE: 1680 if (wi::ne_p (const_val, wi::max_value (mode, SIGNED))) 1681 { 1682 code = LT; 1683 op1 = immed_wide_int_const (wi::add (const_val, 1), mode); 1684 } 1685 break; 1686 1687 case GE: 1688 if (wi::ne_p (const_val, wi::min_value (mode, SIGNED))) 1689 { 1690 code = GT; 1691 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode); 1692 } 1693 break; 1694 1695 case LEU: 1696 if (wi::ne_p (const_val, -1)) 1697 { 1698 code = LTU; 1699 op1 = immed_wide_int_const (wi::add (const_val, 1), mode); 1700 } 1701 break; 1702 1703 case GEU: 1704 if (wi::ne_p (const_val, 0)) 1705 { 1706 code = GTU; 1707 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode); 1708 } 1709 break; 1710 1711 default: 1712 break; 1713 } 1714 } 1715 1716 if (op0 != XEXP (cond, 0) 1717 || op1 != XEXP (cond, 1) 1718 || code != GET_CODE (cond) 1719 || GET_MODE (cond) != SImode) 1720 cond = gen_rtx_fmt_ee (code, SImode, op0, op1); 1721 1722 return cond; 1723 } 1724 1725 /* Reverses CONDition; returns NULL if we cannot. */ 1726 1727 static rtx 1728 reversed_condition (rtx cond) 1729 { 1730 enum rtx_code reversed; 1731 reversed = reversed_comparison_code (cond, NULL); 1732 if (reversed == UNKNOWN) 1733 return NULL_RTX; 1734 else 1735 return gen_rtx_fmt_ee (reversed, 1736 GET_MODE (cond), XEXP (cond, 0), 1737 XEXP (cond, 1)); 1738 } 1739 1740 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the 1741 set of altered regs. */ 1742 1743 void 1744 simplify_using_condition (rtx cond, rtx *expr, regset altered) 1745 { 1746 rtx rev, reve, exp = *expr; 1747 1748 /* If some register gets altered later, we do not really speak about its 1749 value at the time of comparison. */ 1750 if (altered && altered_reg_used (cond, altered)) 1751 return; 1752 1753 if (GET_CODE (cond) == EQ 1754 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1))) 1755 { 1756 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1)); 1757 return; 1758 } 1759 1760 if (!COMPARISON_P (exp)) 1761 return; 1762 1763 rev = reversed_condition (cond); 1764 reve = reversed_condition (exp); 1765 1766 cond = canon_condition (cond); 1767 exp = canon_condition (exp); 1768 if (rev) 1769 rev = canon_condition (rev); 1770 if (reve) 1771 reve = canon_condition (reve); 1772 1773 if (rtx_equal_p (exp, cond)) 1774 { 1775 *expr = const_true_rtx; 1776 return; 1777 } 1778 1779 if (rev && rtx_equal_p (exp, rev)) 1780 { 1781 *expr = const0_rtx; 1782 return; 1783 } 1784 1785 if (implies_p (cond, exp)) 1786 { 1787 *expr = const_true_rtx; 1788 return; 1789 } 1790 1791 if (reve && implies_p (cond, reve)) 1792 { 1793 *expr = const0_rtx; 1794 return; 1795 } 1796 1797 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must 1798 be false. */ 1799 if (rev && implies_p (exp, rev)) 1800 { 1801 *expr = const0_rtx; 1802 return; 1803 } 1804 1805 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */ 1806 if (rev && reve && implies_p (reve, rev)) 1807 { 1808 *expr = const_true_rtx; 1809 return; 1810 } 1811 1812 /* We would like to have some other tests here. TODO. */ 1813 1814 return; 1815 } 1816 1817 /* Use relationship between A and *B to eventually eliminate *B. 1818 OP is the operation we consider. */ 1819 1820 static void 1821 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b) 1822 { 1823 switch (op) 1824 { 1825 case AND: 1826 /* If A implies *B, we may replace *B by true. */ 1827 if (implies_p (a, *b)) 1828 *b = const_true_rtx; 1829 break; 1830 1831 case IOR: 1832 /* If *B implies A, we may replace *B by false. */ 1833 if (implies_p (*b, a)) 1834 *b = const0_rtx; 1835 break; 1836 1837 default: 1838 gcc_unreachable (); 1839 } 1840 } 1841 1842 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the 1843 operation we consider. */ 1844 1845 static void 1846 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail) 1847 { 1848 rtx elt; 1849 1850 for (elt = tail; elt; elt = XEXP (elt, 1)) 1851 eliminate_implied_condition (op, *head, &XEXP (elt, 0)); 1852 for (elt = tail; elt; elt = XEXP (elt, 1)) 1853 eliminate_implied_condition (op, XEXP (elt, 0), head); 1854 } 1855 1856 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR 1857 is a list, its elements are assumed to be combined using OP. */ 1858 1859 static void 1860 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr) 1861 { 1862 bool expression_valid; 1863 rtx head, tail, last_valid_expr; 1864 rtx_expr_list *cond_list; 1865 rtx_insn *insn; 1866 rtx neutral, aggr; 1867 regset altered, this_altered; 1868 edge e; 1869 1870 if (!*expr) 1871 return; 1872 1873 if (CONSTANT_P (*expr)) 1874 return; 1875 1876 if (GET_CODE (*expr) == EXPR_LIST) 1877 { 1878 head = XEXP (*expr, 0); 1879 tail = XEXP (*expr, 1); 1880 1881 eliminate_implied_conditions (op, &head, tail); 1882 1883 switch (op) 1884 { 1885 case AND: 1886 neutral = const_true_rtx; 1887 aggr = const0_rtx; 1888 break; 1889 1890 case IOR: 1891 neutral = const0_rtx; 1892 aggr = const_true_rtx; 1893 break; 1894 1895 default: 1896 gcc_unreachable (); 1897 } 1898 1899 simplify_using_initial_values (loop, UNKNOWN, &head); 1900 if (head == aggr) 1901 { 1902 XEXP (*expr, 0) = aggr; 1903 XEXP (*expr, 1) = NULL_RTX; 1904 return; 1905 } 1906 else if (head == neutral) 1907 { 1908 *expr = tail; 1909 simplify_using_initial_values (loop, op, expr); 1910 return; 1911 } 1912 simplify_using_initial_values (loop, op, &tail); 1913 1914 if (tail && XEXP (tail, 0) == aggr) 1915 { 1916 *expr = tail; 1917 return; 1918 } 1919 1920 XEXP (*expr, 0) = head; 1921 XEXP (*expr, 1) = tail; 1922 return; 1923 } 1924 1925 gcc_assert (op == UNKNOWN); 1926 1927 replace_single_def_regs (expr); 1928 if (CONSTANT_P (*expr)) 1929 return; 1930 1931 e = loop_preheader_edge (loop); 1932 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 1933 return; 1934 1935 altered = ALLOC_REG_SET (®_obstack); 1936 this_altered = ALLOC_REG_SET (®_obstack); 1937 1938 expression_valid = true; 1939 last_valid_expr = *expr; 1940 cond_list = NULL; 1941 while (1) 1942 { 1943 insn = BB_END (e->src); 1944 if (any_condjump_p (insn)) 1945 { 1946 rtx cond = get_condition (BB_END (e->src), NULL, false, true); 1947 1948 if (cond && (e->flags & EDGE_FALLTHRU)) 1949 cond = reversed_condition (cond); 1950 if (cond) 1951 { 1952 rtx old = *expr; 1953 simplify_using_condition (cond, expr, altered); 1954 if (old != *expr) 1955 { 1956 rtx note; 1957 if (CONSTANT_P (*expr)) 1958 goto out; 1959 for (note = cond_list; note; note = XEXP (note, 1)) 1960 { 1961 simplify_using_condition (XEXP (note, 0), expr, altered); 1962 if (CONSTANT_P (*expr)) 1963 goto out; 1964 } 1965 } 1966 cond_list = alloc_EXPR_LIST (0, cond, cond_list); 1967 } 1968 } 1969 1970 FOR_BB_INSNS_REVERSE (e->src, insn) 1971 { 1972 rtx src, dest; 1973 rtx old = *expr; 1974 1975 if (!INSN_P (insn)) 1976 continue; 1977 1978 CLEAR_REG_SET (this_altered); 1979 note_stores (PATTERN (insn), mark_altered, this_altered); 1980 if (CALL_P (insn)) 1981 { 1982 /* Kill all call clobbered registers. */ 1983 unsigned int i; 1984 hard_reg_set_iterator hrsi; 1985 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 1986 0, i, hrsi) 1987 SET_REGNO_REG_SET (this_altered, i); 1988 } 1989 1990 if (suitable_set_for_replacement (insn, &dest, &src)) 1991 { 1992 rtx_expr_list **pnote, **pnote_next; 1993 1994 replace_in_expr (expr, dest, src); 1995 if (CONSTANT_P (*expr)) 1996 goto out; 1997 1998 for (pnote = &cond_list; *pnote; pnote = pnote_next) 1999 { 2000 rtx_expr_list *note = *pnote; 2001 rtx old_cond = XEXP (note, 0); 2002 2003 pnote_next = (rtx_expr_list **)&XEXP (note, 1); 2004 replace_in_expr (&XEXP (note, 0), dest, src); 2005 2006 /* We can no longer use a condition that has been simplified 2007 to a constant, and simplify_using_condition will abort if 2008 we try. */ 2009 if (CONSTANT_P (XEXP (note, 0))) 2010 { 2011 *pnote = *pnote_next; 2012 pnote_next = pnote; 2013 free_EXPR_LIST_node (note); 2014 } 2015 /* Retry simplifications with this condition if either the 2016 expression or the condition changed. */ 2017 else if (old_cond != XEXP (note, 0) || old != *expr) 2018 simplify_using_condition (XEXP (note, 0), expr, altered); 2019 } 2020 } 2021 else 2022 { 2023 rtx_expr_list **pnote, **pnote_next; 2024 2025 /* If we did not use this insn to make a replacement, any overlap 2026 between stores in this insn and our expression will cause the 2027 expression to become invalid. */ 2028 if (altered_reg_used (*expr, this_altered)) 2029 goto out; 2030 2031 /* Likewise for the conditions. */ 2032 for (pnote = &cond_list; *pnote; pnote = pnote_next) 2033 { 2034 rtx_expr_list *note = *pnote; 2035 rtx old_cond = XEXP (note, 0); 2036 2037 pnote_next = (rtx_expr_list **)&XEXP (note, 1); 2038 if (altered_reg_used (old_cond, this_altered)) 2039 { 2040 *pnote = *pnote_next; 2041 pnote_next = pnote; 2042 free_EXPR_LIST_node (note); 2043 } 2044 } 2045 } 2046 2047 if (CONSTANT_P (*expr)) 2048 goto out; 2049 2050 IOR_REG_SET (altered, this_altered); 2051 2052 /* If the expression now contains regs that have been altered, we 2053 can't return it to the caller. However, it is still valid for 2054 further simplification, so keep searching to see if we can 2055 eventually turn it into a constant. */ 2056 if (altered_reg_used (*expr, altered)) 2057 expression_valid = false; 2058 if (expression_valid) 2059 last_valid_expr = *expr; 2060 } 2061 2062 if (!single_pred_p (e->src) 2063 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 2064 break; 2065 e = single_pred_edge (e->src); 2066 } 2067 2068 out: 2069 free_EXPR_LIST_list (&cond_list); 2070 if (!CONSTANT_P (*expr)) 2071 *expr = last_valid_expr; 2072 FREE_REG_SET (altered); 2073 FREE_REG_SET (this_altered); 2074 } 2075 2076 /* Transforms invariant IV into MODE. Adds assumptions based on the fact 2077 that IV occurs as left operands of comparison COND and its signedness 2078 is SIGNED_P to DESC. */ 2079 2080 static void 2081 shorten_into_mode (struct rtx_iv *iv, machine_mode mode, 2082 enum rtx_code cond, bool signed_p, struct niter_desc *desc) 2083 { 2084 rtx mmin, mmax, cond_over, cond_under; 2085 2086 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax); 2087 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode, 2088 iv->base, mmin); 2089 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode, 2090 iv->base, mmax); 2091 2092 switch (cond) 2093 { 2094 case LE: 2095 case LT: 2096 case LEU: 2097 case LTU: 2098 if (cond_under != const0_rtx) 2099 desc->infinite = 2100 alloc_EXPR_LIST (0, cond_under, desc->infinite); 2101 if (cond_over != const0_rtx) 2102 desc->noloop_assumptions = 2103 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions); 2104 break; 2105 2106 case GE: 2107 case GT: 2108 case GEU: 2109 case GTU: 2110 if (cond_over != const0_rtx) 2111 desc->infinite = 2112 alloc_EXPR_LIST (0, cond_over, desc->infinite); 2113 if (cond_under != const0_rtx) 2114 desc->noloop_assumptions = 2115 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions); 2116 break; 2117 2118 case NE: 2119 if (cond_over != const0_rtx) 2120 desc->infinite = 2121 alloc_EXPR_LIST (0, cond_over, desc->infinite); 2122 if (cond_under != const0_rtx) 2123 desc->infinite = 2124 alloc_EXPR_LIST (0, cond_under, desc->infinite); 2125 break; 2126 2127 default: 2128 gcc_unreachable (); 2129 } 2130 2131 iv->mode = mode; 2132 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND; 2133 } 2134 2135 /* Transforms IV0 and IV1 compared by COND so that they are both compared as 2136 subregs of the same mode if possible (sometimes it is necessary to add 2137 some assumptions to DESC). */ 2138 2139 static bool 2140 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1, 2141 enum rtx_code cond, struct niter_desc *desc) 2142 { 2143 machine_mode comp_mode; 2144 bool signed_p; 2145 2146 /* If the ivs behave specially in the first iteration, or are 2147 added/multiplied after extending, we ignore them. */ 2148 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx) 2149 return false; 2150 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx) 2151 return false; 2152 2153 /* If there is some extend, it must match signedness of the comparison. */ 2154 switch (cond) 2155 { 2156 case LE: 2157 case LT: 2158 if (iv0->extend == IV_ZERO_EXTEND 2159 || iv1->extend == IV_ZERO_EXTEND) 2160 return false; 2161 signed_p = true; 2162 break; 2163 2164 case LEU: 2165 case LTU: 2166 if (iv0->extend == IV_SIGN_EXTEND 2167 || iv1->extend == IV_SIGN_EXTEND) 2168 return false; 2169 signed_p = false; 2170 break; 2171 2172 case NE: 2173 if (iv0->extend != IV_UNKNOWN_EXTEND 2174 && iv1->extend != IV_UNKNOWN_EXTEND 2175 && iv0->extend != iv1->extend) 2176 return false; 2177 2178 signed_p = false; 2179 if (iv0->extend != IV_UNKNOWN_EXTEND) 2180 signed_p = iv0->extend == IV_SIGN_EXTEND; 2181 if (iv1->extend != IV_UNKNOWN_EXTEND) 2182 signed_p = iv1->extend == IV_SIGN_EXTEND; 2183 break; 2184 2185 default: 2186 gcc_unreachable (); 2187 } 2188 2189 /* Values of both variables should be computed in the same mode. These 2190 might indeed be different, if we have comparison like 2191 2192 (compare (subreg:SI (iv0)) (subreg:SI (iv1))) 2193 2194 and iv0 and iv1 are both ivs iterating in SI mode, but calculated 2195 in different modes. This does not seem impossible to handle, but 2196 it hardly ever occurs in practice. 2197 2198 The only exception is the case when one of operands is invariant. 2199 For example pentium 3 generates comparisons like 2200 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we 2201 definitely do not want this prevent the optimization. */ 2202 comp_mode = iv0->extend_mode; 2203 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode)) 2204 comp_mode = iv1->extend_mode; 2205 2206 if (iv0->extend_mode != comp_mode) 2207 { 2208 if (iv0->mode != iv0->extend_mode 2209 || iv0->step != const0_rtx) 2210 return false; 2211 2212 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND, 2213 comp_mode, iv0->base, iv0->mode); 2214 iv0->extend_mode = comp_mode; 2215 } 2216 2217 if (iv1->extend_mode != comp_mode) 2218 { 2219 if (iv1->mode != iv1->extend_mode 2220 || iv1->step != const0_rtx) 2221 return false; 2222 2223 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND, 2224 comp_mode, iv1->base, iv1->mode); 2225 iv1->extend_mode = comp_mode; 2226 } 2227 2228 /* Check that both ivs belong to a range of a single mode. If one of the 2229 operands is an invariant, we may need to shorten it into the common 2230 mode. */ 2231 if (iv0->mode == iv0->extend_mode 2232 && iv0->step == const0_rtx 2233 && iv0->mode != iv1->mode) 2234 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc); 2235 2236 if (iv1->mode == iv1->extend_mode 2237 && iv1->step == const0_rtx 2238 && iv0->mode != iv1->mode) 2239 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc); 2240 2241 if (iv0->mode != iv1->mode) 2242 return false; 2243 2244 desc->mode = iv0->mode; 2245 desc->signed_p = signed_p; 2246 2247 return true; 2248 } 2249 2250 /* Tries to estimate the maximum number of iterations in LOOP, and return the 2251 result. This function is called from iv_number_of_iterations with 2252 a number of fields in DESC already filled in. OLD_NITER is the original 2253 expression for the number of iterations, before we tried to simplify it. */ 2254 2255 static uint64_t 2256 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter) 2257 { 2258 rtx niter = desc->niter_expr; 2259 rtx mmin, mmax, cmp; 2260 uint64_t nmax, inc; 2261 uint64_t andmax = 0; 2262 2263 /* We used to look for constant operand 0 of AND, 2264 but canonicalization should always make this impossible. */ 2265 gcc_checking_assert (GET_CODE (niter) != AND 2266 || !CONST_INT_P (XEXP (niter, 0))); 2267 2268 if (GET_CODE (niter) == AND 2269 && CONST_INT_P (XEXP (niter, 1))) 2270 { 2271 andmax = UINTVAL (XEXP (niter, 1)); 2272 niter = XEXP (niter, 0); 2273 } 2274 2275 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax); 2276 nmax = UINTVAL (mmax) - UINTVAL (mmin); 2277 2278 if (GET_CODE (niter) == UDIV) 2279 { 2280 if (!CONST_INT_P (XEXP (niter, 1))) 2281 return nmax; 2282 inc = INTVAL (XEXP (niter, 1)); 2283 niter = XEXP (niter, 0); 2284 } 2285 else 2286 inc = 1; 2287 2288 /* We could use a binary search here, but for now improving the upper 2289 bound by just one eliminates one important corner case. */ 2290 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode, 2291 desc->mode, old_niter, mmax); 2292 simplify_using_initial_values (loop, UNKNOWN, &cmp); 2293 if (cmp == const_true_rtx) 2294 { 2295 nmax--; 2296 2297 if (dump_file) 2298 fprintf (dump_file, ";; improved upper bound by one.\n"); 2299 } 2300 nmax /= inc; 2301 if (andmax) 2302 nmax = MIN (nmax, andmax); 2303 if (dump_file) 2304 fprintf (dump_file, ";; Determined upper bound %" PRId64".\n", 2305 nmax); 2306 return nmax; 2307 } 2308 2309 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores 2310 the result into DESC. Very similar to determine_number_of_iterations 2311 (basically its rtl version), complicated by things like subregs. */ 2312 2313 static void 2314 iv_number_of_iterations (struct loop *loop, rtx_insn *insn, rtx condition, 2315 struct niter_desc *desc) 2316 { 2317 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1; 2318 struct rtx_iv iv0, iv1; 2319 rtx assumption, may_not_xform; 2320 enum rtx_code cond; 2321 machine_mode mode, comp_mode; 2322 rtx mmin, mmax, mode_mmin, mode_mmax; 2323 uint64_t s, size, d, inv, max, up, down; 2324 int64_t inc, step_val; 2325 int was_sharp = false; 2326 rtx old_niter; 2327 bool step_is_pow2; 2328 2329 /* The meaning of these assumptions is this: 2330 if !assumptions 2331 then the rest of information does not have to be valid 2332 if noloop_assumptions then the loop does not roll 2333 if infinite then this exit is never used */ 2334 2335 desc->assumptions = NULL_RTX; 2336 desc->noloop_assumptions = NULL_RTX; 2337 desc->infinite = NULL_RTX; 2338 desc->simple_p = true; 2339 2340 desc->const_iter = false; 2341 desc->niter_expr = NULL_RTX; 2342 2343 cond = GET_CODE (condition); 2344 gcc_assert (COMPARISON_P (condition)); 2345 2346 mode = GET_MODE (XEXP (condition, 0)); 2347 if (mode == VOIDmode) 2348 mode = GET_MODE (XEXP (condition, 1)); 2349 /* The constant comparisons should be folded. */ 2350 gcc_assert (mode != VOIDmode); 2351 2352 /* We only handle integers or pointers. */ 2353 if (GET_MODE_CLASS (mode) != MODE_INT 2354 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT) 2355 goto fail; 2356 2357 op0 = XEXP (condition, 0); 2358 if (!iv_analyze (insn, op0, &iv0)) 2359 goto fail; 2360 if (iv0.extend_mode == VOIDmode) 2361 iv0.mode = iv0.extend_mode = mode; 2362 2363 op1 = XEXP (condition, 1); 2364 if (!iv_analyze (insn, op1, &iv1)) 2365 goto fail; 2366 if (iv1.extend_mode == VOIDmode) 2367 iv1.mode = iv1.extend_mode = mode; 2368 2369 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT 2370 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT) 2371 goto fail; 2372 2373 /* Check condition and normalize it. */ 2374 2375 switch (cond) 2376 { 2377 case GE: 2378 case GT: 2379 case GEU: 2380 case GTU: 2381 std::swap (iv0, iv1); 2382 cond = swap_condition (cond); 2383 break; 2384 case NE: 2385 case LE: 2386 case LEU: 2387 case LT: 2388 case LTU: 2389 break; 2390 default: 2391 goto fail; 2392 } 2393 2394 /* Handle extends. This is relatively nontrivial, so we only try in some 2395 easy cases, when we can canonicalize the ivs (possibly by adding some 2396 assumptions) to shape subreg (base + i * step). This function also fills 2397 in desc->mode and desc->signed_p. */ 2398 2399 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc)) 2400 goto fail; 2401 2402 comp_mode = iv0.extend_mode; 2403 mode = iv0.mode; 2404 size = GET_MODE_PRECISION (mode); 2405 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax); 2406 mode_mmin = lowpart_subreg (mode, mmin, comp_mode); 2407 mode_mmax = lowpart_subreg (mode, mmax, comp_mode); 2408 2409 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step)) 2410 goto fail; 2411 2412 /* We can take care of the case of two induction variables chasing each other 2413 if the test is NE. I have never seen a loop using it, but still it is 2414 cool. */ 2415 if (iv0.step != const0_rtx && iv1.step != const0_rtx) 2416 { 2417 if (cond != NE) 2418 goto fail; 2419 2420 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step); 2421 iv1.step = const0_rtx; 2422 } 2423 2424 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode); 2425 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode); 2426 2427 /* This is either infinite loop or the one that ends immediately, depending 2428 on initial values. Unswitching should remove this kind of conditions. */ 2429 if (iv0.step == const0_rtx && iv1.step == const0_rtx) 2430 goto fail; 2431 2432 if (cond != NE) 2433 { 2434 if (iv0.step == const0_rtx) 2435 step_val = -INTVAL (iv1.step); 2436 else 2437 step_val = INTVAL (iv0.step); 2438 2439 /* Ignore loops of while (i-- < 10) type. */ 2440 if (step_val < 0) 2441 goto fail; 2442 2443 step_is_pow2 = !(step_val & (step_val - 1)); 2444 } 2445 else 2446 { 2447 /* We do not care about whether the step is power of two in this 2448 case. */ 2449 step_is_pow2 = false; 2450 step_val = 0; 2451 } 2452 2453 /* Some more condition normalization. We must record some assumptions 2454 due to overflows. */ 2455 switch (cond) 2456 { 2457 case LT: 2458 case LTU: 2459 /* We want to take care only of non-sharp relationals; this is easy, 2460 as in cases the overflow would make the transformation unsafe 2461 the loop does not roll. Seemingly it would make more sense to want 2462 to take care of sharp relationals instead, as NE is more similar to 2463 them, but the problem is that here the transformation would be more 2464 difficult due to possibly infinite loops. */ 2465 if (iv0.step == const0_rtx) 2466 { 2467 tmp = lowpart_subreg (mode, iv0.base, comp_mode); 2468 assumption = simplify_gen_relational (EQ, SImode, mode, tmp, 2469 mode_mmax); 2470 if (assumption == const_true_rtx) 2471 goto zero_iter_simplify; 2472 iv0.base = simplify_gen_binary (PLUS, comp_mode, 2473 iv0.base, const1_rtx); 2474 } 2475 else 2476 { 2477 tmp = lowpart_subreg (mode, iv1.base, comp_mode); 2478 assumption = simplify_gen_relational (EQ, SImode, mode, tmp, 2479 mode_mmin); 2480 if (assumption == const_true_rtx) 2481 goto zero_iter_simplify; 2482 iv1.base = simplify_gen_binary (PLUS, comp_mode, 2483 iv1.base, constm1_rtx); 2484 } 2485 2486 if (assumption != const0_rtx) 2487 desc->noloop_assumptions = 2488 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions); 2489 cond = (cond == LT) ? LE : LEU; 2490 2491 /* It will be useful to be able to tell the difference once more in 2492 LE -> NE reduction. */ 2493 was_sharp = true; 2494 break; 2495 default: ; 2496 } 2497 2498 /* Take care of trivially infinite loops. */ 2499 if (cond != NE) 2500 { 2501 if (iv0.step == const0_rtx) 2502 { 2503 tmp = lowpart_subreg (mode, iv0.base, comp_mode); 2504 if (rtx_equal_p (tmp, mode_mmin)) 2505 { 2506 desc->infinite = 2507 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX); 2508 /* Fill in the remaining fields somehow. */ 2509 goto zero_iter_simplify; 2510 } 2511 } 2512 else 2513 { 2514 tmp = lowpart_subreg (mode, iv1.base, comp_mode); 2515 if (rtx_equal_p (tmp, mode_mmax)) 2516 { 2517 desc->infinite = 2518 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX); 2519 /* Fill in the remaining fields somehow. */ 2520 goto zero_iter_simplify; 2521 } 2522 } 2523 } 2524 2525 /* If we can we want to take care of NE conditions instead of size 2526 comparisons, as they are much more friendly (most importantly 2527 this takes care of special handling of loops with step 1). We can 2528 do it if we first check that upper bound is greater or equal to 2529 lower bound, their difference is constant c modulo step and that 2530 there is not an overflow. */ 2531 if (cond != NE) 2532 { 2533 if (iv0.step == const0_rtx) 2534 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode); 2535 else 2536 step = iv0.step; 2537 step = lowpart_subreg (mode, step, comp_mode); 2538 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base); 2539 delta = lowpart_subreg (mode, delta, comp_mode); 2540 delta = simplify_gen_binary (UMOD, mode, delta, step); 2541 may_xform = const0_rtx; 2542 may_not_xform = const_true_rtx; 2543 2544 if (CONST_INT_P (delta)) 2545 { 2546 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1) 2547 { 2548 /* A special case. We have transformed condition of type 2549 for (i = 0; i < 4; i += 4) 2550 into 2551 for (i = 0; i <= 3; i += 4) 2552 obviously if the test for overflow during that transformation 2553 passed, we cannot overflow here. Most importantly any 2554 loop with sharp end condition and step 1 falls into this 2555 category, so handling this case specially is definitely 2556 worth the troubles. */ 2557 may_xform = const_true_rtx; 2558 } 2559 else if (iv0.step == const0_rtx) 2560 { 2561 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step); 2562 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta); 2563 bound = lowpart_subreg (mode, bound, comp_mode); 2564 tmp = lowpart_subreg (mode, iv0.base, comp_mode); 2565 may_xform = simplify_gen_relational (cond, SImode, mode, 2566 bound, tmp); 2567 may_not_xform = simplify_gen_relational (reverse_condition (cond), 2568 SImode, mode, 2569 bound, tmp); 2570 } 2571 else 2572 { 2573 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step); 2574 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta); 2575 bound = lowpart_subreg (mode, bound, comp_mode); 2576 tmp = lowpart_subreg (mode, iv1.base, comp_mode); 2577 may_xform = simplify_gen_relational (cond, SImode, mode, 2578 tmp, bound); 2579 may_not_xform = simplify_gen_relational (reverse_condition (cond), 2580 SImode, mode, 2581 tmp, bound); 2582 } 2583 } 2584 2585 if (may_xform != const0_rtx) 2586 { 2587 /* We perform the transformation always provided that it is not 2588 completely senseless. This is OK, as we would need this assumption 2589 to determine the number of iterations anyway. */ 2590 if (may_xform != const_true_rtx) 2591 { 2592 /* If the step is a power of two and the final value we have 2593 computed overflows, the cycle is infinite. Otherwise it 2594 is nontrivial to compute the number of iterations. */ 2595 if (step_is_pow2) 2596 desc->infinite = alloc_EXPR_LIST (0, may_not_xform, 2597 desc->infinite); 2598 else 2599 desc->assumptions = alloc_EXPR_LIST (0, may_xform, 2600 desc->assumptions); 2601 } 2602 2603 /* We are going to lose some information about upper bound on 2604 number of iterations in this step, so record the information 2605 here. */ 2606 inc = INTVAL (iv0.step) - INTVAL (iv1.step); 2607 if (CONST_INT_P (iv1.base)) 2608 up = INTVAL (iv1.base); 2609 else 2610 up = INTVAL (mode_mmax) - inc; 2611 down = INTVAL (CONST_INT_P (iv0.base) 2612 ? iv0.base 2613 : mode_mmin); 2614 max = (up - down) / inc + 1; 2615 if (!desc->infinite 2616 && !desc->assumptions) 2617 record_niter_bound (loop, max, false, true); 2618 2619 if (iv0.step == const0_rtx) 2620 { 2621 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta); 2622 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step); 2623 } 2624 else 2625 { 2626 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta); 2627 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step); 2628 } 2629 2630 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode); 2631 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); 2632 assumption = simplify_gen_relational (reverse_condition (cond), 2633 SImode, mode, tmp0, tmp1); 2634 if (assumption == const_true_rtx) 2635 goto zero_iter_simplify; 2636 else if (assumption != const0_rtx) 2637 desc->noloop_assumptions = 2638 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions); 2639 cond = NE; 2640 } 2641 } 2642 2643 /* Count the number of iterations. */ 2644 if (cond == NE) 2645 { 2646 /* Everything we do here is just arithmetics modulo size of mode. This 2647 makes us able to do more involved computations of number of iterations 2648 than in other cases. First transform the condition into shape 2649 s * i <> c, with s positive. */ 2650 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base); 2651 iv0.base = const0_rtx; 2652 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step); 2653 iv1.step = const0_rtx; 2654 if (INTVAL (iv0.step) < 0) 2655 { 2656 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode); 2657 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode); 2658 } 2659 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode); 2660 2661 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop 2662 is infinite. Otherwise, the number of iterations is 2663 (inverse(s/d) * (c/d)) mod (size of mode/d). */ 2664 s = INTVAL (iv0.step); d = 1; 2665 while (s % 2 != 1) 2666 { 2667 s /= 2; 2668 d *= 2; 2669 size--; 2670 } 2671 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1); 2672 2673 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); 2674 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode)); 2675 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx); 2676 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite); 2677 2678 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode)); 2679 inv = inverse (s, size); 2680 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode)); 2681 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound); 2682 } 2683 else 2684 { 2685 if (iv1.step == const0_rtx) 2686 /* Condition in shape a + s * i <= b 2687 We must know that b + s does not overflow and a <= b + s and then we 2688 can compute number of iterations as (b + s - a) / s. (It might 2689 seem that we in fact could be more clever about testing the b + s 2690 overflow condition using some information about b - a mod s, 2691 but it was already taken into account during LE -> NE transform). */ 2692 { 2693 step = iv0.step; 2694 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode); 2695 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); 2696 2697 bound = simplify_gen_binary (MINUS, mode, mode_mmax, 2698 lowpart_subreg (mode, step, 2699 comp_mode)); 2700 if (step_is_pow2) 2701 { 2702 rtx t0, t1; 2703 2704 /* If s is power of 2, we know that the loop is infinite if 2705 a % s <= b % s and b + s overflows. */ 2706 assumption = simplify_gen_relational (reverse_condition (cond), 2707 SImode, mode, 2708 tmp1, bound); 2709 2710 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step); 2711 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step); 2712 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1); 2713 assumption = simplify_gen_binary (AND, SImode, assumption, tmp); 2714 desc->infinite = 2715 alloc_EXPR_LIST (0, assumption, desc->infinite); 2716 } 2717 else 2718 { 2719 assumption = simplify_gen_relational (cond, SImode, mode, 2720 tmp1, bound); 2721 desc->assumptions = 2722 alloc_EXPR_LIST (0, assumption, desc->assumptions); 2723 } 2724 2725 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step); 2726 tmp = lowpart_subreg (mode, tmp, comp_mode); 2727 assumption = simplify_gen_relational (reverse_condition (cond), 2728 SImode, mode, tmp0, tmp); 2729 2730 delta = simplify_gen_binary (PLUS, mode, tmp1, step); 2731 delta = simplify_gen_binary (MINUS, mode, delta, tmp0); 2732 } 2733 else 2734 { 2735 /* Condition in shape a <= b - s * i 2736 We must know that a - s does not overflow and a - s <= b and then 2737 we can again compute number of iterations as (b - (a - s)) / s. */ 2738 step = simplify_gen_unary (NEG, mode, iv1.step, mode); 2739 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode); 2740 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode); 2741 2742 bound = simplify_gen_binary (PLUS, mode, mode_mmin, 2743 lowpart_subreg (mode, step, comp_mode)); 2744 if (step_is_pow2) 2745 { 2746 rtx t0, t1; 2747 2748 /* If s is power of 2, we know that the loop is infinite if 2749 a % s <= b % s and a - s overflows. */ 2750 assumption = simplify_gen_relational (reverse_condition (cond), 2751 SImode, mode, 2752 bound, tmp0); 2753 2754 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step); 2755 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step); 2756 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1); 2757 assumption = simplify_gen_binary (AND, SImode, assumption, tmp); 2758 desc->infinite = 2759 alloc_EXPR_LIST (0, assumption, desc->infinite); 2760 } 2761 else 2762 { 2763 assumption = simplify_gen_relational (cond, SImode, mode, 2764 bound, tmp0); 2765 desc->assumptions = 2766 alloc_EXPR_LIST (0, assumption, desc->assumptions); 2767 } 2768 2769 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step); 2770 tmp = lowpart_subreg (mode, tmp, comp_mode); 2771 assumption = simplify_gen_relational (reverse_condition (cond), 2772 SImode, mode, 2773 tmp, tmp1); 2774 delta = simplify_gen_binary (MINUS, mode, tmp0, step); 2775 delta = simplify_gen_binary (MINUS, mode, tmp1, delta); 2776 } 2777 if (assumption == const_true_rtx) 2778 goto zero_iter_simplify; 2779 else if (assumption != const0_rtx) 2780 desc->noloop_assumptions = 2781 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions); 2782 delta = simplify_gen_binary (UDIV, mode, delta, step); 2783 desc->niter_expr = delta; 2784 } 2785 2786 old_niter = desc->niter_expr; 2787 2788 simplify_using_initial_values (loop, AND, &desc->assumptions); 2789 if (desc->assumptions 2790 && XEXP (desc->assumptions, 0) == const0_rtx) 2791 goto fail; 2792 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions); 2793 simplify_using_initial_values (loop, IOR, &desc->infinite); 2794 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr); 2795 2796 /* Rerun the simplification. Consider code (created by copying loop headers) 2797 2798 i = 0; 2799 2800 if (0 < n) 2801 { 2802 do 2803 { 2804 i++; 2805 } while (i < n); 2806 } 2807 2808 The first pass determines that i = 0, the second pass uses it to eliminate 2809 noloop assumption. */ 2810 2811 simplify_using_initial_values (loop, AND, &desc->assumptions); 2812 if (desc->assumptions 2813 && XEXP (desc->assumptions, 0) == const0_rtx) 2814 goto fail; 2815 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions); 2816 simplify_using_initial_values (loop, IOR, &desc->infinite); 2817 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr); 2818 2819 if (desc->noloop_assumptions 2820 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx) 2821 goto zero_iter; 2822 2823 if (CONST_INT_P (desc->niter_expr)) 2824 { 2825 uint64_t val = INTVAL (desc->niter_expr); 2826 2827 desc->const_iter = true; 2828 desc->niter = val & GET_MODE_MASK (desc->mode); 2829 if (!desc->infinite 2830 && !desc->assumptions) 2831 record_niter_bound (loop, desc->niter, false, true); 2832 } 2833 else 2834 { 2835 max = determine_max_iter (loop, desc, old_niter); 2836 if (!max) 2837 goto zero_iter_simplify; 2838 if (!desc->infinite 2839 && !desc->assumptions) 2840 record_niter_bound (loop, max, false, true); 2841 2842 /* simplify_using_initial_values does a copy propagation on the registers 2843 in the expression for the number of iterations. This prolongs life 2844 ranges of registers and increases register pressure, and usually 2845 brings no gain (and if it happens to do, the cse pass will take care 2846 of it anyway). So prevent this behavior, unless it enabled us to 2847 derive that the number of iterations is a constant. */ 2848 desc->niter_expr = old_niter; 2849 } 2850 2851 return; 2852 2853 zero_iter_simplify: 2854 /* Simplify the assumptions. */ 2855 simplify_using_initial_values (loop, AND, &desc->assumptions); 2856 if (desc->assumptions 2857 && XEXP (desc->assumptions, 0) == const0_rtx) 2858 goto fail; 2859 simplify_using_initial_values (loop, IOR, &desc->infinite); 2860 2861 /* Fallthru. */ 2862 zero_iter: 2863 desc->const_iter = true; 2864 desc->niter = 0; 2865 record_niter_bound (loop, 0, true, true); 2866 desc->noloop_assumptions = NULL_RTX; 2867 desc->niter_expr = const0_rtx; 2868 return; 2869 2870 fail: 2871 desc->simple_p = false; 2872 return; 2873 } 2874 2875 /* Checks whether E is a simple exit from LOOP and stores its description 2876 into DESC. */ 2877 2878 static void 2879 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc) 2880 { 2881 basic_block exit_bb; 2882 rtx condition; 2883 rtx_insn *at; 2884 edge ein; 2885 2886 exit_bb = e->src; 2887 desc->simple_p = false; 2888 2889 /* It must belong directly to the loop. */ 2890 if (exit_bb->loop_father != loop) 2891 return; 2892 2893 /* It must be tested (at least) once during any iteration. */ 2894 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb)) 2895 return; 2896 2897 /* It must end in a simple conditional jump. */ 2898 if (!any_condjump_p (BB_END (exit_bb))) 2899 return; 2900 2901 ein = EDGE_SUCC (exit_bb, 0); 2902 if (ein == e) 2903 ein = EDGE_SUCC (exit_bb, 1); 2904 2905 desc->out_edge = e; 2906 desc->in_edge = ein; 2907 2908 /* Test whether the condition is suitable. */ 2909 if (!(condition = get_condition (BB_END (ein->src), &at, false, false))) 2910 return; 2911 2912 if (ein->flags & EDGE_FALLTHRU) 2913 { 2914 condition = reversed_condition (condition); 2915 if (!condition) 2916 return; 2917 } 2918 2919 /* Check that we are able to determine number of iterations and fill 2920 in information about it. */ 2921 iv_number_of_iterations (loop, at, condition, desc); 2922 } 2923 2924 /* Finds a simple exit of LOOP and stores its description into DESC. */ 2925 2926 void 2927 find_simple_exit (struct loop *loop, struct niter_desc *desc) 2928 { 2929 unsigned i; 2930 basic_block *body; 2931 edge e; 2932 struct niter_desc act; 2933 bool any = false; 2934 edge_iterator ei; 2935 2936 desc->simple_p = false; 2937 body = get_loop_body (loop); 2938 2939 for (i = 0; i < loop->num_nodes; i++) 2940 { 2941 FOR_EACH_EDGE (e, ei, body[i]->succs) 2942 { 2943 if (flow_bb_inside_loop_p (loop, e->dest)) 2944 continue; 2945 2946 check_simple_exit (loop, e, &act); 2947 if (!act.simple_p) 2948 continue; 2949 2950 if (!any) 2951 any = true; 2952 else 2953 { 2954 /* Prefer constant iterations; the less the better. */ 2955 if (!act.const_iter 2956 || (desc->const_iter && act.niter >= desc->niter)) 2957 continue; 2958 2959 /* Also if the actual exit may be infinite, while the old one 2960 not, prefer the old one. */ 2961 if (act.infinite && !desc->infinite) 2962 continue; 2963 } 2964 2965 *desc = act; 2966 } 2967 } 2968 2969 if (dump_file) 2970 { 2971 if (desc->simple_p) 2972 { 2973 fprintf (dump_file, "Loop %d is simple:\n", loop->num); 2974 fprintf (dump_file, " simple exit %d -> %d\n", 2975 desc->out_edge->src->index, 2976 desc->out_edge->dest->index); 2977 if (desc->assumptions) 2978 { 2979 fprintf (dump_file, " assumptions: "); 2980 print_rtl (dump_file, desc->assumptions); 2981 fprintf (dump_file, "\n"); 2982 } 2983 if (desc->noloop_assumptions) 2984 { 2985 fprintf (dump_file, " does not roll if: "); 2986 print_rtl (dump_file, desc->noloop_assumptions); 2987 fprintf (dump_file, "\n"); 2988 } 2989 if (desc->infinite) 2990 { 2991 fprintf (dump_file, " infinite if: "); 2992 print_rtl (dump_file, desc->infinite); 2993 fprintf (dump_file, "\n"); 2994 } 2995 2996 fprintf (dump_file, " number of iterations: "); 2997 print_rtl (dump_file, desc->niter_expr); 2998 fprintf (dump_file, "\n"); 2999 3000 fprintf (dump_file, " upper bound: %li\n", 3001 (long)get_max_loop_iterations_int (loop)); 3002 fprintf (dump_file, " likely upper bound: %li\n", 3003 (long)get_likely_max_loop_iterations_int (loop)); 3004 fprintf (dump_file, " realistic bound: %li\n", 3005 (long)get_estimated_loop_iterations_int (loop)); 3006 } 3007 else 3008 fprintf (dump_file, "Loop %d is not simple.\n", loop->num); 3009 } 3010 3011 free (body); 3012 } 3013 3014 /* Creates a simple loop description of LOOP if it was not computed 3015 already. */ 3016 3017 struct niter_desc * 3018 get_simple_loop_desc (struct loop *loop) 3019 { 3020 struct niter_desc *desc = simple_loop_desc (loop); 3021 3022 if (desc) 3023 return desc; 3024 3025 /* At least desc->infinite is not always initialized by 3026 find_simple_loop_exit. */ 3027 desc = ggc_cleared_alloc<niter_desc> (); 3028 iv_analysis_loop_init (loop); 3029 find_simple_exit (loop, desc); 3030 loop->simple_loop_desc = desc; 3031 return desc; 3032 } 3033 3034 /* Releases simple loop description for LOOP. */ 3035 3036 void 3037 free_simple_loop_desc (struct loop *loop) 3038 { 3039 struct niter_desc *desc = simple_loop_desc (loop); 3040 3041 if (!desc) 3042 return; 3043 3044 ggc_free (desc); 3045 loop->simple_loop_desc = NULL; 3046 } 3047