xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/loop-invariant.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /* RTL-level loop invariant motion.
2    Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This implements the loop invariant motion pass.  It is very simple
21    (no calls, no loads/stores, etc.).  This should be sufficient to cleanup
22    things like address arithmetics -- other more complicated invariants should
23    be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
24 
25    We proceed loop by loop -- it is simpler than trying to handle things
26    globally and should not lose much.  First we inspect all sets inside loop
27    and create a dependency graph on insns (saying "to move this insn, you must
28    also move the following insns").
29 
30    We then need to determine what to move.  We estimate the number of registers
31    used and move as many invariants as possible while we still have enough free
32    registers.  We prefer the expensive invariants.
33 
34    Then we move the selected invariants out of the loop, creating a new
35    temporaries for them if necessary.  */
36 
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "backend.h"
41 #include "target.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "cfghooks.h"
45 #include "df.h"
46 #include "memmodel.h"
47 #include "tm_p.h"
48 #include "insn-config.h"
49 #include "regs.h"
50 #include "ira.h"
51 #include "recog.h"
52 #include "cfgrtl.h"
53 #include "cfgloop.h"
54 #include "expr.h"
55 #include "params.h"
56 #include "rtl-iter.h"
57 #include "dumpfile.h"
58 
59 /* The data stored for the loop.  */
60 
61 struct loop_data
62 {
63   struct loop *outermost_exit;	/* The outermost exit of the loop.  */
64   bool has_call;		/* True if the loop contains a call.  */
65   /* Maximal register pressure inside loop for given register class
66      (defined only for the pressure classes).  */
67   int max_reg_pressure[N_REG_CLASSES];
68   /* Loop regs referenced and live pseudo-registers.  */
69   bitmap_head regs_ref;
70   bitmap_head regs_live;
71 };
72 
73 #define LOOP_DATA(LOOP) ((struct loop_data *) (LOOP)->aux)
74 
75 /* The description of an use.  */
76 
77 struct use
78 {
79   rtx *pos;			/* Position of the use.  */
80   rtx_insn *insn;		/* The insn in that the use occurs.  */
81   unsigned addr_use_p;		/* Whether the use occurs in an address.  */
82   struct use *next;		/* Next use in the list.  */
83 };
84 
85 /* The description of a def.  */
86 
87 struct def
88 {
89   struct use *uses;		/* The list of uses that are uniquely reached
90 				   by it.  */
91   unsigned n_uses;		/* Number of such uses.  */
92   unsigned n_addr_uses;		/* Number of uses in addresses.  */
93   unsigned invno;		/* The corresponding invariant.  */
94   bool can_prop_to_addr_uses;	/* True if the corresponding inv can be
95 				   propagated into its address uses.  */
96 };
97 
98 /* The data stored for each invariant.  */
99 
100 struct invariant
101 {
102   /* The number of the invariant.  */
103   unsigned invno;
104 
105   /* The number of the invariant with the same value.  */
106   unsigned eqto;
107 
108   /* The number of invariants which eqto this.  */
109   unsigned eqno;
110 
111   /* If we moved the invariant out of the loop, the original regno
112      that contained its value.  */
113   int orig_regno;
114 
115   /* If we moved the invariant out of the loop, the register that contains its
116      value.  */
117   rtx reg;
118 
119   /* The definition of the invariant.  */
120   struct def *def;
121 
122   /* The insn in that it is defined.  */
123   rtx_insn *insn;
124 
125   /* Whether it is always executed.  */
126   bool always_executed;
127 
128   /* Whether to move the invariant.  */
129   bool move;
130 
131   /* Whether the invariant is cheap when used as an address.  */
132   bool cheap_address;
133 
134   /* Cost of the invariant.  */
135   unsigned cost;
136 
137   /* Used for detecting already visited invariants during determining
138      costs of movements.  */
139   unsigned stamp;
140 
141   /* The invariants it depends on.  */
142   bitmap depends_on;
143 };
144 
145 /* Currently processed loop.  */
146 static struct loop *curr_loop;
147 
148 /* Table of invariants indexed by the df_ref uid field.  */
149 
150 static unsigned int invariant_table_size = 0;
151 static struct invariant ** invariant_table;
152 
153 /* Entry for hash table of invariant expressions.  */
154 
155 struct invariant_expr_entry
156 {
157   /* The invariant.  */
158   struct invariant *inv;
159 
160   /* Its value.  */
161   rtx expr;
162 
163   /* Its mode.  */
164   machine_mode mode;
165 
166   /* Its hash.  */
167   hashval_t hash;
168 };
169 
170 /* The actual stamp for marking already visited invariants during determining
171    costs of movements.  */
172 
173 static unsigned actual_stamp;
174 
175 typedef struct invariant *invariant_p;
176 
177 
178 /* The invariants.  */
179 
180 static vec<invariant_p> invariants;
181 
182 /* Check the size of the invariant table and realloc if necessary.  */
183 
184 static void
185 check_invariant_table_size (void)
186 {
187   if (invariant_table_size < DF_DEFS_TABLE_SIZE ())
188     {
189       unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
190       invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
191       memset (&invariant_table[invariant_table_size], 0,
192 	      (new_size - invariant_table_size) * sizeof (struct invariant *));
193       invariant_table_size = new_size;
194     }
195 }
196 
197 /* Test for possibility of invariantness of X.  */
198 
199 static bool
200 check_maybe_invariant (rtx x)
201 {
202   enum rtx_code code = GET_CODE (x);
203   int i, j;
204   const char *fmt;
205 
206   switch (code)
207     {
208     CASE_CONST_ANY:
209     case SYMBOL_REF:
210     case CONST:
211     case LABEL_REF:
212       return true;
213 
214     case PC:
215     case CC0:
216     case UNSPEC_VOLATILE:
217     case CALL:
218       return false;
219 
220     case REG:
221       return true;
222 
223     case MEM:
224       /* Load/store motion is done elsewhere.  ??? Perhaps also add it here?
225 	 It should not be hard, and might be faster than "elsewhere".  */
226 
227       /* Just handle the most trivial case where we load from an unchanging
228 	 location (most importantly, pic tables).  */
229       if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
230 	break;
231 
232       return false;
233 
234     case ASM_OPERANDS:
235       /* Don't mess with insns declared volatile.  */
236       if (MEM_VOLATILE_P (x))
237 	return false;
238       break;
239 
240     default:
241       break;
242     }
243 
244   fmt = GET_RTX_FORMAT (code);
245   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246     {
247       if (fmt[i] == 'e')
248 	{
249 	  if (!check_maybe_invariant (XEXP (x, i)))
250 	    return false;
251 	}
252       else if (fmt[i] == 'E')
253 	{
254 	  for (j = 0; j < XVECLEN (x, i); j++)
255 	    if (!check_maybe_invariant (XVECEXP (x, i, j)))
256 	      return false;
257 	}
258     }
259 
260   return true;
261 }
262 
263 /* Returns the invariant definition for USE, or NULL if USE is not
264    invariant.  */
265 
266 static struct invariant *
267 invariant_for_use (df_ref use)
268 {
269   struct df_link *defs;
270   df_ref def;
271   basic_block bb = DF_REF_BB (use), def_bb;
272 
273   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
274     return NULL;
275 
276   defs = DF_REF_CHAIN (use);
277   if (!defs || defs->next)
278     return NULL;
279   def = defs->ref;
280   check_invariant_table_size ();
281   if (!invariant_table[DF_REF_ID (def)])
282     return NULL;
283 
284   def_bb = DF_REF_BB (def);
285   if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
286     return NULL;
287   return invariant_table[DF_REF_ID (def)];
288 }
289 
290 /* Computes hash value for invariant expression X in INSN.  */
291 
292 static hashval_t
293 hash_invariant_expr_1 (rtx_insn *insn, rtx x)
294 {
295   enum rtx_code code = GET_CODE (x);
296   int i, j;
297   const char *fmt;
298   hashval_t val = code;
299   int do_not_record_p;
300   df_ref use;
301   struct invariant *inv;
302 
303   switch (code)
304     {
305     CASE_CONST_ANY:
306     case SYMBOL_REF:
307     case CONST:
308     case LABEL_REF:
309       return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
310 
311     case REG:
312       use = df_find_use (insn, x);
313       if (!use)
314 	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
315       inv = invariant_for_use (use);
316       if (!inv)
317 	return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
318 
319       gcc_assert (inv->eqto != ~0u);
320       return inv->eqto;
321 
322     default:
323       break;
324     }
325 
326   fmt = GET_RTX_FORMAT (code);
327   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328     {
329       if (fmt[i] == 'e')
330 	val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
331       else if (fmt[i] == 'E')
332 	{
333 	  for (j = 0; j < XVECLEN (x, i); j++)
334 	    val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
335 	}
336       else if (fmt[i] == 'i' || fmt[i] == 'n')
337 	val ^= XINT (x, i);
338     }
339 
340   return val;
341 }
342 
343 /* Returns true if the invariant expressions E1 and E2 used in insns INSN1
344    and INSN2 have always the same value.  */
345 
346 static bool
347 invariant_expr_equal_p (rtx_insn *insn1, rtx e1, rtx_insn *insn2, rtx e2)
348 {
349   enum rtx_code code = GET_CODE (e1);
350   int i, j;
351   const char *fmt;
352   df_ref use1, use2;
353   struct invariant *inv1 = NULL, *inv2 = NULL;
354   rtx sub1, sub2;
355 
356   /* If mode of only one of the operands is VOIDmode, it is not equivalent to
357      the other one.  If both are VOIDmode, we rely on the caller of this
358      function to verify that their modes are the same.  */
359   if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
360     return false;
361 
362   switch (code)
363     {
364     CASE_CONST_ANY:
365     case SYMBOL_REF:
366     case CONST:
367     case LABEL_REF:
368       return rtx_equal_p (e1, e2);
369 
370     case REG:
371       use1 = df_find_use (insn1, e1);
372       use2 = df_find_use (insn2, e2);
373       if (use1)
374 	inv1 = invariant_for_use (use1);
375       if (use2)
376 	inv2 = invariant_for_use (use2);
377 
378       if (!inv1 && !inv2)
379 	return rtx_equal_p (e1, e2);
380 
381       if (!inv1 || !inv2)
382 	return false;
383 
384       gcc_assert (inv1->eqto != ~0u);
385       gcc_assert (inv2->eqto != ~0u);
386       return inv1->eqto == inv2->eqto;
387 
388     default:
389       break;
390     }
391 
392   fmt = GET_RTX_FORMAT (code);
393   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
394     {
395       if (fmt[i] == 'e')
396 	{
397 	  sub1 = XEXP (e1, i);
398 	  sub2 = XEXP (e2, i);
399 
400 	  if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
401 	    return false;
402 	}
403 
404       else if (fmt[i] == 'E')
405 	{
406 	  if (XVECLEN (e1, i) != XVECLEN (e2, i))
407 	    return false;
408 
409 	  for (j = 0; j < XVECLEN (e1, i); j++)
410 	    {
411 	      sub1 = XVECEXP (e1, i, j);
412 	      sub2 = XVECEXP (e2, i, j);
413 
414 	      if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
415 		return false;
416 	    }
417 	}
418       else if (fmt[i] == 'i' || fmt[i] == 'n')
419 	{
420 	  if (XINT (e1, i) != XINT (e2, i))
421 	    return false;
422 	}
423       /* Unhandled type of subexpression, we fail conservatively.  */
424       else
425 	return false;
426     }
427 
428   return true;
429 }
430 
431 struct invariant_expr_hasher : free_ptr_hash <invariant_expr_entry>
432 {
433   static inline hashval_t hash (const invariant_expr_entry *);
434   static inline bool equal (const invariant_expr_entry *,
435 			    const invariant_expr_entry *);
436 };
437 
438 /* Returns hash value for invariant expression entry ENTRY.  */
439 
440 inline hashval_t
441 invariant_expr_hasher::hash (const invariant_expr_entry *entry)
442 {
443   return entry->hash;
444 }
445 
446 /* Compares invariant expression entries ENTRY1 and ENTRY2.  */
447 
448 inline bool
449 invariant_expr_hasher::equal (const invariant_expr_entry *entry1,
450 			      const invariant_expr_entry *entry2)
451 {
452   if (entry1->mode != entry2->mode)
453     return 0;
454 
455   return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
456 				 entry2->inv->insn, entry2->expr);
457 }
458 
459 typedef hash_table<invariant_expr_hasher> invariant_htab_type;
460 
461 /* Checks whether invariant with value EXPR in machine mode MODE is
462    recorded in EQ.  If this is the case, return the invariant.  Otherwise
463    insert INV to the table for this expression and return INV.  */
464 
465 static struct invariant *
466 find_or_insert_inv (invariant_htab_type *eq, rtx expr, machine_mode mode,
467 		    struct invariant *inv)
468 {
469   hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
470   struct invariant_expr_entry *entry;
471   struct invariant_expr_entry pentry;
472   invariant_expr_entry **slot;
473 
474   pentry.expr = expr;
475   pentry.inv = inv;
476   pentry.mode = mode;
477   slot = eq->find_slot_with_hash (&pentry, hash, INSERT);
478   entry = *slot;
479 
480   if (entry)
481     return entry->inv;
482 
483   entry = XNEW (struct invariant_expr_entry);
484   entry->inv = inv;
485   entry->expr = expr;
486   entry->mode = mode;
487   entry->hash = hash;
488   *slot = entry;
489 
490   return inv;
491 }
492 
493 /* Finds invariants identical to INV and records the equivalence.  EQ is the
494    hash table of the invariants.  */
495 
496 static void
497 find_identical_invariants (invariant_htab_type *eq, struct invariant *inv)
498 {
499   unsigned depno;
500   bitmap_iterator bi;
501   struct invariant *dep;
502   rtx expr, set;
503   machine_mode mode;
504   struct invariant *tmp;
505 
506   if (inv->eqto != ~0u)
507     return;
508 
509   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
510     {
511       dep = invariants[depno];
512       find_identical_invariants (eq, dep);
513     }
514 
515   set = single_set (inv->insn);
516   expr = SET_SRC (set);
517   mode = GET_MODE (expr);
518   if (mode == VOIDmode)
519     mode = GET_MODE (SET_DEST (set));
520 
521   tmp = find_or_insert_inv (eq, expr, mode, inv);
522   inv->eqto = tmp->invno;
523 
524   if (tmp->invno != inv->invno && inv->always_executed)
525     tmp->eqno++;
526 
527   if (dump_file && inv->eqto != inv->invno)
528     fprintf (dump_file,
529 	     "Invariant %d is equivalent to invariant %d.\n",
530 	     inv->invno, inv->eqto);
531 }
532 
533 /* Find invariants with the same value and record the equivalences.  */
534 
535 static void
536 merge_identical_invariants (void)
537 {
538   unsigned i;
539   struct invariant *inv;
540   invariant_htab_type eq (invariants.length ());
541 
542   FOR_EACH_VEC_ELT (invariants, i, inv)
543     find_identical_invariants (&eq, inv);
544 }
545 
546 /* Determines the basic blocks inside LOOP that are always executed and
547    stores their bitmap to ALWAYS_REACHED.  MAY_EXIT is a bitmap of
548    basic blocks that may either exit the loop, or contain the call that
549    does not have to return.  BODY is body of the loop obtained by
550    get_loop_body_in_dom_order.  */
551 
552 static void
553 compute_always_reached (struct loop *loop, basic_block *body,
554 			bitmap may_exit, bitmap always_reached)
555 {
556   unsigned i;
557 
558   for (i = 0; i < loop->num_nodes; i++)
559     {
560       if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
561 	bitmap_set_bit (always_reached, i);
562 
563       if (bitmap_bit_p (may_exit, i))
564 	return;
565     }
566 }
567 
568 /* Finds exits out of the LOOP with body BODY.  Marks blocks in that we may
569    exit the loop by cfg edge to HAS_EXIT and MAY_EXIT.  In MAY_EXIT
570    additionally mark blocks that may exit due to a call.  */
571 
572 static void
573 find_exits (struct loop *loop, basic_block *body,
574 	    bitmap may_exit, bitmap has_exit)
575 {
576   unsigned i;
577   edge_iterator ei;
578   edge e;
579   struct loop *outermost_exit = loop, *aexit;
580   bool has_call = false;
581   rtx_insn *insn;
582 
583   for (i = 0; i < loop->num_nodes; i++)
584     {
585       if (body[i]->loop_father == loop)
586 	{
587 	  FOR_BB_INSNS (body[i], insn)
588 	    {
589 	      if (CALL_P (insn)
590 		  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
591 		      || !RTL_CONST_OR_PURE_CALL_P (insn)))
592 		{
593 		  has_call = true;
594 		  bitmap_set_bit (may_exit, i);
595 		  break;
596 		}
597 	    }
598 
599 	  FOR_EACH_EDGE (e, ei, body[i]->succs)
600 	    {
601 	      if (! flow_bb_inside_loop_p (loop, e->dest))
602 		{
603 		  bitmap_set_bit (may_exit, i);
604 		  bitmap_set_bit (has_exit, i);
605 		  outermost_exit = find_common_loop (outermost_exit,
606 						     e->dest->loop_father);
607 		}
608 	      /* If we enter a subloop that might never terminate treat
609 	         it like a possible exit.  */
610 	      if (flow_loop_nested_p (loop, e->dest->loop_father))
611 		bitmap_set_bit (may_exit, i);
612 	    }
613 	  continue;
614 	}
615 
616       /* Use the data stored for the subloop to decide whether we may exit
617 	 through it.  It is sufficient to do this for header of the loop,
618 	 as other basic blocks inside it must be dominated by it.  */
619       if (body[i]->loop_father->header != body[i])
620 	continue;
621 
622       if (LOOP_DATA (body[i]->loop_father)->has_call)
623 	{
624 	  has_call = true;
625 	  bitmap_set_bit (may_exit, i);
626 	}
627       aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
628       if (aexit != loop)
629 	{
630 	  bitmap_set_bit (may_exit, i);
631 	  bitmap_set_bit (has_exit, i);
632 
633 	  if (flow_loop_nested_p (aexit, outermost_exit))
634 	    outermost_exit = aexit;
635 	}
636     }
637 
638   if (loop->aux == NULL)
639     {
640       loop->aux = xcalloc (1, sizeof (struct loop_data));
641       bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
642       bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
643     }
644   LOOP_DATA (loop)->outermost_exit = outermost_exit;
645   LOOP_DATA (loop)->has_call = has_call;
646 }
647 
648 /* Check whether we may assign a value to X from a register.  */
649 
650 static bool
651 may_assign_reg_p (rtx x)
652 {
653   return (GET_MODE (x) != VOIDmode
654 	  && GET_MODE (x) != BLKmode
655 	  && can_copy_p (GET_MODE (x))
656 	  && (!REG_P (x)
657 	      || !HARD_REGISTER_P (x)
658 	      || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
659 }
660 
661 /* Finds definitions that may correspond to invariants in LOOP with body
662    BODY.  */
663 
664 static void
665 find_defs (struct loop *loop)
666 {
667   if (dump_file)
668     {
669       fprintf (dump_file,
670 	       "*****starting processing of loop %d ******\n",
671 	       loop->num);
672     }
673 
674   df_remove_problem (df_chain);
675   df_process_deferred_rescans ();
676   df_chain_add_problem (DF_UD_CHAIN);
677   df_live_add_problem ();
678   df_live_set_all_dirty ();
679   df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
680   df_analyze_loop (loop);
681   check_invariant_table_size ();
682 
683   if (dump_file)
684     {
685       df_dump_region (dump_file);
686       fprintf (dump_file,
687 	       "*****ending processing of loop %d ******\n",
688 	       loop->num);
689     }
690 }
691 
692 /* Creates a new invariant for definition DEF in INSN, depending on invariants
693    in DEPENDS_ON.  ALWAYS_EXECUTED is true if the insn is always executed,
694    unless the program ends due to a function call.  The newly created invariant
695    is returned.  */
696 
697 static struct invariant *
698 create_new_invariant (struct def *def, rtx_insn *insn, bitmap depends_on,
699 		      bool always_executed)
700 {
701   struct invariant *inv = XNEW (struct invariant);
702   rtx set = single_set (insn);
703   bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
704 
705   inv->def = def;
706   inv->always_executed = always_executed;
707   inv->depends_on = depends_on;
708 
709   /* If the set is simple, usually by moving it we move the whole store out of
710      the loop.  Otherwise we save only cost of the computation.  */
711   if (def)
712     {
713       inv->cost = set_rtx_cost (set, speed);
714       /* ??? Try to determine cheapness of address computation.  Unfortunately
715          the address cost is only a relative measure, we can't really compare
716 	 it with any absolute number, but only with other address costs.
717 	 But here we don't have any other addresses, so compare with a magic
718 	 number anyway.  It has to be large enough to not regress PR33928
719 	 (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
720 	 enough to not regress 410.bwaves either (by still moving reg+reg
721 	 invariants).
722 	 See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html .  */
723       if (SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set))))
724 	inv->cheap_address = address_cost (SET_SRC (set), word_mode,
725 					   ADDR_SPACE_GENERIC, speed) < 3;
726       else
727 	inv->cheap_address = false;
728     }
729   else
730     {
731       inv->cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)),
732 				speed);
733       inv->cheap_address = false;
734     }
735 
736   inv->move = false;
737   inv->reg = NULL_RTX;
738   inv->orig_regno = -1;
739   inv->stamp = 0;
740   inv->insn = insn;
741 
742   inv->invno = invariants.length ();
743   inv->eqto = ~0u;
744 
745   /* Itself.  */
746   inv->eqno = 1;
747 
748   if (def)
749     def->invno = inv->invno;
750   invariants.safe_push (inv);
751 
752   if (dump_file)
753     {
754       fprintf (dump_file,
755 	       "Set in insn %d is invariant (%d), cost %d, depends on ",
756 	       INSN_UID (insn), inv->invno, inv->cost);
757       dump_bitmap (dump_file, inv->depends_on);
758     }
759 
760   return inv;
761 }
762 
763 /* Return a canonical version of X for the address, from the point of view,
764    that all multiplications are represented as MULT instead of the multiply
765    by a power of 2 being represented as ASHIFT.
766 
767    Callers should prepare a copy of X because this function may modify it
768    in place.  */
769 
770 static void
771 canonicalize_address_mult (rtx x)
772 {
773   subrtx_var_iterator::array_type array;
774   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
775     {
776       rtx sub = *iter;
777 
778       if (GET_CODE (sub) == ASHIFT
779 	  && CONST_INT_P (XEXP (sub, 1))
780 	  && INTVAL (XEXP (sub, 1)) < GET_MODE_BITSIZE (GET_MODE (sub))
781 	  && INTVAL (XEXP (sub, 1)) >= 0)
782 	{
783 	  HOST_WIDE_INT shift = INTVAL (XEXP (sub, 1));
784 	  PUT_CODE (sub, MULT);
785 	  XEXP (sub, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
786 					GET_MODE (sub));
787 	  iter.skip_subrtxes ();
788 	}
789     }
790 }
791 
792 /* Maximum number of sub expressions in address.  We set it to
793    a small integer since it's unlikely to have a complicated
794    address expression.  */
795 
796 #define MAX_CANON_ADDR_PARTS (5)
797 
798 /* Collect sub expressions in address X with PLUS as the seperator.
799    Sub expressions are stored in vector ADDR_PARTS.  */
800 
801 static void
802 collect_address_parts (rtx x, vec<rtx> *addr_parts)
803 {
804   subrtx_var_iterator::array_type array;
805   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
806     {
807       rtx sub = *iter;
808 
809       if (GET_CODE (sub) != PLUS)
810 	{
811 	  addr_parts->safe_push (sub);
812 	  iter.skip_subrtxes ();
813 	}
814     }
815 }
816 
817 /* Compare function for sorting sub expressions X and Y based on
818    precedence defined for communitive operations.  */
819 
820 static int
821 compare_address_parts (const void *x, const void *y)
822 {
823   const rtx *rx = (const rtx *)x;
824   const rtx *ry = (const rtx *)y;
825   int px = commutative_operand_precedence (*rx);
826   int py = commutative_operand_precedence (*ry);
827 
828   return (py - px);
829 }
830 
831 /* Return a canonical version address for X by following steps:
832      1) Rewrite ASHIFT into MULT recursively.
833      2) Divide address into sub expressions with PLUS as the
834 	separator.
835      3) Sort sub expressions according to precedence defined
836 	for communative operations.
837      4) Simplify CONST_INT_P sub expressions.
838      5) Create new canonicalized address and return.
839    Callers should prepare a copy of X because this function may
840    modify it in place.  */
841 
842 static rtx
843 canonicalize_address (rtx x)
844 {
845   rtx res;
846   unsigned int i, j;
847   machine_mode mode = GET_MODE (x);
848   auto_vec<rtx, MAX_CANON_ADDR_PARTS> addr_parts;
849 
850   /* Rewrite ASHIFT into MULT.  */
851   canonicalize_address_mult (x);
852   /* Divide address into sub expressions.  */
853   collect_address_parts (x, &addr_parts);
854   /* Unlikely to have very complicated address.  */
855   if (addr_parts.length () < 2
856       || addr_parts.length () > MAX_CANON_ADDR_PARTS)
857     return x;
858 
859   /* Sort sub expressions according to canonicalization precedence.  */
860   addr_parts.qsort (compare_address_parts);
861 
862   /* Simplify all constant int summary if possible.  */
863   for (i = 0; i < addr_parts.length (); i++)
864     if (CONST_INT_P (addr_parts[i]))
865       break;
866 
867   for (j = i + 1; j < addr_parts.length (); j++)
868     {
869       gcc_assert (CONST_INT_P (addr_parts[j]));
870       addr_parts[i] = simplify_gen_binary (PLUS, mode,
871 					   addr_parts[i],
872 					   addr_parts[j]);
873     }
874 
875   /* Chain PLUS operators to the left for !CONST_INT_P sub expressions.  */
876   res = addr_parts[0];
877   for (j = 1; j < i; j++)
878     res = simplify_gen_binary (PLUS, mode, res, addr_parts[j]);
879 
880   /* Pickup the last CONST_INT_P sub expression.  */
881   if (i < addr_parts.length ())
882     res = simplify_gen_binary (PLUS, mode, res, addr_parts[i]);
883 
884   return res;
885 }
886 
887 /* Given invariant DEF and its address USE, check if the corresponding
888    invariant expr can be propagated into the use or not.  */
889 
890 static bool
891 inv_can_prop_to_addr_use (struct def *def, df_ref use)
892 {
893   struct invariant *inv;
894   rtx *pos = DF_REF_REAL_LOC (use), def_set, use_set;
895   rtx_insn *use_insn = DF_REF_INSN (use);
896   rtx_insn *def_insn;
897   bool ok;
898 
899   inv = invariants[def->invno];
900   /* No need to check if address expression is expensive.  */
901   if (!inv->cheap_address)
902     return false;
903 
904   def_insn = inv->insn;
905   def_set = single_set (def_insn);
906   if (!def_set)
907     return false;
908 
909   validate_unshare_change (use_insn, pos, SET_SRC (def_set), true);
910   ok = verify_changes (0);
911   /* Try harder with canonicalization in address expression.  */
912   if (!ok && (use_set = single_set (use_insn)) != NULL_RTX)
913     {
914       rtx src, dest, mem = NULL_RTX;
915 
916       src = SET_SRC (use_set);
917       dest = SET_DEST (use_set);
918       if (MEM_P (src))
919 	mem = src;
920       else if (MEM_P (dest))
921 	mem = dest;
922 
923       if (mem != NULL_RTX
924 	  && !memory_address_addr_space_p (GET_MODE (mem),
925 					   XEXP (mem, 0),
926 					   MEM_ADDR_SPACE (mem)))
927 	{
928 	  rtx addr = canonicalize_address (copy_rtx (XEXP (mem, 0)));
929 	  if (memory_address_addr_space_p (GET_MODE (mem),
930 					   addr, MEM_ADDR_SPACE (mem)))
931 	    ok = true;
932 	}
933     }
934   cancel_changes (0);
935   return ok;
936 }
937 
938 /* Record USE at DEF.  */
939 
940 static void
941 record_use (struct def *def, df_ref use)
942 {
943   struct use *u = XNEW (struct use);
944 
945   u->pos = DF_REF_REAL_LOC (use);
946   u->insn = DF_REF_INSN (use);
947   u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
948 		   || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
949   u->next = def->uses;
950   def->uses = u;
951   def->n_uses++;
952   if (u->addr_use_p)
953     {
954       /* Initialize propagation information if this is the first addr
955 	 use of the inv def.  */
956       if (def->n_addr_uses == 0)
957 	def->can_prop_to_addr_uses = true;
958 
959       def->n_addr_uses++;
960       if (def->can_prop_to_addr_uses && !inv_can_prop_to_addr_use (def, use))
961 	def->can_prop_to_addr_uses = false;
962     }
963 }
964 
965 /* Finds the invariants USE depends on and store them to the DEPENDS_ON
966    bitmap.  Returns true if all dependencies of USE are known to be
967    loop invariants, false otherwise.  */
968 
969 static bool
970 check_dependency (basic_block bb, df_ref use, bitmap depends_on)
971 {
972   df_ref def;
973   basic_block def_bb;
974   struct df_link *defs;
975   struct def *def_data;
976   struct invariant *inv;
977 
978   if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
979     return false;
980 
981   defs = DF_REF_CHAIN (use);
982   if (!defs)
983     {
984       unsigned int regno = DF_REF_REGNO (use);
985 
986       /* If this is the use of an uninitialized argument register that is
987 	 likely to be spilled, do not move it lest this might extend its
988 	 lifetime and cause reload to die.  This can occur for a call to
989 	 a function taking complex number arguments and moving the insns
990 	 preparing the arguments without moving the call itself wouldn't
991 	 gain much in practice.  */
992       if ((DF_REF_FLAGS (use) & DF_HARD_REG_LIVE)
993 	  && FUNCTION_ARG_REGNO_P (regno)
994 	  && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
995 	return false;
996 
997       return true;
998     }
999 
1000   if (defs->next)
1001     return false;
1002 
1003   def = defs->ref;
1004   check_invariant_table_size ();
1005   inv = invariant_table[DF_REF_ID (def)];
1006   if (!inv)
1007     return false;
1008 
1009   def_data = inv->def;
1010   gcc_assert (def_data != NULL);
1011 
1012   def_bb = DF_REF_BB (def);
1013   /* Note that in case bb == def_bb, we know that the definition
1014      dominates insn, because def has invariant_table[DF_REF_ID(def)]
1015      defined and we process the insns in the basic block bb
1016      sequentially.  */
1017   if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1018     return false;
1019 
1020   bitmap_set_bit (depends_on, def_data->invno);
1021   return true;
1022 }
1023 
1024 
1025 /* Finds the invariants INSN depends on and store them to the DEPENDS_ON
1026    bitmap.  Returns true if all dependencies of INSN are known to be
1027    loop invariants, false otherwise.  */
1028 
1029 static bool
1030 check_dependencies (rtx_insn *insn, bitmap depends_on)
1031 {
1032   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1033   df_ref use;
1034   basic_block bb = BLOCK_FOR_INSN (insn);
1035 
1036   FOR_EACH_INSN_INFO_USE (use, insn_info)
1037     if (!check_dependency (bb, use, depends_on))
1038       return false;
1039   FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1040     if (!check_dependency (bb, use, depends_on))
1041       return false;
1042 
1043   return true;
1044 }
1045 
1046 /* Pre-check candidate DEST to skip the one which can not make a valid insn
1047    during move_invariant_reg.  SIMPLE is to skip HARD_REGISTER.  */
1048 static bool
1049 pre_check_invariant_p (bool simple, rtx dest)
1050 {
1051   if (simple && REG_P (dest) && DF_REG_DEF_COUNT (REGNO (dest)) > 1)
1052     {
1053       df_ref use;
1054       unsigned int i = REGNO (dest);
1055       struct df_insn_info *insn_info;
1056       df_ref def_rec;
1057 
1058       for (use = DF_REG_USE_CHAIN (i); use; use = DF_REF_NEXT_REG (use))
1059 	{
1060 	  rtx_insn *ref = DF_REF_INSN (use);
1061 	  insn_info = DF_INSN_INFO_GET (ref);
1062 
1063 	  FOR_EACH_INSN_INFO_DEF (def_rec, insn_info)
1064 	    if (DF_REF_REGNO (def_rec) == i)
1065 	      {
1066 		/* Multi definitions at this stage, most likely are due to
1067 		   instruction constraints, which requires both read and write
1068 		   on the same register.  Since move_invariant_reg is not
1069 		   powerful enough to handle such cases, just ignore the INV
1070 		   and leave the chance to others.  */
1071 		return false;
1072 	      }
1073 	}
1074     }
1075   return true;
1076 }
1077 
1078 /* Finds invariant in INSN.  ALWAYS_REACHED is true if the insn is always
1079    executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1080    unless the program ends due to a function call.  */
1081 
1082 static void
1083 find_invariant_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1084 {
1085   df_ref ref;
1086   struct def *def;
1087   bitmap depends_on;
1088   rtx set, dest;
1089   bool simple = true;
1090   struct invariant *inv;
1091 
1092   /* We can't move a CC0 setter without the user.  */
1093   if (HAVE_cc0 && sets_cc0_p (insn))
1094     return;
1095 
1096   set = single_set (insn);
1097   if (!set)
1098     return;
1099   dest = SET_DEST (set);
1100 
1101   if (!REG_P (dest)
1102       || HARD_REGISTER_P (dest))
1103     simple = false;
1104 
1105   if (!may_assign_reg_p (dest)
1106       || !pre_check_invariant_p (simple, dest)
1107       || !check_maybe_invariant (SET_SRC (set)))
1108     return;
1109 
1110   /* If the insn can throw exception, we cannot move it at all without changing
1111      cfg.  */
1112   if (can_throw_internal (insn))
1113     return;
1114 
1115   /* We cannot make trapping insn executed, unless it was executed before.  */
1116   if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
1117     return;
1118 
1119   depends_on = BITMAP_ALLOC (NULL);
1120   if (!check_dependencies (insn, depends_on))
1121     {
1122       BITMAP_FREE (depends_on);
1123       return;
1124     }
1125 
1126   if (simple)
1127     def = XCNEW (struct def);
1128   else
1129     def = NULL;
1130 
1131   inv = create_new_invariant (def, insn, depends_on, always_executed);
1132 
1133   if (simple)
1134     {
1135       ref = df_find_def (insn, dest);
1136       check_invariant_table_size ();
1137       invariant_table[DF_REF_ID (ref)] = inv;
1138     }
1139 }
1140 
1141 /* Record registers used in INSN that have a unique invariant definition.  */
1142 
1143 static void
1144 record_uses (rtx_insn *insn)
1145 {
1146   struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1147   df_ref use;
1148   struct invariant *inv;
1149 
1150   FOR_EACH_INSN_INFO_USE (use, insn_info)
1151     {
1152       inv = invariant_for_use (use);
1153       if (inv)
1154 	record_use (inv->def, use);
1155     }
1156   FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1157     {
1158       inv = invariant_for_use (use);
1159       if (inv)
1160 	record_use (inv->def, use);
1161     }
1162 }
1163 
1164 /* Finds invariants in INSN.  ALWAYS_REACHED is true if the insn is always
1165    executed.  ALWAYS_EXECUTED is true if the insn is always executed,
1166    unless the program ends due to a function call.  */
1167 
1168 static void
1169 find_invariants_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1170 {
1171   find_invariant_insn (insn, always_reached, always_executed);
1172   record_uses (insn);
1173 }
1174 
1175 /* Finds invariants in basic block BB.  ALWAYS_REACHED is true if the
1176    basic block is always executed.  ALWAYS_EXECUTED is true if the basic
1177    block is always executed, unless the program ends due to a function
1178    call.  */
1179 
1180 static void
1181 find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
1182 {
1183   rtx_insn *insn;
1184 
1185   FOR_BB_INSNS (bb, insn)
1186     {
1187       if (!NONDEBUG_INSN_P (insn))
1188 	continue;
1189 
1190       find_invariants_insn (insn, always_reached, always_executed);
1191 
1192       if (always_reached
1193 	  && CALL_P (insn)
1194 	  && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1195 	      || ! RTL_CONST_OR_PURE_CALL_P (insn)))
1196 	always_reached = false;
1197     }
1198 }
1199 
1200 /* Finds invariants in LOOP with body BODY.  ALWAYS_REACHED is the bitmap of
1201    basic blocks in BODY that are always executed.  ALWAYS_EXECUTED is the
1202    bitmap of basic blocks in BODY that are always executed unless the program
1203    ends due to a function call.  */
1204 
1205 static void
1206 find_invariants_body (struct loop *loop, basic_block *body,
1207 		      bitmap always_reached, bitmap always_executed)
1208 {
1209   unsigned i;
1210 
1211   for (i = 0; i < loop->num_nodes; i++)
1212     find_invariants_bb (body[i],
1213 			bitmap_bit_p (always_reached, i),
1214 			bitmap_bit_p (always_executed, i));
1215 }
1216 
1217 /* Finds invariants in LOOP.  */
1218 
1219 static void
1220 find_invariants (struct loop *loop)
1221 {
1222   bitmap may_exit = BITMAP_ALLOC (NULL);
1223   bitmap always_reached = BITMAP_ALLOC (NULL);
1224   bitmap has_exit = BITMAP_ALLOC (NULL);
1225   bitmap always_executed = BITMAP_ALLOC (NULL);
1226   basic_block *body = get_loop_body_in_dom_order (loop);
1227 
1228   find_exits (loop, body, may_exit, has_exit);
1229   compute_always_reached (loop, body, may_exit, always_reached);
1230   compute_always_reached (loop, body, has_exit, always_executed);
1231 
1232   find_defs (loop);
1233   find_invariants_body (loop, body, always_reached, always_executed);
1234   merge_identical_invariants ();
1235 
1236   BITMAP_FREE (always_reached);
1237   BITMAP_FREE (always_executed);
1238   BITMAP_FREE (may_exit);
1239   BITMAP_FREE (has_exit);
1240   free (body);
1241 }
1242 
1243 /* Frees a list of uses USE.  */
1244 
1245 static void
1246 free_use_list (struct use *use)
1247 {
1248   struct use *next;
1249 
1250   for (; use; use = next)
1251     {
1252       next = use->next;
1253       free (use);
1254     }
1255 }
1256 
1257 /* Return pressure class and number of hard registers (through *NREGS)
1258    for destination of INSN. */
1259 static enum reg_class
1260 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
1261 {
1262   rtx reg;
1263   enum reg_class pressure_class;
1264   rtx set = single_set (insn);
1265 
1266   /* Considered invariant insns have only one set.  */
1267   gcc_assert (set != NULL_RTX);
1268   reg = SET_DEST (set);
1269   if (GET_CODE (reg) == SUBREG)
1270     reg = SUBREG_REG (reg);
1271   if (MEM_P (reg))
1272     {
1273       *nregs = 0;
1274       pressure_class = NO_REGS;
1275     }
1276   else
1277     {
1278       if (! REG_P (reg))
1279 	reg = NULL_RTX;
1280       if (reg == NULL_RTX)
1281 	pressure_class = GENERAL_REGS;
1282       else
1283 	{
1284 	  pressure_class = reg_allocno_class (REGNO (reg));
1285 	  pressure_class = ira_pressure_class_translate[pressure_class];
1286 	}
1287       *nregs
1288 	= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
1289     }
1290   return pressure_class;
1291 }
1292 
1293 /* Calculates cost and number of registers needed for moving invariant INV
1294    out of the loop and stores them to *COST and *REGS_NEEDED.  *CL will be
1295    the REG_CLASS of INV.  Return
1296      -1: if INV is invalid.
1297       0: if INV and its depends_on have same reg_class
1298       1: if INV and its depends_on have different reg_classes.  */
1299 
1300 static int
1301 get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed,
1302 	      enum reg_class *cl)
1303 {
1304   int i, acomp_cost;
1305   unsigned aregs_needed[N_REG_CLASSES];
1306   unsigned depno;
1307   struct invariant *dep;
1308   bitmap_iterator bi;
1309   int ret = 1;
1310 
1311   /* Find the representative of the class of the equivalent invariants.  */
1312   inv = invariants[inv->eqto];
1313 
1314   *comp_cost = 0;
1315   if (! flag_ira_loop_pressure)
1316     regs_needed[0] = 0;
1317   else
1318     {
1319       for (i = 0; i < ira_pressure_classes_num; i++)
1320 	regs_needed[ira_pressure_classes[i]] = 0;
1321     }
1322 
1323   if (inv->move
1324       || inv->stamp == actual_stamp)
1325     return -1;
1326   inv->stamp = actual_stamp;
1327 
1328   if (! flag_ira_loop_pressure)
1329     regs_needed[0]++;
1330   else
1331     {
1332       int nregs;
1333       enum reg_class pressure_class;
1334 
1335       pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1336       regs_needed[pressure_class] += nregs;
1337       *cl = pressure_class;
1338       ret = 0;
1339     }
1340 
1341   if (!inv->cheap_address
1342       || inv->def->n_uses == 0
1343       || inv->def->n_addr_uses < inv->def->n_uses
1344       /* Count cost if the inv can't be propagated into address uses.  */
1345       || !inv->def->can_prop_to_addr_uses)
1346     (*comp_cost) += inv->cost * inv->eqno;
1347 
1348 #ifdef STACK_REGS
1349   {
1350     /* Hoisting constant pool constants into stack regs may cost more than
1351        just single register.  On x87, the balance is affected both by the
1352        small number of FP registers, and by its register stack organization,
1353        that forces us to add compensation code in and around the loop to
1354        shuffle the operands to the top of stack before use, and pop them
1355        from the stack after the loop finishes.
1356 
1357        To model this effect, we increase the number of registers needed for
1358        stack registers by two: one register push, and one register pop.
1359        This usually has the effect that FP constant loads from the constant
1360        pool are not moved out of the loop.
1361 
1362        Note that this also means that dependent invariants can not be moved.
1363        However, the primary purpose of this pass is to move loop invariant
1364        address arithmetic out of loops, and address arithmetic that depends
1365        on floating point constants is unlikely to ever occur.  */
1366     rtx set = single_set (inv->insn);
1367     if (set
1368 	&& IS_STACK_MODE (GET_MODE (SET_SRC (set)))
1369 	&& constant_pool_constant_p (SET_SRC (set)))
1370       {
1371 	if (flag_ira_loop_pressure)
1372 	  regs_needed[ira_stack_reg_pressure_class] += 2;
1373 	else
1374 	  regs_needed[0] += 2;
1375       }
1376   }
1377 #endif
1378 
1379   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
1380     {
1381       bool check_p;
1382       enum reg_class dep_cl = ALL_REGS;
1383       int dep_ret;
1384 
1385       dep = invariants[depno];
1386 
1387       /* If DEP is moved out of the loop, it is not a depends_on any more.  */
1388       if (dep->move)
1389 	continue;
1390 
1391       dep_ret = get_inv_cost (dep, &acomp_cost, aregs_needed, &dep_cl);
1392 
1393       if (! flag_ira_loop_pressure)
1394 	check_p = aregs_needed[0] != 0;
1395       else
1396 	{
1397 	  for (i = 0; i < ira_pressure_classes_num; i++)
1398 	    if (aregs_needed[ira_pressure_classes[i]] != 0)
1399 	      break;
1400 	  check_p = i < ira_pressure_classes_num;
1401 
1402 	  if ((dep_ret == 1) || ((dep_ret == 0) && (*cl != dep_cl)))
1403 	    {
1404 	      *cl = ALL_REGS;
1405 	      ret = 1;
1406 	    }
1407 	}
1408       if (check_p
1409 	  /* We need to check always_executed, since if the original value of
1410 	     the invariant may be preserved, we may need to keep it in a
1411 	     separate register.  TODO check whether the register has an
1412 	     use outside of the loop.  */
1413 	  && dep->always_executed
1414 	  && !dep->def->uses->next)
1415 	{
1416 	  /* If this is a single use, after moving the dependency we will not
1417 	     need a new register.  */
1418 	  if (! flag_ira_loop_pressure)
1419 	    aregs_needed[0]--;
1420 	  else
1421 	    {
1422 	      int nregs;
1423 	      enum reg_class pressure_class;
1424 
1425 	      pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1426 	      aregs_needed[pressure_class] -= nregs;
1427 	    }
1428 	}
1429 
1430       if (! flag_ira_loop_pressure)
1431 	regs_needed[0] += aregs_needed[0];
1432       else
1433 	{
1434 	  for (i = 0; i < ira_pressure_classes_num; i++)
1435 	    regs_needed[ira_pressure_classes[i]]
1436 	      += aregs_needed[ira_pressure_classes[i]];
1437 	}
1438       (*comp_cost) += acomp_cost;
1439     }
1440   return ret;
1441 }
1442 
1443 /* Calculates gain for eliminating invariant INV.  REGS_USED is the number
1444    of registers used in the loop, NEW_REGS is the number of new variables
1445    already added due to the invariant motion.  The number of registers needed
1446    for it is stored in *REGS_NEEDED.  SPEED and CALL_P are flags passed
1447    through to estimate_reg_pressure_cost. */
1448 
1449 static int
1450 gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
1451 		    unsigned *new_regs, unsigned regs_used,
1452 		    bool speed, bool call_p)
1453 {
1454   int comp_cost, size_cost;
1455   /* Workaround -Wmaybe-uninitialized false positive during
1456      profiledbootstrap by initializing it.  */
1457   enum reg_class cl = NO_REGS;
1458   int ret;
1459 
1460   actual_stamp++;
1461 
1462   ret = get_inv_cost (inv, &comp_cost, regs_needed, &cl);
1463 
1464   if (! flag_ira_loop_pressure)
1465     {
1466       size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
1467 					       regs_used, speed, call_p)
1468 		   - estimate_reg_pressure_cost (new_regs[0],
1469 						 regs_used, speed, call_p));
1470     }
1471   else if (ret < 0)
1472     return -1;
1473   else if ((ret == 0) && (cl == NO_REGS))
1474     /* Hoist it anyway since it does not impact register pressure.  */
1475     return 1;
1476   else
1477     {
1478       int i;
1479       enum reg_class pressure_class;
1480 
1481       for (i = 0; i < ira_pressure_classes_num; i++)
1482 	{
1483 	  pressure_class = ira_pressure_classes[i];
1484 
1485 	  if (!reg_classes_intersect_p (pressure_class, cl))
1486 	    continue;
1487 
1488 	  if ((int) new_regs[pressure_class]
1489 	      + (int) regs_needed[pressure_class]
1490 	      + LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1491 	      + IRA_LOOP_RESERVED_REGS
1492 	      > ira_class_hard_regs_num[pressure_class])
1493 	    break;
1494 	}
1495       if (i < ira_pressure_classes_num)
1496 	/* There will be register pressure excess and we want not to
1497 	   make this loop invariant motion.  All loop invariants with
1498 	   non-positive gains will be rejected in function
1499 	   find_invariants_to_move.  Therefore we return the negative
1500 	   number here.
1501 
1502 	   One could think that this rejects also expensive loop
1503 	   invariant motions and this will hurt code performance.
1504 	   However numerous experiments with different heuristics
1505 	   taking invariant cost into account did not confirm this
1506 	   assumption.  There are possible explanations for this
1507 	   result:
1508            o probably all expensive invariants were already moved out
1509              of the loop by PRE and gimple invariant motion pass.
1510            o expensive invariant execution will be hidden by insn
1511              scheduling or OOO processor hardware because usually such
1512              invariants have a lot of freedom to be executed
1513              out-of-order.
1514 	   Another reason for ignoring invariant cost vs spilling cost
1515 	   heuristics is also in difficulties to evaluate accurately
1516 	   spill cost at this stage.  */
1517 	return -1;
1518       else
1519 	size_cost = 0;
1520     }
1521 
1522   return comp_cost - size_cost;
1523 }
1524 
1525 /* Finds invariant with best gain for moving.  Returns the gain, stores
1526    the invariant in *BEST and number of registers needed for it to
1527    *REGS_NEEDED.  REGS_USED is the number of registers used in the loop.
1528    NEW_REGS is the number of new variables already added due to invariant
1529    motion.  */
1530 
1531 static int
1532 best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
1533 			 unsigned *new_regs, unsigned regs_used,
1534 			 bool speed, bool call_p)
1535 {
1536   struct invariant *inv;
1537   int i, gain = 0, again;
1538   unsigned aregs_needed[N_REG_CLASSES], invno;
1539 
1540   FOR_EACH_VEC_ELT (invariants, invno, inv)
1541     {
1542       if (inv->move)
1543 	continue;
1544 
1545       /* Only consider the "representatives" of equivalent invariants.  */
1546       if (inv->eqto != inv->invno)
1547 	continue;
1548 
1549       again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
1550       				  speed, call_p);
1551       if (again > gain)
1552 	{
1553 	  gain = again;
1554 	  *best = inv;
1555 	  if (! flag_ira_loop_pressure)
1556 	    regs_needed[0] = aregs_needed[0];
1557 	  else
1558 	    {
1559 	      for (i = 0; i < ira_pressure_classes_num; i++)
1560 		regs_needed[ira_pressure_classes[i]]
1561 		  = aregs_needed[ira_pressure_classes[i]];
1562 	    }
1563 	}
1564     }
1565 
1566   return gain;
1567 }
1568 
1569 /* Marks invariant INVNO and all its dependencies for moving.  */
1570 
1571 static void
1572 set_move_mark (unsigned invno, int gain)
1573 {
1574   struct invariant *inv = invariants[invno];
1575   bitmap_iterator bi;
1576 
1577   /* Find the representative of the class of the equivalent invariants.  */
1578   inv = invariants[inv->eqto];
1579 
1580   if (inv->move)
1581     return;
1582   inv->move = true;
1583 
1584   if (dump_file)
1585     {
1586       if (gain >= 0)
1587 	fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
1588 		 invno, gain);
1589       else
1590 	fprintf (dump_file, "Decided to move dependent invariant %d\n",
1591 		 invno);
1592     };
1593 
1594   EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
1595     {
1596       set_move_mark (invno, -1);
1597     }
1598 }
1599 
1600 /* Determines which invariants to move.  */
1601 
1602 static void
1603 find_invariants_to_move (bool speed, bool call_p)
1604 {
1605   int gain;
1606   unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
1607   struct invariant *inv = NULL;
1608 
1609   if (!invariants.length ())
1610     return;
1611 
1612   if (flag_ira_loop_pressure)
1613     /* REGS_USED is actually never used when the flag is on.  */
1614     regs_used = 0;
1615   else
1616     /* We do not really do a good job in estimating number of
1617        registers used; we put some initial bound here to stand for
1618        induction variables etc.  that we do not detect.  */
1619     {
1620       unsigned int n_regs = DF_REG_SIZE (df);
1621 
1622       regs_used = 2;
1623 
1624       for (i = 0; i < n_regs; i++)
1625 	{
1626 	  if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
1627 	    {
1628 	      /* This is a value that is used but not changed inside loop.  */
1629 	      regs_used++;
1630 	    }
1631 	}
1632     }
1633 
1634   if (! flag_ira_loop_pressure)
1635     new_regs[0] = regs_needed[0] = 0;
1636   else
1637     {
1638       for (i = 0; (int) i < ira_pressure_classes_num; i++)
1639 	new_regs[ira_pressure_classes[i]] = 0;
1640     }
1641   while ((gain = best_gain_for_invariant (&inv, regs_needed,
1642 					  new_regs, regs_used,
1643 					  speed, call_p)) > 0)
1644     {
1645       set_move_mark (inv->invno, gain);
1646       if (! flag_ira_loop_pressure)
1647 	new_regs[0] += regs_needed[0];
1648       else
1649 	{
1650 	  for (i = 0; (int) i < ira_pressure_classes_num; i++)
1651 	    new_regs[ira_pressure_classes[i]]
1652 	      += regs_needed[ira_pressure_classes[i]];
1653 	}
1654     }
1655 }
1656 
1657 /* Replace the uses, reached by the definition of invariant INV, by REG.
1658 
1659    IN_GROUP is nonzero if this is part of a group of changes that must be
1660    performed as a group.  In that case, the changes will be stored.  The
1661    function `apply_change_group' will validate and apply the changes.  */
1662 
1663 static int
1664 replace_uses (struct invariant *inv, rtx reg, bool in_group)
1665 {
1666   /* Replace the uses we know to be dominated.  It saves work for copy
1667      propagation, and also it is necessary so that dependent invariants
1668      are computed right.  */
1669   if (inv->def)
1670     {
1671       struct use *use;
1672       for (use = inv->def->uses; use; use = use->next)
1673 	validate_change (use->insn, use->pos, reg, true);
1674 
1675       /* If we aren't part of a larger group, apply the changes now.  */
1676       if (!in_group)
1677 	return apply_change_group ();
1678     }
1679 
1680   return 1;
1681 }
1682 
1683 /* Whether invariant INV setting REG can be moved out of LOOP, at the end of
1684    the block preceding its header.  */
1685 
1686 static bool
1687 can_move_invariant_reg (struct loop *loop, struct invariant *inv, rtx reg)
1688 {
1689   df_ref def, use;
1690   unsigned int dest_regno, defs_in_loop_count = 0;
1691   rtx_insn *insn = inv->insn;
1692   basic_block bb = BLOCK_FOR_INSN (inv->insn);
1693 
1694   /* We ignore hard register and memory access for cost and complexity reasons.
1695      Hard register are few at this stage and expensive to consider as they
1696      require building a separate data flow.  Memory access would require using
1697      df_simulate_* and can_move_insns_across functions and is more complex.  */
1698   if (!REG_P (reg) || HARD_REGISTER_P (reg))
1699     return false;
1700 
1701   /* Check whether the set is always executed.  We could omit this condition if
1702      we know that the register is unused outside of the loop, but it does not
1703      seem worth finding out.  */
1704   if (!inv->always_executed)
1705     return false;
1706 
1707   /* Check that all uses that would be dominated by def are already dominated
1708      by it.  */
1709   dest_regno = REGNO (reg);
1710   for (use = DF_REG_USE_CHAIN (dest_regno); use; use = DF_REF_NEXT_REG (use))
1711     {
1712       rtx_insn *use_insn;
1713       basic_block use_bb;
1714 
1715       use_insn = DF_REF_INSN (use);
1716       use_bb = BLOCK_FOR_INSN (use_insn);
1717 
1718       /* Ignore instruction considered for moving.  */
1719       if (use_insn == insn)
1720 	continue;
1721 
1722       /* Don't consider uses outside loop.  */
1723       if (!flow_bb_inside_loop_p (loop, use_bb))
1724 	continue;
1725 
1726       /* Don't move if a use is not dominated by def in insn.  */
1727       if (use_bb == bb && DF_INSN_LUID (insn) >= DF_INSN_LUID (use_insn))
1728 	return false;
1729       if (!dominated_by_p (CDI_DOMINATORS, use_bb, bb))
1730 	return false;
1731     }
1732 
1733   /* Check for other defs.  Any other def in the loop might reach a use
1734      currently reached by the def in insn.  */
1735   for (def = DF_REG_DEF_CHAIN (dest_regno); def; def = DF_REF_NEXT_REG (def))
1736     {
1737       basic_block def_bb = DF_REF_BB (def);
1738 
1739       /* Defs in exit block cannot reach a use they weren't already.  */
1740       if (single_succ_p (def_bb))
1741 	{
1742 	  basic_block def_bb_succ;
1743 
1744 	  def_bb_succ = single_succ (def_bb);
1745 	  if (!flow_bb_inside_loop_p (loop, def_bb_succ))
1746 	    continue;
1747 	}
1748 
1749       if (++defs_in_loop_count > 1)
1750 	return false;
1751     }
1752 
1753   return true;
1754 }
1755 
1756 /* Move invariant INVNO out of the LOOP.  Returns true if this succeeds, false
1757    otherwise.  */
1758 
1759 static bool
1760 move_invariant_reg (struct loop *loop, unsigned invno)
1761 {
1762   struct invariant *inv = invariants[invno];
1763   struct invariant *repr = invariants[inv->eqto];
1764   unsigned i;
1765   basic_block preheader = loop_preheader_edge (loop)->src;
1766   rtx reg, set, dest, note;
1767   bitmap_iterator bi;
1768   int regno = -1;
1769 
1770   if (inv->reg)
1771     return true;
1772   if (!repr->move)
1773     return false;
1774 
1775   /* If this is a representative of the class of equivalent invariants,
1776      really move the invariant.  Otherwise just replace its use with
1777      the register used for the representative.  */
1778   if (inv == repr)
1779     {
1780       if (inv->depends_on)
1781 	{
1782 	  EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
1783 	    {
1784 	      if (!move_invariant_reg (loop, i))
1785 		goto fail;
1786 	    }
1787 	}
1788 
1789       /* If possible, just move the set out of the loop.  Otherwise, we
1790 	 need to create a temporary register.  */
1791       set = single_set (inv->insn);
1792       reg = dest = SET_DEST (set);
1793       if (GET_CODE (reg) == SUBREG)
1794 	reg = SUBREG_REG (reg);
1795       if (REG_P (reg))
1796 	regno = REGNO (reg);
1797 
1798       if (!can_move_invariant_reg (loop, inv, dest))
1799 	{
1800 	  reg = gen_reg_rtx_and_attrs (dest);
1801 
1802 	  /* Try replacing the destination by a new pseudoregister.  */
1803 	  validate_change (inv->insn, &SET_DEST (set), reg, true);
1804 
1805 	  /* As well as all the dominated uses.  */
1806 	  replace_uses (inv, reg, true);
1807 
1808 	  /* And validate all the changes.  */
1809 	  if (!apply_change_group ())
1810 	    goto fail;
1811 
1812 	  emit_insn_after (gen_move_insn (dest, reg), inv->insn);
1813 	}
1814       else if (dump_file)
1815 	fprintf (dump_file, "Invariant %d moved without introducing a new "
1816 			    "temporary register\n", invno);
1817       reorder_insns (inv->insn, inv->insn, BB_END (preheader));
1818       df_recompute_luids (preheader);
1819 
1820       /* If there is a REG_EQUAL note on the insn we just moved, and the
1821 	 insn is in a basic block that is not always executed or the note
1822 	 contains something for which we don't know the invariant status,
1823 	 the note may no longer be valid after we move the insn.  Note that
1824 	 uses in REG_EQUAL notes are taken into account in the computation
1825 	 of invariants, so it is safe to retain the note even if it contains
1826 	 register references for which we know the invariant status.  */
1827       if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
1828 	  && (!inv->always_executed
1829 	      || !check_maybe_invariant (XEXP (note, 0))))
1830 	remove_note (inv->insn, note);
1831     }
1832   else
1833     {
1834       if (!move_invariant_reg (loop, repr->invno))
1835 	goto fail;
1836       reg = repr->reg;
1837       regno = repr->orig_regno;
1838       if (!replace_uses (inv, reg, false))
1839 	goto fail;
1840       set = single_set (inv->insn);
1841       emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
1842       delete_insn (inv->insn);
1843     }
1844 
1845   inv->reg = reg;
1846   inv->orig_regno = regno;
1847 
1848   return true;
1849 
1850 fail:
1851   /* If we failed, clear move flag, so that we do not try to move inv
1852      again.  */
1853   if (dump_file)
1854     fprintf (dump_file, "Failed to move invariant %d\n", invno);
1855   inv->move = false;
1856   inv->reg = NULL_RTX;
1857   inv->orig_regno = -1;
1858 
1859   return false;
1860 }
1861 
1862 /* Move selected invariant out of the LOOP.  Newly created regs are marked
1863    in TEMPORARY_REGS.  */
1864 
1865 static void
1866 move_invariants (struct loop *loop)
1867 {
1868   struct invariant *inv;
1869   unsigned i;
1870 
1871   FOR_EACH_VEC_ELT (invariants, i, inv)
1872     move_invariant_reg (loop, i);
1873   if (flag_ira_loop_pressure && resize_reg_info ())
1874     {
1875       FOR_EACH_VEC_ELT (invariants, i, inv)
1876 	if (inv->reg != NULL_RTX)
1877 	  {
1878 	    if (inv->orig_regno >= 0)
1879 	      setup_reg_classes (REGNO (inv->reg),
1880 				 reg_preferred_class (inv->orig_regno),
1881 				 reg_alternate_class (inv->orig_regno),
1882 				 reg_allocno_class (inv->orig_regno));
1883 	    else
1884 	      setup_reg_classes (REGNO (inv->reg),
1885 				 GENERAL_REGS, NO_REGS, GENERAL_REGS);
1886 	  }
1887     }
1888 }
1889 
1890 /* Initializes invariant motion data.  */
1891 
1892 static void
1893 init_inv_motion_data (void)
1894 {
1895   actual_stamp = 1;
1896 
1897   invariants.create (100);
1898 }
1899 
1900 /* Frees the data allocated by invariant motion.  */
1901 
1902 static void
1903 free_inv_motion_data (void)
1904 {
1905   unsigned i;
1906   struct def *def;
1907   struct invariant *inv;
1908 
1909   check_invariant_table_size ();
1910   for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
1911     {
1912       inv = invariant_table[i];
1913       if (inv)
1914 	{
1915 	  def = inv->def;
1916 	  gcc_assert (def != NULL);
1917 
1918 	  free_use_list (def->uses);
1919 	  free (def);
1920 	  invariant_table[i] = NULL;
1921 	}
1922     }
1923 
1924   FOR_EACH_VEC_ELT (invariants, i, inv)
1925     {
1926       BITMAP_FREE (inv->depends_on);
1927       free (inv);
1928     }
1929   invariants.release ();
1930 }
1931 
1932 /* Move the invariants out of the LOOP.  */
1933 
1934 static void
1935 move_single_loop_invariants (struct loop *loop)
1936 {
1937   init_inv_motion_data ();
1938 
1939   find_invariants (loop);
1940   find_invariants_to_move (optimize_loop_for_speed_p (loop),
1941 			   LOOP_DATA (loop)->has_call);
1942   move_invariants (loop);
1943 
1944   free_inv_motion_data ();
1945 }
1946 
1947 /* Releases the auxiliary data for LOOP.  */
1948 
1949 static void
1950 free_loop_data (struct loop *loop)
1951 {
1952   struct loop_data *data = LOOP_DATA (loop);
1953   if (!data)
1954     return;
1955 
1956   bitmap_clear (&LOOP_DATA (loop)->regs_ref);
1957   bitmap_clear (&LOOP_DATA (loop)->regs_live);
1958   free (data);
1959   loop->aux = NULL;
1960 }
1961 
1962 
1963 
1964 /* Registers currently living.  */
1965 static bitmap_head curr_regs_live;
1966 
1967 /* Current reg pressure for each pressure class.  */
1968 static int curr_reg_pressure[N_REG_CLASSES];
1969 
1970 /* Record all regs that are set in any one insn.  Communication from
1971    mark_reg_{store,clobber} and global_conflicts.  Asm can refer to
1972    all hard-registers.  */
1973 static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
1974 		     ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
1975 /* Number of regs stored in the previous array.  */
1976 static int n_regs_set;
1977 
1978 /* Return pressure class and number of needed hard registers (through
1979    *NREGS) of register REGNO.  */
1980 static enum reg_class
1981 get_regno_pressure_class (int regno, int *nregs)
1982 {
1983   if (regno >= FIRST_PSEUDO_REGISTER)
1984     {
1985       enum reg_class pressure_class;
1986 
1987       pressure_class = reg_allocno_class (regno);
1988       pressure_class = ira_pressure_class_translate[pressure_class];
1989       *nregs
1990 	= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
1991       return pressure_class;
1992     }
1993   else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
1994 	   && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
1995     {
1996       *nregs = 1;
1997       return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
1998     }
1999   else
2000     {
2001       *nregs = 0;
2002       return NO_REGS;
2003     }
2004 }
2005 
2006 /* Increase (if INCR_P) or decrease current register pressure for
2007    register REGNO.  */
2008 static void
2009 change_pressure (int regno, bool incr_p)
2010 {
2011   int nregs;
2012   enum reg_class pressure_class;
2013 
2014   pressure_class = get_regno_pressure_class (regno, &nregs);
2015   if (! incr_p)
2016     curr_reg_pressure[pressure_class] -= nregs;
2017   else
2018     {
2019       curr_reg_pressure[pressure_class] += nregs;
2020       if (LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2021 	  < curr_reg_pressure[pressure_class])
2022 	LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2023 	  = curr_reg_pressure[pressure_class];
2024     }
2025 }
2026 
2027 /* Mark REGNO birth.  */
2028 static void
2029 mark_regno_live (int regno)
2030 {
2031   struct loop *loop;
2032 
2033   for (loop = curr_loop;
2034        loop != current_loops->tree_root;
2035        loop = loop_outer (loop))
2036     bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
2037   if (!bitmap_set_bit (&curr_regs_live, regno))
2038     return;
2039   change_pressure (regno, true);
2040 }
2041 
2042 /* Mark REGNO death.  */
2043 static void
2044 mark_regno_death (int regno)
2045 {
2046   if (! bitmap_clear_bit (&curr_regs_live, regno))
2047     return;
2048   change_pressure (regno, false);
2049 }
2050 
2051 /* Mark setting register REG.  */
2052 static void
2053 mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
2054 		void *data ATTRIBUTE_UNUSED)
2055 {
2056   if (GET_CODE (reg) == SUBREG)
2057     reg = SUBREG_REG (reg);
2058 
2059   if (! REG_P (reg))
2060     return;
2061 
2062   regs_set[n_regs_set++] = reg;
2063 
2064   unsigned int end_regno = END_REGNO (reg);
2065   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2066     mark_regno_live (regno);
2067 }
2068 
2069 /* Mark clobbering register REG.  */
2070 static void
2071 mark_reg_clobber (rtx reg, const_rtx setter, void *data)
2072 {
2073   if (GET_CODE (setter) == CLOBBER)
2074     mark_reg_store (reg, setter, data);
2075 }
2076 
2077 /* Mark register REG death.  */
2078 static void
2079 mark_reg_death (rtx reg)
2080 {
2081   unsigned int end_regno = END_REGNO (reg);
2082   for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2083     mark_regno_death (regno);
2084 }
2085 
2086 /* Mark occurrence of registers in X for the current loop.  */
2087 static void
2088 mark_ref_regs (rtx x)
2089 {
2090   RTX_CODE code;
2091   int i;
2092   const char *fmt;
2093 
2094   if (!x)
2095     return;
2096 
2097   code = GET_CODE (x);
2098   if (code == REG)
2099     {
2100       struct loop *loop;
2101 
2102       for (loop = curr_loop;
2103 	   loop != current_loops->tree_root;
2104 	   loop = loop_outer (loop))
2105 	bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
2106       return;
2107     }
2108 
2109   fmt = GET_RTX_FORMAT (code);
2110   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2111     if (fmt[i] == 'e')
2112       mark_ref_regs (XEXP (x, i));
2113     else if (fmt[i] == 'E')
2114       {
2115 	int j;
2116 
2117 	for (j = 0; j < XVECLEN (x, i); j++)
2118 	  mark_ref_regs (XVECEXP (x, i, j));
2119       }
2120 }
2121 
2122 /* Calculate register pressure in the loops.  */
2123 static void
2124 calculate_loop_reg_pressure (void)
2125 {
2126   int i;
2127   unsigned int j;
2128   bitmap_iterator bi;
2129   basic_block bb;
2130   rtx_insn *insn;
2131   rtx link;
2132   struct loop *loop, *parent;
2133 
2134   FOR_EACH_LOOP (loop, 0)
2135     if (loop->aux == NULL)
2136       {
2137 	loop->aux = xcalloc (1, sizeof (struct loop_data));
2138 	bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
2139 	bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
2140       }
2141   ira_setup_eliminable_regset ();
2142   bitmap_initialize (&curr_regs_live, &reg_obstack);
2143   FOR_EACH_BB_FN (bb, cfun)
2144     {
2145       curr_loop = bb->loop_father;
2146       if (curr_loop == current_loops->tree_root)
2147 	continue;
2148 
2149       for (loop = curr_loop;
2150 	   loop != current_loops->tree_root;
2151 	   loop = loop_outer (loop))
2152 	bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
2153 
2154       bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
2155       for (i = 0; i < ira_pressure_classes_num; i++)
2156 	curr_reg_pressure[ira_pressure_classes[i]] = 0;
2157       EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
2158 	change_pressure (j, true);
2159 
2160       FOR_BB_INSNS (bb, insn)
2161 	{
2162 	  if (! NONDEBUG_INSN_P (insn))
2163 	    continue;
2164 
2165 	  mark_ref_regs (PATTERN (insn));
2166 	  n_regs_set = 0;
2167 	  note_stores (PATTERN (insn), mark_reg_clobber, NULL);
2168 
2169 	  /* Mark any registers dead after INSN as dead now.  */
2170 
2171 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2172 	    if (REG_NOTE_KIND (link) == REG_DEAD)
2173 	      mark_reg_death (XEXP (link, 0));
2174 
2175 	  /* Mark any registers set in INSN as live,
2176 	     and mark them as conflicting with all other live regs.
2177 	     Clobbers are processed again, so they conflict with
2178 	     the registers that are set.  */
2179 
2180 	  note_stores (PATTERN (insn), mark_reg_store, NULL);
2181 
2182 	  if (AUTO_INC_DEC)
2183 	    for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2184 	      if (REG_NOTE_KIND (link) == REG_INC)
2185 		mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
2186 
2187 	  while (n_regs_set-- > 0)
2188 	    {
2189 	      rtx note = find_regno_note (insn, REG_UNUSED,
2190 					  REGNO (regs_set[n_regs_set]));
2191 	      if (! note)
2192 		continue;
2193 
2194 	      mark_reg_death (XEXP (note, 0));
2195 	    }
2196 	}
2197     }
2198   bitmap_clear (&curr_regs_live);
2199   if (flag_ira_region == IRA_REGION_MIXED
2200       || flag_ira_region == IRA_REGION_ALL)
2201     FOR_EACH_LOOP (loop, 0)
2202       {
2203 	EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2204 	  if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
2205 	    {
2206 	      enum reg_class pressure_class;
2207 	      int nregs;
2208 
2209 	      pressure_class = get_regno_pressure_class (j, &nregs);
2210 	      LOOP_DATA (loop)->max_reg_pressure[pressure_class] -= nregs;
2211 	    }
2212       }
2213   if (dump_file == NULL)
2214     return;
2215   FOR_EACH_LOOP (loop, 0)
2216     {
2217       parent = loop_outer (loop);
2218       fprintf (dump_file, "\n  Loop %d (parent %d, header bb%d, depth %d)\n",
2219 	       loop->num, (parent == NULL ? -1 : parent->num),
2220 	       loop->header->index, loop_depth (loop));
2221       fprintf (dump_file, "\n    ref. regnos:");
2222       EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
2223 	fprintf (dump_file, " %d", j);
2224       fprintf (dump_file, "\n    live regnos:");
2225       EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2226 	fprintf (dump_file, " %d", j);
2227       fprintf (dump_file, "\n    Pressure:");
2228       for (i = 0; (int) i < ira_pressure_classes_num; i++)
2229 	{
2230 	  enum reg_class pressure_class;
2231 
2232 	  pressure_class = ira_pressure_classes[i];
2233 	  if (LOOP_DATA (loop)->max_reg_pressure[pressure_class] == 0)
2234 	    continue;
2235 	  fprintf (dump_file, " %s=%d", reg_class_names[pressure_class],
2236 		   LOOP_DATA (loop)->max_reg_pressure[pressure_class]);
2237 	}
2238       fprintf (dump_file, "\n");
2239     }
2240 }
2241 
2242 
2243 
2244 /* Move the invariants out of the loops.  */
2245 
2246 void
2247 move_loop_invariants (void)
2248 {
2249   struct loop *loop;
2250 
2251   if (flag_ira_loop_pressure)
2252     {
2253       df_analyze ();
2254       regstat_init_n_sets_and_refs ();
2255       ira_set_pseudo_classes (true, dump_file);
2256       calculate_loop_reg_pressure ();
2257       regstat_free_n_sets_and_refs ();
2258     }
2259   df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
2260   /* Process the loops, innermost first.  */
2261   FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2262     {
2263       curr_loop = loop;
2264       /* move_single_loop_invariants for very large loops
2265 	 is time consuming and might need a lot of memory.  */
2266       if (loop->num_nodes <= (unsigned) LOOP_INVARIANT_MAX_BBS_IN_LOOP)
2267 	move_single_loop_invariants (loop);
2268     }
2269 
2270   FOR_EACH_LOOP (loop, 0)
2271     {
2272       free_loop_data (loop);
2273     }
2274 
2275   if (flag_ira_loop_pressure)
2276     /* There is no sense to keep this info because it was most
2277        probably outdated by subsequent passes.  */
2278     free_reg_info ();
2279   free (invariant_table);
2280   invariant_table = NULL;
2281   invariant_table_size = 0;
2282 
2283   checking_verify_flow_info ();
2284 }
2285