1 /* Generic partial redundancy elimination with lazy code motion support. 2 Copyright (C) 1998-2016 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* These routines are meant to be used by various optimization 21 passes which can be modeled as lazy code motion problems. 22 Including, but not limited to: 23 24 * Traditional partial redundancy elimination. 25 26 * Placement of caller/caller register save/restores. 27 28 * Load/store motion. 29 30 * Copy motion. 31 32 * Conversion of flat register files to a stacked register 33 model. 34 35 * Dead load/store elimination. 36 37 These routines accept as input: 38 39 * Basic block information (number of blocks, lists of 40 predecessors and successors). Note the granularity 41 does not need to be basic block, they could be statements 42 or functions. 43 44 * Bitmaps of local properties (computed, transparent and 45 anticipatable expressions). 46 47 The output of these routines is bitmap of redundant computations 48 and a bitmap of optimal placement points. */ 49 50 51 #include "config.h" 52 #include "system.h" 53 #include "coretypes.h" 54 #include "backend.h" 55 #include "cfganal.h" 56 #include "lcm.h" 57 58 /* Edge based LCM routines. */ 59 static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *); 60 static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *, 61 sbitmap *, sbitmap *, sbitmap *); 62 static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *, 63 sbitmap *, sbitmap *); 64 static void compute_insert_delete (struct edge_list *edge_list, sbitmap *, 65 sbitmap *, sbitmap *, sbitmap *, sbitmap *); 66 67 /* Edge based LCM routines on a reverse flowgraph. */ 68 static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *, 69 sbitmap*, sbitmap *, sbitmap *); 70 static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *, 71 sbitmap *, sbitmap *); 72 static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *, 73 sbitmap *, sbitmap *, sbitmap *, 74 sbitmap *); 75 76 /* Edge based lcm routines. */ 77 78 /* Compute expression anticipatability at entrance and exit of each block. 79 This is done based on the flow graph, and not on the pred-succ lists. 80 Other than that, its pretty much identical to compute_antinout. */ 81 82 static void 83 compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin, 84 sbitmap *antout) 85 { 86 basic_block bb; 87 edge e; 88 basic_block *worklist, *qin, *qout, *qend; 89 unsigned int qlen; 90 edge_iterator ei; 91 92 /* Allocate a worklist array/queue. Entries are only added to the 93 list if they were not already on the list. So the size is 94 bounded by the number of basic blocks. */ 95 qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 96 97 /* We want a maximal solution, so make an optimistic initialization of 98 ANTIN. */ 99 bitmap_vector_ones (antin, last_basic_block_for_fn (cfun)); 100 101 /* Put every block on the worklist; this is necessary because of the 102 optimistic initialization of ANTIN above. */ 103 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); 104 int postorder_num = post_order_compute (postorder, false, false); 105 for (int i = 0; i < postorder_num; ++i) 106 { 107 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]); 108 *qin++ = bb; 109 bb->aux = bb; 110 } 111 free (postorder); 112 113 qin = worklist; 114 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS]; 115 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; 116 117 /* Mark blocks which are predecessors of the exit block so that we 118 can easily identify them below. */ 119 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 120 e->src->aux = EXIT_BLOCK_PTR_FOR_FN (cfun); 121 122 /* Iterate until the worklist is empty. */ 123 while (qlen) 124 { 125 /* Take the first entry off the worklist. */ 126 bb = *qout++; 127 qlen--; 128 129 if (qout >= qend) 130 qout = worklist; 131 132 if (bb->aux == EXIT_BLOCK_PTR_FOR_FN (cfun)) 133 /* Do not clear the aux field for blocks which are predecessors of 134 the EXIT block. That way we never add then to the worklist 135 again. */ 136 bitmap_clear (antout[bb->index]); 137 else 138 { 139 /* Clear the aux field of this block so that it can be added to 140 the worklist again if necessary. */ 141 bb->aux = NULL; 142 bitmap_intersection_of_succs (antout[bb->index], antin, bb); 143 } 144 145 if (bitmap_or_and (antin[bb->index], antloc[bb->index], 146 transp[bb->index], antout[bb->index])) 147 /* If the in state of this block changed, then we need 148 to add the predecessors of this block to the worklist 149 if they are not already on the worklist. */ 150 FOR_EACH_EDGE (e, ei, bb->preds) 151 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)) 152 { 153 *qin++ = e->src; 154 e->src->aux = e; 155 qlen++; 156 if (qin >= qend) 157 qin = worklist; 158 } 159 } 160 161 clear_aux_for_edges (); 162 clear_aux_for_blocks (); 163 free (worklist); 164 } 165 166 /* Compute the earliest vector for edge based lcm. */ 167 168 static void 169 compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin, 170 sbitmap *antout, sbitmap *avout, sbitmap *kill, 171 sbitmap *earliest) 172 { 173 sbitmap difference, temp_bitmap; 174 int x, num_edges; 175 basic_block pred, succ; 176 177 num_edges = NUM_EDGES (edge_list); 178 179 difference = sbitmap_alloc (n_exprs); 180 temp_bitmap = sbitmap_alloc (n_exprs); 181 182 for (x = 0; x < num_edges; x++) 183 { 184 pred = INDEX_EDGE_PRED_BB (edge_list, x); 185 succ = INDEX_EDGE_SUCC_BB (edge_list, x); 186 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 187 bitmap_copy (earliest[x], antin[succ->index]); 188 else 189 { 190 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun)) 191 bitmap_clear (earliest[x]); 192 else 193 { 194 bitmap_and_compl (difference, antin[succ->index], 195 avout[pred->index]); 196 bitmap_not (temp_bitmap, antout[pred->index]); 197 bitmap_and_or (earliest[x], difference, 198 kill[pred->index], temp_bitmap); 199 } 200 } 201 } 202 203 sbitmap_free (temp_bitmap); 204 sbitmap_free (difference); 205 } 206 207 /* later(p,s) is dependent on the calculation of laterin(p). 208 laterin(p) is dependent on the calculation of later(p2,p). 209 210 laterin(ENTRY) is defined as all 0's 211 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY) 212 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)). 213 214 If we progress in this manner, starting with all basic blocks 215 in the work list, anytime we change later(bb), we need to add 216 succs(bb) to the worklist if they are not already on the worklist. 217 218 Boundary conditions: 219 220 We prime the worklist all the normal basic blocks. The ENTRY block can 221 never be added to the worklist since it is never the successor of any 222 block. We explicitly prevent the EXIT block from being added to the 223 worklist. 224 225 We optimistically initialize LATER. That is the only time this routine 226 will compute LATER for an edge out of the entry block since the entry 227 block is never on the worklist. Thus, LATERIN is neither used nor 228 computed for the ENTRY block. 229 230 Since the EXIT block is never added to the worklist, we will neither 231 use nor compute LATERIN for the exit block. Edges which reach the 232 EXIT block are handled in the normal fashion inside the loop. However, 233 the insertion/deletion computation needs LATERIN(EXIT), so we have 234 to compute it. */ 235 236 static void 237 compute_laterin (struct edge_list *edge_list, sbitmap *earliest, 238 sbitmap *antloc, sbitmap *later, sbitmap *laterin) 239 { 240 int num_edges, i; 241 edge e; 242 basic_block *worklist, *qin, *qout, *qend, bb; 243 unsigned int qlen; 244 edge_iterator ei; 245 246 num_edges = NUM_EDGES (edge_list); 247 248 /* Allocate a worklist array/queue. Entries are only added to the 249 list if they were not already on the list. So the size is 250 bounded by the number of basic blocks. */ 251 qin = qout = worklist 252 = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun)); 253 254 /* Initialize a mapping from each edge to its index. */ 255 for (i = 0; i < num_edges; i++) 256 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; 257 258 /* We want a maximal solution, so initially consider LATER true for 259 all edges. This allows propagation through a loop since the incoming 260 loop edge will have LATER set, so if all the other incoming edges 261 to the loop are set, then LATERIN will be set for the head of the 262 loop. 263 264 If the optimistic setting of LATER on that edge was incorrect (for 265 example the expression is ANTLOC in a block within the loop) then 266 this algorithm will detect it when we process the block at the head 267 of the optimistic edge. That will requeue the affected blocks. */ 268 bitmap_vector_ones (later, num_edges); 269 270 /* Note that even though we want an optimistic setting of LATER, we 271 do not want to be overly optimistic. Consider an outgoing edge from 272 the entry block. That edge should always have a LATER value the 273 same as EARLIEST for that edge. */ 274 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) 275 bitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]); 276 277 /* Add all the blocks to the worklist. This prevents an early exit from 278 the loop given our optimistic initialization of LATER above. */ 279 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); 280 int postorder_num = inverted_post_order_compute (postorder); 281 for (int i = 0; i < postorder_num; ++i) 282 { 283 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]); 284 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) 285 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 286 continue; 287 *qin++ = bb; 288 bb->aux = bb; 289 } 290 free (postorder); 291 292 /* Note that we do not use the last allocated element for our queue, 293 as EXIT_BLOCK is never inserted into it. */ 294 qin = worklist; 295 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS]; 296 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; 297 298 /* Iterate until the worklist is empty. */ 299 while (qlen) 300 { 301 /* Take the first entry off the worklist. */ 302 bb = *qout++; 303 bb->aux = NULL; 304 qlen--; 305 if (qout >= qend) 306 qout = worklist; 307 308 /* Compute the intersection of LATERIN for each incoming edge to B. */ 309 bitmap_ones (laterin[bb->index]); 310 FOR_EACH_EDGE (e, ei, bb->preds) 311 bitmap_and (laterin[bb->index], laterin[bb->index], 312 later[(size_t)e->aux]); 313 314 /* Calculate LATER for all outgoing edges. */ 315 FOR_EACH_EDGE (e, ei, bb->succs) 316 if (bitmap_ior_and_compl (later[(size_t) e->aux], 317 earliest[(size_t) e->aux], 318 laterin[bb->index], 319 antloc[bb->index]) 320 /* If LATER for an outgoing edge was changed, then we need 321 to add the target of the outgoing edge to the worklist. */ 322 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest->aux == 0) 323 { 324 *qin++ = e->dest; 325 e->dest->aux = e; 326 qlen++; 327 if (qin >= qend) 328 qin = worklist; 329 } 330 } 331 332 /* Computation of insertion and deletion points requires computing LATERIN 333 for the EXIT block. We allocated an extra entry in the LATERIN array 334 for just this purpose. */ 335 bitmap_ones (laterin[last_basic_block_for_fn (cfun)]); 336 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 337 bitmap_and (laterin[last_basic_block_for_fn (cfun)], 338 laterin[last_basic_block_for_fn (cfun)], 339 later[(size_t) e->aux]); 340 341 clear_aux_for_edges (); 342 free (worklist); 343 } 344 345 /* Compute the insertion and deletion points for edge based LCM. */ 346 347 static void 348 compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc, 349 sbitmap *later, sbitmap *laterin, sbitmap *insert, 350 sbitmap *del) 351 { 352 int x; 353 basic_block bb; 354 355 FOR_EACH_BB_FN (bb, cfun) 356 bitmap_and_compl (del[bb->index], antloc[bb->index], 357 laterin[bb->index]); 358 359 for (x = 0; x < NUM_EDGES (edge_list); x++) 360 { 361 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x); 362 363 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun)) 364 bitmap_and_compl (insert[x], later[x], 365 laterin[last_basic_block_for_fn (cfun)]); 366 else 367 bitmap_and_compl (insert[x], later[x], laterin[b->index]); 368 } 369 } 370 371 /* Given local properties TRANSP, ANTLOC, AVLOC, KILL return the insert and 372 delete vectors for edge based LCM and return the AVIN, AVOUT bitmap. 373 map the insert vector to what edge an expression should be inserted on. */ 374 375 struct edge_list * 376 pre_edge_lcm_avs (int n_exprs, sbitmap *transp, 377 sbitmap *avloc, sbitmap *antloc, sbitmap *kill, 378 sbitmap *avin, sbitmap *avout, 379 sbitmap **insert, sbitmap **del) 380 { 381 sbitmap *antin, *antout, *earliest; 382 sbitmap *later, *laterin; 383 struct edge_list *edge_list; 384 int num_edges; 385 386 edge_list = create_edge_list (); 387 num_edges = NUM_EDGES (edge_list); 388 389 #ifdef LCM_DEBUG_INFO 390 if (dump_file) 391 { 392 fprintf (dump_file, "Edge List:\n"); 393 verify_edge_list (dump_file, edge_list); 394 print_edge_list (dump_file, edge_list); 395 dump_bitmap_vector (dump_file, "transp", "", transp, 396 last_basic_block_for_fn (cfun)); 397 dump_bitmap_vector (dump_file, "antloc", "", antloc, 398 last_basic_block_for_fn (cfun)); 399 dump_bitmap_vector (dump_file, "avloc", "", avloc, 400 last_basic_block_for_fn (cfun)); 401 dump_bitmap_vector (dump_file, "kill", "", kill, 402 last_basic_block_for_fn (cfun)); 403 } 404 #endif 405 406 /* Compute global availability. */ 407 compute_available (avloc, kill, avout, avin); 408 409 /* Compute global anticipatability. */ 410 antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 411 antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 412 compute_antinout_edge (antloc, transp, antin, antout); 413 414 #ifdef LCM_DEBUG_INFO 415 if (dump_file) 416 { 417 dump_bitmap_vector (dump_file, "antin", "", antin, 418 last_basic_block_for_fn (cfun)); 419 dump_bitmap_vector (dump_file, "antout", "", antout, 420 last_basic_block_for_fn (cfun)); 421 } 422 #endif 423 424 /* Compute earliestness. */ 425 earliest = sbitmap_vector_alloc (num_edges, n_exprs); 426 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest); 427 428 #ifdef LCM_DEBUG_INFO 429 if (dump_file) 430 dump_bitmap_vector (dump_file, "earliest", "", earliest, num_edges); 431 #endif 432 433 sbitmap_vector_free (antout); 434 sbitmap_vector_free (antin); 435 436 later = sbitmap_vector_alloc (num_edges, n_exprs); 437 438 /* Allocate an extra element for the exit block in the laterin vector. */ 439 laterin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1, 440 n_exprs); 441 compute_laterin (edge_list, earliest, antloc, later, laterin); 442 443 #ifdef LCM_DEBUG_INFO 444 if (dump_file) 445 { 446 dump_bitmap_vector (dump_file, "laterin", "", laterin, 447 last_basic_block_for_fn (cfun) + 1); 448 dump_bitmap_vector (dump_file, "later", "", later, num_edges); 449 } 450 #endif 451 452 sbitmap_vector_free (earliest); 453 454 *insert = sbitmap_vector_alloc (num_edges, n_exprs); 455 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 456 bitmap_vector_clear (*insert, num_edges); 457 bitmap_vector_clear (*del, last_basic_block_for_fn (cfun)); 458 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del); 459 460 sbitmap_vector_free (laterin); 461 sbitmap_vector_free (later); 462 463 #ifdef LCM_DEBUG_INFO 464 if (dump_file) 465 { 466 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges); 467 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del, 468 last_basic_block_for_fn (cfun)); 469 } 470 #endif 471 472 return edge_list; 473 } 474 475 /* Wrapper to allocate avin/avout and call pre_edge_lcm_avs. */ 476 477 struct edge_list * 478 pre_edge_lcm (int n_exprs, sbitmap *transp, 479 sbitmap *avloc, sbitmap *antloc, sbitmap *kill, 480 sbitmap **insert, sbitmap **del) 481 { 482 struct edge_list *edge_list; 483 sbitmap *avin, *avout; 484 485 avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 486 avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 487 488 edge_list = pre_edge_lcm_avs (n_exprs, transp, avloc, antloc, kill, 489 avin, avout, insert, del); 490 491 sbitmap_vector_free (avout); 492 sbitmap_vector_free (avin); 493 494 return edge_list; 495 } 496 497 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors. 498 Return the number of passes we performed to iterate to a solution. */ 499 500 void 501 compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout, 502 sbitmap *avin) 503 { 504 edge e; 505 basic_block *worklist, *qin, *qout, *qend, bb; 506 unsigned int qlen; 507 edge_iterator ei; 508 509 /* Allocate a worklist array/queue. Entries are only added to the 510 list if they were not already on the list. So the size is 511 bounded by the number of basic blocks. */ 512 qin = qout = worklist = 513 XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS); 514 515 /* We want a maximal solution. */ 516 bitmap_vector_ones (avout, last_basic_block_for_fn (cfun)); 517 518 /* Put every block on the worklist; this is necessary because of the 519 optimistic initialization of AVOUT above. Use inverted postorder 520 to make the dataflow problem require less iterations. */ 521 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); 522 int postorder_num = inverted_post_order_compute (postorder); 523 for (int i = 0; i < postorder_num; ++i) 524 { 525 bb = BASIC_BLOCK_FOR_FN (cfun, postorder[i]); 526 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) 527 || bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 528 continue; 529 *qin++ = bb; 530 bb->aux = bb; 531 } 532 free (postorder); 533 534 qin = worklist; 535 qend = &worklist[n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS]; 536 qlen = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; 537 538 /* Mark blocks which are successors of the entry block so that we 539 can easily identify them below. */ 540 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) 541 e->dest->aux = ENTRY_BLOCK_PTR_FOR_FN (cfun); 542 543 /* Iterate until the worklist is empty. */ 544 while (qlen) 545 { 546 /* Take the first entry off the worklist. */ 547 bb = *qout++; 548 qlen--; 549 550 if (qout >= qend) 551 qout = worklist; 552 553 /* If one of the predecessor blocks is the ENTRY block, then the 554 intersection of avouts is the null set. We can identify such blocks 555 by the special value in the AUX field in the block structure. */ 556 if (bb->aux == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 557 /* Do not clear the aux field for blocks which are successors of the 558 ENTRY block. That way we never add then to the worklist again. */ 559 bitmap_clear (avin[bb->index]); 560 else 561 { 562 /* Clear the aux field of this block so that it can be added to 563 the worklist again if necessary. */ 564 bb->aux = NULL; 565 bitmap_intersection_of_preds (avin[bb->index], avout, bb); 566 } 567 568 if (bitmap_ior_and_compl (avout[bb->index], avloc[bb->index], 569 avin[bb->index], kill[bb->index])) 570 /* If the out state of this block changed, then we need 571 to add the successors of this block to the worklist 572 if they are not already on the worklist. */ 573 FOR_EACH_EDGE (e, ei, bb->succs) 574 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) 575 { 576 *qin++ = e->dest; 577 e->dest->aux = e; 578 qlen++; 579 580 if (qin >= qend) 581 qin = worklist; 582 } 583 } 584 585 clear_aux_for_edges (); 586 clear_aux_for_blocks (); 587 free (worklist); 588 } 589 590 /* Compute the farthest vector for edge based lcm. */ 591 592 static void 593 compute_farthest (struct edge_list *edge_list, int n_exprs, 594 sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin, 595 sbitmap *kill, sbitmap *farthest) 596 { 597 sbitmap difference, temp_bitmap; 598 int x, num_edges; 599 basic_block pred, succ; 600 601 num_edges = NUM_EDGES (edge_list); 602 603 difference = sbitmap_alloc (n_exprs); 604 temp_bitmap = sbitmap_alloc (n_exprs); 605 606 for (x = 0; x < num_edges; x++) 607 { 608 pred = INDEX_EDGE_PRED_BB (edge_list, x); 609 succ = INDEX_EDGE_SUCC_BB (edge_list, x); 610 if (succ == EXIT_BLOCK_PTR_FOR_FN (cfun)) 611 bitmap_copy (farthest[x], st_avout[pred->index]); 612 else 613 { 614 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 615 bitmap_clear (farthest[x]); 616 else 617 { 618 bitmap_and_compl (difference, st_avout[pred->index], 619 st_antin[succ->index]); 620 bitmap_not (temp_bitmap, st_avin[succ->index]); 621 bitmap_and_or (farthest[x], difference, 622 kill[succ->index], temp_bitmap); 623 } 624 } 625 } 626 627 sbitmap_free (temp_bitmap); 628 sbitmap_free (difference); 629 } 630 631 /* Compute nearer and nearerout vectors for edge based lcm. 632 633 This is the mirror of compute_laterin, additional comments on the 634 implementation can be found before compute_laterin. */ 635 636 static void 637 compute_nearerout (struct edge_list *edge_list, sbitmap *farthest, 638 sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout) 639 { 640 int num_edges, i; 641 edge e; 642 basic_block *worklist, *tos, bb; 643 edge_iterator ei; 644 645 num_edges = NUM_EDGES (edge_list); 646 647 /* Allocate a worklist array/queue. Entries are only added to the 648 list if they were not already on the list. So the size is 649 bounded by the number of basic blocks. */ 650 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1); 651 652 /* Initialize NEARER for each edge and build a mapping from an edge to 653 its index. */ 654 for (i = 0; i < num_edges; i++) 655 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; 656 657 /* We want a maximal solution. */ 658 bitmap_vector_ones (nearer, num_edges); 659 660 /* Note that even though we want an optimistic setting of NEARER, we 661 do not want to be overly optimistic. Consider an incoming edge to 662 the exit block. That edge should always have a NEARER value the 663 same as FARTHEST for that edge. */ 664 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 665 bitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]); 666 667 /* Add all the blocks to the worklist. This prevents an early exit 668 from the loop given our optimistic initialization of NEARER. */ 669 FOR_EACH_BB_FN (bb, cfun) 670 { 671 *tos++ = bb; 672 bb->aux = bb; 673 } 674 675 /* Iterate until the worklist is empty. */ 676 while (tos != worklist) 677 { 678 /* Take the first entry off the worklist. */ 679 bb = *--tos; 680 bb->aux = NULL; 681 682 /* Compute the intersection of NEARER for each outgoing edge from B. */ 683 bitmap_ones (nearerout[bb->index]); 684 FOR_EACH_EDGE (e, ei, bb->succs) 685 bitmap_and (nearerout[bb->index], nearerout[bb->index], 686 nearer[(size_t) e->aux]); 687 688 /* Calculate NEARER for all incoming edges. */ 689 FOR_EACH_EDGE (e, ei, bb->preds) 690 if (bitmap_ior_and_compl (nearer[(size_t) e->aux], 691 farthest[(size_t) e->aux], 692 nearerout[e->dest->index], 693 st_avloc[e->dest->index]) 694 /* If NEARER for an incoming edge was changed, then we need 695 to add the source of the incoming edge to the worklist. */ 696 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && e->src->aux == 0) 697 { 698 *tos++ = e->src; 699 e->src->aux = e; 700 } 701 } 702 703 /* Computation of insertion and deletion points requires computing NEAREROUT 704 for the ENTRY block. We allocated an extra entry in the NEAREROUT array 705 for just this purpose. */ 706 bitmap_ones (nearerout[last_basic_block_for_fn (cfun)]); 707 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) 708 bitmap_and (nearerout[last_basic_block_for_fn (cfun)], 709 nearerout[last_basic_block_for_fn (cfun)], 710 nearer[(size_t) e->aux]); 711 712 clear_aux_for_edges (); 713 free (tos); 714 } 715 716 /* Compute the insertion and deletion points for edge based LCM. */ 717 718 static void 719 compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc, 720 sbitmap *nearer, sbitmap *nearerout, 721 sbitmap *insert, sbitmap *del) 722 { 723 int x; 724 basic_block bb; 725 726 FOR_EACH_BB_FN (bb, cfun) 727 bitmap_and_compl (del[bb->index], st_avloc[bb->index], 728 nearerout[bb->index]); 729 730 for (x = 0; x < NUM_EDGES (edge_list); x++) 731 { 732 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x); 733 if (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)) 734 bitmap_and_compl (insert[x], nearer[x], 735 nearerout[last_basic_block_for_fn (cfun)]); 736 else 737 bitmap_and_compl (insert[x], nearer[x], nearerout[b->index]); 738 } 739 } 740 741 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the 742 insert and delete vectors for edge based reverse LCM. Returns an 743 edgelist which is used to map the insert vector to what edge 744 an expression should be inserted on. */ 745 746 struct edge_list * 747 pre_edge_rev_lcm (int n_exprs, sbitmap *transp, 748 sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill, 749 sbitmap **insert, sbitmap **del) 750 { 751 sbitmap *st_antin, *st_antout; 752 sbitmap *st_avout, *st_avin, *farthest; 753 sbitmap *nearer, *nearerout; 754 struct edge_list *edge_list; 755 int num_edges; 756 757 edge_list = create_edge_list (); 758 num_edges = NUM_EDGES (edge_list); 759 760 st_antin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 761 st_antout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 762 bitmap_vector_clear (st_antin, last_basic_block_for_fn (cfun)); 763 bitmap_vector_clear (st_antout, last_basic_block_for_fn (cfun)); 764 compute_antinout_edge (st_antloc, transp, st_antin, st_antout); 765 766 /* Compute global anticipatability. */ 767 st_avout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 768 st_avin = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 769 compute_available (st_avloc, kill, st_avout, st_avin); 770 771 #ifdef LCM_DEBUG_INFO 772 if (dump_file) 773 { 774 fprintf (dump_file, "Edge List:\n"); 775 verify_edge_list (dump_file, edge_list); 776 print_edge_list (dump_file, edge_list); 777 dump_bitmap_vector (dump_file, "transp", "", transp, 778 last_basic_block_for_fn (cfun)); 779 dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc, 780 last_basic_block_for_fn (cfun)); 781 dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc, 782 last_basic_block_for_fn (cfun)); 783 dump_bitmap_vector (dump_file, "st_antin", "", st_antin, 784 last_basic_block_for_fn (cfun)); 785 dump_bitmap_vector (dump_file, "st_antout", "", st_antout, 786 last_basic_block_for_fn (cfun)); 787 dump_bitmap_vector (dump_file, "st_kill", "", kill, 788 last_basic_block_for_fn (cfun)); 789 } 790 #endif 791 792 #ifdef LCM_DEBUG_INFO 793 if (dump_file) 794 { 795 dump_bitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block_for_fn (cfun)); 796 dump_bitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block_for_fn (cfun)); 797 } 798 #endif 799 800 /* Compute farthestness. */ 801 farthest = sbitmap_vector_alloc (num_edges, n_exprs); 802 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin, 803 kill, farthest); 804 805 #ifdef LCM_DEBUG_INFO 806 if (dump_file) 807 dump_bitmap_vector (dump_file, "farthest", "", farthest, num_edges); 808 #endif 809 810 sbitmap_vector_free (st_antin); 811 sbitmap_vector_free (st_antout); 812 813 sbitmap_vector_free (st_avin); 814 sbitmap_vector_free (st_avout); 815 816 nearer = sbitmap_vector_alloc (num_edges, n_exprs); 817 818 /* Allocate an extra element for the entry block. */ 819 nearerout = sbitmap_vector_alloc (last_basic_block_for_fn (cfun) + 1, 820 n_exprs); 821 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout); 822 823 #ifdef LCM_DEBUG_INFO 824 if (dump_file) 825 { 826 dump_bitmap_vector (dump_file, "nearerout", "", nearerout, 827 last_basic_block_for_fn (cfun) + 1); 828 dump_bitmap_vector (dump_file, "nearer", "", nearer, num_edges); 829 } 830 #endif 831 832 sbitmap_vector_free (farthest); 833 834 *insert = sbitmap_vector_alloc (num_edges, n_exprs); 835 *del = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_exprs); 836 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout, 837 *insert, *del); 838 839 sbitmap_vector_free (nearerout); 840 sbitmap_vector_free (nearer); 841 842 #ifdef LCM_DEBUG_INFO 843 if (dump_file) 844 { 845 dump_bitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges); 846 dump_bitmap_vector (dump_file, "pre_delete_map", "", *del, 847 last_basic_block_for_fn (cfun)); 848 } 849 #endif 850 return edge_list; 851 } 852 853