1 /* Generic partial redundancy elimination with lazy code motion support. 2 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* These routines are meant to be used by various optimization 22 passes which can be modeled as lazy code motion problems. 23 Including, but not limited to: 24 25 * Traditional partial redundancy elimination. 26 27 * Placement of caller/caller register save/restores. 28 29 * Load/store motion. 30 31 * Copy motion. 32 33 * Conversion of flat register files to a stacked register 34 model. 35 36 * Dead load/store elimination. 37 38 These routines accept as input: 39 40 * Basic block information (number of blocks, lists of 41 predecessors and successors). Note the granularity 42 does not need to be basic block, they could be statements 43 or functions. 44 45 * Bitmaps of local properties (computed, transparent and 46 anticipatable expressions). 47 48 The output of these routines is bitmap of redundant computations 49 and a bitmap of optimal placement points. */ 50 51 52 #include "config.h" 53 #include "system.h" 54 #include "coretypes.h" 55 #include "tm.h" 56 #include "rtl.h" 57 #include "regs.h" 58 #include "hard-reg-set.h" 59 #include "flags.h" 60 #include "real.h" 61 #include "insn-config.h" 62 #include "recog.h" 63 #include "basic-block.h" 64 #include "output.h" 65 #include "tm_p.h" 66 #include "function.h" 67 68 /* We want target macros for the mode switching code to be able to refer 69 to instruction attribute values. */ 70 #include "insn-attr.h" 71 72 /* Edge based LCM routines. */ 73 static void compute_antinout_edge (sbitmap *, sbitmap *, sbitmap *, sbitmap *); 74 static void compute_earliest (struct edge_list *, int, sbitmap *, sbitmap *, 75 sbitmap *, sbitmap *, sbitmap *); 76 static void compute_laterin (struct edge_list *, sbitmap *, sbitmap *, 77 sbitmap *, sbitmap *); 78 static void compute_insert_delete (struct edge_list *edge_list, sbitmap *, 79 sbitmap *, sbitmap *, sbitmap *, sbitmap *); 80 81 /* Edge based LCM routines on a reverse flowgraph. */ 82 static void compute_farthest (struct edge_list *, int, sbitmap *, sbitmap *, 83 sbitmap*, sbitmap *, sbitmap *); 84 static void compute_nearerout (struct edge_list *, sbitmap *, sbitmap *, 85 sbitmap *, sbitmap *); 86 static void compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *, 87 sbitmap *, sbitmap *, sbitmap *, 88 sbitmap *); 89 90 /* Edge based lcm routines. */ 91 92 /* Compute expression anticipatability at entrance and exit of each block. 93 This is done based on the flow graph, and not on the pred-succ lists. 94 Other than that, its pretty much identical to compute_antinout. */ 95 96 static void 97 compute_antinout_edge (sbitmap *antloc, sbitmap *transp, sbitmap *antin, 98 sbitmap *antout) 99 { 100 basic_block bb; 101 edge e; 102 basic_block *worklist, *qin, *qout, *qend; 103 unsigned int qlen; 104 edge_iterator ei; 105 106 /* Allocate a worklist array/queue. Entries are only added to the 107 list if they were not already on the list. So the size is 108 bounded by the number of basic blocks. */ 109 qin = qout = worklist = XNEWVEC (basic_block, n_basic_blocks); 110 111 /* We want a maximal solution, so make an optimistic initialization of 112 ANTIN. */ 113 sbitmap_vector_ones (antin, last_basic_block); 114 115 /* Put every block on the worklist; this is necessary because of the 116 optimistic initialization of ANTIN above. */ 117 FOR_EACH_BB_REVERSE (bb) 118 { 119 *qin++ = bb; 120 bb->aux = bb; 121 } 122 123 qin = worklist; 124 qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS]; 125 qlen = n_basic_blocks - NUM_FIXED_BLOCKS; 126 127 /* Mark blocks which are predecessors of the exit block so that we 128 can easily identify them below. */ 129 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) 130 e->src->aux = EXIT_BLOCK_PTR; 131 132 /* Iterate until the worklist is empty. */ 133 while (qlen) 134 { 135 /* Take the first entry off the worklist. */ 136 bb = *qout++; 137 qlen--; 138 139 if (qout >= qend) 140 qout = worklist; 141 142 if (bb->aux == EXIT_BLOCK_PTR) 143 /* Do not clear the aux field for blocks which are predecessors of 144 the EXIT block. That way we never add then to the worklist 145 again. */ 146 sbitmap_zero (antout[bb->index]); 147 else 148 { 149 /* Clear the aux field of this block so that it can be added to 150 the worklist again if necessary. */ 151 bb->aux = NULL; 152 sbitmap_intersection_of_succs (antout[bb->index], antin, bb->index); 153 } 154 155 if (sbitmap_a_or_b_and_c_cg (antin[bb->index], antloc[bb->index], 156 transp[bb->index], antout[bb->index])) 157 /* If the in state of this block changed, then we need 158 to add the predecessors of this block to the worklist 159 if they are not already on the worklist. */ 160 FOR_EACH_EDGE (e, ei, bb->preds) 161 if (!e->src->aux && e->src != ENTRY_BLOCK_PTR) 162 { 163 *qin++ = e->src; 164 e->src->aux = e; 165 qlen++; 166 if (qin >= qend) 167 qin = worklist; 168 } 169 } 170 171 clear_aux_for_edges (); 172 clear_aux_for_blocks (); 173 free (worklist); 174 } 175 176 /* Compute the earliest vector for edge based lcm. */ 177 178 static void 179 compute_earliest (struct edge_list *edge_list, int n_exprs, sbitmap *antin, 180 sbitmap *antout, sbitmap *avout, sbitmap *kill, 181 sbitmap *earliest) 182 { 183 sbitmap difference, temp_bitmap; 184 int x, num_edges; 185 basic_block pred, succ; 186 187 num_edges = NUM_EDGES (edge_list); 188 189 difference = sbitmap_alloc (n_exprs); 190 temp_bitmap = sbitmap_alloc (n_exprs); 191 192 for (x = 0; x < num_edges; x++) 193 { 194 pred = INDEX_EDGE_PRED_BB (edge_list, x); 195 succ = INDEX_EDGE_SUCC_BB (edge_list, x); 196 if (pred == ENTRY_BLOCK_PTR) 197 sbitmap_copy (earliest[x], antin[succ->index]); 198 else 199 { 200 if (succ == EXIT_BLOCK_PTR) 201 sbitmap_zero (earliest[x]); 202 else 203 { 204 sbitmap_difference (difference, antin[succ->index], 205 avout[pred->index]); 206 sbitmap_not (temp_bitmap, antout[pred->index]); 207 sbitmap_a_and_b_or_c (earliest[x], difference, 208 kill[pred->index], temp_bitmap); 209 } 210 } 211 } 212 213 sbitmap_free (temp_bitmap); 214 sbitmap_free (difference); 215 } 216 217 /* later(p,s) is dependent on the calculation of laterin(p). 218 laterin(p) is dependent on the calculation of later(p2,p). 219 220 laterin(ENTRY) is defined as all 0's 221 later(ENTRY, succs(ENTRY)) are defined using laterin(ENTRY) 222 laterin(succs(ENTRY)) is defined by later(ENTRY, succs(ENTRY)). 223 224 If we progress in this manner, starting with all basic blocks 225 in the work list, anytime we change later(bb), we need to add 226 succs(bb) to the worklist if they are not already on the worklist. 227 228 Boundary conditions: 229 230 We prime the worklist all the normal basic blocks. The ENTRY block can 231 never be added to the worklist since it is never the successor of any 232 block. We explicitly prevent the EXIT block from being added to the 233 worklist. 234 235 We optimistically initialize LATER. That is the only time this routine 236 will compute LATER for an edge out of the entry block since the entry 237 block is never on the worklist. Thus, LATERIN is neither used nor 238 computed for the ENTRY block. 239 240 Since the EXIT block is never added to the worklist, we will neither 241 use nor compute LATERIN for the exit block. Edges which reach the 242 EXIT block are handled in the normal fashion inside the loop. However, 243 the insertion/deletion computation needs LATERIN(EXIT), so we have 244 to compute it. */ 245 246 static void 247 compute_laterin (struct edge_list *edge_list, sbitmap *earliest, 248 sbitmap *antloc, sbitmap *later, sbitmap *laterin) 249 { 250 int num_edges, i; 251 edge e; 252 basic_block *worklist, *qin, *qout, *qend, bb; 253 unsigned int qlen; 254 edge_iterator ei; 255 256 num_edges = NUM_EDGES (edge_list); 257 258 /* Allocate a worklist array/queue. Entries are only added to the 259 list if they were not already on the list. So the size is 260 bounded by the number of basic blocks. */ 261 qin = qout = worklist 262 = XNEWVEC (basic_block, n_basic_blocks); 263 264 /* Initialize a mapping from each edge to its index. */ 265 for (i = 0; i < num_edges; i++) 266 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; 267 268 /* We want a maximal solution, so initially consider LATER true for 269 all edges. This allows propagation through a loop since the incoming 270 loop edge will have LATER set, so if all the other incoming edges 271 to the loop are set, then LATERIN will be set for the head of the 272 loop. 273 274 If the optimistic setting of LATER on that edge was incorrect (for 275 example the expression is ANTLOC in a block within the loop) then 276 this algorithm will detect it when we process the block at the head 277 of the optimistic edge. That will requeue the affected blocks. */ 278 sbitmap_vector_ones (later, num_edges); 279 280 /* Note that even though we want an optimistic setting of LATER, we 281 do not want to be overly optimistic. Consider an outgoing edge from 282 the entry block. That edge should always have a LATER value the 283 same as EARLIEST for that edge. */ 284 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) 285 sbitmap_copy (later[(size_t) e->aux], earliest[(size_t) e->aux]); 286 287 /* Add all the blocks to the worklist. This prevents an early exit from 288 the loop given our optimistic initialization of LATER above. */ 289 FOR_EACH_BB (bb) 290 { 291 *qin++ = bb; 292 bb->aux = bb; 293 } 294 295 /* Note that we do not use the last allocated element for our queue, 296 as EXIT_BLOCK is never inserted into it. */ 297 qin = worklist; 298 qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS]; 299 qlen = n_basic_blocks - NUM_FIXED_BLOCKS; 300 301 /* Iterate until the worklist is empty. */ 302 while (qlen) 303 { 304 /* Take the first entry off the worklist. */ 305 bb = *qout++; 306 bb->aux = NULL; 307 qlen--; 308 if (qout >= qend) 309 qout = worklist; 310 311 /* Compute the intersection of LATERIN for each incoming edge to B. */ 312 sbitmap_ones (laterin[bb->index]); 313 FOR_EACH_EDGE (e, ei, bb->preds) 314 sbitmap_a_and_b (laterin[bb->index], laterin[bb->index], 315 later[(size_t)e->aux]); 316 317 /* Calculate LATER for all outgoing edges. */ 318 FOR_EACH_EDGE (e, ei, bb->succs) 319 if (sbitmap_union_of_diff_cg (later[(size_t) e->aux], 320 earliest[(size_t) e->aux], 321 laterin[e->src->index], 322 antloc[e->src->index]) 323 /* If LATER for an outgoing edge was changed, then we need 324 to add the target of the outgoing edge to the worklist. */ 325 && e->dest != EXIT_BLOCK_PTR && e->dest->aux == 0) 326 { 327 *qin++ = e->dest; 328 e->dest->aux = e; 329 qlen++; 330 if (qin >= qend) 331 qin = worklist; 332 } 333 } 334 335 /* Computation of insertion and deletion points requires computing LATERIN 336 for the EXIT block. We allocated an extra entry in the LATERIN array 337 for just this purpose. */ 338 sbitmap_ones (laterin[last_basic_block]); 339 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) 340 sbitmap_a_and_b (laterin[last_basic_block], 341 laterin[last_basic_block], 342 later[(size_t) e->aux]); 343 344 clear_aux_for_edges (); 345 free (worklist); 346 } 347 348 /* Compute the insertion and deletion points for edge based LCM. */ 349 350 static void 351 compute_insert_delete (struct edge_list *edge_list, sbitmap *antloc, 352 sbitmap *later, sbitmap *laterin, sbitmap *insert, 353 sbitmap *del) 354 { 355 int x; 356 basic_block bb; 357 358 FOR_EACH_BB (bb) 359 sbitmap_difference (del[bb->index], antloc[bb->index], 360 laterin[bb->index]); 361 362 for (x = 0; x < NUM_EDGES (edge_list); x++) 363 { 364 basic_block b = INDEX_EDGE_SUCC_BB (edge_list, x); 365 366 if (b == EXIT_BLOCK_PTR) 367 sbitmap_difference (insert[x], later[x], laterin[last_basic_block]); 368 else 369 sbitmap_difference (insert[x], later[x], laterin[b->index]); 370 } 371 } 372 373 /* Given local properties TRANSP, ANTLOC, AVOUT, KILL return the insert and 374 delete vectors for edge based LCM. Returns an edgelist which is used to 375 map the insert vector to what edge an expression should be inserted on. */ 376 377 struct edge_list * 378 pre_edge_lcm (int n_exprs, sbitmap *transp, 379 sbitmap *avloc, sbitmap *antloc, sbitmap *kill, 380 sbitmap **insert, sbitmap **del) 381 { 382 sbitmap *antin, *antout, *earliest; 383 sbitmap *avin, *avout; 384 sbitmap *later, *laterin; 385 struct edge_list *edge_list; 386 int num_edges; 387 388 edge_list = create_edge_list (); 389 num_edges = NUM_EDGES (edge_list); 390 391 #ifdef LCM_DEBUG_INFO 392 if (dump_file) 393 { 394 fprintf (dump_file, "Edge List:\n"); 395 verify_edge_list (dump_file, edge_list); 396 print_edge_list (dump_file, edge_list); 397 dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block); 398 dump_sbitmap_vector (dump_file, "antloc", "", antloc, last_basic_block); 399 dump_sbitmap_vector (dump_file, "avloc", "", avloc, last_basic_block); 400 dump_sbitmap_vector (dump_file, "kill", "", kill, last_basic_block); 401 } 402 #endif 403 404 /* Compute global availability. */ 405 avin = sbitmap_vector_alloc (last_basic_block, n_exprs); 406 avout = sbitmap_vector_alloc (last_basic_block, n_exprs); 407 compute_available (avloc, kill, avout, avin); 408 sbitmap_vector_free (avin); 409 410 /* Compute global anticipatability. */ 411 antin = sbitmap_vector_alloc (last_basic_block, n_exprs); 412 antout = sbitmap_vector_alloc (last_basic_block, n_exprs); 413 compute_antinout_edge (antloc, transp, antin, antout); 414 415 #ifdef LCM_DEBUG_INFO 416 if (dump_file) 417 { 418 dump_sbitmap_vector (dump_file, "antin", "", antin, last_basic_block); 419 dump_sbitmap_vector (dump_file, "antout", "", antout, last_basic_block); 420 } 421 #endif 422 423 /* Compute earliestness. */ 424 earliest = sbitmap_vector_alloc (num_edges, n_exprs); 425 compute_earliest (edge_list, n_exprs, antin, antout, avout, kill, earliest); 426 427 #ifdef LCM_DEBUG_INFO 428 if (dump_file) 429 dump_sbitmap_vector (dump_file, "earliest", "", earliest, num_edges); 430 #endif 431 432 sbitmap_vector_free (antout); 433 sbitmap_vector_free (antin); 434 sbitmap_vector_free (avout); 435 436 later = sbitmap_vector_alloc (num_edges, n_exprs); 437 438 /* Allocate an extra element for the exit block in the laterin vector. */ 439 laterin = sbitmap_vector_alloc (last_basic_block + 1, n_exprs); 440 compute_laterin (edge_list, earliest, antloc, later, laterin); 441 442 #ifdef LCM_DEBUG_INFO 443 if (dump_file) 444 { 445 dump_sbitmap_vector (dump_file, "laterin", "", laterin, last_basic_block + 1); 446 dump_sbitmap_vector (dump_file, "later", "", later, num_edges); 447 } 448 #endif 449 450 sbitmap_vector_free (earliest); 451 452 *insert = sbitmap_vector_alloc (num_edges, n_exprs); 453 *del = sbitmap_vector_alloc (last_basic_block, n_exprs); 454 compute_insert_delete (edge_list, antloc, later, laterin, *insert, *del); 455 456 sbitmap_vector_free (laterin); 457 sbitmap_vector_free (later); 458 459 #ifdef LCM_DEBUG_INFO 460 if (dump_file) 461 { 462 dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges); 463 dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del, 464 last_basic_block); 465 } 466 #endif 467 468 return edge_list; 469 } 470 471 /* Compute the AVIN and AVOUT vectors from the AVLOC and KILL vectors. 472 Return the number of passes we performed to iterate to a solution. */ 473 474 void 475 compute_available (sbitmap *avloc, sbitmap *kill, sbitmap *avout, 476 sbitmap *avin) 477 { 478 edge e; 479 basic_block *worklist, *qin, *qout, *qend, bb; 480 unsigned int qlen; 481 edge_iterator ei; 482 483 /* Allocate a worklist array/queue. Entries are only added to the 484 list if they were not already on the list. So the size is 485 bounded by the number of basic blocks. */ 486 qin = qout = worklist = 487 XNEWVEC (basic_block, n_basic_blocks - NUM_FIXED_BLOCKS); 488 489 /* We want a maximal solution. */ 490 sbitmap_vector_ones (avout, last_basic_block); 491 492 /* Put every block on the worklist; this is necessary because of the 493 optimistic initialization of AVOUT above. */ 494 FOR_EACH_BB (bb) 495 { 496 *qin++ = bb; 497 bb->aux = bb; 498 } 499 500 qin = worklist; 501 qend = &worklist[n_basic_blocks - NUM_FIXED_BLOCKS]; 502 qlen = n_basic_blocks - NUM_FIXED_BLOCKS; 503 504 /* Mark blocks which are successors of the entry block so that we 505 can easily identify them below. */ 506 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) 507 e->dest->aux = ENTRY_BLOCK_PTR; 508 509 /* Iterate until the worklist is empty. */ 510 while (qlen) 511 { 512 /* Take the first entry off the worklist. */ 513 bb = *qout++; 514 qlen--; 515 516 if (qout >= qend) 517 qout = worklist; 518 519 /* If one of the predecessor blocks is the ENTRY block, then the 520 intersection of avouts is the null set. We can identify such blocks 521 by the special value in the AUX field in the block structure. */ 522 if (bb->aux == ENTRY_BLOCK_PTR) 523 /* Do not clear the aux field for blocks which are successors of the 524 ENTRY block. That way we never add then to the worklist again. */ 525 sbitmap_zero (avin[bb->index]); 526 else 527 { 528 /* Clear the aux field of this block so that it can be added to 529 the worklist again if necessary. */ 530 bb->aux = NULL; 531 sbitmap_intersection_of_preds (avin[bb->index], avout, bb->index); 532 } 533 534 if (sbitmap_union_of_diff_cg (avout[bb->index], avloc[bb->index], 535 avin[bb->index], kill[bb->index])) 536 /* If the out state of this block changed, then we need 537 to add the successors of this block to the worklist 538 if they are not already on the worklist. */ 539 FOR_EACH_EDGE (e, ei, bb->succs) 540 if (!e->dest->aux && e->dest != EXIT_BLOCK_PTR) 541 { 542 *qin++ = e->dest; 543 e->dest->aux = e; 544 qlen++; 545 546 if (qin >= qend) 547 qin = worklist; 548 } 549 } 550 551 clear_aux_for_edges (); 552 clear_aux_for_blocks (); 553 free (worklist); 554 } 555 556 /* Compute the farthest vector for edge based lcm. */ 557 558 static void 559 compute_farthest (struct edge_list *edge_list, int n_exprs, 560 sbitmap *st_avout, sbitmap *st_avin, sbitmap *st_antin, 561 sbitmap *kill, sbitmap *farthest) 562 { 563 sbitmap difference, temp_bitmap; 564 int x, num_edges; 565 basic_block pred, succ; 566 567 num_edges = NUM_EDGES (edge_list); 568 569 difference = sbitmap_alloc (n_exprs); 570 temp_bitmap = sbitmap_alloc (n_exprs); 571 572 for (x = 0; x < num_edges; x++) 573 { 574 pred = INDEX_EDGE_PRED_BB (edge_list, x); 575 succ = INDEX_EDGE_SUCC_BB (edge_list, x); 576 if (succ == EXIT_BLOCK_PTR) 577 sbitmap_copy (farthest[x], st_avout[pred->index]); 578 else 579 { 580 if (pred == ENTRY_BLOCK_PTR) 581 sbitmap_zero (farthest[x]); 582 else 583 { 584 sbitmap_difference (difference, st_avout[pred->index], 585 st_antin[succ->index]); 586 sbitmap_not (temp_bitmap, st_avin[succ->index]); 587 sbitmap_a_and_b_or_c (farthest[x], difference, 588 kill[succ->index], temp_bitmap); 589 } 590 } 591 } 592 593 sbitmap_free (temp_bitmap); 594 sbitmap_free (difference); 595 } 596 597 /* Compute nearer and nearerout vectors for edge based lcm. 598 599 This is the mirror of compute_laterin, additional comments on the 600 implementation can be found before compute_laterin. */ 601 602 static void 603 compute_nearerout (struct edge_list *edge_list, sbitmap *farthest, 604 sbitmap *st_avloc, sbitmap *nearer, sbitmap *nearerout) 605 { 606 int num_edges, i; 607 edge e; 608 basic_block *worklist, *tos, bb; 609 edge_iterator ei; 610 611 num_edges = NUM_EDGES (edge_list); 612 613 /* Allocate a worklist array/queue. Entries are only added to the 614 list if they were not already on the list. So the size is 615 bounded by the number of basic blocks. */ 616 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1); 617 618 /* Initialize NEARER for each edge and build a mapping from an edge to 619 its index. */ 620 for (i = 0; i < num_edges; i++) 621 INDEX_EDGE (edge_list, i)->aux = (void *) (size_t) i; 622 623 /* We want a maximal solution. */ 624 sbitmap_vector_ones (nearer, num_edges); 625 626 /* Note that even though we want an optimistic setting of NEARER, we 627 do not want to be overly optimistic. Consider an incoming edge to 628 the exit block. That edge should always have a NEARER value the 629 same as FARTHEST for that edge. */ 630 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds) 631 sbitmap_copy (nearer[(size_t)e->aux], farthest[(size_t)e->aux]); 632 633 /* Add all the blocks to the worklist. This prevents an early exit 634 from the loop given our optimistic initialization of NEARER. */ 635 FOR_EACH_BB (bb) 636 { 637 *tos++ = bb; 638 bb->aux = bb; 639 } 640 641 /* Iterate until the worklist is empty. */ 642 while (tos != worklist) 643 { 644 /* Take the first entry off the worklist. */ 645 bb = *--tos; 646 bb->aux = NULL; 647 648 /* Compute the intersection of NEARER for each outgoing edge from B. */ 649 sbitmap_ones (nearerout[bb->index]); 650 FOR_EACH_EDGE (e, ei, bb->succs) 651 sbitmap_a_and_b (nearerout[bb->index], nearerout[bb->index], 652 nearer[(size_t) e->aux]); 653 654 /* Calculate NEARER for all incoming edges. */ 655 FOR_EACH_EDGE (e, ei, bb->preds) 656 if (sbitmap_union_of_diff_cg (nearer[(size_t) e->aux], 657 farthest[(size_t) e->aux], 658 nearerout[e->dest->index], 659 st_avloc[e->dest->index]) 660 /* If NEARER for an incoming edge was changed, then we need 661 to add the source of the incoming edge to the worklist. */ 662 && e->src != ENTRY_BLOCK_PTR && e->src->aux == 0) 663 { 664 *tos++ = e->src; 665 e->src->aux = e; 666 } 667 } 668 669 /* Computation of insertion and deletion points requires computing NEAREROUT 670 for the ENTRY block. We allocated an extra entry in the NEAREROUT array 671 for just this purpose. */ 672 sbitmap_ones (nearerout[last_basic_block]); 673 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs) 674 sbitmap_a_and_b (nearerout[last_basic_block], 675 nearerout[last_basic_block], 676 nearer[(size_t) e->aux]); 677 678 clear_aux_for_edges (); 679 free (tos); 680 } 681 682 /* Compute the insertion and deletion points for edge based LCM. */ 683 684 static void 685 compute_rev_insert_delete (struct edge_list *edge_list, sbitmap *st_avloc, 686 sbitmap *nearer, sbitmap *nearerout, 687 sbitmap *insert, sbitmap *del) 688 { 689 int x; 690 basic_block bb; 691 692 FOR_EACH_BB (bb) 693 sbitmap_difference (del[bb->index], st_avloc[bb->index], 694 nearerout[bb->index]); 695 696 for (x = 0; x < NUM_EDGES (edge_list); x++) 697 { 698 basic_block b = INDEX_EDGE_PRED_BB (edge_list, x); 699 if (b == ENTRY_BLOCK_PTR) 700 sbitmap_difference (insert[x], nearer[x], nearerout[last_basic_block]); 701 else 702 sbitmap_difference (insert[x], nearer[x], nearerout[b->index]); 703 } 704 } 705 706 /* Given local properties TRANSP, ST_AVLOC, ST_ANTLOC, KILL return the 707 insert and delete vectors for edge based reverse LCM. Returns an 708 edgelist which is used to map the insert vector to what edge 709 an expression should be inserted on. */ 710 711 struct edge_list * 712 pre_edge_rev_lcm (int n_exprs, sbitmap *transp, 713 sbitmap *st_avloc, sbitmap *st_antloc, sbitmap *kill, 714 sbitmap **insert, sbitmap **del) 715 { 716 sbitmap *st_antin, *st_antout; 717 sbitmap *st_avout, *st_avin, *farthest; 718 sbitmap *nearer, *nearerout; 719 struct edge_list *edge_list; 720 int num_edges; 721 722 edge_list = create_edge_list (); 723 num_edges = NUM_EDGES (edge_list); 724 725 st_antin = sbitmap_vector_alloc (last_basic_block, n_exprs); 726 st_antout = sbitmap_vector_alloc (last_basic_block, n_exprs); 727 sbitmap_vector_zero (st_antin, last_basic_block); 728 sbitmap_vector_zero (st_antout, last_basic_block); 729 compute_antinout_edge (st_antloc, transp, st_antin, st_antout); 730 731 /* Compute global anticipatability. */ 732 st_avout = sbitmap_vector_alloc (last_basic_block, n_exprs); 733 st_avin = sbitmap_vector_alloc (last_basic_block, n_exprs); 734 compute_available (st_avloc, kill, st_avout, st_avin); 735 736 #ifdef LCM_DEBUG_INFO 737 if (dump_file) 738 { 739 fprintf (dump_file, "Edge List:\n"); 740 verify_edge_list (dump_file, edge_list); 741 print_edge_list (dump_file, edge_list); 742 dump_sbitmap_vector (dump_file, "transp", "", transp, last_basic_block); 743 dump_sbitmap_vector (dump_file, "st_avloc", "", st_avloc, last_basic_block); 744 dump_sbitmap_vector (dump_file, "st_antloc", "", st_antloc, last_basic_block); 745 dump_sbitmap_vector (dump_file, "st_antin", "", st_antin, last_basic_block); 746 dump_sbitmap_vector (dump_file, "st_antout", "", st_antout, last_basic_block); 747 dump_sbitmap_vector (dump_file, "st_kill", "", kill, last_basic_block); 748 } 749 #endif 750 751 #ifdef LCM_DEBUG_INFO 752 if (dump_file) 753 { 754 dump_sbitmap_vector (dump_file, "st_avout", "", st_avout, last_basic_block); 755 dump_sbitmap_vector (dump_file, "st_avin", "", st_avin, last_basic_block); 756 } 757 #endif 758 759 /* Compute farthestness. */ 760 farthest = sbitmap_vector_alloc (num_edges, n_exprs); 761 compute_farthest (edge_list, n_exprs, st_avout, st_avin, st_antin, 762 kill, farthest); 763 764 #ifdef LCM_DEBUG_INFO 765 if (dump_file) 766 dump_sbitmap_vector (dump_file, "farthest", "", farthest, num_edges); 767 #endif 768 769 sbitmap_vector_free (st_antin); 770 sbitmap_vector_free (st_antout); 771 772 sbitmap_vector_free (st_avin); 773 sbitmap_vector_free (st_avout); 774 775 nearer = sbitmap_vector_alloc (num_edges, n_exprs); 776 777 /* Allocate an extra element for the entry block. */ 778 nearerout = sbitmap_vector_alloc (last_basic_block + 1, n_exprs); 779 compute_nearerout (edge_list, farthest, st_avloc, nearer, nearerout); 780 781 #ifdef LCM_DEBUG_INFO 782 if (dump_file) 783 { 784 dump_sbitmap_vector (dump_file, "nearerout", "", nearerout, 785 last_basic_block + 1); 786 dump_sbitmap_vector (dump_file, "nearer", "", nearer, num_edges); 787 } 788 #endif 789 790 sbitmap_vector_free (farthest); 791 792 *insert = sbitmap_vector_alloc (num_edges, n_exprs); 793 *del = sbitmap_vector_alloc (last_basic_block, n_exprs); 794 compute_rev_insert_delete (edge_list, st_avloc, nearer, nearerout, 795 *insert, *del); 796 797 sbitmap_vector_free (nearerout); 798 sbitmap_vector_free (nearer); 799 800 #ifdef LCM_DEBUG_INFO 801 if (dump_file) 802 { 803 dump_sbitmap_vector (dump_file, "pre_insert_map", "", *insert, num_edges); 804 dump_sbitmap_vector (dump_file, "pre_delete_map", "", *del, 805 last_basic_block); 806 } 807 #endif 808 return edge_list; 809 } 810 811