xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/jump.c (revision 2718af68c3efc72c9769069b5c7f9ed36f6b9def)
1 /* Optimize jump instructions, for GNU compiler.
2    Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21    of the compiler.  Now it contains basically a set of utility functions to
22    operate with jumps.
23 
24    Each CODE_LABEL has a count of the times it is used
25    stored in the LABEL_NUSES internal field, and each JUMP_INSN
26    has one label that it refers to stored in the
27    JUMP_LABEL internal field.  With this we can detect labels that
28    become unused because of the deletion of all the jumps that
29    formerly used them.  The JUMP_LABEL info is sometimes looked
30    at by later passes.  For return insns, it contains either a
31    RETURN or a SIMPLE_RETURN rtx.
32 
33    The subroutines redirect_jump and invert_jump are used
34    from other passes as well.  */
35 
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "target.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "memmodel.h"
46 #include "tm_p.h"
47 #include "insn-config.h"
48 #include "regs.h"
49 #include "emit-rtl.h"
50 #include "recog.h"
51 #include "cfgrtl.h"
52 #include "rtl-iter.h"
53 
54 /* Optimize jump y; x: ... y: jumpif... x?
55    Don't know if it is worth bothering with.  */
56 /* Optimize two cases of conditional jump to conditional jump?
57    This can never delete any instruction or make anything dead,
58    or even change what is live at any point.
59    So perhaps let combiner do it.  */
60 
61 static void init_label_info (rtx_insn *);
62 static void mark_all_labels (rtx_insn *);
63 static void mark_jump_label_1 (rtx, rtx_insn *, bool, bool);
64 static void mark_jump_label_asm (rtx, rtx_insn *);
65 static void redirect_exp_1 (rtx *, rtx, rtx, rtx_insn *);
66 static int invert_exp_1 (rtx, rtx_insn *);
67 
68 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain.  */
69 static void
70 rebuild_jump_labels_1 (rtx_insn *f, bool count_forced)
71 {
72   timevar_push (TV_REBUILD_JUMP);
73   init_label_info (f);
74   mark_all_labels (f);
75 
76   /* Keep track of labels used from static data; we don't track them
77      closely enough to delete them here, so make sure their reference
78      count doesn't drop to zero.  */
79 
80   if (count_forced)
81     {
82       rtx_insn *insn;
83       unsigned int i;
84       FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
85 	if (LABEL_P (insn))
86 	  LABEL_NUSES (insn)++;
87     }
88   timevar_pop (TV_REBUILD_JUMP);
89 }
90 
91 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
92    notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
93    instructions and jumping insns that have labels as operands
94    (e.g. cbranchsi4).  */
95 void
96 rebuild_jump_labels (rtx_insn *f)
97 {
98   rebuild_jump_labels_1 (f, true);
99 }
100 
101 /* This function is like rebuild_jump_labels, but doesn't run over
102    forced_labels.  It can be used on insn chains that aren't the
103    main function chain.  */
104 void
105 rebuild_jump_labels_chain (rtx_insn *chain)
106 {
107   rebuild_jump_labels_1 (chain, false);
108 }
109 
110 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
111    non-fallthru insn.  This is not generally true, as multiple barriers
112    may have crept in, or the BARRIER may be separated from the last
113    real insn by one or more NOTEs.
114 
115    This simple pass moves barriers and removes duplicates so that the
116    old code is happy.
117  */
118 static unsigned int
119 cleanup_barriers (void)
120 {
121   rtx_insn *insn;
122   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
123     {
124       if (BARRIER_P (insn))
125 	{
126 	  rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
127 	  if (!prev)
128 	    continue;
129 
130 	  if (BARRIER_P (prev))
131 	    delete_insn (insn);
132 	  else if (prev != PREV_INSN (insn))
133 	    {
134 	      basic_block bb = BLOCK_FOR_INSN (prev);
135 	      rtx_insn *end = PREV_INSN (insn);
136 	      reorder_insns_nobb (insn, insn, prev);
137 	      if (bb)
138 		{
139 		  /* If the backend called in machine reorg compute_bb_for_insn
140 		     and didn't free_bb_for_insn again, preserve basic block
141 		     boundaries.  Move the end of basic block to PREV since
142 		     it is followed by a barrier now, and clear BLOCK_FOR_INSN
143 		     on the following notes.
144 		     ???  Maybe the proper solution for the targets that have
145 		     cfg around after machine reorg is not to run cleanup_barriers
146 		     pass at all.  */
147 		  BB_END (bb) = prev;
148 		  do
149 		    {
150 		      prev = NEXT_INSN (prev);
151 		      if (prev != insn && BLOCK_FOR_INSN (prev) == bb)
152 			BLOCK_FOR_INSN (prev) = NULL;
153 		    }
154 		  while (prev != end);
155 		}
156 	    }
157 	}
158     }
159   return 0;
160 }
161 
162 namespace {
163 
164 const pass_data pass_data_cleanup_barriers =
165 {
166   RTL_PASS, /* type */
167   "barriers", /* name */
168   OPTGROUP_NONE, /* optinfo_flags */
169   TV_NONE, /* tv_id */
170   0, /* properties_required */
171   0, /* properties_provided */
172   0, /* properties_destroyed */
173   0, /* todo_flags_start */
174   0, /* todo_flags_finish */
175 };
176 
177 class pass_cleanup_barriers : public rtl_opt_pass
178 {
179 public:
180   pass_cleanup_barriers (gcc::context *ctxt)
181     : rtl_opt_pass (pass_data_cleanup_barriers, ctxt)
182   {}
183 
184   /* opt_pass methods: */
185   virtual unsigned int execute (function *) { return cleanup_barriers (); }
186 
187 }; // class pass_cleanup_barriers
188 
189 } // anon namespace
190 
191 rtl_opt_pass *
192 make_pass_cleanup_barriers (gcc::context *ctxt)
193 {
194   return new pass_cleanup_barriers (ctxt);
195 }
196 
197 
198 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
199    for remaining targets for JUMP_P.  Delete any REG_LABEL_OPERAND
200    notes whose labels don't occur in the insn any more.  */
201 
202 static void
203 init_label_info (rtx_insn *f)
204 {
205   rtx_insn *insn;
206 
207   for (insn = f; insn; insn = NEXT_INSN (insn))
208     {
209       if (LABEL_P (insn))
210 	LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
211 
212       /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
213 	 sticky and not reset here; that way we won't lose association
214 	 with a label when e.g. the source for a target register
215 	 disappears out of reach for targets that may use jump-target
216 	 registers.  Jump transformations are supposed to transform
217 	 any REG_LABEL_TARGET notes.  The target label reference in a
218 	 branch may disappear from the branch (and from the
219 	 instruction before it) for other reasons, like register
220 	 allocation.  */
221 
222       if (INSN_P (insn))
223 	{
224 	  rtx note, next;
225 
226 	  for (note = REG_NOTES (insn); note; note = next)
227 	    {
228 	      next = XEXP (note, 1);
229 	      if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
230 		  && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
231 		remove_note (insn, note);
232 	    }
233 	}
234     }
235 }
236 
237 /* A subroutine of mark_all_labels.  Trivially propagate a simple label
238    load into a jump_insn that uses it.  */
239 
240 static void
241 maybe_propagate_label_ref (rtx_insn *jump_insn, rtx_insn *prev_nonjump_insn)
242 {
243   rtx label_note, pc, pc_src;
244 
245   pc = pc_set (jump_insn);
246   pc_src = pc != NULL ? SET_SRC (pc) : NULL;
247   label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
248 
249   /* If the previous non-jump insn sets something to a label,
250      something that this jump insn uses, make that label the primary
251      target of this insn if we don't yet have any.  That previous
252      insn must be a single_set and not refer to more than one label.
253      The jump insn must not refer to other labels as jump targets
254      and must be a plain (set (pc) ...), maybe in a parallel, and
255      may refer to the item being set only directly or as one of the
256      arms in an IF_THEN_ELSE.  */
257 
258   if (label_note != NULL && pc_src != NULL)
259     {
260       rtx label_set = single_set (prev_nonjump_insn);
261       rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
262 
263       if (label_set != NULL
264 	  /* The source must be the direct LABEL_REF, not a
265 	     PLUS, UNSPEC, IF_THEN_ELSE etc.  */
266 	  && GET_CODE (SET_SRC (label_set)) == LABEL_REF
267 	  && (rtx_equal_p (label_dest, pc_src)
268 	      || (GET_CODE (pc_src) == IF_THEN_ELSE
269 		  && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
270 		      || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
271 	{
272 	  /* The CODE_LABEL referred to in the note must be the
273 	     CODE_LABEL in the LABEL_REF of the "set".  We can
274 	     conveniently use it for the marker function, which
275 	     requires a LABEL_REF wrapping.  */
276 	  gcc_assert (XEXP (label_note, 0) == label_ref_label (SET_SRC (label_set)));
277 
278 	  mark_jump_label_1 (label_set, jump_insn, false, true);
279 
280 	  gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
281 	}
282     }
283 }
284 
285 /* Mark the label each jump jumps to.
286    Combine consecutive labels, and count uses of labels.  */
287 
288 static void
289 mark_all_labels (rtx_insn *f)
290 {
291   rtx_insn *insn;
292 
293   if (current_ir_type () == IR_RTL_CFGLAYOUT)
294     {
295       basic_block bb;
296       FOR_EACH_BB_FN (bb, cfun)
297 	{
298 	  /* In cfglayout mode, we don't bother with trivial next-insn
299 	     propagation of LABEL_REFs into JUMP_LABEL.  This will be
300 	     handled by other optimizers using better algorithms.  */
301 	  FOR_BB_INSNS (bb, insn)
302 	    {
303 	      gcc_assert (! insn->deleted ());
304 	      if (NONDEBUG_INSN_P (insn))
305 	        mark_jump_label (PATTERN (insn), insn, 0);
306 	    }
307 
308 	  /* In cfglayout mode, there may be non-insns between the
309 	     basic blocks.  If those non-insns represent tablejump data,
310 	     they contain label references that we must record.  */
311 	  for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
312 	    if (JUMP_TABLE_DATA_P (insn))
313 	      mark_jump_label (PATTERN (insn), insn, 0);
314 	  for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
315 	    if (JUMP_TABLE_DATA_P (insn))
316 	      mark_jump_label (PATTERN (insn), insn, 0);
317 	}
318     }
319   else
320     {
321       rtx_insn *prev_nonjump_insn = NULL;
322       for (insn = f; insn; insn = NEXT_INSN (insn))
323 	{
324 	  if (insn->deleted ())
325 	    ;
326 	  else if (LABEL_P (insn))
327 	    prev_nonjump_insn = NULL;
328 	  else if (JUMP_TABLE_DATA_P (insn))
329 	    mark_jump_label (PATTERN (insn), insn, 0);
330 	  else if (NONDEBUG_INSN_P (insn))
331 	    {
332 	      mark_jump_label (PATTERN (insn), insn, 0);
333 	      if (JUMP_P (insn))
334 		{
335 		  if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
336 		    maybe_propagate_label_ref (insn, prev_nonjump_insn);
337 		}
338 	      else
339 		prev_nonjump_insn = insn;
340 	    }
341 	}
342     }
343 }
344 
345 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
346    of reversed comparison if it is possible to do so.  Otherwise return UNKNOWN.
347    UNKNOWN may be returned in case we are having CC_MODE compare and we don't
348    know whether it's source is floating point or integer comparison.  Machine
349    description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
350    to help this function avoid overhead in these cases.  */
351 enum rtx_code
352 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
353 				const_rtx arg1, const rtx_insn *insn)
354 {
355   machine_mode mode;
356 
357   /* If this is not actually a comparison, we can't reverse it.  */
358   if (GET_RTX_CLASS (code) != RTX_COMPARE
359       && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
360     return UNKNOWN;
361 
362   mode = GET_MODE (arg0);
363   if (mode == VOIDmode)
364     mode = GET_MODE (arg1);
365 
366   /* First see if machine description supplies us way to reverse the
367      comparison.  Give it priority over everything else to allow
368      machine description to do tricks.  */
369   if (GET_MODE_CLASS (mode) == MODE_CC
370       && REVERSIBLE_CC_MODE (mode))
371     return REVERSE_CONDITION (code, mode);
372 
373   /* Try a few special cases based on the comparison code.  */
374   switch (code)
375     {
376     case GEU:
377     case GTU:
378     case LEU:
379     case LTU:
380     case NE:
381     case EQ:
382       /* It is always safe to reverse EQ and NE, even for the floating
383 	 point.  Similarly the unsigned comparisons are never used for
384 	 floating point so we can reverse them in the default way.  */
385       return reverse_condition (code);
386     case ORDERED:
387     case UNORDERED:
388     case LTGT:
389     case UNEQ:
390       /* In case we already see unordered comparison, we can be sure to
391 	 be dealing with floating point so we don't need any more tests.  */
392       return reverse_condition_maybe_unordered (code);
393     case UNLT:
394     case UNLE:
395     case UNGT:
396     case UNGE:
397       /* We don't have safe way to reverse these yet.  */
398       return UNKNOWN;
399     default:
400       break;
401     }
402 
403   if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
404     {
405       /* Try to search for the comparison to determine the real mode.
406          This code is expensive, but with sane machine description it
407          will be never used, since REVERSIBLE_CC_MODE will return true
408          in all cases.  */
409       if (! insn)
410 	return UNKNOWN;
411 
412       /* These CONST_CAST's are okay because prev_nonnote_insn just
413 	 returns its argument and we assign it to a const_rtx
414 	 variable.  */
415       for (rtx_insn *prev = prev_nonnote_insn (const_cast<rtx_insn *> (insn));
416 	   prev != 0 && !LABEL_P (prev);
417 	   prev = prev_nonnote_insn (prev))
418 	{
419 	  const_rtx set = set_of (arg0, prev);
420 	  if (set && GET_CODE (set) == SET
421 	      && rtx_equal_p (SET_DEST (set), arg0))
422 	    {
423 	      rtx src = SET_SRC (set);
424 
425 	      if (GET_CODE (src) == COMPARE)
426 		{
427 		  rtx comparison = src;
428 		  arg0 = XEXP (src, 0);
429 		  mode = GET_MODE (arg0);
430 		  if (mode == VOIDmode)
431 		    mode = GET_MODE (XEXP (comparison, 1));
432 		  break;
433 		}
434 	      /* We can get past reg-reg moves.  This may be useful for model
435 	         of i387 comparisons that first move flag registers around.  */
436 	      if (REG_P (src))
437 		{
438 		  arg0 = src;
439 		  continue;
440 		}
441 	    }
442 	  /* If register is clobbered in some ununderstandable way,
443 	     give up.  */
444 	  if (set)
445 	    return UNKNOWN;
446 	}
447     }
448 
449   /* Test for an integer condition, or a floating-point comparison
450      in which NaNs can be ignored.  */
451   if (CONST_INT_P (arg0)
452       || (GET_MODE (arg0) != VOIDmode
453 	  && GET_MODE_CLASS (mode) != MODE_CC
454 	  && !HONOR_NANS (mode)))
455     return reverse_condition (code);
456 
457   return UNKNOWN;
458 }
459 
460 /* A wrapper around the previous function to take COMPARISON as rtx
461    expression.  This simplifies many callers.  */
462 enum rtx_code
463 reversed_comparison_code (const_rtx comparison, const rtx_insn *insn)
464 {
465   if (!COMPARISON_P (comparison))
466     return UNKNOWN;
467   return reversed_comparison_code_parts (GET_CODE (comparison),
468 					 XEXP (comparison, 0),
469 					 XEXP (comparison, 1), insn);
470 }
471 
472 /* Return comparison with reversed code of EXP.
473    Return NULL_RTX in case we fail to do the reversal.  */
474 rtx
475 reversed_comparison (const_rtx exp, machine_mode mode)
476 {
477   enum rtx_code reversed_code = reversed_comparison_code (exp, NULL);
478   if (reversed_code == UNKNOWN)
479     return NULL_RTX;
480   else
481     return simplify_gen_relational (reversed_code, mode, VOIDmode,
482                                     XEXP (exp, 0), XEXP (exp, 1));
483 }
484 
485 
486 /* Given an rtx-code for a comparison, return the code for the negated
487    comparison.  If no such code exists, return UNKNOWN.
488 
489    WATCH OUT!  reverse_condition is not safe to use on a jump that might
490    be acting on the results of an IEEE floating point comparison, because
491    of the special treatment of non-signaling nans in comparisons.
492    Use reversed_comparison_code instead.  */
493 
494 enum rtx_code
495 reverse_condition (enum rtx_code code)
496 {
497   switch (code)
498     {
499     case EQ:
500       return NE;
501     case NE:
502       return EQ;
503     case GT:
504       return LE;
505     case GE:
506       return LT;
507     case LT:
508       return GE;
509     case LE:
510       return GT;
511     case GTU:
512       return LEU;
513     case GEU:
514       return LTU;
515     case LTU:
516       return GEU;
517     case LEU:
518       return GTU;
519     case UNORDERED:
520       return ORDERED;
521     case ORDERED:
522       return UNORDERED;
523 
524     case UNLT:
525     case UNLE:
526     case UNGT:
527     case UNGE:
528     case UNEQ:
529     case LTGT:
530       return UNKNOWN;
531 
532     default:
533       gcc_unreachable ();
534     }
535 }
536 
537 /* Similar, but we're allowed to generate unordered comparisons, which
538    makes it safe for IEEE floating-point.  Of course, we have to recognize
539    that the target will support them too...  */
540 
541 enum rtx_code
542 reverse_condition_maybe_unordered (enum rtx_code code)
543 {
544   switch (code)
545     {
546     case EQ:
547       return NE;
548     case NE:
549       return EQ;
550     case GT:
551       return UNLE;
552     case GE:
553       return UNLT;
554     case LT:
555       return UNGE;
556     case LE:
557       return UNGT;
558     case LTGT:
559       return UNEQ;
560     case UNORDERED:
561       return ORDERED;
562     case ORDERED:
563       return UNORDERED;
564     case UNLT:
565       return GE;
566     case UNLE:
567       return GT;
568     case UNGT:
569       return LE;
570     case UNGE:
571       return LT;
572     case UNEQ:
573       return LTGT;
574 
575     default:
576       gcc_unreachable ();
577     }
578 }
579 
580 /* Similar, but return the code when two operands of a comparison are swapped.
581    This IS safe for IEEE floating-point.  */
582 
583 enum rtx_code
584 swap_condition (enum rtx_code code)
585 {
586   switch (code)
587     {
588     case EQ:
589     case NE:
590     case UNORDERED:
591     case ORDERED:
592     case UNEQ:
593     case LTGT:
594       return code;
595 
596     case GT:
597       return LT;
598     case GE:
599       return LE;
600     case LT:
601       return GT;
602     case LE:
603       return GE;
604     case GTU:
605       return LTU;
606     case GEU:
607       return LEU;
608     case LTU:
609       return GTU;
610     case LEU:
611       return GEU;
612     case UNLT:
613       return UNGT;
614     case UNLE:
615       return UNGE;
616     case UNGT:
617       return UNLT;
618     case UNGE:
619       return UNLE;
620 
621     default:
622       gcc_unreachable ();
623     }
624 }
625 
626 /* Given a comparison CODE, return the corresponding unsigned comparison.
627    If CODE is an equality comparison or already an unsigned comparison,
628    CODE is returned.  */
629 
630 enum rtx_code
631 unsigned_condition (enum rtx_code code)
632 {
633   switch (code)
634     {
635     case EQ:
636     case NE:
637     case GTU:
638     case GEU:
639     case LTU:
640     case LEU:
641       return code;
642 
643     case GT:
644       return GTU;
645     case GE:
646       return GEU;
647     case LT:
648       return LTU;
649     case LE:
650       return LEU;
651 
652     default:
653       gcc_unreachable ();
654     }
655 }
656 
657 /* Similarly, return the signed version of a comparison.  */
658 
659 enum rtx_code
660 signed_condition (enum rtx_code code)
661 {
662   switch (code)
663     {
664     case EQ:
665     case NE:
666     case GT:
667     case GE:
668     case LT:
669     case LE:
670       return code;
671 
672     case GTU:
673       return GT;
674     case GEU:
675       return GE;
676     case LTU:
677       return LT;
678     case LEU:
679       return LE;
680 
681     default:
682       gcc_unreachable ();
683     }
684 }
685 
686 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
687    truth of CODE1 implies the truth of CODE2.  */
688 
689 int
690 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
691 {
692   /* UNKNOWN comparison codes can happen as a result of trying to revert
693      comparison codes.
694      They can't match anything, so we have to reject them here.  */
695   if (code1 == UNKNOWN || code2 == UNKNOWN)
696     return 0;
697 
698   if (code1 == code2)
699     return 1;
700 
701   switch (code1)
702     {
703     case UNEQ:
704       if (code2 == UNLE || code2 == UNGE)
705 	return 1;
706       break;
707 
708     case EQ:
709       if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
710 	  || code2 == ORDERED)
711 	return 1;
712       break;
713 
714     case UNLT:
715       if (code2 == UNLE || code2 == NE)
716 	return 1;
717       break;
718 
719     case LT:
720       if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
721 	return 1;
722       break;
723 
724     case UNGT:
725       if (code2 == UNGE || code2 == NE)
726 	return 1;
727       break;
728 
729     case GT:
730       if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
731 	return 1;
732       break;
733 
734     case GE:
735     case LE:
736       if (code2 == ORDERED)
737 	return 1;
738       break;
739 
740     case LTGT:
741       if (code2 == NE || code2 == ORDERED)
742 	return 1;
743       break;
744 
745     case LTU:
746       if (code2 == LEU || code2 == NE)
747 	return 1;
748       break;
749 
750     case GTU:
751       if (code2 == GEU || code2 == NE)
752 	return 1;
753       break;
754 
755     case UNORDERED:
756       if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
757 	  || code2 == UNGE || code2 == UNGT)
758 	return 1;
759       break;
760 
761     default:
762       break;
763     }
764 
765   return 0;
766 }
767 
768 /* Return 1 if INSN is an unconditional jump and nothing else.  */
769 
770 int
771 simplejump_p (const rtx_insn *insn)
772 {
773   return (JUMP_P (insn)
774 	  && GET_CODE (PATTERN (insn)) == SET
775 	  && GET_CODE (SET_DEST (PATTERN (insn))) == PC
776 	  && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
777 }
778 
779 /* Return nonzero if INSN is a (possibly) conditional jump
780    and nothing more.
781 
782    Use of this function is deprecated, since we need to support combined
783    branch and compare insns.  Use any_condjump_p instead whenever possible.  */
784 
785 int
786 condjump_p (const rtx_insn *insn)
787 {
788   const_rtx x = PATTERN (insn);
789 
790   if (GET_CODE (x) != SET
791       || GET_CODE (SET_DEST (x)) != PC)
792     return 0;
793 
794   x = SET_SRC (x);
795   if (GET_CODE (x) == LABEL_REF)
796     return 1;
797   else
798     return (GET_CODE (x) == IF_THEN_ELSE
799 	    && ((GET_CODE (XEXP (x, 2)) == PC
800 		 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
801 		     || ANY_RETURN_P (XEXP (x, 1))))
802 		|| (GET_CODE (XEXP (x, 1)) == PC
803 		    && (GET_CODE (XEXP (x, 2)) == LABEL_REF
804 			|| ANY_RETURN_P (XEXP (x, 2))))));
805 }
806 
807 /* Return nonzero if INSN is a (possibly) conditional jump inside a
808    PARALLEL.
809 
810    Use this function is deprecated, since we need to support combined
811    branch and compare insns.  Use any_condjump_p instead whenever possible.  */
812 
813 int
814 condjump_in_parallel_p (const rtx_insn *insn)
815 {
816   const_rtx x = PATTERN (insn);
817 
818   if (GET_CODE (x) != PARALLEL)
819     return 0;
820   else
821     x = XVECEXP (x, 0, 0);
822 
823   if (GET_CODE (x) != SET)
824     return 0;
825   if (GET_CODE (SET_DEST (x)) != PC)
826     return 0;
827   if (GET_CODE (SET_SRC (x)) == LABEL_REF)
828     return 1;
829   if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
830     return 0;
831   if (XEXP (SET_SRC (x), 2) == pc_rtx
832       && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
833 	  || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
834     return 1;
835   if (XEXP (SET_SRC (x), 1) == pc_rtx
836       && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
837 	  || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
838     return 1;
839   return 0;
840 }
841 
842 /* Return set of PC, otherwise NULL.  */
843 
844 rtx
845 pc_set (const rtx_insn *insn)
846 {
847   rtx pat;
848   if (!JUMP_P (insn))
849     return NULL_RTX;
850   pat = PATTERN (insn);
851 
852   /* The set is allowed to appear either as the insn pattern or
853      the first set in a PARALLEL.  */
854   if (GET_CODE (pat) == PARALLEL)
855     pat = XVECEXP (pat, 0, 0);
856   if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
857     return pat;
858 
859   return NULL_RTX;
860 }
861 
862 /* Return true when insn is an unconditional direct jump,
863    possibly bundled inside a PARALLEL.  */
864 
865 int
866 any_uncondjump_p (const rtx_insn *insn)
867 {
868   const_rtx x = pc_set (insn);
869   if (!x)
870     return 0;
871   if (GET_CODE (SET_SRC (x)) != LABEL_REF)
872     return 0;
873   if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
874     return 0;
875   return 1;
876 }
877 
878 /* Return true when insn is a conditional jump.  This function works for
879    instructions containing PC sets in PARALLELs.  The instruction may have
880    various other effects so before removing the jump you must verify
881    onlyjump_p.
882 
883    Note that unlike condjump_p it returns false for unconditional jumps.  */
884 
885 int
886 any_condjump_p (const rtx_insn *insn)
887 {
888   const_rtx x = pc_set (insn);
889   enum rtx_code a, b;
890 
891   if (!x)
892     return 0;
893   if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
894     return 0;
895 
896   a = GET_CODE (XEXP (SET_SRC (x), 1));
897   b = GET_CODE (XEXP (SET_SRC (x), 2));
898 
899   return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
900 	  || (a == PC
901 	      && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
902 }
903 
904 /* Return the label of a conditional jump.  */
905 
906 rtx
907 condjump_label (const rtx_insn *insn)
908 {
909   rtx x = pc_set (insn);
910 
911   if (!x)
912     return NULL_RTX;
913   x = SET_SRC (x);
914   if (GET_CODE (x) == LABEL_REF)
915     return x;
916   if (GET_CODE (x) != IF_THEN_ELSE)
917     return NULL_RTX;
918   if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
919     return XEXP (x, 1);
920   if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
921     return XEXP (x, 2);
922   return NULL_RTX;
923 }
924 
925 /* Return TRUE if INSN is a return jump.  */
926 
927 int
928 returnjump_p (const rtx_insn *insn)
929 {
930   if (JUMP_P (insn))
931     {
932       subrtx_iterator::array_type array;
933       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
934 	{
935 	  const_rtx x = *iter;
936 	  switch (GET_CODE (x))
937 	    {
938 	    case RETURN:
939 	    case SIMPLE_RETURN:
940 	    case EH_RETURN:
941 	      return true;
942 
943 	    case SET:
944 	      if (SET_IS_RETURN_P (x))
945 		return true;
946 	      break;
947 
948 	    default:
949 	      break;
950 	    }
951 	}
952     }
953   return false;
954 }
955 
956 /* Return true if INSN is a (possibly conditional) return insn.  */
957 
958 int
959 eh_returnjump_p (rtx_insn *insn)
960 {
961   if (JUMP_P (insn))
962     {
963       subrtx_iterator::array_type array;
964       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
965 	if (GET_CODE (*iter) == EH_RETURN)
966 	  return true;
967     }
968   return false;
969 }
970 
971 /* Return true if INSN is a jump that only transfers control and
972    nothing more.  */
973 
974 int
975 onlyjump_p (const rtx_insn *insn)
976 {
977   rtx set;
978 
979   if (!JUMP_P (insn))
980     return 0;
981 
982   set = single_set (insn);
983   if (set == NULL)
984     return 0;
985   if (GET_CODE (SET_DEST (set)) != PC)
986     return 0;
987   if (side_effects_p (SET_SRC (set)))
988     return 0;
989 
990   return 1;
991 }
992 
993 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
994    NULL or a return.  */
995 bool
996 jump_to_label_p (const rtx_insn *insn)
997 {
998   return (JUMP_P (insn)
999 	  && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
1000 }
1001 
1002 /* Return nonzero if X is an RTX that only sets the condition codes
1003    and has no side effects.  */
1004 
1005 int
1006 only_sets_cc0_p (const_rtx x)
1007 {
1008   if (! x)
1009     return 0;
1010 
1011   if (INSN_P (x))
1012     x = PATTERN (x);
1013 
1014   return sets_cc0_p (x) == 1 && ! side_effects_p (x);
1015 }
1016 
1017 /* Return 1 if X is an RTX that does nothing but set the condition codes
1018    and CLOBBER or USE registers.
1019    Return -1 if X does explicitly set the condition codes,
1020    but also does other things.  */
1021 
1022 int
1023 sets_cc0_p (const_rtx x)
1024 {
1025   if (! x)
1026     return 0;
1027 
1028   if (INSN_P (x))
1029     x = PATTERN (x);
1030 
1031   if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1032     return 1;
1033   if (GET_CODE (x) == PARALLEL)
1034     {
1035       int i;
1036       int sets_cc0 = 0;
1037       int other_things = 0;
1038       for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1039 	{
1040 	  if (GET_CODE (XVECEXP (x, 0, i)) == SET
1041 	      && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1042 	    sets_cc0 = 1;
1043 	  else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1044 	    other_things = 1;
1045 	}
1046       return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1047     }
1048   return 0;
1049 }
1050 
1051 /* Find all CODE_LABELs referred to in X, and increment their use
1052    counts.  If INSN is a JUMP_INSN and there is at least one
1053    CODE_LABEL referenced in INSN as a jump target, then store the last
1054    one in JUMP_LABEL (INSN).  For a tablejump, this must be the label
1055    for the ADDR_VEC.  Store any other jump targets as REG_LABEL_TARGET
1056    notes.  If INSN is an INSN or a CALL_INSN or non-target operands of
1057    a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1058    INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1059    For returnjumps, the JUMP_LABEL will also be set as appropriate.
1060 
1061    Note that two labels separated by a loop-beginning note
1062    must be kept distinct if we have not yet done loop-optimization,
1063    because the gap between them is where loop-optimize
1064    will want to move invariant code to.  CROSS_JUMP tells us
1065    that loop-optimization is done with.  */
1066 
1067 void
1068 mark_jump_label (rtx x, rtx_insn *insn, int in_mem)
1069 {
1070   rtx asmop = extract_asm_operands (x);
1071   if (asmop)
1072     mark_jump_label_asm (asmop, insn);
1073   else
1074     mark_jump_label_1 (x, insn, in_mem != 0,
1075 		       (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1076 }
1077 
1078 /* Worker function for mark_jump_label.  IN_MEM is TRUE when X occurs
1079    within a (MEM ...).  IS_TARGET is TRUE when X is to be treated as a
1080    jump-target; when the JUMP_LABEL field of INSN should be set or a
1081    REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1082    note.  */
1083 
1084 static void
1085 mark_jump_label_1 (rtx x, rtx_insn *insn, bool in_mem, bool is_target)
1086 {
1087   RTX_CODE code = GET_CODE (x);
1088   int i;
1089   const char *fmt;
1090 
1091   switch (code)
1092     {
1093     case PC:
1094     case CC0:
1095     case REG:
1096     case CLOBBER:
1097     case CLOBBER_HIGH:
1098     case CALL:
1099       return;
1100 
1101     case RETURN:
1102     case SIMPLE_RETURN:
1103       if (is_target)
1104 	{
1105 	  gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1106 	  JUMP_LABEL (insn) = x;
1107 	}
1108       return;
1109 
1110     case MEM:
1111       in_mem = true;
1112       break;
1113 
1114     case SEQUENCE:
1115       {
1116 	rtx_sequence *seq = as_a <rtx_sequence *> (x);
1117 	for (i = 0; i < seq->len (); i++)
1118 	  mark_jump_label (PATTERN (seq->insn (i)),
1119 			   seq->insn (i), 0);
1120       }
1121       return;
1122 
1123     case SYMBOL_REF:
1124       if (!in_mem)
1125 	return;
1126 
1127       /* If this is a constant-pool reference, see if it is a label.  */
1128       if (CONSTANT_POOL_ADDRESS_P (x))
1129 	mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1130       break;
1131 
1132       /* Handle operands in the condition of an if-then-else as for a
1133 	 non-jump insn.  */
1134     case IF_THEN_ELSE:
1135       if (!is_target)
1136 	break;
1137       mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1138       mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1139       mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1140       return;
1141 
1142     case LABEL_REF:
1143       {
1144 	rtx_insn *label = label_ref_label (x);
1145 
1146 	/* Ignore remaining references to unreachable labels that
1147 	   have been deleted.  */
1148 	if (NOTE_P (label)
1149 	    && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1150 	  break;
1151 
1152 	gcc_assert (LABEL_P (label));
1153 
1154 	/* Ignore references to labels of containing functions.  */
1155 	if (LABEL_REF_NONLOCAL_P (x))
1156 	  break;
1157 
1158 	set_label_ref_label (x, label);
1159 	if (! insn || ! insn->deleted ())
1160 	  ++LABEL_NUSES (label);
1161 
1162 	if (insn)
1163 	  {
1164 	    if (is_target
1165 		/* Do not change a previous setting of JUMP_LABEL.  If the
1166 		   JUMP_LABEL slot is occupied by a different label,
1167 		   create a note for this label.  */
1168 		&& (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1169 	      JUMP_LABEL (insn) = label;
1170 	    else
1171 	      {
1172 		enum reg_note kind
1173 		  = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1174 
1175 		/* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1176 		   for LABEL unless there already is one.  All uses of
1177 		   a label, except for the primary target of a jump,
1178 		   must have such a note.  */
1179 		if (! find_reg_note (insn, kind, label))
1180 		  add_reg_note (insn, kind, label);
1181 	      }
1182 	  }
1183 	return;
1184       }
1185 
1186     /* Do walk the labels in a vector, but not the first operand of an
1187        ADDR_DIFF_VEC.  Don't set the JUMP_LABEL of a vector.  */
1188     case ADDR_VEC:
1189     case ADDR_DIFF_VEC:
1190       if (! insn->deleted ())
1191 	{
1192 	  int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1193 
1194 	  for (i = 0; i < XVECLEN (x, eltnum); i++)
1195 	    mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL, in_mem,
1196 			       is_target);
1197 	}
1198       return;
1199 
1200     default:
1201       break;
1202     }
1203 
1204   fmt = GET_RTX_FORMAT (code);
1205 
1206   /* The primary target of a tablejump is the label of the ADDR_VEC,
1207      which is canonically mentioned *last* in the insn.  To get it
1208      marked as JUMP_LABEL, we iterate over items in reverse order.  */
1209   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1210     {
1211       if (fmt[i] == 'e')
1212 	mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1213       else if (fmt[i] == 'E')
1214 	{
1215 	  int j;
1216 
1217 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1218 	    mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1219 			       is_target);
1220 	}
1221     }
1222 }
1223 
1224 /* Worker function for mark_jump_label.  Handle asm insns specially.
1225    In particular, output operands need not be considered so we can
1226    avoid re-scanning the replicated asm_operand.  Also, the asm_labels
1227    need to be considered targets.  */
1228 
1229 static void
1230 mark_jump_label_asm (rtx asmop, rtx_insn *insn)
1231 {
1232   int i;
1233 
1234   for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1235     mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1236 
1237   for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1238     mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1239 }
1240 
1241 /* Delete insn INSN from the chain of insns and update label ref counts
1242    and delete insns now unreachable.
1243 
1244    Returns the first insn after INSN that was not deleted.
1245 
1246    Usage of this instruction is deprecated.  Use delete_insn instead and
1247    subsequent cfg_cleanup pass to delete unreachable code if needed.  */
1248 
1249 rtx_insn *
1250 delete_related_insns (rtx uncast_insn)
1251 {
1252   rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1253   int was_code_label = (LABEL_P (insn));
1254   rtx note;
1255   rtx_insn *next = NEXT_INSN (insn), *prev = PREV_INSN (insn);
1256 
1257   while (next && next->deleted ())
1258     next = NEXT_INSN (next);
1259 
1260   /* This insn is already deleted => return first following nondeleted.  */
1261   if (insn->deleted ())
1262     return next;
1263 
1264   delete_insn (insn);
1265 
1266   /* If instruction is followed by a barrier,
1267      delete the barrier too.  */
1268 
1269   if (next != 0 && BARRIER_P (next))
1270     delete_insn (next);
1271 
1272   /* If deleting a jump, decrement the count of the label,
1273      and delete the label if it is now unused.  */
1274 
1275   if (jump_to_label_p (insn))
1276     {
1277       rtx lab = JUMP_LABEL (insn);
1278       rtx_jump_table_data *lab_next;
1279 
1280       if (LABEL_NUSES (lab) == 0)
1281 	/* This can delete NEXT or PREV,
1282 	   either directly if NEXT is JUMP_LABEL (INSN),
1283 	   or indirectly through more levels of jumps.  */
1284 	delete_related_insns (lab);
1285       else if (tablejump_p (insn, NULL, &lab_next))
1286 	{
1287 	  /* If we're deleting the tablejump, delete the dispatch table.
1288 	     We may not be able to kill the label immediately preceding
1289 	     just yet, as it might be referenced in code leading up to
1290 	     the tablejump.  */
1291 	  delete_related_insns (lab_next);
1292 	}
1293     }
1294 
1295   /* Likewise if we're deleting a dispatch table.  */
1296 
1297   if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1298     {
1299       rtvec labels = table->get_labels ();
1300       int i;
1301       int len = GET_NUM_ELEM (labels);
1302 
1303       for (i = 0; i < len; i++)
1304 	if (LABEL_NUSES (XEXP (RTVEC_ELT (labels, i), 0)) == 0)
1305 	  delete_related_insns (XEXP (RTVEC_ELT (labels, i), 0));
1306       while (next && next->deleted ())
1307 	next = NEXT_INSN (next);
1308       return next;
1309     }
1310 
1311   /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1312      REG_LABEL_OPERAND or REG_LABEL_TARGET note.  */
1313   if (INSN_P (insn))
1314     for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1315       if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1316 	   || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1317 	  /* This could also be a NOTE_INSN_DELETED_LABEL note.  */
1318 	  && LABEL_P (XEXP (note, 0)))
1319 	if (LABEL_NUSES (XEXP (note, 0)) == 0)
1320 	  delete_related_insns (XEXP (note, 0));
1321 
1322   while (prev && (prev->deleted () || NOTE_P (prev)))
1323     prev = PREV_INSN (prev);
1324 
1325   /* If INSN was a label and a dispatch table follows it,
1326      delete the dispatch table.  The tablejump must have gone already.
1327      It isn't useful to fall through into a table.  */
1328 
1329   if (was_code_label
1330       && NEXT_INSN (insn) != 0
1331       && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1332     next = delete_related_insns (NEXT_INSN (insn));
1333 
1334   /* If INSN was a label, delete insns following it if now unreachable.  */
1335 
1336   if (was_code_label && prev && BARRIER_P (prev))
1337     {
1338       enum rtx_code code;
1339       while (next)
1340 	{
1341 	  code = GET_CODE (next);
1342 	  if (code == NOTE)
1343 	    next = NEXT_INSN (next);
1344 	  /* Keep going past other deleted labels to delete what follows.  */
1345 	  else if (code == CODE_LABEL && next->deleted ())
1346 	    next = NEXT_INSN (next);
1347 	  /* Keep the (use (insn))s created by dbr_schedule, which needs
1348 	     them in order to track liveness relative to a previous
1349 	     barrier.  */
1350 	  else if (INSN_P (next)
1351 		   && GET_CODE (PATTERN (next)) == USE
1352 		   && INSN_P (XEXP (PATTERN (next), 0)))
1353 	    next = NEXT_INSN (next);
1354 	  else if (code == BARRIER || INSN_P (next))
1355 	    /* Note: if this deletes a jump, it can cause more
1356 	       deletion of unreachable code, after a different label.
1357 	       As long as the value from this recursive call is correct,
1358 	       this invocation functions correctly.  */
1359 	    next = delete_related_insns (next);
1360 	  else
1361 	    break;
1362 	}
1363     }
1364 
1365   /* I feel a little doubtful about this loop,
1366      but I see no clean and sure alternative way
1367      to find the first insn after INSN that is not now deleted.
1368      I hope this works.  */
1369   while (next && next->deleted ())
1370     next = NEXT_INSN (next);
1371   return next;
1372 }
1373 
1374 /* Delete a range of insns from FROM to TO, inclusive.
1375    This is for the sake of peephole optimization, so assume
1376    that whatever these insns do will still be done by a new
1377    peephole insn that will replace them.  */
1378 
1379 void
1380 delete_for_peephole (rtx_insn *from, rtx_insn *to)
1381 {
1382   rtx_insn *insn = from;
1383 
1384   while (1)
1385     {
1386       rtx_insn *next = NEXT_INSN (insn);
1387       rtx_insn *prev = PREV_INSN (insn);
1388 
1389       if (!NOTE_P (insn))
1390 	{
1391 	  insn->set_deleted();
1392 
1393 	  /* Patch this insn out of the chain.  */
1394 	  /* We don't do this all at once, because we
1395 	     must preserve all NOTEs.  */
1396 	  if (prev)
1397 	    SET_NEXT_INSN (prev) = next;
1398 
1399 	  if (next)
1400 	    SET_PREV_INSN (next) = prev;
1401 	}
1402 
1403       if (insn == to)
1404 	break;
1405       insn = next;
1406     }
1407 
1408   /* Note that if TO is an unconditional jump
1409      we *do not* delete the BARRIER that follows,
1410      since the peephole that replaces this sequence
1411      is also an unconditional jump in that case.  */
1412 }
1413 
1414 /* A helper function for redirect_exp_1; examines its input X and returns
1415    either a LABEL_REF around a label, or a RETURN if X was NULL.  */
1416 static rtx
1417 redirect_target (rtx x)
1418 {
1419   if (x == NULL_RTX)
1420     return ret_rtx;
1421   if (!ANY_RETURN_P (x))
1422     return gen_rtx_LABEL_REF (Pmode, x);
1423   return x;
1424 }
1425 
1426 /* Throughout LOC, redirect OLABEL to NLABEL.  Treat null OLABEL or
1427    NLABEL as a return.  Accrue modifications into the change group.  */
1428 
1429 static void
1430 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx_insn *insn)
1431 {
1432   rtx x = *loc;
1433   RTX_CODE code = GET_CODE (x);
1434   int i;
1435   const char *fmt;
1436 
1437   if ((code == LABEL_REF && label_ref_label (x) == olabel)
1438       || x == olabel)
1439     {
1440       x = redirect_target (nlabel);
1441       if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1442  	x = gen_rtx_SET (pc_rtx, x);
1443       validate_change (insn, loc, x, 1);
1444       return;
1445     }
1446 
1447   if (code == SET && SET_DEST (x) == pc_rtx
1448       && ANY_RETURN_P (nlabel)
1449       && GET_CODE (SET_SRC (x)) == LABEL_REF
1450       && label_ref_label (SET_SRC (x)) == olabel)
1451     {
1452       validate_change (insn, loc, nlabel, 1);
1453       return;
1454     }
1455 
1456   if (code == IF_THEN_ELSE)
1457     {
1458       /* Skip the condition of an IF_THEN_ELSE.  We only want to
1459          change jump destinations, not eventual label comparisons.  */
1460       redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1461       redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1462       return;
1463     }
1464 
1465   fmt = GET_RTX_FORMAT (code);
1466   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1467     {
1468       if (fmt[i] == 'e')
1469 	redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1470       else if (fmt[i] == 'E')
1471 	{
1472 	  int j;
1473 	  for (j = 0; j < XVECLEN (x, i); j++)
1474 	    redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1475 	}
1476     }
1477 }
1478 
1479 /* Make JUMP go to NLABEL instead of where it jumps now.  Accrue
1480    the modifications into the change group.  Return false if we did
1481    not see how to do that.  */
1482 
1483 int
1484 redirect_jump_1 (rtx_insn *jump, rtx nlabel)
1485 {
1486   int ochanges = num_validated_changes ();
1487   rtx *loc, asmop;
1488 
1489   gcc_assert (nlabel != NULL_RTX);
1490   asmop = extract_asm_operands (PATTERN (jump));
1491   if (asmop)
1492     {
1493       if (nlabel == NULL)
1494 	return 0;
1495       gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1496       loc = &ASM_OPERANDS_LABEL (asmop, 0);
1497     }
1498   else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1499     loc = &XVECEXP (PATTERN (jump), 0, 0);
1500   else
1501     loc = &PATTERN (jump);
1502 
1503   redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1504   return num_validated_changes () > ochanges;
1505 }
1506 
1507 /* Make JUMP go to NLABEL instead of where it jumps now.  If the old
1508    jump target label is unused as a result, it and the code following
1509    it may be deleted.
1510 
1511    Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1512    in that case we are to turn the jump into a (possibly conditional)
1513    return insn.
1514 
1515    The return value will be 1 if the change was made, 0 if it wasn't
1516    (this can only occur when trying to produce return insns).  */
1517 
1518 int
1519 redirect_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1520 {
1521   rtx olabel = jump->jump_label ();
1522 
1523   if (!nlabel)
1524     {
1525       /* If there is no label, we are asked to redirect to the EXIT block.
1526 	 When before the epilogue is emitted, return/simple_return cannot be
1527 	 created so we return 0 immediately.  After the epilogue is emitted,
1528 	 we always expect a label, either a non-null label, or a
1529 	 return/simple_return RTX.  */
1530 
1531       if (!epilogue_completed)
1532 	return 0;
1533       gcc_unreachable ();
1534     }
1535 
1536   if (nlabel == olabel)
1537     return 1;
1538 
1539   if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1540     return 0;
1541 
1542   redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1543   return 1;
1544 }
1545 
1546 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1547    NLABEL in JUMP.
1548    If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1549    count has dropped to zero.  */
1550 void
1551 redirect_jump_2 (rtx_jump_insn *jump, rtx olabel, rtx nlabel, int delete_unused,
1552 		 int invert)
1553 {
1554   rtx note;
1555 
1556   gcc_assert (JUMP_LABEL (jump) == olabel);
1557 
1558   /* Negative DELETE_UNUSED used to be used to signalize behavior on
1559      moving FUNCTION_END note.  Just sanity check that no user still worry
1560      about this.  */
1561   gcc_assert (delete_unused >= 0);
1562   JUMP_LABEL (jump) = nlabel;
1563   if (!ANY_RETURN_P (nlabel))
1564     ++LABEL_NUSES (nlabel);
1565 
1566   /* Update labels in any REG_EQUAL note.  */
1567   if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1568     {
1569       if (ANY_RETURN_P (nlabel)
1570 	  || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1571 	remove_note (jump, note);
1572       else
1573 	{
1574 	  redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1575 	  confirm_change_group ();
1576 	}
1577     }
1578 
1579   /* Handle the case where we had a conditional crossing jump to a return
1580      label and are now changing it into a direct conditional return.
1581      The jump is no longer crossing in that case.  */
1582   if (ANY_RETURN_P (nlabel))
1583     CROSSING_JUMP_P (jump) = 0;
1584 
1585   if (!ANY_RETURN_P (olabel)
1586       && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1587       /* Undefined labels will remain outside the insn stream.  */
1588       && INSN_UID (olabel))
1589     delete_related_insns (olabel);
1590   if (invert)
1591     invert_br_probabilities (jump);
1592 }
1593 
1594 /* Invert the jump condition X contained in jump insn INSN.  Accrue the
1595    modifications into the change group.  Return nonzero for success.  */
1596 static int
1597 invert_exp_1 (rtx x, rtx_insn *insn)
1598 {
1599   RTX_CODE code = GET_CODE (x);
1600 
1601   if (code == IF_THEN_ELSE)
1602     {
1603       rtx comp = XEXP (x, 0);
1604       rtx tem;
1605       enum rtx_code reversed_code;
1606 
1607       /* We can do this in two ways:  The preferable way, which can only
1608 	 be done if this is not an integer comparison, is to reverse
1609 	 the comparison code.  Otherwise, swap the THEN-part and ELSE-part
1610 	 of the IF_THEN_ELSE.  If we can't do either, fail.  */
1611 
1612       reversed_code = reversed_comparison_code (comp, insn);
1613 
1614       if (reversed_code != UNKNOWN)
1615 	{
1616 	  validate_change (insn, &XEXP (x, 0),
1617 			   gen_rtx_fmt_ee (reversed_code,
1618 					   GET_MODE (comp), XEXP (comp, 0),
1619 					   XEXP (comp, 1)),
1620 			   1);
1621 	  return 1;
1622 	}
1623 
1624       tem = XEXP (x, 1);
1625       validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1626       validate_change (insn, &XEXP (x, 2), tem, 1);
1627       return 1;
1628     }
1629   else
1630     return 0;
1631 }
1632 
1633 /* Invert the condition of the jump JUMP, and make it jump to label
1634    NLABEL instead of where it jumps now.  Accrue changes into the
1635    change group.  Return false if we didn't see how to perform the
1636    inversion and redirection.  */
1637 
1638 int
1639 invert_jump_1 (rtx_jump_insn *jump, rtx nlabel)
1640 {
1641   rtx x = pc_set (jump);
1642   int ochanges;
1643   int ok;
1644 
1645   ochanges = num_validated_changes ();
1646   if (x == NULL)
1647     return 0;
1648   ok = invert_exp_1 (SET_SRC (x), jump);
1649   gcc_assert (ok);
1650 
1651   if (num_validated_changes () == ochanges)
1652     return 0;
1653 
1654   /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1655      in Pmode, so checking this is not merely an optimization.  */
1656   return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1657 }
1658 
1659 /* Invert the condition of the jump JUMP, and make it jump to label
1660    NLABEL instead of where it jumps now.  Return true if successful.  */
1661 
1662 int
1663 invert_jump (rtx_jump_insn *jump, rtx nlabel, int delete_unused)
1664 {
1665   rtx olabel = JUMP_LABEL (jump);
1666 
1667   if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1668     {
1669       redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1670       return 1;
1671     }
1672   cancel_changes (0);
1673   return 0;
1674 }
1675 
1676 
1677 /* Like rtx_equal_p except that it considers two REGs as equal
1678    if they renumber to the same value and considers two commutative
1679    operations to be the same if the order of the operands has been
1680    reversed.  */
1681 
1682 int
1683 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1684 {
1685   int i;
1686   const enum rtx_code code = GET_CODE (x);
1687   const char *fmt;
1688 
1689   if (x == y)
1690     return 1;
1691 
1692   if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1693       && (REG_P (y) || (GET_CODE (y) == SUBREG
1694 				  && REG_P (SUBREG_REG (y)))))
1695     {
1696       int reg_x = -1, reg_y = -1;
1697       poly_int64 byte_x = 0, byte_y = 0;
1698       struct subreg_info info;
1699 
1700       if (GET_MODE (x) != GET_MODE (y))
1701 	return 0;
1702 
1703       /* If we haven't done any renumbering, don't
1704 	 make any assumptions.  */
1705       if (reg_renumber == 0)
1706 	return rtx_equal_p (x, y);
1707 
1708       if (code == SUBREG)
1709 	{
1710 	  reg_x = REGNO (SUBREG_REG (x));
1711 	  byte_x = SUBREG_BYTE (x);
1712 
1713 	  if (reg_renumber[reg_x] >= 0)
1714 	    {
1715 	      subreg_get_info (reg_renumber[reg_x],
1716 			       GET_MODE (SUBREG_REG (x)), byte_x,
1717 			       GET_MODE (x), &info);
1718 	      if (!info.representable_p)
1719 		return 0;
1720 	      reg_x = info.offset;
1721 	      byte_x = 0;
1722 	    }
1723 	}
1724       else
1725 	{
1726 	  reg_x = REGNO (x);
1727 	  if (reg_renumber[reg_x] >= 0)
1728 	    reg_x = reg_renumber[reg_x];
1729 	}
1730 
1731       if (GET_CODE (y) == SUBREG)
1732 	{
1733 	  reg_y = REGNO (SUBREG_REG (y));
1734 	  byte_y = SUBREG_BYTE (y);
1735 
1736 	  if (reg_renumber[reg_y] >= 0)
1737 	    {
1738 	      subreg_get_info (reg_renumber[reg_y],
1739 			       GET_MODE (SUBREG_REG (y)), byte_y,
1740 			       GET_MODE (y), &info);
1741 	      if (!info.representable_p)
1742 		return 0;
1743 	      reg_y = info.offset;
1744 	      byte_y = 0;
1745 	    }
1746 	}
1747       else
1748 	{
1749 	  reg_y = REGNO (y);
1750 	  if (reg_renumber[reg_y] >= 0)
1751 	    reg_y = reg_renumber[reg_y];
1752 	}
1753 
1754       return reg_x >= 0 && reg_x == reg_y && known_eq (byte_x, byte_y);
1755     }
1756 
1757   /* Now we have disposed of all the cases
1758      in which different rtx codes can match.  */
1759   if (code != GET_CODE (y))
1760     return 0;
1761 
1762   switch (code)
1763     {
1764     case PC:
1765     case CC0:
1766     case ADDR_VEC:
1767     case ADDR_DIFF_VEC:
1768     CASE_CONST_UNIQUE:
1769       return 0;
1770 
1771     case LABEL_REF:
1772       /* We can't assume nonlocal labels have their following insns yet.  */
1773       if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1774 	return label_ref_label (x) == label_ref_label (y);
1775 
1776       /* Two label-refs are equivalent if they point at labels
1777 	 in the same position in the instruction stream.  */
1778       else
1779 	{
1780 	  rtx_insn *xi = next_nonnote_nondebug_insn (label_ref_label (x));
1781 	  rtx_insn *yi = next_nonnote_nondebug_insn (label_ref_label (y));
1782 	  while (xi && LABEL_P (xi))
1783 	    xi = next_nonnote_nondebug_insn (xi);
1784 	  while (yi && LABEL_P (yi))
1785 	    yi = next_nonnote_nondebug_insn (yi);
1786 	  return xi == yi;
1787 	}
1788 
1789     case SYMBOL_REF:
1790       return XSTR (x, 0) == XSTR (y, 0);
1791 
1792     case CODE_LABEL:
1793       /* If we didn't match EQ equality above, they aren't the same.  */
1794       return 0;
1795 
1796     default:
1797       break;
1798     }
1799 
1800   /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
1801 
1802   if (GET_MODE (x) != GET_MODE (y))
1803     return 0;
1804 
1805   /* MEMs referring to different address space are not equivalent.  */
1806   if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1807     return 0;
1808 
1809   /* For commutative operations, the RTX match if the operand match in any
1810      order.  Also handle the simple binary and unary cases without a loop.  */
1811   if (targetm.commutative_p (x, UNKNOWN))
1812     return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1813 	     && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1814 	    || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1815 		&& rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1816   else if (NON_COMMUTATIVE_P (x))
1817     return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1818 	    && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1819   else if (UNARY_P (x))
1820     return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1821 
1822   /* Compare the elements.  If any pair of corresponding elements
1823      fail to match, return 0 for the whole things.  */
1824 
1825   fmt = GET_RTX_FORMAT (code);
1826   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1827     {
1828       int j;
1829       switch (fmt[i])
1830 	{
1831 	case 'w':
1832 	  if (XWINT (x, i) != XWINT (y, i))
1833 	    return 0;
1834 	  break;
1835 
1836 	case 'i':
1837 	  if (XINT (x, i) != XINT (y, i))
1838 	    {
1839 	      if (((code == ASM_OPERANDS && i == 6)
1840 		   || (code == ASM_INPUT && i == 1)))
1841 		break;
1842 	      return 0;
1843 	    }
1844 	  break;
1845 
1846 	case 'p':
1847 	  if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
1848 	    return 0;
1849 	  break;
1850 
1851 	case 't':
1852 	  if (XTREE (x, i) != XTREE (y, i))
1853 	    return 0;
1854 	  break;
1855 
1856 	case 's':
1857 	  if (strcmp (XSTR (x, i), XSTR (y, i)))
1858 	    return 0;
1859 	  break;
1860 
1861 	case 'e':
1862 	  if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1863 	    return 0;
1864 	  break;
1865 
1866 	case 'u':
1867 	  if (XEXP (x, i) != XEXP (y, i))
1868 	    return 0;
1869 	  /* Fall through.  */
1870 	case '0':
1871 	  break;
1872 
1873 	case 'E':
1874 	  if (XVECLEN (x, i) != XVECLEN (y, i))
1875 	    return 0;
1876 	  for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1877 	    if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1878 	      return 0;
1879 	  break;
1880 
1881 	default:
1882 	  gcc_unreachable ();
1883 	}
1884     }
1885   return 1;
1886 }
1887 
1888 /* If X is a hard register or equivalent to one or a subregister of one,
1889    return the hard register number.  If X is a pseudo register that was not
1890    assigned a hard register, return the pseudo register number.  Otherwise,
1891    return -1.  Any rtx is valid for X.  */
1892 
1893 int
1894 true_regnum (const_rtx x)
1895 {
1896   if (REG_P (x))
1897     {
1898       if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1899 	  && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1900 	return reg_renumber[REGNO (x)];
1901       return REGNO (x);
1902     }
1903   if (GET_CODE (x) == SUBREG)
1904     {
1905       int base = true_regnum (SUBREG_REG (x));
1906       if (base >= 0
1907 	  && base < FIRST_PSEUDO_REGISTER)
1908 	{
1909 	  struct subreg_info info;
1910 
1911 	  subreg_get_info (lra_in_progress
1912 			   ? (unsigned) base : REGNO (SUBREG_REG (x)),
1913 			   GET_MODE (SUBREG_REG (x)),
1914 			   SUBREG_BYTE (x), GET_MODE (x), &info);
1915 
1916 	  if (info.representable_p)
1917 	    return base + info.offset;
1918 	}
1919     }
1920   return -1;
1921 }
1922 
1923 /* Return regno of the register REG and handle subregs too.  */
1924 unsigned int
1925 reg_or_subregno (const_rtx reg)
1926 {
1927   if (GET_CODE (reg) == SUBREG)
1928     reg = SUBREG_REG (reg);
1929   gcc_assert (REG_P (reg));
1930   return REGNO (reg);
1931 }
1932