xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ira.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Integrated Register Allocator (IRA) entry point.
2    Copyright (C) 2006-2017 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The integrated register allocator (IRA) is a
22    regional register allocator performing graph coloring on a top-down
23    traversal of nested regions.  Graph coloring in a region is based
24    on Chaitin-Briggs algorithm.  It is called integrated because
25    register coalescing, register live range splitting, and choosing a
26    better hard register are done on-the-fly during coloring.  Register
27    coalescing and choosing a cheaper hard register is done by hard
28    register preferencing during hard register assigning.  The live
29    range splitting is a byproduct of the regional register allocation.
30 
31    Major IRA notions are:
32 
33      o *Region* is a part of CFG where graph coloring based on
34        Chaitin-Briggs algorithm is done.  IRA can work on any set of
35        nested CFG regions forming a tree.  Currently the regions are
36        the entire function for the root region and natural loops for
37        the other regions.  Therefore data structure representing a
38        region is called loop_tree_node.
39 
40      o *Allocno class* is a register class used for allocation of
41        given allocno.  It means that only hard register of given
42        register class can be assigned to given allocno.  In reality,
43        even smaller subset of (*profitable*) hard registers can be
44        assigned.  In rare cases, the subset can be even smaller
45        because our modification of Chaitin-Briggs algorithm requires
46        that sets of hard registers can be assigned to allocnos forms a
47        forest, i.e. the sets can be ordered in a way where any
48        previous set is not intersected with given set or is a superset
49        of given set.
50 
51      o *Pressure class* is a register class belonging to a set of
52        register classes containing all of the hard-registers available
53        for register allocation.  The set of all pressure classes for a
54        target is defined in the corresponding machine-description file
55        according some criteria.  Register pressure is calculated only
56        for pressure classes and it affects some IRA decisions as
57        forming allocation regions.
58 
59      o *Allocno* represents the live range of a pseudo-register in a
60        region.  Besides the obvious attributes like the corresponding
61        pseudo-register number, allocno class, conflicting allocnos and
62        conflicting hard-registers, there are a few allocno attributes
63        which are important for understanding the allocation algorithm:
64 
65        - *Live ranges*.  This is a list of ranges of *program points*
66          where the allocno lives.  Program points represent places
67          where a pseudo can be born or become dead (there are
68          approximately two times more program points than the insns)
69          and they are represented by integers starting with 0.  The
70          live ranges are used to find conflicts between allocnos.
71          They also play very important role for the transformation of
72          the IRA internal representation of several regions into a one
73          region representation.  The later is used during the reload
74          pass work because each allocno represents all of the
75          corresponding pseudo-registers.
76 
77        - *Hard-register costs*.  This is a vector of size equal to the
78          number of available hard-registers of the allocno class.  The
79          cost of a callee-clobbered hard-register for an allocno is
80          increased by the cost of save/restore code around the calls
81          through the given allocno's life.  If the allocno is a move
82          instruction operand and another operand is a hard-register of
83          the allocno class, the cost of the hard-register is decreased
84          by the move cost.
85 
86          When an allocno is assigned, the hard-register with minimal
87          full cost is used.  Initially, a hard-register's full cost is
88          the corresponding value from the hard-register's cost vector.
89          If the allocno is connected by a *copy* (see below) to
90          another allocno which has just received a hard-register, the
91          cost of the hard-register is decreased.  Before choosing a
92          hard-register for an allocno, the allocno's current costs of
93          the hard-registers are modified by the conflict hard-register
94          costs of all of the conflicting allocnos which are not
95          assigned yet.
96 
97        - *Conflict hard-register costs*.  This is a vector of the same
98          size as the hard-register costs vector.  To permit an
99          unassigned allocno to get a better hard-register, IRA uses
100          this vector to calculate the final full cost of the
101          available hard-registers.  Conflict hard-register costs of an
102          unassigned allocno are also changed with a change of the
103          hard-register cost of the allocno when a copy involving the
104          allocno is processed as described above.  This is done to
105          show other unassigned allocnos that a given allocno prefers
106          some hard-registers in order to remove the move instruction
107          corresponding to the copy.
108 
109      o *Cap*.  If a pseudo-register does not live in a region but
110        lives in a nested region, IRA creates a special allocno called
111        a cap in the outer region.  A region cap is also created for a
112        subregion cap.
113 
114      o *Copy*.  Allocnos can be connected by copies.  Copies are used
115        to modify hard-register costs for allocnos during coloring.
116        Such modifications reflects a preference to use the same
117        hard-register for the allocnos connected by copies.  Usually
118        copies are created for move insns (in this case it results in
119        register coalescing).  But IRA also creates copies for operands
120        of an insn which should be assigned to the same hard-register
121        due to constraints in the machine description (it usually
122        results in removing a move generated in reload to satisfy
123        the constraints) and copies referring to the allocno which is
124        the output operand of an instruction and the allocno which is
125        an input operand dying in the instruction (creation of such
126        copies results in less register shuffling).  IRA *does not*
127        create copies between the same register allocnos from different
128        regions because we use another technique for propagating
129        hard-register preference on the borders of regions.
130 
131    Allocnos (including caps) for the upper region in the region tree
132    *accumulate* information important for coloring from allocnos with
133    the same pseudo-register from nested regions.  This includes
134    hard-register and memory costs, conflicts with hard-registers,
135    allocno conflicts, allocno copies and more.  *Thus, attributes for
136    allocnos in a region have the same values as if the region had no
137    subregions*.  It means that attributes for allocnos in the
138    outermost region corresponding to the function have the same values
139    as though the allocation used only one region which is the entire
140    function.  It also means that we can look at IRA work as if the
141    first IRA did allocation for all function then it improved the
142    allocation for loops then their subloops and so on.
143 
144    IRA major passes are:
145 
146      o Building IRA internal representation which consists of the
147        following subpasses:
148 
149        * First, IRA builds regions and creates allocnos (file
150          ira-build.c) and initializes most of their attributes.
151 
152        * Then IRA finds an allocno class for each allocno and
153          calculates its initial (non-accumulated) cost of memory and
154          each hard-register of its allocno class (file ira-cost.c).
155 
156        * IRA creates live ranges of each allocno, calculates register
157          pressure for each pressure class in each region, sets up
158          conflict hard registers for each allocno and info about calls
159          the allocno lives through (file ira-lives.c).
160 
161        * IRA removes low register pressure loops from the regions
162          mostly to speed IRA up (file ira-build.c).
163 
164        * IRA propagates accumulated allocno info from lower region
165          allocnos to corresponding upper region allocnos (file
166          ira-build.c).
167 
168        * IRA creates all caps (file ira-build.c).
169 
170        * Having live-ranges of allocnos and their classes, IRA creates
171          conflicting allocnos for each allocno.  Conflicting allocnos
172          are stored as a bit vector or array of pointers to the
173          conflicting allocnos whatever is more profitable (file
174          ira-conflicts.c).  At this point IRA creates allocno copies.
175 
176      o Coloring.  Now IRA has all necessary info to start graph coloring
177        process.  It is done in each region on top-down traverse of the
178        region tree (file ira-color.c).  There are following subpasses:
179 
180        * Finding profitable hard registers of corresponding allocno
181          class for each allocno.  For example, only callee-saved hard
182          registers are frequently profitable for allocnos living
183          through colors.  If the profitable hard register set of
184          allocno does not form a tree based on subset relation, we use
185          some approximation to form the tree.  This approximation is
186          used to figure out trivial colorability of allocnos.  The
187          approximation is a pretty rare case.
188 
189        * Putting allocnos onto the coloring stack.  IRA uses Briggs
190          optimistic coloring which is a major improvement over
191          Chaitin's coloring.  Therefore IRA does not spill allocnos at
192          this point.  There is some freedom in the order of putting
193          allocnos on the stack which can affect the final result of
194          the allocation.  IRA uses some heuristics to improve the
195          order.  The major one is to form *threads* from colorable
196          allocnos and push them on the stack by threads.  Thread is a
197          set of non-conflicting colorable allocnos connected by
198          copies.  The thread contains allocnos from the colorable
199          bucket or colorable allocnos already pushed onto the coloring
200          stack.  Pushing thread allocnos one after another onto the
201          stack increases chances of removing copies when the allocnos
202          get the same hard reg.
203 
204 	 We also use a modification of Chaitin-Briggs algorithm which
205          works for intersected register classes of allocnos.  To
206          figure out trivial colorability of allocnos, the mentioned
207          above tree of hard register sets is used.  To get an idea how
208          the algorithm works in i386 example, let us consider an
209          allocno to which any general hard register can be assigned.
210          If the allocno conflicts with eight allocnos to which only
211          EAX register can be assigned, given allocno is still
212          trivially colorable because all conflicting allocnos might be
213          assigned only to EAX and all other general hard registers are
214          still free.
215 
216 	 To get an idea of the used trivial colorability criterion, it
217 	 is also useful to read article "Graph-Coloring Register
218 	 Allocation for Irregular Architectures" by Michael D. Smith
219 	 and Glen Holloway.  Major difference between the article
220 	 approach and approach used in IRA is that Smith's approach
221 	 takes register classes only from machine description and IRA
222 	 calculate register classes from intermediate code too
223 	 (e.g. an explicit usage of hard registers in RTL code for
224 	 parameter passing can result in creation of additional
225 	 register classes which contain or exclude the hard
226 	 registers).  That makes IRA approach useful for improving
227 	 coloring even for architectures with regular register files
228 	 and in fact some benchmarking shows the improvement for
229 	 regular class architectures is even bigger than for irregular
230 	 ones.  Another difference is that Smith's approach chooses
231 	 intersection of classes of all insn operands in which a given
232 	 pseudo occurs.  IRA can use bigger classes if it is still
233 	 more profitable than memory usage.
234 
235        * Popping the allocnos from the stack and assigning them hard
236          registers.  If IRA can not assign a hard register to an
237          allocno and the allocno is coalesced, IRA undoes the
238          coalescing and puts the uncoalesced allocnos onto the stack in
239          the hope that some such allocnos will get a hard register
240          separately.  If IRA fails to assign hard register or memory
241          is more profitable for it, IRA spills the allocno.  IRA
242          assigns the allocno the hard-register with minimal full
243          allocation cost which reflects the cost of usage of the
244          hard-register for the allocno and cost of usage of the
245          hard-register for allocnos conflicting with given allocno.
246 
247        * Chaitin-Briggs coloring assigns as many pseudos as possible
248          to hard registers.  After coloring we try to improve
249          allocation with cost point of view.  We improve the
250          allocation by spilling some allocnos and assigning the freed
251          hard registers to other allocnos if it decreases the overall
252          allocation cost.
253 
254        * After allocno assigning in the region, IRA modifies the hard
255          register and memory costs for the corresponding allocnos in
256          the subregions to reflect the cost of possible loads, stores,
257          or moves on the border of the region and its subregions.
258          When default regional allocation algorithm is used
259          (-fira-algorithm=mixed), IRA just propagates the assignment
260          for allocnos if the register pressure in the region for the
261          corresponding pressure class is less than number of available
262          hard registers for given pressure class.
263 
264      o Spill/restore code moving.  When IRA performs an allocation
265        by traversing regions in top-down order, it does not know what
266        happens below in the region tree.  Therefore, sometimes IRA
267        misses opportunities to perform a better allocation.  A simple
268        optimization tries to improve allocation in a region having
269        subregions and containing in another region.  If the
270        corresponding allocnos in the subregion are spilled, it spills
271        the region allocno if it is profitable.  The optimization
272        implements a simple iterative algorithm performing profitable
273        transformations while they are still possible.  It is fast in
274        practice, so there is no real need for a better time complexity
275        algorithm.
276 
277      o Code change.  After coloring, two allocnos representing the
278        same pseudo-register outside and inside a region respectively
279        may be assigned to different locations (hard-registers or
280        memory).  In this case IRA creates and uses a new
281        pseudo-register inside the region and adds code to move allocno
282        values on the region's borders.  This is done during top-down
283        traversal of the regions (file ira-emit.c).  In some
284        complicated cases IRA can create a new allocno to move allocno
285        values (e.g. when a swap of values stored in two hard-registers
286        is needed).  At this stage, the new allocno is marked as
287        spilled.  IRA still creates the pseudo-register and the moves
288        on the region borders even when both allocnos were assigned to
289        the same hard-register.  If the reload pass spills a
290        pseudo-register for some reason, the effect will be smaller
291        because another allocno will still be in the hard-register.  In
292        most cases, this is better then spilling both allocnos.  If
293        reload does not change the allocation for the two
294        pseudo-registers, the trivial move will be removed by
295        post-reload optimizations.  IRA does not generate moves for
296        allocnos assigned to the same hard register when the default
297        regional allocation algorithm is used and the register pressure
298        in the region for the corresponding pressure class is less than
299        number of available hard registers for given pressure class.
300        IRA also does some optimizations to remove redundant stores and
301        to reduce code duplication on the region borders.
302 
303      o Flattening internal representation.  After changing code, IRA
304        transforms its internal representation for several regions into
305        one region representation (file ira-build.c).  This process is
306        called IR flattening.  Such process is more complicated than IR
307        rebuilding would be, but is much faster.
308 
309      o After IR flattening, IRA tries to assign hard registers to all
310        spilled allocnos.  This is implemented by a simple and fast
311        priority coloring algorithm (see function
312        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
313        created during the code change pass can be assigned to hard
314        registers.
315 
316      o At the end IRA calls the reload pass.  The reload pass
317        communicates with IRA through several functions in file
318        ira-color.c to improve its decisions in
319 
320        * sharing stack slots for the spilled pseudos based on IRA info
321          about pseudo-register conflicts.
322 
323        * reassigning hard-registers to all spilled pseudos at the end
324          of each reload iteration.
325 
326        * choosing a better hard-register to spill based on IRA info
327          about pseudo-register live ranges and the register pressure
328          in places where the pseudo-register lives.
329 
330    IRA uses a lot of data representing the target processors.  These
331    data are initialized in file ira.c.
332 
333    If function has no loops (or the loops are ignored when
334    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335    coloring (only instead of separate pass of coalescing, we use hard
336    register preferencing).  In such case, IRA works much faster
337    because many things are not made (like IR flattening, the
338    spill/restore optimization, and the code change).
339 
340    Literature is worth to read for better understanding the code:
341 
342    o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
343      Graph Coloring Register Allocation.
344 
345    o David Callahan, Brian Koblenz.  Register allocation via
346      hierarchical graph coloring.
347 
348    o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349      Coloring Register Allocation: A Study of the Chaitin-Briggs and
350      Callahan-Koblenz Algorithms.
351 
352    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353      Register Allocation Based on Graph Fusion.
354 
355    o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
356      Allocation for Irregular Architectures
357 
358    o Vladimir Makarov. The Integrated Register Allocator for GCC.
359 
360    o Vladimir Makarov.  The top-down register allocator for irregular
361      register file architectures.
362 
363 */
364 
365 
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395 
396 struct target_ira default_target_ira;
397 struct target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402 
403 /* A modified value of flag `-fira-verbose' used internally.  */
404 int internal_flag_ira_verbose;
405 
406 /* Dump file of the allocator if it is not NULL.  */
407 FILE *ira_dump_file;
408 
409 /* The number of elements in the following array.  */
410 int ira_spilled_reg_stack_slots_num;
411 
412 /* The following array contains info about spilled pseudo-registers
413    stack slots used in current function so far.  */
414 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415 
416 /* Correspondingly overall cost of the allocation, overall cost before
417    reload, cost of the allocnos assigned to hard-registers, cost of
418    the allocnos assigned to memory, cost of loads, stores and register
419    move insns generated for pseudo-register live range splitting (see
420    ira-emit.c).  */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425 
426 /* All registers that can be eliminated.  */
427 
428 HARD_REG_SET eliminable_regset;
429 
430 /* Value of max_reg_num () before IRA work start.  This value helps
431    us to recognize a situation when new pseudos were created during
432    IRA work.  */
433 static int max_regno_before_ira;
434 
435 /* Temporary hard reg set used for a different calculation.  */
436 static HARD_REG_SET temp_hard_regset;
437 
438 #define last_mode_for_init_move_cost \
439   (this_target_ira_int->x_last_mode_for_init_move_cost)
440 
441 
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
443 static void
444 setup_reg_mode_hard_regset (void)
445 {
446   int i, m, hard_regno;
447 
448   for (m = 0; m < NUM_MACHINE_MODES; m++)
449     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450       {
451 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 	for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
453 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
454 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
455 			      hard_regno + i);
456       }
457 }
458 
459 
460 #define no_unit_alloc_regs \
461   (this_target_ira_int->x_no_unit_alloc_regs)
462 
463 /* The function sets up the three arrays declared above.  */
464 static void
465 setup_class_hard_regs (void)
466 {
467   int cl, i, hard_regno, n;
468   HARD_REG_SET processed_hard_reg_set;
469 
470   ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
471   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
472     {
473       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
474       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
475       CLEAR_HARD_REG_SET (processed_hard_reg_set);
476       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 	{
478 	  ira_non_ordered_class_hard_regs[cl][i] = -1;
479 	  ira_class_hard_reg_index[cl][i] = -1;
480 	}
481       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 	{
483 #ifdef REG_ALLOC_ORDER
484 	  hard_regno = reg_alloc_order[i];
485 #else
486 	  hard_regno = i;
487 #endif
488 	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 	    continue;
490 	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491       	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 	    ira_class_hard_reg_index[cl][hard_regno] = -1;
493 	  else
494 	    {
495 	      ira_class_hard_reg_index[cl][hard_regno] = n;
496 	      ira_class_hard_regs[cl][n++] = hard_regno;
497 	    }
498 	}
499       ira_class_hard_regs_num[cl] = n;
500       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 	  ira_non_ordered_class_hard_regs[cl][n++] = i;
503       ira_assert (ira_class_hard_regs_num[cl] == n);
504     }
505 }
506 
507 /* Set up global variables defining info about hard registers for the
508    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
509    that we can use the hard frame pointer for the allocation.  */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
512 {
513 #ifdef ADJUST_REG_ALLOC_ORDER
514   ADJUST_REG_ALLOC_ORDER;
515 #endif
516   COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_nonglobal_reg_set);
517   if (! use_hard_frame_p)
518     SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
519   setup_class_hard_regs ();
520 }
521 
522 
523 
524 #define alloc_reg_class_subclasses \
525   (this_target_ira_int->x_alloc_reg_class_subclasses)
526 
527 /* Initialize the table of subclasses of each reg class.  */
528 static void
529 setup_reg_subclasses (void)
530 {
531   int i, j;
532   HARD_REG_SET temp_hard_regset2;
533 
534   for (i = 0; i < N_REG_CLASSES; i++)
535     for (j = 0; j < N_REG_CLASSES; j++)
536       alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
537 
538   for (i = 0; i < N_REG_CLASSES; i++)
539     {
540       if (i == (int) NO_REGS)
541 	continue;
542 
543       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
544       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
545       if (hard_reg_set_empty_p (temp_hard_regset))
546 	continue;
547       for (j = 0; j < N_REG_CLASSES; j++)
548 	if (i != j)
549 	  {
550 	    enum reg_class *p;
551 
552 	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
553 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
554 	    if (! hard_reg_set_subset_p (temp_hard_regset,
555 					 temp_hard_regset2))
556 	      continue;
557 	    p = &alloc_reg_class_subclasses[j][0];
558 	    while (*p != LIM_REG_CLASSES) p++;
559 	    *p = (enum reg_class) i;
560 	  }
561     }
562 }
563 
564 
565 
566 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
567 static void
568 setup_class_subset_and_memory_move_costs (void)
569 {
570   int cl, cl2, mode, cost;
571   HARD_REG_SET temp_hard_regset2;
572 
573   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
574     ira_memory_move_cost[mode][NO_REGS][0]
575       = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
576   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
577     {
578       if (cl != (int) NO_REGS)
579 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
580 	  {
581 	    ira_max_memory_move_cost[mode][cl][0]
582 	      = ira_memory_move_cost[mode][cl][0]
583 	      = memory_move_cost ((machine_mode) mode,
584 				  (reg_class_t) cl, false);
585 	    ira_max_memory_move_cost[mode][cl][1]
586 	      = ira_memory_move_cost[mode][cl][1]
587 	      = memory_move_cost ((machine_mode) mode,
588 				  (reg_class_t) cl, true);
589 	    /* Costs for NO_REGS are used in cost calculation on the
590 	       1st pass when the preferred register classes are not
591 	       known yet.  In this case we take the best scenario.  */
592 	    if (ira_memory_move_cost[mode][NO_REGS][0]
593 		> ira_memory_move_cost[mode][cl][0])
594 	      ira_max_memory_move_cost[mode][NO_REGS][0]
595 		= ira_memory_move_cost[mode][NO_REGS][0]
596 		= ira_memory_move_cost[mode][cl][0];
597 	    if (ira_memory_move_cost[mode][NO_REGS][1]
598 		> ira_memory_move_cost[mode][cl][1])
599 	      ira_max_memory_move_cost[mode][NO_REGS][1]
600 		= ira_memory_move_cost[mode][NO_REGS][1]
601 		= ira_memory_move_cost[mode][cl][1];
602 	  }
603     }
604   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
605     for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
606       {
607 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
608 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
609 	COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
610 	AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
611 	ira_class_subset_p[cl][cl2]
612 	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
613 	if (! hard_reg_set_empty_p (temp_hard_regset2)
614 	    && hard_reg_set_subset_p (reg_class_contents[cl2],
615 				      reg_class_contents[cl]))
616 	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
617 	    {
618 	      cost = ira_memory_move_cost[mode][cl2][0];
619 	      if (cost > ira_max_memory_move_cost[mode][cl][0])
620 		ira_max_memory_move_cost[mode][cl][0] = cost;
621 	      cost = ira_memory_move_cost[mode][cl2][1];
622 	      if (cost > ira_max_memory_move_cost[mode][cl][1])
623 		ira_max_memory_move_cost[mode][cl][1] = cost;
624 	    }
625       }
626   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
627     for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
628       {
629 	ira_memory_move_cost[mode][cl][0]
630 	  = ira_max_memory_move_cost[mode][cl][0];
631 	ira_memory_move_cost[mode][cl][1]
632 	  = ira_max_memory_move_cost[mode][cl][1];
633       }
634   setup_reg_subclasses ();
635 }
636 
637 
638 
639 /* Define the following macro if allocation through malloc if
640    preferable.  */
641 #define IRA_NO_OBSTACK
642 
643 #ifndef IRA_NO_OBSTACK
644 /* Obstack used for storing all dynamic data (except bitmaps) of the
645    IRA.  */
646 static struct obstack ira_obstack;
647 #endif
648 
649 /* Obstack used for storing all bitmaps of the IRA.  */
650 static struct bitmap_obstack ira_bitmap_obstack;
651 
652 /* Allocate memory of size LEN for IRA data.  */
653 void *
654 ira_allocate (size_t len)
655 {
656   void *res;
657 
658 #ifndef IRA_NO_OBSTACK
659   res = obstack_alloc (&ira_obstack, len);
660 #else
661   res = xmalloc (len);
662 #endif
663   return res;
664 }
665 
666 /* Free memory ADDR allocated for IRA data.  */
667 void
668 ira_free (void *addr ATTRIBUTE_UNUSED)
669 {
670 #ifndef IRA_NO_OBSTACK
671   /* do nothing */
672 #else
673   free (addr);
674 #endif
675 }
676 
677 
678 /* Allocate and returns bitmap for IRA.  */
679 bitmap
680 ira_allocate_bitmap (void)
681 {
682   return BITMAP_ALLOC (&ira_bitmap_obstack);
683 }
684 
685 /* Free bitmap B allocated for IRA.  */
686 void
687 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
688 {
689   /* do nothing */
690 }
691 
692 
693 
694 /* Output information about allocation of all allocnos (except for
695    caps) into file F.  */
696 void
697 ira_print_disposition (FILE *f)
698 {
699   int i, n, max_regno;
700   ira_allocno_t a;
701   basic_block bb;
702 
703   fprintf (f, "Disposition:");
704   max_regno = max_reg_num ();
705   for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
706     for (a = ira_regno_allocno_map[i];
707 	 a != NULL;
708 	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
709       {
710 	if (n % 4 == 0)
711 	  fprintf (f, "\n");
712 	n++;
713 	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
714 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
715 	  fprintf (f, "b%-3d", bb->index);
716 	else
717 	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
718 	if (ALLOCNO_HARD_REGNO (a) >= 0)
719 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
720 	else
721 	  fprintf (f, " mem");
722       }
723   fprintf (f, "\n");
724 }
725 
726 /* Outputs information about allocation of all allocnos into
727    stderr.  */
728 void
729 ira_debug_disposition (void)
730 {
731   ira_print_disposition (stderr);
732 }
733 
734 
735 
736 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
737    register class containing stack registers or NO_REGS if there are
738    no stack registers.  To find this class, we iterate through all
739    register pressure classes and choose the first register pressure
740    class containing all the stack registers and having the biggest
741    size.  */
742 static void
743 setup_stack_reg_pressure_class (void)
744 {
745   ira_stack_reg_pressure_class = NO_REGS;
746 #ifdef STACK_REGS
747   {
748     int i, best, size;
749     enum reg_class cl;
750     HARD_REG_SET temp_hard_regset2;
751 
752     CLEAR_HARD_REG_SET (temp_hard_regset);
753     for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
754       SET_HARD_REG_BIT (temp_hard_regset, i);
755     best = 0;
756     for (i = 0; i < ira_pressure_classes_num; i++)
757       {
758 	cl = ira_pressure_classes[i];
759 	COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
760 	AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
761 	size = hard_reg_set_size (temp_hard_regset2);
762 	if (best < size)
763 	  {
764 	    best = size;
765 	    ira_stack_reg_pressure_class = cl;
766 	  }
767       }
768   }
769 #endif
770 }
771 
772 /* Find pressure classes which are register classes for which we
773    calculate register pressure in IRA, register pressure sensitive
774    insn scheduling, and register pressure sensitive loop invariant
775    motion.
776 
777    To make register pressure calculation easy, we always use
778    non-intersected register pressure classes.  A move of hard
779    registers from one register pressure class is not more expensive
780    than load and store of the hard registers.  Most likely an allocno
781    class will be a subset of a register pressure class and in many
782    cases a register pressure class.  That makes usage of register
783    pressure classes a good approximation to find a high register
784    pressure.  */
785 static void
786 setup_pressure_classes (void)
787 {
788   int cost, i, n, curr;
789   int cl, cl2;
790   enum reg_class pressure_classes[N_REG_CLASSES];
791   int m;
792   HARD_REG_SET temp_hard_regset2;
793   bool insert_p;
794 
795   if (targetm.compute_pressure_classes)
796     n = targetm.compute_pressure_classes (pressure_classes);
797   else
798     {
799       n = 0;
800       for (cl = 0; cl < N_REG_CLASSES; cl++)
801 	{
802 	  if (ira_class_hard_regs_num[cl] == 0)
803 	    continue;
804 	  if (ira_class_hard_regs_num[cl] != 1
805 	      /* A register class without subclasses may contain a few
806 		 hard registers and movement between them is costly
807 		 (e.g. SPARC FPCC registers).  We still should consider it
808 		 as a candidate for a pressure class.  */
809 	      && alloc_reg_class_subclasses[cl][0] < cl)
810 	    {
811 	      /* Check that the moves between any hard registers of the
812 		 current class are not more expensive for a legal mode
813 		 than load/store of the hard registers of the current
814 		 class.  Such class is a potential candidate to be a
815 		 register pressure class.  */
816 	      for (m = 0; m < NUM_MACHINE_MODES; m++)
817 		{
818 		  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
819 		  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
820 		  AND_COMPL_HARD_REG_SET (temp_hard_regset,
821 					  ira_prohibited_class_mode_regs[cl][m]);
822 		  if (hard_reg_set_empty_p (temp_hard_regset))
823 		    continue;
824 		  ira_init_register_move_cost_if_necessary ((machine_mode) m);
825 		  cost = ira_register_move_cost[m][cl][cl];
826 		  if (cost <= ira_max_memory_move_cost[m][cl][1]
827 		      || cost <= ira_max_memory_move_cost[m][cl][0])
828 		    break;
829 		}
830 	      if (m >= NUM_MACHINE_MODES)
831 		continue;
832 	    }
833 	  curr = 0;
834 	  insert_p = true;
835 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
836 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
837 	  /* Remove so far added pressure classes which are subset of the
838 	     current candidate class.  Prefer GENERAL_REGS as a pressure
839 	     register class to another class containing the same
840 	     allocatable hard registers.  We do this because machine
841 	     dependent cost hooks might give wrong costs for the latter
842 	     class but always give the right cost for the former class
843 	     (GENERAL_REGS).  */
844 	  for (i = 0; i < n; i++)
845 	    {
846 	      cl2 = pressure_classes[i];
847 	      COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
848 	      AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
849 	      if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
850 		  && (! hard_reg_set_equal_p (temp_hard_regset,
851 					      temp_hard_regset2)
852 		      || cl2 == (int) GENERAL_REGS))
853 		{
854 		  pressure_classes[curr++] = (enum reg_class) cl2;
855 		  insert_p = false;
856 		  continue;
857 		}
858 	      if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
859 		  && (! hard_reg_set_equal_p (temp_hard_regset2,
860 					      temp_hard_regset)
861 		      || cl == (int) GENERAL_REGS))
862 		continue;
863 	      if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
864 		insert_p = false;
865 	      pressure_classes[curr++] = (enum reg_class) cl2;
866 	    }
867 	  /* If the current candidate is a subset of a so far added
868 	     pressure class, don't add it to the list of the pressure
869 	     classes.  */
870 	  if (insert_p)
871 	    pressure_classes[curr++] = (enum reg_class) cl;
872 	  n = curr;
873 	}
874     }
875 #ifdef ENABLE_IRA_CHECKING
876   {
877     HARD_REG_SET ignore_hard_regs;
878 
879     /* Check pressure classes correctness: here we check that hard
880        registers from all register pressure classes contains all hard
881        registers available for the allocation.  */
882     CLEAR_HARD_REG_SET (temp_hard_regset);
883     CLEAR_HARD_REG_SET (temp_hard_regset2);
884     COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
885     for (cl = 0; cl < LIM_REG_CLASSES; cl++)
886       {
887 	/* For some targets (like MIPS with MD_REGS), there are some
888 	   classes with hard registers available for allocation but
889 	   not able to hold value of any mode.  */
890 	for (m = 0; m < NUM_MACHINE_MODES; m++)
891 	  if (contains_reg_of_mode[cl][m])
892 	    break;
893 	if (m >= NUM_MACHINE_MODES)
894 	  {
895 	    IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
896 	    continue;
897 	  }
898 	for (i = 0; i < n; i++)
899 	  if ((int) pressure_classes[i] == cl)
900 	    break;
901 	IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
902 	if (i < n)
903 	  IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
904       }
905     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
906       /* Some targets (like SPARC with ICC reg) have allocatable regs
907 	 for which no reg class is defined.  */
908       if (REGNO_REG_CLASS (i) == NO_REGS)
909 	SET_HARD_REG_BIT (ignore_hard_regs, i);
910     AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
911     AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
912     ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
913   }
914 #endif
915   ira_pressure_classes_num = 0;
916   for (i = 0; i < n; i++)
917     {
918       cl = (int) pressure_classes[i];
919       ira_reg_pressure_class_p[cl] = true;
920       ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
921     }
922   setup_stack_reg_pressure_class ();
923 }
924 
925 /* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
926    whose register move cost between any registers of the class is the
927    same as for all its subclasses.  We use the data to speed up the
928    2nd pass of calculations of allocno costs.  */
929 static void
930 setup_uniform_class_p (void)
931 {
932   int i, cl, cl2, m;
933 
934   for (cl = 0; cl < N_REG_CLASSES; cl++)
935     {
936       ira_uniform_class_p[cl] = false;
937       if (ira_class_hard_regs_num[cl] == 0)
938 	continue;
939       /* We can not use alloc_reg_class_subclasses here because move
940 	 cost hooks does not take into account that some registers are
941 	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
942 	 is element of alloc_reg_class_subclasses for GENERAL_REGS
943 	 because SSE regs are unavailable.  */
944       for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
945 	{
946 	  if (ira_class_hard_regs_num[cl2] == 0)
947 	    continue;
948       	  for (m = 0; m < NUM_MACHINE_MODES; m++)
949 	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
950 	      {
951 		ira_init_register_move_cost_if_necessary ((machine_mode) m);
952 		if (ira_register_move_cost[m][cl][cl]
953 		    != ira_register_move_cost[m][cl2][cl2])
954 		  break;
955 	      }
956 	  if (m < NUM_MACHINE_MODES)
957 	    break;
958 	}
959       if (cl2 == LIM_REG_CLASSES)
960 	ira_uniform_class_p[cl] = true;
961     }
962 }
963 
964 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
965    IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
966 
967    Target may have many subtargets and not all target hard registers can
968    be used for allocation, e.g. x86 port in 32-bit mode can not use
969    hard registers introduced in x86-64 like r8-r15).  Some classes
970    might have the same allocatable hard registers, e.g.  INDEX_REGS
971    and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
972    calculations efforts we introduce allocno classes which contain
973    unique non-empty sets of allocatable hard-registers.
974 
975    Pseudo class cost calculation in ira-costs.c is very expensive.
976    Therefore we are trying to decrease number of classes involved in
977    such calculation.  Register classes used in the cost calculation
978    are called important classes.  They are allocno classes and other
979    non-empty classes whose allocatable hard register sets are inside
980    of an allocno class hard register set.  From the first sight, it
981    looks like that they are just allocno classes.  It is not true.  In
982    example of x86-port in 32-bit mode, allocno classes will contain
983    GENERAL_REGS but not LEGACY_REGS (because allocatable hard
984    registers are the same for the both classes).  The important
985    classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
986    because a machine description insn constraint may refers for
987    LEGACY_REGS and code in ira-costs.c is mostly base on investigation
988    of the insn constraints.  */
989 static void
990 setup_allocno_and_important_classes (void)
991 {
992   int i, j, n, cl;
993   bool set_p;
994   HARD_REG_SET temp_hard_regset2;
995   static enum reg_class classes[LIM_REG_CLASSES + 1];
996 
997   n = 0;
998   /* Collect classes which contain unique sets of allocatable hard
999      registers.  Prefer GENERAL_REGS to other classes containing the
1000      same set of hard registers.  */
1001   for (i = 0; i < LIM_REG_CLASSES; i++)
1002     {
1003       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1004       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1005       for (j = 0; j < n; j++)
1006 	{
1007 	  cl = classes[j];
1008 	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1009 	  AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1010 				  no_unit_alloc_regs);
1011 	  if (hard_reg_set_equal_p (temp_hard_regset,
1012 				    temp_hard_regset2))
1013 	    break;
1014 	}
1015       if (j >= n || targetm.additional_allocno_class_p (i))
1016 	classes[n++] = (enum reg_class) i;
1017       else if (i == GENERAL_REGS)
1018 	/* Prefer general regs.  For i386 example, it means that
1019 	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1020 	   (all of them consists of the same available hard
1021 	   registers).  */
1022 	classes[j] = (enum reg_class) i;
1023     }
1024   classes[n] = LIM_REG_CLASSES;
1025 
1026   /* Set up classes which can be used for allocnos as classes
1027      containing non-empty unique sets of allocatable hard
1028      registers.  */
1029   ira_allocno_classes_num = 0;
1030   for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1031     if (ira_class_hard_regs_num[cl] > 0)
1032       ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1033   ira_important_classes_num = 0;
1034   /* Add non-allocno classes containing to non-empty set of
1035      allocatable hard regs.  */
1036   for (cl = 0; cl < N_REG_CLASSES; cl++)
1037     if (ira_class_hard_regs_num[cl] > 0)
1038       {
1039 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1040 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1041 	set_p = false;
1042 	for (j = 0; j < ira_allocno_classes_num; j++)
1043 	  {
1044 	    COPY_HARD_REG_SET (temp_hard_regset2,
1045 			       reg_class_contents[ira_allocno_classes[j]]);
1046 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1047 	    if ((enum reg_class) cl == ira_allocno_classes[j])
1048 	      break;
1049 	    else if (hard_reg_set_subset_p (temp_hard_regset,
1050 					    temp_hard_regset2))
1051 	      set_p = true;
1052 	  }
1053 	if (set_p && j >= ira_allocno_classes_num)
1054 	  ira_important_classes[ira_important_classes_num++]
1055 	    = (enum reg_class) cl;
1056       }
1057   /* Now add allocno classes to the important classes.  */
1058   for (j = 0; j < ira_allocno_classes_num; j++)
1059     ira_important_classes[ira_important_classes_num++]
1060       = ira_allocno_classes[j];
1061   for (cl = 0; cl < N_REG_CLASSES; cl++)
1062     {
1063       ira_reg_allocno_class_p[cl] = false;
1064       ira_reg_pressure_class_p[cl] = false;
1065     }
1066   for (j = 0; j < ira_allocno_classes_num; j++)
1067     ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1068   setup_pressure_classes ();
1069   setup_uniform_class_p ();
1070 }
1071 
1072 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1073    given by array CLASSES of length CLASSES_NUM.  The function is used
1074    make translation any reg class to an allocno class or to an
1075    pressure class.  This translation is necessary for some
1076    calculations when we can use only allocno or pressure classes and
1077    such translation represents an approximate representation of all
1078    classes.
1079 
1080    The translation in case when allocatable hard register set of a
1081    given class is subset of allocatable hard register set of a class
1082    in CLASSES is pretty simple.  We use smallest classes from CLASSES
1083    containing a given class.  If allocatable hard register set of a
1084    given class is not a subset of any corresponding set of a class
1085    from CLASSES, we use the cheapest (with load/store point of view)
1086    class from CLASSES whose set intersects with given class set.  */
1087 static void
1088 setup_class_translate_array (enum reg_class *class_translate,
1089 			     int classes_num, enum reg_class *classes)
1090 {
1091   int cl, mode;
1092   enum reg_class aclass, best_class, *cl_ptr;
1093   int i, cost, min_cost, best_cost;
1094 
1095   for (cl = 0; cl < N_REG_CLASSES; cl++)
1096     class_translate[cl] = NO_REGS;
1097 
1098   for (i = 0; i < classes_num; i++)
1099     {
1100       aclass = classes[i];
1101       for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1102 	   (cl = *cl_ptr) != LIM_REG_CLASSES;
1103 	   cl_ptr++)
1104 	if (class_translate[cl] == NO_REGS)
1105 	  class_translate[cl] = aclass;
1106       class_translate[aclass] = aclass;
1107     }
1108   /* For classes which are not fully covered by one of given classes
1109      (in other words covered by more one given class), use the
1110      cheapest class.  */
1111   for (cl = 0; cl < N_REG_CLASSES; cl++)
1112     {
1113       if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1114 	continue;
1115       best_class = NO_REGS;
1116       best_cost = INT_MAX;
1117       for (i = 0; i < classes_num; i++)
1118 	{
1119 	  aclass = classes[i];
1120 	  COPY_HARD_REG_SET (temp_hard_regset,
1121 			     reg_class_contents[aclass]);
1122 	  AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1123 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1124 	  if (! hard_reg_set_empty_p (temp_hard_regset))
1125 	    {
1126 	      min_cost = INT_MAX;
1127 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1128 		{
1129 		  cost = (ira_memory_move_cost[mode][aclass][0]
1130 			  + ira_memory_move_cost[mode][aclass][1]);
1131 		  if (min_cost > cost)
1132 		    min_cost = cost;
1133 		}
1134 	      if (best_class == NO_REGS || best_cost > min_cost)
1135 		{
1136 		  best_class = aclass;
1137 		  best_cost = min_cost;
1138 		}
1139 	    }
1140 	}
1141       class_translate[cl] = best_class;
1142     }
1143 }
1144 
1145 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1146    IRA_PRESSURE_CLASS_TRANSLATE.  */
1147 static void
1148 setup_class_translate (void)
1149 {
1150   setup_class_translate_array (ira_allocno_class_translate,
1151 			       ira_allocno_classes_num, ira_allocno_classes);
1152   setup_class_translate_array (ira_pressure_class_translate,
1153 			       ira_pressure_classes_num, ira_pressure_classes);
1154 }
1155 
1156 /* Order numbers of allocno classes in original target allocno class
1157    array, -1 for non-allocno classes.  */
1158 static int allocno_class_order[N_REG_CLASSES];
1159 
1160 /* The function used to sort the important classes.  */
1161 static int
1162 comp_reg_classes_func (const void *v1p, const void *v2p)
1163 {
1164   enum reg_class cl1 = *(const enum reg_class *) v1p;
1165   enum reg_class cl2 = *(const enum reg_class *) v2p;
1166   enum reg_class tcl1, tcl2;
1167   int diff;
1168 
1169   tcl1 = ira_allocno_class_translate[cl1];
1170   tcl2 = ira_allocno_class_translate[cl2];
1171   if (tcl1 != NO_REGS && tcl2 != NO_REGS
1172       && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1173     return diff;
1174   return (int) cl1 - (int) cl2;
1175 }
1176 
1177 /* For correct work of function setup_reg_class_relation we need to
1178    reorder important classes according to the order of their allocno
1179    classes.  It places important classes containing the same
1180    allocatable hard register set adjacent to each other and allocno
1181    class with the allocatable hard register set right after the other
1182    important classes with the same set.
1183 
1184    In example from comments of function
1185    setup_allocno_and_important_classes, it places LEGACY_REGS and
1186    GENERAL_REGS close to each other and GENERAL_REGS is after
1187    LEGACY_REGS.  */
1188 static void
1189 reorder_important_classes (void)
1190 {
1191   int i;
1192 
1193   for (i = 0; i < N_REG_CLASSES; i++)
1194     allocno_class_order[i] = -1;
1195   for (i = 0; i < ira_allocno_classes_num; i++)
1196     allocno_class_order[ira_allocno_classes[i]] = i;
1197   qsort (ira_important_classes, ira_important_classes_num,
1198 	 sizeof (enum reg_class), comp_reg_classes_func);
1199   for (i = 0; i < ira_important_classes_num; i++)
1200     ira_important_class_nums[ira_important_classes[i]] = i;
1201 }
1202 
1203 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1204    IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1205    IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1206    please see corresponding comments in ira-int.h.  */
1207 static void
1208 setup_reg_class_relations (void)
1209 {
1210   int i, cl1, cl2, cl3;
1211   HARD_REG_SET intersection_set, union_set, temp_set2;
1212   bool important_class_p[N_REG_CLASSES];
1213 
1214   memset (important_class_p, 0, sizeof (important_class_p));
1215   for (i = 0; i < ira_important_classes_num; i++)
1216     important_class_p[ira_important_classes[i]] = true;
1217   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1218     {
1219       ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1220       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1221 	{
1222 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
1223 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1224 	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
1225 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1226 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1227 	  COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1228 	  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1229 	  if (hard_reg_set_empty_p (temp_hard_regset)
1230 	      && hard_reg_set_empty_p (temp_set2))
1231 	    {
1232 	      /* The both classes have no allocatable hard registers
1233 		 -- take all class hard registers into account and use
1234 		 reg_class_subunion and reg_class_superunion.  */
1235 	      for (i = 0;; i++)
1236 		{
1237 		  cl3 = reg_class_subclasses[cl1][i];
1238 		  if (cl3 == LIM_REG_CLASSES)
1239 		    break;
1240 		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1241 					  (enum reg_class) cl3))
1242 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1243 		}
1244 	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1245 	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1246 	      continue;
1247 	    }
1248 	  ira_reg_classes_intersect_p[cl1][cl2]
1249 	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1250 	  if (important_class_p[cl1] && important_class_p[cl2]
1251 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1252 	    {
1253 	      /* CL1 and CL2 are important classes and CL1 allocatable
1254 		 hard register set is inside of CL2 allocatable hard
1255 		 registers -- make CL1 a superset of CL2.  */
1256 	      enum reg_class *p;
1257 
1258 	      p = &ira_reg_class_super_classes[cl1][0];
1259 	      while (*p != LIM_REG_CLASSES)
1260 		p++;
1261 	      *p++ = (enum reg_class) cl2;
1262 	      *p = LIM_REG_CLASSES;
1263 	    }
1264 	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1265 	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1266 	  COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1267 	  AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1268 	  AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1269 	  COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1270 	  IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1271 	  AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1272 	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1273 	    {
1274 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1275 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1276 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1277 		{
1278 		  /* CL3 allocatable hard register set is inside of
1279 		     intersection of allocatable hard register sets
1280 		     of CL1 and CL2.  */
1281 		  if (important_class_p[cl3])
1282 		    {
1283 		      COPY_HARD_REG_SET
1284 			(temp_set2,
1285 			 reg_class_contents
1286 			 [(int) ira_reg_class_intersect[cl1][cl2]]);
1287 		      AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1288 		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 			  /* If the allocatable hard register sets are
1290 			     the same, prefer GENERAL_REGS or the
1291 			     smallest class for debugging
1292 			     purposes.  */
1293 			  || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1294 			      && (cl3 == GENERAL_REGS
1295 				  || ((ira_reg_class_intersect[cl1][cl2]
1296 				       != GENERAL_REGS)
1297 				      && hard_reg_set_subset_p
1298 				         (reg_class_contents[cl3],
1299 					  reg_class_contents
1300 					  [(int)
1301 					   ira_reg_class_intersect[cl1][cl2]])))))
1302 			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1303 		    }
1304 		  COPY_HARD_REG_SET
1305 		    (temp_set2,
1306 		     reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1307 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1308 		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1309 		      /* Ignore unavailable hard registers and prefer
1310 			 smallest class for debugging purposes.  */
1311 		      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1312 			  && hard_reg_set_subset_p
1313 			     (reg_class_contents[cl3],
1314 			      reg_class_contents
1315 			      [(int) ira_reg_class_subset[cl1][cl2]])))
1316 		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1317 		}
1318 	      if (important_class_p[cl3]
1319 		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
1320 		{
1321 		  /* CL3 allocatable hard register set is inside of
1322 		     union of allocatable hard register sets of CL1
1323 		     and CL2.  */
1324 		  COPY_HARD_REG_SET
1325 		    (temp_set2,
1326 		     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1327 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1328 	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1329 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1330 
1331 			  && (! hard_reg_set_equal_p (temp_set2,
1332 						      temp_hard_regset)
1333 			      || cl3 == GENERAL_REGS
1334 			      /* If the allocatable hard register sets are the
1335 				 same, prefer GENERAL_REGS or the smallest
1336 				 class for debugging purposes.  */
1337 			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1338 				  && hard_reg_set_subset_p
1339 				     (reg_class_contents[cl3],
1340 				      reg_class_contents
1341 				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1342 		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1343 		}
1344 	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1345 		{
1346 		  /* CL3 allocatable hard register set contains union
1347 		     of allocatable hard register sets of CL1 and
1348 		     CL2.  */
1349 		  COPY_HARD_REG_SET
1350 		    (temp_set2,
1351 		     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1352 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1353 	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1354 		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1355 
1356 			  && (! hard_reg_set_equal_p (temp_set2,
1357 						      temp_hard_regset)
1358 			      || cl3 == GENERAL_REGS
1359 			      /* If the allocatable hard register sets are the
1360 				 same, prefer GENERAL_REGS or the smallest
1361 				 class for debugging purposes.  */
1362 			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1363 				  && hard_reg_set_subset_p
1364 				     (reg_class_contents[cl3],
1365 				      reg_class_contents
1366 				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1367 		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1368 		}
1369 	    }
1370 	}
1371     }
1372 }
1373 
1374 /* Output all uniform and important classes into file F.  */
1375 static void
1376 print_uniform_and_important_classes (FILE *f)
1377 {
1378   int i, cl;
1379 
1380   fprintf (f, "Uniform classes:\n");
1381   for (cl = 0; cl < N_REG_CLASSES; cl++)
1382     if (ira_uniform_class_p[cl])
1383       fprintf (f, " %s", reg_class_names[cl]);
1384   fprintf (f, "\nImportant classes:\n");
1385   for (i = 0; i < ira_important_classes_num; i++)
1386     fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1387   fprintf (f, "\n");
1388 }
1389 
1390 /* Output all possible allocno or pressure classes and their
1391    translation map into file F.  */
1392 static void
1393 print_translated_classes (FILE *f, bool pressure_p)
1394 {
1395   int classes_num = (pressure_p
1396 		     ? ira_pressure_classes_num : ira_allocno_classes_num);
1397   enum reg_class *classes = (pressure_p
1398 			     ? ira_pressure_classes : ira_allocno_classes);
1399   enum reg_class *class_translate = (pressure_p
1400 				     ? ira_pressure_class_translate
1401 				     : ira_allocno_class_translate);
1402   int i;
1403 
1404   fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1405   for (i = 0; i < classes_num; i++)
1406     fprintf (f, " %s", reg_class_names[classes[i]]);
1407   fprintf (f, "\nClass translation:\n");
1408   for (i = 0; i < N_REG_CLASSES; i++)
1409     fprintf (f, " %s -> %s\n", reg_class_names[i],
1410 	     reg_class_names[class_translate[i]]);
1411 }
1412 
1413 /* Output all possible allocno and translation classes and the
1414    translation maps into stderr.  */
1415 void
1416 ira_debug_allocno_classes (void)
1417 {
1418   print_uniform_and_important_classes (stderr);
1419   print_translated_classes (stderr, false);
1420   print_translated_classes (stderr, true);
1421 }
1422 
1423 /* Set up different arrays concerning class subsets, allocno and
1424    important classes.  */
1425 static void
1426 find_reg_classes (void)
1427 {
1428   setup_allocno_and_important_classes ();
1429   setup_class_translate ();
1430   reorder_important_classes ();
1431   setup_reg_class_relations ();
1432 }
1433 
1434 
1435 
1436 /* Set up the array above.  */
1437 static void
1438 setup_hard_regno_aclass (void)
1439 {
1440   int i;
1441 
1442   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1443     {
1444 #if 1
1445       ira_hard_regno_allocno_class[i]
1446 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1447 	   ? NO_REGS
1448 	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1449 #else
1450       int j;
1451       enum reg_class cl;
1452       ira_hard_regno_allocno_class[i] = NO_REGS;
1453       for (j = 0; j < ira_allocno_classes_num; j++)
1454  	{
1455 	  cl = ira_allocno_classes[j];
1456  	  if (ira_class_hard_reg_index[cl][i] >= 0)
1457  	    {
1458 	      ira_hard_regno_allocno_class[i] = cl;
1459  	      break;
1460  	    }
1461  	}
1462 #endif
1463     }
1464 }
1465 
1466 
1467 
1468 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1469 static void
1470 setup_reg_class_nregs (void)
1471 {
1472   int i, cl, cl2, m;
1473 
1474   for (m = 0; m < MAX_MACHINE_MODE; m++)
1475     {
1476       for (cl = 0; cl < N_REG_CLASSES; cl++)
1477 	ira_reg_class_max_nregs[cl][m]
1478 	  = ira_reg_class_min_nregs[cl][m]
1479 	  = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1480       for (cl = 0; cl < N_REG_CLASSES; cl++)
1481 	for (i = 0;
1482 	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1483 	     i++)
1484 	  if (ira_reg_class_min_nregs[cl2][m]
1485 	      < ira_reg_class_min_nregs[cl][m])
1486 	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1487     }
1488 }
1489 
1490 
1491 
1492 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1493    This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
1494 static void
1495 setup_prohibited_class_mode_regs (void)
1496 {
1497   int j, k, hard_regno, cl, last_hard_regno, count;
1498 
1499   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1500     {
1501       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1502       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1503       for (j = 0; j < NUM_MACHINE_MODES; j++)
1504 	{
1505 	  count = 0;
1506 	  last_hard_regno = -1;
1507 	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1508 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1509 	    {
1510 	      hard_regno = ira_class_hard_regs[cl][k];
1511 	      if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1512 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1513 				  hard_regno);
1514 	      else if (in_hard_reg_set_p (temp_hard_regset,
1515 					  (machine_mode) j, hard_regno))
1516 		{
1517 		  last_hard_regno = hard_regno;
1518 		  count++;
1519 		}
1520 	    }
1521 	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1522 	}
1523     }
1524 }
1525 
1526 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1527    spanning from one register pressure class to another one.  It is
1528    called after defining the pressure classes.  */
1529 static void
1530 clarify_prohibited_class_mode_regs (void)
1531 {
1532   int j, k, hard_regno, cl, pclass, nregs;
1533 
1534   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1535     for (j = 0; j < NUM_MACHINE_MODES; j++)
1536       {
1537 	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1538 	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1539 	  {
1540 	    hard_regno = ira_class_hard_regs[cl][k];
1541 	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1542 	      continue;
1543 	    nregs = hard_regno_nregs[hard_regno][j];
1544 	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1545 	      {
1546 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1547 				  hard_regno);
1548 		 continue;
1549 	      }
1550 	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1551 	    for (nregs-- ;nregs >= 0; nregs--)
1552 	      if (((enum reg_class) pclass
1553 		   != ira_pressure_class_translate[REGNO_REG_CLASS
1554 						   (hard_regno + nregs)]))
1555 		{
1556 		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1557 				    hard_regno);
1558 		  break;
1559 		}
1560 	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1561 				    hard_regno))
1562 	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1563 				   (machine_mode) j, hard_regno);
1564 	  }
1565       }
1566 }
1567 
1568 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1569    and IRA_MAY_MOVE_OUT_COST for MODE.  */
1570 void
1571 ira_init_register_move_cost (machine_mode mode)
1572 {
1573   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1574   bool all_match = true;
1575   unsigned int cl1, cl2;
1576 
1577   ira_assert (ira_register_move_cost[mode] == NULL
1578 	      && ira_may_move_in_cost[mode] == NULL
1579 	      && ira_may_move_out_cost[mode] == NULL);
1580   ira_assert (have_regs_of_mode[mode]);
1581   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1582     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1583       {
1584 	int cost;
1585 	if (!contains_reg_of_mode[cl1][mode]
1586 	    || !contains_reg_of_mode[cl2][mode])
1587 	  {
1588 	    if ((ira_reg_class_max_nregs[cl1][mode]
1589 		 > ira_class_hard_regs_num[cl1])
1590 		|| (ira_reg_class_max_nregs[cl2][mode]
1591 		    > ira_class_hard_regs_num[cl2]))
1592 	      cost = 65535;
1593 	    else
1594 	      cost = (ira_memory_move_cost[mode][cl1][0]
1595 		      + ira_memory_move_cost[mode][cl2][1]) * 2;
1596 	  }
1597 	else
1598 	  {
1599 	    cost = register_move_cost (mode, (enum reg_class) cl1,
1600 				       (enum reg_class) cl2);
1601 	    ira_assert (cost < 65535);
1602 	  }
1603 	all_match &= (last_move_cost[cl1][cl2] == cost);
1604 	last_move_cost[cl1][cl2] = cost;
1605       }
1606   if (all_match && last_mode_for_init_move_cost != -1)
1607     {
1608       ira_register_move_cost[mode]
1609 	= ira_register_move_cost[last_mode_for_init_move_cost];
1610       ira_may_move_in_cost[mode]
1611 	= ira_may_move_in_cost[last_mode_for_init_move_cost];
1612       ira_may_move_out_cost[mode]
1613 	= ira_may_move_out_cost[last_mode_for_init_move_cost];
1614       return;
1615     }
1616   last_mode_for_init_move_cost = mode;
1617   ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1618   ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1619   ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1620   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1621     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1622       {
1623 	int cost;
1624 	enum reg_class *p1, *p2;
1625 
1626 	if (last_move_cost[cl1][cl2] == 65535)
1627 	  {
1628 	    ira_register_move_cost[mode][cl1][cl2] = 65535;
1629 	    ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1630 	    ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1631 	  }
1632 	else
1633 	  {
1634 	    cost = last_move_cost[cl1][cl2];
1635 
1636 	    for (p2 = &reg_class_subclasses[cl2][0];
1637 		 *p2 != LIM_REG_CLASSES; p2++)
1638 	      if (ira_class_hard_regs_num[*p2] > 0
1639 		  && (ira_reg_class_max_nregs[*p2][mode]
1640 		      <= ira_class_hard_regs_num[*p2]))
1641 		cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1642 
1643 	    for (p1 = &reg_class_subclasses[cl1][0];
1644 		 *p1 != LIM_REG_CLASSES; p1++)
1645 	      if (ira_class_hard_regs_num[*p1] > 0
1646 		  && (ira_reg_class_max_nregs[*p1][mode]
1647 		      <= ira_class_hard_regs_num[*p1]))
1648 		cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1649 
1650 	    ira_assert (cost <= 65535);
1651 	    ira_register_move_cost[mode][cl1][cl2] = cost;
1652 
1653 	    if (ira_class_subset_p[cl1][cl2])
1654 	      ira_may_move_in_cost[mode][cl1][cl2] = 0;
1655 	    else
1656 	      ira_may_move_in_cost[mode][cl1][cl2] = cost;
1657 
1658 	    if (ira_class_subset_p[cl2][cl1])
1659 	      ira_may_move_out_cost[mode][cl1][cl2] = 0;
1660 	    else
1661 	      ira_may_move_out_cost[mode][cl1][cl2] = cost;
1662 	  }
1663       }
1664 }
1665 
1666 
1667 
1668 /* This is called once during compiler work.  It sets up
1669    different arrays whose values don't depend on the compiled
1670    function.  */
1671 void
1672 ira_init_once (void)
1673 {
1674   ira_init_costs_once ();
1675   lra_init_once ();
1676 
1677   ira_use_lra_p = targetm.lra_p ();
1678 }
1679 
1680 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1681    ira_may_move_out_cost for each mode.  */
1682 void
1683 target_ira_int::free_register_move_costs (void)
1684 {
1685   int mode, i;
1686 
1687   /* Reset move_cost and friends, making sure we only free shared
1688      table entries once.  */
1689   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1690     if (x_ira_register_move_cost[mode])
1691       {
1692 	for (i = 0;
1693 	     i < mode && (x_ira_register_move_cost[i]
1694 			  != x_ira_register_move_cost[mode]);
1695 	     i++)
1696 	  ;
1697 	if (i == mode)
1698 	  {
1699 	    free (x_ira_register_move_cost[mode]);
1700 	    free (x_ira_may_move_in_cost[mode]);
1701 	    free (x_ira_may_move_out_cost[mode]);
1702 	  }
1703       }
1704   memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1705   memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1706   memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1707   last_mode_for_init_move_cost = -1;
1708 }
1709 
1710 target_ira_int::~target_ira_int ()
1711 {
1712   free_ira_costs ();
1713   free_register_move_costs ();
1714 }
1715 
1716 /* This is called every time when register related information is
1717    changed.  */
1718 void
1719 ira_init (void)
1720 {
1721   this_target_ira_int->free_register_move_costs ();
1722   setup_reg_mode_hard_regset ();
1723   setup_alloc_regs (flag_omit_frame_pointer != 0);
1724   setup_class_subset_and_memory_move_costs ();
1725   setup_reg_class_nregs ();
1726   setup_prohibited_class_mode_regs ();
1727   find_reg_classes ();
1728   clarify_prohibited_class_mode_regs ();
1729   setup_hard_regno_aclass ();
1730   ira_init_costs ();
1731 }
1732 
1733 
1734 #define ira_prohibited_mode_move_regs_initialized_p \
1735   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1736 
1737 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1738 static void
1739 setup_prohibited_mode_move_regs (void)
1740 {
1741   int i, j;
1742   rtx test_reg1, test_reg2, move_pat;
1743   rtx_insn *move_insn;
1744 
1745   if (ira_prohibited_mode_move_regs_initialized_p)
1746     return;
1747   ira_prohibited_mode_move_regs_initialized_p = true;
1748   test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1749   test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1750   move_pat = gen_rtx_SET (test_reg1, test_reg2);
1751   move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1752   for (i = 0; i < NUM_MACHINE_MODES; i++)
1753     {
1754       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1755       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1756 	{
1757 	  if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1758 	    continue;
1759 	  set_mode_and_regno (test_reg1, (machine_mode) i, j);
1760 	  set_mode_and_regno (test_reg2, (machine_mode) i, j);
1761 	  INSN_CODE (move_insn) = -1;
1762 	  recog_memoized (move_insn);
1763 	  if (INSN_CODE (move_insn) < 0)
1764 	    continue;
1765 	  extract_insn (move_insn);
1766 	  /* We don't know whether the move will be in code that is optimized
1767 	     for size or speed, so consider all enabled alternatives.  */
1768 	  if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1769 	    continue;
1770 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1771 	}
1772     }
1773 }
1774 
1775 
1776 
1777 /* Setup possible alternatives in ALTS for INSN.  */
1778 void
1779 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1780 {
1781   /* MAP nalt * nop -> start of constraints for given operand and
1782      alternative.  */
1783   static vec<const char *> insn_constraints;
1784   int nop, nalt;
1785   bool curr_swapped;
1786   const char *p;
1787   int commutative = -1;
1788 
1789   extract_insn (insn);
1790   alternative_mask preferred = get_preferred_alternatives (insn);
1791   CLEAR_HARD_REG_SET (alts);
1792   insn_constraints.release ();
1793   insn_constraints.safe_grow_cleared (recog_data.n_operands
1794 				      * recog_data.n_alternatives + 1);
1795   /* Check that the hard reg set is enough for holding all
1796      alternatives.  It is hard to imagine the situation when the
1797      assertion is wrong.  */
1798   ira_assert (recog_data.n_alternatives
1799 	      <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1800 			    FIRST_PSEUDO_REGISTER));
1801   for (curr_swapped = false;; curr_swapped = true)
1802     {
1803       /* Calculate some data common for all alternatives to speed up the
1804 	 function.  */
1805       for (nop = 0; nop < recog_data.n_operands; nop++)
1806 	{
1807 	  for (nalt = 0, p = recog_data.constraints[nop];
1808 	       nalt < recog_data.n_alternatives;
1809 	       nalt++)
1810 	    {
1811 	      insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1812 	      while (*p && *p != ',')
1813 		{
1814 		  /* We only support one commutative marker, the first
1815 		     one.  We already set commutative above.  */
1816 		  if (*p == '%' && commutative < 0)
1817 		    commutative = nop;
1818 		  p++;
1819 		}
1820 	      if (*p)
1821 		p++;
1822 	    }
1823 	}
1824       for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1825 	{
1826 	  if (!TEST_BIT (preferred, nalt)
1827 	      || TEST_HARD_REG_BIT (alts, nalt))
1828 	    continue;
1829 
1830 	  for (nop = 0; nop < recog_data.n_operands; nop++)
1831 	    {
1832 	      int c, len;
1833 
1834 	      rtx op = recog_data.operand[nop];
1835 	      p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1836 	      if (*p == 0 || *p == ',')
1837 		continue;
1838 
1839 	      do
1840 		switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1841 		  {
1842 		  case '#':
1843 		  case ',':
1844 		    c = '\0';
1845 		    /* FALLTHRU */
1846 		  case '\0':
1847 		    len = 0;
1848 		    break;
1849 
1850 		  case '%':
1851 		    /* The commutative modifier is handled above.  */
1852 		    break;
1853 
1854 		  case '0':  case '1':  case '2':  case '3':  case '4':
1855 		  case '5':  case '6':  case '7':  case '8':  case '9':
1856 		    goto op_success;
1857 		    break;
1858 
1859 		  case 'g':
1860 		    goto op_success;
1861 		    break;
1862 
1863 		  default:
1864 		    {
1865 		      enum constraint_num cn = lookup_constraint (p);
1866 		      switch (get_constraint_type (cn))
1867 			{
1868 			case CT_REGISTER:
1869 			  if (reg_class_for_constraint (cn) != NO_REGS)
1870 			    goto op_success;
1871 			  break;
1872 
1873 			case CT_CONST_INT:
1874 			  if (CONST_INT_P (op)
1875 			      && (insn_const_int_ok_for_constraint
1876 				  (INTVAL (op), cn)))
1877 			    goto op_success;
1878 			  break;
1879 
1880 			case CT_ADDRESS:
1881 			case CT_MEMORY:
1882 			case CT_SPECIAL_MEMORY:
1883 			  goto op_success;
1884 
1885 			case CT_FIXED_FORM:
1886 			  if (constraint_satisfied_p (op, cn))
1887 			    goto op_success;
1888 			  break;
1889 			}
1890 		      break;
1891 		    }
1892 		  }
1893 	      while (p += len, c);
1894 	      break;
1895 	    op_success:
1896 	      ;
1897 	    }
1898 	  if (nop >= recog_data.n_operands)
1899 	    SET_HARD_REG_BIT (alts, nalt);
1900 	}
1901       if (commutative < 0)
1902 	break;
1903       /* Swap forth and back to avoid changing recog_data.  */
1904       std::swap (recog_data.operand[commutative],
1905 		 recog_data.operand[commutative + 1]);
1906       if (curr_swapped)
1907 	break;
1908     }
1909 }
1910 
1911 /* Return the number of the output non-early clobber operand which
1912    should be the same in any case as operand with number OP_NUM (or
1913    negative value if there is no such operand).  The function takes
1914    only really possible alternatives into consideration.  */
1915 int
1916 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1917 {
1918   int curr_alt, c, original, dup;
1919   bool ignore_p, use_commut_op_p;
1920   const char *str;
1921 
1922   if (op_num < 0 || recog_data.n_alternatives == 0)
1923     return -1;
1924   /* We should find duplications only for input operands.  */
1925   if (recog_data.operand_type[op_num] != OP_IN)
1926     return -1;
1927   str = recog_data.constraints[op_num];
1928   use_commut_op_p = false;
1929   for (;;)
1930     {
1931       rtx op = recog_data.operand[op_num];
1932 
1933       for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1934 	   original = -1;;)
1935 	{
1936 	  c = *str;
1937 	  if (c == '\0')
1938 	    break;
1939 	  if (c == '#')
1940 	    ignore_p = true;
1941 	  else if (c == ',')
1942 	    {
1943 	      curr_alt++;
1944 	      ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1945 	    }
1946 	  else if (! ignore_p)
1947 	    switch (c)
1948 	      {
1949 	      case 'g':
1950 		goto fail;
1951 	      default:
1952 		{
1953 		  enum constraint_num cn = lookup_constraint (str);
1954 		  enum reg_class cl = reg_class_for_constraint (cn);
1955 		  if (cl != NO_REGS
1956 		      && !targetm.class_likely_spilled_p (cl))
1957 		    goto fail;
1958 		  if (constraint_satisfied_p (op, cn))
1959 		    goto fail;
1960 		  break;
1961 		}
1962 
1963 	      case '0': case '1': case '2': case '3': case '4':
1964 	      case '5': case '6': case '7': case '8': case '9':
1965 		if (original != -1 && original != c)
1966 		  goto fail;
1967 		original = c;
1968 		break;
1969 	      }
1970 	  str += CONSTRAINT_LEN (c, str);
1971 	}
1972       if (original == -1)
1973 	goto fail;
1974       dup = -1;
1975       for (ignore_p = false, str = recog_data.constraints[original - '0'];
1976 	   *str != 0;
1977 	   str++)
1978 	if (ignore_p)
1979 	  {
1980 	    if (*str == ',')
1981 	      ignore_p = false;
1982 	  }
1983 	else if (*str == '#')
1984 	  ignore_p = true;
1985 	else if (! ignore_p)
1986 	  {
1987 	    if (*str == '=')
1988 	      dup = original - '0';
1989 	    /* It is better ignore an alternative with early clobber.  */
1990 	    else if (*str == '&')
1991 	      goto fail;
1992 	  }
1993       if (dup >= 0)
1994 	return dup;
1995     fail:
1996       if (use_commut_op_p)
1997 	break;
1998       use_commut_op_p = true;
1999       if (recog_data.constraints[op_num][0] == '%')
2000 	str = recog_data.constraints[op_num + 1];
2001       else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2002 	str = recog_data.constraints[op_num - 1];
2003       else
2004 	break;
2005     }
2006   return -1;
2007 }
2008 
2009 
2010 
2011 /* Search forward to see if the source register of a copy insn dies
2012    before either it or the destination register is modified, but don't
2013    scan past the end of the basic block.  If so, we can replace the
2014    source with the destination and let the source die in the copy
2015    insn.
2016 
2017    This will reduce the number of registers live in that range and may
2018    enable the destination and the source coalescing, thus often saving
2019    one register in addition to a register-register copy.  */
2020 
2021 static void
2022 decrease_live_ranges_number (void)
2023 {
2024   basic_block bb;
2025   rtx_insn *insn;
2026   rtx set, src, dest, dest_death, note;
2027   rtx_insn *p, *q;
2028   int sregno, dregno;
2029 
2030   if (! flag_expensive_optimizations)
2031     return;
2032 
2033   if (ira_dump_file)
2034     fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2035 
2036   FOR_EACH_BB_FN (bb, cfun)
2037     FOR_BB_INSNS (bb, insn)
2038       {
2039 	set = single_set (insn);
2040 	if (! set)
2041 	  continue;
2042 	src = SET_SRC (set);
2043 	dest = SET_DEST (set);
2044 	if (! REG_P (src) || ! REG_P (dest)
2045 	    || find_reg_note (insn, REG_DEAD, src))
2046 	  continue;
2047 	sregno = REGNO (src);
2048 	dregno = REGNO (dest);
2049 
2050 	/* We don't want to mess with hard regs if register classes
2051 	   are small.  */
2052 	if (sregno == dregno
2053 	    || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2054 		&& (sregno < FIRST_PSEUDO_REGISTER
2055 		    || dregno < FIRST_PSEUDO_REGISTER))
2056 	    /* We don't see all updates to SP if they are in an
2057 	       auto-inc memory reference, so we must disallow this
2058 	       optimization on them.  */
2059 	    || sregno == STACK_POINTER_REGNUM
2060 	    || dregno == STACK_POINTER_REGNUM)
2061 	  continue;
2062 
2063 	dest_death = NULL_RTX;
2064 
2065 	for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2066 	  {
2067 	    if (! INSN_P (p))
2068 	      continue;
2069 	    if (BLOCK_FOR_INSN (p) != bb)
2070 	      break;
2071 
2072 	    if (reg_set_p (src, p) || reg_set_p (dest, p)
2073 		/* If SRC is an asm-declared register, it must not be
2074 		   replaced in any asm.  Unfortunately, the REG_EXPR
2075 		   tree for the asm variable may be absent in the SRC
2076 		   rtx, so we can't check the actual register
2077 		   declaration easily (the asm operand will have it,
2078 		   though).  To avoid complicating the test for a rare
2079 		   case, we just don't perform register replacement
2080 		   for a hard reg mentioned in an asm.  */
2081 		|| (sregno < FIRST_PSEUDO_REGISTER
2082 		    && asm_noperands (PATTERN (p)) >= 0
2083 		    && reg_overlap_mentioned_p (src, PATTERN (p)))
2084 		/* Don't change hard registers used by a call.  */
2085 		|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2086 		    && find_reg_fusage (p, USE, src))
2087 		/* Don't change a USE of a register.  */
2088 		|| (GET_CODE (PATTERN (p)) == USE
2089 		    && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2090 	      break;
2091 
2092 	    /* See if all of SRC dies in P.  This test is slightly
2093 	       more conservative than it needs to be.  */
2094 	    if ((note = find_regno_note (p, REG_DEAD, sregno))
2095 		&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2096 	      {
2097 		int failed = 0;
2098 
2099 		/* We can do the optimization.  Scan forward from INSN
2100 		   again, replacing regs as we go.  Set FAILED if a
2101 		   replacement can't be done.  In that case, we can't
2102 		   move the death note for SRC.  This should be
2103 		   rare.  */
2104 
2105 		/* Set to stop at next insn.  */
2106 		for (q = next_real_insn (insn);
2107 		     q != next_real_insn (p);
2108 		     q = next_real_insn (q))
2109 		  {
2110 		    if (reg_overlap_mentioned_p (src, PATTERN (q)))
2111 		      {
2112 			/* If SRC is a hard register, we might miss
2113 			   some overlapping registers with
2114 			   validate_replace_rtx, so we would have to
2115 			   undo it.  We can't if DEST is present in
2116 			   the insn, so fail in that combination of
2117 			   cases.  */
2118 			if (sregno < FIRST_PSEUDO_REGISTER
2119 			    && reg_mentioned_p (dest, PATTERN (q)))
2120 			  failed = 1;
2121 
2122 			/* Attempt to replace all uses.  */
2123 			else if (!validate_replace_rtx (src, dest, q))
2124 			  failed = 1;
2125 
2126 			/* If this succeeded, but some part of the
2127 			   register is still present, undo the
2128 			   replacement.  */
2129 			else if (sregno < FIRST_PSEUDO_REGISTER
2130 				 && reg_overlap_mentioned_p (src, PATTERN (q)))
2131 			  {
2132 			    validate_replace_rtx (dest, src, q);
2133 			    failed = 1;
2134 			  }
2135 		      }
2136 
2137 		    /* If DEST dies here, remove the death note and
2138 		       save it for later.  Make sure ALL of DEST dies
2139 		       here; again, this is overly conservative.  */
2140 		    if (! dest_death
2141 			&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2142 		      {
2143 			if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2144 			  remove_note (q, dest_death);
2145 			else
2146 			  {
2147 			    failed = 1;
2148 			    dest_death = 0;
2149 			  }
2150 		      }
2151 		  }
2152 
2153 		if (! failed)
2154 		  {
2155 		    /* Move death note of SRC from P to INSN.  */
2156 		    remove_note (p, note);
2157 		    XEXP (note, 1) = REG_NOTES (insn);
2158 		    REG_NOTES (insn) = note;
2159 		  }
2160 
2161 		/* DEST is also dead if INSN has a REG_UNUSED note for
2162 		   DEST.  */
2163 		if (! dest_death
2164 		    && (dest_death
2165 			= find_regno_note (insn, REG_UNUSED, dregno)))
2166 		  {
2167 		    PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2168 		    remove_note (insn, dest_death);
2169 		  }
2170 
2171 		/* Put death note of DEST on P if we saw it die.  */
2172 		if (dest_death)
2173 		  {
2174 		    XEXP (dest_death, 1) = REG_NOTES (p);
2175 		    REG_NOTES (p) = dest_death;
2176 		  }
2177 		break;
2178 	      }
2179 
2180 	    /* If SRC is a hard register which is set or killed in
2181 	       some other way, we can't do this optimization.  */
2182 	    else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2183 	      break;
2184 	  }
2185       }
2186 }
2187 
2188 
2189 
2190 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
2191 static bool
2192 ira_bad_reload_regno_1 (int regno, rtx x)
2193 {
2194   int x_regno, n, i;
2195   ira_allocno_t a;
2196   enum reg_class pref;
2197 
2198   /* We only deal with pseudo regs.  */
2199   if (! x || GET_CODE (x) != REG)
2200     return false;
2201 
2202   x_regno = REGNO (x);
2203   if (x_regno < FIRST_PSEUDO_REGISTER)
2204     return false;
2205 
2206   /* If the pseudo prefers REGNO explicitly, then do not consider
2207      REGNO a bad spill choice.  */
2208   pref = reg_preferred_class (x_regno);
2209   if (reg_class_size[pref] == 1)
2210     return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2211 
2212   /* If the pseudo conflicts with REGNO, then we consider REGNO a
2213      poor choice for a reload regno.  */
2214   a = ira_regno_allocno_map[x_regno];
2215   n = ALLOCNO_NUM_OBJECTS (a);
2216   for (i = 0; i < n; i++)
2217     {
2218       ira_object_t obj = ALLOCNO_OBJECT (a, i);
2219       if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2220 	return true;
2221     }
2222   return false;
2223 }
2224 
2225 /* Return nonzero if REGNO is a particularly bad choice for reloading
2226    IN or OUT.  */
2227 bool
2228 ira_bad_reload_regno (int regno, rtx in, rtx out)
2229 {
2230   return (ira_bad_reload_regno_1 (regno, in)
2231 	  || ira_bad_reload_regno_1 (regno, out));
2232 }
2233 
2234 /* Add register clobbers from asm statements.  */
2235 static void
2236 compute_regs_asm_clobbered (void)
2237 {
2238   basic_block bb;
2239 
2240   FOR_EACH_BB_FN (bb, cfun)
2241     {
2242       rtx_insn *insn;
2243       FOR_BB_INSNS_REVERSE (bb, insn)
2244 	{
2245 	  df_ref def;
2246 
2247 	  if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2248 	    FOR_EACH_INSN_DEF (def, insn)
2249 	      {
2250 		unsigned int dregno = DF_REF_REGNO (def);
2251 		if (HARD_REGISTER_NUM_P (dregno))
2252 		  add_to_hard_reg_set (&crtl->asm_clobbers,
2253 				       GET_MODE (DF_REF_REAL_REG (def)),
2254 				       dregno);
2255 	      }
2256 	}
2257     }
2258 }
2259 
2260 
2261 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2262    REGS_EVER_LIVE.  */
2263 void
2264 ira_setup_eliminable_regset (void)
2265 {
2266   int i;
2267   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2268 
2269   /* Setup is_leaf as frame_pointer_required may use it.  This function
2270      is called by sched_init before ira if scheduling is enabled.  */
2271   crtl->is_leaf = leaf_function_p ();
2272 
2273   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2274      sp for alloca.  So we can't eliminate the frame pointer in that
2275      case.  At some point, we should improve this by emitting the
2276      sp-adjusting insns for this case.  */
2277   frame_pointer_needed
2278     = (! flag_omit_frame_pointer
2279        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2280        /* We need the frame pointer to catch stack overflow exceptions if
2281 	  the stack pointer is moving (as for the alloca case just above).  */
2282        || (STACK_CHECK_MOVING_SP
2283 	   && flag_stack_check
2284 	   && flag_exceptions
2285 	   && cfun->can_throw_non_call_exceptions)
2286        || crtl->accesses_prior_frames
2287        || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2288        /* We need a frame pointer for all Cilk Plus functions that use
2289 	  Cilk keywords.  */
2290        || (flag_cilkplus && cfun->is_cilk_function)
2291        || targetm.frame_pointer_required ());
2292 
2293     /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2294        RTL is very small.  So if we use frame pointer for RA and RTL
2295        actually prevents this, we will spill pseudos assigned to the
2296        frame pointer in LRA.  */
2297 
2298   if (frame_pointer_needed)
2299     df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2300 
2301   COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2302   CLEAR_HARD_REG_SET (eliminable_regset);
2303 
2304   compute_regs_asm_clobbered ();
2305 
2306   /* Build the regset of all eliminable registers and show we can't
2307      use those that we already know won't be eliminated.  */
2308   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2309     {
2310       bool cannot_elim
2311 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2312 	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2313 
2314       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2315 	{
2316 	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2317 
2318 	    if (cannot_elim)
2319 	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2320 	}
2321       else if (cannot_elim)
2322 	error ("%s cannot be used in asm here",
2323 	       reg_names[eliminables[i].from]);
2324       else
2325 	df_set_regs_ever_live (eliminables[i].from, true);
2326     }
2327   if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2328     {
2329       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2330 	{
2331 	  SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2332 	  if (frame_pointer_needed)
2333 	    SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2334 	}
2335       else if (frame_pointer_needed)
2336 	error ("%s cannot be used in asm here",
2337 	       reg_names[HARD_FRAME_POINTER_REGNUM]);
2338       else
2339 	df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2340     }
2341 }
2342 
2343 
2344 
2345 /* Vector of substitutions of register numbers,
2346    used to map pseudo regs into hardware regs.
2347    This is set up as a result of register allocation.
2348    Element N is the hard reg assigned to pseudo reg N,
2349    or is -1 if no hard reg was assigned.
2350    If N is a hard reg number, element N is N.  */
2351 short *reg_renumber;
2352 
2353 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2354    the allocation found by IRA.  */
2355 static void
2356 setup_reg_renumber (void)
2357 {
2358   int regno, hard_regno;
2359   ira_allocno_t a;
2360   ira_allocno_iterator ai;
2361 
2362   caller_save_needed = 0;
2363   FOR_EACH_ALLOCNO (a, ai)
2364     {
2365       if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2366 	continue;
2367       /* There are no caps at this point.  */
2368       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2369       if (! ALLOCNO_ASSIGNED_P (a))
2370 	/* It can happen if A is not referenced but partially anticipated
2371 	   somewhere in a region.  */
2372 	ALLOCNO_ASSIGNED_P (a) = true;
2373       ira_free_allocno_updated_costs (a);
2374       hard_regno = ALLOCNO_HARD_REGNO (a);
2375       regno = ALLOCNO_REGNO (a);
2376       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2377       if (hard_regno >= 0)
2378 	{
2379 	  int i, nwords;
2380 	  enum reg_class pclass;
2381 	  ira_object_t obj;
2382 
2383 	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2384 	  nwords = ALLOCNO_NUM_OBJECTS (a);
2385 	  for (i = 0; i < nwords; i++)
2386 	    {
2387 	      obj = ALLOCNO_OBJECT (a, i);
2388 	      IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2389 				      reg_class_contents[pclass]);
2390 	    }
2391 	  if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2392 	      && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2393 						  call_used_reg_set))
2394 	    {
2395 	      ira_assert (!optimize || flag_caller_saves
2396 			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
2397 			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2398 			  || regno >= ira_reg_equiv_len
2399 			  || ira_equiv_no_lvalue_p (regno));
2400 	      caller_save_needed = 1;
2401 	    }
2402 	}
2403     }
2404 }
2405 
2406 /* Set up allocno assignment flags for further allocation
2407    improvements.  */
2408 static void
2409 setup_allocno_assignment_flags (void)
2410 {
2411   int hard_regno;
2412   ira_allocno_t a;
2413   ira_allocno_iterator ai;
2414 
2415   FOR_EACH_ALLOCNO (a, ai)
2416     {
2417       if (! ALLOCNO_ASSIGNED_P (a))
2418 	/* It can happen if A is not referenced but partially anticipated
2419 	   somewhere in a region.  */
2420 	ira_free_allocno_updated_costs (a);
2421       hard_regno = ALLOCNO_HARD_REGNO (a);
2422       /* Don't assign hard registers to allocnos which are destination
2423 	 of removed store at the end of loop.  It has no sense to keep
2424 	 the same value in different hard registers.  It is also
2425 	 impossible to assign hard registers correctly to such
2426 	 allocnos because the cost info and info about intersected
2427 	 calls are incorrect for them.  */
2428       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2429 				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2430 				|| (ALLOCNO_MEMORY_COST (a)
2431 				    - ALLOCNO_CLASS_COST (a)) < 0);
2432       ira_assert
2433 	(hard_regno < 0
2434 	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2435 				   reg_class_contents[ALLOCNO_CLASS (a)]));
2436     }
2437 }
2438 
2439 /* Evaluate overall allocation cost and the costs for using hard
2440    registers and memory for allocnos.  */
2441 static void
2442 calculate_allocation_cost (void)
2443 {
2444   int hard_regno, cost;
2445   ira_allocno_t a;
2446   ira_allocno_iterator ai;
2447 
2448   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2449   FOR_EACH_ALLOCNO (a, ai)
2450     {
2451       hard_regno = ALLOCNO_HARD_REGNO (a);
2452       ira_assert (hard_regno < 0
2453 		  || (ira_hard_reg_in_set_p
2454 		      (hard_regno, ALLOCNO_MODE (a),
2455 		       reg_class_contents[ALLOCNO_CLASS (a)])));
2456       if (hard_regno < 0)
2457 	{
2458 	  cost = ALLOCNO_MEMORY_COST (a);
2459 	  ira_mem_cost += cost;
2460 	}
2461       else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2462 	{
2463 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
2464 		  [ira_class_hard_reg_index
2465 		   [ALLOCNO_CLASS (a)][hard_regno]]);
2466 	  ira_reg_cost += cost;
2467 	}
2468       else
2469 	{
2470 	  cost = ALLOCNO_CLASS_COST (a);
2471 	  ira_reg_cost += cost;
2472 	}
2473       ira_overall_cost += cost;
2474     }
2475 
2476   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2477     {
2478       fprintf (ira_dump_file,
2479 	       "+++Costs: overall %" PRId64
2480 	       ", reg %" PRId64
2481 	       ", mem %" PRId64
2482 	       ", ld %" PRId64
2483 	       ", st %" PRId64
2484 	       ", move %" PRId64,
2485 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
2486 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
2487       fprintf (ira_dump_file, "\n+++       move loops %d, new jumps %d\n",
2488 	       ira_move_loops_num, ira_additional_jumps_num);
2489     }
2490 
2491 }
2492 
2493 #ifdef ENABLE_IRA_CHECKING
2494 /* Check the correctness of the allocation.  We do need this because
2495    of complicated code to transform more one region internal
2496    representation into one region representation.  */
2497 static void
2498 check_allocation (void)
2499 {
2500   ira_allocno_t a;
2501   int hard_regno, nregs, conflict_nregs;
2502   ira_allocno_iterator ai;
2503 
2504   FOR_EACH_ALLOCNO (a, ai)
2505     {
2506       int n = ALLOCNO_NUM_OBJECTS (a);
2507       int i;
2508 
2509       if (ALLOCNO_CAP_MEMBER (a) != NULL
2510 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2511 	continue;
2512       nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2513       if (nregs == 1)
2514 	/* We allocated a single hard register.  */
2515 	n = 1;
2516       else if (n > 1)
2517 	/* We allocated multiple hard registers, and we will test
2518 	   conflicts in a granularity of single hard regs.  */
2519 	nregs = 1;
2520 
2521       for (i = 0; i < n; i++)
2522 	{
2523 	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
2524 	  ira_object_t conflict_obj;
2525 	  ira_object_conflict_iterator oci;
2526 	  int this_regno = hard_regno;
2527 	  if (n > 1)
2528 	    {
2529 	      if (REG_WORDS_BIG_ENDIAN)
2530 		this_regno += n - i - 1;
2531 	      else
2532 		this_regno += i;
2533 	    }
2534 	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2535 	    {
2536 	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2537 	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2538 	      if (conflict_hard_regno < 0)
2539 		continue;
2540 
2541 	      conflict_nregs
2542 		= (hard_regno_nregs
2543 		   [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2544 
2545 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2546 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2547 		{
2548 		  if (REG_WORDS_BIG_ENDIAN)
2549 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2550 					    - OBJECT_SUBWORD (conflict_obj) - 1);
2551 		  else
2552 		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2553 		  conflict_nregs = 1;
2554 		}
2555 
2556 	      if ((conflict_hard_regno <= this_regno
2557 		 && this_regno < conflict_hard_regno + conflict_nregs)
2558 		|| (this_regno <= conflict_hard_regno
2559 		    && conflict_hard_regno < this_regno + nregs))
2560 		{
2561 		  fprintf (stderr, "bad allocation for %d and %d\n",
2562 			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2563 		  gcc_unreachable ();
2564 		}
2565 	    }
2566 	}
2567     }
2568 }
2569 #endif
2570 
2571 /* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
2572    be already calculated.  */
2573 static void
2574 setup_reg_equiv_init (void)
2575 {
2576   int i;
2577   int max_regno = max_reg_num ();
2578 
2579   for (i = 0; i < max_regno; i++)
2580     reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2581 }
2582 
2583 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
2584    are insns which were generated for such movement.  It is assumed
2585    that FROM_REGNO and TO_REGNO always have the same value at the
2586    point of any move containing such registers. This function is used
2587    to update equiv info for register shuffles on the region borders
2588    and for caller save/restore insns.  */
2589 void
2590 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2591 {
2592   rtx_insn *insn;
2593   rtx x, note;
2594 
2595   if (! ira_reg_equiv[from_regno].defined_p
2596       && (! ira_reg_equiv[to_regno].defined_p
2597 	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2598 	      && ! MEM_READONLY_P (x))))
2599     return;
2600   insn = insns;
2601   if (NEXT_INSN (insn) != NULL_RTX)
2602     {
2603       if (! ira_reg_equiv[to_regno].defined_p)
2604 	{
2605 	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2606 	  return;
2607 	}
2608       ira_reg_equiv[to_regno].defined_p = false;
2609       ira_reg_equiv[to_regno].memory
2610 	= ira_reg_equiv[to_regno].constant
2611 	= ira_reg_equiv[to_regno].invariant
2612 	= ira_reg_equiv[to_regno].init_insns = NULL;
2613       if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2614 	fprintf (ira_dump_file,
2615 		 "      Invalidating equiv info for reg %d\n", to_regno);
2616       return;
2617     }
2618   /* It is possible that FROM_REGNO still has no equivalence because
2619      in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2620      insn was not processed yet.  */
2621   if (ira_reg_equiv[from_regno].defined_p)
2622     {
2623       ira_reg_equiv[to_regno].defined_p = true;
2624       if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2625 	{
2626 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2627 		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
2628 	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2629 		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2630 	  ira_reg_equiv[to_regno].memory = x;
2631 	  if (! MEM_READONLY_P (x))
2632 	    /* We don't add the insn to insn init list because memory
2633 	       equivalence is just to say what memory is better to use
2634 	       when the pseudo is spilled.  */
2635 	    return;
2636 	}
2637       else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2638 	{
2639 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2640 	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2641 		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2642 	  ira_reg_equiv[to_regno].constant = x;
2643 	}
2644       else
2645 	{
2646 	  x = ira_reg_equiv[from_regno].invariant;
2647 	  ira_assert (x != NULL_RTX);
2648 	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2649 		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2650 	  ira_reg_equiv[to_regno].invariant = x;
2651 	}
2652       if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2653 	{
2654 	  note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2655 	  gcc_assert (note != NULL_RTX);
2656 	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2657 	    {
2658 	      fprintf (ira_dump_file,
2659 		       "      Adding equiv note to insn %u for reg %d ",
2660 		       INSN_UID (insn), to_regno);
2661 	      dump_value_slim (ira_dump_file, x, 1);
2662 	      fprintf (ira_dump_file, "\n");
2663 	    }
2664 	}
2665     }
2666   ira_reg_equiv[to_regno].init_insns
2667     = gen_rtx_INSN_LIST (VOIDmode, insn,
2668 			 ira_reg_equiv[to_regno].init_insns);
2669   if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2670     fprintf (ira_dump_file,
2671 	     "      Adding equiv init move insn %u to reg %d\n",
2672 	     INSN_UID (insn), to_regno);
2673 }
2674 
2675 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2676    by IRA.  */
2677 static void
2678 fix_reg_equiv_init (void)
2679 {
2680   int max_regno = max_reg_num ();
2681   int i, new_regno, max;
2682   rtx set;
2683   rtx_insn_list *x, *next, *prev;
2684   rtx_insn *insn;
2685 
2686   if (max_regno_before_ira < max_regno)
2687     {
2688       max = vec_safe_length (reg_equivs);
2689       grow_reg_equivs ();
2690       for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2691 	for (prev = NULL, x = reg_equiv_init (i);
2692 	     x != NULL_RTX;
2693 	     x = next)
2694 	  {
2695 	    next = x->next ();
2696 	    insn = x->insn ();
2697 	    set = single_set (insn);
2698 	    ira_assert (set != NULL_RTX
2699 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2700 	    if (REG_P (SET_DEST (set))
2701 		&& ((int) REGNO (SET_DEST (set)) == i
2702 		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2703 	      new_regno = REGNO (SET_DEST (set));
2704 	    else if (REG_P (SET_SRC (set))
2705 		     && ((int) REGNO (SET_SRC (set)) == i
2706 			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2707 	      new_regno = REGNO (SET_SRC (set));
2708 	    else
2709  	      gcc_unreachable ();
2710 	    if (new_regno == i)
2711 	      prev = x;
2712 	    else
2713 	      {
2714 		/* Remove the wrong list element.  */
2715 		if (prev == NULL_RTX)
2716 		  reg_equiv_init (i) = next;
2717 		else
2718 		  XEXP (prev, 1) = next;
2719 		XEXP (x, 1) = reg_equiv_init (new_regno);
2720 		reg_equiv_init (new_regno) = x;
2721 	      }
2722 	  }
2723     }
2724 }
2725 
2726 #ifdef ENABLE_IRA_CHECKING
2727 /* Print redundant memory-memory copies.  */
2728 static void
2729 print_redundant_copies (void)
2730 {
2731   int hard_regno;
2732   ira_allocno_t a;
2733   ira_copy_t cp, next_cp;
2734   ira_allocno_iterator ai;
2735 
2736   FOR_EACH_ALLOCNO (a, ai)
2737     {
2738       if (ALLOCNO_CAP_MEMBER (a) != NULL)
2739 	/* It is a cap.  */
2740 	continue;
2741       hard_regno = ALLOCNO_HARD_REGNO (a);
2742       if (hard_regno >= 0)
2743 	continue;
2744       for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2745 	if (cp->first == a)
2746 	  next_cp = cp->next_first_allocno_copy;
2747 	else
2748 	  {
2749 	    next_cp = cp->next_second_allocno_copy;
2750 	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2751 		&& cp->insn != NULL_RTX
2752 		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2753 	      fprintf (ira_dump_file,
2754 		       "        Redundant move from %d(freq %d):%d\n",
2755 		       INSN_UID (cp->insn), cp->freq, hard_regno);
2756 	  }
2757     }
2758 }
2759 #endif
2760 
2761 /* Setup preferred and alternative classes for new pseudo-registers
2762    created by IRA starting with START.  */
2763 static void
2764 setup_preferred_alternate_classes_for_new_pseudos (int start)
2765 {
2766   int i, old_regno;
2767   int max_regno = max_reg_num ();
2768 
2769   for (i = start; i < max_regno; i++)
2770     {
2771       old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2772       ira_assert (i != old_regno);
2773       setup_reg_classes (i, reg_preferred_class (old_regno),
2774 			 reg_alternate_class (old_regno),
2775 			 reg_allocno_class (old_regno));
2776       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2777 	fprintf (ira_dump_file,
2778 		 "    New r%d: setting preferred %s, alternative %s\n",
2779 		 i, reg_class_names[reg_preferred_class (old_regno)],
2780 		 reg_class_names[reg_alternate_class (old_regno)]);
2781     }
2782 }
2783 
2784 
2785 /* The number of entries allocated in reg_info.  */
2786 static int allocated_reg_info_size;
2787 
2788 /* Regional allocation can create new pseudo-registers.  This function
2789    expands some arrays for pseudo-registers.  */
2790 static void
2791 expand_reg_info (void)
2792 {
2793   int i;
2794   int size = max_reg_num ();
2795 
2796   resize_reg_info ();
2797   for (i = allocated_reg_info_size; i < size; i++)
2798     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2799   setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2800   allocated_reg_info_size = size;
2801 }
2802 
2803 /* Return TRUE if there is too high register pressure in the function.
2804    It is used to decide when stack slot sharing is worth to do.  */
2805 static bool
2806 too_high_register_pressure_p (void)
2807 {
2808   int i;
2809   enum reg_class pclass;
2810 
2811   for (i = 0; i < ira_pressure_classes_num; i++)
2812     {
2813       pclass = ira_pressure_classes[i];
2814       if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2815 	return true;
2816     }
2817   return false;
2818 }
2819 
2820 
2821 
2822 /* Indicate that hard register number FROM was eliminated and replaced with
2823    an offset from hard register number TO.  The status of hard registers live
2824    at the start of a basic block is updated by replacing a use of FROM with
2825    a use of TO.  */
2826 
2827 void
2828 mark_elimination (int from, int to)
2829 {
2830   basic_block bb;
2831   bitmap r;
2832 
2833   FOR_EACH_BB_FN (bb, cfun)
2834     {
2835       r = DF_LR_IN (bb);
2836       if (bitmap_bit_p (r, from))
2837 	{
2838 	  bitmap_clear_bit (r, from);
2839 	  bitmap_set_bit (r, to);
2840 	}
2841       if (! df_live)
2842         continue;
2843       r = DF_LIVE_IN (bb);
2844       if (bitmap_bit_p (r, from))
2845 	{
2846 	  bitmap_clear_bit (r, from);
2847 	  bitmap_set_bit (r, to);
2848 	}
2849     }
2850 }
2851 
2852 
2853 
2854 /* The length of the following array.  */
2855 int ira_reg_equiv_len;
2856 
2857 /* Info about equiv. info for each register.  */
2858 struct ira_reg_equiv_s *ira_reg_equiv;
2859 
2860 /* Expand ira_reg_equiv if necessary.  */
2861 void
2862 ira_expand_reg_equiv (void)
2863 {
2864   int old = ira_reg_equiv_len;
2865 
2866   if (ira_reg_equiv_len > max_reg_num ())
2867     return;
2868   ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2869   ira_reg_equiv
2870     = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2871 					 ira_reg_equiv_len
2872 					 * sizeof (struct ira_reg_equiv_s));
2873   gcc_assert (old < ira_reg_equiv_len);
2874   memset (ira_reg_equiv + old, 0,
2875 	  sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2876 }
2877 
2878 static void
2879 init_reg_equiv (void)
2880 {
2881   ira_reg_equiv_len = 0;
2882   ira_reg_equiv = NULL;
2883   ira_expand_reg_equiv ();
2884 }
2885 
2886 static void
2887 finish_reg_equiv (void)
2888 {
2889   free (ira_reg_equiv);
2890 }
2891 
2892 
2893 
2894 struct equivalence
2895 {
2896   /* Set when a REG_EQUIV note is found or created.  Use to
2897      keep track of what memory accesses might be created later,
2898      e.g. by reload.  */
2899   rtx replacement;
2900   rtx *src_p;
2901 
2902   /* The list of each instruction which initializes this register.
2903 
2904      NULL indicates we know nothing about this register's equivalence
2905      properties.
2906 
2907      An INSN_LIST with a NULL insn indicates this pseudo is already
2908      known to not have a valid equivalence.  */
2909   rtx_insn_list *init_insns;
2910 
2911   /* Loop depth is used to recognize equivalences which appear
2912      to be present within the same loop (or in an inner loop).  */
2913   short loop_depth;
2914   /* Nonzero if this had a preexisting REG_EQUIV note.  */
2915   unsigned char is_arg_equivalence : 1;
2916   /* Set when an attempt should be made to replace a register
2917      with the associated src_p entry.  */
2918   unsigned char replace : 1;
2919   /* Set if this register has no known equivalence.  */
2920   unsigned char no_equiv : 1;
2921   /* Set if this register is mentioned in a paradoxical subreg.  */
2922   unsigned char pdx_subregs : 1;
2923 };
2924 
2925 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2926    structure for that register.  */
2927 static struct equivalence *reg_equiv;
2928 
2929 /* Used for communication between the following two functions.  */
2930 struct equiv_mem_data
2931 {
2932   /* A MEM that we wish to ensure remains unchanged.  */
2933   rtx equiv_mem;
2934 
2935   /* Set true if EQUIV_MEM is modified.  */
2936   bool equiv_mem_modified;
2937 };
2938 
2939 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2940    Called via note_stores.  */
2941 static void
2942 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2943 			       void *data)
2944 {
2945   struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2946 
2947   if ((REG_P (dest)
2948        && reg_overlap_mentioned_p (dest, info->equiv_mem))
2949       || (MEM_P (dest)
2950 	  && anti_dependence (info->equiv_mem, dest)))
2951     info->equiv_mem_modified = true;
2952 }
2953 
2954 enum valid_equiv { valid_none, valid_combine, valid_reload };
2955 
2956 /* Verify that no store between START and the death of REG invalidates
2957    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2958    by storing into an overlapping memory location, or with a non-const
2959    CALL_INSN.
2960 
2961    Return VALID_RELOAD if MEMREF remains valid for both reload and
2962    combine_and_move insns, VALID_COMBINE if only valid for
2963    combine_and_move_insns, and VALID_NONE otherwise.  */
2964 static enum valid_equiv
2965 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2966 {
2967   rtx_insn *insn;
2968   rtx note;
2969   struct equiv_mem_data info = { memref, false };
2970   enum valid_equiv ret = valid_reload;
2971 
2972   /* If the memory reference has side effects or is volatile, it isn't a
2973      valid equivalence.  */
2974   if (side_effects_p (memref))
2975     return valid_none;
2976 
2977   for (insn = start; insn; insn = NEXT_INSN (insn))
2978     {
2979       if (!INSN_P (insn))
2980 	continue;
2981 
2982       if (find_reg_note (insn, REG_DEAD, reg))
2983 	return ret;
2984 
2985       if (CALL_P (insn))
2986 	{
2987 	  /* We can combine a reg def from one insn into a reg use in
2988 	     another over a call if the memory is readonly or the call
2989 	     const/pure.  However, we can't set reg_equiv notes up for
2990 	     reload over any call.  The problem is the equivalent form
2991 	     may reference a pseudo which gets assigned a call
2992 	     clobbered hard reg.  When we later replace REG with its
2993 	     equivalent form, the value in the call-clobbered reg has
2994 	     been changed and all hell breaks loose.  */
2995 	  ret = valid_combine;
2996 	  if (!MEM_READONLY_P (memref)
2997 	      && !RTL_CONST_OR_PURE_CALL_P (insn))
2998 	    return valid_none;
2999 	}
3000 
3001       note_stores (PATTERN (insn), validate_equiv_mem_from_store, &info);
3002       if (info.equiv_mem_modified)
3003 	return valid_none;
3004 
3005       /* If a register mentioned in MEMREF is modified via an
3006 	 auto-increment, we lose the equivalence.  Do the same if one
3007 	 dies; although we could extend the life, it doesn't seem worth
3008 	 the trouble.  */
3009 
3010       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3011 	if ((REG_NOTE_KIND (note) == REG_INC
3012 	     || REG_NOTE_KIND (note) == REG_DEAD)
3013 	    && REG_P (XEXP (note, 0))
3014 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3015 	  return valid_none;
3016     }
3017 
3018   return valid_none;
3019 }
3020 
3021 /* Returns zero if X is known to be invariant.  */
3022 static int
3023 equiv_init_varies_p (rtx x)
3024 {
3025   RTX_CODE code = GET_CODE (x);
3026   int i;
3027   const char *fmt;
3028 
3029   switch (code)
3030     {
3031     case MEM:
3032       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3033 
3034     case CONST:
3035     CASE_CONST_ANY:
3036     case SYMBOL_REF:
3037     case LABEL_REF:
3038       return 0;
3039 
3040     case REG:
3041       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3042 
3043     case ASM_OPERANDS:
3044       if (MEM_VOLATILE_P (x))
3045 	return 1;
3046 
3047       /* Fall through.  */
3048 
3049     default:
3050       break;
3051     }
3052 
3053   fmt = GET_RTX_FORMAT (code);
3054   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3055     if (fmt[i] == 'e')
3056       {
3057 	if (equiv_init_varies_p (XEXP (x, i)))
3058 	  return 1;
3059       }
3060     else if (fmt[i] == 'E')
3061       {
3062 	int j;
3063 	for (j = 0; j < XVECLEN (x, i); j++)
3064 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
3065 	    return 1;
3066       }
3067 
3068   return 0;
3069 }
3070 
3071 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3072    X is only movable if the registers it uses have equivalent initializations
3073    which appear to be within the same loop (or in an inner loop) and movable
3074    or if they are not candidates for local_alloc and don't vary.  */
3075 static int
3076 equiv_init_movable_p (rtx x, int regno)
3077 {
3078   int i, j;
3079   const char *fmt;
3080   enum rtx_code code = GET_CODE (x);
3081 
3082   switch (code)
3083     {
3084     case SET:
3085       return equiv_init_movable_p (SET_SRC (x), regno);
3086 
3087     case CC0:
3088     case CLOBBER:
3089       return 0;
3090 
3091     case PRE_INC:
3092     case PRE_DEC:
3093     case POST_INC:
3094     case POST_DEC:
3095     case PRE_MODIFY:
3096     case POST_MODIFY:
3097       return 0;
3098 
3099     case REG:
3100       return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3101 	       && reg_equiv[REGNO (x)].replace)
3102 	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3103 		  && ! rtx_varies_p (x, 0)));
3104 
3105     case UNSPEC_VOLATILE:
3106       return 0;
3107 
3108     case ASM_OPERANDS:
3109       if (MEM_VOLATILE_P (x))
3110 	return 0;
3111 
3112       /* Fall through.  */
3113 
3114     default:
3115       break;
3116     }
3117 
3118   fmt = GET_RTX_FORMAT (code);
3119   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3120     switch (fmt[i])
3121       {
3122       case 'e':
3123 	if (! equiv_init_movable_p (XEXP (x, i), regno))
3124 	  return 0;
3125 	break;
3126       case 'E':
3127 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3128 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3129 	    return 0;
3130 	break;
3131       }
3132 
3133   return 1;
3134 }
3135 
3136 /* TRUE if X references a memory location that would be affected by a store
3137    to MEMREF.  */
3138 static int
3139 memref_referenced_p (rtx memref, rtx x)
3140 {
3141   int i, j;
3142   const char *fmt;
3143   enum rtx_code code = GET_CODE (x);
3144 
3145   switch (code)
3146     {
3147     case CONST:
3148     case LABEL_REF:
3149     case SYMBOL_REF:
3150     CASE_CONST_ANY:
3151     case PC:
3152     case CC0:
3153     case HIGH:
3154     case LO_SUM:
3155       return 0;
3156 
3157     case REG:
3158       return (reg_equiv[REGNO (x)].replacement
3159 	      && memref_referenced_p (memref,
3160 				      reg_equiv[REGNO (x)].replacement));
3161 
3162     case MEM:
3163       if (true_dependence (memref, VOIDmode, x))
3164 	return 1;
3165       break;
3166 
3167     case SET:
3168       /* If we are setting a MEM, it doesn't count (its address does), but any
3169 	 other SET_DEST that has a MEM in it is referencing the MEM.  */
3170       if (MEM_P (SET_DEST (x)))
3171 	{
3172 	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3173 	    return 1;
3174 	}
3175       else if (memref_referenced_p (memref, SET_DEST (x)))
3176 	return 1;
3177 
3178       return memref_referenced_p (memref, SET_SRC (x));
3179 
3180     default:
3181       break;
3182     }
3183 
3184   fmt = GET_RTX_FORMAT (code);
3185   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3186     switch (fmt[i])
3187       {
3188       case 'e':
3189 	if (memref_referenced_p (memref, XEXP (x, i)))
3190 	  return 1;
3191 	break;
3192       case 'E':
3193 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3194 	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3195 	    return 1;
3196 	break;
3197       }
3198 
3199   return 0;
3200 }
3201 
3202 /* TRUE if some insn in the range (START, END] references a memory location
3203    that would be affected by a store to MEMREF.
3204 
3205    Callers should not call this routine if START is after END in the
3206    RTL chain.  */
3207 
3208 static int
3209 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3210 {
3211   rtx_insn *insn;
3212 
3213   for (insn = NEXT_INSN (start);
3214        insn && insn != NEXT_INSN (end);
3215        insn = NEXT_INSN (insn))
3216     {
3217       if (!NONDEBUG_INSN_P (insn))
3218 	continue;
3219 
3220       if (memref_referenced_p (memref, PATTERN (insn)))
3221 	return 1;
3222 
3223       /* Nonconst functions may access memory.  */
3224       if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3225 	return 1;
3226     }
3227 
3228   gcc_assert (insn == NEXT_INSN (end));
3229   return 0;
3230 }
3231 
3232 /* Mark REG as having no known equivalence.
3233    Some instructions might have been processed before and furnished
3234    with REG_EQUIV notes for this register; these notes will have to be
3235    removed.
3236    STORE is the piece of RTL that does the non-constant / conflicting
3237    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
3238    but needs to be there because this function is called from note_stores.  */
3239 static void
3240 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3241 	  void *data ATTRIBUTE_UNUSED)
3242 {
3243   int regno;
3244   rtx_insn_list *list;
3245 
3246   if (!REG_P (reg))
3247     return;
3248   regno = REGNO (reg);
3249   reg_equiv[regno].no_equiv = 1;
3250   list = reg_equiv[regno].init_insns;
3251   if (list && list->insn () == NULL)
3252     return;
3253   reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3254   reg_equiv[regno].replacement = NULL_RTX;
3255   /* This doesn't matter for equivalences made for argument registers, we
3256      should keep their initialization insns.  */
3257   if (reg_equiv[regno].is_arg_equivalence)
3258     return;
3259   ira_reg_equiv[regno].defined_p = false;
3260   ira_reg_equiv[regno].init_insns = NULL;
3261   for (; list; list = list->next ())
3262     {
3263       rtx_insn *insn = list->insn ();
3264       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3265     }
3266 }
3267 
3268 /* Check whether the SUBREG is a paradoxical subreg and set the result
3269    in PDX_SUBREGS.  */
3270 
3271 static void
3272 set_paradoxical_subreg (rtx_insn *insn)
3273 {
3274   subrtx_iterator::array_type array;
3275   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3276     {
3277       const_rtx subreg = *iter;
3278       if (GET_CODE (subreg) == SUBREG)
3279 	{
3280 	  const_rtx reg = SUBREG_REG (subreg);
3281 	  if (REG_P (reg) && paradoxical_subreg_p (subreg))
3282 	    reg_equiv[REGNO (reg)].pdx_subregs = true;
3283 	}
3284     }
3285 }
3286 
3287 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3288    equivalent replacement.  */
3289 
3290 static rtx
3291 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3292 {
3293   if (REG_P (loc))
3294     {
3295       bitmap cleared_regs = (bitmap) data;
3296       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3297 	return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3298 					NULL_RTX, adjust_cleared_regs, data);
3299     }
3300   return NULL_RTX;
3301 }
3302 
3303 /* Given register REGNO is set only once, return true if the defining
3304    insn dominates all uses.  */
3305 
3306 static bool
3307 def_dominates_uses (int regno)
3308 {
3309   df_ref def = DF_REG_DEF_CHAIN (regno);
3310 
3311   struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3312   /* If this is an artificial def (eh handler regs, hard frame pointer
3313      for non-local goto, regs defined on function entry) then def_info
3314      is NULL and the reg is always live before any use.  We might
3315      reasonably return true in that case, but since the only call
3316      of this function is currently here in ira.c when we are looking
3317      at a defining insn we can't have an artificial def as that would
3318      bump DF_REG_DEF_COUNT.  */
3319   gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3320 
3321   rtx_insn *def_insn = DF_REF_INSN (def);
3322   basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3323 
3324   for (df_ref use = DF_REG_USE_CHAIN (regno);
3325        use;
3326        use = DF_REF_NEXT_REG (use))
3327     {
3328       struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3329       /* Only check real uses, not artificial ones.  */
3330       if (use_info)
3331 	{
3332 	  rtx_insn *use_insn = DF_REF_INSN (use);
3333 	  if (!DEBUG_INSN_P (use_insn))
3334 	    {
3335 	      basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3336 	      if (use_bb != def_bb
3337 		  ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3338 		  : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3339 		return false;
3340 	    }
3341 	}
3342     }
3343   return true;
3344 }
3345 
3346 /* Find registers that are equivalent to a single value throughout the
3347    compilation (either because they can be referenced in memory or are
3348    set once from a single constant).  Lower their priority for a
3349    register.
3350 
3351    If such a register is only referenced once, try substituting its
3352    value into the using insn.  If it succeeds, we can eliminate the
3353    register completely.
3354 
3355    Initialize init_insns in ira_reg_equiv array.  */
3356 static void
3357 update_equiv_regs (void)
3358 {
3359   rtx_insn *insn;
3360   basic_block bb;
3361 
3362   /* Scan insns and set pdx_subregs if the reg is used in a
3363      paradoxical subreg.  Don't set such reg equivalent to a mem,
3364      because lra will not substitute such equiv memory in order to
3365      prevent access beyond allocated memory for paradoxical memory subreg.  */
3366   FOR_EACH_BB_FN (bb, cfun)
3367     FOR_BB_INSNS (bb, insn)
3368       if (NONDEBUG_INSN_P (insn))
3369 	set_paradoxical_subreg (insn);
3370 
3371   /* Scan the insns and find which registers have equivalences.  Do this
3372      in a separate scan of the insns because (due to -fcse-follow-jumps)
3373      a register can be set below its use.  */
3374   bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3375   FOR_EACH_BB_FN (bb, cfun)
3376     {
3377       int loop_depth = bb_loop_depth (bb);
3378 
3379       for (insn = BB_HEAD (bb);
3380 	   insn != NEXT_INSN (BB_END (bb));
3381 	   insn = NEXT_INSN (insn))
3382 	{
3383 	  rtx note;
3384 	  rtx set;
3385 	  rtx dest, src;
3386 	  int regno;
3387 
3388 	  if (! INSN_P (insn))
3389 	    continue;
3390 
3391 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3392 	    if (REG_NOTE_KIND (note) == REG_INC)
3393 	      no_equiv (XEXP (note, 0), note, NULL);
3394 
3395 	  set = single_set (insn);
3396 
3397 	  /* If this insn contains more (or less) than a single SET,
3398 	     only mark all destinations as having no known equivalence.  */
3399 	  if (set == NULL_RTX
3400 	      || side_effects_p (SET_SRC (set)))
3401 	    {
3402 	      note_stores (PATTERN (insn), no_equiv, NULL);
3403 	      continue;
3404 	    }
3405 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3406 	    {
3407 	      int i;
3408 
3409 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3410 		{
3411 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
3412 		  if (part != set)
3413 		    note_stores (part, no_equiv, NULL);
3414 		}
3415 	    }
3416 
3417 	  dest = SET_DEST (set);
3418 	  src = SET_SRC (set);
3419 
3420 	  /* See if this is setting up the equivalence between an argument
3421 	     register and its stack slot.  */
3422 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3423 	  if (note)
3424 	    {
3425 	      gcc_assert (REG_P (dest));
3426 	      regno = REGNO (dest);
3427 
3428 	      /* Note that we don't want to clear init_insns in
3429 		 ira_reg_equiv even if there are multiple sets of this
3430 		 register.  */
3431 	      reg_equiv[regno].is_arg_equivalence = 1;
3432 
3433 	      /* The insn result can have equivalence memory although
3434 		 the equivalence is not set up by the insn.  We add
3435 		 this insn to init insns as it is a flag for now that
3436 		 regno has an equivalence.  We will remove the insn
3437 		 from init insn list later.  */
3438 	      if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3439 		ira_reg_equiv[regno].init_insns
3440 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3441 				       ira_reg_equiv[regno].init_insns);
3442 
3443 	      /* Continue normally in case this is a candidate for
3444 		 replacements.  */
3445 	    }
3446 
3447 	  if (!optimize)
3448 	    continue;
3449 
3450 	  /* We only handle the case of a pseudo register being set
3451 	     once, or always to the same value.  */
3452 	  /* ??? The mn10200 port breaks if we add equivalences for
3453 	     values that need an ADDRESS_REGS register and set them equivalent
3454 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
3455 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3456 	     calculate_needs, but we traditionally work around this problem
3457 	     here by rejecting equivalences when the destination is in a register
3458 	     that's likely spilled.  This is fragile, of course, since the
3459 	     preferred class of a pseudo depends on all instructions that set
3460 	     or use it.  */
3461 
3462 	  if (!REG_P (dest)
3463 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3464 	      || (reg_equiv[regno].init_insns
3465 		  && reg_equiv[regno].init_insns->insn () == NULL)
3466 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3467 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3468 	    {
3469 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
3470 		 also set somewhere else to a constant.  */
3471 	      note_stores (set, no_equiv, NULL);
3472 	      continue;
3473 	    }
3474 
3475 	  /* Don't set reg mentioned in a paradoxical subreg
3476 	     equivalent to a mem.  */
3477 	  if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3478 	    {
3479 	      note_stores (set, no_equiv, NULL);
3480 	      continue;
3481 	    }
3482 
3483 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3484 
3485 	  /* cse sometimes generates function invariants, but doesn't put a
3486 	     REG_EQUAL note on the insn.  Since this note would be redundant,
3487 	     there's no point creating it earlier than here.  */
3488 	  if (! note && ! rtx_varies_p (src, 0))
3489 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3490 
3491 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3492 	     since it represents a function call.  */
3493 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3494 	    note = NULL_RTX;
3495 
3496 	  if (DF_REG_DEF_COUNT (regno) != 1)
3497 	    {
3498 	      bool equal_p = true;
3499 	      rtx_insn_list *list;
3500 
3501 	      /* If we have already processed this pseudo and determined it
3502 		 can not have an equivalence, then honor that decision.  */
3503 	      if (reg_equiv[regno].no_equiv)
3504 		continue;
3505 
3506 	      if (! note
3507 		  || rtx_varies_p (XEXP (note, 0), 0)
3508 		  || (reg_equiv[regno].replacement
3509 		      && ! rtx_equal_p (XEXP (note, 0),
3510 					reg_equiv[regno].replacement)))
3511 		{
3512 		  no_equiv (dest, set, NULL);
3513 		  continue;
3514 		}
3515 
3516 	      list = reg_equiv[regno].init_insns;
3517 	      for (; list; list = list->next ())
3518 		{
3519 		  rtx note_tmp;
3520 		  rtx_insn *insn_tmp;
3521 
3522 		  insn_tmp = list->insn ();
3523 		  note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3524 		  gcc_assert (note_tmp);
3525 		  if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3526 		    {
3527 		      equal_p = false;
3528 		      break;
3529 		    }
3530 		}
3531 
3532 	      if (! equal_p)
3533 		{
3534 		  no_equiv (dest, set, NULL);
3535 		  continue;
3536 		}
3537 	    }
3538 
3539 	  /* Record this insn as initializing this register.  */
3540 	  reg_equiv[regno].init_insns
3541 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3542 
3543 	  /* If this register is known to be equal to a constant, record that
3544 	     it is always equivalent to the constant.
3545 	     Note that it is possible to have a register use before
3546 	     the def in loops (see gcc.c-torture/execute/pr79286.c)
3547 	     where the reg is undefined on first use.  If the def insn
3548 	     won't trap we can use it as an equivalence, effectively
3549 	     choosing the "undefined" value for the reg to be the
3550 	     same as the value set by the def.  */
3551 	  if (DF_REG_DEF_COUNT (regno) == 1
3552 	      && note
3553 	      && !rtx_varies_p (XEXP (note, 0), 0)
3554 	      && def_dominates_uses (regno))
3555 	    {
3556 	      rtx note_value = XEXP (note, 0);
3557 	      remove_note (insn, note);
3558 	      set_unique_reg_note (insn, REG_EQUIV, note_value);
3559 	    }
3560 
3561 	  /* If this insn introduces a "constant" register, decrease the priority
3562 	     of that register.  Record this insn if the register is only used once
3563 	     more and the equivalence value is the same as our source.
3564 
3565 	     The latter condition is checked for two reasons:  First, it is an
3566 	     indication that it may be more efficient to actually emit the insn
3567 	     as written (if no registers are available, reload will substitute
3568 	     the equivalence).  Secondly, it avoids problems with any registers
3569 	     dying in this insn whose death notes would be missed.
3570 
3571 	     If we don't have a REG_EQUIV note, see if this insn is loading
3572 	     a register used only in one basic block from a MEM.  If so, and the
3573 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
3574 	     note.  */
3575 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3576 
3577 	  rtx replacement = NULL_RTX;
3578 	  if (note)
3579 	    replacement = XEXP (note, 0);
3580 	  else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3581 		   && MEM_P (SET_SRC (set)))
3582 	    {
3583 	      enum valid_equiv validity;
3584 	      validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3585 	      if (validity != valid_none)
3586 		{
3587 		  replacement = copy_rtx (SET_SRC (set));
3588 		  if (validity == valid_reload)
3589 		    note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3590 		}
3591 	    }
3592 
3593 	  /* If we haven't done so, record for reload that this is an
3594 	     equivalencing insn.  */
3595 	  if (note && !reg_equiv[regno].is_arg_equivalence)
3596 	    ira_reg_equiv[regno].init_insns
3597 	      = gen_rtx_INSN_LIST (VOIDmode, insn,
3598 				   ira_reg_equiv[regno].init_insns);
3599 
3600 	  if (replacement)
3601 	    {
3602 	      reg_equiv[regno].replacement = replacement;
3603 	      reg_equiv[regno].src_p = &SET_SRC (set);
3604 	      reg_equiv[regno].loop_depth = (short) loop_depth;
3605 
3606 	      /* Don't mess with things live during setjmp.  */
3607 	      if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3608 		{
3609 		  /* If the register is referenced exactly twice, meaning it is
3610 		     set once and used once, indicate that the reference may be
3611 		     replaced by the equivalence we computed above.  Do this
3612 		     even if the register is only used in one block so that
3613 		     dependencies can be handled where the last register is
3614 		     used in a different block (i.e. HIGH / LO_SUM sequences)
3615 		     and to reduce the number of registers alive across
3616 		     calls.  */
3617 
3618 		  if (REG_N_REFS (regno) == 2
3619 		      && (rtx_equal_p (replacement, src)
3620 			  || ! equiv_init_varies_p (src))
3621 		      && NONJUMP_INSN_P (insn)
3622 		      && equiv_init_movable_p (PATTERN (insn), regno))
3623 		    reg_equiv[regno].replace = 1;
3624 		}
3625 	    }
3626 	}
3627     }
3628 }
3629 
3630 /* For insns that set a MEM to the contents of a REG that is only used
3631    in a single basic block, see if the register is always equivalent
3632    to that memory location and if moving the store from INSN to the
3633    insn that sets REG is safe.  If so, put a REG_EQUIV note on the
3634    initializing insn.  */
3635 static void
3636 add_store_equivs (void)
3637 {
3638   bitmap_head seen_insns;
3639 
3640   bitmap_initialize (&seen_insns, NULL);
3641   for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3642     {
3643       rtx set, src, dest;
3644       unsigned regno;
3645       rtx_insn *init_insn;
3646 
3647       bitmap_set_bit (&seen_insns, INSN_UID (insn));
3648 
3649       if (! INSN_P (insn))
3650 	continue;
3651 
3652       set = single_set (insn);
3653       if (! set)
3654 	continue;
3655 
3656       dest = SET_DEST (set);
3657       src = SET_SRC (set);
3658 
3659       /* Don't add a REG_EQUIV note if the insn already has one.  The existing
3660 	 REG_EQUIV is likely more useful than the one we are adding.  */
3661       if (MEM_P (dest) && REG_P (src)
3662 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3663 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3664 	  && DF_REG_DEF_COUNT (regno) == 1
3665 	  && ! reg_equiv[regno].pdx_subregs
3666 	  && reg_equiv[regno].init_insns != NULL
3667 	  && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3668 	  && bitmap_bit_p (&seen_insns, INSN_UID (init_insn))
3669 	  && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3670 	  && validate_equiv_mem (init_insn, src, dest) == valid_reload
3671 	  && ! memref_used_between_p (dest, init_insn, insn)
3672 	  /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3673 	     multiple sets.  */
3674 	  && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3675 	{
3676 	  /* This insn makes the equivalence, not the one initializing
3677 	     the register.  */
3678 	  ira_reg_equiv[regno].init_insns
3679 	    = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3680 	  df_notes_rescan (init_insn);
3681 	  if (dump_file)
3682 	    fprintf (dump_file,
3683 		     "Adding REG_EQUIV to insn %d for source of insn %d\n",
3684 		     INSN_UID (init_insn),
3685 		     INSN_UID (insn));
3686 	}
3687     }
3688   bitmap_clear (&seen_insns);
3689 }
3690 
3691 /* Scan all regs killed in an insn to see if any of them are registers
3692    only used that once.  If so, see if we can replace the reference
3693    with the equivalent form.  If we can, delete the initializing
3694    reference and this register will go away.  If we can't replace the
3695    reference, and the initializing reference is within the same loop
3696    (or in an inner loop), then move the register initialization just
3697    before the use, so that they are in the same basic block.  */
3698 static void
3699 combine_and_move_insns (void)
3700 {
3701   bitmap cleared_regs = BITMAP_ALLOC (NULL);
3702   int max = max_reg_num ();
3703 
3704   for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3705     {
3706       if (!reg_equiv[regno].replace)
3707 	continue;
3708 
3709       rtx_insn *use_insn = 0;
3710       for (df_ref use = DF_REG_USE_CHAIN (regno);
3711 	   use;
3712 	   use = DF_REF_NEXT_REG (use))
3713 	if (DF_REF_INSN_INFO (use))
3714 	  {
3715 	    if (DEBUG_INSN_P (DF_REF_INSN (use)))
3716 	      continue;
3717 	    gcc_assert (!use_insn);
3718 	    use_insn = DF_REF_INSN (use);
3719 	  }
3720       gcc_assert (use_insn);
3721 
3722       /* Don't substitute into jumps.  indirect_jump_optimize does
3723 	 this for anything we are prepared to handle.  */
3724       if (JUMP_P (use_insn))
3725 	continue;
3726 
3727       /* Also don't substitute into a conditional trap insn -- it can become
3728 	 an unconditional trap, and that is a flow control insn.  */
3729       if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3730 	continue;
3731 
3732       df_ref def = DF_REG_DEF_CHAIN (regno);
3733       gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3734       rtx_insn *def_insn = DF_REF_INSN (def);
3735 
3736       /* We may not move instructions that can throw, since that
3737 	 changes basic block boundaries and we are not prepared to
3738 	 adjust the CFG to match.  */
3739       if (can_throw_internal (def_insn))
3740 	continue;
3741 
3742       basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3743       basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3744       if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3745 	continue;
3746 
3747       if (asm_noperands (PATTERN (def_insn)) < 0
3748 	  && validate_replace_rtx (regno_reg_rtx[regno],
3749 				   *reg_equiv[regno].src_p, use_insn))
3750 	{
3751 	  rtx link;
3752 	  /* Append the REG_DEAD notes from def_insn.  */
3753 	  for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3754 	    {
3755 	      if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3756 		{
3757 		  *p = XEXP (link, 1);
3758 		  XEXP (link, 1) = REG_NOTES (use_insn);
3759 		  REG_NOTES (use_insn) = link;
3760 		}
3761 	      else
3762 		p = &XEXP (link, 1);
3763 	    }
3764 
3765 	  remove_death (regno, use_insn);
3766 	  SET_REG_N_REFS (regno, 0);
3767 	  REG_FREQ (regno) = 0;
3768 	  df_ref use;
3769 	  FOR_EACH_INSN_USE (use, def_insn)
3770 	    {
3771 	      unsigned int use_regno = DF_REF_REGNO (use);
3772 	      if (!HARD_REGISTER_NUM_P (use_regno))
3773 		reg_equiv[use_regno].replace = 0;
3774 	    }
3775 
3776 	  delete_insn (def_insn);
3777 
3778 	  reg_equiv[regno].init_insns = NULL;
3779 	  ira_reg_equiv[regno].init_insns = NULL;
3780 	  bitmap_set_bit (cleared_regs, regno);
3781 	}
3782 
3783       /* Move the initialization of the register to just before
3784 	 USE_INSN.  Update the flow information.  */
3785       else if (prev_nondebug_insn (use_insn) != def_insn)
3786 	{
3787 	  rtx_insn *new_insn;
3788 
3789 	  new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3790 	  REG_NOTES (new_insn) = REG_NOTES (def_insn);
3791 	  REG_NOTES (def_insn) = 0;
3792 	  /* Rescan it to process the notes.  */
3793 	  df_insn_rescan (new_insn);
3794 
3795 	  /* Make sure this insn is recognized before reload begins,
3796 	     otherwise eliminate_regs_in_insn will die.  */
3797 	  INSN_CODE (new_insn) = INSN_CODE (def_insn);
3798 
3799 	  delete_insn (def_insn);
3800 
3801 	  XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3802 
3803 	  REG_BASIC_BLOCK (regno) = use_bb->index;
3804 	  REG_N_CALLS_CROSSED (regno) = 0;
3805 
3806 	  if (use_insn == BB_HEAD (use_bb))
3807 	    BB_HEAD (use_bb) = new_insn;
3808 
3809 	  /* We know regno dies in use_insn, but inside a loop
3810 	     REG_DEAD notes might be missing when def_insn was in
3811 	     another basic block.  However, when we move def_insn into
3812 	     this bb we'll definitely get a REG_DEAD note and reload
3813 	     will see the death.  It's possible that update_equiv_regs
3814 	     set up an equivalence referencing regno for a reg set by
3815 	     use_insn, when regno was seen as non-local.  Now that
3816 	     regno is local to this block, and dies, such an
3817 	     equivalence is invalid.  */
3818 	  if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3819 	    {
3820 	      rtx set = single_set (use_insn);
3821 	      if (set && REG_P (SET_DEST (set)))
3822 		no_equiv (SET_DEST (set), set, NULL);
3823 	    }
3824 
3825 	  ira_reg_equiv[regno].init_insns
3826 	    = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3827 	  bitmap_set_bit (cleared_regs, regno);
3828 	}
3829     }
3830 
3831   if (!bitmap_empty_p (cleared_regs))
3832     {
3833       basic_block bb;
3834 
3835       FOR_EACH_BB_FN (bb, cfun)
3836 	{
3837 	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3838 	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3839 	  if (!df_live)
3840 	    continue;
3841 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3842 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3843 	}
3844 
3845       /* Last pass - adjust debug insns referencing cleared regs.  */
3846       if (MAY_HAVE_DEBUG_INSNS)
3847 	for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3848 	  if (DEBUG_INSN_P (insn))
3849 	    {
3850 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3851 	      INSN_VAR_LOCATION_LOC (insn)
3852 		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
3853 					   adjust_cleared_regs,
3854 					   (void *) cleared_regs);
3855 	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3856 		df_insn_rescan (insn);
3857 	    }
3858     }
3859 
3860   BITMAP_FREE (cleared_regs);
3861 }
3862 
3863 /* A pass over indirect jumps, converting simple cases to direct jumps.
3864    Combine does this optimization too, but only within a basic block.  */
3865 static void
3866 indirect_jump_optimize (void)
3867 {
3868   basic_block bb;
3869   bool rebuild_p = false;
3870 
3871   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3872     {
3873       rtx_insn *insn = BB_END (bb);
3874       if (!JUMP_P (insn)
3875 	  || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3876 	continue;
3877 
3878       rtx x = pc_set (insn);
3879       if (!x || !REG_P (SET_SRC (x)))
3880 	continue;
3881 
3882       int regno = REGNO (SET_SRC (x));
3883       if (DF_REG_DEF_COUNT (regno) == 1)
3884 	{
3885 	  df_ref def = DF_REG_DEF_CHAIN (regno);
3886 	  if (!DF_REF_IS_ARTIFICIAL (def))
3887 	    {
3888 	      rtx_insn *def_insn = DF_REF_INSN (def);
3889 	      rtx lab = NULL_RTX;
3890 	      rtx set = single_set (def_insn);
3891 	      if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3892 		lab = SET_SRC (set);
3893 	      else
3894 		{
3895 		  rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3896 		  if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3897 		    lab = XEXP (eqnote, 0);
3898 		}
3899 	      if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3900 		rebuild_p = true;
3901 	    }
3902 	}
3903     }
3904 
3905   if (rebuild_p)
3906     {
3907       timevar_push (TV_JUMP);
3908       rebuild_jump_labels (get_insns ());
3909       if (purge_all_dead_edges ())
3910 	delete_unreachable_blocks ();
3911       timevar_pop (TV_JUMP);
3912     }
3913 }
3914 
3915 /* Set up fields memory, constant, and invariant from init_insns in
3916    the structures of array ira_reg_equiv.  */
3917 static void
3918 setup_reg_equiv (void)
3919 {
3920   int i;
3921   rtx_insn_list *elem, *prev_elem, *next_elem;
3922   rtx_insn *insn;
3923   rtx set, x;
3924 
3925   for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3926     for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3927 	 elem;
3928 	 prev_elem = elem, elem = next_elem)
3929       {
3930 	next_elem = elem->next ();
3931 	insn = elem->insn ();
3932 	set = single_set (insn);
3933 
3934 	/* Init insns can set up equivalence when the reg is a destination or
3935 	   a source (in this case the destination is memory).  */
3936 	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3937 	  {
3938 	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3939 	      {
3940 		x = XEXP (x, 0);
3941 		if (REG_P (SET_DEST (set))
3942 		    && REGNO (SET_DEST (set)) == (unsigned int) i
3943 		    && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3944 		  {
3945 		    /* This insn reporting the equivalence but
3946 		       actually not setting it.  Remove it from the
3947 		       list.  */
3948 		    if (prev_elem == NULL)
3949 		      ira_reg_equiv[i].init_insns = next_elem;
3950 		    else
3951 		      XEXP (prev_elem, 1) = next_elem;
3952 		    elem = prev_elem;
3953 		  }
3954 	      }
3955 	    else if (REG_P (SET_DEST (set))
3956 		     && REGNO (SET_DEST (set)) == (unsigned int) i)
3957 	      x = SET_SRC (set);
3958 	    else
3959 	      {
3960 		gcc_assert (REG_P (SET_SRC (set))
3961 			    && REGNO (SET_SRC (set)) == (unsigned int) i);
3962 		x = SET_DEST (set);
3963 	      }
3964 	    if (! function_invariant_p (x)
3965 		|| ! flag_pic
3966 		/* A function invariant is often CONSTANT_P but may
3967 		   include a register.  We promise to only pass
3968 		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
3969 		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3970 	      {
3971 		/* It can happen that a REG_EQUIV note contains a MEM
3972 		   that is not a legitimate memory operand.  As later
3973 		   stages of reload assume that all addresses found in
3974 		   the lra_regno_equiv_* arrays were originally
3975 		   legitimate, we ignore such REG_EQUIV notes.  */
3976 		if (memory_operand (x, VOIDmode))
3977 		  {
3978 		    ira_reg_equiv[i].defined_p = true;
3979 		    ira_reg_equiv[i].memory = x;
3980 		    continue;
3981 		  }
3982 		else if (function_invariant_p (x))
3983 		  {
3984 		    machine_mode mode;
3985 
3986 		    mode = GET_MODE (SET_DEST (set));
3987 		    if (GET_CODE (x) == PLUS
3988 			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
3989 		      /* This is PLUS of frame pointer and a constant,
3990 			 or fp, or argp.  */
3991 		      ira_reg_equiv[i].invariant = x;
3992 		    else if (targetm.legitimate_constant_p (mode, x))
3993 		      ira_reg_equiv[i].constant = x;
3994 		    else
3995 		      {
3996 			ira_reg_equiv[i].memory = force_const_mem (mode, x);
3997 			if (ira_reg_equiv[i].memory == NULL_RTX)
3998 			  {
3999 			    ira_reg_equiv[i].defined_p = false;
4000 			    ira_reg_equiv[i].init_insns = NULL;
4001 			    break;
4002 			  }
4003 		      }
4004 		    ira_reg_equiv[i].defined_p = true;
4005 		    continue;
4006 		  }
4007 	      }
4008 	  }
4009 	ira_reg_equiv[i].defined_p = false;
4010 	ira_reg_equiv[i].init_insns = NULL;
4011 	break;
4012       }
4013 }
4014 
4015 
4016 
4017 /* Print chain C to FILE.  */
4018 static void
4019 print_insn_chain (FILE *file, struct insn_chain *c)
4020 {
4021   fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4022   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4023   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4024 }
4025 
4026 
4027 /* Print all reload_insn_chains to FILE.  */
4028 static void
4029 print_insn_chains (FILE *file)
4030 {
4031   struct insn_chain *c;
4032   for (c = reload_insn_chain; c ; c = c->next)
4033     print_insn_chain (file, c);
4034 }
4035 
4036 /* Return true if pseudo REGNO should be added to set live_throughout
4037    or dead_or_set of the insn chains for reload consideration.  */
4038 static bool
4039 pseudo_for_reload_consideration_p (int regno)
4040 {
4041   /* Consider spilled pseudos too for IRA because they still have a
4042      chance to get hard-registers in the reload when IRA is used.  */
4043   return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4044 }
4045 
4046 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4047    REG to the number of nregs, and INIT_VALUE to get the
4048    initialization.  ALLOCNUM need not be the regno of REG.  */
4049 static void
4050 init_live_subregs (bool init_value, sbitmap *live_subregs,
4051 		   bitmap live_subregs_used, int allocnum, rtx reg)
4052 {
4053   unsigned int regno = REGNO (SUBREG_REG (reg));
4054   int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4055 
4056   gcc_assert (size > 0);
4057 
4058   /* Been there, done that.  */
4059   if (bitmap_bit_p (live_subregs_used, allocnum))
4060     return;
4061 
4062   /* Create a new one.  */
4063   if (live_subregs[allocnum] == NULL)
4064     live_subregs[allocnum] = sbitmap_alloc (size);
4065 
4066   /* If the entire reg was live before blasting into subregs, we need
4067      to init all of the subregs to ones else init to 0.  */
4068   if (init_value)
4069     bitmap_ones (live_subregs[allocnum]);
4070   else
4071     bitmap_clear (live_subregs[allocnum]);
4072 
4073   bitmap_set_bit (live_subregs_used, allocnum);
4074 }
4075 
4076 /* Walk the insns of the current function and build reload_insn_chain,
4077    and record register life information.  */
4078 static void
4079 build_insn_chain (void)
4080 {
4081   unsigned int i;
4082   struct insn_chain **p = &reload_insn_chain;
4083   basic_block bb;
4084   struct insn_chain *c = NULL;
4085   struct insn_chain *next = NULL;
4086   bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4087   bitmap elim_regset = BITMAP_ALLOC (NULL);
4088   /* live_subregs is a vector used to keep accurate information about
4089      which hardregs are live in multiword pseudos.  live_subregs and
4090      live_subregs_used are indexed by pseudo number.  The live_subreg
4091      entry for a particular pseudo is only used if the corresponding
4092      element is non zero in live_subregs_used.  The sbitmap size of
4093      live_subreg[allocno] is number of bytes that the pseudo can
4094      occupy.  */
4095   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4096   bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4097 
4098   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4099     if (TEST_HARD_REG_BIT (eliminable_regset, i))
4100       bitmap_set_bit (elim_regset, i);
4101   FOR_EACH_BB_REVERSE_FN (bb, cfun)
4102     {
4103       bitmap_iterator bi;
4104       rtx_insn *insn;
4105 
4106       CLEAR_REG_SET (live_relevant_regs);
4107       bitmap_clear (live_subregs_used);
4108 
4109       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4110 	{
4111 	  if (i >= FIRST_PSEUDO_REGISTER)
4112 	    break;
4113 	  bitmap_set_bit (live_relevant_regs, i);
4114 	}
4115 
4116       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4117 				FIRST_PSEUDO_REGISTER, i, bi)
4118 	{
4119 	  if (pseudo_for_reload_consideration_p (i))
4120 	    bitmap_set_bit (live_relevant_regs, i);
4121 	}
4122 
4123       FOR_BB_INSNS_REVERSE (bb, insn)
4124 	{
4125 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4126 	    {
4127 	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4128 	      df_ref def, use;
4129 
4130 	      c = new_insn_chain ();
4131 	      c->next = next;
4132 	      next = c;
4133 	      *p = c;
4134 	      p = &c->prev;
4135 
4136 	      c->insn = insn;
4137 	      c->block = bb->index;
4138 
4139 	      if (NONDEBUG_INSN_P (insn))
4140 		FOR_EACH_INSN_INFO_DEF (def, insn_info)
4141 		  {
4142 		    unsigned int regno = DF_REF_REGNO (def);
4143 
4144 		    /* Ignore may clobbers because these are generated
4145 		       from calls. However, every other kind of def is
4146 		       added to dead_or_set.  */
4147 		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4148 		      {
4149 			if (regno < FIRST_PSEUDO_REGISTER)
4150 			  {
4151 			    if (!fixed_regs[regno])
4152 			      bitmap_set_bit (&c->dead_or_set, regno);
4153 			  }
4154 			else if (pseudo_for_reload_consideration_p (regno))
4155 			  bitmap_set_bit (&c->dead_or_set, regno);
4156 		      }
4157 
4158 		    if ((regno < FIRST_PSEUDO_REGISTER
4159 			 || reg_renumber[regno] >= 0
4160 			 || ira_conflicts_p)
4161 			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4162 		      {
4163 			rtx reg = DF_REF_REG (def);
4164 
4165 			/* We can model subregs, but not if they are
4166 			   wrapped in ZERO_EXTRACTS.  */
4167 			if (GET_CODE (reg) == SUBREG
4168 			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4169 			  {
4170 			    unsigned int start = SUBREG_BYTE (reg);
4171 			    unsigned int last = start
4172 			      + GET_MODE_SIZE (GET_MODE (reg));
4173 
4174 			    init_live_subregs
4175 			      (bitmap_bit_p (live_relevant_regs, regno),
4176 			       live_subregs, live_subregs_used, regno, reg);
4177 
4178 			    if (!DF_REF_FLAGS_IS_SET
4179 				(def, DF_REF_STRICT_LOW_PART))
4180 			      {
4181 				/* Expand the range to cover entire words.
4182 				   Bytes added here are "don't care".  */
4183 				start
4184 				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
4185 				last = ((last + UNITS_PER_WORD - 1)
4186 					/ UNITS_PER_WORD * UNITS_PER_WORD);
4187 			      }
4188 
4189 			    /* Ignore the paradoxical bits.  */
4190 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4191 			      last = SBITMAP_SIZE (live_subregs[regno]);
4192 
4193 			    while (start < last)
4194 			      {
4195 				bitmap_clear_bit (live_subregs[regno], start);
4196 				start++;
4197 			      }
4198 
4199 			    if (bitmap_empty_p (live_subregs[regno]))
4200 			      {
4201 				bitmap_clear_bit (live_subregs_used, regno);
4202 				bitmap_clear_bit (live_relevant_regs, regno);
4203 			      }
4204 			    else
4205 			      /* Set live_relevant_regs here because
4206 				 that bit has to be true to get us to
4207 				 look at the live_subregs fields.  */
4208 			      bitmap_set_bit (live_relevant_regs, regno);
4209 			  }
4210 			else
4211 			  {
4212 			    /* DF_REF_PARTIAL is generated for
4213 			       subregs, STRICT_LOW_PART, and
4214 			       ZERO_EXTRACT.  We handle the subreg
4215 			       case above so here we have to keep from
4216 			       modeling the def as a killing def.  */
4217 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4218 			      {
4219 				bitmap_clear_bit (live_subregs_used, regno);
4220 				bitmap_clear_bit (live_relevant_regs, regno);
4221 			      }
4222 			  }
4223 		      }
4224 		  }
4225 
4226 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
4227 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4228 
4229 	      if (NONDEBUG_INSN_P (insn))
4230 		FOR_EACH_INSN_INFO_USE (use, insn_info)
4231 		  {
4232 		    unsigned int regno = DF_REF_REGNO (use);
4233 		    rtx reg = DF_REF_REG (use);
4234 
4235 		    /* DF_REF_READ_WRITE on a use means that this use
4236 		       is fabricated from a def that is a partial set
4237 		       to a multiword reg.  Here, we only model the
4238 		       subreg case that is not wrapped in ZERO_EXTRACT
4239 		       precisely so we do not need to look at the
4240 		       fabricated use.  */
4241 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4242 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4243 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4244 		      continue;
4245 
4246 		    /* Add the last use of each var to dead_or_set.  */
4247 		    if (!bitmap_bit_p (live_relevant_regs, regno))
4248 		      {
4249 			if (regno < FIRST_PSEUDO_REGISTER)
4250 			  {
4251 			    if (!fixed_regs[regno])
4252 			      bitmap_set_bit (&c->dead_or_set, regno);
4253 			  }
4254 			else if (pseudo_for_reload_consideration_p (regno))
4255 			  bitmap_set_bit (&c->dead_or_set, regno);
4256 		      }
4257 
4258 		    if (regno < FIRST_PSEUDO_REGISTER
4259 			|| pseudo_for_reload_consideration_p (regno))
4260 		      {
4261 			if (GET_CODE (reg) == SUBREG
4262 			    && !DF_REF_FLAGS_IS_SET (use,
4263 						     DF_REF_SIGN_EXTRACT
4264 						     | DF_REF_ZERO_EXTRACT))
4265 			  {
4266 			    unsigned int start = SUBREG_BYTE (reg);
4267 			    unsigned int last = start
4268 			      + GET_MODE_SIZE (GET_MODE (reg));
4269 
4270 			    init_live_subregs
4271 			      (bitmap_bit_p (live_relevant_regs, regno),
4272 			       live_subregs, live_subregs_used, regno, reg);
4273 
4274 			    /* Ignore the paradoxical bits.  */
4275 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4276 			      last = SBITMAP_SIZE (live_subregs[regno]);
4277 
4278 			    while (start < last)
4279 			      {
4280 				bitmap_set_bit (live_subregs[regno], start);
4281 				start++;
4282 			      }
4283 			  }
4284 			else
4285 			  /* Resetting the live_subregs_used is
4286 			     effectively saying do not use the subregs
4287 			     because we are reading the whole
4288 			     pseudo.  */
4289 			  bitmap_clear_bit (live_subregs_used, regno);
4290 			bitmap_set_bit (live_relevant_regs, regno);
4291 		      }
4292 		  }
4293 	    }
4294 	}
4295 
4296       /* FIXME!! The following code is a disaster.  Reload needs to see the
4297 	 labels and jump tables that are just hanging out in between
4298 	 the basic blocks.  See pr33676.  */
4299       insn = BB_HEAD (bb);
4300 
4301       /* Skip over the barriers and cruft.  */
4302       while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4303 		      || BLOCK_FOR_INSN (insn) == bb))
4304 	insn = PREV_INSN (insn);
4305 
4306       /* While we add anything except barriers and notes, the focus is
4307 	 to get the labels and jump tables into the
4308 	 reload_insn_chain.  */
4309       while (insn)
4310 	{
4311 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4312 	    {
4313 	      if (BLOCK_FOR_INSN (insn))
4314 		break;
4315 
4316 	      c = new_insn_chain ();
4317 	      c->next = next;
4318 	      next = c;
4319 	      *p = c;
4320 	      p = &c->prev;
4321 
4322 	      /* The block makes no sense here, but it is what the old
4323 		 code did.  */
4324 	      c->block = bb->index;
4325 	      c->insn = insn;
4326 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4327 	    }
4328 	  insn = PREV_INSN (insn);
4329 	}
4330     }
4331 
4332   reload_insn_chain = c;
4333   *p = NULL;
4334 
4335   for (i = 0; i < (unsigned int) max_regno; i++)
4336     if (live_subregs[i] != NULL)
4337       sbitmap_free (live_subregs[i]);
4338   free (live_subregs);
4339   BITMAP_FREE (live_subregs_used);
4340   BITMAP_FREE (live_relevant_regs);
4341   BITMAP_FREE (elim_regset);
4342 
4343   if (dump_file)
4344     print_insn_chains (dump_file);
4345 }
4346 
4347 /* Examine the rtx found in *LOC, which is read or written to as determined
4348    by TYPE.  Return false if we find a reason why an insn containing this
4349    rtx should not be moved (such as accesses to non-constant memory), true
4350    otherwise.  */
4351 static bool
4352 rtx_moveable_p (rtx *loc, enum op_type type)
4353 {
4354   const char *fmt;
4355   rtx x = *loc;
4356   enum rtx_code code = GET_CODE (x);
4357   int i, j;
4358 
4359   code = GET_CODE (x);
4360   switch (code)
4361     {
4362     case CONST:
4363     CASE_CONST_ANY:
4364     case SYMBOL_REF:
4365     case LABEL_REF:
4366       return true;
4367 
4368     case PC:
4369       return type == OP_IN;
4370 
4371     case CC0:
4372       return false;
4373 
4374     case REG:
4375       if (x == frame_pointer_rtx)
4376 	return true;
4377       if (HARD_REGISTER_P (x))
4378 	return false;
4379 
4380       return true;
4381 
4382     case MEM:
4383       if (type == OP_IN && MEM_READONLY_P (x))
4384 	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4385       return false;
4386 
4387     case SET:
4388       return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4389 	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4390 
4391     case STRICT_LOW_PART:
4392       return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4393 
4394     case ZERO_EXTRACT:
4395     case SIGN_EXTRACT:
4396       return (rtx_moveable_p (&XEXP (x, 0), type)
4397 	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4398 	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4399 
4400     case CLOBBER:
4401       return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4402 
4403     case UNSPEC_VOLATILE:
4404       /* It is a bad idea to consider insns with such rtl
4405 	 as moveable ones.  The insn scheduler also considers them as barrier
4406 	 for a reason.  */
4407       return false;
4408 
4409     case ASM_OPERANDS:
4410       /* The same is true for volatile asm: it has unknown side effects, it
4411          cannot be moved at will.  */
4412       if (MEM_VOLATILE_P (x))
4413 	return false;
4414 
4415     default:
4416       break;
4417     }
4418 
4419   fmt = GET_RTX_FORMAT (code);
4420   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4421     {
4422       if (fmt[i] == 'e')
4423 	{
4424 	  if (!rtx_moveable_p (&XEXP (x, i), type))
4425 	    return false;
4426 	}
4427       else if (fmt[i] == 'E')
4428 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4429 	  {
4430 	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4431 	      return false;
4432 	  }
4433     }
4434   return true;
4435 }
4436 
4437 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4438    to give dominance relationships between two insns I1 and I2.  */
4439 static bool
4440 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4441 {
4442   basic_block bb1 = BLOCK_FOR_INSN (i1);
4443   basic_block bb2 = BLOCK_FOR_INSN (i2);
4444 
4445   if (bb1 == bb2)
4446     return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4447   return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4448 }
4449 
4450 /* Record the range of register numbers added by find_moveable_pseudos.  */
4451 int first_moveable_pseudo, last_moveable_pseudo;
4452 
4453 /* These two vectors hold data for every register added by
4454    find_movable_pseudos, with index 0 holding data for the
4455    first_moveable_pseudo.  */
4456 /* The original home register.  */
4457 static vec<rtx> pseudo_replaced_reg;
4458 
4459 /* Look for instances where we have an instruction that is known to increase
4460    register pressure, and whose result is not used immediately.  If it is
4461    possible to move the instruction downwards to just before its first use,
4462    split its lifetime into two ranges.  We create a new pseudo to compute the
4463    value, and emit a move instruction just before the first use.  If, after
4464    register allocation, the new pseudo remains unallocated, the function
4465    move_unallocated_pseudos then deletes the move instruction and places
4466    the computation just before the first use.
4467 
4468    Such a move is safe and profitable if all the input registers remain live
4469    and unchanged between the original computation and its first use.  In such
4470    a situation, the computation is known to increase register pressure, and
4471    moving it is known to at least not worsen it.
4472 
4473    We restrict moves to only those cases where a register remains unallocated,
4474    in order to avoid interfering too much with the instruction schedule.  As
4475    an exception, we may move insns which only modify their input register
4476    (typically induction variables), as this increases the freedom for our
4477    intended transformation, and does not limit the second instruction
4478    scheduler pass.  */
4479 
4480 static void
4481 find_moveable_pseudos (void)
4482 {
4483   unsigned i;
4484   int max_regs = max_reg_num ();
4485   int max_uid = get_max_uid ();
4486   basic_block bb;
4487   int *uid_luid = XNEWVEC (int, max_uid);
4488   rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4489   /* A set of registers which are live but not modified throughout a block.  */
4490   bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4491 					 last_basic_block_for_fn (cfun));
4492   /* A set of registers which only exist in a given basic block.  */
4493   bitmap_head *bb_local = XNEWVEC (bitmap_head,
4494 				   last_basic_block_for_fn (cfun));
4495   /* A set of registers which are set once, in an instruction that can be
4496      moved freely downwards, but are otherwise transparent to a block.  */
4497   bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4498 					       last_basic_block_for_fn (cfun));
4499   bitmap_head live, used, set, interesting, unusable_as_input;
4500   bitmap_iterator bi;
4501   bitmap_initialize (&interesting, 0);
4502 
4503   first_moveable_pseudo = max_regs;
4504   pseudo_replaced_reg.release ();
4505   pseudo_replaced_reg.safe_grow_cleared (max_regs);
4506 
4507   df_analyze ();
4508   calculate_dominance_info (CDI_DOMINATORS);
4509 
4510   i = 0;
4511   bitmap_initialize (&live, 0);
4512   bitmap_initialize (&used, 0);
4513   bitmap_initialize (&set, 0);
4514   bitmap_initialize (&unusable_as_input, 0);
4515   FOR_EACH_BB_FN (bb, cfun)
4516     {
4517       rtx_insn *insn;
4518       bitmap transp = bb_transp_live + bb->index;
4519       bitmap moveable = bb_moveable_reg_sets + bb->index;
4520       bitmap local = bb_local + bb->index;
4521 
4522       bitmap_initialize (local, 0);
4523       bitmap_initialize (transp, 0);
4524       bitmap_initialize (moveable, 0);
4525       bitmap_copy (&live, df_get_live_out (bb));
4526       bitmap_and_into (&live, df_get_live_in (bb));
4527       bitmap_copy (transp, &live);
4528       bitmap_clear (moveable);
4529       bitmap_clear (&live);
4530       bitmap_clear (&used);
4531       bitmap_clear (&set);
4532       FOR_BB_INSNS (bb, insn)
4533 	if (NONDEBUG_INSN_P (insn))
4534 	  {
4535 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4536 	    df_ref def, use;
4537 
4538 	    uid_luid[INSN_UID (insn)] = i++;
4539 
4540 	    def = df_single_def (insn_info);
4541 	    use = df_single_use (insn_info);
4542 	    if (use
4543 		&& def
4544 		&& DF_REF_REGNO (use) == DF_REF_REGNO (def)
4545 		&& !bitmap_bit_p (&set, DF_REF_REGNO (use))
4546 		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
4547 	      {
4548 		unsigned regno = DF_REF_REGNO (use);
4549 		bitmap_set_bit (moveable, regno);
4550 		bitmap_set_bit (&set, regno);
4551 		bitmap_set_bit (&used, regno);
4552 		bitmap_clear_bit (transp, regno);
4553 		continue;
4554 	      }
4555 	    FOR_EACH_INSN_INFO_USE (use, insn_info)
4556 	      {
4557 		unsigned regno = DF_REF_REGNO (use);
4558 		bitmap_set_bit (&used, regno);
4559 		if (bitmap_clear_bit (moveable, regno))
4560 		  bitmap_clear_bit (transp, regno);
4561 	      }
4562 
4563 	    FOR_EACH_INSN_INFO_DEF (def, insn_info)
4564 	      {
4565 		unsigned regno = DF_REF_REGNO (def);
4566 		bitmap_set_bit (&set, regno);
4567 		bitmap_clear_bit (transp, regno);
4568 		bitmap_clear_bit (moveable, regno);
4569 	      }
4570 	  }
4571     }
4572 
4573   bitmap_clear (&live);
4574   bitmap_clear (&used);
4575   bitmap_clear (&set);
4576 
4577   FOR_EACH_BB_FN (bb, cfun)
4578     {
4579       bitmap local = bb_local + bb->index;
4580       rtx_insn *insn;
4581 
4582       FOR_BB_INSNS (bb, insn)
4583 	if (NONDEBUG_INSN_P (insn))
4584 	  {
4585 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4586 	    rtx_insn *def_insn;
4587 	    rtx closest_use, note;
4588 	    df_ref def, use;
4589 	    unsigned regno;
4590 	    bool all_dominated, all_local;
4591 	    machine_mode mode;
4592 
4593 	    def = df_single_def (insn_info);
4594 	    /* There must be exactly one def in this insn.  */
4595 	    if (!def || !single_set (insn))
4596 	      continue;
4597 	    /* This must be the only definition of the reg.  We also limit
4598 	       which modes we deal with so that we can assume we can generate
4599 	       move instructions.  */
4600 	    regno = DF_REF_REGNO (def);
4601 	    mode = GET_MODE (DF_REF_REG (def));
4602 	    if (DF_REG_DEF_COUNT (regno) != 1
4603 		|| !DF_REF_INSN_INFO (def)
4604 		|| HARD_REGISTER_NUM_P (regno)
4605 		|| DF_REG_EQ_USE_COUNT (regno) > 0
4606 		|| (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4607 	      continue;
4608 	    def_insn = DF_REF_INSN (def);
4609 
4610 	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4611 	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4612 		break;
4613 
4614 	    if (note)
4615 	      {
4616 		if (dump_file)
4617 		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4618 			   regno);
4619 		bitmap_set_bit (&unusable_as_input, regno);
4620 		continue;
4621 	      }
4622 
4623 	    use = DF_REG_USE_CHAIN (regno);
4624 	    all_dominated = true;
4625 	    all_local = true;
4626 	    closest_use = NULL_RTX;
4627 	    for (; use; use = DF_REF_NEXT_REG (use))
4628 	      {
4629 		rtx_insn *insn;
4630 		if (!DF_REF_INSN_INFO (use))
4631 		  {
4632 		    all_dominated = false;
4633 		    all_local = false;
4634 		    break;
4635 		  }
4636 		insn = DF_REF_INSN (use);
4637 		if (DEBUG_INSN_P (insn))
4638 		  continue;
4639 		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4640 		  all_local = false;
4641 		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4642 		  all_dominated = false;
4643 		if (closest_use != insn && closest_use != const0_rtx)
4644 		  {
4645 		    if (closest_use == NULL_RTX)
4646 		      closest_use = insn;
4647 		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4648 		      closest_use = insn;
4649 		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4650 		      closest_use = const0_rtx;
4651 		  }
4652 	      }
4653 	    if (!all_dominated)
4654 	      {
4655 		if (dump_file)
4656 		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4657 			   regno);
4658 		continue;
4659 	      }
4660 	    if (all_local)
4661 	      bitmap_set_bit (local, regno);
4662 	    if (closest_use == const0_rtx || closest_use == NULL
4663 		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
4664 	      {
4665 		if (dump_file)
4666 		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4667 			   closest_use == const0_rtx || closest_use == NULL
4668 			   ? " (no unique first use)" : "");
4669 		continue;
4670 	      }
4671 	    if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4672 	      {
4673 		if (dump_file)
4674 		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4675 			   regno);
4676 		continue;
4677 	      }
4678 
4679 	    bitmap_set_bit (&interesting, regno);
4680 	    /* If we get here, we know closest_use is a non-NULL insn
4681 	       (as opposed to const_0_rtx).  */
4682 	    closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4683 
4684 	    if (dump_file && (all_local || all_dominated))
4685 	      {
4686 		fprintf (dump_file, "Reg %u:", regno);
4687 		if (all_local)
4688 		  fprintf (dump_file, " local to bb %d", bb->index);
4689 		if (all_dominated)
4690 		  fprintf (dump_file, " def dominates all uses");
4691 		if (closest_use != const0_rtx)
4692 		  fprintf (dump_file, " has unique first use");
4693 		fputs ("\n", dump_file);
4694 	      }
4695 	  }
4696     }
4697 
4698   EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4699     {
4700       df_ref def = DF_REG_DEF_CHAIN (i);
4701       rtx_insn *def_insn = DF_REF_INSN (def);
4702       basic_block def_block = BLOCK_FOR_INSN (def_insn);
4703       bitmap def_bb_local = bb_local + def_block->index;
4704       bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4705       bitmap def_bb_transp = bb_transp_live + def_block->index;
4706       bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4707       rtx_insn *use_insn = closest_uses[i];
4708       df_ref use;
4709       bool all_ok = true;
4710       bool all_transp = true;
4711 
4712       if (!REG_P (DF_REF_REG (def)))
4713 	continue;
4714 
4715       if (!local_to_bb_p)
4716 	{
4717 	  if (dump_file)
4718 	    fprintf (dump_file, "Reg %u not local to one basic block\n",
4719 		     i);
4720 	  continue;
4721 	}
4722       if (reg_equiv_init (i) != NULL_RTX)
4723 	{
4724 	  if (dump_file)
4725 	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4726 		     i);
4727 	  continue;
4728 	}
4729       if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4730 	{
4731 	  if (dump_file)
4732 	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4733 		     INSN_UID (def_insn), i);
4734 	  continue;
4735 	}
4736       if (dump_file)
4737 	fprintf (dump_file, "Examining insn %d, def for %d\n",
4738 		 INSN_UID (def_insn), i);
4739       FOR_EACH_INSN_USE (use, def_insn)
4740 	{
4741 	  unsigned regno = DF_REF_REGNO (use);
4742 	  if (bitmap_bit_p (&unusable_as_input, regno))
4743 	    {
4744 	      all_ok = false;
4745 	      if (dump_file)
4746 		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
4747 	      break;
4748 	    }
4749 	  if (!bitmap_bit_p (def_bb_transp, regno))
4750 	    {
4751 	      if (bitmap_bit_p (def_bb_moveable, regno)
4752 		  && !control_flow_insn_p (use_insn)
4753 		  && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4754 		{
4755 		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4756 		    {
4757 		      rtx_insn *x = NEXT_INSN (def_insn);
4758 		      while (!modified_in_p (DF_REF_REG (use), x))
4759 			{
4760 			  gcc_assert (x != use_insn);
4761 			  x = NEXT_INSN (x);
4762 			}
4763 		      if (dump_file)
4764 			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
4765 				 regno, INSN_UID (x));
4766 		      emit_insn_after (PATTERN (x), use_insn);
4767 		      set_insn_deleted (x);
4768 		    }
4769 		  else
4770 		    {
4771 		      if (dump_file)
4772 			fprintf (dump_file, "  input reg %u modified between def and use\n",
4773 				 regno);
4774 		      all_transp = false;
4775 		    }
4776 		}
4777 	      else
4778 		all_transp = false;
4779 	    }
4780 	}
4781       if (!all_ok)
4782 	continue;
4783       if (!dbg_cnt (ira_move))
4784 	break;
4785       if (dump_file)
4786 	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
4787 
4788       if (all_transp)
4789 	{
4790 	  rtx def_reg = DF_REF_REG (def);
4791 	  rtx newreg = ira_create_new_reg (def_reg);
4792 	  if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4793 	    {
4794 	      unsigned nregno = REGNO (newreg);
4795 	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4796 	      nregno -= max_regs;
4797 	      pseudo_replaced_reg[nregno] = def_reg;
4798 	    }
4799 	}
4800     }
4801 
4802   FOR_EACH_BB_FN (bb, cfun)
4803     {
4804       bitmap_clear (bb_local + bb->index);
4805       bitmap_clear (bb_transp_live + bb->index);
4806       bitmap_clear (bb_moveable_reg_sets + bb->index);
4807     }
4808   bitmap_clear (&interesting);
4809   bitmap_clear (&unusable_as_input);
4810   free (uid_luid);
4811   free (closest_uses);
4812   free (bb_local);
4813   free (bb_transp_live);
4814   free (bb_moveable_reg_sets);
4815 
4816   last_moveable_pseudo = max_reg_num ();
4817 
4818   fix_reg_equiv_init ();
4819   expand_reg_info ();
4820   regstat_free_n_sets_and_refs ();
4821   regstat_free_ri ();
4822   regstat_init_n_sets_and_refs ();
4823   regstat_compute_ri ();
4824   free_dominance_info (CDI_DOMINATORS);
4825 }
4826 
4827 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4828    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4829    the destination.  Otherwise return NULL.  */
4830 
4831 static rtx
4832 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4833 {
4834   rtx src = SET_SRC (set);
4835   rtx dest = SET_DEST (set);
4836   if (!REG_P (src) || !HARD_REGISTER_P (src)
4837       || !REG_P (dest) || HARD_REGISTER_P (dest)
4838       || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4839     return NULL;
4840   return dest;
4841 }
4842 
4843 /* If insn is interesting for parameter range-splitting shrink-wrapping
4844    preparation, i.e. it is a single set from a hard register to a pseudo, which
4845    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4846    parallel statement with only one such statement, return the destination.
4847    Otherwise return NULL.  */
4848 
4849 static rtx
4850 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4851 {
4852   if (!INSN_P (insn))
4853     return NULL;
4854   rtx pat = PATTERN (insn);
4855   if (GET_CODE (pat) == SET)
4856     return interesting_dest_for_shprep_1 (pat, call_dom);
4857 
4858   if (GET_CODE (pat) != PARALLEL)
4859     return NULL;
4860   rtx ret = NULL;
4861   for (int i = 0; i < XVECLEN (pat, 0); i++)
4862     {
4863       rtx sub = XVECEXP (pat, 0, i);
4864       if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4865 	continue;
4866       if (GET_CODE (sub) != SET
4867 	  || side_effects_p (sub))
4868 	return NULL;
4869       rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4870       if (dest && ret)
4871 	return NULL;
4872       if (dest)
4873 	ret = dest;
4874     }
4875   return ret;
4876 }
4877 
4878 /* Split live ranges of pseudos that are loaded from hard registers in the
4879    first BB in a BB that dominates all non-sibling call if such a BB can be
4880    found and is not in a loop.  Return true if the function has made any
4881    changes.  */
4882 
4883 static bool
4884 split_live_ranges_for_shrink_wrap (void)
4885 {
4886   basic_block bb, call_dom = NULL;
4887   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4888   rtx_insn *insn, *last_interesting_insn = NULL;
4889   bitmap_head need_new, reachable;
4890   vec<basic_block> queue;
4891 
4892   if (!SHRINK_WRAPPING_ENABLED)
4893     return false;
4894 
4895   bitmap_initialize (&need_new, 0);
4896   bitmap_initialize (&reachable, 0);
4897   queue.create (n_basic_blocks_for_fn (cfun));
4898 
4899   FOR_EACH_BB_FN (bb, cfun)
4900     FOR_BB_INSNS (bb, insn)
4901       if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4902 	{
4903 	  if (bb == first)
4904 	    {
4905 	      bitmap_clear (&need_new);
4906 	      bitmap_clear (&reachable);
4907 	      queue.release ();
4908 	      return false;
4909 	    }
4910 
4911 	  bitmap_set_bit (&need_new, bb->index);
4912 	  bitmap_set_bit (&reachable, bb->index);
4913 	  queue.quick_push (bb);
4914 	  break;
4915 	}
4916 
4917   if (queue.is_empty ())
4918     {
4919       bitmap_clear (&need_new);
4920       bitmap_clear (&reachable);
4921       queue.release ();
4922       return false;
4923     }
4924 
4925   while (!queue.is_empty ())
4926     {
4927       edge e;
4928       edge_iterator ei;
4929 
4930       bb = queue.pop ();
4931       FOR_EACH_EDGE (e, ei, bb->succs)
4932 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4933 	    && bitmap_set_bit (&reachable, e->dest->index))
4934 	  queue.quick_push (e->dest);
4935     }
4936   queue.release ();
4937 
4938   FOR_BB_INSNS (first, insn)
4939     {
4940       rtx dest = interesting_dest_for_shprep (insn, NULL);
4941       if (!dest)
4942 	continue;
4943 
4944       if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4945 	{
4946 	  bitmap_clear (&need_new);
4947 	  bitmap_clear (&reachable);
4948 	  return false;
4949 	}
4950 
4951       for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4952 	   use;
4953 	   use = DF_REF_NEXT_REG (use))
4954 	{
4955 	  int ubbi = DF_REF_BB (use)->index;
4956 	  if (bitmap_bit_p (&reachable, ubbi))
4957 	    bitmap_set_bit (&need_new, ubbi);
4958 	}
4959       last_interesting_insn = insn;
4960     }
4961 
4962   bitmap_clear (&reachable);
4963   if (!last_interesting_insn)
4964     {
4965       bitmap_clear (&need_new);
4966       return false;
4967     }
4968 
4969   call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4970   bitmap_clear (&need_new);
4971   if (call_dom == first)
4972     return false;
4973 
4974   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4975   while (bb_loop_depth (call_dom) > 0)
4976     call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4977   loop_optimizer_finalize ();
4978 
4979   if (call_dom == first)
4980     return false;
4981 
4982   calculate_dominance_info (CDI_POST_DOMINATORS);
4983   if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4984     {
4985       free_dominance_info (CDI_POST_DOMINATORS);
4986       return false;
4987     }
4988   free_dominance_info (CDI_POST_DOMINATORS);
4989 
4990   if (dump_file)
4991     fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
4992 	     call_dom->index);
4993 
4994   bool ret = false;
4995   FOR_BB_INSNS (first, insn)
4996     {
4997       rtx dest = interesting_dest_for_shprep (insn, call_dom);
4998       if (!dest || dest == pic_offset_table_rtx)
4999 	continue;
5000 
5001       bool need_newreg = false;
5002       df_ref use, next;
5003       for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5004 	{
5005 	  rtx_insn *uin = DF_REF_INSN (use);
5006 	  next = DF_REF_NEXT_REG (use);
5007 
5008 	  if (DEBUG_INSN_P (uin))
5009 	    continue;
5010 
5011 	  basic_block ubb = BLOCK_FOR_INSN (uin);
5012 	  if (ubb == call_dom
5013 	      || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5014 	    {
5015 	      need_newreg = true;
5016 	      break;
5017 	    }
5018 	}
5019 
5020       if (need_newreg)
5021 	{
5022 	  rtx newreg = ira_create_new_reg (dest);
5023 
5024 	  for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5025 	    {
5026 	      rtx_insn *uin = DF_REF_INSN (use);
5027 	      next = DF_REF_NEXT_REG (use);
5028 
5029 	      basic_block ubb = BLOCK_FOR_INSN (uin);
5030 	      if (ubb == call_dom
5031 		  || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5032 		validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5033 	    }
5034 
5035 	  rtx_insn *new_move = gen_move_insn (newreg, dest);
5036 	  emit_insn_after (new_move, bb_note (call_dom));
5037 	  if (dump_file)
5038 	    {
5039 	      fprintf (dump_file, "Split live-range of register ");
5040 	      print_rtl_single (dump_file, dest);
5041 	    }
5042 	  ret = true;
5043 	}
5044 
5045       if (insn == last_interesting_insn)
5046 	break;
5047     }
5048   apply_change_group ();
5049   return ret;
5050 }
5051 
5052 /* Perform the second half of the transformation started in
5053    find_moveable_pseudos.  We look for instances where the newly introduced
5054    pseudo remains unallocated, and remove it by moving the definition to
5055    just before its use, replacing the move instruction generated by
5056    find_moveable_pseudos.  */
5057 static void
5058 move_unallocated_pseudos (void)
5059 {
5060   int i;
5061   for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5062     if (reg_renumber[i] < 0)
5063       {
5064 	int idx = i - first_moveable_pseudo;
5065 	rtx other_reg = pseudo_replaced_reg[idx];
5066 	rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5067 	/* The use must follow all definitions of OTHER_REG, so we can
5068 	   insert the new definition immediately after any of them.  */
5069 	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5070 	rtx_insn *move_insn = DF_REF_INSN (other_def);
5071 	rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5072 	rtx set;
5073 	int success;
5074 
5075 	if (dump_file)
5076 	  fprintf (dump_file, "moving def of %d (insn %d now) ",
5077 		   REGNO (other_reg), INSN_UID (def_insn));
5078 
5079 	delete_insn (move_insn);
5080 	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5081 	  delete_insn (DF_REF_INSN (other_def));
5082 	delete_insn (def_insn);
5083 
5084 	set = single_set (newinsn);
5085 	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5086 	gcc_assert (success);
5087 	if (dump_file)
5088 	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5089 		   INSN_UID (newinsn), i);
5090 	SET_REG_N_REFS (i, 0);
5091       }
5092 }
5093 
5094 /* If the backend knows where to allocate pseudos for hard
5095    register initial values, register these allocations now.  */
5096 static void
5097 allocate_initial_values (void)
5098 {
5099   if (targetm.allocate_initial_value)
5100     {
5101       rtx hreg, preg, x;
5102       int i, regno;
5103 
5104       for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5105 	{
5106 	  if (! initial_value_entry (i, &hreg, &preg))
5107 	    break;
5108 
5109 	  x = targetm.allocate_initial_value (hreg);
5110 	  regno = REGNO (preg);
5111 	  if (x && REG_N_SETS (regno) <= 1)
5112 	    {
5113 	      if (MEM_P (x))
5114 		reg_equiv_memory_loc (regno) = x;
5115 	      else
5116 		{
5117 		  basic_block bb;
5118 		  int new_regno;
5119 
5120 		  gcc_assert (REG_P (x));
5121 		  new_regno = REGNO (x);
5122 		  reg_renumber[regno] = new_regno;
5123 		  /* Poke the regno right into regno_reg_rtx so that even
5124 		     fixed regs are accepted.  */
5125 		  SET_REGNO (preg, new_regno);
5126 		  /* Update global register liveness information.  */
5127 		  FOR_EACH_BB_FN (bb, cfun)
5128 		    {
5129 		      if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5130 			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5131 		      if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5132 			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5133 		    }
5134 		}
5135 	    }
5136 	}
5137 
5138       gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5139 						  &hreg, &preg));
5140     }
5141 }
5142 
5143 
5144 /* True when we use LRA instead of reload pass for the current
5145    function.  */
5146 bool ira_use_lra_p;
5147 
5148 /* True if we have allocno conflicts.  It is false for non-optimized
5149    mode or when the conflict table is too big.  */
5150 bool ira_conflicts_p;
5151 
5152 /* Saved between IRA and reload.  */
5153 static int saved_flag_ira_share_spill_slots;
5154 
5155 /* This is the main entry of IRA.  */
5156 static void
5157 ira (FILE *f)
5158 {
5159   bool loops_p;
5160   int ira_max_point_before_emit;
5161   bool saved_flag_caller_saves = flag_caller_saves;
5162   enum ira_region saved_flag_ira_region = flag_ira_region;
5163   unsigned int i;
5164   int num_used_regs = 0;
5165 
5166   clear_bb_flags ();
5167 
5168   /* Determine if the current function is a leaf before running IRA
5169      since this can impact optimizations done by the prologue and
5170      epilogue thus changing register elimination offsets.
5171      Other target callbacks may use crtl->is_leaf too, including
5172      SHRINK_WRAPPING_ENABLED, so initialize as early as possible.  */
5173   crtl->is_leaf = leaf_function_p ();
5174 
5175   /* Perform target specific PIC register initialization.  */
5176   targetm.init_pic_reg ();
5177 
5178   ira_conflicts_p = optimize > 0;
5179 
5180   /* Determine the number of pseudos actually requiring coloring.  */
5181   for (i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5182     num_used_regs += !!(DF_REG_USE_COUNT (i) + DF_REG_DEF_COUNT (i));
5183 
5184   /* If there are too many pseudos and/or basic blocks (e.g. 10K
5185      pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5186      use simplified and faster algorithms in LRA.  */
5187   lra_simple_p
5188     = (ira_use_lra_p
5189        && num_used_regs >= (1 << 26) / last_basic_block_for_fn (cfun));
5190 
5191   if (lra_simple_p)
5192     {
5193       /* It permits to skip live range splitting in LRA.  */
5194       flag_caller_saves = false;
5195       /* There is no sense to do regional allocation when we use
5196 	 simplified LRA.  */
5197       flag_ira_region = IRA_REGION_ONE;
5198       ira_conflicts_p = false;
5199     }
5200 
5201 #ifndef IRA_NO_OBSTACK
5202   gcc_obstack_init (&ira_obstack);
5203 #endif
5204   bitmap_obstack_initialize (&ira_bitmap_obstack);
5205 
5206   /* LRA uses its own infrastructure to handle caller save registers.  */
5207   if (flag_caller_saves && !ira_use_lra_p)
5208     init_caller_save ();
5209 
5210   if (flag_ira_verbose < 10)
5211     {
5212       internal_flag_ira_verbose = flag_ira_verbose;
5213       ira_dump_file = f;
5214     }
5215   else
5216     {
5217       internal_flag_ira_verbose = flag_ira_verbose - 10;
5218       ira_dump_file = stderr;
5219     }
5220 
5221   setup_prohibited_mode_move_regs ();
5222   decrease_live_ranges_number ();
5223   df_note_add_problem ();
5224 
5225   /* DF_LIVE can't be used in the register allocator, too many other
5226      parts of the compiler depend on using the "classic" liveness
5227      interpretation of the DF_LR problem.  See PR38711.
5228      Remove the problem, so that we don't spend time updating it in
5229      any of the df_analyze() calls during IRA/LRA.  */
5230   if (optimize > 1)
5231     df_remove_problem (df_live);
5232   gcc_checking_assert (df_live == NULL);
5233 
5234   if (flag_checking)
5235     df->changeable_flags |= DF_VERIFY_SCHEDULED;
5236 
5237   df_analyze ();
5238 
5239   init_reg_equiv ();
5240   if (ira_conflicts_p)
5241     {
5242       calculate_dominance_info (CDI_DOMINATORS);
5243 
5244       if (split_live_ranges_for_shrink_wrap ())
5245 	df_analyze ();
5246 
5247       free_dominance_info (CDI_DOMINATORS);
5248     }
5249 
5250   df_clear_flags (DF_NO_INSN_RESCAN);
5251 
5252   indirect_jump_optimize ();
5253   if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5254     df_analyze ();
5255 
5256   regstat_init_n_sets_and_refs ();
5257   regstat_compute_ri ();
5258 
5259   /* If we are not optimizing, then this is the only place before
5260      register allocation where dataflow is done.  And that is needed
5261      to generate these warnings.  */
5262   if (warn_clobbered)
5263     generate_setjmp_warnings ();
5264 
5265   if (resize_reg_info () && flag_ira_loop_pressure)
5266     ira_set_pseudo_classes (true, ira_dump_file);
5267 
5268   init_alias_analysis ();
5269   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5270   reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5271   update_equiv_regs ();
5272 
5273   /* Don't move insns if live range shrinkage or register
5274      pressure-sensitive scheduling were done because it will not
5275      improve allocation but likely worsen insn scheduling.  */
5276   if (optimize
5277       && !flag_live_range_shrinkage
5278       && !(flag_sched_pressure && flag_schedule_insns))
5279     combine_and_move_insns ();
5280 
5281   /* Gather additional equivalences with memory.  */
5282   if (optimize)
5283     add_store_equivs ();
5284 
5285   loop_optimizer_finalize ();
5286   free_dominance_info (CDI_DOMINATORS);
5287   end_alias_analysis ();
5288   free (reg_equiv);
5289 
5290   setup_reg_equiv ();
5291   grow_reg_equivs ();
5292   setup_reg_equiv_init ();
5293 
5294   allocated_reg_info_size = max_reg_num ();
5295 
5296   /* It is not worth to do such improvement when we use a simple
5297      allocation because of -O0 usage or because the function is too
5298      big.  */
5299   if (ira_conflicts_p)
5300     find_moveable_pseudos ();
5301 
5302   max_regno_before_ira = max_reg_num ();
5303   ira_setup_eliminable_regset ();
5304 
5305   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5306   ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5307   ira_move_loops_num = ira_additional_jumps_num = 0;
5308 
5309   ira_assert (current_loops == NULL);
5310   if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5311     loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5312 
5313   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5314     fprintf (ira_dump_file, "Building IRA IR\n");
5315   loops_p = ira_build ();
5316 
5317   ira_assert (ira_conflicts_p || !loops_p);
5318 
5319   saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5320   if (too_high_register_pressure_p () || cfun->calls_setjmp)
5321     /* It is just wasting compiler's time to pack spilled pseudos into
5322        stack slots in this case -- prohibit it.  We also do this if
5323        there is setjmp call because a variable not modified between
5324        setjmp and longjmp the compiler is required to preserve its
5325        value and sharing slots does not guarantee it.  */
5326     flag_ira_share_spill_slots = FALSE;
5327 
5328   ira_color ();
5329 
5330   ira_max_point_before_emit = ira_max_point;
5331 
5332   ira_initiate_emit_data ();
5333 
5334   ira_emit (loops_p);
5335 
5336   max_regno = max_reg_num ();
5337   if (ira_conflicts_p)
5338     {
5339       if (! loops_p)
5340 	{
5341 	  if (! ira_use_lra_p)
5342 	    ira_initiate_assign ();
5343 	}
5344       else
5345 	{
5346 	  expand_reg_info ();
5347 
5348 	  if (ira_use_lra_p)
5349 	    {
5350 	      ira_allocno_t a;
5351 	      ira_allocno_iterator ai;
5352 
5353 	      FOR_EACH_ALLOCNO (a, ai)
5354                 {
5355                   int old_regno = ALLOCNO_REGNO (a);
5356                   int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5357 
5358                   ALLOCNO_REGNO (a) = new_regno;
5359 
5360                   if (old_regno != new_regno)
5361                     setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5362                                        reg_alternate_class (old_regno),
5363                                        reg_allocno_class (old_regno));
5364                 }
5365 	    }
5366 	  else
5367 	    {
5368 	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5369 		fprintf (ira_dump_file, "Flattening IR\n");
5370 	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5371 	    }
5372 	  /* New insns were generated: add notes and recalculate live
5373 	     info.  */
5374 	  df_analyze ();
5375 
5376 	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
5377 	     change if new insns were generated?  Can that be handled
5378 	     by updating the loop tree incrementally?  */
5379 	  loop_optimizer_finalize ();
5380 	  free_dominance_info (CDI_DOMINATORS);
5381 	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5382 			       | LOOPS_HAVE_RECORDED_EXITS);
5383 
5384 	  if (! ira_use_lra_p)
5385 	    {
5386 	      setup_allocno_assignment_flags ();
5387 	      ira_initiate_assign ();
5388 	      ira_reassign_conflict_allocnos (max_regno);
5389 	    }
5390 	}
5391     }
5392 
5393   ira_finish_emit_data ();
5394 
5395   setup_reg_renumber ();
5396 
5397   calculate_allocation_cost ();
5398 
5399 #ifdef ENABLE_IRA_CHECKING
5400   if (ira_conflicts_p && ! ira_use_lra_p)
5401     /* Opposite to reload pass, LRA does not use any conflict info
5402        from IRA.  We don't rebuild conflict info for LRA (through
5403        ira_flattening call) and can not use the check here.  We could
5404        rebuild this info for LRA in the check mode but there is a risk
5405        that code generated with the check and without it will be a bit
5406        different.  Calling ira_flattening in any mode would be a
5407        wasting CPU time.  So do not check the allocation for LRA.  */
5408     check_allocation ();
5409 #endif
5410 
5411   if (max_regno != max_regno_before_ira)
5412     {
5413       regstat_free_n_sets_and_refs ();
5414       regstat_free_ri ();
5415       regstat_init_n_sets_and_refs ();
5416       regstat_compute_ri ();
5417     }
5418 
5419   overall_cost_before = ira_overall_cost;
5420   if (! ira_conflicts_p)
5421     grow_reg_equivs ();
5422   else
5423     {
5424       fix_reg_equiv_init ();
5425 
5426 #ifdef ENABLE_IRA_CHECKING
5427       print_redundant_copies ();
5428 #endif
5429       if (! ira_use_lra_p)
5430 	{
5431 	  ira_spilled_reg_stack_slots_num = 0;
5432 	  ira_spilled_reg_stack_slots
5433 	    = ((struct ira_spilled_reg_stack_slot *)
5434 	       ira_allocate (max_regno
5435 			     * sizeof (struct ira_spilled_reg_stack_slot)));
5436 	  memset (ira_spilled_reg_stack_slots, 0,
5437 		  max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5438 	}
5439     }
5440   allocate_initial_values ();
5441 
5442   /* See comment for find_moveable_pseudos call.  */
5443   if (ira_conflicts_p)
5444     move_unallocated_pseudos ();
5445 
5446   /* Restore original values.  */
5447   if (lra_simple_p)
5448     {
5449       flag_caller_saves = saved_flag_caller_saves;
5450       flag_ira_region = saved_flag_ira_region;
5451     }
5452 }
5453 
5454 static void
5455 do_reload (void)
5456 {
5457   basic_block bb;
5458   bool need_dce;
5459   unsigned pic_offset_table_regno = INVALID_REGNUM;
5460 
5461   if (flag_ira_verbose < 10)
5462     ira_dump_file = dump_file;
5463 
5464   /* If pic_offset_table_rtx is a pseudo register, then keep it so
5465      after reload to avoid possible wrong usages of hard reg assigned
5466      to it.  */
5467   if (pic_offset_table_rtx
5468       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5469     pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5470 
5471   timevar_push (TV_RELOAD);
5472   if (ira_use_lra_p)
5473     {
5474       if (current_loops != NULL)
5475 	{
5476 	  loop_optimizer_finalize ();
5477 	  free_dominance_info (CDI_DOMINATORS);
5478 	}
5479       FOR_ALL_BB_FN (bb, cfun)
5480 	bb->loop_father = NULL;
5481       current_loops = NULL;
5482 
5483       ira_destroy ();
5484 
5485       lra (ira_dump_file);
5486       /* ???!!! Move it before lra () when we use ira_reg_equiv in
5487 	 LRA.  */
5488       vec_free (reg_equivs);
5489       reg_equivs = NULL;
5490       need_dce = false;
5491     }
5492   else
5493     {
5494       df_set_flags (DF_NO_INSN_RESCAN);
5495       build_insn_chain ();
5496 
5497       need_dce = reload (get_insns (), ira_conflicts_p);
5498     }
5499 
5500   timevar_pop (TV_RELOAD);
5501 
5502   timevar_push (TV_IRA);
5503 
5504   if (ira_conflicts_p && ! ira_use_lra_p)
5505     {
5506       ira_free (ira_spilled_reg_stack_slots);
5507       ira_finish_assign ();
5508     }
5509 
5510   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5511       && overall_cost_before != ira_overall_cost)
5512     fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5513 	     ira_overall_cost);
5514 
5515   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5516 
5517   if (! ira_use_lra_p)
5518     {
5519       ira_destroy ();
5520       if (current_loops != NULL)
5521 	{
5522 	  loop_optimizer_finalize ();
5523 	  free_dominance_info (CDI_DOMINATORS);
5524 	}
5525       FOR_ALL_BB_FN (bb, cfun)
5526 	bb->loop_father = NULL;
5527       current_loops = NULL;
5528 
5529       regstat_free_ri ();
5530       regstat_free_n_sets_and_refs ();
5531     }
5532 
5533   if (optimize)
5534     cleanup_cfg (CLEANUP_EXPENSIVE);
5535 
5536   finish_reg_equiv ();
5537 
5538   bitmap_obstack_release (&ira_bitmap_obstack);
5539 #ifndef IRA_NO_OBSTACK
5540   obstack_free (&ira_obstack, NULL);
5541 #endif
5542 
5543   /* The code after the reload has changed so much that at this point
5544      we might as well just rescan everything.  Note that
5545      df_rescan_all_insns is not going to help here because it does not
5546      touch the artificial uses and defs.  */
5547   df_finish_pass (true);
5548   df_scan_alloc (NULL);
5549   df_scan_blocks ();
5550 
5551   if (optimize > 1)
5552     {
5553       df_live_add_problem ();
5554       df_live_set_all_dirty ();
5555     }
5556 
5557   if (optimize)
5558     df_analyze ();
5559 
5560   if (need_dce && optimize)
5561     run_fast_dce ();
5562 
5563   /* Diagnose uses of the hard frame pointer when it is used as a global
5564      register.  Often we can get away with letting the user appropriate
5565      the frame pointer, but we should let them know when code generation
5566      makes that impossible.  */
5567   if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5568     {
5569       tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5570       error_at (DECL_SOURCE_LOCATION (current_function_decl),
5571                 "frame pointer required, but reserved");
5572       inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5573     }
5574 
5575   /* If we are doing generic stack checking, give a warning if this
5576      function's frame size is larger than we expect.  */
5577   if (flag_stack_check == GENERIC_STACK_CHECK)
5578     {
5579       HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5580 
5581       for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5582 	if (df_regs_ever_live_p (i) && !fixed_regs[i] && call_used_regs[i])
5583 	  size += UNITS_PER_WORD;
5584 
5585       if (size > STACK_CHECK_MAX_FRAME_SIZE)
5586 	warning (0, "frame size too large for reliable stack checking");
5587     }
5588 
5589   if (pic_offset_table_regno != INVALID_REGNUM)
5590     pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5591 
5592   timevar_pop (TV_IRA);
5593 }
5594 
5595 /* Run the integrated register allocator.  */
5596 
5597 namespace {
5598 
5599 const pass_data pass_data_ira =
5600 {
5601   RTL_PASS, /* type */
5602   "ira", /* name */
5603   OPTGROUP_NONE, /* optinfo_flags */
5604   TV_IRA, /* tv_id */
5605   0, /* properties_required */
5606   0, /* properties_provided */
5607   0, /* properties_destroyed */
5608   0, /* todo_flags_start */
5609   TODO_do_not_ggc_collect, /* todo_flags_finish */
5610 };
5611 
5612 class pass_ira : public rtl_opt_pass
5613 {
5614 public:
5615   pass_ira (gcc::context *ctxt)
5616     : rtl_opt_pass (pass_data_ira, ctxt)
5617   {}
5618 
5619   /* opt_pass methods: */
5620   virtual bool gate (function *)
5621     {
5622       return !targetm.no_register_allocation;
5623     }
5624   virtual unsigned int execute (function *)
5625     {
5626       ira (dump_file);
5627       return 0;
5628     }
5629 
5630 }; // class pass_ira
5631 
5632 } // anon namespace
5633 
5634 rtl_opt_pass *
5635 make_pass_ira (gcc::context *ctxt)
5636 {
5637   return new pass_ira (ctxt);
5638 }
5639 
5640 namespace {
5641 
5642 const pass_data pass_data_reload =
5643 {
5644   RTL_PASS, /* type */
5645   "reload", /* name */
5646   OPTGROUP_NONE, /* optinfo_flags */
5647   TV_RELOAD, /* tv_id */
5648   0, /* properties_required */
5649   0, /* properties_provided */
5650   0, /* properties_destroyed */
5651   0, /* todo_flags_start */
5652   0, /* todo_flags_finish */
5653 };
5654 
5655 class pass_reload : public rtl_opt_pass
5656 {
5657 public:
5658   pass_reload (gcc::context *ctxt)
5659     : rtl_opt_pass (pass_data_reload, ctxt)
5660   {}
5661 
5662   /* opt_pass methods: */
5663   virtual bool gate (function *)
5664     {
5665       return !targetm.no_register_allocation;
5666     }
5667   virtual unsigned int execute (function *)
5668     {
5669       do_reload ();
5670       return 0;
5671     }
5672 
5673 }; // class pass_reload
5674 
5675 } // anon namespace
5676 
5677 rtl_opt_pass *
5678 make_pass_reload (gcc::context *ctxt)
5679 {
5680   return new pass_reload (ctxt);
5681 }
5682