xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ira.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Integrated Register Allocator (IRA) entry point.
2    Copyright (C) 2006-2015 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The integrated register allocator (IRA) is a
22    regional register allocator performing graph coloring on a top-down
23    traversal of nested regions.  Graph coloring in a region is based
24    on Chaitin-Briggs algorithm.  It is called integrated because
25    register coalescing, register live range splitting, and choosing a
26    better hard register are done on-the-fly during coloring.  Register
27    coalescing and choosing a cheaper hard register is done by hard
28    register preferencing during hard register assigning.  The live
29    range splitting is a byproduct of the regional register allocation.
30 
31    Major IRA notions are:
32 
33      o *Region* is a part of CFG where graph coloring based on
34        Chaitin-Briggs algorithm is done.  IRA can work on any set of
35        nested CFG regions forming a tree.  Currently the regions are
36        the entire function for the root region and natural loops for
37        the other regions.  Therefore data structure representing a
38        region is called loop_tree_node.
39 
40      o *Allocno class* is a register class used for allocation of
41        given allocno.  It means that only hard register of given
42        register class can be assigned to given allocno.  In reality,
43        even smaller subset of (*profitable*) hard registers can be
44        assigned.  In rare cases, the subset can be even smaller
45        because our modification of Chaitin-Briggs algorithm requires
46        that sets of hard registers can be assigned to allocnos forms a
47        forest, i.e. the sets can be ordered in a way where any
48        previous set is not intersected with given set or is a superset
49        of given set.
50 
51      o *Pressure class* is a register class belonging to a set of
52        register classes containing all of the hard-registers available
53        for register allocation.  The set of all pressure classes for a
54        target is defined in the corresponding machine-description file
55        according some criteria.  Register pressure is calculated only
56        for pressure classes and it affects some IRA decisions as
57        forming allocation regions.
58 
59      o *Allocno* represents the live range of a pseudo-register in a
60        region.  Besides the obvious attributes like the corresponding
61        pseudo-register number, allocno class, conflicting allocnos and
62        conflicting hard-registers, there are a few allocno attributes
63        which are important for understanding the allocation algorithm:
64 
65        - *Live ranges*.  This is a list of ranges of *program points*
66          where the allocno lives.  Program points represent places
67          where a pseudo can be born or become dead (there are
68          approximately two times more program points than the insns)
69          and they are represented by integers starting with 0.  The
70          live ranges are used to find conflicts between allocnos.
71          They also play very important role for the transformation of
72          the IRA internal representation of several regions into a one
73          region representation.  The later is used during the reload
74          pass work because each allocno represents all of the
75          corresponding pseudo-registers.
76 
77        - *Hard-register costs*.  This is a vector of size equal to the
78          number of available hard-registers of the allocno class.  The
79          cost of a callee-clobbered hard-register for an allocno is
80          increased by the cost of save/restore code around the calls
81          through the given allocno's life.  If the allocno is a move
82          instruction operand and another operand is a hard-register of
83          the allocno class, the cost of the hard-register is decreased
84          by the move cost.
85 
86          When an allocno is assigned, the hard-register with minimal
87          full cost is used.  Initially, a hard-register's full cost is
88          the corresponding value from the hard-register's cost vector.
89          If the allocno is connected by a *copy* (see below) to
90          another allocno which has just received a hard-register, the
91          cost of the hard-register is decreased.  Before choosing a
92          hard-register for an allocno, the allocno's current costs of
93          the hard-registers are modified by the conflict hard-register
94          costs of all of the conflicting allocnos which are not
95          assigned yet.
96 
97        - *Conflict hard-register costs*.  This is a vector of the same
98          size as the hard-register costs vector.  To permit an
99          unassigned allocno to get a better hard-register, IRA uses
100          this vector to calculate the final full cost of the
101          available hard-registers.  Conflict hard-register costs of an
102          unassigned allocno are also changed with a change of the
103          hard-register cost of the allocno when a copy involving the
104          allocno is processed as described above.  This is done to
105          show other unassigned allocnos that a given allocno prefers
106          some hard-registers in order to remove the move instruction
107          corresponding to the copy.
108 
109      o *Cap*.  If a pseudo-register does not live in a region but
110        lives in a nested region, IRA creates a special allocno called
111        a cap in the outer region.  A region cap is also created for a
112        subregion cap.
113 
114      o *Copy*.  Allocnos can be connected by copies.  Copies are used
115        to modify hard-register costs for allocnos during coloring.
116        Such modifications reflects a preference to use the same
117        hard-register for the allocnos connected by copies.  Usually
118        copies are created for move insns (in this case it results in
119        register coalescing).  But IRA also creates copies for operands
120        of an insn which should be assigned to the same hard-register
121        due to constraints in the machine description (it usually
122        results in removing a move generated in reload to satisfy
123        the constraints) and copies referring to the allocno which is
124        the output operand of an instruction and the allocno which is
125        an input operand dying in the instruction (creation of such
126        copies results in less register shuffling).  IRA *does not*
127        create copies between the same register allocnos from different
128        regions because we use another technique for propagating
129        hard-register preference on the borders of regions.
130 
131    Allocnos (including caps) for the upper region in the region tree
132    *accumulate* information important for coloring from allocnos with
133    the same pseudo-register from nested regions.  This includes
134    hard-register and memory costs, conflicts with hard-registers,
135    allocno conflicts, allocno copies and more.  *Thus, attributes for
136    allocnos in a region have the same values as if the region had no
137    subregions*.  It means that attributes for allocnos in the
138    outermost region corresponding to the function have the same values
139    as though the allocation used only one region which is the entire
140    function.  It also means that we can look at IRA work as if the
141    first IRA did allocation for all function then it improved the
142    allocation for loops then their subloops and so on.
143 
144    IRA major passes are:
145 
146      o Building IRA internal representation which consists of the
147        following subpasses:
148 
149        * First, IRA builds regions and creates allocnos (file
150          ira-build.c) and initializes most of their attributes.
151 
152        * Then IRA finds an allocno class for each allocno and
153          calculates its initial (non-accumulated) cost of memory and
154          each hard-register of its allocno class (file ira-cost.c).
155 
156        * IRA creates live ranges of each allocno, calculates register
157          pressure for each pressure class in each region, sets up
158          conflict hard registers for each allocno and info about calls
159          the allocno lives through (file ira-lives.c).
160 
161        * IRA removes low register pressure loops from the regions
162          mostly to speed IRA up (file ira-build.c).
163 
164        * IRA propagates accumulated allocno info from lower region
165          allocnos to corresponding upper region allocnos (file
166          ira-build.c).
167 
168        * IRA creates all caps (file ira-build.c).
169 
170        * Having live-ranges of allocnos and their classes, IRA creates
171          conflicting allocnos for each allocno.  Conflicting allocnos
172          are stored as a bit vector or array of pointers to the
173          conflicting allocnos whatever is more profitable (file
174          ira-conflicts.c).  At this point IRA creates allocno copies.
175 
176      o Coloring.  Now IRA has all necessary info to start graph coloring
177        process.  It is done in each region on top-down traverse of the
178        region tree (file ira-color.c).  There are following subpasses:
179 
180        * Finding profitable hard registers of corresponding allocno
181          class for each allocno.  For example, only callee-saved hard
182          registers are frequently profitable for allocnos living
183          through colors.  If the profitable hard register set of
184          allocno does not form a tree based on subset relation, we use
185          some approximation to form the tree.  This approximation is
186          used to figure out trivial colorability of allocnos.  The
187          approximation is a pretty rare case.
188 
189        * Putting allocnos onto the coloring stack.  IRA uses Briggs
190          optimistic coloring which is a major improvement over
191          Chaitin's coloring.  Therefore IRA does not spill allocnos at
192          this point.  There is some freedom in the order of putting
193          allocnos on the stack which can affect the final result of
194          the allocation.  IRA uses some heuristics to improve the
195          order.  The major one is to form *threads* from colorable
196          allocnos and push them on the stack by threads.  Thread is a
197          set of non-conflicting colorable allocnos connected by
198          copies.  The thread contains allocnos from the colorable
199          bucket or colorable allocnos already pushed onto the coloring
200          stack.  Pushing thread allocnos one after another onto the
201          stack increases chances of removing copies when the allocnos
202          get the same hard reg.
203 
204 	 We also use a modification of Chaitin-Briggs algorithm which
205          works for intersected register classes of allocnos.  To
206          figure out trivial colorability of allocnos, the mentioned
207          above tree of hard register sets is used.  To get an idea how
208          the algorithm works in i386 example, let us consider an
209          allocno to which any general hard register can be assigned.
210          If the allocno conflicts with eight allocnos to which only
211          EAX register can be assigned, given allocno is still
212          trivially colorable because all conflicting allocnos might be
213          assigned only to EAX and all other general hard registers are
214          still free.
215 
216 	 To get an idea of the used trivial colorability criterion, it
217 	 is also useful to read article "Graph-Coloring Register
218 	 Allocation for Irregular Architectures" by Michael D. Smith
219 	 and Glen Holloway.  Major difference between the article
220 	 approach and approach used in IRA is that Smith's approach
221 	 takes register classes only from machine description and IRA
222 	 calculate register classes from intermediate code too
223 	 (e.g. an explicit usage of hard registers in RTL code for
224 	 parameter passing can result in creation of additional
225 	 register classes which contain or exclude the hard
226 	 registers).  That makes IRA approach useful for improving
227 	 coloring even for architectures with regular register files
228 	 and in fact some benchmarking shows the improvement for
229 	 regular class architectures is even bigger than for irregular
230 	 ones.  Another difference is that Smith's approach chooses
231 	 intersection of classes of all insn operands in which a given
232 	 pseudo occurs.  IRA can use bigger classes if it is still
233 	 more profitable than memory usage.
234 
235        * Popping the allocnos from the stack and assigning them hard
236          registers.  If IRA can not assign a hard register to an
237          allocno and the allocno is coalesced, IRA undoes the
238          coalescing and puts the uncoalesced allocnos onto the stack in
239          the hope that some such allocnos will get a hard register
240          separately.  If IRA fails to assign hard register or memory
241          is more profitable for it, IRA spills the allocno.  IRA
242          assigns the allocno the hard-register with minimal full
243          allocation cost which reflects the cost of usage of the
244          hard-register for the allocno and cost of usage of the
245          hard-register for allocnos conflicting with given allocno.
246 
247        * Chaitin-Briggs coloring assigns as many pseudos as possible
248          to hard registers.  After coloring we try to improve
249          allocation with cost point of view.  We improve the
250          allocation by spilling some allocnos and assigning the freed
251          hard registers to other allocnos if it decreases the overall
252          allocation cost.
253 
254        * After allocno assigning in the region, IRA modifies the hard
255          register and memory costs for the corresponding allocnos in
256          the subregions to reflect the cost of possible loads, stores,
257          or moves on the border of the region and its subregions.
258          When default regional allocation algorithm is used
259          (-fira-algorithm=mixed), IRA just propagates the assignment
260          for allocnos if the register pressure in the region for the
261          corresponding pressure class is less than number of available
262          hard registers for given pressure class.
263 
264      o Spill/restore code moving.  When IRA performs an allocation
265        by traversing regions in top-down order, it does not know what
266        happens below in the region tree.  Therefore, sometimes IRA
267        misses opportunities to perform a better allocation.  A simple
268        optimization tries to improve allocation in a region having
269        subregions and containing in another region.  If the
270        corresponding allocnos in the subregion are spilled, it spills
271        the region allocno if it is profitable.  The optimization
272        implements a simple iterative algorithm performing profitable
273        transformations while they are still possible.  It is fast in
274        practice, so there is no real need for a better time complexity
275        algorithm.
276 
277      o Code change.  After coloring, two allocnos representing the
278        same pseudo-register outside and inside a region respectively
279        may be assigned to different locations (hard-registers or
280        memory).  In this case IRA creates and uses a new
281        pseudo-register inside the region and adds code to move allocno
282        values on the region's borders.  This is done during top-down
283        traversal of the regions (file ira-emit.c).  In some
284        complicated cases IRA can create a new allocno to move allocno
285        values (e.g. when a swap of values stored in two hard-registers
286        is needed).  At this stage, the new allocno is marked as
287        spilled.  IRA still creates the pseudo-register and the moves
288        on the region borders even when both allocnos were assigned to
289        the same hard-register.  If the reload pass spills a
290        pseudo-register for some reason, the effect will be smaller
291        because another allocno will still be in the hard-register.  In
292        most cases, this is better then spilling both allocnos.  If
293        reload does not change the allocation for the two
294        pseudo-registers, the trivial move will be removed by
295        post-reload optimizations.  IRA does not generate moves for
296        allocnos assigned to the same hard register when the default
297        regional allocation algorithm is used and the register pressure
298        in the region for the corresponding pressure class is less than
299        number of available hard registers for given pressure class.
300        IRA also does some optimizations to remove redundant stores and
301        to reduce code duplication on the region borders.
302 
303      o Flattening internal representation.  After changing code, IRA
304        transforms its internal representation for several regions into
305        one region representation (file ira-build.c).  This process is
306        called IR flattening.  Such process is more complicated than IR
307        rebuilding would be, but is much faster.
308 
309      o After IR flattening, IRA tries to assign hard registers to all
310        spilled allocnos.  This is implemented by a simple and fast
311        priority coloring algorithm (see function
312        ira_reassign_conflict_allocnos::ira-color.c).  Here new allocnos
313        created during the code change pass can be assigned to hard
314        registers.
315 
316      o At the end IRA calls the reload pass.  The reload pass
317        communicates with IRA through several functions in file
318        ira-color.c to improve its decisions in
319 
320        * sharing stack slots for the spilled pseudos based on IRA info
321          about pseudo-register conflicts.
322 
323        * reassigning hard-registers to all spilled pseudos at the end
324          of each reload iteration.
325 
326        * choosing a better hard-register to spill based on IRA info
327          about pseudo-register live ranges and the register pressure
328          in places where the pseudo-register lives.
329 
330    IRA uses a lot of data representing the target processors.  These
331    data are initialized in file ira.c.
332 
333    If function has no loops (or the loops are ignored when
334    -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335    coloring (only instead of separate pass of coalescing, we use hard
336    register preferencing).  In such case, IRA works much faster
337    because many things are not made (like IR flattening, the
338    spill/restore optimization, and the code change).
339 
340    Literature is worth to read for better understanding the code:
341 
342    o Preston Briggs, Keith D. Cooper, Linda Torczon.  Improvements to
343      Graph Coloring Register Allocation.
344 
345    o David Callahan, Brian Koblenz.  Register allocation via
346      hierarchical graph coloring.
347 
348    o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349      Coloring Register Allocation: A Study of the Chaitin-Briggs and
350      Callahan-Koblenz Algorithms.
351 
352    o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353      Register Allocation Based on Graph Fusion.
354 
355    o Michael D. Smith and Glenn Holloway.  Graph-Coloring Register
356      Allocation for Irregular Architectures
357 
358    o Vladimir Makarov. The Integrated Register Allocator for GCC.
359 
360    o Vladimir Makarov.  The top-down register allocator for irregular
361      register file architectures.
362 
363 */
364 
365 
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "tm.h"
370 #include "regs.h"
371 #include "hash-set.h"
372 #include "machmode.h"
373 #include "vec.h"
374 #include "double-int.h"
375 #include "input.h"
376 #include "alias.h"
377 #include "symtab.h"
378 #include "wide-int.h"
379 #include "inchash.h"
380 #include "tree.h"
381 #include "rtl.h"
382 #include "tm_p.h"
383 #include "target.h"
384 #include "flags.h"
385 #include "obstack.h"
386 #include "bitmap.h"
387 #include "hard-reg-set.h"
388 #include "predict.h"
389 #include "function.h"
390 #include "dominance.h"
391 #include "cfg.h"
392 #include "cfgrtl.h"
393 #include "cfgbuild.h"
394 #include "cfgcleanup.h"
395 #include "basic-block.h"
396 #include "df.h"
397 #include "hashtab.h"
398 #include "statistics.h"
399 #include "real.h"
400 #include "fixed-value.h"
401 #include "insn-config.h"
402 #include "expmed.h"
403 #include "dojump.h"
404 #include "explow.h"
405 #include "calls.h"
406 #include "emit-rtl.h"
407 #include "varasm.h"
408 #include "stmt.h"
409 #include "expr.h"
410 #include "recog.h"
411 #include "params.h"
412 #include "tree-pass.h"
413 #include "output.h"
414 #include "except.h"
415 #include "reload.h"
416 #include "diagnostic-core.h"
417 #include "ggc.h"
418 #include "ira-int.h"
419 #include "lra.h"
420 #include "dce.h"
421 #include "dbgcnt.h"
422 #include "rtl-iter.h"
423 #include "shrink-wrap.h"
424 
425 struct target_ira default_target_ira;
426 struct target_ira_int default_target_ira_int;
427 #if SWITCHABLE_TARGET
428 struct target_ira *this_target_ira = &default_target_ira;
429 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
430 #endif
431 
432 /* A modified value of flag `-fira-verbose' used internally.  */
433 int internal_flag_ira_verbose;
434 
435 /* Dump file of the allocator if it is not NULL.  */
436 FILE *ira_dump_file;
437 
438 /* The number of elements in the following array.  */
439 int ira_spilled_reg_stack_slots_num;
440 
441 /* The following array contains info about spilled pseudo-registers
442    stack slots used in current function so far.  */
443 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
444 
445 /* Correspondingly overall cost of the allocation, overall cost before
446    reload, cost of the allocnos assigned to hard-registers, cost of
447    the allocnos assigned to memory, cost of loads, stores and register
448    move insns generated for pseudo-register live range splitting (see
449    ira-emit.c).  */
450 int64_t ira_overall_cost, overall_cost_before;
451 int64_t ira_reg_cost, ira_mem_cost;
452 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
453 int ira_move_loops_num, ira_additional_jumps_num;
454 
455 /* All registers that can be eliminated.  */
456 
457 HARD_REG_SET eliminable_regset;
458 
459 /* Value of max_reg_num () before IRA work start.  This value helps
460    us to recognize a situation when new pseudos were created during
461    IRA work.  */
462 static int max_regno_before_ira;
463 
464 /* Temporary hard reg set used for a different calculation.  */
465 static HARD_REG_SET temp_hard_regset;
466 
467 #define last_mode_for_init_move_cost \
468   (this_target_ira_int->x_last_mode_for_init_move_cost)
469 
470 
471 /* The function sets up the map IRA_REG_MODE_HARD_REGSET.  */
472 static void
473 setup_reg_mode_hard_regset (void)
474 {
475   int i, m, hard_regno;
476 
477   for (m = 0; m < NUM_MACHINE_MODES; m++)
478     for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
479       {
480 	CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
481 	for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
482 	  if (hard_regno + i < FIRST_PSEUDO_REGISTER)
483 	    SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
484 			      hard_regno + i);
485       }
486 }
487 
488 
489 #define no_unit_alloc_regs \
490   (this_target_ira_int->x_no_unit_alloc_regs)
491 
492 /* The function sets up the three arrays declared above.  */
493 static void
494 setup_class_hard_regs (void)
495 {
496   int cl, i, hard_regno, n;
497   HARD_REG_SET processed_hard_reg_set;
498 
499   ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
500   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
501     {
502       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
503       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
504       CLEAR_HARD_REG_SET (processed_hard_reg_set);
505       for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
506 	{
507 	  ira_non_ordered_class_hard_regs[cl][i] = -1;
508 	  ira_class_hard_reg_index[cl][i] = -1;
509 	}
510       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
511 	{
512 #ifdef REG_ALLOC_ORDER
513 	  hard_regno = reg_alloc_order[i];
514 #else
515 	  hard_regno = i;
516 #endif
517 	  if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
518 	    continue;
519 	  SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
520       	  if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
521 	    ira_class_hard_reg_index[cl][hard_regno] = -1;
522 	  else
523 	    {
524 	      ira_class_hard_reg_index[cl][hard_regno] = n;
525 	      ira_class_hard_regs[cl][n++] = hard_regno;
526 	    }
527 	}
528       ira_class_hard_regs_num[cl] = n;
529       for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
530 	if (TEST_HARD_REG_BIT (temp_hard_regset, i))
531 	  ira_non_ordered_class_hard_regs[cl][n++] = i;
532       ira_assert (ira_class_hard_regs_num[cl] == n);
533     }
534 }
535 
536 /* Set up global variables defining info about hard registers for the
537    allocation.  These depend on USE_HARD_FRAME_P whose TRUE value means
538    that we can use the hard frame pointer for the allocation.  */
539 static void
540 setup_alloc_regs (bool use_hard_frame_p)
541 {
542 #ifdef ADJUST_REG_ALLOC_ORDER
543   ADJUST_REG_ALLOC_ORDER;
544 #endif
545   COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
546   if (! use_hard_frame_p)
547     SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
548   setup_class_hard_regs ();
549 }
550 
551 
552 
553 #define alloc_reg_class_subclasses \
554   (this_target_ira_int->x_alloc_reg_class_subclasses)
555 
556 /* Initialize the table of subclasses of each reg class.  */
557 static void
558 setup_reg_subclasses (void)
559 {
560   int i, j;
561   HARD_REG_SET temp_hard_regset2;
562 
563   for (i = 0; i < N_REG_CLASSES; i++)
564     for (j = 0; j < N_REG_CLASSES; j++)
565       alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
566 
567   for (i = 0; i < N_REG_CLASSES; i++)
568     {
569       if (i == (int) NO_REGS)
570 	continue;
571 
572       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
573       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
574       if (hard_reg_set_empty_p (temp_hard_regset))
575 	continue;
576       for (j = 0; j < N_REG_CLASSES; j++)
577 	if (i != j)
578 	  {
579 	    enum reg_class *p;
580 
581 	    COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
582 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
583 	    if (! hard_reg_set_subset_p (temp_hard_regset,
584 					 temp_hard_regset2))
585 	      continue;
586 	    p = &alloc_reg_class_subclasses[j][0];
587 	    while (*p != LIM_REG_CLASSES) p++;
588 	    *p = (enum reg_class) i;
589 	  }
590     }
591 }
592 
593 
594 
595 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST.  */
596 static void
597 setup_class_subset_and_memory_move_costs (void)
598 {
599   int cl, cl2, mode, cost;
600   HARD_REG_SET temp_hard_regset2;
601 
602   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
603     ira_memory_move_cost[mode][NO_REGS][0]
604       = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
605   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
606     {
607       if (cl != (int) NO_REGS)
608 	for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
609 	  {
610 	    ira_max_memory_move_cost[mode][cl][0]
611 	      = ira_memory_move_cost[mode][cl][0]
612 	      = memory_move_cost ((machine_mode) mode,
613 				  (reg_class_t) cl, false);
614 	    ira_max_memory_move_cost[mode][cl][1]
615 	      = ira_memory_move_cost[mode][cl][1]
616 	      = memory_move_cost ((machine_mode) mode,
617 				  (reg_class_t) cl, true);
618 	    /* Costs for NO_REGS are used in cost calculation on the
619 	       1st pass when the preferred register classes are not
620 	       known yet.  In this case we take the best scenario.  */
621 	    if (ira_memory_move_cost[mode][NO_REGS][0]
622 		> ira_memory_move_cost[mode][cl][0])
623 	      ira_max_memory_move_cost[mode][NO_REGS][0]
624 		= ira_memory_move_cost[mode][NO_REGS][0]
625 		= ira_memory_move_cost[mode][cl][0];
626 	    if (ira_memory_move_cost[mode][NO_REGS][1]
627 		> ira_memory_move_cost[mode][cl][1])
628 	      ira_max_memory_move_cost[mode][NO_REGS][1]
629 		= ira_memory_move_cost[mode][NO_REGS][1]
630 		= ira_memory_move_cost[mode][cl][1];
631 	  }
632     }
633   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
634     for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
635       {
636 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
637 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
638 	COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
639 	AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
640 	ira_class_subset_p[cl][cl2]
641 	  = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
642 	if (! hard_reg_set_empty_p (temp_hard_regset2)
643 	    && hard_reg_set_subset_p (reg_class_contents[cl2],
644 				      reg_class_contents[cl]))
645 	  for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
646 	    {
647 	      cost = ira_memory_move_cost[mode][cl2][0];
648 	      if (cost > ira_max_memory_move_cost[mode][cl][0])
649 		ira_max_memory_move_cost[mode][cl][0] = cost;
650 	      cost = ira_memory_move_cost[mode][cl2][1];
651 	      if (cost > ira_max_memory_move_cost[mode][cl][1])
652 		ira_max_memory_move_cost[mode][cl][1] = cost;
653 	    }
654       }
655   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
656     for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
657       {
658 	ira_memory_move_cost[mode][cl][0]
659 	  = ira_max_memory_move_cost[mode][cl][0];
660 	ira_memory_move_cost[mode][cl][1]
661 	  = ira_max_memory_move_cost[mode][cl][1];
662       }
663   setup_reg_subclasses ();
664 }
665 
666 
667 
668 /* Define the following macro if allocation through malloc if
669    preferable.  */
670 #define IRA_NO_OBSTACK
671 
672 #ifndef IRA_NO_OBSTACK
673 /* Obstack used for storing all dynamic data (except bitmaps) of the
674    IRA.  */
675 static struct obstack ira_obstack;
676 #endif
677 
678 /* Obstack used for storing all bitmaps of the IRA.  */
679 static struct bitmap_obstack ira_bitmap_obstack;
680 
681 /* Allocate memory of size LEN for IRA data.  */
682 void *
683 ira_allocate (size_t len)
684 {
685   void *res;
686 
687 #ifndef IRA_NO_OBSTACK
688   res = obstack_alloc (&ira_obstack, len);
689 #else
690   res = xmalloc (len);
691 #endif
692   return res;
693 }
694 
695 /* Free memory ADDR allocated for IRA data.  */
696 void
697 ira_free (void *addr ATTRIBUTE_UNUSED)
698 {
699 #ifndef IRA_NO_OBSTACK
700   /* do nothing */
701 #else
702   free (addr);
703 #endif
704 }
705 
706 
707 /* Allocate and returns bitmap for IRA.  */
708 bitmap
709 ira_allocate_bitmap (void)
710 {
711   return BITMAP_ALLOC (&ira_bitmap_obstack);
712 }
713 
714 /* Free bitmap B allocated for IRA.  */
715 void
716 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
717 {
718   /* do nothing */
719 }
720 
721 
722 
723 /* Output information about allocation of all allocnos (except for
724    caps) into file F.  */
725 void
726 ira_print_disposition (FILE *f)
727 {
728   int i, n, max_regno;
729   ira_allocno_t a;
730   basic_block bb;
731 
732   fprintf (f, "Disposition:");
733   max_regno = max_reg_num ();
734   for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
735     for (a = ira_regno_allocno_map[i];
736 	 a != NULL;
737 	 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
738       {
739 	if (n % 4 == 0)
740 	  fprintf (f, "\n");
741 	n++;
742 	fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
743 	if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
744 	  fprintf (f, "b%-3d", bb->index);
745 	else
746 	  fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
747 	if (ALLOCNO_HARD_REGNO (a) >= 0)
748 	  fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
749 	else
750 	  fprintf (f, " mem");
751       }
752   fprintf (f, "\n");
753 }
754 
755 /* Outputs information about allocation of all allocnos into
756    stderr.  */
757 void
758 ira_debug_disposition (void)
759 {
760   ira_print_disposition (stderr);
761 }
762 
763 
764 
765 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
766    register class containing stack registers or NO_REGS if there are
767    no stack registers.  To find this class, we iterate through all
768    register pressure classes and choose the first register pressure
769    class containing all the stack registers and having the biggest
770    size.  */
771 static void
772 setup_stack_reg_pressure_class (void)
773 {
774   ira_stack_reg_pressure_class = NO_REGS;
775 #ifdef STACK_REGS
776   {
777     int i, best, size;
778     enum reg_class cl;
779     HARD_REG_SET temp_hard_regset2;
780 
781     CLEAR_HARD_REG_SET (temp_hard_regset);
782     for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
783       SET_HARD_REG_BIT (temp_hard_regset, i);
784     best = 0;
785     for (i = 0; i < ira_pressure_classes_num; i++)
786       {
787 	cl = ira_pressure_classes[i];
788 	COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
789 	AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
790 	size = hard_reg_set_size (temp_hard_regset2);
791 	if (best < size)
792 	  {
793 	    best = size;
794 	    ira_stack_reg_pressure_class = cl;
795 	  }
796       }
797   }
798 #endif
799 }
800 
801 /* Find pressure classes which are register classes for which we
802    calculate register pressure in IRA, register pressure sensitive
803    insn scheduling, and register pressure sensitive loop invariant
804    motion.
805 
806    To make register pressure calculation easy, we always use
807    non-intersected register pressure classes.  A move of hard
808    registers from one register pressure class is not more expensive
809    than load and store of the hard registers.  Most likely an allocno
810    class will be a subset of a register pressure class and in many
811    cases a register pressure class.  That makes usage of register
812    pressure classes a good approximation to find a high register
813    pressure.  */
814 static void
815 setup_pressure_classes (void)
816 {
817   int cost, i, n, curr;
818   int cl, cl2;
819   enum reg_class pressure_classes[N_REG_CLASSES];
820   int m;
821   HARD_REG_SET temp_hard_regset2;
822   bool insert_p;
823 
824   n = 0;
825   for (cl = 0; cl < N_REG_CLASSES; cl++)
826     {
827       if (ira_class_hard_regs_num[cl] == 0)
828 	continue;
829       if (ira_class_hard_regs_num[cl] != 1
830 	  /* A register class without subclasses may contain a few
831 	     hard registers and movement between them is costly
832 	     (e.g. SPARC FPCC registers).  We still should consider it
833 	     as a candidate for a pressure class.  */
834 	  && alloc_reg_class_subclasses[cl][0] < cl)
835 	{
836 	  /* Check that the moves between any hard registers of the
837 	     current class are not more expensive for a legal mode
838 	     than load/store of the hard registers of the current
839 	     class.  Such class is a potential candidate to be a
840 	     register pressure class.  */
841 	  for (m = 0; m < NUM_MACHINE_MODES; m++)
842 	    {
843 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
844 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
845 	      AND_COMPL_HARD_REG_SET (temp_hard_regset,
846 				      ira_prohibited_class_mode_regs[cl][m]);
847 	      if (hard_reg_set_empty_p (temp_hard_regset))
848 		continue;
849 	      ira_init_register_move_cost_if_necessary ((machine_mode) m);
850 	      cost = ira_register_move_cost[m][cl][cl];
851 	      if (cost <= ira_max_memory_move_cost[m][cl][1]
852 		  || cost <= ira_max_memory_move_cost[m][cl][0])
853 		break;
854 	    }
855 	  if (m >= NUM_MACHINE_MODES)
856 	    continue;
857 	}
858       curr = 0;
859       insert_p = true;
860       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
861       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
862       /* Remove so far added pressure classes which are subset of the
863 	 current candidate class.  Prefer GENERAL_REGS as a pressure
864 	 register class to another class containing the same
865 	 allocatable hard registers.  We do this because machine
866 	 dependent cost hooks might give wrong costs for the latter
867 	 class but always give the right cost for the former class
868 	 (GENERAL_REGS).  */
869       for (i = 0; i < n; i++)
870 	{
871 	  cl2 = pressure_classes[i];
872 	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
873 	  AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
874 	  if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
875 	      && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
876 		  || cl2 == (int) GENERAL_REGS))
877 	    {
878 	      pressure_classes[curr++] = (enum reg_class) cl2;
879 	      insert_p = false;
880 	      continue;
881 	    }
882 	  if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
883 	      && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
884 		  || cl == (int) GENERAL_REGS))
885 	    continue;
886 	  if (hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset))
887 	    insert_p = false;
888 	  pressure_classes[curr++] = (enum reg_class) cl2;
889 	}
890       /* If the current candidate is a subset of a so far added
891 	 pressure class, don't add it to the list of the pressure
892 	 classes.  */
893       if (insert_p)
894 	pressure_classes[curr++] = (enum reg_class) cl;
895       n = curr;
896     }
897 #ifdef ENABLE_IRA_CHECKING
898   {
899     HARD_REG_SET ignore_hard_regs;
900 
901     /* Check pressure classes correctness: here we check that hard
902        registers from all register pressure classes contains all hard
903        registers available for the allocation.  */
904     CLEAR_HARD_REG_SET (temp_hard_regset);
905     CLEAR_HARD_REG_SET (temp_hard_regset2);
906     COPY_HARD_REG_SET (ignore_hard_regs, no_unit_alloc_regs);
907     for (cl = 0; cl < LIM_REG_CLASSES; cl++)
908       {
909 	/* For some targets (like MIPS with MD_REGS), there are some
910 	   classes with hard registers available for allocation but
911 	   not able to hold value of any mode.  */
912 	for (m = 0; m < NUM_MACHINE_MODES; m++)
913 	  if (contains_reg_of_mode[cl][m])
914 	    break;
915 	if (m >= NUM_MACHINE_MODES)
916 	  {
917 	    IOR_HARD_REG_SET (ignore_hard_regs, reg_class_contents[cl]);
918 	    continue;
919 	  }
920 	for (i = 0; i < n; i++)
921 	  if ((int) pressure_classes[i] == cl)
922 	    break;
923 	IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
924 	if (i < n)
925 	  IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
926       }
927     for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
928       /* Some targets (like SPARC with ICC reg) have allocatable regs
929 	 for which no reg class is defined.  */
930       if (REGNO_REG_CLASS (i) == NO_REGS)
931 	SET_HARD_REG_BIT (ignore_hard_regs, i);
932     AND_COMPL_HARD_REG_SET (temp_hard_regset, ignore_hard_regs);
933     AND_COMPL_HARD_REG_SET (temp_hard_regset2, ignore_hard_regs);
934     ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
935   }
936 #endif
937   ira_pressure_classes_num = 0;
938   for (i = 0; i < n; i++)
939     {
940       cl = (int) pressure_classes[i];
941       ira_reg_pressure_class_p[cl] = true;
942       ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
943     }
944   setup_stack_reg_pressure_class ();
945 }
946 
947 /* Set up IRA_UNIFORM_CLASS_P.  Uniform class is a register class
948    whose register move cost between any registers of the class is the
949    same as for all its subclasses.  We use the data to speed up the
950    2nd pass of calculations of allocno costs.  */
951 static void
952 setup_uniform_class_p (void)
953 {
954   int i, cl, cl2, m;
955 
956   for (cl = 0; cl < N_REG_CLASSES; cl++)
957     {
958       ira_uniform_class_p[cl] = false;
959       if (ira_class_hard_regs_num[cl] == 0)
960 	continue;
961       /* We can not use alloc_reg_class_subclasses here because move
962 	 cost hooks does not take into account that some registers are
963 	 unavailable for the subtarget.  E.g. for i686, INT_SSE_REGS
964 	 is element of alloc_reg_class_subclasses for GENERAL_REGS
965 	 because SSE regs are unavailable.  */
966       for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
967 	{
968 	  if (ira_class_hard_regs_num[cl2] == 0)
969 	    continue;
970       	  for (m = 0; m < NUM_MACHINE_MODES; m++)
971 	    if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
972 	      {
973 		ira_init_register_move_cost_if_necessary ((machine_mode) m);
974 		if (ira_register_move_cost[m][cl][cl]
975 		    != ira_register_move_cost[m][cl2][cl2])
976 		  break;
977 	      }
978 	  if (m < NUM_MACHINE_MODES)
979 	    break;
980 	}
981       if (cl2 == LIM_REG_CLASSES)
982 	ira_uniform_class_p[cl] = true;
983     }
984 }
985 
986 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
987    IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
988 
989    Target may have many subtargets and not all target hard registers can
990    be used for allocation, e.g. x86 port in 32-bit mode can not use
991    hard registers introduced in x86-64 like r8-r15).  Some classes
992    might have the same allocatable hard registers, e.g.  INDEX_REGS
993    and GENERAL_REGS in x86 port in 32-bit mode.  To decrease different
994    calculations efforts we introduce allocno classes which contain
995    unique non-empty sets of allocatable hard-registers.
996 
997    Pseudo class cost calculation in ira-costs.c is very expensive.
998    Therefore we are trying to decrease number of classes involved in
999    such calculation.  Register classes used in the cost calculation
1000    are called important classes.  They are allocno classes and other
1001    non-empty classes whose allocatable hard register sets are inside
1002    of an allocno class hard register set.  From the first sight, it
1003    looks like that they are just allocno classes.  It is not true.  In
1004    example of x86-port in 32-bit mode, allocno classes will contain
1005    GENERAL_REGS but not LEGACY_REGS (because allocatable hard
1006    registers are the same for the both classes).  The important
1007    classes will contain GENERAL_REGS and LEGACY_REGS.  It is done
1008    because a machine description insn constraint may refers for
1009    LEGACY_REGS and code in ira-costs.c is mostly base on investigation
1010    of the insn constraints.  */
1011 static void
1012 setup_allocno_and_important_classes (void)
1013 {
1014   int i, j, n, cl;
1015   bool set_p;
1016   HARD_REG_SET temp_hard_regset2;
1017   static enum reg_class classes[LIM_REG_CLASSES + 1];
1018 
1019   n = 0;
1020   /* Collect classes which contain unique sets of allocatable hard
1021      registers.  Prefer GENERAL_REGS to other classes containing the
1022      same set of hard registers.  */
1023   for (i = 0; i < LIM_REG_CLASSES; i++)
1024     {
1025       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
1026       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1027       for (j = 0; j < n; j++)
1028 	{
1029 	  cl = classes[j];
1030 	  COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
1031 	  AND_COMPL_HARD_REG_SET (temp_hard_regset2,
1032 				  no_unit_alloc_regs);
1033 	  if (hard_reg_set_equal_p (temp_hard_regset,
1034 				    temp_hard_regset2))
1035 	    break;
1036 	}
1037       if (j >= n)
1038 	classes[n++] = (enum reg_class) i;
1039       else if (i == GENERAL_REGS)
1040 	/* Prefer general regs.  For i386 example, it means that
1041 	   we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1042 	   (all of them consists of the same available hard
1043 	   registers).  */
1044 	classes[j] = (enum reg_class) i;
1045     }
1046   classes[n] = LIM_REG_CLASSES;
1047 
1048   /* Set up classes which can be used for allocnos as classes
1049      containing non-empty unique sets of allocatable hard
1050      registers.  */
1051   ira_allocno_classes_num = 0;
1052   for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1053     if (ira_class_hard_regs_num[cl] > 0)
1054       ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1055   ira_important_classes_num = 0;
1056   /* Add non-allocno classes containing to non-empty set of
1057      allocatable hard regs.  */
1058   for (cl = 0; cl < N_REG_CLASSES; cl++)
1059     if (ira_class_hard_regs_num[cl] > 0)
1060       {
1061 	COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1062 	AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1063 	set_p = false;
1064 	for (j = 0; j < ira_allocno_classes_num; j++)
1065 	  {
1066 	    COPY_HARD_REG_SET (temp_hard_regset2,
1067 			       reg_class_contents[ira_allocno_classes[j]]);
1068 	    AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
1069 	    if ((enum reg_class) cl == ira_allocno_classes[j])
1070 	      break;
1071 	    else if (hard_reg_set_subset_p (temp_hard_regset,
1072 					    temp_hard_regset2))
1073 	      set_p = true;
1074 	  }
1075 	if (set_p && j >= ira_allocno_classes_num)
1076 	  ira_important_classes[ira_important_classes_num++]
1077 	    = (enum reg_class) cl;
1078       }
1079   /* Now add allocno classes to the important classes.  */
1080   for (j = 0; j < ira_allocno_classes_num; j++)
1081     ira_important_classes[ira_important_classes_num++]
1082       = ira_allocno_classes[j];
1083   for (cl = 0; cl < N_REG_CLASSES; cl++)
1084     {
1085       ira_reg_allocno_class_p[cl] = false;
1086       ira_reg_pressure_class_p[cl] = false;
1087     }
1088   for (j = 0; j < ira_allocno_classes_num; j++)
1089     ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1090   setup_pressure_classes ();
1091   setup_uniform_class_p ();
1092 }
1093 
1094 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1095    given by array CLASSES of length CLASSES_NUM.  The function is used
1096    make translation any reg class to an allocno class or to an
1097    pressure class.  This translation is necessary for some
1098    calculations when we can use only allocno or pressure classes and
1099    such translation represents an approximate representation of all
1100    classes.
1101 
1102    The translation in case when allocatable hard register set of a
1103    given class is subset of allocatable hard register set of a class
1104    in CLASSES is pretty simple.  We use smallest classes from CLASSES
1105    containing a given class.  If allocatable hard register set of a
1106    given class is not a subset of any corresponding set of a class
1107    from CLASSES, we use the cheapest (with load/store point of view)
1108    class from CLASSES whose set intersects with given class set.  */
1109 static void
1110 setup_class_translate_array (enum reg_class *class_translate,
1111 			     int classes_num, enum reg_class *classes)
1112 {
1113   int cl, mode;
1114   enum reg_class aclass, best_class, *cl_ptr;
1115   int i, cost, min_cost, best_cost;
1116 
1117   for (cl = 0; cl < N_REG_CLASSES; cl++)
1118     class_translate[cl] = NO_REGS;
1119 
1120   for (i = 0; i < classes_num; i++)
1121     {
1122       aclass = classes[i];
1123       for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1124 	   (cl = *cl_ptr) != LIM_REG_CLASSES;
1125 	   cl_ptr++)
1126 	if (class_translate[cl] == NO_REGS)
1127 	  class_translate[cl] = aclass;
1128       class_translate[aclass] = aclass;
1129     }
1130   /* For classes which are not fully covered by one of given classes
1131      (in other words covered by more one given class), use the
1132      cheapest class.  */
1133   for (cl = 0; cl < N_REG_CLASSES; cl++)
1134     {
1135       if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1136 	continue;
1137       best_class = NO_REGS;
1138       best_cost = INT_MAX;
1139       for (i = 0; i < classes_num; i++)
1140 	{
1141 	  aclass = classes[i];
1142 	  COPY_HARD_REG_SET (temp_hard_regset,
1143 			     reg_class_contents[aclass]);
1144 	  AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1145 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1146 	  if (! hard_reg_set_empty_p (temp_hard_regset))
1147 	    {
1148 	      min_cost = INT_MAX;
1149 	      for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1150 		{
1151 		  cost = (ira_memory_move_cost[mode][aclass][0]
1152 			  + ira_memory_move_cost[mode][aclass][1]);
1153 		  if (min_cost > cost)
1154 		    min_cost = cost;
1155 		}
1156 	      if (best_class == NO_REGS || best_cost > min_cost)
1157 		{
1158 		  best_class = aclass;
1159 		  best_cost = min_cost;
1160 		}
1161 	    }
1162 	}
1163       class_translate[cl] = best_class;
1164     }
1165 }
1166 
1167 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1168    IRA_PRESSURE_CLASS_TRANSLATE.  */
1169 static void
1170 setup_class_translate (void)
1171 {
1172   setup_class_translate_array (ira_allocno_class_translate,
1173 			       ira_allocno_classes_num, ira_allocno_classes);
1174   setup_class_translate_array (ira_pressure_class_translate,
1175 			       ira_pressure_classes_num, ira_pressure_classes);
1176 }
1177 
1178 /* Order numbers of allocno classes in original target allocno class
1179    array, -1 for non-allocno classes.  */
1180 static int allocno_class_order[N_REG_CLASSES];
1181 
1182 /* The function used to sort the important classes.  */
1183 static int
1184 comp_reg_classes_func (const void *v1p, const void *v2p)
1185 {
1186   enum reg_class cl1 = *(const enum reg_class *) v1p;
1187   enum reg_class cl2 = *(const enum reg_class *) v2p;
1188   enum reg_class tcl1, tcl2;
1189   int diff;
1190 
1191   tcl1 = ira_allocno_class_translate[cl1];
1192   tcl2 = ira_allocno_class_translate[cl2];
1193   if (tcl1 != NO_REGS && tcl2 != NO_REGS
1194       && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1195     return diff;
1196   return (int) cl1 - (int) cl2;
1197 }
1198 
1199 /* For correct work of function setup_reg_class_relation we need to
1200    reorder important classes according to the order of their allocno
1201    classes.  It places important classes containing the same
1202    allocatable hard register set adjacent to each other and allocno
1203    class with the allocatable hard register set right after the other
1204    important classes with the same set.
1205 
1206    In example from comments of function
1207    setup_allocno_and_important_classes, it places LEGACY_REGS and
1208    GENERAL_REGS close to each other and GENERAL_REGS is after
1209    LEGACY_REGS.  */
1210 static void
1211 reorder_important_classes (void)
1212 {
1213   int i;
1214 
1215   for (i = 0; i < N_REG_CLASSES; i++)
1216     allocno_class_order[i] = -1;
1217   for (i = 0; i < ira_allocno_classes_num; i++)
1218     allocno_class_order[ira_allocno_classes[i]] = i;
1219   qsort (ira_important_classes, ira_important_classes_num,
1220 	 sizeof (enum reg_class), comp_reg_classes_func);
1221   for (i = 0; i < ira_important_classes_num; i++)
1222     ira_important_class_nums[ira_important_classes[i]] = i;
1223 }
1224 
1225 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1226    IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1227    IRA_REG_CLASSES_INTERSECT_P.  For the meaning of the relations,
1228    please see corresponding comments in ira-int.h.  */
1229 static void
1230 setup_reg_class_relations (void)
1231 {
1232   int i, cl1, cl2, cl3;
1233   HARD_REG_SET intersection_set, union_set, temp_set2;
1234   bool important_class_p[N_REG_CLASSES];
1235 
1236   memset (important_class_p, 0, sizeof (important_class_p));
1237   for (i = 0; i < ira_important_classes_num; i++)
1238     important_class_p[ira_important_classes[i]] = true;
1239   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1240     {
1241       ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1242       for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1243 	{
1244 	  ira_reg_classes_intersect_p[cl1][cl2] = false;
1245 	  ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1246 	  ira_reg_class_subset[cl1][cl2] = NO_REGS;
1247 	  COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1248 	  AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1249 	  COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1250 	  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1251 	  if (hard_reg_set_empty_p (temp_hard_regset)
1252 	      && hard_reg_set_empty_p (temp_set2))
1253 	    {
1254 	      /* The both classes have no allocatable hard registers
1255 		 -- take all class hard registers into account and use
1256 		 reg_class_subunion and reg_class_superunion.  */
1257 	      for (i = 0;; i++)
1258 		{
1259 		  cl3 = reg_class_subclasses[cl1][i];
1260 		  if (cl3 == LIM_REG_CLASSES)
1261 		    break;
1262 		  if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1263 					  (enum reg_class) cl3))
1264 		    ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1265 		}
1266 	      ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1267 	      ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1268 	      continue;
1269 	    }
1270 	  ira_reg_classes_intersect_p[cl1][cl2]
1271 	    = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1272 	  if (important_class_p[cl1] && important_class_p[cl2]
1273 	      && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1274 	    {
1275 	      /* CL1 and CL2 are important classes and CL1 allocatable
1276 		 hard register set is inside of CL2 allocatable hard
1277 		 registers -- make CL1 a superset of CL2.  */
1278 	      enum reg_class *p;
1279 
1280 	      p = &ira_reg_class_super_classes[cl1][0];
1281 	      while (*p != LIM_REG_CLASSES)
1282 		p++;
1283 	      *p++ = (enum reg_class) cl2;
1284 	      *p = LIM_REG_CLASSES;
1285 	    }
1286 	  ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1287 	  ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1288 	  COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1289 	  AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1290 	  AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1291 	  COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1292 	  IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1293 	  AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1294 	  for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1295 	    {
1296 	      COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1297 	      AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1298 	      if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1299 		{
1300 		  /* CL3 allocatable hard register set is inside of
1301 		     intersection of allocatable hard register sets
1302 		     of CL1 and CL2.  */
1303 		  if (important_class_p[cl3])
1304 		    {
1305 		      COPY_HARD_REG_SET
1306 			(temp_set2,
1307 			 reg_class_contents
1308 			 [(int) ira_reg_class_intersect[cl1][cl2]]);
1309 		      AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1310 		      if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1311 			  /* If the allocatable hard register sets are
1312 			     the same, prefer GENERAL_REGS or the
1313 			     smallest class for debugging
1314 			     purposes.  */
1315 			  || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1316 			      && (cl3 == GENERAL_REGS
1317 				  || ((ira_reg_class_intersect[cl1][cl2]
1318 				       != GENERAL_REGS)
1319 				      && hard_reg_set_subset_p
1320 				         (reg_class_contents[cl3],
1321 					  reg_class_contents
1322 					  [(int)
1323 					   ira_reg_class_intersect[cl1][cl2]])))))
1324 			ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1325 		    }
1326 		  COPY_HARD_REG_SET
1327 		    (temp_set2,
1328 		     reg_class_contents[(int) ira_reg_class_subset[cl1][cl2]]);
1329 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1330 		  if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1331 		      /* Ignore unavailable hard registers and prefer
1332 			 smallest class for debugging purposes.  */
1333 		      || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1334 			  && hard_reg_set_subset_p
1335 			     (reg_class_contents[cl3],
1336 			      reg_class_contents
1337 			      [(int) ira_reg_class_subset[cl1][cl2]])))
1338 		    ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1339 		}
1340 	      if (important_class_p[cl3]
1341 		  && hard_reg_set_subset_p (temp_hard_regset, union_set))
1342 		{
1343 		  /* CL3 allocatable hard register set is inside of
1344 		     union of allocatable hard register sets of CL1
1345 		     and CL2.  */
1346 		  COPY_HARD_REG_SET
1347 		    (temp_set2,
1348 		     reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1349 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1350 	 	  if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1351 		      || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1352 
1353 			  && (! hard_reg_set_equal_p (temp_set2,
1354 						      temp_hard_regset)
1355 			      || cl3 == GENERAL_REGS
1356 			      /* If the allocatable hard register sets are the
1357 				 same, prefer GENERAL_REGS or the smallest
1358 				 class for debugging purposes.  */
1359 			      || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1360 				  && hard_reg_set_subset_p
1361 				     (reg_class_contents[cl3],
1362 				      reg_class_contents
1363 				      [(int) ira_reg_class_subunion[cl1][cl2]])))))
1364 		    ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1365 		}
1366 	      if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1367 		{
1368 		  /* CL3 allocatable hard register set contains union
1369 		     of allocatable hard register sets of CL1 and
1370 		     CL2.  */
1371 		  COPY_HARD_REG_SET
1372 		    (temp_set2,
1373 		     reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1374 		  AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1375 	 	  if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1376 		      || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1377 
1378 			  && (! hard_reg_set_equal_p (temp_set2,
1379 						      temp_hard_regset)
1380 			      || cl3 == GENERAL_REGS
1381 			      /* If the allocatable hard register sets are the
1382 				 same, prefer GENERAL_REGS or the smallest
1383 				 class for debugging purposes.  */
1384 			      || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1385 				  && hard_reg_set_subset_p
1386 				     (reg_class_contents[cl3],
1387 				      reg_class_contents
1388 				      [(int) ira_reg_class_superunion[cl1][cl2]])))))
1389 		    ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1390 		}
1391 	    }
1392 	}
1393     }
1394 }
1395 
1396 /* Output all uniform and important classes into file F.  */
1397 static void
1398 print_unform_and_important_classes (FILE *f)
1399 {
1400   static const char *const reg_class_names[] = REG_CLASS_NAMES;
1401   int i, cl;
1402 
1403   fprintf (f, "Uniform classes:\n");
1404   for (cl = 0; cl < N_REG_CLASSES; cl++)
1405     if (ira_uniform_class_p[cl])
1406       fprintf (f, " %s", reg_class_names[cl]);
1407   fprintf (f, "\nImportant classes:\n");
1408   for (i = 0; i < ira_important_classes_num; i++)
1409     fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1410   fprintf (f, "\n");
1411 }
1412 
1413 /* Output all possible allocno or pressure classes and their
1414    translation map into file F.  */
1415 static void
1416 print_translated_classes (FILE *f, bool pressure_p)
1417 {
1418   int classes_num = (pressure_p
1419 		     ? ira_pressure_classes_num : ira_allocno_classes_num);
1420   enum reg_class *classes = (pressure_p
1421 			     ? ira_pressure_classes : ira_allocno_classes);
1422   enum reg_class *class_translate = (pressure_p
1423 				     ? ira_pressure_class_translate
1424 				     : ira_allocno_class_translate);
1425   static const char *const reg_class_names[] = REG_CLASS_NAMES;
1426   int i;
1427 
1428   fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1429   for (i = 0; i < classes_num; i++)
1430     fprintf (f, " %s", reg_class_names[classes[i]]);
1431   fprintf (f, "\nClass translation:\n");
1432   for (i = 0; i < N_REG_CLASSES; i++)
1433     fprintf (f, " %s -> %s\n", reg_class_names[i],
1434 	     reg_class_names[class_translate[i]]);
1435 }
1436 
1437 /* Output all possible allocno and translation classes and the
1438    translation maps into stderr.  */
1439 void
1440 ira_debug_allocno_classes (void)
1441 {
1442   print_unform_and_important_classes (stderr);
1443   print_translated_classes (stderr, false);
1444   print_translated_classes (stderr, true);
1445 }
1446 
1447 /* Set up different arrays concerning class subsets, allocno and
1448    important classes.  */
1449 static void
1450 find_reg_classes (void)
1451 {
1452   setup_allocno_and_important_classes ();
1453   setup_class_translate ();
1454   reorder_important_classes ();
1455   setup_reg_class_relations ();
1456 }
1457 
1458 
1459 
1460 /* Set up the array above.  */
1461 static void
1462 setup_hard_regno_aclass (void)
1463 {
1464   int i;
1465 
1466   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1467     {
1468 #if 1
1469       ira_hard_regno_allocno_class[i]
1470 	= (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1471 	   ? NO_REGS
1472 	   : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1473 #else
1474       int j;
1475       enum reg_class cl;
1476       ira_hard_regno_allocno_class[i] = NO_REGS;
1477       for (j = 0; j < ira_allocno_classes_num; j++)
1478  	{
1479 	  cl = ira_allocno_classes[j];
1480  	  if (ira_class_hard_reg_index[cl][i] >= 0)
1481  	    {
1482 	      ira_hard_regno_allocno_class[i] = cl;
1483  	      break;
1484  	    }
1485  	}
1486 #endif
1487     }
1488 }
1489 
1490 
1491 
1492 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps.  */
1493 static void
1494 setup_reg_class_nregs (void)
1495 {
1496   int i, cl, cl2, m;
1497 
1498   for (m = 0; m < MAX_MACHINE_MODE; m++)
1499     {
1500       for (cl = 0; cl < N_REG_CLASSES; cl++)
1501 	ira_reg_class_max_nregs[cl][m]
1502 	  = ira_reg_class_min_nregs[cl][m]
1503 	  = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1504       for (cl = 0; cl < N_REG_CLASSES; cl++)
1505 	for (i = 0;
1506 	     (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1507 	     i++)
1508 	  if (ira_reg_class_min_nregs[cl2][m]
1509 	      < ira_reg_class_min_nregs[cl][m])
1510 	    ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1511     }
1512 }
1513 
1514 
1515 
1516 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1517    This function is called once IRA_CLASS_HARD_REGS has been initialized.  */
1518 static void
1519 setup_prohibited_class_mode_regs (void)
1520 {
1521   int j, k, hard_regno, cl, last_hard_regno, count;
1522 
1523   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1524     {
1525       COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1526       AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1527       for (j = 0; j < NUM_MACHINE_MODES; j++)
1528 	{
1529 	  count = 0;
1530 	  last_hard_regno = -1;
1531 	  CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1532 	  for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1533 	    {
1534 	      hard_regno = ira_class_hard_regs[cl][k];
1535 	      if (! HARD_REGNO_MODE_OK (hard_regno, (machine_mode) j))
1536 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1537 				  hard_regno);
1538 	      else if (in_hard_reg_set_p (temp_hard_regset,
1539 					  (machine_mode) j, hard_regno))
1540 		{
1541 		  last_hard_regno = hard_regno;
1542 		  count++;
1543 		}
1544 	    }
1545 	  ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1546 	}
1547     }
1548 }
1549 
1550 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1551    spanning from one register pressure class to another one.  It is
1552    called after defining the pressure classes.  */
1553 static void
1554 clarify_prohibited_class_mode_regs (void)
1555 {
1556   int j, k, hard_regno, cl, pclass, nregs;
1557 
1558   for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1559     for (j = 0; j < NUM_MACHINE_MODES; j++)
1560       {
1561 	CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1562 	for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1563 	  {
1564 	    hard_regno = ira_class_hard_regs[cl][k];
1565 	    if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1566 	      continue;
1567 	    nregs = hard_regno_nregs[hard_regno][j];
1568 	    if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1569 	      {
1570 		SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1571 				  hard_regno);
1572 		 continue;
1573 	      }
1574 	    pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1575 	    for (nregs-- ;nregs >= 0; nregs--)
1576 	      if (((enum reg_class) pclass
1577 		   != ira_pressure_class_translate[REGNO_REG_CLASS
1578 						   (hard_regno + nregs)]))
1579 		{
1580 		  SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1581 				    hard_regno);
1582 		  break;
1583 		}
1584 	    if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1585 				    hard_regno))
1586 	      add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1587 				   (machine_mode) j, hard_regno);
1588 	  }
1589       }
1590 }
1591 
1592 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1593    and IRA_MAY_MOVE_OUT_COST for MODE.  */
1594 void
1595 ira_init_register_move_cost (machine_mode mode)
1596 {
1597   static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1598   bool all_match = true;
1599   unsigned int cl1, cl2;
1600 
1601   ira_assert (ira_register_move_cost[mode] == NULL
1602 	      && ira_may_move_in_cost[mode] == NULL
1603 	      && ira_may_move_out_cost[mode] == NULL);
1604   ira_assert (have_regs_of_mode[mode]);
1605   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1606     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1607       {
1608 	int cost;
1609 	if (!contains_reg_of_mode[cl1][mode]
1610 	    || !contains_reg_of_mode[cl2][mode])
1611 	  {
1612 	    if ((ira_reg_class_max_nregs[cl1][mode]
1613 		 > ira_class_hard_regs_num[cl1])
1614 		|| (ira_reg_class_max_nregs[cl2][mode]
1615 		    > ira_class_hard_regs_num[cl2]))
1616 	      cost = 65535;
1617 	    else
1618 	      cost = (ira_memory_move_cost[mode][cl1][0]
1619 		      + ira_memory_move_cost[mode][cl2][1]) * 2;
1620 	  }
1621 	else
1622 	  {
1623 	    cost = register_move_cost (mode, (enum reg_class) cl1,
1624 				       (enum reg_class) cl2);
1625 	    ira_assert (cost < 65535);
1626 	  }
1627 	all_match &= (last_move_cost[cl1][cl2] == cost);
1628 	last_move_cost[cl1][cl2] = cost;
1629       }
1630   if (all_match && last_mode_for_init_move_cost != -1)
1631     {
1632       ira_register_move_cost[mode]
1633 	= ira_register_move_cost[last_mode_for_init_move_cost];
1634       ira_may_move_in_cost[mode]
1635 	= ira_may_move_in_cost[last_mode_for_init_move_cost];
1636       ira_may_move_out_cost[mode]
1637 	= ira_may_move_out_cost[last_mode_for_init_move_cost];
1638       return;
1639     }
1640   last_mode_for_init_move_cost = mode;
1641   ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1642   ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1643   ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1644   for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1645     for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1646       {
1647 	int cost;
1648 	enum reg_class *p1, *p2;
1649 
1650 	if (last_move_cost[cl1][cl2] == 65535)
1651 	  {
1652 	    ira_register_move_cost[mode][cl1][cl2] = 65535;
1653 	    ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1654 	    ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1655 	  }
1656 	else
1657 	  {
1658 	    cost = last_move_cost[cl1][cl2];
1659 
1660 	    for (p2 = &reg_class_subclasses[cl2][0];
1661 		 *p2 != LIM_REG_CLASSES; p2++)
1662 	      if (ira_class_hard_regs_num[*p2] > 0
1663 		  && (ira_reg_class_max_nregs[*p2][mode]
1664 		      <= ira_class_hard_regs_num[*p2]))
1665 		cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1666 
1667 	    for (p1 = &reg_class_subclasses[cl1][0];
1668 		 *p1 != LIM_REG_CLASSES; p1++)
1669 	      if (ira_class_hard_regs_num[*p1] > 0
1670 		  && (ira_reg_class_max_nregs[*p1][mode]
1671 		      <= ira_class_hard_regs_num[*p1]))
1672 		cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1673 
1674 	    ira_assert (cost <= 65535);
1675 	    ira_register_move_cost[mode][cl1][cl2] = cost;
1676 
1677 	    if (ira_class_subset_p[cl1][cl2])
1678 	      ira_may_move_in_cost[mode][cl1][cl2] = 0;
1679 	    else
1680 	      ira_may_move_in_cost[mode][cl1][cl2] = cost;
1681 
1682 	    if (ira_class_subset_p[cl2][cl1])
1683 	      ira_may_move_out_cost[mode][cl1][cl2] = 0;
1684 	    else
1685 	      ira_may_move_out_cost[mode][cl1][cl2] = cost;
1686 	  }
1687       }
1688 }
1689 
1690 
1691 
1692 /* This is called once during compiler work.  It sets up
1693    different arrays whose values don't depend on the compiled
1694    function.  */
1695 void
1696 ira_init_once (void)
1697 {
1698   ira_init_costs_once ();
1699   lra_init_once ();
1700 }
1701 
1702 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1703    ira_may_move_out_cost for each mode.  */
1704 void
1705 target_ira_int::free_register_move_costs (void)
1706 {
1707   int mode, i;
1708 
1709   /* Reset move_cost and friends, making sure we only free shared
1710      table entries once.  */
1711   for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1712     if (x_ira_register_move_cost[mode])
1713       {
1714 	for (i = 0;
1715 	     i < mode && (x_ira_register_move_cost[i]
1716 			  != x_ira_register_move_cost[mode]);
1717 	     i++)
1718 	  ;
1719 	if (i == mode)
1720 	  {
1721 	    free (x_ira_register_move_cost[mode]);
1722 	    free (x_ira_may_move_in_cost[mode]);
1723 	    free (x_ira_may_move_out_cost[mode]);
1724 	  }
1725       }
1726   memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1727   memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1728   memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1729   last_mode_for_init_move_cost = -1;
1730 }
1731 
1732 target_ira_int::~target_ira_int ()
1733 {
1734   free_ira_costs ();
1735   free_register_move_costs ();
1736 }
1737 
1738 /* This is called every time when register related information is
1739    changed.  */
1740 void
1741 ira_init (void)
1742 {
1743   this_target_ira_int->free_register_move_costs ();
1744   setup_reg_mode_hard_regset ();
1745   setup_alloc_regs (flag_omit_frame_pointer != 0);
1746   setup_class_subset_and_memory_move_costs ();
1747   setup_reg_class_nregs ();
1748   setup_prohibited_class_mode_regs ();
1749   find_reg_classes ();
1750   clarify_prohibited_class_mode_regs ();
1751   setup_hard_regno_aclass ();
1752   ira_init_costs ();
1753 }
1754 
1755 
1756 #define ira_prohibited_mode_move_regs_initialized_p \
1757   (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1758 
1759 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS.  */
1760 static void
1761 setup_prohibited_mode_move_regs (void)
1762 {
1763   int i, j;
1764   rtx test_reg1, test_reg2, move_pat;
1765   rtx_insn *move_insn;
1766 
1767   if (ira_prohibited_mode_move_regs_initialized_p)
1768     return;
1769   ira_prohibited_mode_move_regs_initialized_p = true;
1770   test_reg1 = gen_rtx_REG (VOIDmode, 0);
1771   test_reg2 = gen_rtx_REG (VOIDmode, 0);
1772   move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1773   move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1774   for (i = 0; i < NUM_MACHINE_MODES; i++)
1775     {
1776       SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1777       for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1778 	{
1779 	  if (! HARD_REGNO_MODE_OK (j, (machine_mode) i))
1780 	    continue;
1781 	  SET_REGNO_RAW (test_reg1, j);
1782 	  PUT_MODE (test_reg1, (machine_mode) i);
1783 	  SET_REGNO_RAW (test_reg2, j);
1784 	  PUT_MODE (test_reg2, (machine_mode) i);
1785 	  INSN_CODE (move_insn) = -1;
1786 	  recog_memoized (move_insn);
1787 	  if (INSN_CODE (move_insn) < 0)
1788 	    continue;
1789 	  extract_insn (move_insn);
1790 	  /* We don't know whether the move will be in code that is optimized
1791 	     for size or speed, so consider all enabled alternatives.  */
1792 	  if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1793 	    continue;
1794 	  CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1795 	}
1796     }
1797 }
1798 
1799 
1800 
1801 /* Setup possible alternatives in ALTS for INSN.  */
1802 void
1803 ira_setup_alts (rtx_insn *insn, HARD_REG_SET &alts)
1804 {
1805   /* MAP nalt * nop -> start of constraints for given operand and
1806      alternative.  */
1807   static vec<const char *> insn_constraints;
1808   int nop, nalt;
1809   bool curr_swapped;
1810   const char *p;
1811   rtx op;
1812   int commutative = -1;
1813 
1814   extract_insn (insn);
1815   alternative_mask preferred = get_preferred_alternatives (insn);
1816   CLEAR_HARD_REG_SET (alts);
1817   insn_constraints.release ();
1818   insn_constraints.safe_grow_cleared (recog_data.n_operands
1819 				      * recog_data.n_alternatives + 1);
1820   /* Check that the hard reg set is enough for holding all
1821      alternatives.  It is hard to imagine the situation when the
1822      assertion is wrong.  */
1823   ira_assert (recog_data.n_alternatives
1824 	      <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1825 			    FIRST_PSEUDO_REGISTER));
1826   for (curr_swapped = false;; curr_swapped = true)
1827     {
1828       /* Calculate some data common for all alternatives to speed up the
1829 	 function.  */
1830       for (nop = 0; nop < recog_data.n_operands; nop++)
1831 	{
1832 	  for (nalt = 0, p = recog_data.constraints[nop];
1833 	       nalt < recog_data.n_alternatives;
1834 	       nalt++)
1835 	    {
1836 	      insn_constraints[nop * recog_data.n_alternatives + nalt] = p;
1837 	      while (*p && *p != ',')
1838 		p++;
1839 	      if (*p)
1840 		p++;
1841 	    }
1842 	}
1843       for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1844 	{
1845 	  if (!TEST_BIT (preferred, nalt)
1846 	      || TEST_HARD_REG_BIT (alts, nalt))
1847 	    continue;
1848 
1849 	  for (nop = 0; nop < recog_data.n_operands; nop++)
1850 	    {
1851 	      int c, len;
1852 
1853 	      op = recog_data.operand[nop];
1854 	      p = insn_constraints[nop * recog_data.n_alternatives + nalt];
1855 	      if (*p == 0 || *p == ',')
1856 		continue;
1857 
1858 	      do
1859 		switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1860 		  {
1861 		  case '#':
1862 		  case ',':
1863 		    c = '\0';
1864 		  case '\0':
1865 		    len = 0;
1866 		    break;
1867 
1868 		  case '%':
1869 		    /* We only support one commutative marker, the
1870 		       first one.  We already set commutative
1871 		       above.  */
1872 		    if (commutative < 0)
1873 		      commutative = nop;
1874 		    break;
1875 
1876 		  case '0':  case '1':  case '2':  case '3':  case '4':
1877 		  case '5':  case '6':  case '7':  case '8':  case '9':
1878 		    goto op_success;
1879 		    break;
1880 
1881 		  case 'g':
1882 		    goto op_success;
1883 		    break;
1884 
1885 		  default:
1886 		    {
1887 		      enum constraint_num cn = lookup_constraint (p);
1888 		      switch (get_constraint_type (cn))
1889 			{
1890 			case CT_REGISTER:
1891 			  if (reg_class_for_constraint (cn) != NO_REGS)
1892 			    goto op_success;
1893 			  break;
1894 
1895 			case CT_CONST_INT:
1896 			  if (CONST_INT_P (op)
1897 			      && (insn_const_int_ok_for_constraint
1898 				  (INTVAL (op), cn)))
1899 			    goto op_success;
1900 			  break;
1901 
1902 			case CT_ADDRESS:
1903 			case CT_MEMORY:
1904 			  goto op_success;
1905 
1906 			case CT_FIXED_FORM:
1907 			  if (constraint_satisfied_p (op, cn))
1908 			    goto op_success;
1909 			  break;
1910 			}
1911 		      break;
1912 		    }
1913 		  }
1914 	      while (p += len, c);
1915 	      break;
1916 	    op_success:
1917 	      ;
1918 	    }
1919 	  if (nop >= recog_data.n_operands)
1920 	    SET_HARD_REG_BIT (alts, nalt);
1921 	}
1922       if (commutative < 0)
1923 	break;
1924       if (curr_swapped)
1925 	break;
1926       op = recog_data.operand[commutative];
1927       recog_data.operand[commutative] = recog_data.operand[commutative + 1];
1928       recog_data.operand[commutative + 1] = op;
1929 
1930     }
1931 }
1932 
1933 /* Return the number of the output non-early clobber operand which
1934    should be the same in any case as operand with number OP_NUM (or
1935    negative value if there is no such operand).  The function takes
1936    only really possible alternatives into consideration.  */
1937 int
1938 ira_get_dup_out_num (int op_num, HARD_REG_SET &alts)
1939 {
1940   int curr_alt, c, original, dup;
1941   bool ignore_p, use_commut_op_p;
1942   const char *str;
1943 
1944   if (op_num < 0 || recog_data.n_alternatives == 0)
1945     return -1;
1946   /* We should find duplications only for input operands.  */
1947   if (recog_data.operand_type[op_num] != OP_IN)
1948     return -1;
1949   str = recog_data.constraints[op_num];
1950   use_commut_op_p = false;
1951   for (;;)
1952     {
1953       rtx op = recog_data.operand[op_num];
1954 
1955       for (curr_alt = 0, ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt),
1956 	   original = -1;;)
1957 	{
1958 	  c = *str;
1959 	  if (c == '\0')
1960 	    break;
1961 	  if (c == '#')
1962 	    ignore_p = true;
1963 	  else if (c == ',')
1964 	    {
1965 	      curr_alt++;
1966 	      ignore_p = !TEST_HARD_REG_BIT (alts, curr_alt);
1967 	    }
1968 	  else if (! ignore_p)
1969 	    switch (c)
1970 	      {
1971 	      case 'g':
1972 		goto fail;
1973 	      default:
1974 		{
1975 		  enum constraint_num cn = lookup_constraint (str);
1976 		  enum reg_class cl = reg_class_for_constraint (cn);
1977 		  if (cl != NO_REGS
1978 		      && !targetm.class_likely_spilled_p (cl))
1979 		    goto fail;
1980 		  if (constraint_satisfied_p (op, cn))
1981 		    goto fail;
1982 		  break;
1983 		}
1984 
1985 	      case '0': case '1': case '2': case '3': case '4':
1986 	      case '5': case '6': case '7': case '8': case '9':
1987 		if (original != -1 && original != c)
1988 		  goto fail;
1989 		original = c;
1990 		break;
1991 	      }
1992 	  str += CONSTRAINT_LEN (c, str);
1993 	}
1994       if (original == -1)
1995 	goto fail;
1996       dup = -1;
1997       for (ignore_p = false, str = recog_data.constraints[original - '0'];
1998 	   *str != 0;
1999 	   str++)
2000 	if (ignore_p)
2001 	  {
2002 	    if (*str == ',')
2003 	      ignore_p = false;
2004 	  }
2005 	else if (*str == '#')
2006 	  ignore_p = true;
2007 	else if (! ignore_p)
2008 	  {
2009 	    if (*str == '=')
2010 	      dup = original - '0';
2011 	    /* It is better ignore an alternative with early clobber.  */
2012 	    else if (*str == '&')
2013 	      goto fail;
2014 	  }
2015       if (dup >= 0)
2016 	return dup;
2017     fail:
2018       if (use_commut_op_p)
2019 	break;
2020       use_commut_op_p = true;
2021       if (recog_data.constraints[op_num][0] == '%')
2022 	str = recog_data.constraints[op_num + 1];
2023       else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
2024 	str = recog_data.constraints[op_num - 1];
2025       else
2026 	break;
2027     }
2028   return -1;
2029 }
2030 
2031 
2032 
2033 /* Search forward to see if the source register of a copy insn dies
2034    before either it or the destination register is modified, but don't
2035    scan past the end of the basic block.  If so, we can replace the
2036    source with the destination and let the source die in the copy
2037    insn.
2038 
2039    This will reduce the number of registers live in that range and may
2040    enable the destination and the source coalescing, thus often saving
2041    one register in addition to a register-register copy.  */
2042 
2043 static void
2044 decrease_live_ranges_number (void)
2045 {
2046   basic_block bb;
2047   rtx_insn *insn;
2048   rtx set, src, dest, dest_death, q, note;
2049   rtx_insn *p;
2050   int sregno, dregno;
2051 
2052   if (! flag_expensive_optimizations)
2053     return;
2054 
2055   if (ira_dump_file)
2056     fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2057 
2058   FOR_EACH_BB_FN (bb, cfun)
2059     FOR_BB_INSNS (bb, insn)
2060       {
2061 	set = single_set (insn);
2062 	if (! set)
2063 	  continue;
2064 	src = SET_SRC (set);
2065 	dest = SET_DEST (set);
2066 	if (! REG_P (src) || ! REG_P (dest)
2067 	    || find_reg_note (insn, REG_DEAD, src))
2068 	  continue;
2069 	sregno = REGNO (src);
2070 	dregno = REGNO (dest);
2071 
2072 	/* We don't want to mess with hard regs if register classes
2073 	   are small.  */
2074 	if (sregno == dregno
2075 	    || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2076 		&& (sregno < FIRST_PSEUDO_REGISTER
2077 		    || dregno < FIRST_PSEUDO_REGISTER))
2078 	    /* We don't see all updates to SP if they are in an
2079 	       auto-inc memory reference, so we must disallow this
2080 	       optimization on them.  */
2081 	    || sregno == STACK_POINTER_REGNUM
2082 	    || dregno == STACK_POINTER_REGNUM)
2083 	  continue;
2084 
2085 	dest_death = NULL_RTX;
2086 
2087 	for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2088 	  {
2089 	    if (! INSN_P (p))
2090 	      continue;
2091 	    if (BLOCK_FOR_INSN (p) != bb)
2092 	      break;
2093 
2094 	    if (reg_set_p (src, p) || reg_set_p (dest, p)
2095 		/* If SRC is an asm-declared register, it must not be
2096 		   replaced in any asm.  Unfortunately, the REG_EXPR
2097 		   tree for the asm variable may be absent in the SRC
2098 		   rtx, so we can't check the actual register
2099 		   declaration easily (the asm operand will have it,
2100 		   though).  To avoid complicating the test for a rare
2101 		   case, we just don't perform register replacement
2102 		   for a hard reg mentioned in an asm.  */
2103 		|| (sregno < FIRST_PSEUDO_REGISTER
2104 		    && asm_noperands (PATTERN (p)) >= 0
2105 		    && reg_overlap_mentioned_p (src, PATTERN (p)))
2106 		/* Don't change hard registers used by a call.  */
2107 		|| (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2108 		    && find_reg_fusage (p, USE, src))
2109 		/* Don't change a USE of a register.  */
2110 		|| (GET_CODE (PATTERN (p)) == USE
2111 		    && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2112 	      break;
2113 
2114 	    /* See if all of SRC dies in P.  This test is slightly
2115 	       more conservative than it needs to be.  */
2116 	    if ((note = find_regno_note (p, REG_DEAD, sregno))
2117 		&& GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2118 	      {
2119 		int failed = 0;
2120 
2121 		/* We can do the optimization.  Scan forward from INSN
2122 		   again, replacing regs as we go.  Set FAILED if a
2123 		   replacement can't be done.  In that case, we can't
2124 		   move the death note for SRC.  This should be
2125 		   rare.  */
2126 
2127 		/* Set to stop at next insn.  */
2128 		for (q = next_real_insn (insn);
2129 		     q != next_real_insn (p);
2130 		     q = next_real_insn (q))
2131 		  {
2132 		    if (reg_overlap_mentioned_p (src, PATTERN (q)))
2133 		      {
2134 			/* If SRC is a hard register, we might miss
2135 			   some overlapping registers with
2136 			   validate_replace_rtx, so we would have to
2137 			   undo it.  We can't if DEST is present in
2138 			   the insn, so fail in that combination of
2139 			   cases.  */
2140 			if (sregno < FIRST_PSEUDO_REGISTER
2141 			    && reg_mentioned_p (dest, PATTERN (q)))
2142 			  failed = 1;
2143 
2144 			/* Attempt to replace all uses.  */
2145 			else if (!validate_replace_rtx (src, dest, q))
2146 			  failed = 1;
2147 
2148 			/* If this succeeded, but some part of the
2149 			   register is still present, undo the
2150 			   replacement.  */
2151 			else if (sregno < FIRST_PSEUDO_REGISTER
2152 				 && reg_overlap_mentioned_p (src, PATTERN (q)))
2153 			  {
2154 			    validate_replace_rtx (dest, src, q);
2155 			    failed = 1;
2156 			  }
2157 		      }
2158 
2159 		    /* If DEST dies here, remove the death note and
2160 		       save it for later.  Make sure ALL of DEST dies
2161 		       here; again, this is overly conservative.  */
2162 		    if (! dest_death
2163 			&& (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2164 		      {
2165 			if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2166 			  remove_note (q, dest_death);
2167 			else
2168 			  {
2169 			    failed = 1;
2170 			    dest_death = 0;
2171 			  }
2172 		      }
2173 		  }
2174 
2175 		if (! failed)
2176 		  {
2177 		    /* Move death note of SRC from P to INSN.  */
2178 		    remove_note (p, note);
2179 		    XEXP (note, 1) = REG_NOTES (insn);
2180 		    REG_NOTES (insn) = note;
2181 		  }
2182 
2183 		/* DEST is also dead if INSN has a REG_UNUSED note for
2184 		   DEST.  */
2185 		if (! dest_death
2186 		    && (dest_death
2187 			= find_regno_note (insn, REG_UNUSED, dregno)))
2188 		  {
2189 		    PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2190 		    remove_note (insn, dest_death);
2191 		  }
2192 
2193 		/* Put death note of DEST on P if we saw it die.  */
2194 		if (dest_death)
2195 		  {
2196 		    XEXP (dest_death, 1) = REG_NOTES (p);
2197 		    REG_NOTES (p) = dest_death;
2198 		  }
2199 		break;
2200 	      }
2201 
2202 	    /* If SRC is a hard register which is set or killed in
2203 	       some other way, we can't do this optimization.  */
2204 	    else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2205 	      break;
2206 	  }
2207       }
2208 }
2209 
2210 
2211 
2212 /* Return nonzero if REGNO is a particularly bad choice for reloading X.  */
2213 static bool
2214 ira_bad_reload_regno_1 (int regno, rtx x)
2215 {
2216   int x_regno, n, i;
2217   ira_allocno_t a;
2218   enum reg_class pref;
2219 
2220   /* We only deal with pseudo regs.  */
2221   if (! x || GET_CODE (x) != REG)
2222     return false;
2223 
2224   x_regno = REGNO (x);
2225   if (x_regno < FIRST_PSEUDO_REGISTER)
2226     return false;
2227 
2228   /* If the pseudo prefers REGNO explicitly, then do not consider
2229      REGNO a bad spill choice.  */
2230   pref = reg_preferred_class (x_regno);
2231   if (reg_class_size[pref] == 1)
2232     return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2233 
2234   /* If the pseudo conflicts with REGNO, then we consider REGNO a
2235      poor choice for a reload regno.  */
2236   a = ira_regno_allocno_map[x_regno];
2237   n = ALLOCNO_NUM_OBJECTS (a);
2238   for (i = 0; i < n; i++)
2239     {
2240       ira_object_t obj = ALLOCNO_OBJECT (a, i);
2241       if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2242 	return true;
2243     }
2244   return false;
2245 }
2246 
2247 /* Return nonzero if REGNO is a particularly bad choice for reloading
2248    IN or OUT.  */
2249 bool
2250 ira_bad_reload_regno (int regno, rtx in, rtx out)
2251 {
2252   return (ira_bad_reload_regno_1 (regno, in)
2253 	  || ira_bad_reload_regno_1 (regno, out));
2254 }
2255 
2256 /* Add register clobbers from asm statements.  */
2257 static void
2258 compute_regs_asm_clobbered (void)
2259 {
2260   basic_block bb;
2261 
2262   FOR_EACH_BB_FN (bb, cfun)
2263     {
2264       rtx_insn *insn;
2265       FOR_BB_INSNS_REVERSE (bb, insn)
2266 	{
2267 	  df_ref def;
2268 
2269 	  if (NONDEBUG_INSN_P (insn) && extract_asm_operands (PATTERN (insn)))
2270 	    FOR_EACH_INSN_DEF (def, insn)
2271 	      {
2272 		unsigned int dregno = DF_REF_REGNO (def);
2273 		if (HARD_REGISTER_NUM_P (dregno))
2274 		  add_to_hard_reg_set (&crtl->asm_clobbers,
2275 				       GET_MODE (DF_REF_REAL_REG (def)),
2276 				       dregno);
2277 	      }
2278 	}
2279     }
2280 }
2281 
2282 
2283 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2284    REGS_EVER_LIVE.  */
2285 void
2286 ira_setup_eliminable_regset (void)
2287 {
2288 #ifdef ELIMINABLE_REGS
2289   int i;
2290   static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2291 #endif
2292   /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2293      sp for alloca.  So we can't eliminate the frame pointer in that
2294      case.  At some point, we should improve this by emitting the
2295      sp-adjusting insns for this case.  */
2296   frame_pointer_needed
2297     = (! flag_omit_frame_pointer
2298        || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2299        /* We need the frame pointer to catch stack overflow exceptions if
2300 	  the stack pointer is moving (as for the alloca case just above).  */
2301        || (STACK_CHECK_MOVING_SP
2302 	   && flag_stack_check
2303 	   && flag_exceptions
2304 	   && cfun->can_throw_non_call_exceptions)
2305        || crtl->accesses_prior_frames
2306        || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2307        /* We need a frame pointer for all Cilk Plus functions that use
2308 	  Cilk keywords.  */
2309        || (flag_cilkplus && cfun->is_cilk_function)
2310        || targetm.frame_pointer_required ());
2311 
2312     /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2313        RTL is very small.  So if we use frame pointer for RA and RTL
2314        actually prevents this, we will spill pseudos assigned to the
2315        frame pointer in LRA.  */
2316 
2317   if (frame_pointer_needed)
2318     df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2319 
2320   COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
2321   CLEAR_HARD_REG_SET (eliminable_regset);
2322 
2323   compute_regs_asm_clobbered ();
2324 
2325   /* Build the regset of all eliminable registers and show we can't
2326      use those that we already know won't be eliminated.  */
2327 #ifdef ELIMINABLE_REGS
2328   for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2329     {
2330       bool cannot_elim
2331 	= (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2332 	   || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2333 
2334       if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2335 	{
2336 	    SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2337 
2338 	    if (cannot_elim)
2339 	      SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2340 	}
2341       else if (cannot_elim)
2342 	error ("%s cannot be used in asm here",
2343 	       reg_names[eliminables[i].from]);
2344       else
2345 	df_set_regs_ever_live (eliminables[i].from, true);
2346     }
2347 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2348   if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2349     {
2350       SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
2351       if (frame_pointer_needed)
2352 	SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
2353     }
2354   else if (frame_pointer_needed)
2355     error ("%s cannot be used in asm here",
2356 	   reg_names[HARD_FRAME_POINTER_REGNUM]);
2357   else
2358     df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
2359 #endif
2360 
2361 #else
2362   if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
2363     {
2364       SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
2365       if (frame_pointer_needed)
2366 	SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
2367     }
2368   else if (frame_pointer_needed)
2369     error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
2370   else
2371     df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
2372 #endif
2373 }
2374 
2375 
2376 
2377 /* Vector of substitutions of register numbers,
2378    used to map pseudo regs into hardware regs.
2379    This is set up as a result of register allocation.
2380    Element N is the hard reg assigned to pseudo reg N,
2381    or is -1 if no hard reg was assigned.
2382    If N is a hard reg number, element N is N.  */
2383 short *reg_renumber;
2384 
2385 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2386    the allocation found by IRA.  */
2387 static void
2388 setup_reg_renumber (void)
2389 {
2390   int regno, hard_regno;
2391   ira_allocno_t a;
2392   ira_allocno_iterator ai;
2393 
2394   caller_save_needed = 0;
2395   FOR_EACH_ALLOCNO (a, ai)
2396     {
2397       if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2398 	continue;
2399       /* There are no caps at this point.  */
2400       ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2401       if (! ALLOCNO_ASSIGNED_P (a))
2402 	/* It can happen if A is not referenced but partially anticipated
2403 	   somewhere in a region.  */
2404 	ALLOCNO_ASSIGNED_P (a) = true;
2405       ira_free_allocno_updated_costs (a);
2406       hard_regno = ALLOCNO_HARD_REGNO (a);
2407       regno = ALLOCNO_REGNO (a);
2408       reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2409       if (hard_regno >= 0)
2410 	{
2411 	  int i, nwords;
2412 	  enum reg_class pclass;
2413 	  ira_object_t obj;
2414 
2415 	  pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2416 	  nwords = ALLOCNO_NUM_OBJECTS (a);
2417 	  for (i = 0; i < nwords; i++)
2418 	    {
2419 	      obj = ALLOCNO_OBJECT (a, i);
2420 	      IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
2421 				      reg_class_contents[pclass]);
2422 	    }
2423 	  if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
2424 	      && ira_hard_reg_set_intersection_p (hard_regno, ALLOCNO_MODE (a),
2425 						  call_used_reg_set))
2426 	    {
2427 	      ira_assert (!optimize || flag_caller_saves
2428 			  || (ALLOCNO_CALLS_CROSSED_NUM (a)
2429 			      == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2430 			  || regno >= ira_reg_equiv_len
2431 			  || ira_equiv_no_lvalue_p (regno));
2432 	      caller_save_needed = 1;
2433 	    }
2434 	}
2435     }
2436 }
2437 
2438 /* Set up allocno assignment flags for further allocation
2439    improvements.  */
2440 static void
2441 setup_allocno_assignment_flags (void)
2442 {
2443   int hard_regno;
2444   ira_allocno_t a;
2445   ira_allocno_iterator ai;
2446 
2447   FOR_EACH_ALLOCNO (a, ai)
2448     {
2449       if (! ALLOCNO_ASSIGNED_P (a))
2450 	/* It can happen if A is not referenced but partially anticipated
2451 	   somewhere in a region.  */
2452 	ira_free_allocno_updated_costs (a);
2453       hard_regno = ALLOCNO_HARD_REGNO (a);
2454       /* Don't assign hard registers to allocnos which are destination
2455 	 of removed store at the end of loop.  It has no sense to keep
2456 	 the same value in different hard registers.  It is also
2457 	 impossible to assign hard registers correctly to such
2458 	 allocnos because the cost info and info about intersected
2459 	 calls are incorrect for them.  */
2460       ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2461 				|| ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2462 				|| (ALLOCNO_MEMORY_COST (a)
2463 				    - ALLOCNO_CLASS_COST (a)) < 0);
2464       ira_assert
2465 	(hard_regno < 0
2466 	 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2467 				   reg_class_contents[ALLOCNO_CLASS (a)]));
2468     }
2469 }
2470 
2471 /* Evaluate overall allocation cost and the costs for using hard
2472    registers and memory for allocnos.  */
2473 static void
2474 calculate_allocation_cost (void)
2475 {
2476   int hard_regno, cost;
2477   ira_allocno_t a;
2478   ira_allocno_iterator ai;
2479 
2480   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2481   FOR_EACH_ALLOCNO (a, ai)
2482     {
2483       hard_regno = ALLOCNO_HARD_REGNO (a);
2484       ira_assert (hard_regno < 0
2485 		  || (ira_hard_reg_in_set_p
2486 		      (hard_regno, ALLOCNO_MODE (a),
2487 		       reg_class_contents[ALLOCNO_CLASS (a)])));
2488       if (hard_regno < 0)
2489 	{
2490 	  cost = ALLOCNO_MEMORY_COST (a);
2491 	  ira_mem_cost += cost;
2492 	}
2493       else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2494 	{
2495 	  cost = (ALLOCNO_HARD_REG_COSTS (a)
2496 		  [ira_class_hard_reg_index
2497 		   [ALLOCNO_CLASS (a)][hard_regno]]);
2498 	  ira_reg_cost += cost;
2499 	}
2500       else
2501 	{
2502 	  cost = ALLOCNO_CLASS_COST (a);
2503 	  ira_reg_cost += cost;
2504 	}
2505       ira_overall_cost += cost;
2506     }
2507 
2508   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2509     {
2510       fprintf (ira_dump_file,
2511 	       "+++Costs: overall %"PRId64
2512 	       ", reg %"PRId64
2513 	       ", mem %"PRId64
2514 	       ", ld %"PRId64
2515 	       ", st %"PRId64
2516 	       ", move %"PRId64,
2517 	       ira_overall_cost, ira_reg_cost, ira_mem_cost,
2518 	       ira_load_cost, ira_store_cost, ira_shuffle_cost);
2519       fprintf (ira_dump_file, "\n+++       move loops %d, new jumps %d\n",
2520 	       ira_move_loops_num, ira_additional_jumps_num);
2521     }
2522 
2523 }
2524 
2525 #ifdef ENABLE_IRA_CHECKING
2526 /* Check the correctness of the allocation.  We do need this because
2527    of complicated code to transform more one region internal
2528    representation into one region representation.  */
2529 static void
2530 check_allocation (void)
2531 {
2532   ira_allocno_t a;
2533   int hard_regno, nregs, conflict_nregs;
2534   ira_allocno_iterator ai;
2535 
2536   FOR_EACH_ALLOCNO (a, ai)
2537     {
2538       int n = ALLOCNO_NUM_OBJECTS (a);
2539       int i;
2540 
2541       if (ALLOCNO_CAP_MEMBER (a) != NULL
2542 	  || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2543 	continue;
2544       nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2545       if (nregs == 1)
2546 	/* We allocated a single hard register.  */
2547 	n = 1;
2548       else if (n > 1)
2549 	/* We allocated multiple hard registers, and we will test
2550 	   conflicts in a granularity of single hard regs.  */
2551 	nregs = 1;
2552 
2553       for (i = 0; i < n; i++)
2554 	{
2555 	  ira_object_t obj = ALLOCNO_OBJECT (a, i);
2556 	  ira_object_t conflict_obj;
2557 	  ira_object_conflict_iterator oci;
2558 	  int this_regno = hard_regno;
2559 	  if (n > 1)
2560 	    {
2561 	      if (REG_WORDS_BIG_ENDIAN)
2562 		this_regno += n - i - 1;
2563 	      else
2564 		this_regno += i;
2565 	    }
2566 	  FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2567 	    {
2568 	      ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2569 	      int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2570 	      if (conflict_hard_regno < 0)
2571 		continue;
2572 
2573 	      conflict_nregs
2574 		= (hard_regno_nregs
2575 		   [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2576 
2577 	      if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2578 		  && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2579 		{
2580 		  if (REG_WORDS_BIG_ENDIAN)
2581 		    conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2582 					    - OBJECT_SUBWORD (conflict_obj) - 1);
2583 		  else
2584 		    conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2585 		  conflict_nregs = 1;
2586 		}
2587 
2588 	      if ((conflict_hard_regno <= this_regno
2589 		 && this_regno < conflict_hard_regno + conflict_nregs)
2590 		|| (this_regno <= conflict_hard_regno
2591 		    && conflict_hard_regno < this_regno + nregs))
2592 		{
2593 		  fprintf (stderr, "bad allocation for %d and %d\n",
2594 			   ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2595 		  gcc_unreachable ();
2596 		}
2597 	    }
2598 	}
2599     }
2600 }
2601 #endif
2602 
2603 /* Allocate REG_EQUIV_INIT.  Set up it from IRA_REG_EQUIV which should
2604    be already calculated.  */
2605 static void
2606 setup_reg_equiv_init (void)
2607 {
2608   int i;
2609   int max_regno = max_reg_num ();
2610 
2611   for (i = 0; i < max_regno; i++)
2612     reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2613 }
2614 
2615 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO.  INSNS
2616    are insns which were generated for such movement.  It is assumed
2617    that FROM_REGNO and TO_REGNO always have the same value at the
2618    point of any move containing such registers. This function is used
2619    to update equiv info for register shuffles on the region borders
2620    and for caller save/restore insns.  */
2621 void
2622 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2623 {
2624   rtx_insn *insn;
2625   rtx x, note;
2626 
2627   if (! ira_reg_equiv[from_regno].defined_p
2628       && (! ira_reg_equiv[to_regno].defined_p
2629 	  || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2630 	      && ! MEM_READONLY_P (x))))
2631     return;
2632   insn = insns;
2633   if (NEXT_INSN (insn) != NULL_RTX)
2634     {
2635       if (! ira_reg_equiv[to_regno].defined_p)
2636 	{
2637 	  ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2638 	  return;
2639 	}
2640       ira_reg_equiv[to_regno].defined_p = false;
2641       ira_reg_equiv[to_regno].memory
2642 	= ira_reg_equiv[to_regno].constant
2643 	= ira_reg_equiv[to_regno].invariant
2644 	= ira_reg_equiv[to_regno].init_insns = NULL;
2645       if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2646 	fprintf (ira_dump_file,
2647 		 "      Invalidating equiv info for reg %d\n", to_regno);
2648       return;
2649     }
2650   /* It is possible that FROM_REGNO still has no equivalence because
2651      in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2652      insn was not processed yet.  */
2653   if (ira_reg_equiv[from_regno].defined_p)
2654     {
2655       ira_reg_equiv[to_regno].defined_p = true;
2656       if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2657 	{
2658 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2659 		      && ira_reg_equiv[from_regno].constant == NULL_RTX);
2660 	  ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2661 		      || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2662 	  ira_reg_equiv[to_regno].memory = x;
2663 	  if (! MEM_READONLY_P (x))
2664 	    /* We don't add the insn to insn init list because memory
2665 	       equivalence is just to say what memory is better to use
2666 	       when the pseudo is spilled.  */
2667 	    return;
2668 	}
2669       else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2670 	{
2671 	  ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2672 	  ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2673 		      || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2674 	  ira_reg_equiv[to_regno].constant = x;
2675 	}
2676       else
2677 	{
2678 	  x = ira_reg_equiv[from_regno].invariant;
2679 	  ira_assert (x != NULL_RTX);
2680 	  ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2681 		      || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2682 	  ira_reg_equiv[to_regno].invariant = x;
2683 	}
2684       if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2685 	{
2686 	  note = set_unique_reg_note (insn, REG_EQUIV, x);
2687 	  gcc_assert (note != NULL_RTX);
2688 	  if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2689 	    {
2690 	      fprintf (ira_dump_file,
2691 		       "      Adding equiv note to insn %u for reg %d ",
2692 		       INSN_UID (insn), to_regno);
2693 	      dump_value_slim (ira_dump_file, x, 1);
2694 	      fprintf (ira_dump_file, "\n");
2695 	    }
2696 	}
2697     }
2698   ira_reg_equiv[to_regno].init_insns
2699     = gen_rtx_INSN_LIST (VOIDmode, insn,
2700 			 ira_reg_equiv[to_regno].init_insns);
2701   if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2702     fprintf (ira_dump_file,
2703 	     "      Adding equiv init move insn %u to reg %d\n",
2704 	     INSN_UID (insn), to_regno);
2705 }
2706 
2707 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2708    by IRA.  */
2709 static void
2710 fix_reg_equiv_init (void)
2711 {
2712   int max_regno = max_reg_num ();
2713   int i, new_regno, max;
2714   rtx x, prev, next, insn, set;
2715 
2716   if (max_regno_before_ira < max_regno)
2717     {
2718       max = vec_safe_length (reg_equivs);
2719       grow_reg_equivs ();
2720       for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2721 	for (prev = NULL_RTX, x = reg_equiv_init (i);
2722 	     x != NULL_RTX;
2723 	     x = next)
2724 	  {
2725 	    next = XEXP (x, 1);
2726 	    insn = XEXP (x, 0);
2727 	    set = single_set (as_a <rtx_insn *> (insn));
2728 	    ira_assert (set != NULL_RTX
2729 			&& (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2730 	    if (REG_P (SET_DEST (set))
2731 		&& ((int) REGNO (SET_DEST (set)) == i
2732 		    || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2733 	      new_regno = REGNO (SET_DEST (set));
2734 	    else if (REG_P (SET_SRC (set))
2735 		     && ((int) REGNO (SET_SRC (set)) == i
2736 			 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2737 	      new_regno = REGNO (SET_SRC (set));
2738 	    else
2739  	      gcc_unreachable ();
2740 	    if (new_regno == i)
2741 	      prev = x;
2742 	    else
2743 	      {
2744 		/* Remove the wrong list element.  */
2745 		if (prev == NULL_RTX)
2746 		  reg_equiv_init (i) = next;
2747 		else
2748 		  XEXP (prev, 1) = next;
2749 		XEXP (x, 1) = reg_equiv_init (new_regno);
2750 		reg_equiv_init (new_regno) = x;
2751 	      }
2752 	  }
2753     }
2754 }
2755 
2756 #ifdef ENABLE_IRA_CHECKING
2757 /* Print redundant memory-memory copies.  */
2758 static void
2759 print_redundant_copies (void)
2760 {
2761   int hard_regno;
2762   ira_allocno_t a;
2763   ira_copy_t cp, next_cp;
2764   ira_allocno_iterator ai;
2765 
2766   FOR_EACH_ALLOCNO (a, ai)
2767     {
2768       if (ALLOCNO_CAP_MEMBER (a) != NULL)
2769 	/* It is a cap.  */
2770 	continue;
2771       hard_regno = ALLOCNO_HARD_REGNO (a);
2772       if (hard_regno >= 0)
2773 	continue;
2774       for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2775 	if (cp->first == a)
2776 	  next_cp = cp->next_first_allocno_copy;
2777 	else
2778 	  {
2779 	    next_cp = cp->next_second_allocno_copy;
2780 	    if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2781 		&& cp->insn != NULL_RTX
2782 		&& ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2783 	      fprintf (ira_dump_file,
2784 		       "        Redundant move from %d(freq %d):%d\n",
2785 		       INSN_UID (cp->insn), cp->freq, hard_regno);
2786 	  }
2787     }
2788 }
2789 #endif
2790 
2791 /* Setup preferred and alternative classes for new pseudo-registers
2792    created by IRA starting with START.  */
2793 static void
2794 setup_preferred_alternate_classes_for_new_pseudos (int start)
2795 {
2796   int i, old_regno;
2797   int max_regno = max_reg_num ();
2798 
2799   for (i = start; i < max_regno; i++)
2800     {
2801       old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2802       ira_assert (i != old_regno);
2803       setup_reg_classes (i, reg_preferred_class (old_regno),
2804 			 reg_alternate_class (old_regno),
2805 			 reg_allocno_class (old_regno));
2806       if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2807 	fprintf (ira_dump_file,
2808 		 "    New r%d: setting preferred %s, alternative %s\n",
2809 		 i, reg_class_names[reg_preferred_class (old_regno)],
2810 		 reg_class_names[reg_alternate_class (old_regno)]);
2811     }
2812 }
2813 
2814 
2815 /* The number of entries allocated in reg_info.  */
2816 static int allocated_reg_info_size;
2817 
2818 /* Regional allocation can create new pseudo-registers.  This function
2819    expands some arrays for pseudo-registers.  */
2820 static void
2821 expand_reg_info (void)
2822 {
2823   int i;
2824   int size = max_reg_num ();
2825 
2826   resize_reg_info ();
2827   for (i = allocated_reg_info_size; i < size; i++)
2828     setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2829   setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2830   allocated_reg_info_size = size;
2831 }
2832 
2833 /* Return TRUE if there is too high register pressure in the function.
2834    It is used to decide when stack slot sharing is worth to do.  */
2835 static bool
2836 too_high_register_pressure_p (void)
2837 {
2838   int i;
2839   enum reg_class pclass;
2840 
2841   for (i = 0; i < ira_pressure_classes_num; i++)
2842     {
2843       pclass = ira_pressure_classes[i];
2844       if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2845 	return true;
2846     }
2847   return false;
2848 }
2849 
2850 
2851 
2852 /* Indicate that hard register number FROM was eliminated and replaced with
2853    an offset from hard register number TO.  The status of hard registers live
2854    at the start of a basic block is updated by replacing a use of FROM with
2855    a use of TO.  */
2856 
2857 void
2858 mark_elimination (int from, int to)
2859 {
2860   basic_block bb;
2861   bitmap r;
2862 
2863   FOR_EACH_BB_FN (bb, cfun)
2864     {
2865       r = DF_LR_IN (bb);
2866       if (bitmap_bit_p (r, from))
2867 	{
2868 	  bitmap_clear_bit (r, from);
2869 	  bitmap_set_bit (r, to);
2870 	}
2871       if (! df_live)
2872         continue;
2873       r = DF_LIVE_IN (bb);
2874       if (bitmap_bit_p (r, from))
2875 	{
2876 	  bitmap_clear_bit (r, from);
2877 	  bitmap_set_bit (r, to);
2878 	}
2879     }
2880 }
2881 
2882 
2883 
2884 /* The length of the following array.  */
2885 int ira_reg_equiv_len;
2886 
2887 /* Info about equiv. info for each register.  */
2888 struct ira_reg_equiv_s *ira_reg_equiv;
2889 
2890 /* Expand ira_reg_equiv if necessary.  */
2891 void
2892 ira_expand_reg_equiv (void)
2893 {
2894   int old = ira_reg_equiv_len;
2895 
2896   if (ira_reg_equiv_len > max_reg_num ())
2897     return;
2898   ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2899   ira_reg_equiv
2900     = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2901 					 ira_reg_equiv_len
2902 					 * sizeof (struct ira_reg_equiv_s));
2903   gcc_assert (old < ira_reg_equiv_len);
2904   memset (ira_reg_equiv + old, 0,
2905 	  sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2906 }
2907 
2908 static void
2909 init_reg_equiv (void)
2910 {
2911   ira_reg_equiv_len = 0;
2912   ira_reg_equiv = NULL;
2913   ira_expand_reg_equiv ();
2914 }
2915 
2916 static void
2917 finish_reg_equiv (void)
2918 {
2919   free (ira_reg_equiv);
2920 }
2921 
2922 
2923 
2924 struct equivalence
2925 {
2926   /* Set when a REG_EQUIV note is found or created.  Use to
2927      keep track of what memory accesses might be created later,
2928      e.g. by reload.  */
2929   rtx replacement;
2930   rtx *src_p;
2931 
2932   /* The list of each instruction which initializes this register.
2933 
2934      NULL indicates we know nothing about this register's equivalence
2935      properties.
2936 
2937      An INSN_LIST with a NULL insn indicates this pseudo is already
2938      known to not have a valid equivalence.  */
2939   rtx_insn_list *init_insns;
2940 
2941   /* Loop depth is used to recognize equivalences which appear
2942      to be present within the same loop (or in an inner loop).  */
2943   short loop_depth;
2944   /* Nonzero if this had a preexisting REG_EQUIV note.  */
2945   unsigned char is_arg_equivalence : 1;
2946   /* Set when an attempt should be made to replace a register
2947      with the associated src_p entry.  */
2948   unsigned char replace : 1;
2949   /* Set if this register has no known equivalence.  */
2950   unsigned char no_equiv : 1;
2951 };
2952 
2953 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2954    structure for that register.  */
2955 static struct equivalence *reg_equiv;
2956 
2957 /* Used for communication between the following two functions: contains
2958    a MEM that we wish to ensure remains unchanged.  */
2959 static rtx equiv_mem;
2960 
2961 /* Set nonzero if EQUIV_MEM is modified.  */
2962 static int equiv_mem_modified;
2963 
2964 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2965    Called via note_stores.  */
2966 static void
2967 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2968 			       void *data ATTRIBUTE_UNUSED)
2969 {
2970   if ((REG_P (dest)
2971        && reg_overlap_mentioned_p (dest, equiv_mem))
2972       || (MEM_P (dest)
2973 	  && anti_dependence (equiv_mem, dest)))
2974     equiv_mem_modified = 1;
2975 }
2976 
2977 /* Verify that no store between START and the death of REG invalidates
2978    MEMREF.  MEMREF is invalidated by modifying a register used in MEMREF,
2979    by storing into an overlapping memory location, or with a non-const
2980    CALL_INSN.
2981 
2982    Return 1 if MEMREF remains valid.  */
2983 static int
2984 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2985 {
2986   rtx_insn *insn;
2987   rtx note;
2988 
2989   equiv_mem = memref;
2990   equiv_mem_modified = 0;
2991 
2992   /* If the memory reference has side effects or is volatile, it isn't a
2993      valid equivalence.  */
2994   if (side_effects_p (memref))
2995     return 0;
2996 
2997   for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2998     {
2999       if (! INSN_P (insn))
3000 	continue;
3001 
3002       if (find_reg_note (insn, REG_DEAD, reg))
3003 	return 1;
3004 
3005       /* This used to ignore readonly memory and const/pure calls.  The problem
3006 	 is the equivalent form may reference a pseudo which gets assigned a
3007 	 call clobbered hard reg.  When we later replace REG with its
3008 	 equivalent form, the value in the call-clobbered reg has been
3009 	 changed and all hell breaks loose.  */
3010       if (CALL_P (insn))
3011 	return 0;
3012 
3013       note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
3014 
3015       /* If a register mentioned in MEMREF is modified via an
3016 	 auto-increment, we lose the equivalence.  Do the same if one
3017 	 dies; although we could extend the life, it doesn't seem worth
3018 	 the trouble.  */
3019 
3020       for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3021 	if ((REG_NOTE_KIND (note) == REG_INC
3022 	     || REG_NOTE_KIND (note) == REG_DEAD)
3023 	    && REG_P (XEXP (note, 0))
3024 	    && reg_overlap_mentioned_p (XEXP (note, 0), memref))
3025 	  return 0;
3026     }
3027 
3028   return 0;
3029 }
3030 
3031 /* Returns zero if X is known to be invariant.  */
3032 static int
3033 equiv_init_varies_p (rtx x)
3034 {
3035   RTX_CODE code = GET_CODE (x);
3036   int i;
3037   const char *fmt;
3038 
3039   switch (code)
3040     {
3041     case MEM:
3042       return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3043 
3044     case CONST:
3045     CASE_CONST_ANY:
3046     case SYMBOL_REF:
3047     case LABEL_REF:
3048       return 0;
3049 
3050     case REG:
3051       return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3052 
3053     case ASM_OPERANDS:
3054       if (MEM_VOLATILE_P (x))
3055 	return 1;
3056 
3057       /* Fall through.  */
3058 
3059     default:
3060       break;
3061     }
3062 
3063   fmt = GET_RTX_FORMAT (code);
3064   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3065     if (fmt[i] == 'e')
3066       {
3067 	if (equiv_init_varies_p (XEXP (x, i)))
3068 	  return 1;
3069       }
3070     else if (fmt[i] == 'E')
3071       {
3072 	int j;
3073 	for (j = 0; j < XVECLEN (x, i); j++)
3074 	  if (equiv_init_varies_p (XVECEXP (x, i, j)))
3075 	    return 1;
3076       }
3077 
3078   return 0;
3079 }
3080 
3081 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3082    X is only movable if the registers it uses have equivalent initializations
3083    which appear to be within the same loop (or in an inner loop) and movable
3084    or if they are not candidates for local_alloc and don't vary.  */
3085 static int
3086 equiv_init_movable_p (rtx x, int regno)
3087 {
3088   int i, j;
3089   const char *fmt;
3090   enum rtx_code code = GET_CODE (x);
3091 
3092   switch (code)
3093     {
3094     case SET:
3095       return equiv_init_movable_p (SET_SRC (x), regno);
3096 
3097     case CC0:
3098     case CLOBBER:
3099       return 0;
3100 
3101     case PRE_INC:
3102     case PRE_DEC:
3103     case POST_INC:
3104     case POST_DEC:
3105     case PRE_MODIFY:
3106     case POST_MODIFY:
3107       return 0;
3108 
3109     case REG:
3110       return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3111 	       && reg_equiv[REGNO (x)].replace)
3112 	      || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3113 		  && ! rtx_varies_p (x, 0)));
3114 
3115     case UNSPEC_VOLATILE:
3116       return 0;
3117 
3118     case ASM_OPERANDS:
3119       if (MEM_VOLATILE_P (x))
3120 	return 0;
3121 
3122       /* Fall through.  */
3123 
3124     default:
3125       break;
3126     }
3127 
3128   fmt = GET_RTX_FORMAT (code);
3129   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3130     switch (fmt[i])
3131       {
3132       case 'e':
3133 	if (! equiv_init_movable_p (XEXP (x, i), regno))
3134 	  return 0;
3135 	break;
3136       case 'E':
3137 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3138 	  if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3139 	    return 0;
3140 	break;
3141       }
3142 
3143   return 1;
3144 }
3145 
3146 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
3147    true.  */
3148 static int
3149 contains_replace_regs (rtx x)
3150 {
3151   int i, j;
3152   const char *fmt;
3153   enum rtx_code code = GET_CODE (x);
3154 
3155   switch (code)
3156     {
3157     case CONST:
3158     case LABEL_REF:
3159     case SYMBOL_REF:
3160     CASE_CONST_ANY:
3161     case PC:
3162     case CC0:
3163     case HIGH:
3164       return 0;
3165 
3166     case REG:
3167       return reg_equiv[REGNO (x)].replace;
3168 
3169     default:
3170       break;
3171     }
3172 
3173   fmt = GET_RTX_FORMAT (code);
3174   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3175     switch (fmt[i])
3176       {
3177       case 'e':
3178 	if (contains_replace_regs (XEXP (x, i)))
3179 	  return 1;
3180 	break;
3181       case 'E':
3182 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3183 	  if (contains_replace_regs (XVECEXP (x, i, j)))
3184 	    return 1;
3185 	break;
3186       }
3187 
3188   return 0;
3189 }
3190 
3191 /* TRUE if X references a memory location that would be affected by a store
3192    to MEMREF.  */
3193 static int
3194 memref_referenced_p (rtx memref, rtx x)
3195 {
3196   int i, j;
3197   const char *fmt;
3198   enum rtx_code code = GET_CODE (x);
3199 
3200   switch (code)
3201     {
3202     case CONST:
3203     case LABEL_REF:
3204     case SYMBOL_REF:
3205     CASE_CONST_ANY:
3206     case PC:
3207     case CC0:
3208     case HIGH:
3209     case LO_SUM:
3210       return 0;
3211 
3212     case REG:
3213       return (reg_equiv[REGNO (x)].replacement
3214 	      && memref_referenced_p (memref,
3215 				      reg_equiv[REGNO (x)].replacement));
3216 
3217     case MEM:
3218       if (true_dependence (memref, VOIDmode, x))
3219 	return 1;
3220       break;
3221 
3222     case SET:
3223       /* If we are setting a MEM, it doesn't count (its address does), but any
3224 	 other SET_DEST that has a MEM in it is referencing the MEM.  */
3225       if (MEM_P (SET_DEST (x)))
3226 	{
3227 	  if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
3228 	    return 1;
3229 	}
3230       else if (memref_referenced_p (memref, SET_DEST (x)))
3231 	return 1;
3232 
3233       return memref_referenced_p (memref, SET_SRC (x));
3234 
3235     default:
3236       break;
3237     }
3238 
3239   fmt = GET_RTX_FORMAT (code);
3240   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3241     switch (fmt[i])
3242       {
3243       case 'e':
3244 	if (memref_referenced_p (memref, XEXP (x, i)))
3245 	  return 1;
3246 	break;
3247       case 'E':
3248 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3249 	  if (memref_referenced_p (memref, XVECEXP (x, i, j)))
3250 	    return 1;
3251 	break;
3252       }
3253 
3254   return 0;
3255 }
3256 
3257 /* TRUE if some insn in the range (START, END] references a memory location
3258    that would be affected by a store to MEMREF.  */
3259 static int
3260 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3261 {
3262   rtx_insn *insn;
3263 
3264   for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
3265        insn = NEXT_INSN (insn))
3266     {
3267       if (!NONDEBUG_INSN_P (insn))
3268 	continue;
3269 
3270       if (memref_referenced_p (memref, PATTERN (insn)))
3271 	return 1;
3272 
3273       /* Nonconst functions may access memory.  */
3274       if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3275 	return 1;
3276     }
3277 
3278   return 0;
3279 }
3280 
3281 /* Mark REG as having no known equivalence.
3282    Some instructions might have been processed before and furnished
3283    with REG_EQUIV notes for this register; these notes will have to be
3284    removed.
3285    STORE is the piece of RTL that does the non-constant / conflicting
3286    assignment - a SET, CLOBBER or REG_INC note.  It is currently not used,
3287    but needs to be there because this function is called from note_stores.  */
3288 static void
3289 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3290 	  void *data ATTRIBUTE_UNUSED)
3291 {
3292   int regno;
3293   rtx_insn_list *list;
3294 
3295   if (!REG_P (reg))
3296     return;
3297   regno = REGNO (reg);
3298   reg_equiv[regno].no_equiv = 1;
3299   list = reg_equiv[regno].init_insns;
3300   if (list && list->insn () == NULL)
3301     return;
3302   reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3303   reg_equiv[regno].replacement = NULL_RTX;
3304   /* This doesn't matter for equivalences made for argument registers, we
3305      should keep their initialization insns.  */
3306   if (reg_equiv[regno].is_arg_equivalence)
3307     return;
3308   ira_reg_equiv[regno].defined_p = false;
3309   ira_reg_equiv[regno].init_insns = NULL;
3310   for (; list; list = list->next ())
3311     {
3312       rtx_insn *insn = list->insn ();
3313       remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3314     }
3315 }
3316 
3317 /* Check whether the SUBREG is a paradoxical subreg and set the result
3318    in PDX_SUBREGS.  */
3319 
3320 static void
3321 set_paradoxical_subreg (rtx_insn *insn, bool *pdx_subregs)
3322 {
3323   subrtx_iterator::array_type array;
3324   FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3325     {
3326       const_rtx subreg = *iter;
3327       if (GET_CODE (subreg) == SUBREG)
3328 	{
3329 	  const_rtx reg = SUBREG_REG (subreg);
3330 	  if (REG_P (reg) && paradoxical_subreg_p (subreg))
3331 	    pdx_subregs[REGNO (reg)] = true;
3332 	}
3333     }
3334 }
3335 
3336 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3337    equivalent replacement.  */
3338 
3339 static rtx
3340 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3341 {
3342   if (REG_P (loc))
3343     {
3344       bitmap cleared_regs = (bitmap) data;
3345       if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3346 	return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3347 					NULL_RTX, adjust_cleared_regs, data);
3348     }
3349   return NULL_RTX;
3350 }
3351 
3352 /* Find registers that are equivalent to a single value throughout the
3353    compilation (either because they can be referenced in memory or are
3354    set once from a single constant).  Lower their priority for a
3355    register.
3356 
3357    If such a register is only referenced once, try substituting its
3358    value into the using insn.  If it succeeds, we can eliminate the
3359    register completely.
3360 
3361    Initialize init_insns in ira_reg_equiv array.  */
3362 static void
3363 update_equiv_regs (void)
3364 {
3365   rtx_insn *insn;
3366   basic_block bb;
3367   int loop_depth;
3368   bitmap cleared_regs;
3369   bool *pdx_subregs;
3370 
3371   /* Use pdx_subregs to show whether a reg is used in a paradoxical
3372      subreg.  */
3373   pdx_subregs = XCNEWVEC (bool, max_regno);
3374 
3375   reg_equiv = XCNEWVEC (struct equivalence, max_regno);
3376   grow_reg_equivs ();
3377 
3378   init_alias_analysis ();
3379 
3380   /* Scan insns and set pdx_subregs[regno] if the reg is used in a
3381      paradoxical subreg. Don't set such reg equivalent to a mem,
3382      because lra will not substitute such equiv memory in order to
3383      prevent access beyond allocated memory for paradoxical memory subreg.  */
3384   FOR_EACH_BB_FN (bb, cfun)
3385     FOR_BB_INSNS (bb, insn)
3386       if (NONDEBUG_INSN_P (insn))
3387 	set_paradoxical_subreg (insn, pdx_subregs);
3388 
3389   /* Scan the insns and find which registers have equivalences.  Do this
3390      in a separate scan of the insns because (due to -fcse-follow-jumps)
3391      a register can be set below its use.  */
3392   FOR_EACH_BB_FN (bb, cfun)
3393     {
3394       loop_depth = bb_loop_depth (bb);
3395 
3396       for (insn = BB_HEAD (bb);
3397 	   insn != NEXT_INSN (BB_END (bb));
3398 	   insn = NEXT_INSN (insn))
3399 	{
3400 	  rtx note;
3401 	  rtx set;
3402 	  rtx dest, src;
3403 	  int regno;
3404 
3405 	  if (! INSN_P (insn))
3406 	    continue;
3407 
3408 	  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3409 	    if (REG_NOTE_KIND (note) == REG_INC)
3410 	      no_equiv (XEXP (note, 0), note, NULL);
3411 
3412 	  set = single_set (insn);
3413 
3414 	  /* If this insn contains more (or less) than a single SET,
3415 	     only mark all destinations as having no known equivalence.  */
3416 	  if (set == NULL_RTX
3417 	      || side_effects_p (SET_SRC (set)))
3418 	    {
3419 	      note_stores (PATTERN (insn), no_equiv, NULL);
3420 	      continue;
3421 	    }
3422 	  else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3423 	    {
3424 	      int i;
3425 
3426 	      for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3427 		{
3428 		  rtx part = XVECEXP (PATTERN (insn), 0, i);
3429 		  if (part != set)
3430 		    note_stores (part, no_equiv, NULL);
3431 		}
3432 	    }
3433 
3434 	  dest = SET_DEST (set);
3435 	  src = SET_SRC (set);
3436 
3437 	  /* See if this is setting up the equivalence between an argument
3438 	     register and its stack slot.  */
3439 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3440 	  if (note)
3441 	    {
3442 	      gcc_assert (REG_P (dest));
3443 	      regno = REGNO (dest);
3444 
3445 	      /* Note that we don't want to clear init_insns in
3446 		 ira_reg_equiv even if there are multiple sets of this
3447 		 register.  */
3448 	      reg_equiv[regno].is_arg_equivalence = 1;
3449 
3450 	      /* The insn result can have equivalence memory although
3451 		 the equivalence is not set up by the insn.  We add
3452 		 this insn to init insns as it is a flag for now that
3453 		 regno has an equivalence.  We will remove the insn
3454 		 from init insn list later.  */
3455 	      if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3456 		ira_reg_equiv[regno].init_insns
3457 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3458 				       ira_reg_equiv[regno].init_insns);
3459 
3460 	      /* Continue normally in case this is a candidate for
3461 		 replacements.  */
3462 	    }
3463 
3464 	  if (!optimize)
3465 	    continue;
3466 
3467 	  /* We only handle the case of a pseudo register being set
3468 	     once, or always to the same value.  */
3469 	  /* ??? The mn10200 port breaks if we add equivalences for
3470 	     values that need an ADDRESS_REGS register and set them equivalent
3471 	     to a MEM of a pseudo.  The actual problem is in the over-conservative
3472 	     handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3473 	     calculate_needs, but we traditionally work around this problem
3474 	     here by rejecting equivalences when the destination is in a register
3475 	     that's likely spilled.  This is fragile, of course, since the
3476 	     preferred class of a pseudo depends on all instructions that set
3477 	     or use it.  */
3478 
3479 	  if (!REG_P (dest)
3480 	      || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3481 	      || (reg_equiv[regno].init_insns
3482 		  && reg_equiv[regno].init_insns->insn () == NULL)
3483 	      || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3484 		  && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3485 	    {
3486 	      /* This might be setting a SUBREG of a pseudo, a pseudo that is
3487 		 also set somewhere else to a constant.  */
3488 	      note_stores (set, no_equiv, NULL);
3489 	      continue;
3490 	    }
3491 
3492 	  /* Don't set reg (if pdx_subregs[regno] == true) equivalent to a mem.  */
3493 	  if (MEM_P (src) && pdx_subregs[regno])
3494 	    {
3495 	      note_stores (set, no_equiv, NULL);
3496 	      continue;
3497 	    }
3498 
3499 	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3500 
3501 	  /* cse sometimes generates function invariants, but doesn't put a
3502 	     REG_EQUAL note on the insn.  Since this note would be redundant,
3503 	     there's no point creating it earlier than here.  */
3504 	  if (! note && ! rtx_varies_p (src, 0))
3505 	    note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3506 
3507 	  /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3508 	     since it represents a function call.  */
3509 	  if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3510 	    note = NULL_RTX;
3511 
3512 	  if (DF_REG_DEF_COUNT (regno) != 1)
3513 	    {
3514 	      bool equal_p = true;
3515 	      rtx_insn_list *list;
3516 
3517 	      /* If we have already processed this pseudo and determined it
3518 		 can not have an equivalence, then honor that decision.  */
3519 	      if (reg_equiv[regno].no_equiv)
3520 		continue;
3521 
3522 	      if (! note
3523 		  || rtx_varies_p (XEXP (note, 0), 0)
3524 		  || (reg_equiv[regno].replacement
3525 		      && ! rtx_equal_p (XEXP (note, 0),
3526 					reg_equiv[regno].replacement)))
3527 		{
3528 		  no_equiv (dest, set, NULL);
3529 		  continue;
3530 		}
3531 
3532 	      list = reg_equiv[regno].init_insns;
3533 	      for (; list; list = list->next ())
3534 		{
3535 		  rtx note_tmp;
3536 		  rtx_insn *insn_tmp;
3537 
3538 		  insn_tmp = list->insn ();
3539 		  note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3540 		  gcc_assert (note_tmp);
3541 		  if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3542 		    {
3543 		      equal_p = false;
3544 		      break;
3545 		    }
3546 		}
3547 
3548 	      if (! equal_p)
3549 		{
3550 		  no_equiv (dest, set, NULL);
3551 		  continue;
3552 		}
3553 	    }
3554 
3555 	  /* Record this insn as initializing this register.  */
3556 	  reg_equiv[regno].init_insns
3557 	    = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3558 
3559 	  /* If this register is known to be equal to a constant, record that
3560 	     it is always equivalent to the constant.  */
3561 	  if (DF_REG_DEF_COUNT (regno) == 1
3562 	      && note && ! rtx_varies_p (XEXP (note, 0), 0))
3563 	    {
3564 	      rtx note_value = XEXP (note, 0);
3565 	      remove_note (insn, note);
3566 	      set_unique_reg_note (insn, REG_EQUIV, note_value);
3567 	    }
3568 
3569 	  /* If this insn introduces a "constant" register, decrease the priority
3570 	     of that register.  Record this insn if the register is only used once
3571 	     more and the equivalence value is the same as our source.
3572 
3573 	     The latter condition is checked for two reasons:  First, it is an
3574 	     indication that it may be more efficient to actually emit the insn
3575 	     as written (if no registers are available, reload will substitute
3576 	     the equivalence).  Secondly, it avoids problems with any registers
3577 	     dying in this insn whose death notes would be missed.
3578 
3579 	     If we don't have a REG_EQUIV note, see if this insn is loading
3580 	     a register used only in one basic block from a MEM.  If so, and the
3581 	     MEM remains unchanged for the life of the register, add a REG_EQUIV
3582 	     note.  */
3583 	  note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3584 
3585 	  if (note == NULL_RTX && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3586 	      && MEM_P (SET_SRC (set))
3587 	      && validate_equiv_mem (insn, dest, SET_SRC (set)))
3588 	    note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
3589 
3590 	  if (note)
3591 	    {
3592 	      int regno = REGNO (dest);
3593 	      rtx x = XEXP (note, 0);
3594 
3595 	      /* If we haven't done so, record for reload that this is an
3596 		 equivalencing insn.  */
3597 	      if (!reg_equiv[regno].is_arg_equivalence)
3598 		ira_reg_equiv[regno].init_insns
3599 		  = gen_rtx_INSN_LIST (VOIDmode, insn,
3600 				       ira_reg_equiv[regno].init_insns);
3601 
3602 	      reg_equiv[regno].replacement = x;
3603 	      reg_equiv[regno].src_p = &SET_SRC (set);
3604 	      reg_equiv[regno].loop_depth = (short) loop_depth;
3605 
3606 	      /* Don't mess with things live during setjmp.  */
3607 	      if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
3608 		{
3609 		  /* Note that the statement below does not affect the priority
3610 		     in local-alloc!  */
3611 		  REG_LIVE_LENGTH (regno) *= 2;
3612 
3613 		  /* If the register is referenced exactly twice, meaning it is
3614 		     set once and used once, indicate that the reference may be
3615 		     replaced by the equivalence we computed above.  Do this
3616 		     even if the register is only used in one block so that
3617 		     dependencies can be handled where the last register is
3618 		     used in a different block (i.e. HIGH / LO_SUM sequences)
3619 		     and to reduce the number of registers alive across
3620 		     calls.  */
3621 
3622 		  if (REG_N_REFS (regno) == 2
3623 		      && (rtx_equal_p (x, src)
3624 			  || ! equiv_init_varies_p (src))
3625 		      && NONJUMP_INSN_P (insn)
3626 		      && equiv_init_movable_p (PATTERN (insn), regno))
3627 		    reg_equiv[regno].replace = 1;
3628 		}
3629 	    }
3630 	}
3631     }
3632 
3633   if (!optimize)
3634     goto out;
3635 
3636   /* A second pass, to gather additional equivalences with memory.  This needs
3637      to be done after we know which registers we are going to replace.  */
3638 
3639   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3640     {
3641       rtx set, src, dest;
3642       unsigned regno;
3643 
3644       if (! INSN_P (insn))
3645 	continue;
3646 
3647       set = single_set (insn);
3648       if (! set)
3649 	continue;
3650 
3651       dest = SET_DEST (set);
3652       src = SET_SRC (set);
3653 
3654       /* If this sets a MEM to the contents of a REG that is only used
3655 	 in a single basic block, see if the register is always equivalent
3656 	 to that memory location and if moving the store from INSN to the
3657 	 insn that set REG is safe.  If so, put a REG_EQUIV note on the
3658 	 initializing insn.
3659 
3660 	 Don't add a REG_EQUIV note if the insn already has one.  The existing
3661 	 REG_EQUIV is likely more useful than the one we are adding.
3662 
3663 	 If one of the regs in the address has reg_equiv[REGNO].replace set,
3664 	 then we can't add this REG_EQUIV note.  The reg_equiv[REGNO].replace
3665 	 optimization may move the set of this register immediately before
3666 	 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
3667 	 the mention in the REG_EQUIV note would be to an uninitialized
3668 	 pseudo.  */
3669 
3670       if (MEM_P (dest) && REG_P (src)
3671 	  && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3672 	  && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3673 	  && DF_REG_DEF_COUNT (regno) == 1
3674 	  && reg_equiv[regno].init_insns != NULL
3675 	  && reg_equiv[regno].init_insns->insn () != NULL
3676 	  && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
3677 			      REG_EQUIV, NULL_RTX)
3678 	  && ! contains_replace_regs (XEXP (dest, 0))
3679 	  && ! pdx_subregs[regno])
3680 	{
3681 	  rtx_insn *init_insn =
3682 	    as_a <rtx_insn *> (XEXP (reg_equiv[regno].init_insns, 0));
3683 	  if (validate_equiv_mem (init_insn, src, dest)
3684 	      && ! memref_used_between_p (dest, init_insn, insn)
3685 	      /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3686 		 multiple sets.  */
3687 	      && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3688 	    {
3689 	      /* This insn makes the equivalence, not the one initializing
3690 		 the register.  */
3691 	      ira_reg_equiv[regno].init_insns
3692 		= gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3693 	      df_notes_rescan (init_insn);
3694 	    }
3695 	}
3696     }
3697 
3698   cleared_regs = BITMAP_ALLOC (NULL);
3699   /* Now scan all regs killed in an insn to see if any of them are
3700      registers only used that once.  If so, see if we can replace the
3701      reference with the equivalent form.  If we can, delete the
3702      initializing reference and this register will go away.  If we
3703      can't replace the reference, and the initializing reference is
3704      within the same loop (or in an inner loop), then move the register
3705      initialization just before the use, so that they are in the same
3706      basic block.  */
3707   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3708     {
3709       loop_depth = bb_loop_depth (bb);
3710       for (insn = BB_END (bb);
3711 	   insn != PREV_INSN (BB_HEAD (bb));
3712 	   insn = PREV_INSN (insn))
3713 	{
3714 	  rtx link;
3715 
3716 	  if (! INSN_P (insn))
3717 	    continue;
3718 
3719 	  /* Don't substitute into jumps.  indirect_jump_optimize does
3720 	     this for anything we are prepared to handle.  */
3721 	  if (JUMP_P (insn))
3722 	    continue;
3723 
3724 	  for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3725 	    {
3726 	      if (REG_NOTE_KIND (link) == REG_DEAD
3727 		  /* Make sure this insn still refers to the register.  */
3728 		  && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3729 		{
3730 		  int regno = REGNO (XEXP (link, 0));
3731 		  rtx equiv_insn;
3732 
3733 		  if (! reg_equiv[regno].replace
3734 		      || reg_equiv[regno].loop_depth < (short) loop_depth
3735 		      /* There is no sense to move insns if live range
3736 			 shrinkage or register pressure-sensitive
3737 			 scheduling were done because it will not
3738 			 improve allocation but worsen insn schedule
3739 			 with a big probability.  */
3740 		      || flag_live_range_shrinkage
3741 		      || (flag_sched_pressure && flag_schedule_insns))
3742 		    continue;
3743 
3744 		  /* reg_equiv[REGNO].replace gets set only when
3745 		     REG_N_REFS[REGNO] is 2, i.e. the register is set
3746 		     once and used once.  (If it were only set, but
3747 		     not used, flow would have deleted the setting
3748 		     insns.)  Hence there can only be one insn in
3749 		     reg_equiv[REGNO].init_insns.  */
3750 		  gcc_assert (reg_equiv[regno].init_insns
3751 			      && !XEXP (reg_equiv[regno].init_insns, 1));
3752 		  equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3753 
3754 		  /* We may not move instructions that can throw, since
3755 		     that changes basic block boundaries and we are not
3756 		     prepared to adjust the CFG to match.  */
3757 		  if (can_throw_internal (equiv_insn))
3758 		    continue;
3759 
3760 		  if (asm_noperands (PATTERN (equiv_insn)) < 0
3761 		      && validate_replace_rtx (regno_reg_rtx[regno],
3762 					       *(reg_equiv[regno].src_p), insn))
3763 		    {
3764 		      rtx equiv_link;
3765 		      rtx last_link;
3766 		      rtx note;
3767 
3768 		      /* Find the last note.  */
3769 		      for (last_link = link; XEXP (last_link, 1);
3770 			   last_link = XEXP (last_link, 1))
3771 			;
3772 
3773 		      /* Append the REG_DEAD notes from equiv_insn.  */
3774 		      equiv_link = REG_NOTES (equiv_insn);
3775 		      while (equiv_link)
3776 			{
3777 			  note = equiv_link;
3778 			  equiv_link = XEXP (equiv_link, 1);
3779 			  if (REG_NOTE_KIND (note) == REG_DEAD)
3780 			    {
3781 			      remove_note (equiv_insn, note);
3782 			      XEXP (last_link, 1) = note;
3783 			      XEXP (note, 1) = NULL_RTX;
3784 			      last_link = note;
3785 			    }
3786 			}
3787 
3788 		      remove_death (regno, insn);
3789 		      SET_REG_N_REFS (regno, 0);
3790 		      REG_FREQ (regno) = 0;
3791 		      delete_insn (equiv_insn);
3792 
3793 		      reg_equiv[regno].init_insns
3794 			= reg_equiv[regno].init_insns->next ();
3795 
3796 		      ira_reg_equiv[regno].init_insns = NULL;
3797 		      bitmap_set_bit (cleared_regs, regno);
3798 		    }
3799 		  /* Move the initialization of the register to just before
3800 		     INSN.  Update the flow information.  */
3801 		  else if (prev_nondebug_insn (insn) != equiv_insn)
3802 		    {
3803 		      rtx_insn *new_insn;
3804 
3805 		      new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3806 		      REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3807 		      REG_NOTES (equiv_insn) = 0;
3808 		      /* Rescan it to process the notes.  */
3809 		      df_insn_rescan (new_insn);
3810 
3811 		      /* Make sure this insn is recognized before
3812 			 reload begins, otherwise
3813 			 eliminate_regs_in_insn will die.  */
3814 		      INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3815 
3816 		      delete_insn (equiv_insn);
3817 
3818 		      XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3819 
3820 		      REG_BASIC_BLOCK (regno) = bb->index;
3821 		      REG_N_CALLS_CROSSED (regno) = 0;
3822 		      REG_FREQ_CALLS_CROSSED (regno) = 0;
3823 		      REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3824 		      REG_LIVE_LENGTH (regno) = 2;
3825 
3826 		      if (insn == BB_HEAD (bb))
3827 			BB_HEAD (bb) = PREV_INSN (insn);
3828 
3829 		      ira_reg_equiv[regno].init_insns
3830 			= gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3831 		      bitmap_set_bit (cleared_regs, regno);
3832 		    }
3833 		}
3834 	    }
3835 	}
3836     }
3837 
3838   if (!bitmap_empty_p (cleared_regs))
3839     {
3840       FOR_EACH_BB_FN (bb, cfun)
3841 	{
3842 	  bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3843 	  bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3844 	  if (! df_live)
3845 	    continue;
3846 	  bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3847 	  bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3848 	}
3849 
3850       /* Last pass - adjust debug insns referencing cleared regs.  */
3851       if (MAY_HAVE_DEBUG_INSNS)
3852 	for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3853 	  if (DEBUG_INSN_P (insn))
3854 	    {
3855 	      rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3856 	      INSN_VAR_LOCATION_LOC (insn)
3857 		= simplify_replace_fn_rtx (old_loc, NULL_RTX,
3858 					   adjust_cleared_regs,
3859 					   (void *) cleared_regs);
3860 	      if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3861 		df_insn_rescan (insn);
3862 	    }
3863     }
3864 
3865   BITMAP_FREE (cleared_regs);
3866 
3867   out:
3868   /* Clean up.  */
3869 
3870   end_alias_analysis ();
3871   free (reg_equiv);
3872   free (pdx_subregs);
3873 }
3874 
3875 /* A pass over indirect jumps, converting simple cases to direct jumps.
3876    Combine does this optimization too, but only within a basic block.  */
3877 static void
3878 indirect_jump_optimize (void)
3879 {
3880   basic_block bb;
3881   bool rebuild_p = false;
3882 
3883   FOR_EACH_BB_REVERSE_FN (bb, cfun)
3884     {
3885       rtx_insn *insn = BB_END (bb);
3886       if (!JUMP_P (insn)
3887 	  || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3888 	continue;
3889 
3890       rtx x = pc_set (insn);
3891       if (!x || !REG_P (SET_SRC (x)))
3892 	continue;
3893 
3894       int regno = REGNO (SET_SRC (x));
3895       if (DF_REG_DEF_COUNT (regno) == 1)
3896 	{
3897 	  df_ref def = DF_REG_DEF_CHAIN (regno);
3898 	  if (!DF_REF_IS_ARTIFICIAL (def))
3899 	    {
3900 	      rtx_insn *def_insn = DF_REF_INSN (def);
3901 	      rtx lab = NULL_RTX;
3902 	      rtx set = single_set (def_insn);
3903 	      if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3904 		lab = SET_SRC (set);
3905 	      else
3906 		{
3907 		  rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3908 		  if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3909 		    lab = XEXP (eqnote, 0);
3910 		}
3911 	      if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3912 		rebuild_p = true;
3913 	    }
3914 	}
3915     }
3916 
3917   if (rebuild_p)
3918     {
3919       timevar_push (TV_JUMP);
3920       rebuild_jump_labels (get_insns ());
3921       if (purge_all_dead_edges ())
3922 	delete_unreachable_blocks ();
3923       timevar_pop (TV_JUMP);
3924     }
3925 }
3926 
3927 /* Set up fields memory, constant, and invariant from init_insns in
3928    the structures of array ira_reg_equiv.  */
3929 static void
3930 setup_reg_equiv (void)
3931 {
3932   int i;
3933   rtx_insn_list *elem, *prev_elem, *next_elem;
3934   rtx_insn *insn;
3935   rtx set, x;
3936 
3937   for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3938     for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3939 	 elem;
3940 	 prev_elem = elem, elem = next_elem)
3941       {
3942 	next_elem = elem->next ();
3943 	insn = elem->insn ();
3944 	set = single_set (insn);
3945 
3946 	/* Init insns can set up equivalence when the reg is a destination or
3947 	   a source (in this case the destination is memory).  */
3948 	if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3949 	  {
3950 	    if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3951 	      {
3952 		x = XEXP (x, 0);
3953 		if (REG_P (SET_DEST (set))
3954 		    && REGNO (SET_DEST (set)) == (unsigned int) i
3955 		    && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3956 		  {
3957 		    /* This insn reporting the equivalence but
3958 		       actually not setting it.  Remove it from the
3959 		       list.  */
3960 		    if (prev_elem == NULL)
3961 		      ira_reg_equiv[i].init_insns = next_elem;
3962 		    else
3963 		      XEXP (prev_elem, 1) = next_elem;
3964 		    elem = prev_elem;
3965 		  }
3966 	      }
3967 	    else if (REG_P (SET_DEST (set))
3968 		     && REGNO (SET_DEST (set)) == (unsigned int) i)
3969 	      x = SET_SRC (set);
3970 	    else
3971 	      {
3972 		gcc_assert (REG_P (SET_SRC (set))
3973 			    && REGNO (SET_SRC (set)) == (unsigned int) i);
3974 		x = SET_DEST (set);
3975 	      }
3976 	    if (! function_invariant_p (x)
3977 		|| ! flag_pic
3978 		/* A function invariant is often CONSTANT_P but may
3979 		   include a register.  We promise to only pass
3980 		   CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P.  */
3981 		|| (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
3982 	      {
3983 		/* It can happen that a REG_EQUIV note contains a MEM
3984 		   that is not a legitimate memory operand.  As later
3985 		   stages of reload assume that all addresses found in
3986 		   the lra_regno_equiv_* arrays were originally
3987 		   legitimate, we ignore such REG_EQUIV notes.  */
3988 		if (memory_operand (x, VOIDmode))
3989 		  {
3990 		    ira_reg_equiv[i].defined_p = true;
3991 		    ira_reg_equiv[i].memory = x;
3992 		    continue;
3993 		  }
3994 		else if (function_invariant_p (x))
3995 		  {
3996 		    machine_mode mode;
3997 
3998 		    mode = GET_MODE (SET_DEST (set));
3999 		    if (GET_CODE (x) == PLUS
4000 			|| x == frame_pointer_rtx || x == arg_pointer_rtx)
4001 		      /* This is PLUS of frame pointer and a constant,
4002 			 or fp, or argp.  */
4003 		      ira_reg_equiv[i].invariant = x;
4004 		    else if (targetm.legitimate_constant_p (mode, x))
4005 		      ira_reg_equiv[i].constant = x;
4006 		    else
4007 		      {
4008 			ira_reg_equiv[i].memory = force_const_mem (mode, x);
4009 			if (ira_reg_equiv[i].memory == NULL_RTX)
4010 			  {
4011 			    ira_reg_equiv[i].defined_p = false;
4012 			    ira_reg_equiv[i].init_insns = NULL;
4013 			    break;
4014 			  }
4015 		      }
4016 		    ira_reg_equiv[i].defined_p = true;
4017 		    continue;
4018 		  }
4019 	      }
4020 	  }
4021 	ira_reg_equiv[i].defined_p = false;
4022 	ira_reg_equiv[i].init_insns = NULL;
4023 	break;
4024       }
4025 }
4026 
4027 
4028 
4029 /* Print chain C to FILE.  */
4030 static void
4031 print_insn_chain (FILE *file, struct insn_chain *c)
4032 {
4033   fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4034   bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4035   bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4036 }
4037 
4038 
4039 /* Print all reload_insn_chains to FILE.  */
4040 static void
4041 print_insn_chains (FILE *file)
4042 {
4043   struct insn_chain *c;
4044   for (c = reload_insn_chain; c ; c = c->next)
4045     print_insn_chain (file, c);
4046 }
4047 
4048 /* Return true if pseudo REGNO should be added to set live_throughout
4049    or dead_or_set of the insn chains for reload consideration.  */
4050 static bool
4051 pseudo_for_reload_consideration_p (int regno)
4052 {
4053   /* Consider spilled pseudos too for IRA because they still have a
4054      chance to get hard-registers in the reload when IRA is used.  */
4055   return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4056 }
4057 
4058 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
4059    REG to the number of nregs, and INIT_VALUE to get the
4060    initialization.  ALLOCNUM need not be the regno of REG.  */
4061 static void
4062 init_live_subregs (bool init_value, sbitmap *live_subregs,
4063 		   bitmap live_subregs_used, int allocnum, rtx reg)
4064 {
4065   unsigned int regno = REGNO (SUBREG_REG (reg));
4066   int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
4067 
4068   gcc_assert (size > 0);
4069 
4070   /* Been there, done that.  */
4071   if (bitmap_bit_p (live_subregs_used, allocnum))
4072     return;
4073 
4074   /* Create a new one.  */
4075   if (live_subregs[allocnum] == NULL)
4076     live_subregs[allocnum] = sbitmap_alloc (size);
4077 
4078   /* If the entire reg was live before blasting into subregs, we need
4079      to init all of the subregs to ones else init to 0.  */
4080   if (init_value)
4081     bitmap_ones (live_subregs[allocnum]);
4082   else
4083     bitmap_clear (live_subregs[allocnum]);
4084 
4085   bitmap_set_bit (live_subregs_used, allocnum);
4086 }
4087 
4088 /* Walk the insns of the current function and build reload_insn_chain,
4089    and record register life information.  */
4090 static void
4091 build_insn_chain (void)
4092 {
4093   unsigned int i;
4094   struct insn_chain **p = &reload_insn_chain;
4095   basic_block bb;
4096   struct insn_chain *c = NULL;
4097   struct insn_chain *next = NULL;
4098   bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
4099   bitmap elim_regset = BITMAP_ALLOC (NULL);
4100   /* live_subregs is a vector used to keep accurate information about
4101      which hardregs are live in multiword pseudos.  live_subregs and
4102      live_subregs_used are indexed by pseudo number.  The live_subreg
4103      entry for a particular pseudo is only used if the corresponding
4104      element is non zero in live_subregs_used.  The sbitmap size of
4105      live_subreg[allocno] is number of bytes that the pseudo can
4106      occupy.  */
4107   sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4108   bitmap live_subregs_used = BITMAP_ALLOC (NULL);
4109 
4110   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4111     if (TEST_HARD_REG_BIT (eliminable_regset, i))
4112       bitmap_set_bit (elim_regset, i);
4113   FOR_EACH_BB_REVERSE_FN (bb, cfun)
4114     {
4115       bitmap_iterator bi;
4116       rtx_insn *insn;
4117 
4118       CLEAR_REG_SET (live_relevant_regs);
4119       bitmap_clear (live_subregs_used);
4120 
4121       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4122 	{
4123 	  if (i >= FIRST_PSEUDO_REGISTER)
4124 	    break;
4125 	  bitmap_set_bit (live_relevant_regs, i);
4126 	}
4127 
4128       EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4129 				FIRST_PSEUDO_REGISTER, i, bi)
4130 	{
4131 	  if (pseudo_for_reload_consideration_p (i))
4132 	    bitmap_set_bit (live_relevant_regs, i);
4133 	}
4134 
4135       FOR_BB_INSNS_REVERSE (bb, insn)
4136 	{
4137 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4138 	    {
4139 	      struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4140 	      df_ref def, use;
4141 
4142 	      c = new_insn_chain ();
4143 	      c->next = next;
4144 	      next = c;
4145 	      *p = c;
4146 	      p = &c->prev;
4147 
4148 	      c->insn = insn;
4149 	      c->block = bb->index;
4150 
4151 	      if (NONDEBUG_INSN_P (insn))
4152 		FOR_EACH_INSN_INFO_DEF (def, insn_info)
4153 		  {
4154 		    unsigned int regno = DF_REF_REGNO (def);
4155 
4156 		    /* Ignore may clobbers because these are generated
4157 		       from calls. However, every other kind of def is
4158 		       added to dead_or_set.  */
4159 		    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4160 		      {
4161 			if (regno < FIRST_PSEUDO_REGISTER)
4162 			  {
4163 			    if (!fixed_regs[regno])
4164 			      bitmap_set_bit (&c->dead_or_set, regno);
4165 			  }
4166 			else if (pseudo_for_reload_consideration_p (regno))
4167 			  bitmap_set_bit (&c->dead_or_set, regno);
4168 		      }
4169 
4170 		    if ((regno < FIRST_PSEUDO_REGISTER
4171 			 || reg_renumber[regno] >= 0
4172 			 || ira_conflicts_p)
4173 			&& (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4174 		      {
4175 			rtx reg = DF_REF_REG (def);
4176 
4177 			/* We can model subregs, but not if they are
4178 			   wrapped in ZERO_EXTRACTS.  */
4179 			if (GET_CODE (reg) == SUBREG
4180 			    && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
4181 			  {
4182 			    unsigned int start = SUBREG_BYTE (reg);
4183 			    unsigned int last = start
4184 			      + GET_MODE_SIZE (GET_MODE (reg));
4185 
4186 			    init_live_subregs
4187 			      (bitmap_bit_p (live_relevant_regs, regno),
4188 			       live_subregs, live_subregs_used, regno, reg);
4189 
4190 			    if (!DF_REF_FLAGS_IS_SET
4191 				(def, DF_REF_STRICT_LOW_PART))
4192 			      {
4193 				/* Expand the range to cover entire words.
4194 				   Bytes added here are "don't care".  */
4195 				start
4196 				  = start / UNITS_PER_WORD * UNITS_PER_WORD;
4197 				last = ((last + UNITS_PER_WORD - 1)
4198 					/ UNITS_PER_WORD * UNITS_PER_WORD);
4199 			      }
4200 
4201 			    /* Ignore the paradoxical bits.  */
4202 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4203 			      last = SBITMAP_SIZE (live_subregs[regno]);
4204 
4205 			    while (start < last)
4206 			      {
4207 				bitmap_clear_bit (live_subregs[regno], start);
4208 				start++;
4209 			      }
4210 
4211 			    if (bitmap_empty_p (live_subregs[regno]))
4212 			      {
4213 				bitmap_clear_bit (live_subregs_used, regno);
4214 				bitmap_clear_bit (live_relevant_regs, regno);
4215 			      }
4216 			    else
4217 			      /* Set live_relevant_regs here because
4218 				 that bit has to be true to get us to
4219 				 look at the live_subregs fields.  */
4220 			      bitmap_set_bit (live_relevant_regs, regno);
4221 			  }
4222 			else
4223 			  {
4224 			    /* DF_REF_PARTIAL is generated for
4225 			       subregs, STRICT_LOW_PART, and
4226 			       ZERO_EXTRACT.  We handle the subreg
4227 			       case above so here we have to keep from
4228 			       modeling the def as a killing def.  */
4229 			    if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4230 			      {
4231 				bitmap_clear_bit (live_subregs_used, regno);
4232 				bitmap_clear_bit (live_relevant_regs, regno);
4233 			      }
4234 			  }
4235 		      }
4236 		  }
4237 
4238 	      bitmap_and_compl_into (live_relevant_regs, elim_regset);
4239 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4240 
4241 	      if (NONDEBUG_INSN_P (insn))
4242 		FOR_EACH_INSN_INFO_USE (use, insn_info)
4243 		  {
4244 		    unsigned int regno = DF_REF_REGNO (use);
4245 		    rtx reg = DF_REF_REG (use);
4246 
4247 		    /* DF_REF_READ_WRITE on a use means that this use
4248 		       is fabricated from a def that is a partial set
4249 		       to a multiword reg.  Here, we only model the
4250 		       subreg case that is not wrapped in ZERO_EXTRACT
4251 		       precisely so we do not need to look at the
4252 		       fabricated use.  */
4253 		    if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4254 			&& !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4255 			&& DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4256 		      continue;
4257 
4258 		    /* Add the last use of each var to dead_or_set.  */
4259 		    if (!bitmap_bit_p (live_relevant_regs, regno))
4260 		      {
4261 			if (regno < FIRST_PSEUDO_REGISTER)
4262 			  {
4263 			    if (!fixed_regs[regno])
4264 			      bitmap_set_bit (&c->dead_or_set, regno);
4265 			  }
4266 			else if (pseudo_for_reload_consideration_p (regno))
4267 			  bitmap_set_bit (&c->dead_or_set, regno);
4268 		      }
4269 
4270 		    if (regno < FIRST_PSEUDO_REGISTER
4271 			|| pseudo_for_reload_consideration_p (regno))
4272 		      {
4273 			if (GET_CODE (reg) == SUBREG
4274 			    && !DF_REF_FLAGS_IS_SET (use,
4275 						     DF_REF_SIGN_EXTRACT
4276 						     | DF_REF_ZERO_EXTRACT))
4277 			  {
4278 			    unsigned int start = SUBREG_BYTE (reg);
4279 			    unsigned int last = start
4280 			      + GET_MODE_SIZE (GET_MODE (reg));
4281 
4282 			    init_live_subregs
4283 			      (bitmap_bit_p (live_relevant_regs, regno),
4284 			       live_subregs, live_subregs_used, regno, reg);
4285 
4286 			    /* Ignore the paradoxical bits.  */
4287 			    if (last > SBITMAP_SIZE (live_subregs[regno]))
4288 			      last = SBITMAP_SIZE (live_subregs[regno]);
4289 
4290 			    while (start < last)
4291 			      {
4292 				bitmap_set_bit (live_subregs[regno], start);
4293 				start++;
4294 			      }
4295 			  }
4296 			else
4297 			  /* Resetting the live_subregs_used is
4298 			     effectively saying do not use the subregs
4299 			     because we are reading the whole
4300 			     pseudo.  */
4301 			  bitmap_clear_bit (live_subregs_used, regno);
4302 			bitmap_set_bit (live_relevant_regs, regno);
4303 		      }
4304 		  }
4305 	    }
4306 	}
4307 
4308       /* FIXME!! The following code is a disaster.  Reload needs to see the
4309 	 labels and jump tables that are just hanging out in between
4310 	 the basic blocks.  See pr33676.  */
4311       insn = BB_HEAD (bb);
4312 
4313       /* Skip over the barriers and cruft.  */
4314       while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4315 		      || BLOCK_FOR_INSN (insn) == bb))
4316 	insn = PREV_INSN (insn);
4317 
4318       /* While we add anything except barriers and notes, the focus is
4319 	 to get the labels and jump tables into the
4320 	 reload_insn_chain.  */
4321       while (insn)
4322 	{
4323 	  if (!NOTE_P (insn) && !BARRIER_P (insn))
4324 	    {
4325 	      if (BLOCK_FOR_INSN (insn))
4326 		break;
4327 
4328 	      c = new_insn_chain ();
4329 	      c->next = next;
4330 	      next = c;
4331 	      *p = c;
4332 	      p = &c->prev;
4333 
4334 	      /* The block makes no sense here, but it is what the old
4335 		 code did.  */
4336 	      c->block = bb->index;
4337 	      c->insn = insn;
4338 	      bitmap_copy (&c->live_throughout, live_relevant_regs);
4339 	    }
4340 	  insn = PREV_INSN (insn);
4341 	}
4342     }
4343 
4344   reload_insn_chain = c;
4345   *p = NULL;
4346 
4347   for (i = 0; i < (unsigned int) max_regno; i++)
4348     if (live_subregs[i] != NULL)
4349       sbitmap_free (live_subregs[i]);
4350   free (live_subregs);
4351   BITMAP_FREE (live_subregs_used);
4352   BITMAP_FREE (live_relevant_regs);
4353   BITMAP_FREE (elim_regset);
4354 
4355   if (dump_file)
4356     print_insn_chains (dump_file);
4357 }
4358 
4359 /* Examine the rtx found in *LOC, which is read or written to as determined
4360    by TYPE.  Return false if we find a reason why an insn containing this
4361    rtx should not be moved (such as accesses to non-constant memory), true
4362    otherwise.  */
4363 static bool
4364 rtx_moveable_p (rtx *loc, enum op_type type)
4365 {
4366   const char *fmt;
4367   rtx x = *loc;
4368   enum rtx_code code = GET_CODE (x);
4369   int i, j;
4370 
4371   code = GET_CODE (x);
4372   switch (code)
4373     {
4374     case CONST:
4375     CASE_CONST_ANY:
4376     case SYMBOL_REF:
4377     case LABEL_REF:
4378       return true;
4379 
4380     case PC:
4381       return type == OP_IN;
4382 
4383     case CC0:
4384       return false;
4385 
4386     case REG:
4387       if (x == frame_pointer_rtx)
4388 	return true;
4389       if (HARD_REGISTER_P (x))
4390 	return false;
4391 
4392       return true;
4393 
4394     case MEM:
4395       if (type == OP_IN && MEM_READONLY_P (x))
4396 	return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4397       return false;
4398 
4399     case SET:
4400       return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4401 	      && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4402 
4403     case STRICT_LOW_PART:
4404       return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4405 
4406     case ZERO_EXTRACT:
4407     case SIGN_EXTRACT:
4408       return (rtx_moveable_p (&XEXP (x, 0), type)
4409 	      && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4410 	      && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4411 
4412     case CLOBBER:
4413       return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4414 
4415     case UNSPEC_VOLATILE:
4416       /* It is a bad idea to consider insns with with such rtl
4417 	 as moveable ones.  The insn scheduler also considers them as barrier
4418 	 for a reason.  */
4419       return false;
4420 
4421     default:
4422       break;
4423     }
4424 
4425   fmt = GET_RTX_FORMAT (code);
4426   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4427     {
4428       if (fmt[i] == 'e')
4429 	{
4430 	  if (!rtx_moveable_p (&XEXP (x, i), type))
4431 	    return false;
4432 	}
4433       else if (fmt[i] == 'E')
4434 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4435 	  {
4436 	    if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4437 	      return false;
4438 	  }
4439     }
4440   return true;
4441 }
4442 
4443 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4444    to give dominance relationships between two insns I1 and I2.  */
4445 static bool
4446 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4447 {
4448   basic_block bb1 = BLOCK_FOR_INSN (i1);
4449   basic_block bb2 = BLOCK_FOR_INSN (i2);
4450 
4451   if (bb1 == bb2)
4452     return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4453   return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4454 }
4455 
4456 /* Record the range of register numbers added by find_moveable_pseudos.  */
4457 int first_moveable_pseudo, last_moveable_pseudo;
4458 
4459 /* These two vectors hold data for every register added by
4460    find_movable_pseudos, with index 0 holding data for the
4461    first_moveable_pseudo.  */
4462 /* The original home register.  */
4463 static vec<rtx> pseudo_replaced_reg;
4464 
4465 /* Look for instances where we have an instruction that is known to increase
4466    register pressure, and whose result is not used immediately.  If it is
4467    possible to move the instruction downwards to just before its first use,
4468    split its lifetime into two ranges.  We create a new pseudo to compute the
4469    value, and emit a move instruction just before the first use.  If, after
4470    register allocation, the new pseudo remains unallocated, the function
4471    move_unallocated_pseudos then deletes the move instruction and places
4472    the computation just before the first use.
4473 
4474    Such a move is safe and profitable if all the input registers remain live
4475    and unchanged between the original computation and its first use.  In such
4476    a situation, the computation is known to increase register pressure, and
4477    moving it is known to at least not worsen it.
4478 
4479    We restrict moves to only those cases where a register remains unallocated,
4480    in order to avoid interfering too much with the instruction schedule.  As
4481    an exception, we may move insns which only modify their input register
4482    (typically induction variables), as this increases the freedom for our
4483    intended transformation, and does not limit the second instruction
4484    scheduler pass.  */
4485 
4486 static void
4487 find_moveable_pseudos (void)
4488 {
4489   unsigned i;
4490   int max_regs = max_reg_num ();
4491   int max_uid = get_max_uid ();
4492   basic_block bb;
4493   int *uid_luid = XNEWVEC (int, max_uid);
4494   rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4495   /* A set of registers which are live but not modified throughout a block.  */
4496   bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4497 					 last_basic_block_for_fn (cfun));
4498   /* A set of registers which only exist in a given basic block.  */
4499   bitmap_head *bb_local = XNEWVEC (bitmap_head,
4500 				   last_basic_block_for_fn (cfun));
4501   /* A set of registers which are set once, in an instruction that can be
4502      moved freely downwards, but are otherwise transparent to a block.  */
4503   bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4504 					       last_basic_block_for_fn (cfun));
4505   bitmap_head live, used, set, interesting, unusable_as_input;
4506   bitmap_iterator bi;
4507   bitmap_initialize (&interesting, 0);
4508 
4509   first_moveable_pseudo = max_regs;
4510   pseudo_replaced_reg.release ();
4511   pseudo_replaced_reg.safe_grow_cleared (max_regs);
4512 
4513   df_analyze ();
4514   calculate_dominance_info (CDI_DOMINATORS);
4515 
4516   i = 0;
4517   bitmap_initialize (&live, 0);
4518   bitmap_initialize (&used, 0);
4519   bitmap_initialize (&set, 0);
4520   bitmap_initialize (&unusable_as_input, 0);
4521   FOR_EACH_BB_FN (bb, cfun)
4522     {
4523       rtx_insn *insn;
4524       bitmap transp = bb_transp_live + bb->index;
4525       bitmap moveable = bb_moveable_reg_sets + bb->index;
4526       bitmap local = bb_local + bb->index;
4527 
4528       bitmap_initialize (local, 0);
4529       bitmap_initialize (transp, 0);
4530       bitmap_initialize (moveable, 0);
4531       bitmap_copy (&live, df_get_live_out (bb));
4532       bitmap_and_into (&live, df_get_live_in (bb));
4533       bitmap_copy (transp, &live);
4534       bitmap_clear (moveable);
4535       bitmap_clear (&live);
4536       bitmap_clear (&used);
4537       bitmap_clear (&set);
4538       FOR_BB_INSNS (bb, insn)
4539 	if (NONDEBUG_INSN_P (insn))
4540 	  {
4541 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4542 	    df_ref def, use;
4543 
4544 	    uid_luid[INSN_UID (insn)] = i++;
4545 
4546 	    def = df_single_def (insn_info);
4547 	    use = df_single_use (insn_info);
4548 	    if (use
4549 		&& def
4550 		&& DF_REF_REGNO (use) == DF_REF_REGNO (def)
4551 		&& !bitmap_bit_p (&set, DF_REF_REGNO (use))
4552 		&& rtx_moveable_p (&PATTERN (insn), OP_IN))
4553 	      {
4554 		unsigned regno = DF_REF_REGNO (use);
4555 		bitmap_set_bit (moveable, regno);
4556 		bitmap_set_bit (&set, regno);
4557 		bitmap_set_bit (&used, regno);
4558 		bitmap_clear_bit (transp, regno);
4559 		continue;
4560 	      }
4561 	    FOR_EACH_INSN_INFO_USE (use, insn_info)
4562 	      {
4563 		unsigned regno = DF_REF_REGNO (use);
4564 		bitmap_set_bit (&used, regno);
4565 		if (bitmap_clear_bit (moveable, regno))
4566 		  bitmap_clear_bit (transp, regno);
4567 	      }
4568 
4569 	    FOR_EACH_INSN_INFO_DEF (def, insn_info)
4570 	      {
4571 		unsigned regno = DF_REF_REGNO (def);
4572 		bitmap_set_bit (&set, regno);
4573 		bitmap_clear_bit (transp, regno);
4574 		bitmap_clear_bit (moveable, regno);
4575 	      }
4576 	  }
4577     }
4578 
4579   bitmap_clear (&live);
4580   bitmap_clear (&used);
4581   bitmap_clear (&set);
4582 
4583   FOR_EACH_BB_FN (bb, cfun)
4584     {
4585       bitmap local = bb_local + bb->index;
4586       rtx_insn *insn;
4587 
4588       FOR_BB_INSNS (bb, insn)
4589 	if (NONDEBUG_INSN_P (insn))
4590 	  {
4591 	    df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4592 	    rtx_insn *def_insn;
4593 	    rtx closest_use, note;
4594 	    df_ref def, use;
4595 	    unsigned regno;
4596 	    bool all_dominated, all_local;
4597 	    machine_mode mode;
4598 
4599 	    def = df_single_def (insn_info);
4600 	    /* There must be exactly one def in this insn.  */
4601 	    if (!def || !single_set (insn))
4602 	      continue;
4603 	    /* This must be the only definition of the reg.  We also limit
4604 	       which modes we deal with so that we can assume we can generate
4605 	       move instructions.  */
4606 	    regno = DF_REF_REGNO (def);
4607 	    mode = GET_MODE (DF_REF_REG (def));
4608 	    if (DF_REG_DEF_COUNT (regno) != 1
4609 		|| !DF_REF_INSN_INFO (def)
4610 		|| HARD_REGISTER_NUM_P (regno)
4611 		|| DF_REG_EQ_USE_COUNT (regno) > 0
4612 		|| (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4613 	      continue;
4614 	    def_insn = DF_REF_INSN (def);
4615 
4616 	    for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4617 	      if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4618 		break;
4619 
4620 	    if (note)
4621 	      {
4622 		if (dump_file)
4623 		  fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4624 			   regno);
4625 		bitmap_set_bit (&unusable_as_input, regno);
4626 		continue;
4627 	      }
4628 
4629 	    use = DF_REG_USE_CHAIN (regno);
4630 	    all_dominated = true;
4631 	    all_local = true;
4632 	    closest_use = NULL_RTX;
4633 	    for (; use; use = DF_REF_NEXT_REG (use))
4634 	      {
4635 		rtx_insn *insn;
4636 		if (!DF_REF_INSN_INFO (use))
4637 		  {
4638 		    all_dominated = false;
4639 		    all_local = false;
4640 		    break;
4641 		  }
4642 		insn = DF_REF_INSN (use);
4643 		if (DEBUG_INSN_P (insn))
4644 		  continue;
4645 		if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4646 		  all_local = false;
4647 		if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4648 		  all_dominated = false;
4649 		if (closest_use != insn && closest_use != const0_rtx)
4650 		  {
4651 		    if (closest_use == NULL_RTX)
4652 		      closest_use = insn;
4653 		    else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4654 		      closest_use = insn;
4655 		    else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4656 		      closest_use = const0_rtx;
4657 		  }
4658 	      }
4659 	    if (!all_dominated)
4660 	      {
4661 		if (dump_file)
4662 		  fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4663 			   regno);
4664 		continue;
4665 	      }
4666 	    if (all_local)
4667 	      bitmap_set_bit (local, regno);
4668 	    if (closest_use == const0_rtx || closest_use == NULL
4669 		|| next_nonnote_nondebug_insn (def_insn) == closest_use)
4670 	      {
4671 		if (dump_file)
4672 		  fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4673 			   closest_use == const0_rtx || closest_use == NULL
4674 			   ? " (no unique first use)" : "");
4675 		continue;
4676 	      }
4677 #ifdef HAVE_cc0
4678 	    if (reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4679 	      {
4680 		if (dump_file)
4681 		  fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4682 			   regno);
4683 		continue;
4684 	      }
4685 #endif
4686 	    bitmap_set_bit (&interesting, regno);
4687 	    /* If we get here, we know closest_use is a non-NULL insn
4688 	       (as opposed to const_0_rtx).  */
4689 	    closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4690 
4691 	    if (dump_file && (all_local || all_dominated))
4692 	      {
4693 		fprintf (dump_file, "Reg %u:", regno);
4694 		if (all_local)
4695 		  fprintf (dump_file, " local to bb %d", bb->index);
4696 		if (all_dominated)
4697 		  fprintf (dump_file, " def dominates all uses");
4698 		if (closest_use != const0_rtx)
4699 		  fprintf (dump_file, " has unique first use");
4700 		fputs ("\n", dump_file);
4701 	      }
4702 	  }
4703     }
4704 
4705   EXECUTE_IF_SET_IN_BITMAP (&interesting, 0, i, bi)
4706     {
4707       df_ref def = DF_REG_DEF_CHAIN (i);
4708       rtx_insn *def_insn = DF_REF_INSN (def);
4709       basic_block def_block = BLOCK_FOR_INSN (def_insn);
4710       bitmap def_bb_local = bb_local + def_block->index;
4711       bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4712       bitmap def_bb_transp = bb_transp_live + def_block->index;
4713       bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4714       rtx_insn *use_insn = closest_uses[i];
4715       df_ref use;
4716       bool all_ok = true;
4717       bool all_transp = true;
4718 
4719       if (!REG_P (DF_REF_REG (def)))
4720 	continue;
4721 
4722       if (!local_to_bb_p)
4723 	{
4724 	  if (dump_file)
4725 	    fprintf (dump_file, "Reg %u not local to one basic block\n",
4726 		     i);
4727 	  continue;
4728 	}
4729       if (reg_equiv_init (i) != NULL_RTX)
4730 	{
4731 	  if (dump_file)
4732 	    fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4733 		     i);
4734 	  continue;
4735 	}
4736       if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4737 	{
4738 	  if (dump_file)
4739 	    fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4740 		     INSN_UID (def_insn), i);
4741 	  continue;
4742 	}
4743       if (dump_file)
4744 	fprintf (dump_file, "Examining insn %d, def for %d\n",
4745 		 INSN_UID (def_insn), i);
4746       FOR_EACH_INSN_USE (use, def_insn)
4747 	{
4748 	  unsigned regno = DF_REF_REGNO (use);
4749 	  if (bitmap_bit_p (&unusable_as_input, regno))
4750 	    {
4751 	      all_ok = false;
4752 	      if (dump_file)
4753 		fprintf (dump_file, "  found unusable input reg %u.\n", regno);
4754 	      break;
4755 	    }
4756 	  if (!bitmap_bit_p (def_bb_transp, regno))
4757 	    {
4758 	      if (bitmap_bit_p (def_bb_moveable, regno)
4759 		  && !control_flow_insn_p (use_insn)
4760 #ifdef HAVE_cc0
4761 		  && !sets_cc0_p (use_insn)
4762 #endif
4763 		  )
4764 		{
4765 		  if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4766 		    {
4767 		      rtx_insn *x = NEXT_INSN (def_insn);
4768 		      while (!modified_in_p (DF_REF_REG (use), x))
4769 			{
4770 			  gcc_assert (x != use_insn);
4771 			  x = NEXT_INSN (x);
4772 			}
4773 		      if (dump_file)
4774 			fprintf (dump_file, "  input reg %u modified but insn %d moveable\n",
4775 				 regno, INSN_UID (x));
4776 		      emit_insn_after (PATTERN (x), use_insn);
4777 		      set_insn_deleted (x);
4778 		    }
4779 		  else
4780 		    {
4781 		      if (dump_file)
4782 			fprintf (dump_file, "  input reg %u modified between def and use\n",
4783 				 regno);
4784 		      all_transp = false;
4785 		    }
4786 		}
4787 	      else
4788 		all_transp = false;
4789 	    }
4790 	}
4791       if (!all_ok)
4792 	continue;
4793       if (!dbg_cnt (ira_move))
4794 	break;
4795       if (dump_file)
4796 	fprintf (dump_file, "  all ok%s\n", all_transp ? " and transp" : "");
4797 
4798       if (all_transp)
4799 	{
4800 	  rtx def_reg = DF_REF_REG (def);
4801 	  rtx newreg = ira_create_new_reg (def_reg);
4802 	  if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4803 	    {
4804 	      unsigned nregno = REGNO (newreg);
4805 	      emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4806 	      nregno -= max_regs;
4807 	      pseudo_replaced_reg[nregno] = def_reg;
4808 	    }
4809 	}
4810     }
4811 
4812   FOR_EACH_BB_FN (bb, cfun)
4813     {
4814       bitmap_clear (bb_local + bb->index);
4815       bitmap_clear (bb_transp_live + bb->index);
4816       bitmap_clear (bb_moveable_reg_sets + bb->index);
4817     }
4818   bitmap_clear (&interesting);
4819   bitmap_clear (&unusable_as_input);
4820   free (uid_luid);
4821   free (closest_uses);
4822   free (bb_local);
4823   free (bb_transp_live);
4824   free (bb_moveable_reg_sets);
4825 
4826   last_moveable_pseudo = max_reg_num ();
4827 
4828   fix_reg_equiv_init ();
4829   expand_reg_info ();
4830   regstat_free_n_sets_and_refs ();
4831   regstat_free_ri ();
4832   regstat_init_n_sets_and_refs ();
4833   regstat_compute_ri ();
4834   free_dominance_info (CDI_DOMINATORS);
4835 }
4836 
4837 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4838    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4839    the destination.  Otherwise return NULL.  */
4840 
4841 static rtx
4842 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4843 {
4844   rtx src = SET_SRC (set);
4845   rtx dest = SET_DEST (set);
4846   if (!REG_P (src) || !HARD_REGISTER_P (src)
4847       || !REG_P (dest) || HARD_REGISTER_P (dest)
4848       || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4849     return NULL;
4850   return dest;
4851 }
4852 
4853 /* If insn is interesting for parameter range-splitting shrink-wrapping
4854    preparation, i.e. it is a single set from a hard register to a pseudo, which
4855    is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4856    parallel statement with only one such statement, return the destination.
4857    Otherwise return NULL.  */
4858 
4859 static rtx
4860 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4861 {
4862   if (!INSN_P (insn))
4863     return NULL;
4864   rtx pat = PATTERN (insn);
4865   if (GET_CODE (pat) == SET)
4866     return interesting_dest_for_shprep_1 (pat, call_dom);
4867 
4868   if (GET_CODE (pat) != PARALLEL)
4869     return NULL;
4870   rtx ret = NULL;
4871   for (int i = 0; i < XVECLEN (pat, 0); i++)
4872     {
4873       rtx sub = XVECEXP (pat, 0, i);
4874       if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4875 	continue;
4876       if (GET_CODE (sub) != SET
4877 	  || side_effects_p (sub))
4878 	return NULL;
4879       rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4880       if (dest && ret)
4881 	return NULL;
4882       if (dest)
4883 	ret = dest;
4884     }
4885   return ret;
4886 }
4887 
4888 /* Split live ranges of pseudos that are loaded from hard registers in the
4889    first BB in a BB that dominates all non-sibling call if such a BB can be
4890    found and is not in a loop.  Return true if the function has made any
4891    changes.  */
4892 
4893 static bool
4894 split_live_ranges_for_shrink_wrap (void)
4895 {
4896   basic_block bb, call_dom = NULL;
4897   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4898   rtx_insn *insn, *last_interesting_insn = NULL;
4899   bitmap_head need_new, reachable;
4900   vec<basic_block> queue;
4901 
4902   if (!SHRINK_WRAPPING_ENABLED)
4903     return false;
4904 
4905   bitmap_initialize (&need_new, 0);
4906   bitmap_initialize (&reachable, 0);
4907   queue.create (n_basic_blocks_for_fn (cfun));
4908 
4909   FOR_EACH_BB_FN (bb, cfun)
4910     FOR_BB_INSNS (bb, insn)
4911       if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4912 	{
4913 	  if (bb == first)
4914 	    {
4915 	      bitmap_clear (&need_new);
4916 	      bitmap_clear (&reachable);
4917 	      queue.release ();
4918 	      return false;
4919 	    }
4920 
4921 	  bitmap_set_bit (&need_new, bb->index);
4922 	  bitmap_set_bit (&reachable, bb->index);
4923 	  queue.quick_push (bb);
4924 	  break;
4925 	}
4926 
4927   if (queue.is_empty ())
4928     {
4929       bitmap_clear (&need_new);
4930       bitmap_clear (&reachable);
4931       queue.release ();
4932       return false;
4933     }
4934 
4935   while (!queue.is_empty ())
4936     {
4937       edge e;
4938       edge_iterator ei;
4939 
4940       bb = queue.pop ();
4941       FOR_EACH_EDGE (e, ei, bb->succs)
4942 	if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4943 	    && bitmap_set_bit (&reachable, e->dest->index))
4944 	  queue.quick_push (e->dest);
4945     }
4946   queue.release ();
4947 
4948   FOR_BB_INSNS (first, insn)
4949     {
4950       rtx dest = interesting_dest_for_shprep (insn, NULL);
4951       if (!dest)
4952 	continue;
4953 
4954       if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4955 	{
4956 	  bitmap_clear (&need_new);
4957 	  bitmap_clear (&reachable);
4958 	  return false;
4959 	}
4960 
4961       for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4962 	   use;
4963 	   use = DF_REF_NEXT_REG (use))
4964 	{
4965 	  int ubbi = DF_REF_BB (use)->index;
4966 	  if (bitmap_bit_p (&reachable, ubbi))
4967 	    bitmap_set_bit (&need_new, ubbi);
4968 	}
4969       last_interesting_insn = insn;
4970     }
4971 
4972   bitmap_clear (&reachable);
4973   if (!last_interesting_insn)
4974     {
4975       bitmap_clear (&need_new);
4976       return false;
4977     }
4978 
4979   call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, &need_new);
4980   bitmap_clear (&need_new);
4981   if (call_dom == first)
4982     return false;
4983 
4984   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4985   while (bb_loop_depth (call_dom) > 0)
4986     call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
4987   loop_optimizer_finalize ();
4988 
4989   if (call_dom == first)
4990     return false;
4991 
4992   calculate_dominance_info (CDI_POST_DOMINATORS);
4993   if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
4994     {
4995       free_dominance_info (CDI_POST_DOMINATORS);
4996       return false;
4997     }
4998   free_dominance_info (CDI_POST_DOMINATORS);
4999 
5000   if (dump_file)
5001     fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5002 	     call_dom->index);
5003 
5004   bool ret = false;
5005   FOR_BB_INSNS (first, insn)
5006     {
5007       rtx dest = interesting_dest_for_shprep (insn, call_dom);
5008       if (!dest || dest == pic_offset_table_rtx)
5009 	continue;
5010 
5011       rtx newreg = NULL_RTX;
5012       df_ref use, next;
5013       for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5014 	{
5015 	  rtx_insn *uin = DF_REF_INSN (use);
5016 	  next = DF_REF_NEXT_REG (use);
5017 
5018 	  basic_block ubb = BLOCK_FOR_INSN (uin);
5019 	  if (ubb == call_dom
5020 	      || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5021 	    {
5022 	      if (!newreg)
5023 		newreg = ira_create_new_reg (dest);
5024 	      validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5025 	    }
5026 	}
5027 
5028       if (newreg)
5029 	{
5030 	  rtx new_move = gen_move_insn (newreg, dest);
5031 	  emit_insn_after (new_move, bb_note (call_dom));
5032 	  if (dump_file)
5033 	    {
5034 	      fprintf (dump_file, "Split live-range of register ");
5035 	      print_rtl_single (dump_file, dest);
5036 	    }
5037 	  ret = true;
5038 	}
5039 
5040       if (insn == last_interesting_insn)
5041 	break;
5042     }
5043   apply_change_group ();
5044   return ret;
5045 }
5046 
5047 /* Perform the second half of the transformation started in
5048    find_moveable_pseudos.  We look for instances where the newly introduced
5049    pseudo remains unallocated, and remove it by moving the definition to
5050    just before its use, replacing the move instruction generated by
5051    find_moveable_pseudos.  */
5052 static void
5053 move_unallocated_pseudos (void)
5054 {
5055   int i;
5056   for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5057     if (reg_renumber[i] < 0)
5058       {
5059 	int idx = i - first_moveable_pseudo;
5060 	rtx other_reg = pseudo_replaced_reg[idx];
5061 	rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5062 	/* The use must follow all definitions of OTHER_REG, so we can
5063 	   insert the new definition immediately after any of them.  */
5064 	df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5065 	rtx_insn *move_insn = DF_REF_INSN (other_def);
5066 	rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5067 	rtx set;
5068 	int success;
5069 
5070 	if (dump_file)
5071 	  fprintf (dump_file, "moving def of %d (insn %d now) ",
5072 		   REGNO (other_reg), INSN_UID (def_insn));
5073 
5074 	delete_insn (move_insn);
5075 	while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5076 	  delete_insn (DF_REF_INSN (other_def));
5077 	delete_insn (def_insn);
5078 
5079 	set = single_set (newinsn);
5080 	success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5081 	gcc_assert (success);
5082 	if (dump_file)
5083 	  fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5084 		   INSN_UID (newinsn), i);
5085 	SET_REG_N_REFS (i, 0);
5086       }
5087 }
5088 
5089 /* If the backend knows where to allocate pseudos for hard
5090    register initial values, register these allocations now.  */
5091 static void
5092 allocate_initial_values (void)
5093 {
5094   if (targetm.allocate_initial_value)
5095     {
5096       rtx hreg, preg, x;
5097       int i, regno;
5098 
5099       for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5100 	{
5101 	  if (! initial_value_entry (i, &hreg, &preg))
5102 	    break;
5103 
5104 	  x = targetm.allocate_initial_value (hreg);
5105 	  regno = REGNO (preg);
5106 	  if (x && REG_N_SETS (regno) <= 1)
5107 	    {
5108 	      if (MEM_P (x))
5109 		reg_equiv_memory_loc (regno) = x;
5110 	      else
5111 		{
5112 		  basic_block bb;
5113 		  int new_regno;
5114 
5115 		  gcc_assert (REG_P (x));
5116 		  new_regno = REGNO (x);
5117 		  reg_renumber[regno] = new_regno;
5118 		  /* Poke the regno right into regno_reg_rtx so that even
5119 		     fixed regs are accepted.  */
5120 		  SET_REGNO (preg, new_regno);
5121 		  /* Update global register liveness information.  */
5122 		  FOR_EACH_BB_FN (bb, cfun)
5123 		    {
5124 		      if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5125 			SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5126 		      if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5127 			SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5128 		    }
5129 		}
5130 	    }
5131 	}
5132 
5133       gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5134 						  &hreg, &preg));
5135     }
5136 }
5137 
5138 
5139 /* True when we use LRA instead of reload pass for the current
5140    function.  */
5141 bool ira_use_lra_p;
5142 
5143 /* True if we have allocno conflicts.  It is false for non-optimized
5144    mode or when the conflict table is too big.  */
5145 bool ira_conflicts_p;
5146 
5147 /* Saved between IRA and reload.  */
5148 static int saved_flag_ira_share_spill_slots;
5149 
5150 /* This is the main entry of IRA.  */
5151 static void
5152 ira (FILE *f)
5153 {
5154   bool loops_p;
5155   int ira_max_point_before_emit;
5156   bool saved_flag_caller_saves = flag_caller_saves;
5157   enum ira_region saved_flag_ira_region = flag_ira_region;
5158 
5159   /* Perform target specific PIC register initialization.  */
5160   targetm.init_pic_reg ();
5161 
5162   ira_conflicts_p = optimize > 0;
5163 
5164   ira_use_lra_p = targetm.lra_p ();
5165   /* If there are too many pseudos and/or basic blocks (e.g. 10K
5166      pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5167      use simplified and faster algorithms in LRA.  */
5168   lra_simple_p
5169     = (ira_use_lra_p
5170        && max_reg_num () >= (1 << 26) / last_basic_block_for_fn (cfun));
5171   if (lra_simple_p)
5172     {
5173       /* It permits to skip live range splitting in LRA.  */
5174       flag_caller_saves = false;
5175       /* There is no sense to do regional allocation when we use
5176 	 simplified LRA.  */
5177       flag_ira_region = IRA_REGION_ONE;
5178       ira_conflicts_p = false;
5179     }
5180 
5181 #ifndef IRA_NO_OBSTACK
5182   gcc_obstack_init (&ira_obstack);
5183 #endif
5184   bitmap_obstack_initialize (&ira_bitmap_obstack);
5185 
5186   /* LRA uses its own infrastructure to handle caller save registers.  */
5187   if (flag_caller_saves && !ira_use_lra_p)
5188     init_caller_save ();
5189 
5190   if (flag_ira_verbose < 10)
5191     {
5192       internal_flag_ira_verbose = flag_ira_verbose;
5193       ira_dump_file = f;
5194     }
5195   else
5196     {
5197       internal_flag_ira_verbose = flag_ira_verbose - 10;
5198       ira_dump_file = stderr;
5199     }
5200 
5201   setup_prohibited_mode_move_regs ();
5202   decrease_live_ranges_number ();
5203   df_note_add_problem ();
5204 
5205   /* DF_LIVE can't be used in the register allocator, too many other
5206      parts of the compiler depend on using the "classic" liveness
5207      interpretation of the DF_LR problem.  See PR38711.
5208      Remove the problem, so that we don't spend time updating it in
5209      any of the df_analyze() calls during IRA/LRA.  */
5210   if (optimize > 1)
5211     df_remove_problem (df_live);
5212   gcc_checking_assert (df_live == NULL);
5213 
5214 #ifdef ENABLE_CHECKING
5215   df->changeable_flags |= DF_VERIFY_SCHEDULED;
5216 #endif
5217   df_analyze ();
5218 
5219   init_reg_equiv ();
5220   if (ira_conflicts_p)
5221     {
5222       calculate_dominance_info (CDI_DOMINATORS);
5223 
5224       if (split_live_ranges_for_shrink_wrap ())
5225 	df_analyze ();
5226 
5227       free_dominance_info (CDI_DOMINATORS);
5228     }
5229 
5230   df_clear_flags (DF_NO_INSN_RESCAN);
5231 
5232   indirect_jump_optimize ();
5233   if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5234     df_analyze ();
5235 
5236   regstat_init_n_sets_and_refs ();
5237   regstat_compute_ri ();
5238 
5239   /* If we are not optimizing, then this is the only place before
5240      register allocation where dataflow is done.  And that is needed
5241      to generate these warnings.  */
5242   if (warn_clobbered)
5243     generate_setjmp_warnings ();
5244 
5245   /* Determine if the current function is a leaf before running IRA
5246      since this can impact optimizations done by the prologue and
5247      epilogue thus changing register elimination offsets.  */
5248   crtl->is_leaf = leaf_function_p ();
5249 
5250   if (resize_reg_info () && flag_ira_loop_pressure)
5251     ira_set_pseudo_classes (true, ira_dump_file);
5252 
5253   update_equiv_regs ();
5254   setup_reg_equiv ();
5255   setup_reg_equiv_init ();
5256 
5257   allocated_reg_info_size = max_reg_num ();
5258 
5259   /* It is not worth to do such improvement when we use a simple
5260      allocation because of -O0 usage or because the function is too
5261      big.  */
5262   if (ira_conflicts_p)
5263     find_moveable_pseudos ();
5264 
5265   max_regno_before_ira = max_reg_num ();
5266   ira_setup_eliminable_regset ();
5267 
5268   ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5269   ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5270   ira_move_loops_num = ira_additional_jumps_num = 0;
5271 
5272   ira_assert (current_loops == NULL);
5273   if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5274     loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5275 
5276   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5277     fprintf (ira_dump_file, "Building IRA IR\n");
5278   loops_p = ira_build ();
5279 
5280   ira_assert (ira_conflicts_p || !loops_p);
5281 
5282   saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5283   if (too_high_register_pressure_p () || cfun->calls_setjmp)
5284     /* It is just wasting compiler's time to pack spilled pseudos into
5285        stack slots in this case -- prohibit it.  We also do this if
5286        there is setjmp call because a variable not modified between
5287        setjmp and longjmp the compiler is required to preserve its
5288        value and sharing slots does not guarantee it.  */
5289     flag_ira_share_spill_slots = FALSE;
5290 
5291   ira_color ();
5292 
5293   ira_max_point_before_emit = ira_max_point;
5294 
5295   ira_initiate_emit_data ();
5296 
5297   ira_emit (loops_p);
5298 
5299   max_regno = max_reg_num ();
5300   if (ira_conflicts_p)
5301     {
5302       if (! loops_p)
5303 	{
5304 	  if (! ira_use_lra_p)
5305 	    ira_initiate_assign ();
5306 	}
5307       else
5308 	{
5309 	  expand_reg_info ();
5310 
5311 	  if (ira_use_lra_p)
5312 	    {
5313 	      ira_allocno_t a;
5314 	      ira_allocno_iterator ai;
5315 
5316 	      FOR_EACH_ALLOCNO (a, ai)
5317                 {
5318                   int old_regno = ALLOCNO_REGNO (a);
5319                   int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5320 
5321                   ALLOCNO_REGNO (a) = new_regno;
5322 
5323                   if (old_regno != new_regno)
5324                     setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5325                                        reg_alternate_class (old_regno),
5326                                        reg_allocno_class (old_regno));
5327                 }
5328 
5329 	    }
5330 	  else
5331 	    {
5332 	      if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5333 		fprintf (ira_dump_file, "Flattening IR\n");
5334 	      ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5335 	    }
5336 	  /* New insns were generated: add notes and recalculate live
5337 	     info.  */
5338 	  df_analyze ();
5339 
5340 	  /* ??? Rebuild the loop tree, but why?  Does the loop tree
5341 	     change if new insns were generated?  Can that be handled
5342 	     by updating the loop tree incrementally?  */
5343 	  loop_optimizer_finalize ();
5344 	  free_dominance_info (CDI_DOMINATORS);
5345 	  loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5346 			       | LOOPS_HAVE_RECORDED_EXITS);
5347 
5348 	  if (! ira_use_lra_p)
5349 	    {
5350 	      setup_allocno_assignment_flags ();
5351 	      ira_initiate_assign ();
5352 	      ira_reassign_conflict_allocnos (max_regno);
5353 	    }
5354 	}
5355     }
5356 
5357   ira_finish_emit_data ();
5358 
5359   setup_reg_renumber ();
5360 
5361   calculate_allocation_cost ();
5362 
5363 #ifdef ENABLE_IRA_CHECKING
5364   if (ira_conflicts_p)
5365     check_allocation ();
5366 #endif
5367 
5368   if (max_regno != max_regno_before_ira)
5369     {
5370       regstat_free_n_sets_and_refs ();
5371       regstat_free_ri ();
5372       regstat_init_n_sets_and_refs ();
5373       regstat_compute_ri ();
5374     }
5375 
5376   overall_cost_before = ira_overall_cost;
5377   if (! ira_conflicts_p)
5378     grow_reg_equivs ();
5379   else
5380     {
5381       fix_reg_equiv_init ();
5382 
5383 #ifdef ENABLE_IRA_CHECKING
5384       print_redundant_copies ();
5385 #endif
5386       if (! ira_use_lra_p)
5387 	{
5388 	  ira_spilled_reg_stack_slots_num = 0;
5389 	  ira_spilled_reg_stack_slots
5390 	    = ((struct ira_spilled_reg_stack_slot *)
5391 	       ira_allocate (max_regno
5392 			     * sizeof (struct ira_spilled_reg_stack_slot)));
5393 	  memset (ira_spilled_reg_stack_slots, 0,
5394 		  max_regno * sizeof (struct ira_spilled_reg_stack_slot));
5395 	}
5396     }
5397   allocate_initial_values ();
5398 
5399   /* See comment for find_moveable_pseudos call.  */
5400   if (ira_conflicts_p)
5401     move_unallocated_pseudos ();
5402 
5403   /* Restore original values.  */
5404   if (lra_simple_p)
5405     {
5406       flag_caller_saves = saved_flag_caller_saves;
5407       flag_ira_region = saved_flag_ira_region;
5408     }
5409 }
5410 
5411 static void
5412 do_reload (void)
5413 {
5414   basic_block bb;
5415   bool need_dce;
5416   unsigned pic_offset_table_regno = INVALID_REGNUM;
5417 
5418   if (flag_ira_verbose < 10)
5419     ira_dump_file = dump_file;
5420 
5421   /* If pic_offset_table_rtx is a pseudo register, then keep it so
5422      after reload to avoid possible wrong usages of hard reg assigned
5423      to it.  */
5424   if (pic_offset_table_rtx
5425       && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5426     pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5427 
5428   timevar_push (TV_RELOAD);
5429   if (ira_use_lra_p)
5430     {
5431       if (current_loops != NULL)
5432 	{
5433 	  loop_optimizer_finalize ();
5434 	  free_dominance_info (CDI_DOMINATORS);
5435 	}
5436       FOR_ALL_BB_FN (bb, cfun)
5437 	bb->loop_father = NULL;
5438       current_loops = NULL;
5439 
5440       ira_destroy ();
5441 
5442       lra (ira_dump_file);
5443       /* ???!!! Move it before lra () when we use ira_reg_equiv in
5444 	 LRA.  */
5445       vec_free (reg_equivs);
5446       reg_equivs = NULL;
5447       need_dce = false;
5448     }
5449   else
5450     {
5451       df_set_flags (DF_NO_INSN_RESCAN);
5452       build_insn_chain ();
5453 
5454       need_dce = reload (get_insns (), ira_conflicts_p);
5455 
5456     }
5457 
5458   timevar_pop (TV_RELOAD);
5459 
5460   timevar_push (TV_IRA);
5461 
5462   if (ira_conflicts_p && ! ira_use_lra_p)
5463     {
5464       ira_free (ira_spilled_reg_stack_slots);
5465       ira_finish_assign ();
5466     }
5467 
5468   if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5469       && overall_cost_before != ira_overall_cost)
5470     fprintf (ira_dump_file, "+++Overall after reload %"PRId64 "\n",
5471 	     ira_overall_cost);
5472 
5473   flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5474 
5475   if (! ira_use_lra_p)
5476     {
5477       ira_destroy ();
5478       if (current_loops != NULL)
5479 	{
5480 	  loop_optimizer_finalize ();
5481 	  free_dominance_info (CDI_DOMINATORS);
5482 	}
5483       FOR_ALL_BB_FN (bb, cfun)
5484 	bb->loop_father = NULL;
5485       current_loops = NULL;
5486 
5487       regstat_free_ri ();
5488       regstat_free_n_sets_and_refs ();
5489     }
5490 
5491   if (optimize)
5492     cleanup_cfg (CLEANUP_EXPENSIVE);
5493 
5494   finish_reg_equiv ();
5495 
5496   bitmap_obstack_release (&ira_bitmap_obstack);
5497 #ifndef IRA_NO_OBSTACK
5498   obstack_free (&ira_obstack, NULL);
5499 #endif
5500 
5501   /* The code after the reload has changed so much that at this point
5502      we might as well just rescan everything.  Note that
5503      df_rescan_all_insns is not going to help here because it does not
5504      touch the artificial uses and defs.  */
5505   df_finish_pass (true);
5506   df_scan_alloc (NULL);
5507   df_scan_blocks ();
5508 
5509   if (optimize > 1)
5510     {
5511       df_live_add_problem ();
5512       df_live_set_all_dirty ();
5513     }
5514 
5515   if (optimize)
5516     df_analyze ();
5517 
5518   if (need_dce && optimize)
5519     run_fast_dce ();
5520 
5521   /* Diagnose uses of the hard frame pointer when it is used as a global
5522      register.  Often we can get away with letting the user appropriate
5523      the frame pointer, but we should let them know when code generation
5524      makes that impossible.  */
5525   if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5526     {
5527       tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5528       error_at (DECL_SOURCE_LOCATION (current_function_decl),
5529                 "frame pointer required, but reserved");
5530       inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5531     }
5532 
5533   if (pic_offset_table_regno != INVALID_REGNUM)
5534     pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5535 
5536   timevar_pop (TV_IRA);
5537 }
5538 
5539 /* Run the integrated register allocator.  */
5540 
5541 namespace {
5542 
5543 const pass_data pass_data_ira =
5544 {
5545   RTL_PASS, /* type */
5546   "ira", /* name */
5547   OPTGROUP_NONE, /* optinfo_flags */
5548   TV_IRA, /* tv_id */
5549   0, /* properties_required */
5550   0, /* properties_provided */
5551   0, /* properties_destroyed */
5552   0, /* todo_flags_start */
5553   TODO_do_not_ggc_collect, /* todo_flags_finish */
5554 };
5555 
5556 class pass_ira : public rtl_opt_pass
5557 {
5558 public:
5559   pass_ira (gcc::context *ctxt)
5560     : rtl_opt_pass (pass_data_ira, ctxt)
5561   {}
5562 
5563   /* opt_pass methods: */
5564   virtual bool gate (function *)
5565     {
5566       return !targetm.no_register_allocation;
5567     }
5568   virtual unsigned int execute (function *)
5569     {
5570       ira (dump_file);
5571       return 0;
5572     }
5573 
5574 }; // class pass_ira
5575 
5576 } // anon namespace
5577 
5578 rtl_opt_pass *
5579 make_pass_ira (gcc::context *ctxt)
5580 {
5581   return new pass_ira (ctxt);
5582 }
5583 
5584 namespace {
5585 
5586 const pass_data pass_data_reload =
5587 {
5588   RTL_PASS, /* type */
5589   "reload", /* name */
5590   OPTGROUP_NONE, /* optinfo_flags */
5591   TV_RELOAD, /* tv_id */
5592   0, /* properties_required */
5593   0, /* properties_provided */
5594   0, /* properties_destroyed */
5595   0, /* todo_flags_start */
5596   0, /* todo_flags_finish */
5597 };
5598 
5599 class pass_reload : public rtl_opt_pass
5600 {
5601 public:
5602   pass_reload (gcc::context *ctxt)
5603     : rtl_opt_pass (pass_data_reload, ctxt)
5604   {}
5605 
5606   /* opt_pass methods: */
5607   virtual bool gate (function *)
5608     {
5609       return !targetm.no_register_allocation;
5610     }
5611   virtual unsigned int execute (function *)
5612     {
5613       do_reload ();
5614       return 0;
5615     }
5616 
5617 }; // class pass_reload
5618 
5619 } // anon namespace
5620 
5621 rtl_opt_pass *
5622 make_pass_reload (gcc::context *ctxt)
5623 {
5624   return new pass_reload (ctxt);
5625 }
5626