1 /* Integrated Register Allocator (IRA) intercommunication header file. 2 Copyright (C) 2006-2020 Free Software Foundation, Inc. 3 Contributed by Vladimir Makarov <vmakarov@redhat.com>. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #ifndef GCC_IRA_INT_H 22 #define GCC_IRA_INT_H 23 24 #include "recog.h" 25 #include "function-abi.h" 26 27 /* To provide consistency in naming, all IRA external variables, 28 functions, common typedefs start with prefix ira_. */ 29 30 #if CHECKING_P 31 #define ENABLE_IRA_CHECKING 32 #endif 33 34 #ifdef ENABLE_IRA_CHECKING 35 #define ira_assert(c) gcc_assert (c) 36 #else 37 /* Always define and include C, so that warnings for empty body in an 38 'if' statement and unused variable do not occur. */ 39 #define ira_assert(c) ((void)(0 && (c))) 40 #endif 41 42 /* Compute register frequency from edge frequency FREQ. It is 43 analogous to REG_FREQ_FROM_BB. When optimizing for size, or 44 profile driven feedback is available and the function is never 45 executed, frequency is always equivalent. Otherwise rescale the 46 edge frequency. */ 47 #define REG_FREQ_FROM_EDGE_FREQ(freq) \ 48 (optimize_function_for_size_p (cfun) \ 49 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \ 50 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1) 51 52 /* A modified value of flag `-fira-verbose' used internally. */ 53 extern int internal_flag_ira_verbose; 54 55 /* Dump file of the allocator if it is not NULL. */ 56 extern FILE *ira_dump_file; 57 58 /* Typedefs for pointers to allocno live range, allocno, and copy of 59 allocnos. */ 60 typedef struct live_range *live_range_t; 61 typedef struct ira_allocno *ira_allocno_t; 62 typedef struct ira_allocno_pref *ira_pref_t; 63 typedef struct ira_allocno_copy *ira_copy_t; 64 typedef struct ira_object *ira_object_t; 65 66 /* Definition of vector of allocnos and copies. */ 67 68 /* Typedef for pointer to the subsequent structure. */ 69 typedef struct ira_loop_tree_node *ira_loop_tree_node_t; 70 71 typedef unsigned short move_table[N_REG_CLASSES]; 72 73 /* In general case, IRA is a regional allocator. The regions are 74 nested and form a tree. Currently regions are natural loops. The 75 following structure describes loop tree node (representing basic 76 block or loop). We need such tree because the loop tree from 77 cfgloop.h is not convenient for the optimization: basic blocks are 78 not a part of the tree from cfgloop.h. We also use the nodes for 79 storing additional information about basic blocks/loops for the 80 register allocation purposes. */ 81 struct ira_loop_tree_node 82 { 83 /* The node represents basic block if children == NULL. */ 84 basic_block bb; /* NULL for loop. */ 85 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */ 86 class loop *loop; 87 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent. 88 SUBLOOP_NEXT is always NULL for BBs. */ 89 ira_loop_tree_node_t subloop_next, next; 90 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside 91 the node. They are NULL for BBs. */ 92 ira_loop_tree_node_t subloops, children; 93 /* The node immediately containing given node. */ 94 ira_loop_tree_node_t parent; 95 96 /* Loop level in range [0, ira_loop_tree_height). */ 97 int level; 98 99 /* All the following members are defined only for nodes representing 100 loops. */ 101 102 /* The loop number from CFG loop tree. The root number is 0. */ 103 int loop_num; 104 105 /* True if the loop was marked for removal from the register 106 allocation. */ 107 bool to_remove_p; 108 109 /* Allocnos in the loop corresponding to their regnos. If it is 110 NULL the loop does not form a separate register allocation region 111 (e.g. because it has abnormal enter/exit edges and we cannot put 112 code for register shuffling on the edges if a different 113 allocation is used for a pseudo-register on different sides of 114 the edges). Caps are not in the map (remember we can have more 115 one cap with the same regno in a region). */ 116 ira_allocno_t *regno_allocno_map; 117 118 /* True if there is an entry to given loop not from its parent (or 119 grandparent) basic block. For example, it is possible for two 120 adjacent loops inside another loop. */ 121 bool entered_from_non_parent_p; 122 123 /* Maximal register pressure inside loop for given register class 124 (defined only for the pressure classes). */ 125 int reg_pressure[N_REG_CLASSES]; 126 127 /* Numbers of allocnos referred or living in the loop node (except 128 for its subloops). */ 129 bitmap all_allocnos; 130 131 /* Numbers of allocnos living at the loop borders. */ 132 bitmap border_allocnos; 133 134 /* Regnos of pseudos modified in the loop node (including its 135 subloops). */ 136 bitmap modified_regnos; 137 138 /* Numbers of copies referred in the corresponding loop. */ 139 bitmap local_copies; 140 }; 141 142 /* The root of the loop tree corresponding to the all function. */ 143 extern ira_loop_tree_node_t ira_loop_tree_root; 144 145 /* Height of the loop tree. */ 146 extern int ira_loop_tree_height; 147 148 /* All nodes representing basic blocks are referred through the 149 following array. We cannot use basic block member `aux' for this 150 because it is used for insertion of insns on edges. */ 151 extern ira_loop_tree_node_t ira_bb_nodes; 152 153 /* Two access macros to the nodes representing basic blocks. */ 154 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) 155 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \ 156 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \ 157 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\ 158 { \ 159 fprintf (stderr, \ 160 "\n%s: %d: error in %s: it is not a block node\n", \ 161 __FILE__, __LINE__, __FUNCTION__); \ 162 gcc_unreachable (); \ 163 } \ 164 _node; })) 165 #else 166 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index]) 167 #endif 168 169 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index) 170 171 /* All nodes representing loops are referred through the following 172 array. */ 173 extern ira_loop_tree_node_t ira_loop_nodes; 174 175 /* Two access macros to the nodes representing loops. */ 176 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) 177 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \ 178 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \ 179 if (_node->children == NULL || _node->bb != NULL \ 180 || (_node->loop == NULL && current_loops != NULL)) \ 181 { \ 182 fprintf (stderr, \ 183 "\n%s: %d: error in %s: it is not a loop node\n", \ 184 __FILE__, __LINE__, __FUNCTION__); \ 185 gcc_unreachable (); \ 186 } \ 187 _node; })) 188 #else 189 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index]) 190 #endif 191 192 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num) 193 194 195 /* The structure describes program points where a given allocno lives. 196 If the live ranges of two allocnos are intersected, the allocnos 197 are in conflict. */ 198 struct live_range 199 { 200 /* Object whose live range is described by given structure. */ 201 ira_object_t object; 202 /* Program point range. */ 203 int start, finish; 204 /* Next structure describing program points where the allocno 205 lives. */ 206 live_range_t next; 207 /* Pointer to structures with the same start/finish. */ 208 live_range_t start_next, finish_next; 209 }; 210 211 /* Program points are enumerated by numbers from range 212 0..IRA_MAX_POINT-1. There are approximately two times more program 213 points than insns. Program points are places in the program where 214 liveness info can be changed. In most general case (there are more 215 complicated cases too) some program points correspond to places 216 where input operand dies and other ones correspond to places where 217 output operands are born. */ 218 extern int ira_max_point; 219 220 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno 221 live ranges with given start/finish point. */ 222 extern live_range_t *ira_start_point_ranges, *ira_finish_point_ranges; 223 224 /* A structure representing conflict information for an allocno 225 (or one of its subwords). */ 226 struct ira_object 227 { 228 /* The allocno associated with this record. */ 229 ira_allocno_t allocno; 230 /* Vector of accumulated conflicting conflict_redords with NULL end 231 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector 232 otherwise. */ 233 void *conflicts_array; 234 /* Pointer to structures describing at what program point the 235 object lives. We always maintain the list in such way that *the 236 ranges in the list are not intersected and ordered by decreasing 237 their program points*. */ 238 live_range_t live_ranges; 239 /* The subword within ALLOCNO which is represented by this object. 240 Zero means the lowest-order subword (or the entire allocno in case 241 it is not being tracked in subwords). */ 242 int subword; 243 /* Allocated size of the conflicts array. */ 244 unsigned int conflicts_array_size; 245 /* A unique number for every instance of this structure, which is used 246 to represent it in conflict bit vectors. */ 247 int id; 248 /* Before building conflicts, MIN and MAX are initialized to 249 correspondingly minimal and maximal points of the accumulated 250 live ranges. Afterwards, they hold the minimal and maximal ids 251 of other ira_objects that this one can conflict with. */ 252 int min, max; 253 /* Initial and accumulated hard registers conflicting with this 254 object and as a consequences cannot be assigned to the allocno. 255 All non-allocatable hard regs and hard regs of register classes 256 different from given allocno one are included in the sets. */ 257 HARD_REG_SET conflict_hard_regs, total_conflict_hard_regs; 258 /* Number of accumulated conflicts in the vector of conflicting 259 objects. */ 260 int num_accumulated_conflicts; 261 /* TRUE if conflicts are represented by a vector of pointers to 262 ira_object structures. Otherwise, we use a bit vector indexed 263 by conflict ID numbers. */ 264 unsigned int conflict_vec_p : 1; 265 }; 266 267 /* A structure representing an allocno (allocation entity). Allocno 268 represents a pseudo-register in an allocation region. If 269 pseudo-register does not live in a region but it lives in the 270 nested regions, it is represented in the region by special allocno 271 called *cap*. There may be more one cap representing the same 272 pseudo-register in region. It means that the corresponding 273 pseudo-register lives in more one non-intersected subregion. */ 274 struct ira_allocno 275 { 276 /* The allocno order number starting with 0. Each allocno has an 277 unique number and the number is never changed for the 278 allocno. */ 279 int num; 280 /* Regno for allocno or cap. */ 281 int regno; 282 /* Mode of the allocno which is the mode of the corresponding 283 pseudo-register. */ 284 ENUM_BITFIELD (machine_mode) mode : 8; 285 /* Widest mode of the allocno which in at least one case could be 286 for paradoxical subregs where wmode > mode. */ 287 ENUM_BITFIELD (machine_mode) wmode : 8; 288 /* Register class which should be used for allocation for given 289 allocno. NO_REGS means that we should use memory. */ 290 ENUM_BITFIELD (reg_class) aclass : 16; 291 /* A bitmask of the ABIs used by calls that occur while the allocno 292 is live. */ 293 unsigned int crossed_calls_abis : NUM_ABI_IDS; 294 /* During the reload, value TRUE means that we should not reassign a 295 hard register to the allocno got memory earlier. It is set up 296 when we removed memory-memory move insn before each iteration of 297 the reload. */ 298 unsigned int dont_reassign_p : 1; 299 #ifdef STACK_REGS 300 /* Set to TRUE if allocno can't be assigned to the stack hard 301 register correspondingly in this region and area including the 302 region and all its subregions recursively. */ 303 unsigned int no_stack_reg_p : 1, total_no_stack_reg_p : 1; 304 #endif 305 /* TRUE value means that there is no sense to spill the allocno 306 during coloring because the spill will result in additional 307 reloads in reload pass. */ 308 unsigned int bad_spill_p : 1; 309 /* TRUE if a hard register or memory has been assigned to the 310 allocno. */ 311 unsigned int assigned_p : 1; 312 /* TRUE if conflicts for given allocno are represented by vector of 313 pointers to the conflicting allocnos. Otherwise, we use a bit 314 vector where a bit with given index represents allocno with the 315 same number. */ 316 unsigned int conflict_vec_p : 1; 317 /* Hard register assigned to given allocno. Negative value means 318 that memory was allocated to the allocno. During the reload, 319 spilled allocno has value equal to the corresponding stack slot 320 number (0, ...) - 2. Value -1 is used for allocnos spilled by the 321 reload (at this point pseudo-register has only one allocno) which 322 did not get stack slot yet. */ 323 signed int hard_regno : 16; 324 /* Allocnos with the same regno are linked by the following member. 325 Allocnos corresponding to inner loops are first in the list (it 326 corresponds to depth-first traverse of the loops). */ 327 ira_allocno_t next_regno_allocno; 328 /* There may be different allocnos with the same regno in different 329 regions. Allocnos are bound to the corresponding loop tree node. 330 Pseudo-register may have only one regular allocno with given loop 331 tree node but more than one cap (see comments above). */ 332 ira_loop_tree_node_t loop_tree_node; 333 /* Accumulated usage references of the allocno. Here and below, 334 word 'accumulated' means info for given region and all nested 335 subregions. In this case, 'accumulated' means sum of references 336 of the corresponding pseudo-register in this region and in all 337 nested subregions recursively. */ 338 int nrefs; 339 /* Accumulated frequency of usage of the allocno. */ 340 int freq; 341 /* Minimal accumulated and updated costs of usage register of the 342 allocno class. */ 343 int class_cost, updated_class_cost; 344 /* Minimal accumulated, and updated costs of memory for the allocno. 345 At the allocation start, the original and updated costs are 346 equal. The updated cost may be changed after finishing 347 allocation in a region and starting allocation in a subregion. 348 The change reflects the cost of spill/restore code on the 349 subregion border if we assign memory to the pseudo in the 350 subregion. */ 351 int memory_cost, updated_memory_cost; 352 /* Accumulated number of points where the allocno lives and there is 353 excess pressure for its class. Excess pressure for a register 354 class at some point means that there are more allocnos of given 355 register class living at the point than number of hard-registers 356 of the class available for the allocation. */ 357 int excess_pressure_points_num; 358 /* Allocno hard reg preferences. */ 359 ira_pref_t allocno_prefs; 360 /* Copies to other non-conflicting allocnos. The copies can 361 represent move insn or potential move insn usually because of two 362 operand insn constraints. */ 363 ira_copy_t allocno_copies; 364 /* It is a allocno (cap) representing given allocno on upper loop tree 365 level. */ 366 ira_allocno_t cap; 367 /* It is a link to allocno (cap) on lower loop level represented by 368 given cap. Null if given allocno is not a cap. */ 369 ira_allocno_t cap_member; 370 /* The number of objects tracked in the following array. */ 371 int num_objects; 372 /* An array of structures describing conflict information and live 373 ranges for each object associated with the allocno. There may be 374 more than one such object in cases where the allocno represents a 375 multi-word register. */ 376 ira_object_t objects[2]; 377 /* Accumulated frequency of calls which given allocno 378 intersects. */ 379 int call_freq; 380 /* Accumulated number of the intersected calls. */ 381 int calls_crossed_num; 382 /* The number of calls across which it is live, but which should not 383 affect register preferences. */ 384 int cheap_calls_crossed_num; 385 /* Registers clobbered by intersected calls. */ 386 HARD_REG_SET crossed_calls_clobbered_regs; 387 /* Array of usage costs (accumulated and the one updated during 388 coloring) for each hard register of the allocno class. The 389 member value can be NULL if all costs are the same and equal to 390 CLASS_COST. For example, the costs of two different hard 391 registers can be different if one hard register is callee-saved 392 and another one is callee-used and the allocno lives through 393 calls. Another example can be case when for some insn the 394 corresponding pseudo-register value should be put in specific 395 register class (e.g. AREG for x86) which is a strict subset of 396 the allocno class (GENERAL_REGS for x86). We have updated costs 397 to reflect the situation when the usage cost of a hard register 398 is decreased because the allocno is connected to another allocno 399 by a copy and the another allocno has been assigned to the hard 400 register. */ 401 int *hard_reg_costs, *updated_hard_reg_costs; 402 /* Array of decreasing costs (accumulated and the one updated during 403 coloring) for allocnos conflicting with given allocno for hard 404 regno of the allocno class. The member value can be NULL if all 405 costs are the same. These costs are used to reflect preferences 406 of other allocnos not assigned yet during assigning to given 407 allocno. */ 408 int *conflict_hard_reg_costs, *updated_conflict_hard_reg_costs; 409 /* Different additional data. It is used to decrease size of 410 allocno data footprint. */ 411 void *add_data; 412 }; 413 414 415 /* All members of the allocno structures should be accessed only 416 through the following macros. */ 417 #define ALLOCNO_NUM(A) ((A)->num) 418 #define ALLOCNO_REGNO(A) ((A)->regno) 419 #define ALLOCNO_REG(A) ((A)->reg) 420 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno) 421 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node) 422 #define ALLOCNO_CAP(A) ((A)->cap) 423 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member) 424 #define ALLOCNO_NREFS(A) ((A)->nrefs) 425 #define ALLOCNO_FREQ(A) ((A)->freq) 426 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno) 427 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq) 428 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num) 429 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num) 430 #define ALLOCNO_CROSSED_CALLS_ABIS(A) ((A)->crossed_calls_abis) 431 #define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \ 432 ((A)->crossed_calls_clobbered_regs) 433 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest) 434 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p) 435 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p) 436 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p) 437 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p) 438 #ifdef STACK_REGS 439 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p) 440 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p) 441 #endif 442 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p) 443 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p) 444 #define ALLOCNO_MODE(A) ((A)->mode) 445 #define ALLOCNO_WMODE(A) ((A)->wmode) 446 #define ALLOCNO_PREFS(A) ((A)->allocno_prefs) 447 #define ALLOCNO_COPIES(A) ((A)->allocno_copies) 448 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs) 449 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs) 450 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \ 451 ((A)->conflict_hard_reg_costs) 452 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \ 453 ((A)->updated_conflict_hard_reg_costs) 454 #define ALLOCNO_CLASS(A) ((A)->aclass) 455 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost) 456 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost) 457 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost) 458 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost) 459 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \ 460 ((A)->excess_pressure_points_num) 461 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N]) 462 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects) 463 #define ALLOCNO_ADD_DATA(A) ((A)->add_data) 464 465 /* Typedef for pointer to the subsequent structure. */ 466 typedef struct ira_emit_data *ira_emit_data_t; 467 468 /* Allocno bound data used for emit pseudo live range split insns and 469 to flattening IR. */ 470 struct ira_emit_data 471 { 472 /* TRUE if the allocno assigned to memory was a destination of 473 removed move (see ira-emit.c) at loop exit because the value of 474 the corresponding pseudo-register is not changed inside the 475 loop. */ 476 unsigned int mem_optimized_dest_p : 1; 477 /* TRUE if the corresponding pseudo-register has disjoint live 478 ranges and the other allocnos of the pseudo-register except this 479 one changed REG. */ 480 unsigned int somewhere_renamed_p : 1; 481 /* TRUE if allocno with the same REGNO in a subregion has been 482 renamed, in other words, got a new pseudo-register. */ 483 unsigned int child_renamed_p : 1; 484 /* Final rtx representation of the allocno. */ 485 rtx reg; 486 /* Non NULL if we remove restoring value from given allocno to 487 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the 488 allocno value is not changed inside the loop. */ 489 ira_allocno_t mem_optimized_dest; 490 }; 491 492 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a)) 493 494 /* Data used to emit live range split insns and to flattening IR. */ 495 extern ira_emit_data_t ira_allocno_emit_data; 496 497 /* Abbreviation for frequent emit data access. */ 498 static inline rtx 499 allocno_emit_reg (ira_allocno_t a) 500 { 501 return ALLOCNO_EMIT_DATA (a)->reg; 502 } 503 504 #define OBJECT_ALLOCNO(O) ((O)->allocno) 505 #define OBJECT_SUBWORD(O) ((O)->subword) 506 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array) 507 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array) 508 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array) 509 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size) 510 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p) 511 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts) 512 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs) 513 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs) 514 #define OBJECT_MIN(O) ((O)->min) 515 #define OBJECT_MAX(O) ((O)->max) 516 #define OBJECT_CONFLICT_ID(O) ((O)->id) 517 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges) 518 519 /* Map regno -> allocnos with given regno (see comments for 520 allocno member `next_regno_allocno'). */ 521 extern ira_allocno_t *ira_regno_allocno_map; 522 523 /* Array of references to all allocnos. The order number of the 524 allocno corresponds to the index in the array. Removed allocnos 525 have NULL element value. */ 526 extern ira_allocno_t *ira_allocnos; 527 528 /* The size of the previous array. */ 529 extern int ira_allocnos_num; 530 531 /* Map a conflict id to its corresponding ira_object structure. */ 532 extern ira_object_t *ira_object_id_map; 533 534 /* The size of the previous array. */ 535 extern int ira_objects_num; 536 537 /* The following structure represents a hard register preference of 538 allocno. The preference represent move insns or potential move 539 insns usually because of two operand insn constraints. One move 540 operand is a hard register. */ 541 struct ira_allocno_pref 542 { 543 /* The unique order number of the preference node starting with 0. */ 544 int num; 545 /* Preferred hard register. */ 546 int hard_regno; 547 /* Accumulated execution frequency of insns from which the 548 preference created. */ 549 int freq; 550 /* Given allocno. */ 551 ira_allocno_t allocno; 552 /* All preferences with the same allocno are linked by the following 553 member. */ 554 ira_pref_t next_pref; 555 }; 556 557 /* Array of references to all allocno preferences. The order number 558 of the preference corresponds to the index in the array. */ 559 extern ira_pref_t *ira_prefs; 560 561 /* Size of the previous array. */ 562 extern int ira_prefs_num; 563 564 /* The following structure represents a copy of two allocnos. The 565 copies represent move insns or potential move insns usually because 566 of two operand insn constraints. To remove register shuffle, we 567 also create copies between allocno which is output of an insn and 568 allocno becoming dead in the insn. */ 569 struct ira_allocno_copy 570 { 571 /* The unique order number of the copy node starting with 0. */ 572 int num; 573 /* Allocnos connected by the copy. The first allocno should have 574 smaller order number than the second one. */ 575 ira_allocno_t first, second; 576 /* Execution frequency of the copy. */ 577 int freq; 578 bool constraint_p; 579 /* It is a move insn which is an origin of the copy. The member 580 value for the copy representing two operand insn constraints or 581 for the copy created to remove register shuffle is NULL. In last 582 case the copy frequency is smaller than the corresponding insn 583 execution frequency. */ 584 rtx_insn *insn; 585 /* All copies with the same allocno as FIRST are linked by the two 586 following members. */ 587 ira_copy_t prev_first_allocno_copy, next_first_allocno_copy; 588 /* All copies with the same allocno as SECOND are linked by the two 589 following members. */ 590 ira_copy_t prev_second_allocno_copy, next_second_allocno_copy; 591 /* Region from which given copy is originated. */ 592 ira_loop_tree_node_t loop_tree_node; 593 }; 594 595 /* Array of references to all copies. The order number of the copy 596 corresponds to the index in the array. Removed copies have NULL 597 element value. */ 598 extern ira_copy_t *ira_copies; 599 600 /* Size of the previous array. */ 601 extern int ira_copies_num; 602 603 /* The following structure describes a stack slot used for spilled 604 pseudo-registers. */ 605 class ira_spilled_reg_stack_slot 606 { 607 public: 608 /* pseudo-registers assigned to the stack slot. */ 609 bitmap_head spilled_regs; 610 /* RTL representation of the stack slot. */ 611 rtx mem; 612 /* Size of the stack slot. */ 613 poly_uint64_pod width; 614 }; 615 616 /* The number of elements in the following array. */ 617 extern int ira_spilled_reg_stack_slots_num; 618 619 /* The following array contains info about spilled pseudo-registers 620 stack slots used in current function so far. */ 621 extern class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots; 622 623 /* Correspondingly overall cost of the allocation, cost of the 624 allocnos assigned to hard-registers, cost of the allocnos assigned 625 to memory, cost of loads, stores and register move insns generated 626 for pseudo-register live range splitting (see ira-emit.c). */ 627 extern int64_t ira_overall_cost; 628 extern int64_t ira_reg_cost, ira_mem_cost; 629 extern int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost; 630 extern int ira_move_loops_num, ira_additional_jumps_num; 631 632 633 /* This page contains a bitset implementation called 'min/max sets' used to 634 record conflicts in IRA. 635 They are named min/maxs set since we keep track of a minimum and a maximum 636 bit number for each set representing the bounds of valid elements. Otherwise, 637 the implementation resembles sbitmaps in that we store an array of integers 638 whose bits directly represent the members of the set. */ 639 640 /* The type used as elements in the array, and the number of bits in 641 this type. */ 642 643 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT 644 #define IRA_INT_TYPE HOST_WIDE_INT 645 646 /* Set, clear or test bit number I in R, a bit vector of elements with 647 minimal index and maximal index equal correspondingly to MIN and 648 MAX. */ 649 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007) 650 651 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ 652 (({ int _min = (MIN), _max = (MAX), _i = (I); \ 653 if (_i < _min || _i > _max) \ 654 { \ 655 fprintf (stderr, \ 656 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ 657 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ 658 gcc_unreachable (); \ 659 } \ 660 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ 661 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) 662 663 664 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ 665 (({ int _min = (MIN), _max = (MAX), _i = (I); \ 666 if (_i < _min || _i > _max) \ 667 { \ 668 fprintf (stderr, \ 669 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ 670 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ 671 gcc_unreachable (); \ 672 } \ 673 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ 674 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) 675 676 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \ 677 (({ int _min = (MIN), _max = (MAX), _i = (I); \ 678 if (_i < _min || _i > _max) \ 679 { \ 680 fprintf (stderr, \ 681 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \ 682 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \ 683 gcc_unreachable (); \ 684 } \ 685 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \ 686 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); })) 687 688 #else 689 690 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \ 691 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ 692 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) 693 694 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \ 695 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ 696 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) 697 698 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \ 699 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \ 700 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS))) 701 702 #endif 703 704 /* The iterator for min/max sets. */ 705 struct minmax_set_iterator { 706 707 /* Array containing the bit vector. */ 708 IRA_INT_TYPE *vec; 709 710 /* The number of the current element in the vector. */ 711 unsigned int word_num; 712 713 /* The number of bits in the bit vector. */ 714 unsigned int nel; 715 716 /* The current bit index of the bit vector. */ 717 unsigned int bit_num; 718 719 /* Index corresponding to the 1st bit of the bit vector. */ 720 int start_val; 721 722 /* The word of the bit vector currently visited. */ 723 unsigned IRA_INT_TYPE word; 724 }; 725 726 /* Initialize the iterator I for bit vector VEC containing minimal and 727 maximal values MIN and MAX. */ 728 static inline void 729 minmax_set_iter_init (minmax_set_iterator *i, IRA_INT_TYPE *vec, int min, 730 int max) 731 { 732 i->vec = vec; 733 i->word_num = 0; 734 i->nel = max < min ? 0 : max - min + 1; 735 i->start_val = min; 736 i->bit_num = 0; 737 i->word = i->nel == 0 ? 0 : vec[0]; 738 } 739 740 /* Return TRUE if we have more allocnos to visit, in which case *N is 741 set to the number of the element to be visited. Otherwise, return 742 FALSE. */ 743 static inline bool 744 minmax_set_iter_cond (minmax_set_iterator *i, int *n) 745 { 746 /* Skip words that are zeros. */ 747 for (; i->word == 0; i->word = i->vec[i->word_num]) 748 { 749 i->word_num++; 750 i->bit_num = i->word_num * IRA_INT_BITS; 751 752 /* If we have reached the end, break. */ 753 if (i->bit_num >= i->nel) 754 return false; 755 } 756 757 /* Skip bits that are zero. */ 758 for (; (i->word & 1) == 0; i->word >>= 1) 759 i->bit_num++; 760 761 *n = (int) i->bit_num + i->start_val; 762 763 return true; 764 } 765 766 /* Advance to the next element in the set. */ 767 static inline void 768 minmax_set_iter_next (minmax_set_iterator *i) 769 { 770 i->word >>= 1; 771 i->bit_num++; 772 } 773 774 /* Loop over all elements of a min/max set given by bit vector VEC and 775 their minimal and maximal values MIN and MAX. In each iteration, N 776 is set to the number of next allocno. ITER is an instance of 777 minmax_set_iterator used to iterate over the set. */ 778 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \ 779 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \ 780 minmax_set_iter_cond (&(ITER), &(N)); \ 781 minmax_set_iter_next (&(ITER))) 782 783 class target_ira_int { 784 public: 785 ~target_ira_int (); 786 787 void free_ira_costs (); 788 void free_register_move_costs (); 789 790 /* Initialized once. It is a maximal possible size of the allocated 791 struct costs. */ 792 size_t x_max_struct_costs_size; 793 794 /* Allocated and initialized once, and used to initialize cost values 795 for each insn. */ 796 struct costs *x_init_cost; 797 798 /* Allocated once, and used for temporary purposes. */ 799 struct costs *x_temp_costs; 800 801 /* Allocated once, and used for the cost calculation. */ 802 struct costs *x_op_costs[MAX_RECOG_OPERANDS]; 803 struct costs *x_this_op_costs[MAX_RECOG_OPERANDS]; 804 805 /* Hard registers that cannot be used for the register allocator for 806 all functions of the current compilation unit. */ 807 HARD_REG_SET x_no_unit_alloc_regs; 808 809 /* Map: hard regs X modes -> set of hard registers for storing value 810 of given mode starting with given hard register. */ 811 HARD_REG_SET (x_ira_reg_mode_hard_regset 812 [FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES]); 813 814 /* Maximum cost of moving from a register in one class to a register 815 in another class. Based on TARGET_REGISTER_MOVE_COST. */ 816 move_table *x_ira_register_move_cost[MAX_MACHINE_MODE]; 817 818 /* Similar, but here we don't have to move if the first index is a 819 subset of the second so in that case the cost is zero. */ 820 move_table *x_ira_may_move_in_cost[MAX_MACHINE_MODE]; 821 822 /* Similar, but here we don't have to move if the first index is a 823 superset of the second so in that case the cost is zero. */ 824 move_table *x_ira_may_move_out_cost[MAX_MACHINE_MODE]; 825 826 /* Keep track of the last mode we initialized move costs for. */ 827 int x_last_mode_for_init_move_cost; 828 829 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal 830 cost not minimal. */ 831 short int x_ira_max_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2]; 832 833 /* Map class->true if class is a possible allocno class, false 834 otherwise. */ 835 bool x_ira_reg_allocno_class_p[N_REG_CLASSES]; 836 837 /* Map class->true if class is a pressure class, false otherwise. */ 838 bool x_ira_reg_pressure_class_p[N_REG_CLASSES]; 839 840 /* Array of the number of hard registers of given class which are 841 available for allocation. The order is defined by the hard 842 register numbers. */ 843 short x_ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; 844 845 /* Index (in ira_class_hard_regs; for given register class and hard 846 register (in general case a hard register can belong to several 847 register classes;. The index is negative for hard registers 848 unavailable for the allocation. */ 849 short x_ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER]; 850 851 /* Index [CL][M] contains R if R appears somewhere in a register of the form: 852 853 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M] 854 855 For example, if: 856 857 - (reg:M 2) is valid and occupies two registers; 858 - register 2 belongs to CL; and 859 - register 3 belongs to the same pressure class as CL 860 861 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be 862 in the set. */ 863 HARD_REG_SET x_ira_useful_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES]; 864 865 /* The value is number of elements in the subsequent array. */ 866 int x_ira_important_classes_num; 867 868 /* The array containing all non-empty classes. Such classes is 869 important for calculation of the hard register usage costs. */ 870 enum reg_class x_ira_important_classes[N_REG_CLASSES]; 871 872 /* The array containing indexes of important classes in the previous 873 array. The array elements are defined only for important 874 classes. */ 875 int x_ira_important_class_nums[N_REG_CLASSES]; 876 877 /* Map class->true if class is an uniform class, false otherwise. */ 878 bool x_ira_uniform_class_p[N_REG_CLASSES]; 879 880 /* The biggest important class inside of intersection of the two 881 classes (that is calculated taking only hard registers available 882 for allocation into account;. If the both classes contain no hard 883 registers available for allocation, the value is calculated with 884 taking all hard-registers including fixed ones into account. */ 885 enum reg_class x_ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES]; 886 887 /* Classes with end marker LIM_REG_CLASSES which are intersected with 888 given class (the first index). That includes given class itself. 889 This is calculated taking only hard registers available for 890 allocation into account. */ 891 enum reg_class x_ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES]; 892 893 /* The biggest (smallest) important class inside of (covering) union 894 of the two classes (that is calculated taking only hard registers 895 available for allocation into account). If the both classes 896 contain no hard registers available for allocation, the value is 897 calculated with taking all hard-registers including fixed ones 898 into account. In other words, the value is the corresponding 899 reg_class_subunion (reg_class_superunion) value. */ 900 enum reg_class x_ira_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES]; 901 enum reg_class x_ira_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES]; 902 903 /* For each reg class, table listing all the classes contained in it 904 (excluding the class itself. Non-allocatable registers are 905 excluded from the consideration). */ 906 enum reg_class x_alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES]; 907 908 /* Array whose values are hard regset of hard registers for which 909 move of the hard register in given mode into itself is 910 prohibited. */ 911 HARD_REG_SET x_ira_prohibited_mode_move_regs[NUM_MACHINE_MODES]; 912 913 /* Flag of that the above array has been initialized. */ 914 bool x_ira_prohibited_mode_move_regs_initialized_p; 915 }; 916 917 extern class target_ira_int default_target_ira_int; 918 #if SWITCHABLE_TARGET 919 extern class target_ira_int *this_target_ira_int; 920 #else 921 #define this_target_ira_int (&default_target_ira_int) 922 #endif 923 924 #define ira_reg_mode_hard_regset \ 925 (this_target_ira_int->x_ira_reg_mode_hard_regset) 926 #define ira_register_move_cost \ 927 (this_target_ira_int->x_ira_register_move_cost) 928 #define ira_max_memory_move_cost \ 929 (this_target_ira_int->x_ira_max_memory_move_cost) 930 #define ira_may_move_in_cost \ 931 (this_target_ira_int->x_ira_may_move_in_cost) 932 #define ira_may_move_out_cost \ 933 (this_target_ira_int->x_ira_may_move_out_cost) 934 #define ira_reg_allocno_class_p \ 935 (this_target_ira_int->x_ira_reg_allocno_class_p) 936 #define ira_reg_pressure_class_p \ 937 (this_target_ira_int->x_ira_reg_pressure_class_p) 938 #define ira_non_ordered_class_hard_regs \ 939 (this_target_ira_int->x_ira_non_ordered_class_hard_regs) 940 #define ira_class_hard_reg_index \ 941 (this_target_ira_int->x_ira_class_hard_reg_index) 942 #define ira_useful_class_mode_regs \ 943 (this_target_ira_int->x_ira_useful_class_mode_regs) 944 #define ira_important_classes_num \ 945 (this_target_ira_int->x_ira_important_classes_num) 946 #define ira_important_classes \ 947 (this_target_ira_int->x_ira_important_classes) 948 #define ira_important_class_nums \ 949 (this_target_ira_int->x_ira_important_class_nums) 950 #define ira_uniform_class_p \ 951 (this_target_ira_int->x_ira_uniform_class_p) 952 #define ira_reg_class_intersect \ 953 (this_target_ira_int->x_ira_reg_class_intersect) 954 #define ira_reg_class_super_classes \ 955 (this_target_ira_int->x_ira_reg_class_super_classes) 956 #define ira_reg_class_subunion \ 957 (this_target_ira_int->x_ira_reg_class_subunion) 958 #define ira_reg_class_superunion \ 959 (this_target_ira_int->x_ira_reg_class_superunion) 960 #define ira_prohibited_mode_move_regs \ 961 (this_target_ira_int->x_ira_prohibited_mode_move_regs) 962 963 /* ira.c: */ 964 965 extern void *ira_allocate (size_t); 966 extern void ira_free (void *addr); 967 extern bitmap ira_allocate_bitmap (void); 968 extern void ira_free_bitmap (bitmap); 969 extern void ira_print_disposition (FILE *); 970 extern void ira_debug_disposition (void); 971 extern void ira_debug_allocno_classes (void); 972 extern void ira_init_register_move_cost (machine_mode); 973 extern alternative_mask ira_setup_alts (rtx_insn *); 974 extern int ira_get_dup_out_num (int, alternative_mask); 975 976 /* ira-build.c */ 977 978 /* The current loop tree node and its regno allocno map. */ 979 extern ira_loop_tree_node_t ira_curr_loop_tree_node; 980 extern ira_allocno_t *ira_curr_regno_allocno_map; 981 982 extern void ira_debug_pref (ira_pref_t); 983 extern void ira_debug_prefs (void); 984 extern void ira_debug_allocno_prefs (ira_allocno_t); 985 986 extern void ira_debug_copy (ira_copy_t); 987 extern void debug (ira_allocno_copy &ref); 988 extern void debug (ira_allocno_copy *ptr); 989 990 extern void ira_debug_copies (void); 991 extern void ira_debug_allocno_copies (ira_allocno_t); 992 extern void debug (ira_allocno &ref); 993 extern void debug (ira_allocno *ptr); 994 995 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t, 996 void (*) (ira_loop_tree_node_t), 997 void (*) (ira_loop_tree_node_t)); 998 extern ira_allocno_t ira_parent_allocno (ira_allocno_t); 999 extern ira_allocno_t ira_parent_or_cap_allocno (ira_allocno_t); 1000 extern ira_allocno_t ira_create_allocno (int, bool, ira_loop_tree_node_t); 1001 extern void ira_create_allocno_objects (ira_allocno_t); 1002 extern void ira_set_allocno_class (ira_allocno_t, enum reg_class); 1003 extern bool ira_conflict_vector_profitable_p (ira_object_t, int); 1004 extern void ira_allocate_conflict_vec (ira_object_t, int); 1005 extern void ira_allocate_object_conflicts (ira_object_t, int); 1006 extern void ior_hard_reg_conflicts (ira_allocno_t, const_hard_reg_set); 1007 extern void ira_print_expanded_allocno (ira_allocno_t); 1008 extern void ira_add_live_range_to_object (ira_object_t, int, int); 1009 extern live_range_t ira_create_live_range (ira_object_t, int, int, 1010 live_range_t); 1011 extern live_range_t ira_copy_live_range_list (live_range_t); 1012 extern live_range_t ira_merge_live_ranges (live_range_t, live_range_t); 1013 extern bool ira_live_ranges_intersect_p (live_range_t, live_range_t); 1014 extern void ira_finish_live_range (live_range_t); 1015 extern void ira_finish_live_range_list (live_range_t); 1016 extern void ira_free_allocno_updated_costs (ira_allocno_t); 1017 extern ira_pref_t ira_create_pref (ira_allocno_t, int, int); 1018 extern void ira_add_allocno_pref (ira_allocno_t, int, int); 1019 extern void ira_remove_pref (ira_pref_t); 1020 extern void ira_remove_allocno_prefs (ira_allocno_t); 1021 extern ira_copy_t ira_create_copy (ira_allocno_t, ira_allocno_t, 1022 int, bool, rtx_insn *, 1023 ira_loop_tree_node_t); 1024 extern ira_copy_t ira_add_allocno_copy (ira_allocno_t, ira_allocno_t, int, 1025 bool, rtx_insn *, 1026 ira_loop_tree_node_t); 1027 1028 extern int *ira_allocate_cost_vector (reg_class_t); 1029 extern void ira_free_cost_vector (int *, reg_class_t); 1030 1031 extern void ira_flattening (int, int); 1032 extern bool ira_build (void); 1033 extern void ira_destroy (void); 1034 1035 /* ira-costs.c */ 1036 extern void ira_init_costs_once (void); 1037 extern void ira_init_costs (void); 1038 extern void ira_costs (void); 1039 extern void ira_tune_allocno_costs (void); 1040 1041 /* ira-lives.c */ 1042 1043 extern void ira_rebuild_start_finish_chains (void); 1044 extern void ira_print_live_range_list (FILE *, live_range_t); 1045 extern void debug (live_range &ref); 1046 extern void debug (live_range *ptr); 1047 extern void ira_debug_live_range_list (live_range_t); 1048 extern void ira_debug_allocno_live_ranges (ira_allocno_t); 1049 extern void ira_debug_live_ranges (void); 1050 extern void ira_create_allocno_live_ranges (void); 1051 extern void ira_compress_allocno_live_ranges (void); 1052 extern void ira_finish_allocno_live_ranges (void); 1053 extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET *, 1054 alternative_mask); 1055 1056 /* ira-conflicts.c */ 1057 extern void ira_debug_conflicts (bool); 1058 extern void ira_build_conflicts (void); 1059 1060 /* ira-color.c */ 1061 extern void ira_debug_hard_regs_forest (void); 1062 extern int ira_loop_edge_freq (ira_loop_tree_node_t, int, bool); 1063 extern void ira_reassign_conflict_allocnos (int); 1064 extern void ira_initiate_assign (void); 1065 extern void ira_finish_assign (void); 1066 extern void ira_color (void); 1067 1068 /* ira-emit.c */ 1069 extern void ira_initiate_emit_data (void); 1070 extern void ira_finish_emit_data (void); 1071 extern void ira_emit (bool); 1072 1073 1074 1075 /* Return true if equivalence of pseudo REGNO is not a lvalue. */ 1076 static inline bool 1077 ira_equiv_no_lvalue_p (int regno) 1078 { 1079 if (regno >= ira_reg_equiv_len) 1080 return false; 1081 return (ira_reg_equiv[regno].constant != NULL_RTX 1082 || ira_reg_equiv[regno].invariant != NULL_RTX 1083 || (ira_reg_equiv[regno].memory != NULL_RTX 1084 && MEM_READONLY_P (ira_reg_equiv[regno].memory))); 1085 } 1086 1087 1088 1089 /* Initialize register costs for MODE if necessary. */ 1090 static inline void 1091 ira_init_register_move_cost_if_necessary (machine_mode mode) 1092 { 1093 if (ira_register_move_cost[mode] == NULL) 1094 ira_init_register_move_cost (mode); 1095 } 1096 1097 1098 1099 /* The iterator for all allocnos. */ 1100 struct ira_allocno_iterator { 1101 /* The number of the current element in IRA_ALLOCNOS. */ 1102 int n; 1103 }; 1104 1105 /* Initialize the iterator I. */ 1106 static inline void 1107 ira_allocno_iter_init (ira_allocno_iterator *i) 1108 { 1109 i->n = 0; 1110 } 1111 1112 /* Return TRUE if we have more allocnos to visit, in which case *A is 1113 set to the allocno to be visited. Otherwise, return FALSE. */ 1114 static inline bool 1115 ira_allocno_iter_cond (ira_allocno_iterator *i, ira_allocno_t *a) 1116 { 1117 int n; 1118 1119 for (n = i->n; n < ira_allocnos_num; n++) 1120 if (ira_allocnos[n] != NULL) 1121 { 1122 *a = ira_allocnos[n]; 1123 i->n = n + 1; 1124 return true; 1125 } 1126 return false; 1127 } 1128 1129 /* Loop over all allocnos. In each iteration, A is set to the next 1130 allocno. ITER is an instance of ira_allocno_iterator used to iterate 1131 the allocnos. */ 1132 #define FOR_EACH_ALLOCNO(A, ITER) \ 1133 for (ira_allocno_iter_init (&(ITER)); \ 1134 ira_allocno_iter_cond (&(ITER), &(A));) 1135 1136 /* The iterator for all objects. */ 1137 struct ira_object_iterator { 1138 /* The number of the current element in ira_object_id_map. */ 1139 int n; 1140 }; 1141 1142 /* Initialize the iterator I. */ 1143 static inline void 1144 ira_object_iter_init (ira_object_iterator *i) 1145 { 1146 i->n = 0; 1147 } 1148 1149 /* Return TRUE if we have more objects to visit, in which case *OBJ is 1150 set to the object to be visited. Otherwise, return FALSE. */ 1151 static inline bool 1152 ira_object_iter_cond (ira_object_iterator *i, ira_object_t *obj) 1153 { 1154 int n; 1155 1156 for (n = i->n; n < ira_objects_num; n++) 1157 if (ira_object_id_map[n] != NULL) 1158 { 1159 *obj = ira_object_id_map[n]; 1160 i->n = n + 1; 1161 return true; 1162 } 1163 return false; 1164 } 1165 1166 /* Loop over all objects. In each iteration, OBJ is set to the next 1167 object. ITER is an instance of ira_object_iterator used to iterate 1168 the objects. */ 1169 #define FOR_EACH_OBJECT(OBJ, ITER) \ 1170 for (ira_object_iter_init (&(ITER)); \ 1171 ira_object_iter_cond (&(ITER), &(OBJ));) 1172 1173 /* The iterator for objects associated with an allocno. */ 1174 struct ira_allocno_object_iterator { 1175 /* The number of the element the allocno's object array. */ 1176 int n; 1177 }; 1178 1179 /* Initialize the iterator I. */ 1180 static inline void 1181 ira_allocno_object_iter_init (ira_allocno_object_iterator *i) 1182 { 1183 i->n = 0; 1184 } 1185 1186 /* Return TRUE if we have more objects to visit in allocno A, in which 1187 case *O is set to the object to be visited. Otherwise, return 1188 FALSE. */ 1189 static inline bool 1190 ira_allocno_object_iter_cond (ira_allocno_object_iterator *i, ira_allocno_t a, 1191 ira_object_t *o) 1192 { 1193 int n = i->n++; 1194 if (n < ALLOCNO_NUM_OBJECTS (a)) 1195 { 1196 *o = ALLOCNO_OBJECT (a, n); 1197 return true; 1198 } 1199 return false; 1200 } 1201 1202 /* Loop over all objects associated with allocno A. In each 1203 iteration, O is set to the next object. ITER is an instance of 1204 ira_allocno_object_iterator used to iterate the conflicts. */ 1205 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \ 1206 for (ira_allocno_object_iter_init (&(ITER)); \ 1207 ira_allocno_object_iter_cond (&(ITER), (A), &(O));) 1208 1209 1210 /* The iterator for prefs. */ 1211 struct ira_pref_iterator { 1212 /* The number of the current element in IRA_PREFS. */ 1213 int n; 1214 }; 1215 1216 /* Initialize the iterator I. */ 1217 static inline void 1218 ira_pref_iter_init (ira_pref_iterator *i) 1219 { 1220 i->n = 0; 1221 } 1222 1223 /* Return TRUE if we have more prefs to visit, in which case *PREF is 1224 set to the pref to be visited. Otherwise, return FALSE. */ 1225 static inline bool 1226 ira_pref_iter_cond (ira_pref_iterator *i, ira_pref_t *pref) 1227 { 1228 int n; 1229 1230 for (n = i->n; n < ira_prefs_num; n++) 1231 if (ira_prefs[n] != NULL) 1232 { 1233 *pref = ira_prefs[n]; 1234 i->n = n + 1; 1235 return true; 1236 } 1237 return false; 1238 } 1239 1240 /* Loop over all prefs. In each iteration, P is set to the next 1241 pref. ITER is an instance of ira_pref_iterator used to iterate 1242 the prefs. */ 1243 #define FOR_EACH_PREF(P, ITER) \ 1244 for (ira_pref_iter_init (&(ITER)); \ 1245 ira_pref_iter_cond (&(ITER), &(P));) 1246 1247 1248 /* The iterator for copies. */ 1249 struct ira_copy_iterator { 1250 /* The number of the current element in IRA_COPIES. */ 1251 int n; 1252 }; 1253 1254 /* Initialize the iterator I. */ 1255 static inline void 1256 ira_copy_iter_init (ira_copy_iterator *i) 1257 { 1258 i->n = 0; 1259 } 1260 1261 /* Return TRUE if we have more copies to visit, in which case *CP is 1262 set to the copy to be visited. Otherwise, return FALSE. */ 1263 static inline bool 1264 ira_copy_iter_cond (ira_copy_iterator *i, ira_copy_t *cp) 1265 { 1266 int n; 1267 1268 for (n = i->n; n < ira_copies_num; n++) 1269 if (ira_copies[n] != NULL) 1270 { 1271 *cp = ira_copies[n]; 1272 i->n = n + 1; 1273 return true; 1274 } 1275 return false; 1276 } 1277 1278 /* Loop over all copies. In each iteration, C is set to the next 1279 copy. ITER is an instance of ira_copy_iterator used to iterate 1280 the copies. */ 1281 #define FOR_EACH_COPY(C, ITER) \ 1282 for (ira_copy_iter_init (&(ITER)); \ 1283 ira_copy_iter_cond (&(ITER), &(C));) 1284 1285 /* The iterator for object conflicts. */ 1286 struct ira_object_conflict_iterator { 1287 1288 /* TRUE if the conflicts are represented by vector of allocnos. */ 1289 bool conflict_vec_p; 1290 1291 /* The conflict vector or conflict bit vector. */ 1292 void *vec; 1293 1294 /* The number of the current element in the vector (of type 1295 ira_object_t or IRA_INT_TYPE). */ 1296 unsigned int word_num; 1297 1298 /* The bit vector size. It is defined only if 1299 OBJECT_CONFLICT_VEC_P is FALSE. */ 1300 unsigned int size; 1301 1302 /* The current bit index of bit vector. It is defined only if 1303 OBJECT_CONFLICT_VEC_P is FALSE. */ 1304 unsigned int bit_num; 1305 1306 /* The object id corresponding to the 1st bit of the bit vector. It 1307 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */ 1308 int base_conflict_id; 1309 1310 /* The word of bit vector currently visited. It is defined only if 1311 OBJECT_CONFLICT_VEC_P is FALSE. */ 1312 unsigned IRA_INT_TYPE word; 1313 }; 1314 1315 /* Initialize the iterator I with ALLOCNO conflicts. */ 1316 static inline void 1317 ira_object_conflict_iter_init (ira_object_conflict_iterator *i, 1318 ira_object_t obj) 1319 { 1320 i->conflict_vec_p = OBJECT_CONFLICT_VEC_P (obj); 1321 i->vec = OBJECT_CONFLICT_ARRAY (obj); 1322 i->word_num = 0; 1323 if (i->conflict_vec_p) 1324 i->size = i->bit_num = i->base_conflict_id = i->word = 0; 1325 else 1326 { 1327 if (OBJECT_MIN (obj) > OBJECT_MAX (obj)) 1328 i->size = 0; 1329 else 1330 i->size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) 1331 + IRA_INT_BITS) 1332 / IRA_INT_BITS) * sizeof (IRA_INT_TYPE); 1333 i->bit_num = 0; 1334 i->base_conflict_id = OBJECT_MIN (obj); 1335 i->word = (i->size == 0 ? 0 : ((IRA_INT_TYPE *) i->vec)[0]); 1336 } 1337 } 1338 1339 /* Return TRUE if we have more conflicting allocnos to visit, in which 1340 case *A is set to the allocno to be visited. Otherwise, return 1341 FALSE. */ 1342 static inline bool 1343 ira_object_conflict_iter_cond (ira_object_conflict_iterator *i, 1344 ira_object_t *pobj) 1345 { 1346 ira_object_t obj; 1347 1348 if (i->conflict_vec_p) 1349 { 1350 obj = ((ira_object_t *) i->vec)[i->word_num++]; 1351 if (obj == NULL) 1352 return false; 1353 } 1354 else 1355 { 1356 unsigned IRA_INT_TYPE word = i->word; 1357 unsigned int bit_num = i->bit_num; 1358 1359 /* Skip words that are zeros. */ 1360 for (; word == 0; word = ((IRA_INT_TYPE *) i->vec)[i->word_num]) 1361 { 1362 i->word_num++; 1363 1364 /* If we have reached the end, break. */ 1365 if (i->word_num * sizeof (IRA_INT_TYPE) >= i->size) 1366 return false; 1367 1368 bit_num = i->word_num * IRA_INT_BITS; 1369 } 1370 1371 /* Skip bits that are zero. */ 1372 for (; (word & 1) == 0; word >>= 1) 1373 bit_num++; 1374 1375 obj = ira_object_id_map[bit_num + i->base_conflict_id]; 1376 i->bit_num = bit_num + 1; 1377 i->word = word >> 1; 1378 } 1379 1380 *pobj = obj; 1381 return true; 1382 } 1383 1384 /* Loop over all objects conflicting with OBJ. In each iteration, 1385 CONF is set to the next conflicting object. ITER is an instance 1386 of ira_object_conflict_iterator used to iterate the conflicts. */ 1387 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \ 1388 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \ 1389 ira_object_conflict_iter_cond (&(ITER), &(CONF));) 1390 1391 1392 1393 /* The function returns TRUE if at least one hard register from ones 1394 starting with HARD_REGNO and containing value of MODE are in set 1395 HARD_REGSET. */ 1396 static inline bool 1397 ira_hard_reg_set_intersection_p (int hard_regno, machine_mode mode, 1398 HARD_REG_SET hard_regset) 1399 { 1400 int i; 1401 1402 gcc_assert (hard_regno >= 0); 1403 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--) 1404 if (TEST_HARD_REG_BIT (hard_regset, hard_regno + i)) 1405 return true; 1406 return false; 1407 } 1408 1409 /* Return number of hard registers in hard register SET. */ 1410 static inline int 1411 hard_reg_set_size (HARD_REG_SET set) 1412 { 1413 int i, size; 1414 1415 for (size = i = 0; i < FIRST_PSEUDO_REGISTER; i++) 1416 if (TEST_HARD_REG_BIT (set, i)) 1417 size++; 1418 return size; 1419 } 1420 1421 /* The function returns TRUE if hard registers starting with 1422 HARD_REGNO and containing value of MODE are fully in set 1423 HARD_REGSET. */ 1424 static inline bool 1425 ira_hard_reg_in_set_p (int hard_regno, machine_mode mode, 1426 HARD_REG_SET hard_regset) 1427 { 1428 int i; 1429 1430 ira_assert (hard_regno >= 0); 1431 for (i = hard_regno_nregs (hard_regno, mode) - 1; i >= 0; i--) 1432 if (!TEST_HARD_REG_BIT (hard_regset, hard_regno + i)) 1433 return false; 1434 return true; 1435 } 1436 1437 1438 1439 /* To save memory we use a lazy approach for allocation and 1440 initialization of the cost vectors. We do this only when it is 1441 really necessary. */ 1442 1443 /* Allocate cost vector *VEC for hard registers of ACLASS and 1444 initialize the elements by VAL if it is necessary */ 1445 static inline void 1446 ira_allocate_and_set_costs (int **vec, reg_class_t aclass, int val) 1447 { 1448 int i, *reg_costs; 1449 int len; 1450 1451 if (*vec != NULL) 1452 return; 1453 *vec = reg_costs = ira_allocate_cost_vector (aclass); 1454 len = ira_class_hard_regs_num[(int) aclass]; 1455 for (i = 0; i < len; i++) 1456 reg_costs[i] = val; 1457 } 1458 1459 /* Allocate cost vector *VEC for hard registers of ACLASS and copy 1460 values of vector SRC into the vector if it is necessary */ 1461 static inline void 1462 ira_allocate_and_copy_costs (int **vec, enum reg_class aclass, int *src) 1463 { 1464 int len; 1465 1466 if (*vec != NULL || src == NULL) 1467 return; 1468 *vec = ira_allocate_cost_vector (aclass); 1469 len = ira_class_hard_regs_num[aclass]; 1470 memcpy (*vec, src, sizeof (int) * len); 1471 } 1472 1473 /* Allocate cost vector *VEC for hard registers of ACLASS and add 1474 values of vector SRC into the vector if it is necessary */ 1475 static inline void 1476 ira_allocate_and_accumulate_costs (int **vec, enum reg_class aclass, int *src) 1477 { 1478 int i, len; 1479 1480 if (src == NULL) 1481 return; 1482 len = ira_class_hard_regs_num[aclass]; 1483 if (*vec == NULL) 1484 { 1485 *vec = ira_allocate_cost_vector (aclass); 1486 memset (*vec, 0, sizeof (int) * len); 1487 } 1488 for (i = 0; i < len; i++) 1489 (*vec)[i] += src[i]; 1490 } 1491 1492 /* Allocate cost vector *VEC for hard registers of ACLASS and copy 1493 values of vector SRC into the vector or initialize it by VAL (if 1494 SRC is null). */ 1495 static inline void 1496 ira_allocate_and_set_or_copy_costs (int **vec, enum reg_class aclass, 1497 int val, int *src) 1498 { 1499 int i, *reg_costs; 1500 int len; 1501 1502 if (*vec != NULL) 1503 return; 1504 *vec = reg_costs = ira_allocate_cost_vector (aclass); 1505 len = ira_class_hard_regs_num[aclass]; 1506 if (src != NULL) 1507 memcpy (reg_costs, src, sizeof (int) * len); 1508 else 1509 { 1510 for (i = 0; i < len; i++) 1511 reg_costs[i] = val; 1512 } 1513 } 1514 1515 extern rtx ira_create_new_reg (rtx); 1516 extern int first_moveable_pseudo, last_moveable_pseudo; 1517 1518 /* Return the set of registers that would need a caller save if allocno A 1519 overlapped them. */ 1520 1521 inline HARD_REG_SET 1522 ira_need_caller_save_regs (ira_allocno_t a) 1523 { 1524 return call_clobbers_in_region (ALLOCNO_CROSSED_CALLS_ABIS (a), 1525 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a), 1526 ALLOCNO_MODE (a)); 1527 } 1528 1529 /* Return true if we would need to save allocno A around a call if we 1530 assigned hard register REGNO. */ 1531 1532 inline bool 1533 ira_need_caller_save_p (ira_allocno_t a, unsigned int regno) 1534 { 1535 if (ALLOCNO_CALLS_CROSSED_NUM (a) == 0) 1536 return false; 1537 return call_clobbered_in_region_p (ALLOCNO_CROSSED_CALLS_ABIS (a), 1538 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a), 1539 ALLOCNO_MODE (a), regno); 1540 } 1541 1542 #endif /* GCC_IRA_INT_H */ 1543