xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ira-costs.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2    Copyright (C) 2006-2017 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
37 
38 /* The flags is set up every time when we calculate pseudo register
39    classes through function ira_set_pseudo_classes.  */
40 static bool pseudo_classes_defined_p = false;
41 
42 /* TRUE if we work with allocnos.  Otherwise we work with pseudos.  */
43 static bool allocno_p;
44 
45 /* Number of elements in array `costs'.  */
46 static int cost_elements_num;
47 
48 /* The `costs' struct records the cost of using hard registers of each
49    class considered for the calculation and of using memory for each
50    allocno or pseudo.  */
51 struct costs
52 {
53   int mem_cost;
54   /* Costs for register classes start here.  We process only some
55      allocno classes.  */
56   int cost[1];
57 };
58 
59 #define max_struct_costs_size \
60   (this_target_ira_int->x_max_struct_costs_size)
61 #define init_cost \
62   (this_target_ira_int->x_init_cost)
63 #define temp_costs \
64   (this_target_ira_int->x_temp_costs)
65 #define op_costs \
66   (this_target_ira_int->x_op_costs)
67 #define this_op_costs \
68   (this_target_ira_int->x_this_op_costs)
69 
70 /* Costs of each class for each allocno or pseudo.  */
71 static struct costs *costs;
72 
73 /* Accumulated costs of each class for each allocno.  */
74 static struct costs *total_allocno_costs;
75 
76 /* It is the current size of struct costs.  */
77 static size_t struct_costs_size;
78 
79 /* Return pointer to structure containing costs of allocno or pseudo
80    with given NUM in array ARR.  */
81 #define COSTS(arr, num) \
82   ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
83 
84 /* Return index in COSTS when processing reg with REGNO.  */
85 #define COST_INDEX(regno) (allocno_p 					     \
86                            ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
87 			   : (int) regno)
88 
89 /* Record register class preferences of each allocno or pseudo.  Null
90    value means no preferences.  It happens on the 1st iteration of the
91    cost calculation.  */
92 static enum reg_class *pref;
93 
94 /* Allocated buffers for pref.  */
95 static enum reg_class *pref_buffer;
96 
97 /* Record allocno class of each allocno with the same regno.  */
98 static enum reg_class *regno_aclass;
99 
100 /* Record cost gains for not allocating a register with an invariant
101    equivalence.  */
102 static int *regno_equiv_gains;
103 
104 /* Execution frequency of the current insn.  */
105 static int frequency;
106 
107 
108 
109 /* Info about reg classes whose costs are calculated for a pseudo.  */
110 struct cost_classes
111 {
112   /* Number of the cost classes in the subsequent array.  */
113   int num;
114   /* Container of the cost classes.  */
115   enum reg_class classes[N_REG_CLASSES];
116   /* Map reg class -> index of the reg class in the previous array.
117      -1 if it is not a cost class.  */
118   int index[N_REG_CLASSES];
119   /* Map hard regno index of first class in array CLASSES containing
120      the hard regno, -1 otherwise.  */
121   int hard_regno_index[FIRST_PSEUDO_REGISTER];
122 };
123 
124 /* Types of pointers to the structure above.  */
125 typedef struct cost_classes *cost_classes_t;
126 typedef const struct cost_classes *const_cost_classes_t;
127 
128 /* Info about cost classes for each pseudo.  */
129 static cost_classes_t *regno_cost_classes;
130 
131 /* Helper for cost_classes hashing.  */
132 
133 struct cost_classes_hasher : pointer_hash <cost_classes>
134 {
135   static inline hashval_t hash (const cost_classes *);
136   static inline bool equal (const cost_classes *, const cost_classes *);
137   static inline void remove (cost_classes *);
138 };
139 
140 /* Returns hash value for cost classes info HV.  */
141 inline hashval_t
142 cost_classes_hasher::hash (const cost_classes *hv)
143 {
144   return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
145 }
146 
147 /* Compares cost classes info HV1 and HV2.  */
148 inline bool
149 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
150 {
151   return (hv1->num == hv2->num
152 	  && memcmp (hv1->classes, hv2->classes,
153 		     sizeof (enum reg_class) * hv1->num) == 0);
154 }
155 
156 /* Delete cost classes info V from the hash table.  */
157 inline void
158 cost_classes_hasher::remove (cost_classes *v)
159 {
160   ira_free (v);
161 }
162 
163 /* Hash table of unique cost classes.  */
164 static hash_table<cost_classes_hasher> *cost_classes_htab;
165 
166 /* Map allocno class -> cost classes for pseudo of given allocno
167    class.  */
168 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
169 
170 /* Map mode -> cost classes for pseudo of give mode.  */
171 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
172 
173 /* Cost classes that include all classes in ira_important_classes.  */
174 static cost_classes all_cost_classes;
175 
176 /* Use the array of classes in CLASSES_PTR to fill out the rest of
177    the structure.  */
178 static void
179 complete_cost_classes (cost_classes_t classes_ptr)
180 {
181   for (int i = 0; i < N_REG_CLASSES; i++)
182     classes_ptr->index[i] = -1;
183   for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184     classes_ptr->hard_regno_index[i] = -1;
185   for (int i = 0; i < classes_ptr->num; i++)
186     {
187       enum reg_class cl = classes_ptr->classes[i];
188       classes_ptr->index[cl] = i;
189       for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
190 	{
191 	  unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 	  if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 	    classes_ptr->hard_regno_index[hard_regno] = i;
194 	}
195     }
196 }
197 
198 /* Initialize info about the cost classes for each pseudo.  */
199 static void
200 initiate_regno_cost_classes (void)
201 {
202   int size = sizeof (cost_classes_t) * max_reg_num ();
203 
204   regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205   memset (regno_cost_classes, 0, size);
206   memset (cost_classes_aclass_cache, 0,
207 	  sizeof (cost_classes_t) * N_REG_CLASSES);
208   memset (cost_classes_mode_cache, 0,
209 	  sizeof (cost_classes_t) * MAX_MACHINE_MODE);
210   cost_classes_htab = new hash_table<cost_classes_hasher> (200);
211   all_cost_classes.num = ira_important_classes_num;
212   for (int i = 0; i < ira_important_classes_num; i++)
213     all_cost_classes.classes[i] = ira_important_classes[i];
214   complete_cost_classes (&all_cost_classes);
215 }
216 
217 /* Create new cost classes from cost classes FROM and set up members
218    index and hard_regno_index.  Return the new classes.  The function
219    implements some common code of two functions
220    setup_regno_cost_classes_by_aclass and
221    setup_regno_cost_classes_by_mode.  */
222 static cost_classes_t
223 setup_cost_classes (cost_classes_t from)
224 {
225   cost_classes_t classes_ptr;
226 
227   classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228   classes_ptr->num = from->num;
229   for (int i = 0; i < from->num; i++)
230     classes_ptr->classes[i] = from->classes[i];
231   complete_cost_classes (classes_ptr);
232   return classes_ptr;
233 }
234 
235 /* Return a version of FULL that only considers registers in REGS that are
236    valid for mode MODE.  Both FULL and the returned class are globally
237    allocated.  */
238 static cost_classes_t
239 restrict_cost_classes (cost_classes_t full, machine_mode mode,
240 		       const HARD_REG_SET &regs)
241 {
242   static struct cost_classes narrow;
243   int map[N_REG_CLASSES];
244   narrow.num = 0;
245   for (int i = 0; i < full->num; i++)
246     {
247       /* Assume that we'll drop the class.  */
248       map[i] = -1;
249 
250       /* Ignore classes that are too small for the mode.  */
251       enum reg_class cl = full->classes[i];
252       if (!contains_reg_of_mode[cl][mode])
253 	continue;
254 
255       /* Calculate the set of registers in CL that belong to REGS and
256 	 are valid for MODE.  */
257       HARD_REG_SET valid_for_cl;
258       COPY_HARD_REG_SET (valid_for_cl, reg_class_contents[cl]);
259       AND_HARD_REG_SET (valid_for_cl, regs);
260       AND_COMPL_HARD_REG_SET (valid_for_cl,
261 			      ira_prohibited_class_mode_regs[cl][mode]);
262       AND_COMPL_HARD_REG_SET (valid_for_cl, ira_no_alloc_regs);
263       if (hard_reg_set_empty_p (valid_for_cl))
264 	continue;
265 
266       /* Don't use this class if the set of valid registers is a subset
267 	 of an existing class.  For example, suppose we have two classes
268 	 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS.  Suppose
269 	 that the mode changes allowed by FR_REGS are not as general as
270 	 the mode changes allowed by GR_REGS.
271 
272 	 In this situation, the mode changes for GR_AND_FR_REGS could
273 	 either be seen as the union or the intersection of the mode
274 	 changes allowed by the two subclasses.  The justification for
275 	 the union-based definition would be that, if you want a mode
276 	 change that's only allowed by GR_REGS, you can pick a register
277 	 from the GR_REGS subclass.  The justification for the
278 	 intersection-based definition would be that every register
279 	 from the class would allow the mode change.
280 
281 	 However, if we have a register that needs to be in GR_REGS,
282 	 using GR_AND_FR_REGS with the intersection-based definition
283 	 would be too pessimistic, since it would bring in restrictions
284 	 that only apply to FR_REGS.  Conversely, if we have a register
285 	 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
286 	 union-based definition would lose the extra restrictions
287 	 placed on FR_REGS.  GR_AND_FR_REGS is therefore only useful
288 	 for cases where GR_REGS and FP_REGS are both valid.  */
289       int pos;
290       for (pos = 0; pos < narrow.num; ++pos)
291 	{
292 	  enum reg_class cl2 = narrow.classes[pos];
293 	  if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
294 	    break;
295 	}
296       map[i] = pos;
297       if (pos == narrow.num)
298 	{
299 	  /* If several classes are equivalent, prefer to use the one
300 	     that was chosen as the allocno class.  */
301 	  enum reg_class cl2 = ira_allocno_class_translate[cl];
302 	  if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
303 	    cl = cl2;
304 	  narrow.classes[narrow.num++] = cl;
305 	}
306     }
307   if (narrow.num == full->num)
308     return full;
309 
310   cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
311   if (*slot == NULL)
312     {
313       cost_classes_t classes = setup_cost_classes (&narrow);
314       /* Map equivalent classes to the representative that we chose above.  */
315       for (int i = 0; i < ira_important_classes_num; i++)
316 	{
317 	  enum reg_class cl = ira_important_classes[i];
318 	  int index = full->index[cl];
319 	  if (index >= 0)
320 	    classes->index[cl] = map[index];
321 	}
322       *slot = classes;
323     }
324   return *slot;
325 }
326 
327 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
328    This function is used when we know an initial approximation of
329    allocno class of the pseudo already, e.g. on the second iteration
330    of class cost calculation or after class cost calculation in
331    register-pressure sensitive insn scheduling or register-pressure
332    sensitive loop-invariant motion.  */
333 static void
334 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
335 {
336   static struct cost_classes classes;
337   cost_classes_t classes_ptr;
338   enum reg_class cl;
339   int i;
340   cost_classes **slot;
341   HARD_REG_SET temp, temp2;
342   bool exclude_p;
343 
344   if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
345     {
346       COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
347       AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
348       /* We exclude classes from consideration which are subsets of
349 	 ACLASS only if ACLASS is an uniform class.  */
350       exclude_p = ira_uniform_class_p[aclass];
351       classes.num = 0;
352       for (i = 0; i < ira_important_classes_num; i++)
353 	{
354 	  cl = ira_important_classes[i];
355 	  if (exclude_p)
356 	    {
357 	      /* Exclude non-uniform classes which are subsets of
358 		 ACLASS.  */
359 	      COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
360 	      AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
361 	      if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
362 		continue;
363 	    }
364 	  classes.classes[classes.num++] = cl;
365 	}
366       slot = cost_classes_htab->find_slot (&classes, INSERT);
367       if (*slot == NULL)
368 	{
369 	  classes_ptr = setup_cost_classes (&classes);
370 	  *slot = classes_ptr;
371 	}
372       classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
373     }
374   if (regno_reg_rtx[regno] != NULL_RTX)
375     {
376       /* Restrict the classes to those that are valid for REGNO's mode
377 	 (which might for example exclude singleton classes if the mode
378 	 requires two registers).  Also restrict the classes to those that
379 	 are valid for subregs of REGNO.  */
380       const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
381       if (!valid_regs)
382 	valid_regs = &reg_class_contents[ALL_REGS];
383       classes_ptr = restrict_cost_classes (classes_ptr,
384 					   PSEUDO_REGNO_MODE (regno),
385 					   *valid_regs);
386     }
387   regno_cost_classes[regno] = classes_ptr;
388 }
389 
390 /* Setup cost classes for pseudo REGNO with MODE.  Usage of MODE can
391    decrease number of cost classes for the pseudo, if hard registers
392    of some important classes can not hold a value of MODE.  So the
393    pseudo can not get hard register of some important classes and cost
394    calculation for such important classes is only wasting CPU
395    time.  */
396 static void
397 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
398 {
399   if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
400     regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
401 						       mode, *valid_regs);
402   else
403     {
404       if (cost_classes_mode_cache[mode] == NULL)
405 	cost_classes_mode_cache[mode]
406 	  = restrict_cost_classes (&all_cost_classes, mode,
407 				   reg_class_contents[ALL_REGS]);
408       regno_cost_classes[regno] = cost_classes_mode_cache[mode];
409     }
410 }
411 
412 /* Finalize info about the cost classes for each pseudo.  */
413 static void
414 finish_regno_cost_classes (void)
415 {
416   ira_free (regno_cost_classes);
417   delete cost_classes_htab;
418   cost_classes_htab = NULL;
419 }
420 
421 
422 
423 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
424    TO_P is FALSE) a register of class RCLASS in mode MODE.  X must not
425    be a pseudo register.  */
426 static int
427 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
428 	   secondary_reload_info *prev_sri)
429 {
430   secondary_reload_info sri;
431   reg_class_t secondary_class = NO_REGS;
432 
433   /* If X is a SCRATCH, there is actually nothing to move since we are
434      assuming optimal allocation.  */
435   if (GET_CODE (x) == SCRATCH)
436     return 0;
437 
438   /* Get the class we will actually use for a reload.  */
439   rclass = targetm.preferred_reload_class (x, rclass);
440 
441   /* If we need a secondary reload for an intermediate, the cost is
442      that to load the input into the intermediate register, then to
443      copy it.  */
444   sri.prev_sri = prev_sri;
445   sri.extra_cost = 0;
446   /* PR 68770: Secondary reload might examine the t_icode field.  */
447   sri.t_icode = CODE_FOR_nothing;
448 
449   secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
450 
451   if (secondary_class != NO_REGS)
452     {
453       ira_init_register_move_cost_if_necessary (mode);
454       return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
455 	      + sri.extra_cost
456 	      + copy_cost (x, mode, secondary_class, to_p, &sri));
457     }
458 
459   /* For memory, use the memory move cost, for (hard) registers, use
460      the cost to move between the register classes, and use 2 for
461      everything else (constants).  */
462   if (MEM_P (x) || rclass == NO_REGS)
463     return sri.extra_cost
464 	   + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
465   else if (REG_P (x))
466     {
467       reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
468 
469       ira_init_register_move_cost_if_necessary (mode);
470       return (sri.extra_cost
471 	      + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
472     }
473   else
474     /* If this is a constant, we may eventually want to call rtx_cost
475        here.  */
476     return sri.extra_cost + COSTS_N_INSNS (1);
477 }
478 
479 
480 
481 /* Record the cost of using memory or hard registers of various
482    classes for the operands in INSN.
483 
484    N_ALTS is the number of alternatives.
485    N_OPS is the number of operands.
486    OPS is an array of the operands.
487    MODES are the modes of the operands, in case any are VOIDmode.
488    CONSTRAINTS are the constraints to use for the operands.  This array
489    is modified by this procedure.
490 
491    This procedure works alternative by alternative.  For each
492    alternative we assume that we will be able to allocate all allocnos
493    to their ideal register class and calculate the cost of using that
494    alternative.  Then we compute, for each operand that is a
495    pseudo-register, the cost of having the allocno allocated to each
496    register class and using it in that alternative.  To this cost is
497    added the cost of the alternative.
498 
499    The cost of each class for this insn is its lowest cost among all
500    the alternatives.  */
501 static void
502 record_reg_classes (int n_alts, int n_ops, rtx *ops,
503 		    machine_mode *modes, const char **constraints,
504 		    rtx_insn *insn, enum reg_class *pref)
505 {
506   int alt;
507   int i, j, k;
508   int insn_allows_mem[MAX_RECOG_OPERANDS];
509   move_table *move_in_cost, *move_out_cost;
510   short (*mem_cost)[2];
511 
512   for (i = 0; i < n_ops; i++)
513     insn_allows_mem[i] = 0;
514 
515   /* Process each alternative, each time minimizing an operand's cost
516      with the cost for each operand in that alternative.  */
517   alternative_mask preferred = get_preferred_alternatives (insn);
518   for (alt = 0; alt < n_alts; alt++)
519     {
520       enum reg_class classes[MAX_RECOG_OPERANDS];
521       int allows_mem[MAX_RECOG_OPERANDS];
522       enum reg_class rclass;
523       int alt_fail = 0;
524       int alt_cost = 0, op_cost_add;
525 
526       if (!TEST_BIT (preferred, alt))
527 	{
528 	  for (i = 0; i < recog_data.n_operands; i++)
529 	    constraints[i] = skip_alternative (constraints[i]);
530 
531 	  continue;
532 	}
533 
534       for (i = 0; i < n_ops; i++)
535 	{
536 	  unsigned char c;
537 	  const char *p = constraints[i];
538 	  rtx op = ops[i];
539 	  machine_mode mode = modes[i];
540 	  int allows_addr = 0;
541 	  int win = 0;
542 
543 	  /* Initially show we know nothing about the register class.  */
544 	  classes[i] = NO_REGS;
545 	  allows_mem[i] = 0;
546 
547 	  /* If this operand has no constraints at all, we can
548 	     conclude nothing about it since anything is valid.  */
549 	  if (*p == 0)
550 	    {
551 	      if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
552 		memset (this_op_costs[i], 0, struct_costs_size);
553 	      continue;
554 	    }
555 
556 	  /* If this alternative is only relevant when this operand
557 	     matches a previous operand, we do different things
558 	     depending on whether this operand is a allocno-reg or not.
559 	     We must process any modifiers for the operand before we
560 	     can make this test.  */
561 	  while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
562 	    p++;
563 
564 	  if (p[0] >= '0' && p[0] <= '0' + i)
565 	    {
566 	      /* Copy class and whether memory is allowed from the
567 		 matching alternative.  Then perform any needed cost
568 		 computations and/or adjustments.  */
569 	      j = p[0] - '0';
570 	      classes[i] = classes[j];
571 	      allows_mem[i] = allows_mem[j];
572 	      if (allows_mem[i])
573 		insn_allows_mem[i] = 1;
574 
575 	      if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
576 		{
577 		  /* If this matches the other operand, we have no
578 		     added cost and we win.  */
579 		  if (rtx_equal_p (ops[j], op))
580 		    win = 1;
581 		  /* If we can put the other operand into a register,
582 		     add to the cost of this alternative the cost to
583 		     copy this operand to the register used for the
584 		     other operand.  */
585 		  else if (classes[j] != NO_REGS)
586 		    {
587 		      alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
588 		      win = 1;
589 		    }
590 		}
591 	      else if (! REG_P (ops[j])
592 		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
593 		{
594 		  /* This op is an allocno but the one it matches is
595 		     not.  */
596 
597 		  /* If we can't put the other operand into a
598 		     register, this alternative can't be used.  */
599 
600 		  if (classes[j] == NO_REGS)
601 		    alt_fail = 1;
602 		  /* Otherwise, add to the cost of this alternative
603 		     the cost to copy the other operand to the hard
604 		     register used for this operand.  */
605 		  else
606 		    alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
607 		}
608 	      else
609 		{
610 		  /* The costs of this operand are not the same as the
611 		     other operand since move costs are not symmetric.
612 		     Moreover, if we cannot tie them, this alternative
613 		     needs to do a copy, which is one insn.  */
614 		  struct costs *pp = this_op_costs[i];
615 		  int *pp_costs = pp->cost;
616 		  cost_classes_t cost_classes_ptr
617 		    = regno_cost_classes[REGNO (op)];
618 		  enum reg_class *cost_classes = cost_classes_ptr->classes;
619 		  bool in_p = recog_data.operand_type[i] != OP_OUT;
620 		  bool out_p = recog_data.operand_type[i] != OP_IN;
621 		  enum reg_class op_class = classes[i];
622 
623 		  ira_init_register_move_cost_if_necessary (mode);
624 		  if (! in_p)
625 		    {
626 		      ira_assert (out_p);
627 		      if (op_class == NO_REGS)
628 			{
629 			  mem_cost = ira_memory_move_cost[mode];
630 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
631 			    {
632 			      rclass = cost_classes[k];
633 			      pp_costs[k] = mem_cost[rclass][0] * frequency;
634 			    }
635 			}
636 		      else
637 			{
638 			  move_out_cost = ira_may_move_out_cost[mode];
639 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
640 			    {
641 			      rclass = cost_classes[k];
642 			      pp_costs[k]
643 				= move_out_cost[op_class][rclass] * frequency;
644 			    }
645 			}
646 		    }
647 		  else if (! out_p)
648 		    {
649 		      ira_assert (in_p);
650 		      if (op_class == NO_REGS)
651 			{
652 			  mem_cost = ira_memory_move_cost[mode];
653 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
654 			    {
655 			      rclass = cost_classes[k];
656 			      pp_costs[k] = mem_cost[rclass][1] * frequency;
657 			    }
658 			}
659 		      else
660 			{
661 			  move_in_cost = ira_may_move_in_cost[mode];
662 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
663 			    {
664 			      rclass = cost_classes[k];
665 			      pp_costs[k]
666 				= move_in_cost[rclass][op_class] * frequency;
667 			    }
668 			}
669 		    }
670 		  else
671 		    {
672 		      if (op_class == NO_REGS)
673 			{
674 			  mem_cost = ira_memory_move_cost[mode];
675 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
676 			    {
677 			      rclass = cost_classes[k];
678 			      pp_costs[k] = ((mem_cost[rclass][0]
679 					      + mem_cost[rclass][1])
680 					     * frequency);
681 			    }
682 			}
683 		      else
684 			{
685 			  move_in_cost = ira_may_move_in_cost[mode];
686 			  move_out_cost = ira_may_move_out_cost[mode];
687 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
688 			    {
689 			      rclass = cost_classes[k];
690 			      pp_costs[k] = ((move_in_cost[rclass][op_class]
691 					      + move_out_cost[op_class][rclass])
692 					     * frequency);
693 			    }
694 			}
695 		    }
696 
697 		  /* If the alternative actually allows memory, make
698 		     things a bit cheaper since we won't need an extra
699 		     insn to load it.  */
700 		  pp->mem_cost
701 		    = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
702 		       + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
703 		       - allows_mem[i]) * frequency;
704 
705 		  /* If we have assigned a class to this allocno in
706 		     our first pass, add a cost to this alternative
707 		     corresponding to what we would add if this
708 		     allocno were not in the appropriate class.  */
709 		  if (pref)
710 		    {
711 		      enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
712 
713 		      if (pref_class == NO_REGS)
714 			alt_cost
715 			  += ((out_p
716 			       ? ira_memory_move_cost[mode][op_class][0] : 0)
717 			      + (in_p
718 				 ? ira_memory_move_cost[mode][op_class][1]
719 				 : 0));
720 		      else if (ira_reg_class_intersect
721 			       [pref_class][op_class] == NO_REGS)
722 			alt_cost
723 			  += ira_register_move_cost[mode][pref_class][op_class];
724 		    }
725 		  if (REGNO (ops[i]) != REGNO (ops[j])
726 		      && ! find_reg_note (insn, REG_DEAD, op))
727 		    alt_cost += 2;
728 
729 		  p++;
730 		}
731 	    }
732 
733 	  /* Scan all the constraint letters.  See if the operand
734 	     matches any of the constraints.  Collect the valid
735 	     register classes and see if this operand accepts
736 	     memory.  */
737 	  while ((c = *p))
738 	    {
739 	      switch (c)
740 		{
741 		case '*':
742 		  /* Ignore the next letter for this pass.  */
743 		  c = *++p;
744 		  break;
745 
746 		case '^':
747 		  alt_cost += 2;
748 		  break;
749 
750 		case '?':
751 		  alt_cost += 2;
752 		  break;
753 
754 		case 'g':
755 		  if (MEM_P (op)
756 		      || (CONSTANT_P (op)
757 			  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
758 		    win = 1;
759 		  insn_allows_mem[i] = allows_mem[i] = 1;
760 		  classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
761 		  break;
762 
763 		default:
764 		  enum constraint_num cn = lookup_constraint (p);
765 		  enum reg_class cl;
766 		  switch (get_constraint_type (cn))
767 		    {
768 		    case CT_REGISTER:
769 		      cl = reg_class_for_constraint (cn);
770 		      if (cl != NO_REGS)
771 			classes[i] = ira_reg_class_subunion[classes[i]][cl];
772 		      break;
773 
774 		    case CT_CONST_INT:
775 		      if (CONST_INT_P (op)
776 			  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
777 			win = 1;
778 		      break;
779 
780 		    case CT_MEMORY:
781 		      /* Every MEM can be reloaded to fit.  */
782 		      insn_allows_mem[i] = allows_mem[i] = 1;
783 		      if (MEM_P (op))
784 			win = 1;
785 		      break;
786 
787 		    case CT_SPECIAL_MEMORY:
788 		      insn_allows_mem[i] = allows_mem[i] = 1;
789 		      if (MEM_P (op) && constraint_satisfied_p (op, cn))
790 			win = 1;
791 		      break;
792 
793 		    case CT_ADDRESS:
794 		      /* Every address can be reloaded to fit.  */
795 		      allows_addr = 1;
796 		      if (address_operand (op, GET_MODE (op))
797 			  || constraint_satisfied_p (op, cn))
798 			win = 1;
799 		      /* We know this operand is an address, so we
800 			 want it to be allocated to a hard register
801 			 that can be the base of an address,
802 			 i.e. BASE_REG_CLASS.  */
803 		      classes[i]
804 			= ira_reg_class_subunion[classes[i]]
805 			  [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
806 					   ADDRESS, SCRATCH)];
807 		      break;
808 
809 		    case CT_FIXED_FORM:
810 		      if (constraint_satisfied_p (op, cn))
811 			win = 1;
812 		      break;
813 		    }
814 		  break;
815 		}
816 	      p += CONSTRAINT_LEN (c, p);
817 	      if (c == ',')
818 		break;
819 	    }
820 
821 	  constraints[i] = p;
822 
823 	  if (alt_fail)
824 	    break;
825 
826 	  /* How we account for this operand now depends on whether it
827 	     is a pseudo register or not.  If it is, we first check if
828 	     any register classes are valid.  If not, we ignore this
829 	     alternative, since we want to assume that all allocnos get
830 	     allocated for register preferencing.  If some register
831 	     class is valid, compute the costs of moving the allocno
832 	     into that class.  */
833 	  if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
834 	    {
835 	      if (classes[i] == NO_REGS && ! allows_mem[i])
836 		{
837 		  /* We must always fail if the operand is a REG, but
838 		     we did not find a suitable class and memory is
839 		     not allowed.
840 
841 		     Otherwise we may perform an uninitialized read
842 		     from this_op_costs after the `continue' statement
843 		     below.  */
844 		  alt_fail = 1;
845 		}
846 	      else
847 		{
848 		  unsigned int regno = REGNO (op);
849 		  struct costs *pp = this_op_costs[i];
850 		  int *pp_costs = pp->cost;
851 		  cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
852 		  enum reg_class *cost_classes = cost_classes_ptr->classes;
853 		  bool in_p = recog_data.operand_type[i] != OP_OUT;
854 		  bool out_p = recog_data.operand_type[i] != OP_IN;
855 		  enum reg_class op_class = classes[i];
856 
857 		  ira_init_register_move_cost_if_necessary (mode);
858 		  if (! in_p)
859 		    {
860 		      ira_assert (out_p);
861 		      if (op_class == NO_REGS)
862 			{
863 			  mem_cost = ira_memory_move_cost[mode];
864 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
865 			    {
866 			      rclass = cost_classes[k];
867 			      pp_costs[k] = mem_cost[rclass][0] * frequency;
868 			    }
869 			}
870 		      else
871 			{
872 			  move_out_cost = ira_may_move_out_cost[mode];
873 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
874 			    {
875 			      rclass = cost_classes[k];
876 			      pp_costs[k]
877 				= move_out_cost[op_class][rclass] * frequency;
878 			    }
879 			}
880 		    }
881 		  else if (! out_p)
882 		    {
883 		      ira_assert (in_p);
884 		      if (op_class == NO_REGS)
885 			{
886 			  mem_cost = ira_memory_move_cost[mode];
887 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
888 			    {
889 			      rclass = cost_classes[k];
890 			      pp_costs[k] = mem_cost[rclass][1] * frequency;
891 			    }
892 			}
893 		      else
894 			{
895 			  move_in_cost = ira_may_move_in_cost[mode];
896 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
897 			    {
898 			      rclass = cost_classes[k];
899 			      pp_costs[k]
900 				= move_in_cost[rclass][op_class] * frequency;
901 			    }
902 			}
903 		    }
904 		  else
905 		    {
906 		      if (op_class == NO_REGS)
907 			{
908 			  mem_cost = ira_memory_move_cost[mode];
909 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
910 			    {
911 			      rclass = cost_classes[k];
912 			      pp_costs[k] = ((mem_cost[rclass][0]
913 					      + mem_cost[rclass][1])
914 					     * frequency);
915 			    }
916 			}
917 		      else
918 			{
919 			  move_in_cost = ira_may_move_in_cost[mode];
920 			  move_out_cost = ira_may_move_out_cost[mode];
921 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
922 			    {
923 			      rclass = cost_classes[k];
924 			      pp_costs[k] = ((move_in_cost[rclass][op_class]
925 					      + move_out_cost[op_class][rclass])
926 					     * frequency);
927 			    }
928 			}
929 		    }
930 
931 		  if (op_class == NO_REGS)
932 		    /* Although we don't need insn to reload from
933 		       memory, still accessing memory is usually more
934 		       expensive than a register.  */
935 		    pp->mem_cost = frequency;
936 		  else
937 		    /* If the alternative actually allows memory, make
938 		       things a bit cheaper since we won't need an
939 		       extra insn to load it.  */
940 		    pp->mem_cost
941 		      = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
942 			 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
943 			 - allows_mem[i]) * frequency;
944 		  /* If we have assigned a class to this allocno in
945 		     our first pass, add a cost to this alternative
946 		     corresponding to what we would add if this
947 		     allocno were not in the appropriate class.  */
948 		  if (pref)
949 		    {
950 		      enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
951 
952 		      if (pref_class == NO_REGS)
953 			{
954 			  if (op_class != NO_REGS)
955 			    alt_cost
956 			      += ((out_p
957 				   ? ira_memory_move_cost[mode][op_class][0]
958 				   : 0)
959 				  + (in_p
960 				     ? ira_memory_move_cost[mode][op_class][1]
961 				     : 0));
962 			}
963 		      else if (op_class == NO_REGS)
964 			alt_cost
965 			  += ((out_p
966 			       ? ira_memory_move_cost[mode][pref_class][1]
967 			       : 0)
968 			      + (in_p
969 				 ? ira_memory_move_cost[mode][pref_class][0]
970 				 : 0));
971 		      else if (ira_reg_class_intersect[pref_class][op_class]
972 			       == NO_REGS)
973 			alt_cost += (ira_register_move_cost
974 				     [mode][pref_class][op_class]);
975 		    }
976 		}
977 	    }
978 
979 	  /* Otherwise, if this alternative wins, either because we
980 	     have already determined that or if we have a hard
981 	     register of the proper class, there is no cost for this
982 	     alternative.  */
983 	  else if (win || (REG_P (op)
984 			   && reg_fits_class_p (op, classes[i],
985 						0, GET_MODE (op))))
986 	    ;
987 
988 	  /* If registers are valid, the cost of this alternative
989 	     includes copying the object to and/or from a
990 	     register.  */
991 	  else if (classes[i] != NO_REGS)
992 	    {
993 	      if (recog_data.operand_type[i] != OP_OUT)
994 		alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
995 
996 	      if (recog_data.operand_type[i] != OP_IN)
997 		alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
998 	    }
999 	  /* The only other way this alternative can be used is if
1000 	     this is a constant that could be placed into memory.  */
1001 	  else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1002 	    alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1003 	  else
1004 	    alt_fail = 1;
1005 
1006 	  if (alt_fail)
1007 	    break;
1008 	}
1009 
1010       if (alt_fail)
1011 	{
1012 	  /* The loop above might have exited early once the failure
1013 	     was seen.  Skip over the constraints for the remaining
1014 	     operands.  */
1015 	  i += 1;
1016 	  for (; i < n_ops; ++i)
1017 	    constraints[i] = skip_alternative (constraints[i]);
1018 	  continue;
1019 	}
1020 
1021       op_cost_add = alt_cost * frequency;
1022       /* Finally, update the costs with the information we've
1023 	 calculated about this alternative.  */
1024       for (i = 0; i < n_ops; i++)
1025 	if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1026 	  {
1027 	    struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1028 	    int *pp_costs = pp->cost, *qq_costs = qq->cost;
1029 	    int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1030 	    cost_classes_t cost_classes_ptr
1031 	      = regno_cost_classes[REGNO (ops[i])];
1032 
1033 	    pp->mem_cost = MIN (pp->mem_cost,
1034 				(qq->mem_cost + op_cost_add) * scale);
1035 
1036 	    for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1037 	      pp_costs[k]
1038 		= MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1039 	  }
1040     }
1041 
1042   if (allocno_p)
1043     for (i = 0; i < n_ops; i++)
1044       {
1045 	ira_allocno_t a;
1046 	rtx op = ops[i];
1047 
1048 	if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1049 	  continue;
1050 	a = ira_curr_regno_allocno_map [REGNO (op)];
1051 	if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1052 	  ALLOCNO_BAD_SPILL_P (a) = true;
1053       }
1054 
1055 }
1056 
1057 
1058 
1059 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers.  */
1060 static inline bool
1061 ok_for_index_p_nonstrict (rtx reg)
1062 {
1063   unsigned regno = REGNO (reg);
1064 
1065   return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1066 }
1067 
1068 /* A version of regno_ok_for_base_p for use here, when all
1069    pseudo-registers should count as OK.  Arguments as for
1070    regno_ok_for_base_p.  */
1071 static inline bool
1072 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1073 			 enum rtx_code outer_code, enum rtx_code index_code)
1074 {
1075   unsigned regno = REGNO (reg);
1076 
1077   if (regno >= FIRST_PSEUDO_REGISTER)
1078     return true;
1079   return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1080 }
1081 
1082 /* Record the pseudo registers we must reload into hard registers in a
1083    subexpression of a memory address, X.
1084 
1085    If CONTEXT is 0, we are looking at the base part of an address,
1086    otherwise we are looking at the index part.
1087 
1088    MODE and AS are the mode and address space of the memory reference;
1089    OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1090    These four arguments are passed down to base_reg_class.
1091 
1092    SCALE is twice the amount to multiply the cost by (it is twice so
1093    we can represent half-cost adjustments).  */
1094 static void
1095 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1096 		     int context, enum rtx_code outer_code,
1097 		     enum rtx_code index_code, int scale)
1098 {
1099   enum rtx_code code = GET_CODE (x);
1100   enum reg_class rclass;
1101 
1102   if (context == 1)
1103     rclass = INDEX_REG_CLASS;
1104   else
1105     rclass = base_reg_class (mode, as, outer_code, index_code);
1106 
1107   switch (code)
1108     {
1109     case CONST_INT:
1110     case CONST:
1111     case CC0:
1112     case PC:
1113     case SYMBOL_REF:
1114     case LABEL_REF:
1115       return;
1116 
1117     case PLUS:
1118       /* When we have an address that is a sum, we must determine
1119 	 whether registers are "base" or "index" regs.  If there is a
1120 	 sum of two registers, we must choose one to be the "base".
1121 	 Luckily, we can use the REG_POINTER to make a good choice
1122 	 most of the time.  We only need to do this on machines that
1123 	 can have two registers in an address and where the base and
1124 	 index register classes are different.
1125 
1126 	 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1127 	 but that seems bogus since it should only be set when we are
1128 	 sure the register is being used as a pointer.  */
1129       {
1130 	rtx arg0 = XEXP (x, 0);
1131 	rtx arg1 = XEXP (x, 1);
1132 	enum rtx_code code0 = GET_CODE (arg0);
1133 	enum rtx_code code1 = GET_CODE (arg1);
1134 
1135 	/* Look inside subregs.  */
1136 	if (code0 == SUBREG)
1137 	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1138 	if (code1 == SUBREG)
1139 	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1140 
1141 	/* If this machine only allows one register per address, it
1142 	   must be in the first operand.  */
1143 	if (MAX_REGS_PER_ADDRESS == 1)
1144 	  record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1145 
1146 	/* If index and base registers are the same on this machine,
1147 	   just record registers in any non-constant operands.  We
1148 	   assume here, as well as in the tests below, that all
1149 	   addresses are in canonical form.  */
1150 	else if (INDEX_REG_CLASS
1151 		 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1152 	  {
1153 	    record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1154 	    if (! CONSTANT_P (arg1))
1155 	      record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1156 	  }
1157 
1158 	/* If the second operand is a constant integer, it doesn't
1159 	   change what class the first operand must be.  */
1160 	else if (CONST_SCALAR_INT_P (arg1))
1161 	  record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1162 	/* If the second operand is a symbolic constant, the first
1163 	   operand must be an index register.  */
1164 	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1165 	  record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1166 	/* If both operands are registers but one is already a hard
1167 	   register of index or reg-base class, give the other the
1168 	   class that the hard register is not.  */
1169 	else if (code0 == REG && code1 == REG
1170 		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1171 		 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1172 		     || ok_for_index_p_nonstrict (arg0)))
1173 	  record_address_regs (mode, as, arg1,
1174 			       ok_for_base_p_nonstrict (arg0, mode, as,
1175 							PLUS, REG) ? 1 : 0,
1176 			       PLUS, REG, scale);
1177 	else if (code0 == REG && code1 == REG
1178 		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1179 		 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1180 		     || ok_for_index_p_nonstrict (arg1)))
1181 	  record_address_regs (mode, as, arg0,
1182 			       ok_for_base_p_nonstrict (arg1, mode, as,
1183 							PLUS, REG) ? 1 : 0,
1184 			       PLUS, REG, scale);
1185 	/* If one operand is known to be a pointer, it must be the
1186 	   base with the other operand the index.  Likewise if the
1187 	   other operand is a MULT.  */
1188 	else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1189 	  {
1190 	    record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1191 	    record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1192 	  }
1193 	else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1194 	  {
1195 	    record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1196 	    record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1197 	  }
1198 	/* Otherwise, count equal chances that each might be a base or
1199 	   index register.  This case should be rare.  */
1200 	else
1201 	  {
1202 	    record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1203 	    record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1204 	    record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1205 	    record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1206 	  }
1207       }
1208       break;
1209 
1210       /* Double the importance of an allocno that is incremented or
1211 	 decremented, since it would take two extra insns if it ends
1212 	 up in the wrong place.  */
1213     case POST_MODIFY:
1214     case PRE_MODIFY:
1215       record_address_regs (mode, as, XEXP (x, 0), 0, code,
1216 			   GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1217       if (REG_P (XEXP (XEXP (x, 1), 1)))
1218 	record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1219 			     2 * scale);
1220       break;
1221 
1222     case POST_INC:
1223     case PRE_INC:
1224     case POST_DEC:
1225     case PRE_DEC:
1226       /* Double the importance of an allocno that is incremented or
1227 	 decremented, since it would take two extra insns if it ends
1228 	 up in the wrong place.  */
1229       record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1230       break;
1231 
1232     case REG:
1233       {
1234 	struct costs *pp;
1235 	int *pp_costs;
1236 	enum reg_class i;
1237 	int k, regno, add_cost;
1238 	cost_classes_t cost_classes_ptr;
1239 	enum reg_class *cost_classes;
1240 	move_table *move_in_cost;
1241 
1242 	if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1243 	  break;
1244 
1245 	regno = REGNO (x);
1246 	if (allocno_p)
1247 	  ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1248 	pp = COSTS (costs, COST_INDEX (regno));
1249 	add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1250 	if (INT_MAX - add_cost < pp->mem_cost)
1251 	  pp->mem_cost = INT_MAX;
1252 	else
1253 	  pp->mem_cost += add_cost;
1254 	cost_classes_ptr = regno_cost_classes[regno];
1255 	cost_classes = cost_classes_ptr->classes;
1256 	pp_costs = pp->cost;
1257 	ira_init_register_move_cost_if_necessary (Pmode);
1258 	move_in_cost = ira_may_move_in_cost[Pmode];
1259 	for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1260 	  {
1261 	    i = cost_classes[k];
1262 	    add_cost = (move_in_cost[i][rclass] * scale) / 2;
1263 	    if (INT_MAX - add_cost < pp_costs[k])
1264 	      pp_costs[k] = INT_MAX;
1265 	    else
1266 	      pp_costs[k] += add_cost;
1267 	  }
1268       }
1269       break;
1270 
1271     default:
1272       {
1273 	const char *fmt = GET_RTX_FORMAT (code);
1274 	int i;
1275 	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1276 	  if (fmt[i] == 'e')
1277 	    record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1278 				 scale);
1279       }
1280     }
1281 }
1282 
1283 
1284 
1285 /* Calculate the costs of insn operands.  */
1286 static void
1287 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1288 {
1289   const char *constraints[MAX_RECOG_OPERANDS];
1290   machine_mode modes[MAX_RECOG_OPERANDS];
1291   rtx ops[MAX_RECOG_OPERANDS];
1292   rtx set;
1293   int i;
1294 
1295   for (i = 0; i < recog_data.n_operands; i++)
1296     {
1297       constraints[i] = recog_data.constraints[i];
1298       modes[i] = recog_data.operand_mode[i];
1299     }
1300 
1301   /* If we get here, we are set up to record the costs of all the
1302      operands for this insn.  Start by initializing the costs.  Then
1303      handle any address registers.  Finally record the desired classes
1304      for any allocnos, doing it twice if some pair of operands are
1305      commutative.  */
1306   for (i = 0; i < recog_data.n_operands; i++)
1307     {
1308       memcpy (op_costs[i], init_cost, struct_costs_size);
1309 
1310       ops[i] = recog_data.operand[i];
1311       if (GET_CODE (recog_data.operand[i]) == SUBREG)
1312 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1313 
1314       if (MEM_P (recog_data.operand[i]))
1315 	record_address_regs (GET_MODE (recog_data.operand[i]),
1316 			     MEM_ADDR_SPACE (recog_data.operand[i]),
1317 			     XEXP (recog_data.operand[i], 0),
1318 			     0, MEM, SCRATCH, frequency * 2);
1319       else if (constraints[i][0] == 'p'
1320 	       || (insn_extra_address_constraint
1321 		   (lookup_constraint (constraints[i]))))
1322 	record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1323 			     recog_data.operand[i], 0, ADDRESS, SCRATCH,
1324 			     frequency * 2);
1325     }
1326 
1327   /* Check for commutative in a separate loop so everything will have
1328      been initialized.  We must do this even if one operand is a
1329      constant--see addsi3 in m68k.md.  */
1330   for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1331     if (constraints[i][0] == '%')
1332       {
1333 	const char *xconstraints[MAX_RECOG_OPERANDS];
1334 	int j;
1335 
1336 	/* Handle commutative operands by swapping the constraints.
1337 	   We assume the modes are the same.  */
1338 	for (j = 0; j < recog_data.n_operands; j++)
1339 	  xconstraints[j] = constraints[j];
1340 
1341 	xconstraints[i] = constraints[i+1];
1342 	xconstraints[i+1] = constraints[i];
1343 	record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1344 			    recog_data.operand, modes,
1345 			    xconstraints, insn, pref);
1346       }
1347   record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1348 		      recog_data.operand, modes,
1349 		      constraints, insn, pref);
1350 
1351   /* If this insn is a single set copying operand 1 to operand 0 and
1352      one operand is an allocno with the other a hard reg or an allocno
1353      that prefers a hard register that is in its own register class
1354      then we may want to adjust the cost of that register class to -1.
1355 
1356      Avoid the adjustment if the source does not die to avoid
1357      stressing of register allocator by preferencing two colliding
1358      registers into single class.
1359 
1360      Also avoid the adjustment if a copy between hard registers of the
1361      class is expensive (ten times the cost of a default copy is
1362      considered arbitrarily expensive).  This avoids losing when the
1363      preferred class is very expensive as the source of a copy
1364      instruction.  */
1365   if ((set = single_set (insn)) != NULL_RTX
1366       /* In rare cases the single set insn might have less 2 operands
1367 	 as the source can be a fixed special reg.  */
1368       && recog_data.n_operands > 1
1369       && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set))
1370     {
1371       int regno, other_regno;
1372       rtx dest = SET_DEST (set);
1373       rtx src = SET_SRC (set);
1374 
1375       if (GET_CODE (dest) == SUBREG
1376 	  && (GET_MODE_SIZE (GET_MODE (dest))
1377 	      == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1378 	dest = SUBREG_REG (dest);
1379       if (GET_CODE (src) == SUBREG
1380 	  && (GET_MODE_SIZE (GET_MODE (src))
1381 	      == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1382 	src = SUBREG_REG (src);
1383       if (REG_P (src) && REG_P (dest)
1384 	  && find_regno_note (insn, REG_DEAD, REGNO (src))
1385 	  && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1386 	       && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1387 	      || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1388 		  && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1389 	{
1390 	  machine_mode mode = GET_MODE (src);
1391 	  cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1392 	  enum reg_class *cost_classes = cost_classes_ptr->classes;
1393 	  reg_class_t rclass;
1394 	  int k, nr;
1395 
1396 	  i = regno == (int) REGNO (src) ? 1 : 0;
1397 	  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1398 	    {
1399 	      rclass = cost_classes[k];
1400 	      if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1401 		  && (reg_class_size[(int) rclass]
1402 		      == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
1403 		{
1404 		  if (reg_class_size[rclass] == 1)
1405 		    op_costs[i]->cost[k] = -frequency;
1406 		  else
1407 		    {
1408 		      for (nr = 0;
1409 			   nr < hard_regno_nregs[other_regno][mode];
1410 			   nr++)
1411 			if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
1412 						 other_regno + nr))
1413 			  break;
1414 
1415 		      if (nr == hard_regno_nregs[other_regno][mode])
1416 			op_costs[i]->cost[k] = -frequency;
1417 		    }
1418 		}
1419 	    }
1420 	}
1421     }
1422 }
1423 
1424 
1425 
1426 /* Process one insn INSN.  Scan it and record each time it would save
1427    code to put a certain allocnos in a certain class.  Return the last
1428    insn processed, so that the scan can be continued from there.  */
1429 static rtx_insn *
1430 scan_one_insn (rtx_insn *insn)
1431 {
1432   enum rtx_code pat_code;
1433   rtx set, note;
1434   int i, k;
1435   bool counted_mem;
1436 
1437   if (!NONDEBUG_INSN_P (insn))
1438     return insn;
1439 
1440   pat_code = GET_CODE (PATTERN (insn));
1441   if (pat_code == ASM_INPUT)
1442     return insn;
1443 
1444   /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1445      and initialize the register move costs of mode M.
1446 
1447      The pseudo may be related to another pseudo via a copy (implicit or
1448      explicit) and if there are no mode M uses/sets of the original
1449      pseudo, then we may leave the register move costs uninitialized for
1450      mode M. */
1451   if (pat_code == USE || pat_code == CLOBBER)
1452     {
1453       rtx x = XEXP (PATTERN (insn), 0);
1454       if (GET_CODE (x) == REG
1455 	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
1456 	  && have_regs_of_mode[GET_MODE (x)])
1457         ira_init_register_move_cost_if_necessary (GET_MODE (x));
1458       return insn;
1459     }
1460 
1461   counted_mem = false;
1462   set = single_set (insn);
1463   extract_insn (insn);
1464 
1465   /* If this insn loads a parameter from its stack slot, then it
1466      represents a savings, rather than a cost, if the parameter is
1467      stored in memory.  Record this fact.
1468 
1469      Similarly if we're loading other constants from memory (constant
1470      pool, TOC references, small data areas, etc) and this is the only
1471      assignment to the destination pseudo.
1472 
1473      Don't do this if SET_SRC (set) isn't a general operand, if it is
1474      a memory requiring special instructions to load it, decreasing
1475      mem_cost might result in it being loaded using the specialized
1476      instruction into a register, then stored into stack and loaded
1477      again from the stack.  See PR52208.
1478 
1479      Don't do this if SET_SRC (set) has side effect.  See PR56124.  */
1480   if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1481       && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1482       && ((MEM_P (XEXP (note, 0))
1483 	   && !side_effects_p (SET_SRC (set)))
1484 	  || (CONSTANT_P (XEXP (note, 0))
1485 	      && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1486 						XEXP (note, 0))
1487 	      && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1488       && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1489       /* LRA does not use equiv with a symbol for PIC code.  */
1490       && (! ira_use_lra_p || ! pic_offset_table_rtx
1491 	  || ! contains_symbol_ref_p (XEXP (note, 0))))
1492     {
1493       enum reg_class cl = GENERAL_REGS;
1494       rtx reg = SET_DEST (set);
1495       int num = COST_INDEX (REGNO (reg));
1496 
1497       COSTS (costs, num)->mem_cost
1498 	-= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1499       record_address_regs (GET_MODE (SET_SRC (set)),
1500 			   MEM_ADDR_SPACE (SET_SRC (set)),
1501 			   XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1502 			   frequency * 2);
1503       counted_mem = true;
1504     }
1505 
1506   record_operand_costs (insn, pref);
1507 
1508   /* Now add the cost for each operand to the total costs for its
1509      allocno.  */
1510   for (i = 0; i < recog_data.n_operands; i++)
1511     if (REG_P (recog_data.operand[i])
1512 	&& REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1513       {
1514 	int regno = REGNO (recog_data.operand[i]);
1515 	struct costs *p = COSTS (costs, COST_INDEX (regno));
1516 	struct costs *q = op_costs[i];
1517 	int *p_costs = p->cost, *q_costs = q->cost;
1518 	cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1519 	int add_cost;
1520 
1521 	/* If the already accounted for the memory "cost" above, don't
1522 	   do so again.  */
1523 	if (!counted_mem)
1524 	  {
1525 	    add_cost = q->mem_cost;
1526 	    if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1527 	      p->mem_cost = INT_MAX;
1528 	    else
1529 	      p->mem_cost += add_cost;
1530 	  }
1531 	for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1532 	  {
1533 	    add_cost = q_costs[k];
1534 	    if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1535 	      p_costs[k] = INT_MAX;
1536 	    else
1537 	      p_costs[k] += add_cost;
1538 	  }
1539       }
1540 
1541   return insn;
1542 }
1543 
1544 
1545 
1546 /* Print allocnos costs to file F.  */
1547 static void
1548 print_allocno_costs (FILE *f)
1549 {
1550   int k;
1551   ira_allocno_t a;
1552   ira_allocno_iterator ai;
1553 
1554   ira_assert (allocno_p);
1555   fprintf (f, "\n");
1556   FOR_EACH_ALLOCNO (a, ai)
1557     {
1558       int i, rclass;
1559       basic_block bb;
1560       int regno = ALLOCNO_REGNO (a);
1561       cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1562       enum reg_class *cost_classes = cost_classes_ptr->classes;
1563 
1564       i = ALLOCNO_NUM (a);
1565       fprintf (f, "  a%d(r%d,", i, regno);
1566       if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1567 	fprintf (f, "b%d", bb->index);
1568       else
1569 	fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1570       fprintf (f, ") costs:");
1571       for (k = 0; k < cost_classes_ptr->num; k++)
1572 	{
1573 	  rclass = cost_classes[k];
1574 	  fprintf (f, " %s:%d", reg_class_names[rclass],
1575 		   COSTS (costs, i)->cost[k]);
1576 	  if (flag_ira_region == IRA_REGION_ALL
1577 	      || flag_ira_region == IRA_REGION_MIXED)
1578 	    fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1579 	}
1580       fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1581       if (flag_ira_region == IRA_REGION_ALL
1582 	  || flag_ira_region == IRA_REGION_MIXED)
1583 	fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1584       fprintf (f, "\n");
1585     }
1586 }
1587 
1588 /* Print pseudo costs to file F.  */
1589 static void
1590 print_pseudo_costs (FILE *f)
1591 {
1592   int regno, k;
1593   int rclass;
1594   cost_classes_t cost_classes_ptr;
1595   enum reg_class *cost_classes;
1596 
1597   ira_assert (! allocno_p);
1598   fprintf (f, "\n");
1599   for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1600     {
1601       if (REG_N_REFS (regno) <= 0)
1602 	continue;
1603       cost_classes_ptr = regno_cost_classes[regno];
1604       cost_classes = cost_classes_ptr->classes;
1605       fprintf (f, "  r%d costs:", regno);
1606       for (k = 0; k < cost_classes_ptr->num; k++)
1607 	{
1608 	  rclass = cost_classes[k];
1609 	  fprintf (f, " %s:%d", reg_class_names[rclass],
1610 		   COSTS (costs, regno)->cost[k]);
1611 	}
1612       fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1613     }
1614 }
1615 
1616 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1617    costs.  */
1618 static void
1619 process_bb_for_costs (basic_block bb)
1620 {
1621   rtx_insn *insn;
1622 
1623   frequency = REG_FREQ_FROM_BB (bb);
1624   if (frequency == 0)
1625     frequency = 1;
1626   FOR_BB_INSNS (bb, insn)
1627     insn = scan_one_insn (insn);
1628 }
1629 
1630 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1631    costs.  */
1632 static void
1633 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1634 {
1635   basic_block bb;
1636 
1637   bb = loop_tree_node->bb;
1638   if (bb != NULL)
1639     process_bb_for_costs (bb);
1640 }
1641 
1642 /* Find costs of register classes and memory for allocnos or pseudos
1643    and their best costs.  Set up preferred, alternative and allocno
1644    classes for pseudos.  */
1645 static void
1646 find_costs_and_classes (FILE *dump_file)
1647 {
1648   int i, k, start, max_cost_classes_num;
1649   int pass;
1650   basic_block bb;
1651   enum reg_class *regno_best_class, new_class;
1652 
1653   init_recog ();
1654   regno_best_class
1655     = (enum reg_class *) ira_allocate (max_reg_num ()
1656 				       * sizeof (enum reg_class));
1657   for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1658     regno_best_class[i] = NO_REGS;
1659   if (!resize_reg_info () && allocno_p
1660       && pseudo_classes_defined_p && flag_expensive_optimizations)
1661     {
1662       ira_allocno_t a;
1663       ira_allocno_iterator ai;
1664 
1665       pref = pref_buffer;
1666       max_cost_classes_num = 1;
1667       FOR_EACH_ALLOCNO (a, ai)
1668 	{
1669 	  pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1670 	  setup_regno_cost_classes_by_aclass
1671 	    (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1672 	  max_cost_classes_num
1673 	    = MAX (max_cost_classes_num,
1674 		   regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1675 	}
1676       start = 1;
1677     }
1678   else
1679     {
1680       pref = NULL;
1681       max_cost_classes_num = ira_important_classes_num;
1682       for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1683 	if (regno_reg_rtx[i] != NULL_RTX)
1684  	  setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1685 	else
1686 	  setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1687       start = 0;
1688     }
1689   if (allocno_p)
1690     /* Clear the flag for the next compiled function.  */
1691     pseudo_classes_defined_p = false;
1692   /* Normally we scan the insns once and determine the best class to
1693      use for each allocno.  However, if -fexpensive-optimizations are
1694      on, we do so twice, the second time using the tentative best
1695      classes to guide the selection.  */
1696   for (pass = start; pass <= flag_expensive_optimizations; pass++)
1697     {
1698       if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1699 	fprintf (dump_file,
1700 		 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1701 
1702       if (pass != start)
1703 	{
1704 	  max_cost_classes_num = 1;
1705 	  for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1706 	    {
1707 	      setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1708 	      max_cost_classes_num
1709 		= MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1710 	    }
1711 	}
1712 
1713       struct_costs_size
1714 	= sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1715       /* Zero out our accumulation of the cost of each class for each
1716 	 allocno.  */
1717       memset (costs, 0, cost_elements_num * struct_costs_size);
1718 
1719       if (allocno_p)
1720 	{
1721 	  /* Scan the instructions and record each time it would save code
1722 	     to put a certain allocno in a certain class.  */
1723 	  ira_traverse_loop_tree (true, ira_loop_tree_root,
1724 				  process_bb_node_for_costs, NULL);
1725 
1726 	  memcpy (total_allocno_costs, costs,
1727 		  max_struct_costs_size * ira_allocnos_num);
1728 	}
1729       else
1730 	{
1731 	  basic_block bb;
1732 
1733 	  FOR_EACH_BB_FN (bb, cfun)
1734 	    process_bb_for_costs (bb);
1735 	}
1736 
1737       if (pass == 0)
1738 	pref = pref_buffer;
1739 
1740       /* Now for each allocno look at how desirable each class is and
1741 	 find which class is preferred.  */
1742       for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1743 	{
1744 	  ira_allocno_t a, parent_a;
1745 	  int rclass, a_num, parent_a_num, add_cost;
1746 	  ira_loop_tree_node_t parent;
1747 	  int best_cost, allocno_cost;
1748 	  enum reg_class best, alt_class;
1749 	  cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1750 	  enum reg_class *cost_classes = cost_classes_ptr->classes;
1751 	  int *i_costs = temp_costs->cost;
1752 	  int i_mem_cost;
1753 	  int equiv_savings = regno_equiv_gains[i];
1754 
1755 	  if (! allocno_p)
1756 	    {
1757 	      if (regno_reg_rtx[i] == NULL_RTX)
1758 		continue;
1759 	      memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1760 	      i_mem_cost = temp_costs->mem_cost;
1761 	    }
1762 	  else
1763 	    {
1764 	      if (ira_regno_allocno_map[i] == NULL)
1765 		continue;
1766 	      memset (temp_costs, 0, struct_costs_size);
1767 	      i_mem_cost = 0;
1768 	      /* Find cost of all allocnos with the same regno.  */
1769 	      for (a = ira_regno_allocno_map[i];
1770 		   a != NULL;
1771 		   a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1772 		{
1773 		  int *a_costs, *p_costs;
1774 
1775 		  a_num = ALLOCNO_NUM (a);
1776 		  if ((flag_ira_region == IRA_REGION_ALL
1777 		       || flag_ira_region == IRA_REGION_MIXED)
1778 		      && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1779 		      && (parent_a = parent->regno_allocno_map[i]) != NULL
1780 		      /* There are no caps yet.  */
1781 		      && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1782 				       (a)->border_allocnos,
1783 				       ALLOCNO_NUM (a)))
1784 		    {
1785 		      /* Propagate costs to upper levels in the region
1786 			 tree.  */
1787 		      parent_a_num = ALLOCNO_NUM (parent_a);
1788 		      a_costs = COSTS (total_allocno_costs, a_num)->cost;
1789 		      p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1790 		      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1791 			{
1792 			  add_cost = a_costs[k];
1793 			  if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1794 			    p_costs[k] = INT_MAX;
1795 			  else
1796 			    p_costs[k] += add_cost;
1797 			}
1798 		      add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1799 		      if (add_cost > 0
1800 			  && (INT_MAX - add_cost
1801 			      < COSTS (total_allocno_costs,
1802 				       parent_a_num)->mem_cost))
1803 			COSTS (total_allocno_costs, parent_a_num)->mem_cost
1804 			  = INT_MAX;
1805 		      else
1806 			COSTS (total_allocno_costs, parent_a_num)->mem_cost
1807 			  += add_cost;
1808 
1809 		      if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1810 			COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1811 		    }
1812 		  a_costs = COSTS (costs, a_num)->cost;
1813 		  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1814 		    {
1815 		      add_cost = a_costs[k];
1816 		      if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1817 			i_costs[k] = INT_MAX;
1818 		      else
1819 			i_costs[k] += add_cost;
1820 		    }
1821 		  add_cost = COSTS (costs, a_num)->mem_cost;
1822 		  if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1823 		    i_mem_cost = INT_MAX;
1824 		  else
1825 		    i_mem_cost += add_cost;
1826 		}
1827 	    }
1828 	  if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1829 	    i_mem_cost = 0;
1830 	  else if (equiv_savings < 0)
1831 	    i_mem_cost = -equiv_savings;
1832 	  else if (equiv_savings > 0)
1833 	    {
1834 	      i_mem_cost = 0;
1835 	      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1836 		i_costs[k] += equiv_savings;
1837 	    }
1838 
1839 	  best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1840 	  best = ALL_REGS;
1841 	  alt_class = NO_REGS;
1842 	  /* Find best common class for all allocnos with the same
1843 	     regno.  */
1844 	  for (k = 0; k < cost_classes_ptr->num; k++)
1845 	    {
1846 	      rclass = cost_classes[k];
1847 	      if (i_costs[k] < best_cost)
1848 		{
1849 		  best_cost = i_costs[k];
1850 		  best = (enum reg_class) rclass;
1851 		}
1852 	      else if (i_costs[k] == best_cost)
1853 		best = ira_reg_class_subunion[best][rclass];
1854 	      if (pass == flag_expensive_optimizations
1855 		  /* We still prefer registers to memory even at this
1856 		     stage if their costs are the same.  We will make
1857 		     a final decision during assigning hard registers
1858 		     when we have all info including more accurate
1859 		     costs which might be affected by assigning hard
1860 		     registers to other pseudos because the pseudos
1861 		     involved in moves can be coalesced.  */
1862 		  && i_costs[k] <= i_mem_cost
1863 		  && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1864 		      > reg_class_size[alt_class]))
1865 		alt_class = reg_class_subunion[alt_class][rclass];
1866 	    }
1867 	  alt_class = ira_allocno_class_translate[alt_class];
1868 	  if (best_cost > i_mem_cost
1869 	      && ! non_spilled_static_chain_regno_p (i))
1870 	    regno_aclass[i] = NO_REGS;
1871 	  else if (!optimize && !targetm.class_likely_spilled_p (best))
1872 	    /* Registers in the alternative class are likely to need
1873 	       longer or slower sequences than registers in the best class.
1874 	       When optimizing we make some effort to use the best class
1875 	       over the alternative class where possible, but at -O0 we
1876 	       effectively give the alternative class equal weight.
1877 	       We then run the risk of using slower alternative registers
1878 	       when plenty of registers from the best class are still free.
1879 	       This is especially true because live ranges tend to be very
1880 	       short in -O0 code and so register pressure tends to be low.
1881 
1882 	       Avoid that by ignoring the alternative class if the best
1883 	       class has plenty of registers.
1884 
1885 	       The union class arrays give important classes and only
1886 	       part of it are allocno classes.  So translate them into
1887 	       allocno classes.  */
1888 	    regno_aclass[i] = ira_allocno_class_translate[best];
1889 	  else
1890 	    {
1891 	      /* Make the common class the biggest class of best and
1892 		 alt_class.  Translate the common class into an
1893 		 allocno class too.  */
1894 	      regno_aclass[i] = (ira_allocno_class_translate
1895 				 [ira_reg_class_superunion[best][alt_class]]);
1896 	      ira_assert (regno_aclass[i] != NO_REGS
1897 			  && ira_reg_allocno_class_p[regno_aclass[i]]);
1898 	    }
1899 	  if ((new_class
1900 	       = (reg_class) (targetm.ira_change_pseudo_allocno_class
1901 			      (i, regno_aclass[i], best))) != regno_aclass[i])
1902 	    {
1903 	      regno_aclass[i] = new_class;
1904 	      if (hard_reg_set_subset_p (reg_class_contents[new_class],
1905 					 reg_class_contents[best]))
1906 		best = new_class;
1907 	      if (hard_reg_set_subset_p (reg_class_contents[new_class],
1908 					 reg_class_contents[alt_class]))
1909 		alt_class = new_class;
1910 	    }
1911 	  if (pass == flag_expensive_optimizations)
1912 	    {
1913 	      if (best_cost > i_mem_cost
1914 		  /* Do not assign NO_REGS to static chain pointer
1915 		     pseudo when non-local goto is used.  */
1916 		  && ! non_spilled_static_chain_regno_p (i))
1917 		best = alt_class = NO_REGS;
1918 	      else if (best == alt_class)
1919 		alt_class = NO_REGS;
1920 	      setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1921 	      if ((!allocno_p || internal_flag_ira_verbose > 2)
1922 		  && dump_file != NULL)
1923 		fprintf (dump_file,
1924 			 "    r%d: preferred %s, alternative %s, allocno %s\n",
1925 			 i, reg_class_names[best], reg_class_names[alt_class],
1926 			 reg_class_names[regno_aclass[i]]);
1927 	    }
1928 	  regno_best_class[i] = best;
1929 	  if (! allocno_p)
1930 	    {
1931 	      pref[i] = (best_cost > i_mem_cost
1932 			 && ! non_spilled_static_chain_regno_p (i)
1933 			 ? NO_REGS : best);
1934 	      continue;
1935 	    }
1936 	  for (a = ira_regno_allocno_map[i];
1937 	       a != NULL;
1938 	       a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1939 	    {
1940 	      enum reg_class aclass = regno_aclass[i];
1941 	      int a_num = ALLOCNO_NUM (a);
1942 	      int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1943 	      int *a_costs = COSTS (costs, a_num)->cost;
1944 
1945 	      if (aclass == NO_REGS)
1946 		best = NO_REGS;
1947 	      else
1948 		{
1949 		  /* Finding best class which is subset of the common
1950 		     class.  */
1951 		  best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1952 		  allocno_cost = best_cost;
1953 		  best = ALL_REGS;
1954 		  for (k = 0; k < cost_classes_ptr->num; k++)
1955 		    {
1956 		      rclass = cost_classes[k];
1957 		      if (! ira_class_subset_p[rclass][aclass])
1958 			continue;
1959 		      if (total_a_costs[k] < best_cost)
1960 			{
1961 			  best_cost = total_a_costs[k];
1962 			  allocno_cost = a_costs[k];
1963 			  best = (enum reg_class) rclass;
1964 			}
1965 		      else if (total_a_costs[k] == best_cost)
1966 			{
1967 			  best = ira_reg_class_subunion[best][rclass];
1968 			  allocno_cost = MAX (allocno_cost, a_costs[k]);
1969 			}
1970 		    }
1971 		  ALLOCNO_CLASS_COST (a) = allocno_cost;
1972 		}
1973 	      if (internal_flag_ira_verbose > 2 && dump_file != NULL
1974 		  && (pass == 0 || pref[a_num] != best))
1975 		{
1976 		  fprintf (dump_file, "    a%d (r%d,", a_num, i);
1977 		  if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1978 		    fprintf (dump_file, "b%d", bb->index);
1979 		  else
1980 		    fprintf (dump_file, "l%d",
1981 			     ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1982 		  fprintf (dump_file, ") best %s, allocno %s\n",
1983 			   reg_class_names[best],
1984 			   reg_class_names[aclass]);
1985 		}
1986 	      pref[a_num] = best;
1987 	      if (pass == flag_expensive_optimizations && best != aclass
1988 		  && ira_class_hard_regs_num[best] > 0
1989 		  && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
1990 		      >= ira_class_hard_regs_num[best]))
1991 		{
1992 		  int ind = cost_classes_ptr->index[aclass];
1993 
1994 		  ira_assert (ind >= 0);
1995 		  ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
1996 		  ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
1997 					(a_costs[ind] - ALLOCNO_CLASS_COST (a))
1998 					/ (ira_register_move_cost
1999 					   [ALLOCNO_MODE (a)][best][aclass]));
2000 		  for (k = 0; k < cost_classes_ptr->num; k++)
2001 		    if (ira_class_subset_p[cost_classes[k]][best])
2002 		      a_costs[k] = a_costs[ind];
2003 		}
2004 	    }
2005 	}
2006 
2007       if (internal_flag_ira_verbose > 4 && dump_file)
2008 	{
2009 	  if (allocno_p)
2010 	    print_allocno_costs (dump_file);
2011 	  else
2012 	    print_pseudo_costs (dump_file);
2013 	  fprintf (dump_file,"\n");
2014 	}
2015     }
2016   ira_free (regno_best_class);
2017 }
2018 
2019 
2020 
2021 /* Process moves involving hard regs to modify allocno hard register
2022    costs.  We can do this only after determining allocno class.  If a
2023    hard register forms a register class, then moves with the hard
2024    register are already taken into account in class costs for the
2025    allocno.  */
2026 static void
2027 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2028 {
2029   int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2030   bool to_p;
2031   ira_allocno_t a, curr_a;
2032   ira_loop_tree_node_t curr_loop_tree_node;
2033   enum reg_class rclass;
2034   basic_block bb;
2035   rtx_insn *insn;
2036   rtx set, src, dst;
2037 
2038   bb = loop_tree_node->bb;
2039   if (bb == NULL)
2040     return;
2041   freq = REG_FREQ_FROM_BB (bb);
2042   if (freq == 0)
2043     freq = 1;
2044   FOR_BB_INSNS (bb, insn)
2045     {
2046       if (!NONDEBUG_INSN_P (insn))
2047 	continue;
2048       set = single_set (insn);
2049       if (set == NULL_RTX)
2050 	continue;
2051       dst = SET_DEST (set);
2052       src = SET_SRC (set);
2053       if (! REG_P (dst) || ! REG_P (src))
2054 	continue;
2055       dst_regno = REGNO (dst);
2056       src_regno = REGNO (src);
2057       if (dst_regno >= FIRST_PSEUDO_REGISTER
2058 	  && src_regno < FIRST_PSEUDO_REGISTER)
2059 	{
2060 	  hard_regno = src_regno;
2061 	  a = ira_curr_regno_allocno_map[dst_regno];
2062 	  to_p = true;
2063 	}
2064       else if (src_regno >= FIRST_PSEUDO_REGISTER
2065 	       && dst_regno < FIRST_PSEUDO_REGISTER)
2066 	{
2067 	  hard_regno = dst_regno;
2068 	  a = ira_curr_regno_allocno_map[src_regno];
2069 	  to_p = false;
2070 	}
2071       else
2072 	continue;
2073       rclass = ALLOCNO_CLASS (a);
2074       if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2075 	continue;
2076       i = ira_class_hard_reg_index[rclass][hard_regno];
2077       if (i < 0)
2078 	continue;
2079       a_regno = ALLOCNO_REGNO (a);
2080       for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2081 	   curr_loop_tree_node != NULL;
2082 	   curr_loop_tree_node = curr_loop_tree_node->parent)
2083 	if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2084 	  ira_add_allocno_pref (curr_a, hard_regno, freq);
2085       {
2086 	int cost;
2087 	enum reg_class hard_reg_class;
2088 	machine_mode mode;
2089 
2090 	mode = ALLOCNO_MODE (a);
2091 	hard_reg_class = REGNO_REG_CLASS (hard_regno);
2092 	ira_init_register_move_cost_if_necessary (mode);
2093 	cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2094 		: ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2095 	ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2096 				    ALLOCNO_CLASS_COST (a));
2097 	ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2098 				    rclass, 0);
2099 	ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2100 	ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2101 	ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2102 				      ALLOCNO_HARD_REG_COSTS (a)[i]);
2103       }
2104     }
2105 }
2106 
2107 /* After we find hard register and memory costs for allocnos, define
2108    its class and modify hard register cost because insns moving
2109    allocno to/from hard registers.  */
2110 static void
2111 setup_allocno_class_and_costs (void)
2112 {
2113   int i, j, n, regno, hard_regno, num;
2114   int *reg_costs;
2115   enum reg_class aclass, rclass;
2116   ira_allocno_t a;
2117   ira_allocno_iterator ai;
2118   cost_classes_t cost_classes_ptr;
2119 
2120   ira_assert (allocno_p);
2121   FOR_EACH_ALLOCNO (a, ai)
2122     {
2123       i = ALLOCNO_NUM (a);
2124       regno = ALLOCNO_REGNO (a);
2125       aclass = regno_aclass[regno];
2126       cost_classes_ptr = regno_cost_classes[regno];
2127       ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2128       ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2129       ira_set_allocno_class (a, aclass);
2130       if (aclass == NO_REGS)
2131 	continue;
2132       if (optimize && ALLOCNO_CLASS (a) != pref[i])
2133 	{
2134 	  n = ira_class_hard_regs_num[aclass];
2135 	  ALLOCNO_HARD_REG_COSTS (a)
2136 	    = reg_costs = ira_allocate_cost_vector (aclass);
2137 	  for (j = n - 1; j >= 0; j--)
2138 	    {
2139 	      hard_regno = ira_class_hard_regs[aclass][j];
2140 	      if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2141 		reg_costs[j] = ALLOCNO_CLASS_COST (a);
2142 	      else
2143 		{
2144 		  rclass = REGNO_REG_CLASS (hard_regno);
2145 		  num = cost_classes_ptr->index[rclass];
2146 		  if (num < 0)
2147 		    {
2148 		      num = cost_classes_ptr->hard_regno_index[hard_regno];
2149 		      ira_assert (num >= 0);
2150 		    }
2151 		  reg_costs[j] = COSTS (costs, i)->cost[num];
2152 		}
2153 	    }
2154 	}
2155     }
2156   if (optimize)
2157     ira_traverse_loop_tree (true, ira_loop_tree_root,
2158 			    process_bb_node_for_hard_reg_moves, NULL);
2159 }
2160 
2161 
2162 
2163 /* Function called once during compiler work.  */
2164 void
2165 ira_init_costs_once (void)
2166 {
2167   int i;
2168 
2169   init_cost = NULL;
2170   for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2171     {
2172       op_costs[i] = NULL;
2173       this_op_costs[i] = NULL;
2174     }
2175   temp_costs = NULL;
2176 }
2177 
2178 /* Free allocated temporary cost vectors.  */
2179 void
2180 target_ira_int::free_ira_costs ()
2181 {
2182   int i;
2183 
2184   free (x_init_cost);
2185   x_init_cost = NULL;
2186   for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2187     {
2188       free (x_op_costs[i]);
2189       free (x_this_op_costs[i]);
2190       x_op_costs[i] = x_this_op_costs[i] = NULL;
2191     }
2192   free (x_temp_costs);
2193   x_temp_costs = NULL;
2194 }
2195 
2196 /* This is called each time register related information is
2197    changed.  */
2198 void
2199 ira_init_costs (void)
2200 {
2201   int i;
2202 
2203   this_target_ira_int->free_ira_costs ();
2204   max_struct_costs_size
2205     = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2206   /* Don't use ira_allocate because vectors live through several IRA
2207      calls.  */
2208   init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2209   init_cost->mem_cost = 1000000;
2210   for (i = 0; i < ira_important_classes_num; i++)
2211     init_cost->cost[i] = 1000000;
2212   for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2213     {
2214       op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2215       this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2216     }
2217   temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2218 }
2219 
2220 
2221 
2222 /* Common initialization function for ira_costs and
2223    ira_set_pseudo_classes.  */
2224 static void
2225 init_costs (void)
2226 {
2227   init_subregs_of_mode ();
2228   costs = (struct costs *) ira_allocate (max_struct_costs_size
2229 					 * cost_elements_num);
2230   pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2231 						 * cost_elements_num);
2232   regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2233 						 * max_reg_num ());
2234   regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2235   memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2236 }
2237 
2238 /* Common finalization function for ira_costs and
2239    ira_set_pseudo_classes.  */
2240 static void
2241 finish_costs (void)
2242 {
2243   finish_subregs_of_mode ();
2244   ira_free (regno_equiv_gains);
2245   ira_free (regno_aclass);
2246   ira_free (pref_buffer);
2247   ira_free (costs);
2248 }
2249 
2250 /* Entry function which defines register class, memory and hard
2251    register costs for each allocno.  */
2252 void
2253 ira_costs (void)
2254 {
2255   allocno_p = true;
2256   cost_elements_num = ira_allocnos_num;
2257   init_costs ();
2258   total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2259 						       * ira_allocnos_num);
2260   initiate_regno_cost_classes ();
2261   calculate_elim_costs_all_insns ();
2262   find_costs_and_classes (ira_dump_file);
2263   setup_allocno_class_and_costs ();
2264   finish_regno_cost_classes ();
2265   finish_costs ();
2266   ira_free (total_allocno_costs);
2267 }
2268 
2269 /* Entry function which defines classes for pseudos.
2270    Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true.  */
2271 void
2272 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2273 {
2274   allocno_p = false;
2275   internal_flag_ira_verbose = flag_ira_verbose;
2276   cost_elements_num = max_reg_num ();
2277   init_costs ();
2278   initiate_regno_cost_classes ();
2279   find_costs_and_classes (dump_file);
2280   finish_regno_cost_classes ();
2281   if (define_pseudo_classes)
2282     pseudo_classes_defined_p = true;
2283 
2284   finish_costs ();
2285 }
2286 
2287 
2288 
2289 /* Change hard register costs for allocnos which lives through
2290    function calls.  This is called only when we found all intersected
2291    calls during building allocno live ranges.  */
2292 void
2293 ira_tune_allocno_costs (void)
2294 {
2295   int j, n, regno;
2296   int cost, min_cost, *reg_costs;
2297   enum reg_class aclass, rclass;
2298   machine_mode mode;
2299   ira_allocno_t a;
2300   ira_allocno_iterator ai;
2301   ira_allocno_object_iterator oi;
2302   ira_object_t obj;
2303   bool skip_p;
2304   HARD_REG_SET *crossed_calls_clobber_regs;
2305 
2306   FOR_EACH_ALLOCNO (a, ai)
2307     {
2308       aclass = ALLOCNO_CLASS (a);
2309       if (aclass == NO_REGS)
2310 	continue;
2311       mode = ALLOCNO_MODE (a);
2312       n = ira_class_hard_regs_num[aclass];
2313       min_cost = INT_MAX;
2314       if (ALLOCNO_CALLS_CROSSED_NUM (a)
2315 	  != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2316 	{
2317 	  ira_allocate_and_set_costs
2318 	    (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2319 	     ALLOCNO_CLASS_COST (a));
2320 	  reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2321 	  for (j = n - 1; j >= 0; j--)
2322 	    {
2323 	      regno = ira_class_hard_regs[aclass][j];
2324 	      skip_p = false;
2325 	      FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2326 		{
2327 		  if (ira_hard_reg_set_intersection_p (regno, mode,
2328 						       OBJECT_CONFLICT_HARD_REGS
2329 						       (obj)))
2330 		    {
2331 		      skip_p = true;
2332 		      break;
2333 		    }
2334 		}
2335 	      if (skip_p)
2336 		continue;
2337 	      rclass = REGNO_REG_CLASS (regno);
2338 	      cost = 0;
2339 	      crossed_calls_clobber_regs
2340 		= &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2341 	      if (ira_hard_reg_set_intersection_p (regno, mode,
2342 						   *crossed_calls_clobber_regs)
2343 		  && (ira_hard_reg_set_intersection_p (regno, mode,
2344 						       call_used_reg_set)
2345 		      || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
2346 		cost += (ALLOCNO_CALL_FREQ (a)
2347 			 * (ira_memory_move_cost[mode][rclass][0]
2348 			    + ira_memory_move_cost[mode][rclass][1]));
2349 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2350 	      cost += ((ira_memory_move_cost[mode][rclass][0]
2351 			+ ira_memory_move_cost[mode][rclass][1])
2352 		       * ALLOCNO_FREQ (a)
2353 		       * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2354 #endif
2355 	      if (INT_MAX - cost < reg_costs[j])
2356 		reg_costs[j] = INT_MAX;
2357 	      else
2358 		reg_costs[j] += cost;
2359 	      if (min_cost > reg_costs[j])
2360 		min_cost = reg_costs[j];
2361 	    }
2362 	}
2363       if (min_cost != INT_MAX)
2364 	ALLOCNO_CLASS_COST (a) = min_cost;
2365 
2366       /* Some targets allow pseudos to be allocated to unaligned sequences
2367 	 of hard registers.  However, selecting an unaligned sequence can
2368 	 unnecessarily restrict later allocations.  So increase the cost of
2369 	 unaligned hard regs to encourage the use of aligned hard regs.  */
2370       {
2371 	const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2372 
2373 	if (nregs > 1)
2374 	  {
2375 	    ira_allocate_and_set_costs
2376 	      (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2377 	    reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2378 	    for (j = n - 1; j >= 0; j--)
2379 	      {
2380 		regno = ira_non_ordered_class_hard_regs[aclass][j];
2381 		if ((regno % nregs) != 0)
2382 		  {
2383 		    int index = ira_class_hard_reg_index[aclass][regno];
2384 		    ira_assert (index != -1);
2385 		    reg_costs[index] += ALLOCNO_FREQ (a);
2386 		  }
2387 	      }
2388 	  }
2389       }
2390     }
2391 }
2392 
2393 /* Add COST to the estimated gain for eliminating REGNO with its
2394    equivalence.  If COST is zero, record that no such elimination is
2395    possible.  */
2396 
2397 void
2398 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2399 {
2400   if (cost == 0)
2401     regno_equiv_gains[regno] = 0;
2402   else
2403     regno_equiv_gains[regno] += cost;
2404 }
2405 
2406 void
2407 ira_costs_c_finalize (void)
2408 {
2409   this_target_ira_int->free_ira_costs ();
2410 }
2411