1 /* Inlining decision heuristics. 2 Copyright (C) 2003-2013 Free Software Foundation, Inc. 3 Contributed by Jan Hubicka 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* Inlining decision heuristics 22 23 The implementation of inliner is organized as follows: 24 25 inlining heuristics limits 26 27 can_inline_edge_p allow to check that particular inlining is allowed 28 by the limits specified by user (allowed function growth, growth and so 29 on). 30 31 Functions are inlined when it is obvious the result is profitable (such 32 as functions called once or when inlining reduce code size). 33 In addition to that we perform inlining of small functions and recursive 34 inlining. 35 36 inlining heuristics 37 38 The inliner itself is split into two passes: 39 40 pass_early_inlining 41 42 Simple local inlining pass inlining callees into current function. 43 This pass makes no use of whole unit analysis and thus it can do only 44 very simple decisions based on local properties. 45 46 The strength of the pass is that it is run in topological order 47 (reverse postorder) on the callgraph. Functions are converted into SSA 48 form just before this pass and optimized subsequently. As a result, the 49 callees of the function seen by the early inliner was already optimized 50 and results of early inlining adds a lot of optimization opportunities 51 for the local optimization. 52 53 The pass handle the obvious inlining decisions within the compilation 54 unit - inlining auto inline functions, inlining for size and 55 flattening. 56 57 main strength of the pass is the ability to eliminate abstraction 58 penalty in C++ code (via combination of inlining and early 59 optimization) and thus improve quality of analysis done by real IPA 60 optimizers. 61 62 Because of lack of whole unit knowledge, the pass can not really make 63 good code size/performance tradeoffs. It however does very simple 64 speculative inlining allowing code size to grow by 65 EARLY_INLINING_INSNS when callee is leaf function. In this case the 66 optimizations performed later are very likely to eliminate the cost. 67 68 pass_ipa_inline 69 70 This is the real inliner able to handle inlining with whole program 71 knowledge. It performs following steps: 72 73 1) inlining of small functions. This is implemented by greedy 74 algorithm ordering all inlinable cgraph edges by their badness and 75 inlining them in this order as long as inline limits allows doing so. 76 77 This heuristics is not very good on inlining recursive calls. Recursive 78 calls can be inlined with results similar to loop unrolling. To do so, 79 special purpose recursive inliner is executed on function when 80 recursive edge is met as viable candidate. 81 82 2) Unreachable functions are removed from callgraph. Inlining leads 83 to devirtualization and other modification of callgraph so functions 84 may become unreachable during the process. Also functions declared as 85 extern inline or virtual functions are removed, since after inlining 86 we no longer need the offline bodies. 87 88 3) Functions called once and not exported from the unit are inlined. 89 This should almost always lead to reduction of code size by eliminating 90 the need for offline copy of the function. */ 91 92 #include "config.h" 93 #include "system.h" 94 #include "coretypes.h" 95 #include "tm.h" 96 #include "tree.h" 97 #include "tree-inline.h" 98 #include "langhooks.h" 99 #include "flags.h" 100 #include "cgraph.h" 101 #include "diagnostic.h" 102 #include "gimple-pretty-print.h" 103 #include "params.h" 104 #include "fibheap.h" 105 #include "intl.h" 106 #include "tree-pass.h" 107 #include "coverage.h" 108 #include "ggc.h" 109 #include "rtl.h" 110 #include "tree-flow.h" 111 #include "ipa-prop.h" 112 #include "except.h" 113 #include "target.h" 114 #include "ipa-inline.h" 115 #include "ipa-utils.h" 116 117 /* Statistics we collect about inlining algorithm. */ 118 static int overall_size; 119 static gcov_type max_count; 120 121 /* Return false when inlining edge E would lead to violating 122 limits on function unit growth or stack usage growth. 123 124 The relative function body growth limit is present generally 125 to avoid problems with non-linear behavior of the compiler. 126 To allow inlining huge functions into tiny wrapper, the limit 127 is always based on the bigger of the two functions considered. 128 129 For stack growth limits we always base the growth in stack usage 130 of the callers. We want to prevent applications from segfaulting 131 on stack overflow when functions with huge stack frames gets 132 inlined. */ 133 134 static bool 135 caller_growth_limits (struct cgraph_edge *e) 136 { 137 struct cgraph_node *to = e->caller; 138 struct cgraph_node *what = cgraph_function_or_thunk_node (e->callee, NULL); 139 int newsize; 140 int limit = 0; 141 HOST_WIDE_INT stack_size_limit = 0, inlined_stack; 142 struct inline_summary *info, *what_info, *outer_info = inline_summary (to); 143 144 /* Look for function e->caller is inlined to. While doing 145 so work out the largest function body on the way. As 146 described above, we want to base our function growth 147 limits based on that. Not on the self size of the 148 outer function, not on the self size of inline code 149 we immediately inline to. This is the most relaxed 150 interpretation of the rule "do not grow large functions 151 too much in order to prevent compiler from exploding". */ 152 while (true) 153 { 154 info = inline_summary (to); 155 if (limit < info->self_size) 156 limit = info->self_size; 157 if (stack_size_limit < info->estimated_self_stack_size) 158 stack_size_limit = info->estimated_self_stack_size; 159 if (to->global.inlined_to) 160 to = to->callers->caller; 161 else 162 break; 163 } 164 165 what_info = inline_summary (what); 166 167 if (limit < what_info->self_size) 168 limit = what_info->self_size; 169 170 limit += limit * PARAM_VALUE (PARAM_LARGE_FUNCTION_GROWTH) / 100; 171 172 /* Check the size after inlining against the function limits. But allow 173 the function to shrink if it went over the limits by forced inlining. */ 174 newsize = estimate_size_after_inlining (to, e); 175 if (newsize >= info->size 176 && newsize > PARAM_VALUE (PARAM_LARGE_FUNCTION_INSNS) 177 && newsize > limit) 178 { 179 e->inline_failed = CIF_LARGE_FUNCTION_GROWTH_LIMIT; 180 return false; 181 } 182 183 if (!what_info->estimated_stack_size) 184 return true; 185 186 /* FIXME: Stack size limit often prevents inlining in Fortran programs 187 due to large i/o datastructures used by the Fortran front-end. 188 We ought to ignore this limit when we know that the edge is executed 189 on every invocation of the caller (i.e. its call statement dominates 190 exit block). We do not track this information, yet. */ 191 stack_size_limit += ((gcov_type)stack_size_limit 192 * PARAM_VALUE (PARAM_STACK_FRAME_GROWTH) / 100); 193 194 inlined_stack = (outer_info->stack_frame_offset 195 + outer_info->estimated_self_stack_size 196 + what_info->estimated_stack_size); 197 /* Check new stack consumption with stack consumption at the place 198 stack is used. */ 199 if (inlined_stack > stack_size_limit 200 /* If function already has large stack usage from sibling 201 inline call, we can inline, too. 202 This bit overoptimistically assume that we are good at stack 203 packing. */ 204 && inlined_stack > info->estimated_stack_size 205 && inlined_stack > PARAM_VALUE (PARAM_LARGE_STACK_FRAME)) 206 { 207 e->inline_failed = CIF_LARGE_STACK_FRAME_GROWTH_LIMIT; 208 return false; 209 } 210 return true; 211 } 212 213 /* Dump info about why inlining has failed. */ 214 215 static void 216 report_inline_failed_reason (struct cgraph_edge *e) 217 { 218 if (dump_file) 219 { 220 fprintf (dump_file, " not inlinable: %s/%i -> %s/%i, %s\n", 221 xstrdup (cgraph_node_name (e->caller)), e->caller->uid, 222 xstrdup (cgraph_node_name (e->callee)), e->callee->uid, 223 cgraph_inline_failed_string (e->inline_failed)); 224 } 225 } 226 227 /* Decide if we can inline the edge and possibly update 228 inline_failed reason. 229 We check whether inlining is possible at all and whether 230 caller growth limits allow doing so. 231 232 if REPORT is true, output reason to the dump file. */ 233 234 static bool 235 can_inline_edge_p (struct cgraph_edge *e, bool report) 236 { 237 bool inlinable = true; 238 enum availability avail; 239 struct cgraph_node *callee 240 = cgraph_function_or_thunk_node (e->callee, &avail); 241 tree caller_tree = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (e->caller->symbol.decl); 242 tree callee_tree 243 = callee ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (callee->symbol.decl) : NULL; 244 struct function *caller_cfun = DECL_STRUCT_FUNCTION (e->caller->symbol.decl); 245 struct function *callee_cfun 246 = callee ? DECL_STRUCT_FUNCTION (callee->symbol.decl) : NULL; 247 248 if (!caller_cfun && e->caller->clone_of) 249 caller_cfun = DECL_STRUCT_FUNCTION (e->caller->clone_of->symbol.decl); 250 251 if (!callee_cfun && callee && callee->clone_of) 252 callee_cfun = DECL_STRUCT_FUNCTION (callee->clone_of->symbol.decl); 253 254 gcc_assert (e->inline_failed); 255 256 if (!callee || !callee->analyzed) 257 { 258 e->inline_failed = CIF_BODY_NOT_AVAILABLE; 259 inlinable = false; 260 } 261 else if (!inline_summary (callee)->inlinable) 262 { 263 e->inline_failed = CIF_FUNCTION_NOT_INLINABLE; 264 inlinable = false; 265 } 266 else if (avail <= AVAIL_OVERWRITABLE) 267 { 268 e->inline_failed = CIF_OVERWRITABLE; 269 return false; 270 } 271 else if (e->call_stmt_cannot_inline_p) 272 { 273 e->inline_failed = CIF_MISMATCHED_ARGUMENTS; 274 inlinable = false; 275 } 276 /* Don't inline if the functions have different EH personalities. */ 277 else if (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl) 278 && DECL_FUNCTION_PERSONALITY (callee->symbol.decl) 279 && (DECL_FUNCTION_PERSONALITY (e->caller->symbol.decl) 280 != DECL_FUNCTION_PERSONALITY (callee->symbol.decl))) 281 { 282 e->inline_failed = CIF_EH_PERSONALITY; 283 inlinable = false; 284 } 285 /* TM pure functions should not be inlined into non-TM_pure 286 functions. */ 287 else if (is_tm_pure (callee->symbol.decl) 288 && !is_tm_pure (e->caller->symbol.decl)) 289 { 290 e->inline_failed = CIF_UNSPECIFIED; 291 inlinable = false; 292 } 293 /* Don't inline if the callee can throw non-call exceptions but the 294 caller cannot. 295 FIXME: this is obviously wrong for LTO where STRUCT_FUNCTION is missing. 296 Move the flag into cgraph node or mirror it in the inline summary. */ 297 else if (callee_cfun && callee_cfun->can_throw_non_call_exceptions 298 && !(caller_cfun && caller_cfun->can_throw_non_call_exceptions)) 299 { 300 e->inline_failed = CIF_NON_CALL_EXCEPTIONS; 301 inlinable = false; 302 } 303 /* Check compatibility of target optimization options. */ 304 else if (!targetm.target_option.can_inline_p (e->caller->symbol.decl, 305 callee->symbol.decl)) 306 { 307 e->inline_failed = CIF_TARGET_OPTION_MISMATCH; 308 inlinable = false; 309 } 310 /* Check if caller growth allows the inlining. */ 311 else if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl) 312 && !lookup_attribute ("flatten", 313 DECL_ATTRIBUTES 314 (e->caller->global.inlined_to 315 ? e->caller->global.inlined_to->symbol.decl 316 : e->caller->symbol.decl)) 317 && !caller_growth_limits (e)) 318 inlinable = false; 319 /* Don't inline a function with a higher optimization level than the 320 caller. FIXME: this is really just tip of iceberg of handling 321 optimization attribute. */ 322 else if (caller_tree != callee_tree) 323 { 324 struct cl_optimization *caller_opt 325 = TREE_OPTIMIZATION ((caller_tree) 326 ? caller_tree 327 : optimization_default_node); 328 329 struct cl_optimization *callee_opt 330 = TREE_OPTIMIZATION ((callee_tree) 331 ? callee_tree 332 : optimization_default_node); 333 334 if (((caller_opt->x_optimize > callee_opt->x_optimize) 335 || (caller_opt->x_optimize_size != callee_opt->x_optimize_size)) 336 /* gcc.dg/pr43564.c. Look at forced inline even in -O0. */ 337 && !DECL_DISREGARD_INLINE_LIMITS (e->callee->symbol.decl)) 338 { 339 e->inline_failed = CIF_OPTIMIZATION_MISMATCH; 340 inlinable = false; 341 } 342 } 343 344 if (!inlinable && report) 345 report_inline_failed_reason (e); 346 return inlinable; 347 } 348 349 350 /* Return true if the edge E is inlinable during early inlining. */ 351 352 static bool 353 can_early_inline_edge_p (struct cgraph_edge *e) 354 { 355 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, 356 NULL); 357 /* Early inliner might get called at WPA stage when IPA pass adds new 358 function. In this case we can not really do any of early inlining 359 because function bodies are missing. */ 360 if (!gimple_has_body_p (callee->symbol.decl)) 361 { 362 e->inline_failed = CIF_BODY_NOT_AVAILABLE; 363 return false; 364 } 365 /* In early inliner some of callees may not be in SSA form yet 366 (i.e. the callgraph is cyclic and we did not process 367 the callee by early inliner, yet). We don't have CIF code for this 368 case; later we will re-do the decision in the real inliner. */ 369 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (e->caller->symbol.decl)) 370 || !gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl))) 371 { 372 if (dump_file) 373 fprintf (dump_file, " edge not inlinable: not in SSA form\n"); 374 return false; 375 } 376 if (!can_inline_edge_p (e, true)) 377 return false; 378 return true; 379 } 380 381 382 /* Return number of calls in N. Ignore cheap builtins. */ 383 384 static int 385 num_calls (struct cgraph_node *n) 386 { 387 struct cgraph_edge *e; 388 int num = 0; 389 390 for (e = n->callees; e; e = e->next_callee) 391 if (!is_inexpensive_builtin (e->callee->symbol.decl)) 392 num++; 393 return num; 394 } 395 396 397 /* Return true if we are interested in inlining small function. */ 398 399 static bool 400 want_early_inline_function_p (struct cgraph_edge *e) 401 { 402 bool want_inline = true; 403 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL); 404 405 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)) 406 ; 407 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl) 408 && !flag_inline_small_functions) 409 { 410 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE; 411 report_inline_failed_reason (e); 412 want_inline = false; 413 } 414 else 415 { 416 int growth = estimate_edge_growth (e); 417 int n; 418 419 if (growth <= 0) 420 ; 421 else if (!cgraph_maybe_hot_edge_p (e) 422 && growth > 0) 423 { 424 if (dump_file) 425 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, " 426 "call is cold and code would grow by %i\n", 427 xstrdup (cgraph_node_name (e->caller)), e->caller->uid, 428 xstrdup (cgraph_node_name (callee)), callee->uid, 429 growth); 430 want_inline = false; 431 } 432 else if (growth > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS)) 433 { 434 if (dump_file) 435 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, " 436 "growth %i exceeds --param early-inlining-insns\n", 437 xstrdup (cgraph_node_name (e->caller)), e->caller->uid, 438 xstrdup (cgraph_node_name (callee)), callee->uid, 439 growth); 440 want_inline = false; 441 } 442 else if ((n = num_calls (callee)) != 0 443 && growth * (n + 1) > PARAM_VALUE (PARAM_EARLY_INLINING_INSNS)) 444 { 445 if (dump_file) 446 fprintf (dump_file, " will not early inline: %s/%i->%s/%i, " 447 "growth %i exceeds --param early-inlining-insns " 448 "divided by number of calls\n", 449 xstrdup (cgraph_node_name (e->caller)), e->caller->uid, 450 xstrdup (cgraph_node_name (callee)), callee->uid, 451 growth); 452 want_inline = false; 453 } 454 } 455 return want_inline; 456 } 457 458 /* Compute time of the edge->caller + edge->callee execution when inlining 459 does not happen. */ 460 461 inline gcov_type 462 compute_uninlined_call_time (struct inline_summary *callee_info, 463 struct cgraph_edge *edge) 464 { 465 gcov_type uninlined_call_time = 466 RDIV ((gcov_type)callee_info->time * MAX (edge->frequency, 1), 467 CGRAPH_FREQ_BASE); 468 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to 469 ? edge->caller->global.inlined_to 470 : edge->caller)->time; 471 return uninlined_call_time + caller_time; 472 } 473 474 /* Same as compute_uinlined_call_time but compute time when inlining 475 does happen. */ 476 477 inline gcov_type 478 compute_inlined_call_time (struct cgraph_edge *edge, 479 int edge_time) 480 { 481 gcov_type caller_time = inline_summary (edge->caller->global.inlined_to 482 ? edge->caller->global.inlined_to 483 : edge->caller)->time; 484 gcov_type time = (caller_time 485 + RDIV (((gcov_type) edge_time 486 - inline_edge_summary (edge)->call_stmt_time) 487 * MAX (edge->frequency, 1), CGRAPH_FREQ_BASE)); 488 /* Possible one roundoff error, but watch for overflows. */ 489 gcc_checking_assert (time >= INT_MIN / 2); 490 if (time < 0) 491 time = 0; 492 return time; 493 } 494 495 /* Return true if the speedup for inlining E is bigger than 496 PARAM_MAX_INLINE_MIN_SPEEDUP. */ 497 498 static bool 499 big_speedup_p (struct cgraph_edge *e) 500 { 501 gcov_type time = compute_uninlined_call_time (inline_summary (e->callee), 502 e); 503 gcov_type inlined_time = compute_inlined_call_time (e, 504 estimate_edge_time (e)); 505 if (time - inlined_time 506 > RDIV (time * PARAM_VALUE (PARAM_INLINE_MIN_SPEEDUP), 100)) 507 return true; 508 return false; 509 } 510 511 /* Return true if we are interested in inlining small function. 512 When REPORT is true, report reason to dump file. */ 513 514 static bool 515 want_inline_small_function_p (struct cgraph_edge *e, bool report) 516 { 517 bool want_inline = true; 518 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL); 519 520 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)) 521 ; 522 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl) 523 && !flag_inline_small_functions) 524 { 525 e->inline_failed = CIF_FUNCTION_NOT_INLINE_CANDIDATE; 526 want_inline = false; 527 } 528 else 529 { 530 int growth = estimate_edge_growth (e); 531 inline_hints hints = estimate_edge_hints (e); 532 bool big_speedup = big_speedup_p (e); 533 534 if (growth <= 0) 535 ; 536 /* Apply MAX_INLINE_INSNS_SINGLE limit. Do not do so when 537 hints suggests that inlining given function is very profitable. */ 538 else if (DECL_DECLARED_INLINE_P (callee->symbol.decl) 539 && growth >= MAX_INLINE_INSNS_SINGLE 540 && !big_speedup 541 && !(hints & (INLINE_HINT_indirect_call 542 | INLINE_HINT_loop_iterations 543 | INLINE_HINT_array_index 544 | INLINE_HINT_loop_stride))) 545 { 546 e->inline_failed = CIF_MAX_INLINE_INSNS_SINGLE_LIMIT; 547 want_inline = false; 548 } 549 /* Before giving up based on fact that caller size will grow, allow 550 functions that are called few times and eliminating the offline 551 copy will lead to overall code size reduction. 552 Not all of these will be handled by subsequent inlining of functions 553 called once: in particular weak functions are not handled or funcitons 554 that inline to multiple calls but a lot of bodies is optimized out. 555 Finally we want to inline earlier to allow inlining of callbacks. 556 557 This is slightly wrong on aggressive side: it is entirely possible 558 that function is called many times with a context where inlining 559 reduces code size and few times with a context where inlining increase 560 code size. Resoluting growth estimate will be negative even if it 561 would make more sense to keep offline copy and do not inline into the 562 call sites that makes the code size grow. 563 564 When badness orders the calls in a way that code reducing calls come 565 first, this situation is not a problem at all: after inlining all 566 "good" calls, we will realize that keeping the function around is 567 better. */ 568 else if (growth <= MAX_INLINE_INSNS_SINGLE 569 /* Unlike for functions called once, we play unsafe with 570 COMDATs. We can allow that since we know functions 571 in consideration are small (and thus risk is small) and 572 moreover grow estimates already accounts that COMDAT 573 functions may or may not disappear when eliminated from 574 current unit. With good probability making aggressive 575 choice in all units is going to make overall program 576 smaller. 577 578 Consequently we ask cgraph_can_remove_if_no_direct_calls_p 579 instead of 580 cgraph_will_be_removed_from_program_if_no_direct_calls */ 581 && !DECL_EXTERNAL (callee->symbol.decl) 582 && cgraph_can_remove_if_no_direct_calls_p (callee) 583 && estimate_growth (callee) <= 0) 584 ; 585 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl) 586 && !flag_inline_functions) 587 { 588 e->inline_failed = CIF_NOT_DECLARED_INLINED; 589 want_inline = false; 590 } 591 /* Apply MAX_INLINE_INSNS_AUTO limit for functions not declared inline 592 Upgrade it to MAX_INLINE_INSNS_SINGLE when hints suggests that 593 inlining given function is very profitable. */ 594 else if (!DECL_DECLARED_INLINE_P (callee->symbol.decl) 595 && !big_speedup 596 && growth >= ((hints & (INLINE_HINT_indirect_call 597 | INLINE_HINT_loop_iterations 598 | INLINE_HINT_array_index 599 | INLINE_HINT_loop_stride)) 600 ? MAX (MAX_INLINE_INSNS_AUTO, 601 MAX_INLINE_INSNS_SINGLE) 602 : MAX_INLINE_INSNS_AUTO)) 603 { 604 e->inline_failed = CIF_MAX_INLINE_INSNS_AUTO_LIMIT; 605 want_inline = false; 606 } 607 /* If call is cold, do not inline when function body would grow. */ 608 else if (!cgraph_maybe_hot_edge_p (e)) 609 { 610 e->inline_failed = CIF_UNLIKELY_CALL; 611 want_inline = false; 612 } 613 } 614 if (!want_inline && report) 615 report_inline_failed_reason (e); 616 return want_inline; 617 } 618 619 /* EDGE is self recursive edge. 620 We hand two cases - when function A is inlining into itself 621 or when function A is being inlined into another inliner copy of function 622 A within function B. 623 624 In first case OUTER_NODE points to the toplevel copy of A, while 625 in the second case OUTER_NODE points to the outermost copy of A in B. 626 627 In both cases we want to be extra selective since 628 inlining the call will just introduce new recursive calls to appear. */ 629 630 static bool 631 want_inline_self_recursive_call_p (struct cgraph_edge *edge, 632 struct cgraph_node *outer_node, 633 bool peeling, 634 int depth) 635 { 636 char const *reason = NULL; 637 bool want_inline = true; 638 int caller_freq = CGRAPH_FREQ_BASE; 639 int max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH_AUTO); 640 641 if (DECL_DECLARED_INLINE_P (edge->caller->symbol.decl)) 642 max_depth = PARAM_VALUE (PARAM_MAX_INLINE_RECURSIVE_DEPTH); 643 644 if (!cgraph_maybe_hot_edge_p (edge)) 645 { 646 reason = "recursive call is cold"; 647 want_inline = false; 648 } 649 else if (max_count && !outer_node->count) 650 { 651 reason = "not executed in profile"; 652 want_inline = false; 653 } 654 else if (depth > max_depth) 655 { 656 reason = "--param max-inline-recursive-depth exceeded."; 657 want_inline = false; 658 } 659 660 if (outer_node->global.inlined_to) 661 caller_freq = outer_node->callers->frequency; 662 663 if (!want_inline) 664 ; 665 /* Inlining of self recursive function into copy of itself within other function 666 is transformation similar to loop peeling. 667 668 Peeling is profitable if we can inline enough copies to make probability 669 of actual call to the self recursive function very small. Be sure that 670 the probability of recursion is small. 671 672 We ensure that the frequency of recursing is at most 1 - (1/max_depth). 673 This way the expected number of recision is at most max_depth. */ 674 else if (peeling) 675 { 676 int max_prob = CGRAPH_FREQ_BASE - ((CGRAPH_FREQ_BASE + max_depth - 1) 677 / max_depth); 678 int i; 679 for (i = 1; i < depth; i++) 680 max_prob = max_prob * max_prob / CGRAPH_FREQ_BASE; 681 if (max_count 682 && (edge->count * CGRAPH_FREQ_BASE / outer_node->count 683 >= max_prob)) 684 { 685 reason = "profile of recursive call is too large"; 686 want_inline = false; 687 } 688 if (!max_count 689 && (edge->frequency * CGRAPH_FREQ_BASE / caller_freq 690 >= max_prob)) 691 { 692 reason = "frequency of recursive call is too large"; 693 want_inline = false; 694 } 695 } 696 /* Recursive inlining, i.e. equivalent of unrolling, is profitable if recursion 697 depth is large. We reduce function call overhead and increase chances that 698 things fit in hardware return predictor. 699 700 Recursive inlining might however increase cost of stack frame setup 701 actually slowing down functions whose recursion tree is wide rather than 702 deep. 703 704 Deciding reliably on when to do recursive inlining without profile feedback 705 is tricky. For now we disable recursive inlining when probability of self 706 recursion is low. 707 708 Recursive inlining of self recursive call within loop also results in large loop 709 depths that generally optimize badly. We may want to throttle down inlining 710 in those cases. In particular this seems to happen in one of libstdc++ rb tree 711 methods. */ 712 else 713 { 714 if (max_count 715 && (edge->count * 100 / outer_node->count 716 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY))) 717 { 718 reason = "profile of recursive call is too small"; 719 want_inline = false; 720 } 721 else if (!max_count 722 && (edge->frequency * 100 / caller_freq 723 <= PARAM_VALUE (PARAM_MIN_INLINE_RECURSIVE_PROBABILITY))) 724 { 725 reason = "frequency of recursive call is too small"; 726 want_inline = false; 727 } 728 } 729 if (!want_inline && dump_file) 730 fprintf (dump_file, " not inlining recursively: %s\n", reason); 731 return want_inline; 732 } 733 734 /* Return true when NODE has caller other than EDGE. 735 Worker for cgraph_for_node_and_aliases. */ 736 737 static bool 738 check_caller_edge (struct cgraph_node *node, void *edge) 739 { 740 return (node->callers 741 && node->callers != edge); 742 } 743 744 745 /* Decide if inlining NODE would reduce unit size by eliminating 746 the offline copy of function. 747 When COLD is true the cold calls are considered, too. */ 748 749 static bool 750 want_inline_function_to_all_callers_p (struct cgraph_node *node, bool cold) 751 { 752 struct cgraph_node *function = cgraph_function_or_thunk_node (node, NULL); 753 struct cgraph_edge *e; 754 bool has_hot_call = false; 755 756 /* Does it have callers? */ 757 if (!node->callers) 758 return false; 759 /* Already inlined? */ 760 if (function->global.inlined_to) 761 return false; 762 if (cgraph_function_or_thunk_node (node, NULL) != node) 763 return false; 764 /* Inlining into all callers would increase size? */ 765 if (estimate_growth (node) > 0) 766 return false; 767 /* Maybe other aliases has more direct calls. */ 768 if (cgraph_for_node_and_aliases (node, check_caller_edge, node->callers, true)) 769 return false; 770 /* All inlines must be possible. */ 771 for (e = node->callers; e; e = e->next_caller) 772 { 773 if (!can_inline_edge_p (e, true)) 774 return false; 775 if (!has_hot_call && cgraph_maybe_hot_edge_p (e)) 776 has_hot_call = 1; 777 } 778 779 if (!cold && !has_hot_call) 780 return false; 781 return true; 782 } 783 784 #define RELATIVE_TIME_BENEFIT_RANGE (INT_MAX / 64) 785 786 /* Return relative time improvement for inlining EDGE in range 787 1...RELATIVE_TIME_BENEFIT_RANGE */ 788 789 static inline int 790 relative_time_benefit (struct inline_summary *callee_info, 791 struct cgraph_edge *edge, 792 int edge_time) 793 { 794 gcov_type relbenefit; 795 gcov_type uninlined_call_time = compute_uninlined_call_time (callee_info, edge); 796 gcov_type inlined_call_time = compute_inlined_call_time (edge, edge_time); 797 798 /* Inlining into extern inline function is not a win. */ 799 if (DECL_EXTERNAL (edge->caller->global.inlined_to 800 ? edge->caller->global.inlined_to->symbol.decl 801 : edge->caller->symbol.decl)) 802 return 1; 803 804 /* Watch overflows. */ 805 gcc_checking_assert (uninlined_call_time >= 0); 806 gcc_checking_assert (inlined_call_time >= 0); 807 gcc_checking_assert (uninlined_call_time >= inlined_call_time); 808 809 /* Compute relative time benefit, i.e. how much the call becomes faster. 810 ??? perhaps computing how much the caller+calle together become faster 811 would lead to more realistic results. */ 812 if (!uninlined_call_time) 813 uninlined_call_time = 1; 814 relbenefit = 815 RDIV (((gcov_type)uninlined_call_time - inlined_call_time) * RELATIVE_TIME_BENEFIT_RANGE, 816 uninlined_call_time); 817 relbenefit = MIN (relbenefit, RELATIVE_TIME_BENEFIT_RANGE); 818 gcc_checking_assert (relbenefit >= 0); 819 relbenefit = MAX (relbenefit, 1); 820 return relbenefit; 821 } 822 823 824 /* A cost model driving the inlining heuristics in a way so the edges with 825 smallest badness are inlined first. After each inlining is performed 826 the costs of all caller edges of nodes affected are recomputed so the 827 metrics may accurately depend on values such as number of inlinable callers 828 of the function or function body size. */ 829 830 static int 831 edge_badness (struct cgraph_edge *edge, bool dump) 832 { 833 gcov_type badness; 834 int growth, edge_time; 835 struct cgraph_node *callee = cgraph_function_or_thunk_node (edge->callee, 836 NULL); 837 struct inline_summary *callee_info = inline_summary (callee); 838 inline_hints hints; 839 840 if (DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)) 841 return INT_MIN; 842 843 growth = estimate_edge_growth (edge); 844 edge_time = estimate_edge_time (edge); 845 hints = estimate_edge_hints (edge); 846 gcc_checking_assert (edge_time >= 0); 847 gcc_checking_assert (edge_time <= callee_info->time); 848 gcc_checking_assert (growth <= callee_info->size); 849 850 if (dump) 851 { 852 fprintf (dump_file, " Badness calculation for %s/%i -> %s/%i\n", 853 xstrdup (cgraph_node_name (edge->caller)), 854 edge->caller->uid, 855 xstrdup (cgraph_node_name (callee)), 856 edge->callee->uid); 857 fprintf (dump_file, " size growth %i, time %i ", 858 growth, 859 edge_time); 860 dump_inline_hints (dump_file, hints); 861 if (big_speedup_p (edge)) 862 fprintf (dump_file, " big_speedup"); 863 fprintf (dump_file, "\n"); 864 } 865 866 /* Always prefer inlining saving code size. */ 867 if (growth <= 0) 868 { 869 badness = INT_MIN / 2 + growth; 870 if (dump) 871 fprintf (dump_file, " %i: Growth %i <= 0\n", (int) badness, 872 growth); 873 } 874 875 /* When profiling is available, compute badness as: 876 877 relative_edge_count * relative_time_benefit 878 goodness = ------------------------------------------- 879 growth_f_caller 880 badness = -goodness 881 882 The fraction is upside down, because on edge counts and time beneits 883 the bounds are known. Edge growth is essentially unlimited. */ 884 885 else if (max_count) 886 { 887 int relbenefit = relative_time_benefit (callee_info, edge, edge_time); 888 badness = 889 ((int) 890 ((double) edge->count * INT_MIN / 2 / max_count / RELATIVE_TIME_BENEFIT_RANGE) * 891 relbenefit) / growth; 892 893 /* Be sure that insanity of the profile won't lead to increasing counts 894 in the scalling and thus to overflow in the computation above. */ 895 gcc_assert (max_count >= edge->count); 896 if (dump) 897 { 898 fprintf (dump_file, 899 " %i (relative %f): profile info. Relative count %f" 900 " * Relative benefit %f\n", 901 (int) badness, (double) badness / INT_MIN, 902 (double) edge->count / max_count, 903 relbenefit * 100.0 / RELATIVE_TIME_BENEFIT_RANGE); 904 } 905 } 906 907 /* When function local profile is available. Compute badness as: 908 909 relative_time_benefit 910 goodness = --------------------------------- 911 growth_of_caller * overall_growth 912 913 badness = - goodness 914 915 compensated by the inline hints. 916 */ 917 else if (flag_guess_branch_prob) 918 { 919 badness = (relative_time_benefit (callee_info, edge, edge_time) 920 * (INT_MIN / 16 / RELATIVE_TIME_BENEFIT_RANGE)); 921 badness /= (MIN (65536/2, growth) * MIN (65536/2, MAX (1, callee_info->growth))); 922 gcc_checking_assert (badness <=0 && badness >= INT_MIN / 16); 923 if ((hints & (INLINE_HINT_indirect_call 924 | INLINE_HINT_loop_iterations 925 | INLINE_HINT_array_index 926 | INLINE_HINT_loop_stride)) 927 || callee_info->growth <= 0) 928 badness *= 8; 929 if (hints & (INLINE_HINT_same_scc)) 930 badness /= 16; 931 else if (hints & (INLINE_HINT_in_scc)) 932 badness /= 8; 933 else if (hints & (INLINE_HINT_cross_module)) 934 badness /= 2; 935 gcc_checking_assert (badness <= 0 && badness >= INT_MIN / 2); 936 if ((hints & INLINE_HINT_declared_inline) && badness >= INT_MIN / 32) 937 badness *= 16; 938 if (dump) 939 { 940 fprintf (dump_file, 941 " %i: guessed profile. frequency %f," 942 " benefit %f%%, time w/o inlining %i, time w inlining %i" 943 " overall growth %i (current) %i (original)\n", 944 (int) badness, (double)edge->frequency / CGRAPH_FREQ_BASE, 945 relative_time_benefit (callee_info, edge, edge_time) * 100.0 946 / RELATIVE_TIME_BENEFIT_RANGE, 947 (int)compute_uninlined_call_time (callee_info, edge), 948 (int)compute_inlined_call_time (edge, edge_time), 949 estimate_growth (callee), 950 callee_info->growth); 951 } 952 } 953 /* When function local profile is not available or it does not give 954 useful information (ie frequency is zero), base the cost on 955 loop nest and overall size growth, so we optimize for overall number 956 of functions fully inlined in program. */ 957 else 958 { 959 int nest = MIN (inline_edge_summary (edge)->loop_depth, 8); 960 badness = growth * 256; 961 962 /* Decrease badness if call is nested. */ 963 if (badness > 0) 964 badness >>= nest; 965 else 966 { 967 badness <<= nest; 968 } 969 if (dump) 970 fprintf (dump_file, " %i: no profile. nest %i\n", (int) badness, 971 nest); 972 } 973 974 /* Ensure that we did not overflow in all the fixed point math above. */ 975 gcc_assert (badness >= INT_MIN); 976 gcc_assert (badness <= INT_MAX - 1); 977 /* Make recursive inlining happen always after other inlining is done. */ 978 if (cgraph_edge_recursive_p (edge)) 979 return badness + 1; 980 else 981 return badness; 982 } 983 984 /* Recompute badness of EDGE and update its key in HEAP if needed. */ 985 static inline void 986 update_edge_key (fibheap_t heap, struct cgraph_edge *edge) 987 { 988 int badness = edge_badness (edge, false); 989 if (edge->aux) 990 { 991 fibnode_t n = (fibnode_t) edge->aux; 992 gcc_checking_assert (n->data == edge); 993 994 /* fibheap_replace_key only decrease the keys. 995 When we increase the key we do not update heap 996 and instead re-insert the element once it becomes 997 a minimum of heap. */ 998 if (badness < n->key) 999 { 1000 if (dump_file && (dump_flags & TDF_DETAILS)) 1001 { 1002 fprintf (dump_file, 1003 " decreasing badness %s/%i -> %s/%i, %i to %i\n", 1004 xstrdup (cgraph_node_name (edge->caller)), 1005 edge->caller->uid, 1006 xstrdup (cgraph_node_name (edge->callee)), 1007 edge->callee->uid, 1008 (int)n->key, 1009 badness); 1010 } 1011 fibheap_replace_key (heap, n, badness); 1012 gcc_checking_assert (n->key == badness); 1013 } 1014 } 1015 else 1016 { 1017 if (dump_file && (dump_flags & TDF_DETAILS)) 1018 { 1019 fprintf (dump_file, 1020 " enqueuing call %s/%i -> %s/%i, badness %i\n", 1021 xstrdup (cgraph_node_name (edge->caller)), 1022 edge->caller->uid, 1023 xstrdup (cgraph_node_name (edge->callee)), 1024 edge->callee->uid, 1025 badness); 1026 } 1027 edge->aux = fibheap_insert (heap, badness, edge); 1028 } 1029 } 1030 1031 1032 /* NODE was inlined. 1033 All caller edges needs to be resetted because 1034 size estimates change. Similarly callees needs reset 1035 because better context may be known. */ 1036 1037 static void 1038 reset_edge_caches (struct cgraph_node *node) 1039 { 1040 struct cgraph_edge *edge; 1041 struct cgraph_edge *e = node->callees; 1042 struct cgraph_node *where = node; 1043 int i; 1044 struct ipa_ref *ref; 1045 1046 if (where->global.inlined_to) 1047 where = where->global.inlined_to; 1048 1049 /* WHERE body size has changed, the cached growth is invalid. */ 1050 reset_node_growth_cache (where); 1051 1052 for (edge = where->callers; edge; edge = edge->next_caller) 1053 if (edge->inline_failed) 1054 reset_edge_growth_cache (edge); 1055 for (i = 0; ipa_ref_list_referring_iterate (&where->symbol.ref_list, 1056 i, ref); i++) 1057 if (ref->use == IPA_REF_ALIAS) 1058 reset_edge_caches (ipa_ref_referring_node (ref)); 1059 1060 if (!e) 1061 return; 1062 1063 while (true) 1064 if (!e->inline_failed && e->callee->callees) 1065 e = e->callee->callees; 1066 else 1067 { 1068 if (e->inline_failed) 1069 reset_edge_growth_cache (e); 1070 if (e->next_callee) 1071 e = e->next_callee; 1072 else 1073 { 1074 do 1075 { 1076 if (e->caller == node) 1077 return; 1078 e = e->caller->callers; 1079 } 1080 while (!e->next_callee); 1081 e = e->next_callee; 1082 } 1083 } 1084 } 1085 1086 /* Recompute HEAP nodes for each of caller of NODE. 1087 UPDATED_NODES track nodes we already visited, to avoid redundant work. 1088 When CHECK_INLINABLITY_FOR is set, re-check for specified edge that 1089 it is inlinable. Otherwise check all edges. */ 1090 1091 static void 1092 update_caller_keys (fibheap_t heap, struct cgraph_node *node, 1093 bitmap updated_nodes, 1094 struct cgraph_edge *check_inlinablity_for) 1095 { 1096 struct cgraph_edge *edge; 1097 int i; 1098 struct ipa_ref *ref; 1099 1100 if ((!node->alias && !inline_summary (node)->inlinable) 1101 || cgraph_function_body_availability (node) <= AVAIL_OVERWRITABLE 1102 || node->global.inlined_to) 1103 return; 1104 if (!bitmap_set_bit (updated_nodes, node->uid)) 1105 return; 1106 1107 for (i = 0; ipa_ref_list_referring_iterate (&node->symbol.ref_list, 1108 i, ref); i++) 1109 if (ref->use == IPA_REF_ALIAS) 1110 { 1111 struct cgraph_node *alias = ipa_ref_referring_node (ref); 1112 update_caller_keys (heap, alias, updated_nodes, check_inlinablity_for); 1113 } 1114 1115 for (edge = node->callers; edge; edge = edge->next_caller) 1116 if (edge->inline_failed) 1117 { 1118 if (!check_inlinablity_for 1119 || check_inlinablity_for == edge) 1120 { 1121 if (can_inline_edge_p (edge, false) 1122 && want_inline_small_function_p (edge, false)) 1123 update_edge_key (heap, edge); 1124 else if (edge->aux) 1125 { 1126 report_inline_failed_reason (edge); 1127 fibheap_delete_node (heap, (fibnode_t) edge->aux); 1128 edge->aux = NULL; 1129 } 1130 } 1131 else if (edge->aux) 1132 update_edge_key (heap, edge); 1133 } 1134 } 1135 1136 /* Recompute HEAP nodes for each uninlined call in NODE. 1137 This is used when we know that edge badnesses are going only to increase 1138 (we introduced new call site) and thus all we need is to insert newly 1139 created edges into heap. */ 1140 1141 static void 1142 update_callee_keys (fibheap_t heap, struct cgraph_node *node, 1143 bitmap updated_nodes) 1144 { 1145 struct cgraph_edge *e = node->callees; 1146 1147 if (!e) 1148 return; 1149 while (true) 1150 if (!e->inline_failed && e->callee->callees) 1151 e = e->callee->callees; 1152 else 1153 { 1154 enum availability avail; 1155 struct cgraph_node *callee; 1156 /* We do not reset callee growth cache here. Since we added a new call, 1157 growth chould have just increased and consequentely badness metric 1158 don't need updating. */ 1159 if (e->inline_failed 1160 && (callee = cgraph_function_or_thunk_node (e->callee, &avail)) 1161 && inline_summary (callee)->inlinable 1162 && cgraph_function_body_availability (callee) >= AVAIL_AVAILABLE 1163 && !bitmap_bit_p (updated_nodes, callee->uid)) 1164 { 1165 if (can_inline_edge_p (e, false) 1166 && want_inline_small_function_p (e, false)) 1167 update_edge_key (heap, e); 1168 else if (e->aux) 1169 { 1170 report_inline_failed_reason (e); 1171 fibheap_delete_node (heap, (fibnode_t) e->aux); 1172 e->aux = NULL; 1173 } 1174 } 1175 if (e->next_callee) 1176 e = e->next_callee; 1177 else 1178 { 1179 do 1180 { 1181 if (e->caller == node) 1182 return; 1183 e = e->caller->callers; 1184 } 1185 while (!e->next_callee); 1186 e = e->next_callee; 1187 } 1188 } 1189 } 1190 1191 /* Enqueue all recursive calls from NODE into priority queue depending on 1192 how likely we want to recursively inline the call. */ 1193 1194 static void 1195 lookup_recursive_calls (struct cgraph_node *node, struct cgraph_node *where, 1196 fibheap_t heap) 1197 { 1198 struct cgraph_edge *e; 1199 enum availability avail; 1200 1201 for (e = where->callees; e; e = e->next_callee) 1202 if (e->callee == node 1203 || (cgraph_function_or_thunk_node (e->callee, &avail) == node 1204 && avail > AVAIL_OVERWRITABLE)) 1205 { 1206 /* When profile feedback is available, prioritize by expected number 1207 of calls. */ 1208 fibheap_insert (heap, 1209 !max_count ? -e->frequency 1210 : -(e->count / ((max_count + (1<<24) - 1) / (1<<24))), 1211 e); 1212 } 1213 for (e = where->callees; e; e = e->next_callee) 1214 if (!e->inline_failed) 1215 lookup_recursive_calls (node, e->callee, heap); 1216 } 1217 1218 /* Decide on recursive inlining: in the case function has recursive calls, 1219 inline until body size reaches given argument. If any new indirect edges 1220 are discovered in the process, add them to *NEW_EDGES, unless NEW_EDGES 1221 is NULL. */ 1222 1223 static bool 1224 recursive_inlining (struct cgraph_edge *edge, 1225 vec<cgraph_edge_p> *new_edges) 1226 { 1227 int limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE_AUTO); 1228 fibheap_t heap; 1229 struct cgraph_node *node; 1230 struct cgraph_edge *e; 1231 struct cgraph_node *master_clone = NULL, *next; 1232 int depth = 0; 1233 int n = 0; 1234 1235 node = edge->caller; 1236 if (node->global.inlined_to) 1237 node = node->global.inlined_to; 1238 1239 if (DECL_DECLARED_INLINE_P (node->symbol.decl)) 1240 limit = PARAM_VALUE (PARAM_MAX_INLINE_INSNS_RECURSIVE); 1241 1242 /* Make sure that function is small enough to be considered for inlining. */ 1243 if (estimate_size_after_inlining (node, edge) >= limit) 1244 return false; 1245 heap = fibheap_new (); 1246 lookup_recursive_calls (node, node, heap); 1247 if (fibheap_empty (heap)) 1248 { 1249 fibheap_delete (heap); 1250 return false; 1251 } 1252 1253 if (dump_file) 1254 fprintf (dump_file, 1255 " Performing recursive inlining on %s\n", 1256 cgraph_node_name (node)); 1257 1258 /* Do the inlining and update list of recursive call during process. */ 1259 while (!fibheap_empty (heap)) 1260 { 1261 struct cgraph_edge *curr 1262 = (struct cgraph_edge *) fibheap_extract_min (heap); 1263 struct cgraph_node *cnode, *dest = curr->callee; 1264 1265 if (!can_inline_edge_p (curr, true)) 1266 continue; 1267 1268 /* MASTER_CLONE is produced in the case we already started modified 1269 the function. Be sure to redirect edge to the original body before 1270 estimating growths otherwise we will be seeing growths after inlining 1271 the already modified body. */ 1272 if (master_clone) 1273 { 1274 cgraph_redirect_edge_callee (curr, master_clone); 1275 reset_edge_growth_cache (curr); 1276 } 1277 1278 if (estimate_size_after_inlining (node, curr) > limit) 1279 { 1280 cgraph_redirect_edge_callee (curr, dest); 1281 reset_edge_growth_cache (curr); 1282 break; 1283 } 1284 1285 depth = 1; 1286 for (cnode = curr->caller; 1287 cnode->global.inlined_to; cnode = cnode->callers->caller) 1288 if (node->symbol.decl 1289 == cgraph_function_or_thunk_node (curr->callee, NULL)->symbol.decl) 1290 depth++; 1291 1292 if (!want_inline_self_recursive_call_p (curr, node, false, depth)) 1293 { 1294 cgraph_redirect_edge_callee (curr, dest); 1295 reset_edge_growth_cache (curr); 1296 continue; 1297 } 1298 1299 if (dump_file) 1300 { 1301 fprintf (dump_file, 1302 " Inlining call of depth %i", depth); 1303 if (node->count) 1304 { 1305 fprintf (dump_file, " called approx. %.2f times per call", 1306 (double)curr->count / node->count); 1307 } 1308 fprintf (dump_file, "\n"); 1309 } 1310 if (!master_clone) 1311 { 1312 /* We need original clone to copy around. */ 1313 master_clone = cgraph_clone_node (node, node->symbol.decl, 1314 node->count, CGRAPH_FREQ_BASE, 1315 false, vNULL, true); 1316 for (e = master_clone->callees; e; e = e->next_callee) 1317 if (!e->inline_failed) 1318 clone_inlined_nodes (e, true, false, NULL); 1319 cgraph_redirect_edge_callee (curr, master_clone); 1320 reset_edge_growth_cache (curr); 1321 } 1322 1323 inline_call (curr, false, new_edges, &overall_size, true); 1324 lookup_recursive_calls (node, curr->callee, heap); 1325 n++; 1326 } 1327 1328 if (!fibheap_empty (heap) && dump_file) 1329 fprintf (dump_file, " Recursive inlining growth limit met.\n"); 1330 fibheap_delete (heap); 1331 1332 if (!master_clone) 1333 return false; 1334 1335 if (dump_file) 1336 fprintf (dump_file, 1337 "\n Inlined %i times, " 1338 "body grown from size %i to %i, time %i to %i\n", n, 1339 inline_summary (master_clone)->size, inline_summary (node)->size, 1340 inline_summary (master_clone)->time, inline_summary (node)->time); 1341 1342 /* Remove master clone we used for inlining. We rely that clones inlined 1343 into master clone gets queued just before master clone so we don't 1344 need recursion. */ 1345 for (node = cgraph_first_function (); node != master_clone; 1346 node = next) 1347 { 1348 next = cgraph_next_function (node); 1349 if (node->global.inlined_to == master_clone) 1350 cgraph_remove_node (node); 1351 } 1352 cgraph_remove_node (master_clone); 1353 return true; 1354 } 1355 1356 1357 /* Given whole compilation unit estimate of INSNS, compute how large we can 1358 allow the unit to grow. */ 1359 1360 static int 1361 compute_max_insns (int insns) 1362 { 1363 int max_insns = insns; 1364 if (max_insns < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS)) 1365 max_insns = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS); 1366 1367 return ((HOST_WIDEST_INT) max_insns 1368 * (100 + PARAM_VALUE (PARAM_INLINE_UNIT_GROWTH)) / 100); 1369 } 1370 1371 1372 /* Compute badness of all edges in NEW_EDGES and add them to the HEAP. */ 1373 1374 static void 1375 add_new_edges_to_heap (fibheap_t heap, vec<cgraph_edge_p> new_edges) 1376 { 1377 while (new_edges.length () > 0) 1378 { 1379 struct cgraph_edge *edge = new_edges.pop (); 1380 1381 gcc_assert (!edge->aux); 1382 if (edge->inline_failed 1383 && can_inline_edge_p (edge, true) 1384 && want_inline_small_function_p (edge, true)) 1385 edge->aux = fibheap_insert (heap, edge_badness (edge, false), edge); 1386 } 1387 } 1388 1389 1390 /* We use greedy algorithm for inlining of small functions: 1391 All inline candidates are put into prioritized heap ordered in 1392 increasing badness. 1393 1394 The inlining of small functions is bounded by unit growth parameters. */ 1395 1396 static void 1397 inline_small_functions (void) 1398 { 1399 struct cgraph_node *node; 1400 struct cgraph_edge *edge; 1401 fibheap_t edge_heap = fibheap_new (); 1402 bitmap updated_nodes = BITMAP_ALLOC (NULL); 1403 int min_size, max_size; 1404 vec<cgraph_edge_p> new_indirect_edges = vNULL; 1405 int initial_size = 0; 1406 struct cgraph_node **order = XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); 1407 1408 if (flag_indirect_inlining) 1409 new_indirect_edges.create (8); 1410 1411 /* Compute overall unit size and other global parameters used by badness 1412 metrics. */ 1413 1414 max_count = 0; 1415 ipa_reduced_postorder (order, true, true, NULL); 1416 free (order); 1417 1418 FOR_EACH_DEFINED_FUNCTION (node) 1419 if (!node->global.inlined_to) 1420 { 1421 if (cgraph_function_with_gimple_body_p (node) 1422 || node->thunk.thunk_p) 1423 { 1424 struct inline_summary *info = inline_summary (node); 1425 struct ipa_dfs_info *dfs = (struct ipa_dfs_info *) node->symbol.aux; 1426 1427 if (!DECL_EXTERNAL (node->symbol.decl)) 1428 initial_size += info->size; 1429 info->growth = estimate_growth (node); 1430 if (dfs && dfs->next_cycle) 1431 { 1432 struct cgraph_node *n2; 1433 int id = dfs->scc_no + 1; 1434 for (n2 = node; n2; 1435 n2 = ((struct ipa_dfs_info *) node->symbol.aux)->next_cycle) 1436 { 1437 struct inline_summary *info2 = inline_summary (n2); 1438 if (info2->scc_no) 1439 break; 1440 info2->scc_no = id; 1441 } 1442 } 1443 } 1444 1445 for (edge = node->callers; edge; edge = edge->next_caller) 1446 if (max_count < edge->count) 1447 max_count = edge->count; 1448 } 1449 ipa_free_postorder_info (); 1450 initialize_growth_caches (); 1451 1452 if (dump_file) 1453 fprintf (dump_file, 1454 "\nDeciding on inlining of small functions. Starting with size %i.\n", 1455 initial_size); 1456 1457 overall_size = initial_size; 1458 max_size = compute_max_insns (overall_size); 1459 min_size = overall_size; 1460 1461 /* Populate the heeap with all edges we might inline. */ 1462 1463 FOR_EACH_DEFINED_FUNCTION (node) 1464 if (!node->global.inlined_to) 1465 { 1466 if (dump_file) 1467 fprintf (dump_file, "Enqueueing calls of %s/%i.\n", 1468 cgraph_node_name (node), node->uid); 1469 1470 for (edge = node->callers; edge; edge = edge->next_caller) 1471 if (edge->inline_failed 1472 && can_inline_edge_p (edge, true) 1473 && want_inline_small_function_p (edge, true) 1474 && edge->inline_failed) 1475 { 1476 gcc_assert (!edge->aux); 1477 update_edge_key (edge_heap, edge); 1478 } 1479 } 1480 1481 gcc_assert (in_lto_p 1482 || !max_count 1483 || (profile_info && flag_branch_probabilities)); 1484 1485 while (!fibheap_empty (edge_heap)) 1486 { 1487 int old_size = overall_size; 1488 struct cgraph_node *where, *callee; 1489 int badness = fibheap_min_key (edge_heap); 1490 int current_badness; 1491 int cached_badness; 1492 int growth; 1493 1494 edge = (struct cgraph_edge *) fibheap_extract_min (edge_heap); 1495 gcc_assert (edge->aux); 1496 edge->aux = NULL; 1497 if (!edge->inline_failed) 1498 continue; 1499 1500 /* Be sure that caches are maintained consistent. 1501 We can not make this ENABLE_CHECKING only because it cause different 1502 updates of the fibheap queue. */ 1503 cached_badness = edge_badness (edge, false); 1504 reset_edge_growth_cache (edge); 1505 reset_node_growth_cache (edge->callee); 1506 1507 /* When updating the edge costs, we only decrease badness in the keys. 1508 Increases of badness are handled lazilly; when we see key with out 1509 of date value on it, we re-insert it now. */ 1510 current_badness = edge_badness (edge, false); 1511 gcc_assert (cached_badness == current_badness); 1512 gcc_assert (current_badness >= badness); 1513 if (current_badness != badness) 1514 { 1515 edge->aux = fibheap_insert (edge_heap, current_badness, edge); 1516 continue; 1517 } 1518 1519 if (!can_inline_edge_p (edge, true)) 1520 continue; 1521 1522 callee = cgraph_function_or_thunk_node (edge->callee, NULL); 1523 growth = estimate_edge_growth (edge); 1524 if (dump_file) 1525 { 1526 fprintf (dump_file, 1527 "\nConsidering %s with %i size\n", 1528 cgraph_node_name (callee), 1529 inline_summary (callee)->size); 1530 fprintf (dump_file, 1531 " to be inlined into %s in %s:%i\n" 1532 " Estimated growth after inlined into all is %+i insns.\n" 1533 " Estimated badness is %i, frequency %.2f.\n", 1534 cgraph_node_name (edge->caller), 1535 flag_wpa ? "unknown" 1536 : gimple_filename ((const_gimple) edge->call_stmt), 1537 flag_wpa ? -1 1538 : gimple_lineno ((const_gimple) edge->call_stmt), 1539 estimate_growth (callee), 1540 badness, 1541 edge->frequency / (double)CGRAPH_FREQ_BASE); 1542 if (edge->count) 1543 fprintf (dump_file," Called "HOST_WIDEST_INT_PRINT_DEC"x\n", 1544 edge->count); 1545 if (dump_flags & TDF_DETAILS) 1546 edge_badness (edge, true); 1547 } 1548 1549 if (overall_size + growth > max_size 1550 && !DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)) 1551 { 1552 edge->inline_failed = CIF_INLINE_UNIT_GROWTH_LIMIT; 1553 report_inline_failed_reason (edge); 1554 continue; 1555 } 1556 1557 if (!want_inline_small_function_p (edge, true)) 1558 continue; 1559 1560 /* Heuristics for inlining small functions works poorly for 1561 recursive calls where we do efect similar to loop unrolling. 1562 When inliing such edge seems profitable, leave decision on 1563 specific inliner. */ 1564 if (cgraph_edge_recursive_p (edge)) 1565 { 1566 where = edge->caller; 1567 if (where->global.inlined_to) 1568 where = where->global.inlined_to; 1569 if (!recursive_inlining (edge, 1570 flag_indirect_inlining 1571 ? &new_indirect_edges : NULL)) 1572 { 1573 edge->inline_failed = CIF_RECURSIVE_INLINING; 1574 continue; 1575 } 1576 reset_edge_caches (where); 1577 /* Recursive inliner inlines all recursive calls of the function 1578 at once. Consequently we need to update all callee keys. */ 1579 if (flag_indirect_inlining) 1580 add_new_edges_to_heap (edge_heap, new_indirect_edges); 1581 update_callee_keys (edge_heap, where, updated_nodes); 1582 } 1583 else 1584 { 1585 struct cgraph_node *outer_node = NULL; 1586 int depth = 0; 1587 1588 /* Consider the case where self recursive function A is inlined into B. 1589 This is desired optimization in some cases, since it leads to effect 1590 similar of loop peeling and we might completely optimize out the 1591 recursive call. However we must be extra selective. */ 1592 1593 where = edge->caller; 1594 while (where->global.inlined_to) 1595 { 1596 if (where->symbol.decl == callee->symbol.decl) 1597 outer_node = where, depth++; 1598 where = where->callers->caller; 1599 } 1600 if (outer_node 1601 && !want_inline_self_recursive_call_p (edge, outer_node, 1602 true, depth)) 1603 { 1604 edge->inline_failed 1605 = (DECL_DISREGARD_INLINE_LIMITS (edge->callee->symbol.decl) 1606 ? CIF_RECURSIVE_INLINING : CIF_UNSPECIFIED); 1607 continue; 1608 } 1609 else if (depth && dump_file) 1610 fprintf (dump_file, " Peeling recursion with depth %i\n", depth); 1611 1612 gcc_checking_assert (!callee->global.inlined_to); 1613 inline_call (edge, true, &new_indirect_edges, &overall_size, true); 1614 if (flag_indirect_inlining) 1615 add_new_edges_to_heap (edge_heap, new_indirect_edges); 1616 1617 reset_edge_caches (edge->callee); 1618 reset_node_growth_cache (callee); 1619 1620 update_callee_keys (edge_heap, where, updated_nodes); 1621 } 1622 where = edge->caller; 1623 if (where->global.inlined_to) 1624 where = where->global.inlined_to; 1625 1626 /* Our profitability metric can depend on local properties 1627 such as number of inlinable calls and size of the function body. 1628 After inlining these properties might change for the function we 1629 inlined into (since it's body size changed) and for the functions 1630 called by function we inlined (since number of it inlinable callers 1631 might change). */ 1632 update_caller_keys (edge_heap, where, updated_nodes, NULL); 1633 bitmap_clear (updated_nodes); 1634 1635 if (dump_file) 1636 { 1637 fprintf (dump_file, 1638 " Inlined into %s which now has time %i and size %i," 1639 "net change of %+i.\n", 1640 cgraph_node_name (edge->caller), 1641 inline_summary (edge->caller)->time, 1642 inline_summary (edge->caller)->size, 1643 overall_size - old_size); 1644 } 1645 if (min_size > overall_size) 1646 { 1647 min_size = overall_size; 1648 max_size = compute_max_insns (min_size); 1649 1650 if (dump_file) 1651 fprintf (dump_file, "New minimal size reached: %i\n", min_size); 1652 } 1653 } 1654 1655 free_growth_caches (); 1656 new_indirect_edges.release (); 1657 fibheap_delete (edge_heap); 1658 if (dump_file) 1659 fprintf (dump_file, 1660 "Unit growth for small function inlining: %i->%i (%i%%)\n", 1661 initial_size, overall_size, 1662 initial_size ? overall_size * 100 / (initial_size) - 100: 0); 1663 BITMAP_FREE (updated_nodes); 1664 } 1665 1666 /* Flatten NODE. Performed both during early inlining and 1667 at IPA inlining time. */ 1668 1669 static void 1670 flatten_function (struct cgraph_node *node, bool early) 1671 { 1672 struct cgraph_edge *e; 1673 1674 /* We shouldn't be called recursively when we are being processed. */ 1675 gcc_assert (node->symbol.aux == NULL); 1676 1677 node->symbol.aux = (void *) node; 1678 1679 for (e = node->callees; e; e = e->next_callee) 1680 { 1681 struct cgraph_node *orig_callee; 1682 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL); 1683 1684 /* We've hit cycle? It is time to give up. */ 1685 if (callee->symbol.aux) 1686 { 1687 if (dump_file) 1688 fprintf (dump_file, 1689 "Not inlining %s into %s to avoid cycle.\n", 1690 xstrdup (cgraph_node_name (callee)), 1691 xstrdup (cgraph_node_name (e->caller))); 1692 e->inline_failed = CIF_RECURSIVE_INLINING; 1693 continue; 1694 } 1695 1696 /* When the edge is already inlined, we just need to recurse into 1697 it in order to fully flatten the leaves. */ 1698 if (!e->inline_failed) 1699 { 1700 flatten_function (callee, early); 1701 continue; 1702 } 1703 1704 /* Flatten attribute needs to be processed during late inlining. For 1705 extra code quality we however do flattening during early optimization, 1706 too. */ 1707 if (!early 1708 ? !can_inline_edge_p (e, true) 1709 : !can_early_inline_edge_p (e)) 1710 continue; 1711 1712 if (cgraph_edge_recursive_p (e)) 1713 { 1714 if (dump_file) 1715 fprintf (dump_file, "Not inlining: recursive call.\n"); 1716 continue; 1717 } 1718 1719 if (gimple_in_ssa_p (DECL_STRUCT_FUNCTION (node->symbol.decl)) 1720 != gimple_in_ssa_p (DECL_STRUCT_FUNCTION (callee->symbol.decl))) 1721 { 1722 if (dump_file) 1723 fprintf (dump_file, "Not inlining: SSA form does not match.\n"); 1724 continue; 1725 } 1726 1727 /* Inline the edge and flatten the inline clone. Avoid 1728 recursing through the original node if the node was cloned. */ 1729 if (dump_file) 1730 fprintf (dump_file, " Inlining %s into %s.\n", 1731 xstrdup (cgraph_node_name (callee)), 1732 xstrdup (cgraph_node_name (e->caller))); 1733 orig_callee = callee; 1734 inline_call (e, true, NULL, NULL, false); 1735 if (e->callee != orig_callee) 1736 orig_callee->symbol.aux = (void *) node; 1737 flatten_function (e->callee, early); 1738 if (e->callee != orig_callee) 1739 orig_callee->symbol.aux = NULL; 1740 } 1741 1742 node->symbol.aux = NULL; 1743 if (!node->global.inlined_to) 1744 inline_update_overall_summary (node); 1745 } 1746 1747 /* Decide on the inlining. We do so in the topological order to avoid 1748 expenses on updating data structures. */ 1749 1750 static unsigned int 1751 ipa_inline (void) 1752 { 1753 struct cgraph_node *node; 1754 int nnodes; 1755 struct cgraph_node **order = 1756 XCNEWVEC (struct cgraph_node *, cgraph_n_nodes); 1757 int i; 1758 1759 if (in_lto_p && optimize) 1760 ipa_update_after_lto_read (); 1761 1762 if (dump_file) 1763 dump_inline_summaries (dump_file); 1764 1765 nnodes = ipa_reverse_postorder (order); 1766 1767 FOR_EACH_FUNCTION (node) 1768 node->symbol.aux = 0; 1769 1770 if (dump_file) 1771 fprintf (dump_file, "\nFlattening functions:\n"); 1772 1773 /* In the first pass handle functions to be flattened. Do this with 1774 a priority so none of our later choices will make this impossible. */ 1775 for (i = nnodes - 1; i >= 0; i--) 1776 { 1777 node = order[i]; 1778 1779 /* Handle nodes to be flattened. 1780 Ideally when processing callees we stop inlining at the 1781 entry of cycles, possibly cloning that entry point and 1782 try to flatten itself turning it into a self-recursive 1783 function. */ 1784 if (lookup_attribute ("flatten", 1785 DECL_ATTRIBUTES (node->symbol.decl)) != NULL) 1786 { 1787 if (dump_file) 1788 fprintf (dump_file, 1789 "Flattening %s\n", cgraph_node_name (node)); 1790 flatten_function (node, false); 1791 } 1792 } 1793 1794 inline_small_functions (); 1795 symtab_remove_unreachable_nodes (false, dump_file); 1796 free (order); 1797 1798 /* Inline functions with a property that after inlining into all callers the 1799 code size will shrink because the out-of-line copy is eliminated. 1800 We do this regardless on the callee size as long as function growth limits 1801 are met. */ 1802 if (flag_inline_functions_called_once) 1803 { 1804 int cold; 1805 if (dump_file) 1806 fprintf (dump_file, 1807 "\nDeciding on functions to be inlined into all callers:\n"); 1808 1809 /* Inlining one function called once has good chance of preventing 1810 inlining other function into the same callee. Ideally we should 1811 work in priority order, but probably inlining hot functions first 1812 is good cut without the extra pain of maintaining the queue. 1813 1814 ??? this is not really fitting the bill perfectly: inlining function 1815 into callee often leads to better optimization of callee due to 1816 increased context for optimization. 1817 For example if main() function calls a function that outputs help 1818 and then function that does the main optmization, we should inline 1819 the second with priority even if both calls are cold by themselves. 1820 1821 We probably want to implement new predicate replacing our use of 1822 maybe_hot_edge interpreted as maybe_hot_edge || callee is known 1823 to be hot. */ 1824 for (cold = 0; cold <= 1; cold ++) 1825 { 1826 FOR_EACH_DEFINED_FUNCTION (node) 1827 { 1828 if (want_inline_function_to_all_callers_p (node, cold)) 1829 { 1830 int num_calls = 0; 1831 struct cgraph_edge *e; 1832 for (e = node->callers; e; e = e->next_caller) 1833 num_calls++; 1834 while (node->callers && !node->global.inlined_to) 1835 { 1836 struct cgraph_node *caller = node->callers->caller; 1837 1838 if (dump_file) 1839 { 1840 fprintf (dump_file, 1841 "\nInlining %s size %i.\n", 1842 cgraph_node_name (node), 1843 inline_summary (node)->size); 1844 fprintf (dump_file, 1845 " Called once from %s %i insns.\n", 1846 cgraph_node_name (node->callers->caller), 1847 inline_summary (node->callers->caller)->size); 1848 } 1849 1850 inline_call (node->callers, true, NULL, NULL, true); 1851 if (dump_file) 1852 fprintf (dump_file, 1853 " Inlined into %s which now has %i size\n", 1854 cgraph_node_name (caller), 1855 inline_summary (caller)->size); 1856 if (!num_calls--) 1857 { 1858 if (dump_file) 1859 fprintf (dump_file, "New calls found; giving up.\n"); 1860 break; 1861 } 1862 } 1863 } 1864 } 1865 } 1866 } 1867 1868 /* Free ipa-prop structures if they are no longer needed. */ 1869 if (optimize) 1870 ipa_free_all_structures_after_iinln (); 1871 1872 if (dump_file) 1873 fprintf (dump_file, 1874 "\nInlined %i calls, eliminated %i functions\n\n", 1875 ncalls_inlined, nfunctions_inlined); 1876 1877 if (dump_file) 1878 dump_inline_summaries (dump_file); 1879 /* In WPA we use inline summaries for partitioning process. */ 1880 if (!flag_wpa) 1881 inline_free_summary (); 1882 return 0; 1883 } 1884 1885 /* Inline always-inline function calls in NODE. */ 1886 1887 static bool 1888 inline_always_inline_functions (struct cgraph_node *node) 1889 { 1890 struct cgraph_edge *e; 1891 bool inlined = false; 1892 1893 for (e = node->callees; e; e = e->next_callee) 1894 { 1895 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL); 1896 if (!DECL_DISREGARD_INLINE_LIMITS (callee->symbol.decl)) 1897 continue; 1898 1899 if (cgraph_edge_recursive_p (e)) 1900 { 1901 if (dump_file) 1902 fprintf (dump_file, " Not inlining recursive call to %s.\n", 1903 cgraph_node_name (e->callee)); 1904 e->inline_failed = CIF_RECURSIVE_INLINING; 1905 continue; 1906 } 1907 1908 if (!can_early_inline_edge_p (e)) 1909 continue; 1910 1911 if (dump_file) 1912 fprintf (dump_file, " Inlining %s into %s (always_inline).\n", 1913 xstrdup (cgraph_node_name (e->callee)), 1914 xstrdup (cgraph_node_name (e->caller))); 1915 inline_call (e, true, NULL, NULL, false); 1916 inlined = true; 1917 } 1918 if (inlined) 1919 inline_update_overall_summary (node); 1920 1921 return inlined; 1922 } 1923 1924 /* Decide on the inlining. We do so in the topological order to avoid 1925 expenses on updating data structures. */ 1926 1927 static bool 1928 early_inline_small_functions (struct cgraph_node *node) 1929 { 1930 struct cgraph_edge *e; 1931 bool inlined = false; 1932 1933 for (e = node->callees; e; e = e->next_callee) 1934 { 1935 struct cgraph_node *callee = cgraph_function_or_thunk_node (e->callee, NULL); 1936 if (!inline_summary (callee)->inlinable 1937 || !e->inline_failed) 1938 continue; 1939 1940 /* Do not consider functions not declared inline. */ 1941 if (!DECL_DECLARED_INLINE_P (callee->symbol.decl) 1942 && !flag_inline_small_functions 1943 && !flag_inline_functions) 1944 continue; 1945 1946 if (dump_file) 1947 fprintf (dump_file, "Considering inline candidate %s.\n", 1948 cgraph_node_name (callee)); 1949 1950 if (!can_early_inline_edge_p (e)) 1951 continue; 1952 1953 if (cgraph_edge_recursive_p (e)) 1954 { 1955 if (dump_file) 1956 fprintf (dump_file, " Not inlining: recursive call.\n"); 1957 continue; 1958 } 1959 1960 if (!want_early_inline_function_p (e)) 1961 continue; 1962 1963 if (dump_file) 1964 fprintf (dump_file, " Inlining %s into %s.\n", 1965 xstrdup (cgraph_node_name (callee)), 1966 xstrdup (cgraph_node_name (e->caller))); 1967 inline_call (e, true, NULL, NULL, true); 1968 inlined = true; 1969 } 1970 1971 return inlined; 1972 } 1973 1974 /* Do inlining of small functions. Doing so early helps profiling and other 1975 passes to be somewhat more effective and avoids some code duplication in 1976 later real inlining pass for testcases with very many function calls. */ 1977 static unsigned int 1978 early_inliner (void) 1979 { 1980 struct cgraph_node *node = cgraph_get_node (current_function_decl); 1981 struct cgraph_edge *edge; 1982 unsigned int todo = 0; 1983 int iterations = 0; 1984 bool inlined = false; 1985 1986 if (seen_error ()) 1987 return 0; 1988 1989 /* Do nothing if datastructures for ipa-inliner are already computed. This 1990 happens when some pass decides to construct new function and 1991 cgraph_add_new_function calls lowering passes and early optimization on 1992 it. This may confuse ourself when early inliner decide to inline call to 1993 function clone, because function clones don't have parameter list in 1994 ipa-prop matching their signature. */ 1995 if (ipa_node_params_vector.exists ()) 1996 return 0; 1997 1998 #ifdef ENABLE_CHECKING 1999 verify_cgraph_node (node); 2000 #endif 2001 2002 /* Even when not optimizing or not inlining inline always-inline 2003 functions. */ 2004 inlined = inline_always_inline_functions (node); 2005 2006 if (!optimize 2007 || flag_no_inline 2008 || !flag_early_inlining 2009 /* Never inline regular functions into always-inline functions 2010 during incremental inlining. This sucks as functions calling 2011 always inline functions will get less optimized, but at the 2012 same time inlining of functions calling always inline 2013 function into an always inline function might introduce 2014 cycles of edges to be always inlined in the callgraph. 2015 2016 We might want to be smarter and just avoid this type of inlining. */ 2017 || DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl)) 2018 ; 2019 else if (lookup_attribute ("flatten", 2020 DECL_ATTRIBUTES (node->symbol.decl)) != NULL) 2021 { 2022 /* When the function is marked to be flattened, recursively inline 2023 all calls in it. */ 2024 if (dump_file) 2025 fprintf (dump_file, 2026 "Flattening %s\n", cgraph_node_name (node)); 2027 flatten_function (node, true); 2028 inlined = true; 2029 } 2030 else 2031 { 2032 /* We iterate incremental inlining to get trivial cases of indirect 2033 inlining. */ 2034 while (iterations < PARAM_VALUE (PARAM_EARLY_INLINER_MAX_ITERATIONS) 2035 && early_inline_small_functions (node)) 2036 { 2037 timevar_push (TV_INTEGRATION); 2038 todo |= optimize_inline_calls (current_function_decl); 2039 2040 /* Technically we ought to recompute inline parameters so the new 2041 iteration of early inliner works as expected. We however have 2042 values approximately right and thus we only need to update edge 2043 info that might be cleared out for newly discovered edges. */ 2044 for (edge = node->callees; edge; edge = edge->next_callee) 2045 { 2046 struct inline_edge_summary *es = inline_edge_summary (edge); 2047 es->call_stmt_size 2048 = estimate_num_insns (edge->call_stmt, &eni_size_weights); 2049 es->call_stmt_time 2050 = estimate_num_insns (edge->call_stmt, &eni_time_weights); 2051 if (edge->callee->symbol.decl 2052 && !gimple_check_call_matching_types (edge->call_stmt, 2053 edge->callee->symbol.decl)) 2054 edge->call_stmt_cannot_inline_p = true; 2055 } 2056 timevar_pop (TV_INTEGRATION); 2057 iterations++; 2058 inlined = false; 2059 } 2060 if (dump_file) 2061 fprintf (dump_file, "Iterations: %i\n", iterations); 2062 } 2063 2064 if (inlined) 2065 { 2066 timevar_push (TV_INTEGRATION); 2067 todo |= optimize_inline_calls (current_function_decl); 2068 timevar_pop (TV_INTEGRATION); 2069 } 2070 2071 cfun->always_inline_functions_inlined = true; 2072 2073 return todo; 2074 } 2075 2076 struct gimple_opt_pass pass_early_inline = 2077 { 2078 { 2079 GIMPLE_PASS, 2080 "einline", /* name */ 2081 OPTGROUP_INLINE, /* optinfo_flags */ 2082 NULL, /* gate */ 2083 early_inliner, /* execute */ 2084 NULL, /* sub */ 2085 NULL, /* next */ 2086 0, /* static_pass_number */ 2087 TV_EARLY_INLINING, /* tv_id */ 2088 PROP_ssa, /* properties_required */ 2089 0, /* properties_provided */ 2090 0, /* properties_destroyed */ 2091 0, /* todo_flags_start */ 2092 0 /* todo_flags_finish */ 2093 } 2094 }; 2095 2096 2097 /* When to run IPA inlining. Inlining of always-inline functions 2098 happens during early inlining. 2099 2100 Enable inlining unconditoinally at -flto. We need size estimates to 2101 drive partitioning. */ 2102 2103 static bool 2104 gate_ipa_inline (void) 2105 { 2106 return optimize || flag_lto || flag_wpa; 2107 } 2108 2109 struct ipa_opt_pass_d pass_ipa_inline = 2110 { 2111 { 2112 IPA_PASS, 2113 "inline", /* name */ 2114 OPTGROUP_INLINE, /* optinfo_flags */ 2115 gate_ipa_inline, /* gate */ 2116 ipa_inline, /* execute */ 2117 NULL, /* sub */ 2118 NULL, /* next */ 2119 0, /* static_pass_number */ 2120 TV_IPA_INLINING, /* tv_id */ 2121 0, /* properties_required */ 2122 0, /* properties_provided */ 2123 0, /* properties_destroyed */ 2124 TODO_remove_functions, /* todo_flags_finish */ 2125 TODO_dump_symtab 2126 | TODO_remove_functions | TODO_ggc_collect /* todo_flags_finish */ 2127 }, 2128 inline_generate_summary, /* generate_summary */ 2129 inline_write_summary, /* write_summary */ 2130 inline_read_summary, /* read_summary */ 2131 NULL, /* write_optimization_summary */ 2132 NULL, /* read_optimization_summary */ 2133 NULL, /* stmt_fixup */ 2134 0, /* TODOs */ 2135 inline_transform, /* function_transform */ 2136 NULL, /* variable_transform */ 2137 }; 2138