1 /* Instruction scheduling pass. 2 Copyright (C) 1992-2020 Free Software Foundation, Inc. 3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by, 4 and currently maintained by, Jim Wilson (wilson@cygnus.com) 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 3, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 /* Instruction scheduling pass. This file, along with sched-deps.c, 23 contains the generic parts. The actual entry point for 24 the normal instruction scheduling pass is found in sched-rgn.c. 25 26 We compute insn priorities based on data dependencies. Flow 27 analysis only creates a fraction of the data-dependencies we must 28 observe: namely, only those dependencies which the combiner can be 29 expected to use. For this pass, we must therefore create the 30 remaining dependencies we need to observe: register dependencies, 31 memory dependencies, dependencies to keep function calls in order, 32 and the dependence between a conditional branch and the setting of 33 condition codes are all dealt with here. 34 35 The scheduler first traverses the data flow graph, starting with 36 the last instruction, and proceeding to the first, assigning values 37 to insn_priority as it goes. This sorts the instructions 38 topologically by data dependence. 39 40 Once priorities have been established, we order the insns using 41 list scheduling. This works as follows: starting with a list of 42 all the ready insns, and sorted according to priority number, we 43 schedule the insn from the end of the list by placing its 44 predecessors in the list according to their priority order. We 45 consider this insn scheduled by setting the pointer to the "end" of 46 the list to point to the previous insn. When an insn has no 47 predecessors, we either queue it until sufficient time has elapsed 48 or add it to the ready list. As the instructions are scheduled or 49 when stalls are introduced, the queue advances and dumps insns into 50 the ready list. When all insns down to the lowest priority have 51 been scheduled, the critical path of the basic block has been made 52 as short as possible. The remaining insns are then scheduled in 53 remaining slots. 54 55 The following list shows the order in which we want to break ties 56 among insns in the ready list: 57 58 1. choose insn with the longest path to end of bb, ties 59 broken by 60 2. choose insn with least contribution to register pressure, 61 ties broken by 62 3. prefer in-block upon interblock motion, ties broken by 63 4. prefer useful upon speculative motion, ties broken by 64 5. choose insn with largest control flow probability, ties 65 broken by 66 6. choose insn with the least dependences upon the previously 67 scheduled insn, or finally 68 7 choose the insn which has the most insns dependent on it. 69 8. choose insn with lowest UID. 70 71 Memory references complicate matters. Only if we can be certain 72 that memory references are not part of the data dependency graph 73 (via true, anti, or output dependence), can we move operations past 74 memory references. To first approximation, reads can be done 75 independently, while writes introduce dependencies. Better 76 approximations will yield fewer dependencies. 77 78 Before reload, an extended analysis of interblock data dependences 79 is required for interblock scheduling. This is performed in 80 compute_block_dependences (). 81 82 Dependencies set up by memory references are treated in exactly the 83 same way as other dependencies, by using insn backward dependences 84 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences 85 INSN_FORW_DEPS for the purpose of forward list scheduling. 86 87 Having optimized the critical path, we may have also unduly 88 extended the lifetimes of some registers. If an operation requires 89 that constants be loaded into registers, it is certainly desirable 90 to load those constants as early as necessary, but no earlier. 91 I.e., it will not do to load up a bunch of registers at the 92 beginning of a basic block only to use them at the end, if they 93 could be loaded later, since this may result in excessive register 94 utilization. 95 96 Note that since branches are never in basic blocks, but only end 97 basic blocks, this pass will not move branches. But that is ok, 98 since we can use GNU's delayed branch scheduling pass to take care 99 of this case. 100 101 Also note that no further optimizations based on algebraic 102 identities are performed, so this pass would be a good one to 103 perform instruction splitting, such as breaking up a multiply 104 instruction into shifts and adds where that is profitable. 105 106 Given the memory aliasing analysis that this pass should perform, 107 it should be possible to remove redundant stores to memory, and to 108 load values from registers instead of hitting memory. 109 110 Before reload, speculative insns are moved only if a 'proof' exists 111 that no exception will be caused by this, and if no live registers 112 exist that inhibit the motion (live registers constraints are not 113 represented by data dependence edges). 114 115 This pass must update information that subsequent passes expect to 116 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths, 117 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END. 118 119 The information in the line number notes is carefully retained by 120 this pass. Notes that refer to the starting and ending of 121 exception regions are also carefully retained by this pass. All 122 other NOTE insns are grouped in their same relative order at the 123 beginning of basic blocks and regions that have been scheduled. */ 124 125 #include "config.h" 126 #include "system.h" 127 #include "coretypes.h" 128 #include "backend.h" 129 #include "target.h" 130 #include "rtl.h" 131 #include "cfghooks.h" 132 #include "df.h" 133 #include "memmodel.h" 134 #include "tm_p.h" 135 #include "insn-config.h" 136 #include "regs.h" 137 #include "ira.h" 138 #include "recog.h" 139 #include "insn-attr.h" 140 #include "cfgrtl.h" 141 #include "cfgbuild.h" 142 #include "sched-int.h" 143 #include "common/common-target.h" 144 #include "dbgcnt.h" 145 #include "cfgloop.h" 146 #include "dumpfile.h" 147 #include "print-rtl.h" 148 #include "function-abi.h" 149 150 #ifdef INSN_SCHEDULING 151 152 /* True if we do register pressure relief through live-range 153 shrinkage. */ 154 static bool live_range_shrinkage_p; 155 156 /* Switch on live range shrinkage. */ 157 void 158 initialize_live_range_shrinkage (void) 159 { 160 live_range_shrinkage_p = true; 161 } 162 163 /* Switch off live range shrinkage. */ 164 void 165 finish_live_range_shrinkage (void) 166 { 167 live_range_shrinkage_p = false; 168 } 169 170 /* issue_rate is the number of insns that can be scheduled in the same 171 machine cycle. It can be defined in the config/mach/mach.h file, 172 otherwise we set it to 1. */ 173 174 int issue_rate; 175 176 /* This can be set to true by a backend if the scheduler should not 177 enable a DCE pass. */ 178 bool sched_no_dce; 179 180 /* The current initiation interval used when modulo scheduling. */ 181 static int modulo_ii; 182 183 /* The maximum number of stages we are prepared to handle. */ 184 static int modulo_max_stages; 185 186 /* The number of insns that exist in each iteration of the loop. We use this 187 to detect when we've scheduled all insns from the first iteration. */ 188 static int modulo_n_insns; 189 190 /* The current count of insns in the first iteration of the loop that have 191 already been scheduled. */ 192 static int modulo_insns_scheduled; 193 194 /* The maximum uid of insns from the first iteration of the loop. */ 195 static int modulo_iter0_max_uid; 196 197 /* The number of times we should attempt to backtrack when modulo scheduling. 198 Decreased each time we have to backtrack. */ 199 static int modulo_backtracks_left; 200 201 /* The stage in which the last insn from the original loop was 202 scheduled. */ 203 static int modulo_last_stage; 204 205 /* sched-verbose controls the amount of debugging output the 206 scheduler prints. It is controlled by -fsched-verbose=N: 207 N=0: no debugging output. 208 N=1: default value. 209 N=2: bb's probabilities, detailed ready list info, unit/insn info. 210 N=3: rtl at abort point, control-flow, regions info. 211 N=5: dependences info. */ 212 int sched_verbose = 0; 213 214 /* Debugging file. All printouts are sent to dump. */ 215 FILE *sched_dump = 0; 216 217 /* This is a placeholder for the scheduler parameters common 218 to all schedulers. */ 219 struct common_sched_info_def *common_sched_info; 220 221 #define INSN_TICK(INSN) (HID (INSN)->tick) 222 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick) 223 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate) 224 #define INTER_TICK(INSN) (HID (INSN)->inter_tick) 225 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn) 226 #define SHADOW_P(INSN) (HID (INSN)->shadow_p) 227 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec) 228 /* Cached cost of the instruction. Use insn_sched_cost to get cost of the 229 insn. -1 here means that the field is not initialized. */ 230 #define INSN_COST(INSN) (HID (INSN)->cost) 231 232 /* If INSN_TICK of an instruction is equal to INVALID_TICK, 233 then it should be recalculated from scratch. */ 234 #define INVALID_TICK (-(max_insn_queue_index + 1)) 235 /* The minimal value of the INSN_TICK of an instruction. */ 236 #define MIN_TICK (-max_insn_queue_index) 237 238 /* Original order of insns in the ready list. 239 Used to keep order of normal insns while separating DEBUG_INSNs. */ 240 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order) 241 242 /* The deciding reason for INSN's place in the ready list. */ 243 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win) 244 245 /* List of important notes we must keep around. This is a pointer to the 246 last element in the list. */ 247 rtx_insn *note_list; 248 249 static struct spec_info_def spec_info_var; 250 /* Description of the speculative part of the scheduling. 251 If NULL - no speculation. */ 252 spec_info_t spec_info = NULL; 253 254 /* True, if recovery block was added during scheduling of current block. 255 Used to determine, if we need to fix INSN_TICKs. */ 256 static bool haifa_recovery_bb_recently_added_p; 257 258 /* True, if recovery block was added during this scheduling pass. 259 Used to determine if we should have empty memory pools of dependencies 260 after finishing current region. */ 261 bool haifa_recovery_bb_ever_added_p; 262 263 /* Counters of different types of speculative instructions. */ 264 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control; 265 266 /* Array used in {unlink, restore}_bb_notes. */ 267 static rtx_insn **bb_header = 0; 268 269 /* Basic block after which recovery blocks will be created. */ 270 static basic_block before_recovery; 271 272 /* Basic block just before the EXIT_BLOCK and after recovery, if we have 273 created it. */ 274 basic_block after_recovery; 275 276 /* FALSE if we add bb to another region, so we don't need to initialize it. */ 277 bool adding_bb_to_current_region_p = true; 278 279 /* Queues, etc. */ 280 281 /* An instruction is ready to be scheduled when all insns preceding it 282 have already been scheduled. It is important to ensure that all 283 insns which use its result will not be executed until its result 284 has been computed. An insn is maintained in one of four structures: 285 286 (P) the "Pending" set of insns which cannot be scheduled until 287 their dependencies have been satisfied. 288 (Q) the "Queued" set of insns that can be scheduled when sufficient 289 time has passed. 290 (R) the "Ready" list of unscheduled, uncommitted insns. 291 (S) the "Scheduled" list of insns. 292 293 Initially, all insns are either "Pending" or "Ready" depending on 294 whether their dependencies are satisfied. 295 296 Insns move from the "Ready" list to the "Scheduled" list as they 297 are committed to the schedule. As this occurs, the insns in the 298 "Pending" list have their dependencies satisfied and move to either 299 the "Ready" list or the "Queued" set depending on whether 300 sufficient time has passed to make them ready. As time passes, 301 insns move from the "Queued" set to the "Ready" list. 302 303 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the 304 unscheduled insns, i.e., those that are ready, queued, and pending. 305 The "Queued" set (Q) is implemented by the variable `insn_queue'. 306 The "Ready" list (R) is implemented by the variables `ready' and 307 `n_ready'. 308 The "Scheduled" list (S) is the new insn chain built by this pass. 309 310 The transition (R->S) is implemented in the scheduling loop in 311 `schedule_block' when the best insn to schedule is chosen. 312 The transitions (P->R and P->Q) are implemented in `schedule_insn' as 313 insns move from the ready list to the scheduled list. 314 The transition (Q->R) is implemented in 'queue_to_insn' as time 315 passes or stalls are introduced. */ 316 317 /* Implement a circular buffer to delay instructions until sufficient 318 time has passed. For the new pipeline description interface, 319 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less 320 than maximal time of instruction execution computed by genattr.c on 321 the base maximal time of functional unit reservations and getting a 322 result. This is the longest time an insn may be queued. */ 323 324 static rtx_insn_list **insn_queue; 325 static int q_ptr = 0; 326 static int q_size = 0; 327 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index) 328 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index) 329 330 #define QUEUE_SCHEDULED (-3) 331 #define QUEUE_NOWHERE (-2) 332 #define QUEUE_READY (-1) 333 /* QUEUE_SCHEDULED - INSN is scheduled. 334 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in 335 queue or ready list. 336 QUEUE_READY - INSN is in ready list. 337 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */ 338 339 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index) 340 341 /* The following variable value refers for all current and future 342 reservations of the processor units. */ 343 state_t curr_state; 344 345 /* The following variable value is size of memory representing all 346 current and future reservations of the processor units. */ 347 size_t dfa_state_size; 348 349 /* The following array is used to find the best insn from ready when 350 the automaton pipeline interface is used. */ 351 signed char *ready_try = NULL; 352 353 /* The ready list. */ 354 struct ready_list ready = {NULL, 0, 0, 0, 0}; 355 356 /* The pointer to the ready list (to be removed). */ 357 static struct ready_list *readyp = &ready; 358 359 /* Scheduling clock. */ 360 static int clock_var; 361 362 /* Clock at which the previous instruction was issued. */ 363 static int last_clock_var; 364 365 /* Set to true if, when queuing a shadow insn, we discover that it would be 366 scheduled too late. */ 367 static bool must_backtrack; 368 369 /* The following variable value is number of essential insns issued on 370 the current cycle. An insn is essential one if it changes the 371 processors state. */ 372 int cycle_issued_insns; 373 374 /* This records the actual schedule. It is built up during the main phase 375 of schedule_block, and afterwards used to reorder the insns in the RTL. */ 376 static vec<rtx_insn *> scheduled_insns; 377 378 static int may_trap_exp (const_rtx, int); 379 380 /* Nonzero iff the address is comprised from at most 1 register. */ 381 #define CONST_BASED_ADDRESS_P(x) \ 382 (REG_P (x) \ 383 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \ 384 || (GET_CODE (x) == LO_SUM)) \ 385 && (CONSTANT_P (XEXP (x, 0)) \ 386 || CONSTANT_P (XEXP (x, 1))))) 387 388 /* Returns a class that insn with GET_DEST(insn)=x may belong to, 389 as found by analyzing insn's expression. */ 390 391 392 static int haifa_luid_for_non_insn (rtx x); 393 394 /* Haifa version of sched_info hooks common to all headers. */ 395 const struct common_sched_info_def haifa_common_sched_info = 396 { 397 NULL, /* fix_recovery_cfg */ 398 NULL, /* add_block */ 399 NULL, /* estimate_number_of_insns */ 400 haifa_luid_for_non_insn, /* luid_for_non_insn */ 401 SCHED_PASS_UNKNOWN /* sched_pass_id */ 402 }; 403 404 /* Mapping from instruction UID to its Logical UID. */ 405 vec<int> sched_luids; 406 407 /* Next LUID to assign to an instruction. */ 408 int sched_max_luid = 1; 409 410 /* Haifa Instruction Data. */ 411 vec<haifa_insn_data_def> h_i_d; 412 413 void (* sched_init_only_bb) (basic_block, basic_block); 414 415 /* Split block function. Different schedulers might use different functions 416 to handle their internal data consistent. */ 417 basic_block (* sched_split_block) (basic_block, rtx); 418 419 /* Create empty basic block after the specified block. */ 420 basic_block (* sched_create_empty_bb) (basic_block); 421 422 /* Return the number of cycles until INSN is expected to be ready. 423 Return zero if it already is. */ 424 static int 425 insn_delay (rtx_insn *insn) 426 { 427 return MAX (INSN_TICK (insn) - clock_var, 0); 428 } 429 430 static int 431 may_trap_exp (const_rtx x, int is_store) 432 { 433 enum rtx_code code; 434 435 if (x == 0) 436 return TRAP_FREE; 437 code = GET_CODE (x); 438 if (is_store) 439 { 440 if (code == MEM && may_trap_p (x)) 441 return TRAP_RISKY; 442 else 443 return TRAP_FREE; 444 } 445 if (code == MEM) 446 { 447 /* The insn uses memory: a volatile load. */ 448 if (MEM_VOLATILE_P (x)) 449 return IRISKY; 450 /* An exception-free load. */ 451 if (!may_trap_p (x)) 452 return IFREE; 453 /* A load with 1 base register, to be further checked. */ 454 if (CONST_BASED_ADDRESS_P (XEXP (x, 0))) 455 return PFREE_CANDIDATE; 456 /* No info on the load, to be further checked. */ 457 return PRISKY_CANDIDATE; 458 } 459 else 460 { 461 const char *fmt; 462 int i, insn_class = TRAP_FREE; 463 464 /* Neither store nor load, check if it may cause a trap. */ 465 if (may_trap_p (x)) 466 return TRAP_RISKY; 467 /* Recursive step: walk the insn... */ 468 fmt = GET_RTX_FORMAT (code); 469 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 470 { 471 if (fmt[i] == 'e') 472 { 473 int tmp_class = may_trap_exp (XEXP (x, i), is_store); 474 insn_class = WORST_CLASS (insn_class, tmp_class); 475 } 476 else if (fmt[i] == 'E') 477 { 478 int j; 479 for (j = 0; j < XVECLEN (x, i); j++) 480 { 481 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store); 482 insn_class = WORST_CLASS (insn_class, tmp_class); 483 if (insn_class == TRAP_RISKY || insn_class == IRISKY) 484 break; 485 } 486 } 487 if (insn_class == TRAP_RISKY || insn_class == IRISKY) 488 break; 489 } 490 return insn_class; 491 } 492 } 493 494 /* Classifies rtx X of an insn for the purpose of verifying that X can be 495 executed speculatively (and consequently the insn can be moved 496 speculatively), by examining X, returning: 497 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable). 498 TRAP_FREE: non-load insn. 499 IFREE: load from a globally safe location. 500 IRISKY: volatile load. 501 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for 502 being either PFREE or PRISKY. */ 503 504 static int 505 haifa_classify_rtx (const_rtx x) 506 { 507 int tmp_class = TRAP_FREE; 508 int insn_class = TRAP_FREE; 509 enum rtx_code code; 510 511 if (GET_CODE (x) == PARALLEL) 512 { 513 int i, len = XVECLEN (x, 0); 514 515 for (i = len - 1; i >= 0; i--) 516 { 517 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i)); 518 insn_class = WORST_CLASS (insn_class, tmp_class); 519 if (insn_class == TRAP_RISKY || insn_class == IRISKY) 520 break; 521 } 522 } 523 else 524 { 525 code = GET_CODE (x); 526 switch (code) 527 { 528 case CLOBBER: 529 /* Test if it is a 'store'. */ 530 tmp_class = may_trap_exp (XEXP (x, 0), 1); 531 break; 532 case SET: 533 /* Test if it is a store. */ 534 tmp_class = may_trap_exp (SET_DEST (x), 1); 535 if (tmp_class == TRAP_RISKY) 536 break; 537 /* Test if it is a load. */ 538 tmp_class = 539 WORST_CLASS (tmp_class, 540 may_trap_exp (SET_SRC (x), 0)); 541 break; 542 case COND_EXEC: 543 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x)); 544 if (tmp_class == TRAP_RISKY) 545 break; 546 tmp_class = WORST_CLASS (tmp_class, 547 may_trap_exp (COND_EXEC_TEST (x), 0)); 548 break; 549 case TRAP_IF: 550 tmp_class = TRAP_RISKY; 551 break; 552 default:; 553 } 554 insn_class = tmp_class; 555 } 556 557 return insn_class; 558 } 559 560 int 561 haifa_classify_insn (const_rtx insn) 562 { 563 return haifa_classify_rtx (PATTERN (insn)); 564 } 565 566 /* After the scheduler initialization function has been called, this function 567 can be called to enable modulo scheduling. II is the initiation interval 568 we should use, it affects the delays for delay_pairs that were recorded as 569 separated by a given number of stages. 570 571 MAX_STAGES provides us with a limit 572 after which we give up scheduling; the caller must have unrolled at least 573 as many copies of the loop body and recorded delay_pairs for them. 574 575 INSNS is the number of real (non-debug) insns in one iteration of 576 the loop. MAX_UID can be used to test whether an insn belongs to 577 the first iteration of the loop; all of them have a uid lower than 578 MAX_UID. */ 579 void 580 set_modulo_params (int ii, int max_stages, int insns, int max_uid) 581 { 582 modulo_ii = ii; 583 modulo_max_stages = max_stages; 584 modulo_n_insns = insns; 585 modulo_iter0_max_uid = max_uid; 586 modulo_backtracks_left = param_max_modulo_backtrack_attempts; 587 } 588 589 /* A structure to record a pair of insns where the first one is a real 590 insn that has delay slots, and the second is its delayed shadow. 591 I1 is scheduled normally and will emit an assembly instruction, 592 while I2 describes the side effect that takes place at the 593 transition between cycles CYCLES and (CYCLES + 1) after I1. */ 594 struct delay_pair 595 { 596 struct delay_pair *next_same_i1; 597 rtx_insn *i1, *i2; 598 int cycles; 599 /* When doing modulo scheduling, we a delay_pair can also be used to 600 show that I1 and I2 are the same insn in a different stage. If that 601 is the case, STAGES will be nonzero. */ 602 int stages; 603 }; 604 605 /* Helpers for delay hashing. */ 606 607 struct delay_i1_hasher : nofree_ptr_hash <delay_pair> 608 { 609 typedef void *compare_type; 610 static inline hashval_t hash (const delay_pair *); 611 static inline bool equal (const delay_pair *, const void *); 612 }; 613 614 /* Returns a hash value for X, based on hashing just I1. */ 615 616 inline hashval_t 617 delay_i1_hasher::hash (const delay_pair *x) 618 { 619 return htab_hash_pointer (x->i1); 620 } 621 622 /* Return true if I1 of pair X is the same as that of pair Y. */ 623 624 inline bool 625 delay_i1_hasher::equal (const delay_pair *x, const void *y) 626 { 627 return x->i1 == y; 628 } 629 630 struct delay_i2_hasher : free_ptr_hash <delay_pair> 631 { 632 typedef void *compare_type; 633 static inline hashval_t hash (const delay_pair *); 634 static inline bool equal (const delay_pair *, const void *); 635 }; 636 637 /* Returns a hash value for X, based on hashing just I2. */ 638 639 inline hashval_t 640 delay_i2_hasher::hash (const delay_pair *x) 641 { 642 return htab_hash_pointer (x->i2); 643 } 644 645 /* Return true if I2 of pair X is the same as that of pair Y. */ 646 647 inline bool 648 delay_i2_hasher::equal (const delay_pair *x, const void *y) 649 { 650 return x->i2 == y; 651 } 652 653 /* Two hash tables to record delay_pairs, one indexed by I1 and the other 654 indexed by I2. */ 655 static hash_table<delay_i1_hasher> *delay_htab; 656 static hash_table<delay_i2_hasher> *delay_htab_i2; 657 658 /* Called through htab_traverse. Walk the hashtable using I2 as 659 index, and delete all elements involving an UID higher than 660 that pointed to by *DATA. */ 661 int 662 haifa_htab_i2_traverse (delay_pair **slot, int *data) 663 { 664 int maxuid = *data; 665 struct delay_pair *p = *slot; 666 if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid) 667 { 668 delay_htab_i2->clear_slot (slot); 669 } 670 return 1; 671 } 672 673 /* Called through htab_traverse. Walk the hashtable using I2 as 674 index, and delete all elements involving an UID higher than 675 that pointed to by *DATA. */ 676 int 677 haifa_htab_i1_traverse (delay_pair **pslot, int *data) 678 { 679 int maxuid = *data; 680 struct delay_pair *p, *first, **pprev; 681 682 if (INSN_UID ((*pslot)->i1) >= maxuid) 683 { 684 delay_htab->clear_slot (pslot); 685 return 1; 686 } 687 pprev = &first; 688 for (p = *pslot; p; p = p->next_same_i1) 689 { 690 if (INSN_UID (p->i2) < maxuid) 691 { 692 *pprev = p; 693 pprev = &p->next_same_i1; 694 } 695 } 696 *pprev = NULL; 697 if (first == NULL) 698 delay_htab->clear_slot (pslot); 699 else 700 *pslot = first; 701 return 1; 702 } 703 704 /* Discard all delay pairs which involve an insn with an UID higher 705 than MAX_UID. */ 706 void 707 discard_delay_pairs_above (int max_uid) 708 { 709 delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid); 710 delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid); 711 } 712 713 /* This function can be called by a port just before it starts the final 714 scheduling pass. It records the fact that an instruction with delay 715 slots has been split into two insns, I1 and I2. The first one will be 716 scheduled normally and initiates the operation. The second one is a 717 shadow which must follow a specific number of cycles after I1; its only 718 purpose is to show the side effect that occurs at that cycle in the RTL. 719 If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN, 720 while I2 retains the original insn type. 721 722 There are two ways in which the number of cycles can be specified, 723 involving the CYCLES and STAGES arguments to this function. If STAGES 724 is zero, we just use the value of CYCLES. Otherwise, STAGES is a factor 725 which is multiplied by MODULO_II to give the number of cycles. This is 726 only useful if the caller also calls set_modulo_params to enable modulo 727 scheduling. */ 728 729 void 730 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages) 731 { 732 struct delay_pair *p = XNEW (struct delay_pair); 733 struct delay_pair **slot; 734 735 p->i1 = i1; 736 p->i2 = i2; 737 p->cycles = cycles; 738 p->stages = stages; 739 740 if (!delay_htab) 741 { 742 delay_htab = new hash_table<delay_i1_hasher> (10); 743 delay_htab_i2 = new hash_table<delay_i2_hasher> (10); 744 } 745 slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT); 746 p->next_same_i1 = *slot; 747 *slot = p; 748 slot = delay_htab_i2->find_slot (p, INSERT); 749 *slot = p; 750 } 751 752 /* Examine the delay pair hashtable to see if INSN is a shadow for another, 753 and return the other insn if so. Return NULL otherwise. */ 754 rtx_insn * 755 real_insn_for_shadow (rtx_insn *insn) 756 { 757 struct delay_pair *pair; 758 759 if (!delay_htab) 760 return NULL; 761 762 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn)); 763 if (!pair || pair->stages > 0) 764 return NULL; 765 return pair->i1; 766 } 767 768 /* For a pair P of insns, return the fixed distance in cycles from the first 769 insn after which the second must be scheduled. */ 770 static int 771 pair_delay (struct delay_pair *p) 772 { 773 if (p->stages == 0) 774 return p->cycles; 775 else 776 return p->stages * modulo_ii; 777 } 778 779 /* Given an insn INSN, add a dependence on its delayed shadow if it 780 has one. Also try to find situations where shadows depend on each other 781 and add dependencies to the real insns to limit the amount of backtracking 782 needed. */ 783 void 784 add_delay_dependencies (rtx_insn *insn) 785 { 786 struct delay_pair *pair; 787 sd_iterator_def sd_it; 788 dep_t dep; 789 790 if (!delay_htab) 791 return; 792 793 pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn)); 794 if (!pair) 795 return; 796 add_dependence (insn, pair->i1, REG_DEP_ANTI); 797 if (pair->stages) 798 return; 799 800 FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep) 801 { 802 rtx_insn *pro = DEP_PRO (dep); 803 struct delay_pair *other_pair 804 = delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro)); 805 if (!other_pair || other_pair->stages) 806 continue; 807 if (pair_delay (other_pair) >= pair_delay (pair)) 808 { 809 if (sched_verbose >= 4) 810 { 811 fprintf (sched_dump, ";;\tadding dependence %d <- %d\n", 812 INSN_UID (other_pair->i1), 813 INSN_UID (pair->i1)); 814 fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n", 815 INSN_UID (pair->i1), 816 INSN_UID (pair->i2), 817 pair_delay (pair)); 818 fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n", 819 INSN_UID (other_pair->i1), 820 INSN_UID (other_pair->i2), 821 pair_delay (other_pair)); 822 } 823 add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI); 824 } 825 } 826 } 827 828 /* Forward declarations. */ 829 830 static int priority (rtx_insn *, bool force_recompute = false); 831 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *); 832 static int rank_for_schedule (const void *, const void *); 833 static void swap_sort (rtx_insn **, int); 834 static void queue_insn (rtx_insn *, int, const char *); 835 static int schedule_insn (rtx_insn *); 836 static void adjust_priority (rtx_insn *); 837 static void advance_one_cycle (void); 838 static void extend_h_i_d (void); 839 840 841 /* Notes handling mechanism: 842 ========================= 843 Generally, NOTES are saved before scheduling and restored after scheduling. 844 The scheduler distinguishes between two types of notes: 845 846 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes: 847 Before scheduling a region, a pointer to the note is added to the insn 848 that follows or precedes it. (This happens as part of the data dependence 849 computation). After scheduling an insn, the pointer contained in it is 850 used for regenerating the corresponding note (in reemit_notes). 851 852 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block, 853 these notes are put in a list (in rm_other_notes() and 854 unlink_other_notes ()). After scheduling the block, these notes are 855 inserted at the beginning of the block (in schedule_block()). */ 856 857 static void ready_add (struct ready_list *, rtx_insn *, bool); 858 static rtx_insn *ready_remove_first (struct ready_list *); 859 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready); 860 861 static void queue_to_ready (struct ready_list *); 862 static int early_queue_to_ready (state_t, struct ready_list *); 863 864 /* The following functions are used to implement multi-pass scheduling 865 on the first cycle. */ 866 static rtx_insn *ready_remove (struct ready_list *, int); 867 static void ready_remove_insn (rtx_insn *); 868 869 static void fix_inter_tick (rtx_insn *, rtx_insn *); 870 static int fix_tick_ready (rtx_insn *); 871 static void change_queue_index (rtx_insn *, int); 872 873 /* The following functions are used to implement scheduling of data/control 874 speculative instructions. */ 875 876 static void extend_h_i_d (void); 877 static void init_h_i_d (rtx_insn *); 878 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *); 879 static void generate_recovery_code (rtx_insn *); 880 static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t); 881 static void begin_speculative_block (rtx_insn *); 882 static void add_to_speculative_block (rtx_insn *); 883 static void init_before_recovery (basic_block *); 884 static void create_check_block_twin (rtx_insn *, bool); 885 static void fix_recovery_deps (basic_block); 886 static bool haifa_change_pattern (rtx_insn *, rtx); 887 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *); 888 static void restore_bb_notes (basic_block); 889 static void fix_jump_move (rtx_insn *); 890 static void move_block_after_check (rtx_insn *); 891 static void move_succs (vec<edge, va_gc> **, basic_block); 892 static void sched_remove_insn (rtx_insn *); 893 static void clear_priorities (rtx_insn *, rtx_vec_t *); 894 static void calc_priorities (rtx_vec_t); 895 static void add_jump_dependencies (rtx_insn *, rtx_insn *); 896 897 #endif /* INSN_SCHEDULING */ 898 899 /* Point to state used for the current scheduling pass. */ 900 struct haifa_sched_info *current_sched_info; 901 902 #ifndef INSN_SCHEDULING 903 void 904 schedule_insns (void) 905 { 906 } 907 #else 908 909 /* Do register pressure sensitive insn scheduling if the flag is set 910 up. */ 911 enum sched_pressure_algorithm sched_pressure; 912 913 /* Map regno -> its pressure class. The map defined only when 914 SCHED_PRESSURE != SCHED_PRESSURE_NONE. */ 915 enum reg_class *sched_regno_pressure_class; 916 917 /* The current register pressure. Only elements corresponding pressure 918 classes are defined. */ 919 static int curr_reg_pressure[N_REG_CLASSES]; 920 921 /* Saved value of the previous array. */ 922 static int saved_reg_pressure[N_REG_CLASSES]; 923 924 /* Register living at given scheduling point. */ 925 static bitmap curr_reg_live; 926 927 /* Saved value of the previous array. */ 928 static bitmap saved_reg_live; 929 930 /* Registers mentioned in the current region. */ 931 static bitmap region_ref_regs; 932 933 /* Temporary bitmap used for SCHED_PRESSURE_MODEL. */ 934 static bitmap tmp_bitmap; 935 936 /* Effective number of available registers of a given class (see comment 937 in sched_pressure_start_bb). */ 938 static int sched_class_regs_num[N_REG_CLASSES]; 939 /* The number of registers that the function would need to save before it 940 uses them, and the number of fixed_regs. Helpers for calculating of 941 sched_class_regs_num. */ 942 static int call_saved_regs_num[N_REG_CLASSES]; 943 static int fixed_regs_num[N_REG_CLASSES]; 944 945 /* Initiate register pressure relative info for scheduling the current 946 region. Currently it is only clearing register mentioned in the 947 current region. */ 948 void 949 sched_init_region_reg_pressure_info (void) 950 { 951 bitmap_clear (region_ref_regs); 952 } 953 954 /* PRESSURE[CL] describes the pressure on register class CL. Update it 955 for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO. 956 LIVE tracks the set of live registers; if it is null, assume that 957 every birth or death is genuine. */ 958 static inline void 959 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p) 960 { 961 enum reg_class pressure_class; 962 963 pressure_class = sched_regno_pressure_class[regno]; 964 if (regno >= FIRST_PSEUDO_REGISTER) 965 { 966 if (pressure_class != NO_REGS) 967 { 968 if (birth_p) 969 { 970 if (!live || bitmap_set_bit (live, regno)) 971 pressure[pressure_class] 972 += (ira_reg_class_max_nregs 973 [pressure_class][PSEUDO_REGNO_MODE (regno)]); 974 } 975 else 976 { 977 if (!live || bitmap_clear_bit (live, regno)) 978 pressure[pressure_class] 979 -= (ira_reg_class_max_nregs 980 [pressure_class][PSEUDO_REGNO_MODE (regno)]); 981 } 982 } 983 } 984 else if (pressure_class != NO_REGS 985 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)) 986 { 987 if (birth_p) 988 { 989 if (!live || bitmap_set_bit (live, regno)) 990 pressure[pressure_class]++; 991 } 992 else 993 { 994 if (!live || bitmap_clear_bit (live, regno)) 995 pressure[pressure_class]--; 996 } 997 } 998 } 999 1000 /* Initiate current register pressure related info from living 1001 registers given by LIVE. */ 1002 static void 1003 initiate_reg_pressure_info (bitmap live) 1004 { 1005 int i; 1006 unsigned int j; 1007 bitmap_iterator bi; 1008 1009 for (i = 0; i < ira_pressure_classes_num; i++) 1010 curr_reg_pressure[ira_pressure_classes[i]] = 0; 1011 bitmap_clear (curr_reg_live); 1012 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi) 1013 if (sched_pressure == SCHED_PRESSURE_MODEL 1014 || current_nr_blocks == 1 1015 || bitmap_bit_p (region_ref_regs, j)) 1016 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true); 1017 } 1018 1019 /* Mark registers in X as mentioned in the current region. */ 1020 static void 1021 setup_ref_regs (rtx x) 1022 { 1023 int i, j; 1024 const RTX_CODE code = GET_CODE (x); 1025 const char *fmt; 1026 1027 if (REG_P (x)) 1028 { 1029 bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x)); 1030 return; 1031 } 1032 fmt = GET_RTX_FORMAT (code); 1033 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--) 1034 if (fmt[i] == 'e') 1035 setup_ref_regs (XEXP (x, i)); 1036 else if (fmt[i] == 'E') 1037 { 1038 for (j = 0; j < XVECLEN (x, i); j++) 1039 setup_ref_regs (XVECEXP (x, i, j)); 1040 } 1041 } 1042 1043 /* Initiate current register pressure related info at the start of 1044 basic block BB. */ 1045 static void 1046 initiate_bb_reg_pressure_info (basic_block bb) 1047 { 1048 unsigned int i ATTRIBUTE_UNUSED; 1049 rtx_insn *insn; 1050 1051 if (current_nr_blocks > 1) 1052 FOR_BB_INSNS (bb, insn) 1053 if (NONDEBUG_INSN_P (insn)) 1054 setup_ref_regs (PATTERN (insn)); 1055 initiate_reg_pressure_info (df_get_live_in (bb)); 1056 if (bb_has_eh_pred (bb)) 1057 for (i = 0; ; ++i) 1058 { 1059 unsigned int regno = EH_RETURN_DATA_REGNO (i); 1060 1061 if (regno == INVALID_REGNUM) 1062 break; 1063 if (! bitmap_bit_p (df_get_live_in (bb), regno)) 1064 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, 1065 regno, true); 1066 } 1067 } 1068 1069 /* Save current register pressure related info. */ 1070 static void 1071 save_reg_pressure (void) 1072 { 1073 int i; 1074 1075 for (i = 0; i < ira_pressure_classes_num; i++) 1076 saved_reg_pressure[ira_pressure_classes[i]] 1077 = curr_reg_pressure[ira_pressure_classes[i]]; 1078 bitmap_copy (saved_reg_live, curr_reg_live); 1079 } 1080 1081 /* Restore saved register pressure related info. */ 1082 static void 1083 restore_reg_pressure (void) 1084 { 1085 int i; 1086 1087 for (i = 0; i < ira_pressure_classes_num; i++) 1088 curr_reg_pressure[ira_pressure_classes[i]] 1089 = saved_reg_pressure[ira_pressure_classes[i]]; 1090 bitmap_copy (curr_reg_live, saved_reg_live); 1091 } 1092 1093 /* Return TRUE if the register is dying after its USE. */ 1094 static bool 1095 dying_use_p (struct reg_use_data *use) 1096 { 1097 struct reg_use_data *next; 1098 1099 for (next = use->next_regno_use; next != use; next = next->next_regno_use) 1100 if (NONDEBUG_INSN_P (next->insn) 1101 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED) 1102 return false; 1103 return true; 1104 } 1105 1106 /* Print info about the current register pressure and its excess for 1107 each pressure class. */ 1108 static void 1109 print_curr_reg_pressure (void) 1110 { 1111 int i; 1112 enum reg_class cl; 1113 1114 fprintf (sched_dump, ";;\t"); 1115 for (i = 0; i < ira_pressure_classes_num; i++) 1116 { 1117 cl = ira_pressure_classes[i]; 1118 gcc_assert (curr_reg_pressure[cl] >= 0); 1119 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl], 1120 curr_reg_pressure[cl], 1121 curr_reg_pressure[cl] - sched_class_regs_num[cl]); 1122 } 1123 fprintf (sched_dump, "\n"); 1124 } 1125 1126 /* Determine if INSN has a condition that is clobbered if a register 1127 in SET_REGS is modified. */ 1128 static bool 1129 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs) 1130 { 1131 rtx pat = PATTERN (insn); 1132 gcc_assert (GET_CODE (pat) == COND_EXEC); 1133 if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0)))) 1134 { 1135 sd_iterator_def sd_it; 1136 dep_t dep; 1137 haifa_change_pattern (insn, ORIG_PAT (insn)); 1138 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep) 1139 DEP_STATUS (dep) &= ~DEP_CANCELLED; 1140 TODO_SPEC (insn) = HARD_DEP; 1141 if (sched_verbose >= 2) 1142 fprintf (sched_dump, 1143 ";;\t\tdequeue insn %s because of clobbered condition\n", 1144 (*current_sched_info->print_insn) (insn, 0)); 1145 return true; 1146 } 1147 1148 return false; 1149 } 1150 1151 /* This function should be called after modifying the pattern of INSN, 1152 to update scheduler data structures as needed. */ 1153 static void 1154 update_insn_after_change (rtx_insn *insn) 1155 { 1156 sd_iterator_def sd_it; 1157 dep_t dep; 1158 1159 dfa_clear_single_insn_cache (insn); 1160 1161 sd_it = sd_iterator_start (insn, 1162 SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK); 1163 while (sd_iterator_cond (&sd_it, &dep)) 1164 { 1165 DEP_COST (dep) = UNKNOWN_DEP_COST; 1166 sd_iterator_next (&sd_it); 1167 } 1168 1169 /* Invalidate INSN_COST, so it'll be recalculated. */ 1170 INSN_COST (insn) = -1; 1171 /* Invalidate INSN_TICK, so it'll be recalculated. */ 1172 INSN_TICK (insn) = INVALID_TICK; 1173 1174 /* Invalidate autoprefetch data entry. */ 1175 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status 1176 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED; 1177 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status 1178 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED; 1179 } 1180 1181 1182 /* Two VECs, one to hold dependencies for which pattern replacements 1183 need to be applied or restored at the start of the next cycle, and 1184 another to hold an integer that is either one, to apply the 1185 corresponding replacement, or zero to restore it. */ 1186 static vec<dep_t> next_cycle_replace_deps; 1187 static vec<int> next_cycle_apply; 1188 1189 static void apply_replacement (dep_t, bool); 1190 static void restore_pattern (dep_t, bool); 1191 1192 /* Look at the remaining dependencies for insn NEXT, and compute and return 1193 the TODO_SPEC value we should use for it. This is called after one of 1194 NEXT's dependencies has been resolved. 1195 We also perform pattern replacements for predication, and for broken 1196 replacement dependencies. The latter is only done if FOR_BACKTRACK is 1197 false. */ 1198 1199 static ds_t 1200 recompute_todo_spec (rtx_insn *next, bool for_backtrack) 1201 { 1202 ds_t new_ds; 1203 sd_iterator_def sd_it; 1204 dep_t dep, modify_dep = NULL; 1205 int n_spec = 0; 1206 int n_control = 0; 1207 int n_replace = 0; 1208 bool first_p = true; 1209 1210 if (sd_lists_empty_p (next, SD_LIST_BACK)) 1211 /* NEXT has all its dependencies resolved. */ 1212 return 0; 1213 1214 if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK)) 1215 return HARD_DEP; 1216 1217 /* If NEXT is intended to sit adjacent to this instruction, we don't 1218 want to try to break any dependencies. Treat it as a HARD_DEP. */ 1219 if (SCHED_GROUP_P (next)) 1220 return HARD_DEP; 1221 1222 /* Now we've got NEXT with speculative deps only. 1223 1. Look at the deps to see what we have to do. 1224 2. Check if we can do 'todo'. */ 1225 new_ds = 0; 1226 1227 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep) 1228 { 1229 rtx_insn *pro = DEP_PRO (dep); 1230 ds_t ds = DEP_STATUS (dep) & SPECULATIVE; 1231 1232 if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next)) 1233 continue; 1234 1235 if (ds) 1236 { 1237 n_spec++; 1238 if (first_p) 1239 { 1240 first_p = false; 1241 1242 new_ds = ds; 1243 } 1244 else 1245 new_ds = ds_merge (new_ds, ds); 1246 } 1247 else if (DEP_TYPE (dep) == REG_DEP_CONTROL) 1248 { 1249 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED) 1250 { 1251 n_control++; 1252 modify_dep = dep; 1253 } 1254 DEP_STATUS (dep) &= ~DEP_CANCELLED; 1255 } 1256 else if (DEP_REPLACE (dep) != NULL) 1257 { 1258 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED) 1259 { 1260 n_replace++; 1261 modify_dep = dep; 1262 } 1263 DEP_STATUS (dep) &= ~DEP_CANCELLED; 1264 } 1265 } 1266 1267 if (n_replace > 0 && n_control == 0 && n_spec == 0) 1268 { 1269 if (!dbg_cnt (sched_breakdep)) 1270 return HARD_DEP; 1271 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep) 1272 { 1273 struct dep_replacement *desc = DEP_REPLACE (dep); 1274 if (desc != NULL) 1275 { 1276 if (desc->insn == next && !for_backtrack) 1277 { 1278 gcc_assert (n_replace == 1); 1279 apply_replacement (dep, true); 1280 } 1281 DEP_STATUS (dep) |= DEP_CANCELLED; 1282 } 1283 } 1284 return 0; 1285 } 1286 1287 else if (n_control == 1 && n_replace == 0 && n_spec == 0) 1288 { 1289 rtx_insn *pro, *other; 1290 rtx new_pat; 1291 rtx cond = NULL_RTX; 1292 bool success; 1293 rtx_insn *prev = NULL; 1294 int i; 1295 unsigned regno; 1296 1297 if ((current_sched_info->flags & DO_PREDICATION) == 0 1298 || (ORIG_PAT (next) != NULL_RTX 1299 && PREDICATED_PAT (next) == NULL_RTX)) 1300 return HARD_DEP; 1301 1302 pro = DEP_PRO (modify_dep); 1303 other = real_insn_for_shadow (pro); 1304 if (other != NULL_RTX) 1305 pro = other; 1306 1307 cond = sched_get_reverse_condition_uncached (pro); 1308 regno = REGNO (XEXP (cond, 0)); 1309 1310 /* Find the last scheduled insn that modifies the condition register. 1311 We can stop looking once we find the insn we depend on through the 1312 REG_DEP_CONTROL; if the condition register isn't modified after it, 1313 we know that it still has the right value. */ 1314 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED) 1315 FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev) 1316 { 1317 HARD_REG_SET t; 1318 1319 find_all_hard_reg_sets (prev, &t, true); 1320 if (TEST_HARD_REG_BIT (t, regno)) 1321 return HARD_DEP; 1322 if (prev == pro) 1323 break; 1324 } 1325 if (ORIG_PAT (next) == NULL_RTX) 1326 { 1327 ORIG_PAT (next) = PATTERN (next); 1328 1329 new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next)); 1330 success = haifa_change_pattern (next, new_pat); 1331 if (!success) 1332 return HARD_DEP; 1333 PREDICATED_PAT (next) = new_pat; 1334 } 1335 else if (PATTERN (next) != PREDICATED_PAT (next)) 1336 { 1337 bool success = haifa_change_pattern (next, 1338 PREDICATED_PAT (next)); 1339 gcc_assert (success); 1340 } 1341 DEP_STATUS (modify_dep) |= DEP_CANCELLED; 1342 return DEP_CONTROL; 1343 } 1344 1345 if (PREDICATED_PAT (next) != NULL_RTX) 1346 { 1347 int tick = INSN_TICK (next); 1348 bool success = haifa_change_pattern (next, 1349 ORIG_PAT (next)); 1350 INSN_TICK (next) = tick; 1351 gcc_assert (success); 1352 } 1353 1354 /* We can't handle the case where there are both speculative and control 1355 dependencies, so we return HARD_DEP in such a case. Also fail if 1356 we have speculative dependencies with not enough points, or more than 1357 one control dependency. */ 1358 if ((n_spec > 0 && (n_control > 0 || n_replace > 0)) 1359 || (n_spec > 0 1360 /* Too few points? */ 1361 && ds_weak (new_ds) < spec_info->data_weakness_cutoff) 1362 || n_control > 0 1363 || n_replace > 0) 1364 return HARD_DEP; 1365 1366 return new_ds; 1367 } 1368 1369 /* Pointer to the last instruction scheduled. */ 1370 static rtx_insn *last_scheduled_insn; 1371 1372 /* Pointer to the last nondebug instruction scheduled within the 1373 block, or the prev_head of the scheduling block. Used by 1374 rank_for_schedule, so that insns independent of the last scheduled 1375 insn will be preferred over dependent instructions. */ 1376 static rtx_insn *last_nondebug_scheduled_insn; 1377 1378 /* Pointer that iterates through the list of unscheduled insns if we 1379 have a dbg_cnt enabled. It always points at an insn prior to the 1380 first unscheduled one. */ 1381 static rtx_insn *nonscheduled_insns_begin; 1382 1383 /* Compute cost of executing INSN. 1384 This is the number of cycles between instruction issue and 1385 instruction results. */ 1386 int 1387 insn_sched_cost (rtx_insn *insn) 1388 { 1389 int cost; 1390 1391 if (sched_fusion) 1392 return 0; 1393 1394 if (sel_sched_p ()) 1395 { 1396 if (recog_memoized (insn) < 0) 1397 return 0; 1398 1399 cost = insn_default_latency (insn); 1400 if (cost < 0) 1401 cost = 0; 1402 1403 return cost; 1404 } 1405 1406 cost = INSN_COST (insn); 1407 1408 if (cost < 0) 1409 { 1410 /* A USE insn, or something else we don't need to 1411 understand. We can't pass these directly to 1412 result_ready_cost or insn_default_latency because it will 1413 trigger a fatal error for unrecognizable insns. */ 1414 if (recog_memoized (insn) < 0) 1415 { 1416 INSN_COST (insn) = 0; 1417 return 0; 1418 } 1419 else 1420 { 1421 cost = insn_default_latency (insn); 1422 if (cost < 0) 1423 cost = 0; 1424 1425 INSN_COST (insn) = cost; 1426 } 1427 } 1428 1429 return cost; 1430 } 1431 1432 /* Compute cost of dependence LINK. 1433 This is the number of cycles between instruction issue and 1434 instruction results. 1435 ??? We also use this function to call recog_memoized on all insns. */ 1436 int 1437 dep_cost_1 (dep_t link, dw_t dw) 1438 { 1439 rtx_insn *insn = DEP_PRO (link); 1440 rtx_insn *used = DEP_CON (link); 1441 int cost; 1442 1443 if (DEP_COST (link) != UNKNOWN_DEP_COST) 1444 return DEP_COST (link); 1445 1446 if (delay_htab) 1447 { 1448 struct delay_pair *delay_entry; 1449 delay_entry 1450 = delay_htab_i2->find_with_hash (used, htab_hash_pointer (used)); 1451 if (delay_entry) 1452 { 1453 if (delay_entry->i1 == insn) 1454 { 1455 DEP_COST (link) = pair_delay (delay_entry); 1456 return DEP_COST (link); 1457 } 1458 } 1459 } 1460 1461 /* A USE insn should never require the value used to be computed. 1462 This allows the computation of a function's result and parameter 1463 values to overlap the return and call. We don't care about the 1464 dependence cost when only decreasing register pressure. */ 1465 if (recog_memoized (used) < 0) 1466 { 1467 cost = 0; 1468 recog_memoized (insn); 1469 } 1470 else 1471 { 1472 enum reg_note dep_type = DEP_TYPE (link); 1473 1474 cost = insn_sched_cost (insn); 1475 1476 if (INSN_CODE (insn) >= 0) 1477 { 1478 if (dep_type == REG_DEP_ANTI) 1479 cost = 0; 1480 else if (dep_type == REG_DEP_OUTPUT) 1481 { 1482 cost = (insn_default_latency (insn) 1483 - insn_default_latency (used)); 1484 if (cost <= 0) 1485 cost = 1; 1486 } 1487 else if (bypass_p (insn)) 1488 cost = insn_latency (insn, used); 1489 } 1490 1491 1492 if (targetm.sched.adjust_cost) 1493 cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost, 1494 dw); 1495 1496 if (cost < 0) 1497 cost = 0; 1498 } 1499 1500 DEP_COST (link) = cost; 1501 return cost; 1502 } 1503 1504 /* Compute cost of dependence LINK. 1505 This is the number of cycles between instruction issue and 1506 instruction results. */ 1507 int 1508 dep_cost (dep_t link) 1509 { 1510 return dep_cost_1 (link, 0); 1511 } 1512 1513 /* Use this sel-sched.c friendly function in reorder2 instead of increasing 1514 INSN_PRIORITY explicitly. */ 1515 void 1516 increase_insn_priority (rtx_insn *insn, int amount) 1517 { 1518 if (!sel_sched_p ()) 1519 { 1520 /* We're dealing with haifa-sched.c INSN_PRIORITY. */ 1521 if (INSN_PRIORITY_KNOWN (insn)) 1522 INSN_PRIORITY (insn) += amount; 1523 } 1524 else 1525 { 1526 /* In sel-sched.c INSN_PRIORITY is not kept up to date. 1527 Use EXPR_PRIORITY instead. */ 1528 sel_add_to_insn_priority (insn, amount); 1529 } 1530 } 1531 1532 /* Return 'true' if DEP should be included in priority calculations. */ 1533 static bool 1534 contributes_to_priority_p (dep_t dep) 1535 { 1536 if (DEBUG_INSN_P (DEP_CON (dep)) 1537 || DEBUG_INSN_P (DEP_PRO (dep))) 1538 return false; 1539 1540 /* Critical path is meaningful in block boundaries only. */ 1541 if (!current_sched_info->contributes_to_priority (DEP_CON (dep), 1542 DEP_PRO (dep))) 1543 return false; 1544 1545 if (DEP_REPLACE (dep) != NULL) 1546 return false; 1547 1548 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set, 1549 then speculative instructions will less likely be 1550 scheduled. That is because the priority of 1551 their producers will increase, and, thus, the 1552 producers will more likely be scheduled, thus, 1553 resolving the dependence. */ 1554 if (sched_deps_info->generate_spec_deps 1555 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH) 1556 && (DEP_STATUS (dep) & SPECULATIVE)) 1557 return false; 1558 1559 return true; 1560 } 1561 1562 /* Compute the number of nondebug deps in list LIST for INSN. */ 1563 1564 static int 1565 dep_list_size (rtx_insn *insn, sd_list_types_def list) 1566 { 1567 sd_iterator_def sd_it; 1568 dep_t dep; 1569 int dbgcount = 0, nodbgcount = 0; 1570 1571 if (!MAY_HAVE_DEBUG_INSNS) 1572 return sd_lists_size (insn, list); 1573 1574 FOR_EACH_DEP (insn, list, sd_it, dep) 1575 { 1576 if (DEBUG_INSN_P (DEP_CON (dep))) 1577 dbgcount++; 1578 else if (!DEBUG_INSN_P (DEP_PRO (dep))) 1579 nodbgcount++; 1580 } 1581 1582 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list)); 1583 1584 return nodbgcount; 1585 } 1586 1587 bool sched_fusion; 1588 1589 /* Compute the priority number for INSN. */ 1590 static int 1591 priority (rtx_insn *insn, bool force_recompute) 1592 { 1593 if (! INSN_P (insn)) 1594 return 0; 1595 1596 /* We should not be interested in priority of an already scheduled insn. */ 1597 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED); 1598 1599 if (force_recompute || !INSN_PRIORITY_KNOWN (insn)) 1600 { 1601 int this_priority = -1; 1602 1603 if (sched_fusion) 1604 { 1605 int this_fusion_priority; 1606 1607 targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY, 1608 &this_fusion_priority, &this_priority); 1609 INSN_FUSION_PRIORITY (insn) = this_fusion_priority; 1610 } 1611 else if (dep_list_size (insn, SD_LIST_FORW) == 0) 1612 /* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn 1613 has some forward deps but all of them are ignored by 1614 contributes_to_priority hook. At the moment we set priority of 1615 such insn to 0. */ 1616 this_priority = insn_sched_cost (insn); 1617 else 1618 { 1619 rtx_insn *prev_first, *twin; 1620 basic_block rec; 1621 1622 /* For recovery check instructions we calculate priority slightly 1623 different than that of normal instructions. Instead of walking 1624 through INSN_FORW_DEPS (check) list, we walk through 1625 INSN_FORW_DEPS list of each instruction in the corresponding 1626 recovery block. */ 1627 1628 /* Selective scheduling does not define RECOVERY_BLOCK macro. */ 1629 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn); 1630 if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun)) 1631 { 1632 prev_first = PREV_INSN (insn); 1633 twin = insn; 1634 } 1635 else 1636 { 1637 prev_first = NEXT_INSN (BB_HEAD (rec)); 1638 twin = PREV_INSN (BB_END (rec)); 1639 } 1640 1641 do 1642 { 1643 sd_iterator_def sd_it; 1644 dep_t dep; 1645 1646 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep) 1647 { 1648 rtx_insn *next; 1649 int next_priority; 1650 1651 next = DEP_CON (dep); 1652 1653 if (BLOCK_FOR_INSN (next) != rec) 1654 { 1655 int cost; 1656 1657 if (!contributes_to_priority_p (dep)) 1658 continue; 1659 1660 if (twin == insn) 1661 cost = dep_cost (dep); 1662 else 1663 { 1664 struct _dep _dep1, *dep1 = &_dep1; 1665 1666 init_dep (dep1, insn, next, REG_DEP_ANTI); 1667 1668 cost = dep_cost (dep1); 1669 } 1670 1671 next_priority = cost + priority (next); 1672 1673 if (next_priority > this_priority) 1674 this_priority = next_priority; 1675 } 1676 } 1677 1678 twin = PREV_INSN (twin); 1679 } 1680 while (twin != prev_first); 1681 } 1682 1683 if (this_priority < 0) 1684 { 1685 gcc_assert (this_priority == -1); 1686 1687 this_priority = insn_sched_cost (insn); 1688 } 1689 1690 INSN_PRIORITY (insn) = this_priority; 1691 INSN_PRIORITY_STATUS (insn) = 1; 1692 } 1693 1694 return INSN_PRIORITY (insn); 1695 } 1696 1697 /* Macros and functions for keeping the priority queue sorted, and 1698 dealing with queuing and dequeuing of instructions. */ 1699 1700 /* For each pressure class CL, set DEATH[CL] to the number of registers 1701 in that class that die in INSN. */ 1702 1703 static void 1704 calculate_reg_deaths (rtx_insn *insn, int *death) 1705 { 1706 int i; 1707 struct reg_use_data *use; 1708 1709 for (i = 0; i < ira_pressure_classes_num; i++) 1710 death[ira_pressure_classes[i]] = 0; 1711 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use) 1712 if (dying_use_p (use)) 1713 mark_regno_birth_or_death (0, death, use->regno, true); 1714 } 1715 1716 /* Setup info about the current register pressure impact of scheduling 1717 INSN at the current scheduling point. */ 1718 static void 1719 setup_insn_reg_pressure_info (rtx_insn *insn) 1720 { 1721 int i, change, before, after, hard_regno; 1722 int excess_cost_change; 1723 machine_mode mode; 1724 enum reg_class cl; 1725 struct reg_pressure_data *pressure_info; 1726 int *max_reg_pressure; 1727 static int death[N_REG_CLASSES]; 1728 1729 gcc_checking_assert (!DEBUG_INSN_P (insn)); 1730 1731 excess_cost_change = 0; 1732 calculate_reg_deaths (insn, death); 1733 pressure_info = INSN_REG_PRESSURE (insn); 1734 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn); 1735 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL); 1736 for (i = 0; i < ira_pressure_classes_num; i++) 1737 { 1738 cl = ira_pressure_classes[i]; 1739 gcc_assert (curr_reg_pressure[cl] >= 0); 1740 change = (int) pressure_info[i].set_increase - death[cl]; 1741 before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]); 1742 after = MAX (0, max_reg_pressure[i] + change 1743 - sched_class_regs_num[cl]); 1744 hard_regno = ira_class_hard_regs[cl][0]; 1745 gcc_assert (hard_regno >= 0); 1746 mode = reg_raw_mode[hard_regno]; 1747 excess_cost_change += ((after - before) 1748 * (ira_memory_move_cost[mode][cl][0] 1749 + ira_memory_move_cost[mode][cl][1])); 1750 } 1751 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change; 1752 } 1753 1754 /* This is the first page of code related to SCHED_PRESSURE_MODEL. 1755 It tries to make the scheduler take register pressure into account 1756 without introducing too many unnecessary stalls. It hooks into the 1757 main scheduling algorithm at several points: 1758 1759 - Before scheduling starts, model_start_schedule constructs a 1760 "model schedule" for the current block. This model schedule is 1761 chosen solely to keep register pressure down. It does not take the 1762 target's pipeline or the original instruction order into account, 1763 except as a tie-breaker. It also doesn't work to a particular 1764 pressure limit. 1765 1766 This model schedule gives us an idea of what pressure can be 1767 achieved for the block and gives us an example of a schedule that 1768 keeps to that pressure. It also makes the final schedule less 1769 dependent on the original instruction order. This is important 1770 because the original order can either be "wide" (many values live 1771 at once, such as in user-scheduled code) or "narrow" (few values 1772 live at once, such as after loop unrolling, where several 1773 iterations are executed sequentially). 1774 1775 We do not apply this model schedule to the rtx stream. We simply 1776 record it in model_schedule. We also compute the maximum pressure, 1777 MP, that was seen during this schedule. 1778 1779 - Instructions are added to the ready queue even if they require 1780 a stall. The length of the stall is instead computed as: 1781 1782 MAX (INSN_TICK (INSN) - clock_var, 0) 1783 1784 (= insn_delay). This allows rank_for_schedule to choose between 1785 introducing a deliberate stall or increasing pressure. 1786 1787 - Before sorting the ready queue, model_set_excess_costs assigns 1788 a pressure-based cost to each ready instruction in the queue. 1789 This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE 1790 (ECC for short) and is effectively measured in cycles. 1791 1792 - rank_for_schedule ranks instructions based on: 1793 1794 ECC (insn) + insn_delay (insn) 1795 1796 then as: 1797 1798 insn_delay (insn) 1799 1800 So, for example, an instruction X1 with an ECC of 1 that can issue 1801 now will win over an instruction X0 with an ECC of zero that would 1802 introduce a stall of one cycle. However, an instruction X2 with an 1803 ECC of 2 that can issue now will lose to both X0 and X1. 1804 1805 - When an instruction is scheduled, model_recompute updates the model 1806 schedule with the new pressures (some of which might now exceed the 1807 original maximum pressure MP). model_update_limit_points then searches 1808 for the new point of maximum pressure, if not already known. */ 1809 1810 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL 1811 from surrounding debug information. */ 1812 #define MODEL_BAR \ 1813 ";;\t\t+------------------------------------------------------\n" 1814 1815 /* Information about the pressure on a particular register class at a 1816 particular point of the model schedule. */ 1817 struct model_pressure_data { 1818 /* The pressure at this point of the model schedule, or -1 if the 1819 point is associated with an instruction that has already been 1820 scheduled. */ 1821 int ref_pressure; 1822 1823 /* The maximum pressure during or after this point of the model schedule. */ 1824 int max_pressure; 1825 }; 1826 1827 /* Per-instruction information that is used while building the model 1828 schedule. Here, "schedule" refers to the model schedule rather 1829 than the main schedule. */ 1830 struct model_insn_info { 1831 /* The instruction itself. */ 1832 rtx_insn *insn; 1833 1834 /* If this instruction is in model_worklist, these fields link to the 1835 previous (higher-priority) and next (lower-priority) instructions 1836 in the list. */ 1837 struct model_insn_info *prev; 1838 struct model_insn_info *next; 1839 1840 /* While constructing the schedule, QUEUE_INDEX describes whether an 1841 instruction has already been added to the schedule (QUEUE_SCHEDULED), 1842 is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE). 1843 old_queue records the value that QUEUE_INDEX had before scheduling 1844 started, so that we can restore it once the schedule is complete. */ 1845 int old_queue; 1846 1847 /* The relative importance of an unscheduled instruction. Higher 1848 values indicate greater importance. */ 1849 unsigned int model_priority; 1850 1851 /* The length of the longest path of satisfied true dependencies 1852 that leads to this instruction. */ 1853 unsigned int depth; 1854 1855 /* The length of the longest path of dependencies of any kind 1856 that leads from this instruction. */ 1857 unsigned int alap; 1858 1859 /* The number of predecessor nodes that must still be scheduled. */ 1860 int unscheduled_preds; 1861 }; 1862 1863 /* Information about the pressure limit for a particular register class. 1864 This structure is used when applying a model schedule to the main 1865 schedule. */ 1866 struct model_pressure_limit { 1867 /* The maximum register pressure seen in the original model schedule. */ 1868 int orig_pressure; 1869 1870 /* The maximum register pressure seen in the current model schedule 1871 (which excludes instructions that have already been scheduled). */ 1872 int pressure; 1873 1874 /* The point of the current model schedule at which PRESSURE is first 1875 reached. It is set to -1 if the value needs to be recomputed. */ 1876 int point; 1877 }; 1878 1879 /* Describes a particular way of measuring register pressure. */ 1880 struct model_pressure_group { 1881 /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI]. */ 1882 struct model_pressure_limit limits[N_REG_CLASSES]; 1883 1884 /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure 1885 on register class ira_pressure_classes[PCI] at point POINT of the 1886 current model schedule. A POINT of model_num_insns describes the 1887 pressure at the end of the schedule. */ 1888 struct model_pressure_data *model; 1889 }; 1890 1891 /* Index POINT gives the instruction at point POINT of the model schedule. 1892 This array doesn't change during main scheduling. */ 1893 static vec<rtx_insn *> model_schedule; 1894 1895 /* The list of instructions in the model worklist, sorted in order of 1896 decreasing priority. */ 1897 static struct model_insn_info *model_worklist; 1898 1899 /* Index I describes the instruction with INSN_LUID I. */ 1900 static struct model_insn_info *model_insns; 1901 1902 /* The number of instructions in the model schedule. */ 1903 static int model_num_insns; 1904 1905 /* The index of the first instruction in model_schedule that hasn't yet been 1906 added to the main schedule, or model_num_insns if all of them have. */ 1907 static int model_curr_point; 1908 1909 /* Describes the pressure before each instruction in the model schedule. */ 1910 static struct model_pressure_group model_before_pressure; 1911 1912 /* The first unused model_priority value (as used in model_insn_info). */ 1913 static unsigned int model_next_priority; 1914 1915 1916 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP 1917 at point POINT of the model schedule. */ 1918 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \ 1919 (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)]) 1920 1921 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or 1922 after point POINT of the model schedule. */ 1923 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \ 1924 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure) 1925 1926 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT 1927 of the model schedule. */ 1928 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \ 1929 (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure) 1930 1931 /* Information about INSN that is used when creating the model schedule. */ 1932 #define MODEL_INSN_INFO(INSN) \ 1933 (&model_insns[INSN_LUID (INSN)]) 1934 1935 /* The instruction at point POINT of the model schedule. */ 1936 #define MODEL_INSN(POINT) \ 1937 (model_schedule[POINT]) 1938 1939 1940 /* Return INSN's index in the model schedule, or model_num_insns if it 1941 doesn't belong to that schedule. */ 1942 1943 static int 1944 model_index (rtx_insn *insn) 1945 { 1946 if (INSN_MODEL_INDEX (insn) == 0) 1947 return model_num_insns; 1948 return INSN_MODEL_INDEX (insn) - 1; 1949 } 1950 1951 /* Make sure that GROUP->limits is up-to-date for the current point 1952 of the model schedule. */ 1953 1954 static void 1955 model_update_limit_points_in_group (struct model_pressure_group *group) 1956 { 1957 int pci, max_pressure, point; 1958 1959 for (pci = 0; pci < ira_pressure_classes_num; pci++) 1960 { 1961 /* We may have passed the final point at which the pressure in 1962 group->limits[pci].pressure was reached. Update the limit if so. */ 1963 max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci); 1964 group->limits[pci].pressure = max_pressure; 1965 1966 /* Find the point at which MAX_PRESSURE is first reached. We need 1967 to search in three cases: 1968 1969 - We've already moved past the previous pressure point. 1970 In this case we search forward from model_curr_point. 1971 1972 - We scheduled the previous point of maximum pressure ahead of 1973 its position in the model schedule, but doing so didn't bring 1974 the pressure point earlier. In this case we search forward 1975 from that previous pressure point. 1976 1977 - Scheduling an instruction early caused the maximum pressure 1978 to decrease. In this case we will have set the pressure 1979 point to -1, and we search forward from model_curr_point. */ 1980 point = MAX (group->limits[pci].point, model_curr_point); 1981 while (point < model_num_insns 1982 && MODEL_REF_PRESSURE (group, point, pci) < max_pressure) 1983 point++; 1984 group->limits[pci].point = point; 1985 1986 gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure); 1987 gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure); 1988 } 1989 } 1990 1991 /* Make sure that all register-pressure limits are up-to-date for the 1992 current position in the model schedule. */ 1993 1994 static void 1995 model_update_limit_points (void) 1996 { 1997 model_update_limit_points_in_group (&model_before_pressure); 1998 } 1999 2000 /* Return the model_index of the last unscheduled use in chain USE 2001 outside of USE's instruction. Return -1 if there are no other uses, 2002 or model_num_insns if the register is live at the end of the block. */ 2003 2004 static int 2005 model_last_use_except (struct reg_use_data *use) 2006 { 2007 struct reg_use_data *next; 2008 int last, index; 2009 2010 last = -1; 2011 for (next = use->next_regno_use; next != use; next = next->next_regno_use) 2012 if (NONDEBUG_INSN_P (next->insn) 2013 && QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED) 2014 { 2015 index = model_index (next->insn); 2016 if (index == model_num_insns) 2017 return model_num_insns; 2018 if (last < index) 2019 last = index; 2020 } 2021 return last; 2022 } 2023 2024 /* An instruction with model_index POINT has just been scheduled, and it 2025 adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1. 2026 Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and 2027 MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly. */ 2028 2029 static void 2030 model_start_update_pressure (struct model_pressure_group *group, 2031 int point, int pci, int delta) 2032 { 2033 int next_max_pressure; 2034 2035 if (point == model_num_insns) 2036 { 2037 /* The instruction wasn't part of the model schedule; it was moved 2038 from a different block. Update the pressure for the end of 2039 the model schedule. */ 2040 MODEL_REF_PRESSURE (group, point, pci) += delta; 2041 MODEL_MAX_PRESSURE (group, point, pci) += delta; 2042 } 2043 else 2044 { 2045 /* Record that this instruction has been scheduled. Nothing now 2046 changes between POINT and POINT + 1, so get the maximum pressure 2047 from the latter. If the maximum pressure decreases, the new 2048 pressure point may be before POINT. */ 2049 MODEL_REF_PRESSURE (group, point, pci) = -1; 2050 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci); 2051 if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure) 2052 { 2053 MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure; 2054 if (group->limits[pci].point == point) 2055 group->limits[pci].point = -1; 2056 } 2057 } 2058 } 2059 2060 /* Record that scheduling a later instruction has changed the pressure 2061 at point POINT of the model schedule by DELTA (which might be 0). 2062 Update GROUP accordingly. Return nonzero if these changes might 2063 trigger changes to previous points as well. */ 2064 2065 static int 2066 model_update_pressure (struct model_pressure_group *group, 2067 int point, int pci, int delta) 2068 { 2069 int ref_pressure, max_pressure, next_max_pressure; 2070 2071 /* If POINT hasn't yet been scheduled, update its pressure. */ 2072 ref_pressure = MODEL_REF_PRESSURE (group, point, pci); 2073 if (ref_pressure >= 0 && delta != 0) 2074 { 2075 ref_pressure += delta; 2076 MODEL_REF_PRESSURE (group, point, pci) = ref_pressure; 2077 2078 /* Check whether the maximum pressure in the overall schedule 2079 has increased. (This means that the MODEL_MAX_PRESSURE of 2080 every point <= POINT will need to increase too; see below.) */ 2081 if (group->limits[pci].pressure < ref_pressure) 2082 group->limits[pci].pressure = ref_pressure; 2083 2084 /* If we are at maximum pressure, and the maximum pressure 2085 point was previously unknown or later than POINT, 2086 bring it forward. */ 2087 if (group->limits[pci].pressure == ref_pressure 2088 && !IN_RANGE (group->limits[pci].point, 0, point)) 2089 group->limits[pci].point = point; 2090 2091 /* If POINT used to be the point of maximum pressure, but isn't 2092 any longer, we need to recalculate it using a forward walk. */ 2093 if (group->limits[pci].pressure > ref_pressure 2094 && group->limits[pci].point == point) 2095 group->limits[pci].point = -1; 2096 } 2097 2098 /* Update the maximum pressure at POINT. Changes here might also 2099 affect the maximum pressure at POINT - 1. */ 2100 next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci); 2101 max_pressure = MAX (ref_pressure, next_max_pressure); 2102 if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure) 2103 { 2104 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure; 2105 return 1; 2106 } 2107 return 0; 2108 } 2109 2110 /* INSN has just been scheduled. Update the model schedule accordingly. */ 2111 2112 static void 2113 model_recompute (rtx_insn *insn) 2114 { 2115 struct { 2116 int last_use; 2117 int regno; 2118 } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS]; 2119 struct reg_use_data *use; 2120 struct reg_pressure_data *reg_pressure; 2121 int delta[N_REG_CLASSES]; 2122 int pci, point, mix, new_last, cl, ref_pressure, queue; 2123 unsigned int i, num_uses, num_pending_births; 2124 bool print_p; 2125 2126 /* The destinations of INSN were previously live from POINT onwards, but are 2127 now live from model_curr_point onwards. Set up DELTA accordingly. */ 2128 point = model_index (insn); 2129 reg_pressure = INSN_REG_PRESSURE (insn); 2130 for (pci = 0; pci < ira_pressure_classes_num; pci++) 2131 { 2132 cl = ira_pressure_classes[pci]; 2133 delta[cl] = reg_pressure[pci].set_increase; 2134 } 2135 2136 /* Record which registers previously died at POINT, but which now die 2137 before POINT. Adjust DELTA so that it represents the effect of 2138 this change after POINT - 1. Set NUM_PENDING_BIRTHS to the number of 2139 registers that will be born in the range [model_curr_point, POINT). */ 2140 num_uses = 0; 2141 num_pending_births = 0; 2142 bitmap_clear (tmp_bitmap); 2143 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use) 2144 { 2145 new_last = model_last_use_except (use); 2146 if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno)) 2147 { 2148 gcc_assert (num_uses < ARRAY_SIZE (uses)); 2149 uses[num_uses].last_use = new_last; 2150 uses[num_uses].regno = use->regno; 2151 /* This register is no longer live after POINT - 1. */ 2152 mark_regno_birth_or_death (NULL, delta, use->regno, false); 2153 num_uses++; 2154 if (new_last >= 0) 2155 num_pending_births++; 2156 } 2157 } 2158 2159 /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT. 2160 Also set each group pressure limit for POINT. */ 2161 for (pci = 0; pci < ira_pressure_classes_num; pci++) 2162 { 2163 cl = ira_pressure_classes[pci]; 2164 model_start_update_pressure (&model_before_pressure, 2165 point, pci, delta[cl]); 2166 } 2167 2168 /* Walk the model schedule backwards, starting immediately before POINT. */ 2169 print_p = false; 2170 if (point != model_curr_point) 2171 do 2172 { 2173 point--; 2174 insn = MODEL_INSN (point); 2175 queue = QUEUE_INDEX (insn); 2176 2177 if (queue != QUEUE_SCHEDULED) 2178 { 2179 /* DELTA describes the effect of the move on the register pressure 2180 after POINT. Make it describe the effect on the pressure 2181 before POINT. */ 2182 i = 0; 2183 while (i < num_uses) 2184 { 2185 if (uses[i].last_use == point) 2186 { 2187 /* This register is now live again. */ 2188 mark_regno_birth_or_death (NULL, delta, 2189 uses[i].regno, true); 2190 2191 /* Remove this use from the array. */ 2192 uses[i] = uses[num_uses - 1]; 2193 num_uses--; 2194 num_pending_births--; 2195 } 2196 else 2197 i++; 2198 } 2199 2200 if (sched_verbose >= 5) 2201 { 2202 if (!print_p) 2203 { 2204 fprintf (sched_dump, MODEL_BAR); 2205 fprintf (sched_dump, ";;\t\t| New pressure for model" 2206 " schedule\n"); 2207 fprintf (sched_dump, MODEL_BAR); 2208 print_p = true; 2209 } 2210 2211 fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ", 2212 point, INSN_UID (insn), 2213 str_pattern_slim (PATTERN (insn))); 2214 for (pci = 0; pci < ira_pressure_classes_num; pci++) 2215 { 2216 cl = ira_pressure_classes[pci]; 2217 ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure, 2218 point, pci); 2219 fprintf (sched_dump, " %s:[%d->%d]", 2220 reg_class_names[ira_pressure_classes[pci]], 2221 ref_pressure, ref_pressure + delta[cl]); 2222 } 2223 fprintf (sched_dump, "\n"); 2224 } 2225 } 2226 2227 /* Adjust the pressure at POINT. Set MIX to nonzero if POINT - 1 2228 might have changed as well. */ 2229 mix = num_pending_births; 2230 for (pci = 0; pci < ira_pressure_classes_num; pci++) 2231 { 2232 cl = ira_pressure_classes[pci]; 2233 mix |= delta[cl]; 2234 mix |= model_update_pressure (&model_before_pressure, 2235 point, pci, delta[cl]); 2236 } 2237 } 2238 while (mix && point > model_curr_point); 2239 2240 if (print_p) 2241 fprintf (sched_dump, MODEL_BAR); 2242 } 2243 2244 /* After DEP, which was cancelled, has been resolved for insn NEXT, 2245 check whether the insn's pattern needs restoring. */ 2246 static bool 2247 must_restore_pattern_p (rtx_insn *next, dep_t dep) 2248 { 2249 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED) 2250 return false; 2251 2252 if (DEP_TYPE (dep) == REG_DEP_CONTROL) 2253 { 2254 gcc_assert (ORIG_PAT (next) != NULL_RTX); 2255 gcc_assert (next == DEP_CON (dep)); 2256 } 2257 else 2258 { 2259 struct dep_replacement *desc = DEP_REPLACE (dep); 2260 if (desc->insn != next) 2261 { 2262 gcc_assert (*desc->loc == desc->orig); 2263 return false; 2264 } 2265 } 2266 return true; 2267 } 2268 2269 /* model_spill_cost (CL, P, P') returns the cost of increasing the 2270 pressure on CL from P to P'. We use this to calculate a "base ECC", 2271 baseECC (CL, X), for each pressure class CL and each instruction X. 2272 Supposing X changes the pressure on CL from P to P', and that the 2273 maximum pressure on CL in the current model schedule is MP', then: 2274 2275 * if X occurs before or at the next point of maximum pressure in 2276 the model schedule and P' > MP', then: 2277 2278 baseECC (CL, X) = model_spill_cost (CL, MP, P') 2279 2280 The idea is that the pressure after scheduling a fixed set of 2281 instructions -- in this case, the set up to and including the 2282 next maximum pressure point -- is going to be the same regardless 2283 of the order; we simply want to keep the intermediate pressure 2284 under control. Thus X has a cost of zero unless scheduling it 2285 now would exceed MP'. 2286 2287 If all increases in the set are by the same amount, no zero-cost 2288 instruction will ever cause the pressure to exceed MP'. However, 2289 if X is instead moved past an instruction X' with pressure in the 2290 range (MP' - (P' - P), MP'), the pressure at X' will increase 2291 beyond MP'. Since baseECC is very much a heuristic anyway, 2292 it doesn't seem worth the overhead of tracking cases like these. 2293 2294 The cost of exceeding MP' is always based on the original maximum 2295 pressure MP. This is so that going 2 registers over the original 2296 limit has the same cost regardless of whether it comes from two 2297 separate +1 deltas or from a single +2 delta. 2298 2299 * if X occurs after the next point of maximum pressure in the model 2300 schedule and P' > P, then: 2301 2302 baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P)) 2303 2304 That is, if we move X forward across a point of maximum pressure, 2305 and if X increases the pressure by P' - P, then we conservatively 2306 assume that scheduling X next would increase the maximum pressure 2307 by P' - P. Again, the cost of doing this is based on the original 2308 maximum pressure MP, for the same reason as above. 2309 2310 * if P' < P, P > MP, and X occurs at or after the next point of 2311 maximum pressure, then: 2312 2313 baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P) 2314 2315 That is, if we have already exceeded the original maximum pressure MP, 2316 and if X might reduce the maximum pressure again -- or at least push 2317 it further back, and thus allow more scheduling freedom -- it is given 2318 a negative cost to reflect the improvement. 2319 2320 * otherwise, 2321 2322 baseECC (CL, X) = 0 2323 2324 In this case, X is not expected to affect the maximum pressure MP', 2325 so it has zero cost. 2326 2327 We then create a combined value baseECC (X) that is the sum of 2328 baseECC (CL, X) for each pressure class CL. 2329 2330 baseECC (X) could itself be used as the ECC value described above. 2331 However, this is often too conservative, in the sense that it 2332 tends to make high-priority instructions that increase pressure 2333 wait too long in cases where introducing a spill would be better. 2334 For this reason the final ECC is a priority-adjusted form of 2335 baseECC (X). Specifically, we calculate: 2336 2337 P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X) 2338 baseP = MAX { P (X) | baseECC (X) <= 0 } 2339 2340 Then: 2341 2342 ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0) 2343 2344 Thus an instruction's effect on pressure is ignored if it has a high 2345 enough priority relative to the ones that don't increase pressure. 2346 Negative values of baseECC (X) do not increase the priority of X 2347 itself, but they do make it harder for other instructions to 2348 increase the pressure further. 2349 2350 This pressure cost is deliberately timid. The intention has been 2351 to choose a heuristic that rarely interferes with the normal list 2352 scheduler in cases where that scheduler would produce good code. 2353 We simply want to curb some of its worst excesses. */ 2354 2355 /* Return the cost of increasing the pressure in class CL from FROM to TO. 2356 2357 Here we use the very simplistic cost model that every register above 2358 sched_class_regs_num[CL] has a spill cost of 1. We could use other 2359 measures instead, such as one based on MEMORY_MOVE_COST. However: 2360 2361 (1) In order for an instruction to be scheduled, the higher cost 2362 would need to be justified in a single saving of that many stalls. 2363 This is overly pessimistic, because the benefit of spilling is 2364 often to avoid a sequence of several short stalls rather than 2365 a single long one. 2366 2367 (2) The cost is still arbitrary. Because we are not allocating 2368 registers during scheduling, we have no way of knowing for 2369 sure how many memory accesses will be required by each spill, 2370 where the spills will be placed within the block, or even 2371 which block(s) will contain the spills. 2372 2373 So a higher cost than 1 is often too conservative in practice, 2374 forcing blocks to contain unnecessary stalls instead of spill code. 2375 The simple cost below seems to be the best compromise. It reduces 2376 the interference with the normal list scheduler, which helps make 2377 it more suitable for a default-on option. */ 2378 2379 static int 2380 model_spill_cost (int cl, int from, int to) 2381 { 2382 from = MAX (from, sched_class_regs_num[cl]); 2383 return MAX (to, from) - from; 2384 } 2385 2386 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that 2387 P = curr_reg_pressure[ira_pressure_classes[PCI]] and that 2388 P' = P + DELTA. */ 2389 2390 static int 2391 model_excess_group_cost (struct model_pressure_group *group, 2392 int point, int pci, int delta) 2393 { 2394 int pressure, cl; 2395 2396 cl = ira_pressure_classes[pci]; 2397 if (delta < 0 && point >= group->limits[pci].point) 2398 { 2399 pressure = MAX (group->limits[pci].orig_pressure, 2400 curr_reg_pressure[cl] + delta); 2401 return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]); 2402 } 2403 2404 if (delta > 0) 2405 { 2406 if (point > group->limits[pci].point) 2407 pressure = group->limits[pci].pressure + delta; 2408 else 2409 pressure = curr_reg_pressure[cl] + delta; 2410 2411 if (pressure > group->limits[pci].pressure) 2412 return model_spill_cost (cl, group->limits[pci].orig_pressure, 2413 pressure); 2414 } 2415 2416 return 0; 2417 } 2418 2419 /* Return baseECC (MODEL_INSN (INSN)). Dump the costs to sched_dump 2420 if PRINT_P. */ 2421 2422 static int 2423 model_excess_cost (rtx_insn *insn, bool print_p) 2424 { 2425 int point, pci, cl, cost, this_cost, delta; 2426 struct reg_pressure_data *insn_reg_pressure; 2427 int insn_death[N_REG_CLASSES]; 2428 2429 calculate_reg_deaths (insn, insn_death); 2430 point = model_index (insn); 2431 insn_reg_pressure = INSN_REG_PRESSURE (insn); 2432 cost = 0; 2433 2434 if (print_p) 2435 fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point, 2436 INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn)); 2437 2438 /* Sum up the individual costs for each register class. */ 2439 for (pci = 0; pci < ira_pressure_classes_num; pci++) 2440 { 2441 cl = ira_pressure_classes[pci]; 2442 delta = insn_reg_pressure[pci].set_increase - insn_death[cl]; 2443 this_cost = model_excess_group_cost (&model_before_pressure, 2444 point, pci, delta); 2445 cost += this_cost; 2446 if (print_p) 2447 fprintf (sched_dump, " %s:[%d base cost %d]", 2448 reg_class_names[cl], delta, this_cost); 2449 } 2450 2451 if (print_p) 2452 fprintf (sched_dump, "\n"); 2453 2454 return cost; 2455 } 2456 2457 /* Dump the next points of maximum pressure for GROUP. */ 2458 2459 static void 2460 model_dump_pressure_points (struct model_pressure_group *group) 2461 { 2462 int pci, cl; 2463 2464 fprintf (sched_dump, ";;\t\t| pressure points"); 2465 for (pci = 0; pci < ira_pressure_classes_num; pci++) 2466 { 2467 cl = ira_pressure_classes[pci]; 2468 fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl], 2469 curr_reg_pressure[cl], group->limits[pci].pressure); 2470 if (group->limits[pci].point < model_num_insns) 2471 fprintf (sched_dump, "%d:%d]", group->limits[pci].point, 2472 INSN_UID (MODEL_INSN (group->limits[pci].point))); 2473 else 2474 fprintf (sched_dump, "end]"); 2475 } 2476 fprintf (sched_dump, "\n"); 2477 } 2478 2479 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1]. */ 2480 2481 static void 2482 model_set_excess_costs (rtx_insn **insns, int count) 2483 { 2484 int i, cost, priority_base, priority; 2485 bool print_p; 2486 2487 /* Record the baseECC value for each instruction in the model schedule, 2488 except that negative costs are converted to zero ones now rather than 2489 later. Do not assign a cost to debug instructions, since they must 2490 not change code-generation decisions. Experiments suggest we also 2491 get better results by not assigning a cost to instructions from 2492 a different block. 2493 2494 Set PRIORITY_BASE to baseP in the block comment above. This is the 2495 maximum priority of the "cheap" instructions, which should always 2496 include the next model instruction. */ 2497 priority_base = 0; 2498 print_p = false; 2499 for (i = 0; i < count; i++) 2500 if (INSN_MODEL_INDEX (insns[i])) 2501 { 2502 if (sched_verbose >= 6 && !print_p) 2503 { 2504 fprintf (sched_dump, MODEL_BAR); 2505 fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n"); 2506 model_dump_pressure_points (&model_before_pressure); 2507 fprintf (sched_dump, MODEL_BAR); 2508 print_p = true; 2509 } 2510 cost = model_excess_cost (insns[i], print_p); 2511 if (cost <= 0) 2512 { 2513 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost; 2514 priority_base = MAX (priority_base, priority); 2515 cost = 0; 2516 } 2517 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost; 2518 } 2519 if (print_p) 2520 fprintf (sched_dump, MODEL_BAR); 2521 2522 /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each 2523 instruction. */ 2524 for (i = 0; i < count; i++) 2525 { 2526 cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]); 2527 priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]); 2528 if (cost > 0 && priority > priority_base) 2529 { 2530 cost += priority_base - priority; 2531 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0); 2532 } 2533 } 2534 } 2535 2536 2537 /* Enum of rank_for_schedule heuristic decisions. */ 2538 enum rfs_decision { 2539 RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2, 2540 RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK, 2541 RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION, 2542 RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX, 2543 RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N }; 2544 2545 /* Corresponding strings for print outs. */ 2546 static const char *rfs_str[RFS_N] = { 2547 "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2", 2548 "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK", 2549 "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION", 2550 "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX", 2551 "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" }; 2552 2553 /* Statistical breakdown of rank_for_schedule decisions. */ 2554 struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; }; 2555 static rank_for_schedule_stats_t rank_for_schedule_stats; 2556 2557 /* Return the result of comparing insns TMP and TMP2 and update 2558 Rank_For_Schedule statistics. */ 2559 static int 2560 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2) 2561 { 2562 ++rank_for_schedule_stats.stats[decision]; 2563 if (result < 0) 2564 INSN_LAST_RFS_WIN (tmp) = decision; 2565 else if (result > 0) 2566 INSN_LAST_RFS_WIN (tmp2) = decision; 2567 else 2568 gcc_unreachable (); 2569 return result; 2570 } 2571 2572 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while 2573 keeping normal insns in original order. */ 2574 2575 static int 2576 rank_for_schedule_debug (const void *x, const void *y) 2577 { 2578 rtx_insn *tmp = *(rtx_insn * const *) y; 2579 rtx_insn *tmp2 = *(rtx_insn * const *) x; 2580 2581 /* Schedule debug insns as early as possible. */ 2582 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2)) 2583 return -1; 2584 else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2)) 2585 return 1; 2586 else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2)) 2587 return INSN_LUID (tmp) - INSN_LUID (tmp2); 2588 else 2589 return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp); 2590 } 2591 2592 /* Returns a positive value if x is preferred; returns a negative value if 2593 y is preferred. Should never return 0, since that will make the sort 2594 unstable. */ 2595 2596 static int 2597 rank_for_schedule (const void *x, const void *y) 2598 { 2599 rtx_insn *tmp = *(rtx_insn * const *) y; 2600 rtx_insn *tmp2 = *(rtx_insn * const *) x; 2601 int tmp_class, tmp2_class; 2602 int val, priority_val, info_val, diff; 2603 2604 if (live_range_shrinkage_p) 2605 { 2606 /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse 2607 code. */ 2608 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED); 2609 if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0 2610 || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0) 2611 && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) 2612 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0) 2613 return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2); 2614 /* Sort by INSN_LUID (original insn order), so that we make the 2615 sort stable. This minimizes instruction movement, thus 2616 minimizing sched's effect on debugging and cross-jumping. */ 2617 return rfs_result (RFS_LIVE_RANGE_SHRINK2, 2618 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2); 2619 } 2620 2621 /* The insn in a schedule group should be issued the first. */ 2622 if (flag_sched_group_heuristic && 2623 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2)) 2624 return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1, 2625 tmp, tmp2); 2626 2627 /* Make sure that priority of TMP and TMP2 are initialized. */ 2628 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2)); 2629 2630 if (sched_fusion) 2631 { 2632 /* The instruction that has the same fusion priority as the last 2633 instruction is the instruction we picked next. If that is not 2634 the case, we sort ready list firstly by fusion priority, then 2635 by priority, and at last by INSN_LUID. */ 2636 int a = INSN_FUSION_PRIORITY (tmp); 2637 int b = INSN_FUSION_PRIORITY (tmp2); 2638 int last = -1; 2639 2640 if (last_nondebug_scheduled_insn 2641 && !NOTE_P (last_nondebug_scheduled_insn) 2642 && BLOCK_FOR_INSN (tmp) 2643 == BLOCK_FOR_INSN (last_nondebug_scheduled_insn)) 2644 last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn); 2645 2646 if (a != last && b != last) 2647 { 2648 if (a == b) 2649 { 2650 a = INSN_PRIORITY (tmp); 2651 b = INSN_PRIORITY (tmp2); 2652 } 2653 if (a != b) 2654 return rfs_result (RFS_FUSION, b - a, tmp, tmp2); 2655 else 2656 return rfs_result (RFS_FUSION, 2657 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2); 2658 } 2659 else if (a == b) 2660 { 2661 gcc_assert (last_nondebug_scheduled_insn 2662 && !NOTE_P (last_nondebug_scheduled_insn)); 2663 last = INSN_PRIORITY (last_nondebug_scheduled_insn); 2664 2665 a = abs (INSN_PRIORITY (tmp) - last); 2666 b = abs (INSN_PRIORITY (tmp2) - last); 2667 if (a != b) 2668 return rfs_result (RFS_FUSION, a - b, tmp, tmp2); 2669 else 2670 return rfs_result (RFS_FUSION, 2671 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2); 2672 } 2673 else if (a == last) 2674 return rfs_result (RFS_FUSION, -1, tmp, tmp2); 2675 else 2676 return rfs_result (RFS_FUSION, 1, tmp, tmp2); 2677 } 2678 2679 if (sched_pressure != SCHED_PRESSURE_NONE) 2680 { 2681 /* Prefer insn whose scheduling results in the smallest register 2682 pressure excess. */ 2683 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) 2684 + insn_delay (tmp) 2685 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) 2686 - insn_delay (tmp2)))) 2687 return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2); 2688 } 2689 2690 if (sched_pressure != SCHED_PRESSURE_NONE 2691 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var) 2692 && INSN_TICK (tmp2) != INSN_TICK (tmp)) 2693 { 2694 diff = INSN_TICK (tmp) - INSN_TICK (tmp2); 2695 return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2); 2696 } 2697 2698 /* If we are doing backtracking in this schedule, prefer insns that 2699 have forward dependencies with negative cost against an insn that 2700 was already scheduled. */ 2701 if (current_sched_info->flags & DO_BACKTRACKING) 2702 { 2703 priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp); 2704 if (priority_val) 2705 return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2); 2706 } 2707 2708 /* Prefer insn with higher priority. */ 2709 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp); 2710 2711 if (flag_sched_critical_path_heuristic && priority_val) 2712 return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2); 2713 2714 if (param_sched_autopref_queue_depth >= 0) 2715 { 2716 int autopref = autopref_rank_for_schedule (tmp, tmp2); 2717 if (autopref != 0) 2718 return autopref; 2719 } 2720 2721 /* Prefer speculative insn with greater dependencies weakness. */ 2722 if (flag_sched_spec_insn_heuristic && spec_info) 2723 { 2724 ds_t ds1, ds2; 2725 dw_t dw1, dw2; 2726 int dw; 2727 2728 ds1 = TODO_SPEC (tmp) & SPECULATIVE; 2729 if (ds1) 2730 dw1 = ds_weak (ds1); 2731 else 2732 dw1 = NO_DEP_WEAK; 2733 2734 ds2 = TODO_SPEC (tmp2) & SPECULATIVE; 2735 if (ds2) 2736 dw2 = ds_weak (ds2); 2737 else 2738 dw2 = NO_DEP_WEAK; 2739 2740 dw = dw2 - dw1; 2741 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8)) 2742 return rfs_result (RFS_SPECULATION, dw, tmp, tmp2); 2743 } 2744 2745 info_val = (*current_sched_info->rank) (tmp, tmp2); 2746 if (flag_sched_rank_heuristic && info_val) 2747 return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2); 2748 2749 /* Compare insns based on their relation to the last scheduled 2750 non-debug insn. */ 2751 if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn) 2752 { 2753 dep_t dep1; 2754 dep_t dep2; 2755 rtx_insn *last = last_nondebug_scheduled_insn; 2756 2757 /* Classify the instructions into three classes: 2758 1) Data dependent on last schedule insn. 2759 2) Anti/Output dependent on last scheduled insn. 2760 3) Independent of last scheduled insn, or has latency of one. 2761 Choose the insn from the highest numbered class if different. */ 2762 dep1 = sd_find_dep_between (last, tmp, true); 2763 2764 if (dep1 == NULL || dep_cost (dep1) == 1) 2765 tmp_class = 3; 2766 else if (/* Data dependence. */ 2767 DEP_TYPE (dep1) == REG_DEP_TRUE) 2768 tmp_class = 1; 2769 else 2770 tmp_class = 2; 2771 2772 dep2 = sd_find_dep_between (last, tmp2, true); 2773 2774 if (dep2 == NULL || dep_cost (dep2) == 1) 2775 tmp2_class = 3; 2776 else if (/* Data dependence. */ 2777 DEP_TYPE (dep2) == REG_DEP_TRUE) 2778 tmp2_class = 1; 2779 else 2780 tmp2_class = 2; 2781 2782 if ((val = tmp2_class - tmp_class)) 2783 return rfs_result (RFS_LAST_INSN, val, tmp, tmp2); 2784 } 2785 2786 /* Prefer instructions that occur earlier in the model schedule. */ 2787 if (sched_pressure == SCHED_PRESSURE_MODEL) 2788 { 2789 diff = model_index (tmp) - model_index (tmp2); 2790 if (diff != 0) 2791 return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2); 2792 } 2793 2794 /* Prefer the insn which has more later insns that depend on it. 2795 This gives the scheduler more freedom when scheduling later 2796 instructions at the expense of added register pressure. */ 2797 2798 val = (dep_list_size (tmp2, SD_LIST_FORW) 2799 - dep_list_size (tmp, SD_LIST_FORW)); 2800 2801 if (flag_sched_dep_count_heuristic && val != 0) 2802 return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2); 2803 2804 /* Sort by INSN_COST rather than INSN_LUID. This means that instructions 2805 which take longer to execute are prioritised and it leads to more 2806 dual-issue opportunities on in-order cores which have this feature. */ 2807 2808 if (INSN_COST (tmp) != INSN_COST (tmp2)) 2809 return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp), 2810 tmp, tmp2); 2811 2812 /* If insns are equally good, sort by INSN_LUID (original insn order), 2813 so that we make the sort stable. This minimizes instruction movement, 2814 thus minimizing sched's effect on debugging and cross-jumping. */ 2815 return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2); 2816 } 2817 2818 /* Resort the array A in which only element at index N may be out of order. */ 2819 2820 HAIFA_INLINE static void 2821 swap_sort (rtx_insn **a, int n) 2822 { 2823 rtx_insn *insn = a[n - 1]; 2824 int i = n - 2; 2825 2826 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0) 2827 { 2828 a[i + 1] = a[i]; 2829 i -= 1; 2830 } 2831 a[i + 1] = insn; 2832 } 2833 2834 /* Add INSN to the insn queue so that it can be executed at least 2835 N_CYCLES after the currently executing insn. Preserve insns 2836 chain for debugging purposes. REASON will be printed in debugging 2837 output. */ 2838 2839 HAIFA_INLINE static void 2840 queue_insn (rtx_insn *insn, int n_cycles, const char *reason) 2841 { 2842 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles); 2843 rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]); 2844 int new_tick; 2845 2846 gcc_assert (n_cycles <= max_insn_queue_index); 2847 gcc_assert (!DEBUG_INSN_P (insn)); 2848 2849 insn_queue[next_q] = link; 2850 q_size += 1; 2851 2852 if (sched_verbose >= 2) 2853 { 2854 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ", 2855 (*current_sched_info->print_insn) (insn, 0)); 2856 2857 fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason); 2858 } 2859 2860 QUEUE_INDEX (insn) = next_q; 2861 2862 if (current_sched_info->flags & DO_BACKTRACKING) 2863 { 2864 new_tick = clock_var + n_cycles; 2865 if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick) 2866 INSN_TICK (insn) = new_tick; 2867 2868 if (INSN_EXACT_TICK (insn) != INVALID_TICK 2869 && INSN_EXACT_TICK (insn) < clock_var + n_cycles) 2870 { 2871 must_backtrack = true; 2872 if (sched_verbose >= 2) 2873 fprintf (sched_dump, ";;\t\tcausing a backtrack.\n"); 2874 } 2875 } 2876 } 2877 2878 /* Remove INSN from queue. */ 2879 static void 2880 queue_remove (rtx_insn *insn) 2881 { 2882 gcc_assert (QUEUE_INDEX (insn) >= 0); 2883 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]); 2884 q_size--; 2885 QUEUE_INDEX (insn) = QUEUE_NOWHERE; 2886 } 2887 2888 /* Return a pointer to the bottom of the ready list, i.e. the insn 2889 with the lowest priority. */ 2890 2891 rtx_insn ** 2892 ready_lastpos (struct ready_list *ready) 2893 { 2894 gcc_assert (ready->n_ready >= 1); 2895 return ready->vec + ready->first - ready->n_ready + 1; 2896 } 2897 2898 /* Add an element INSN to the ready list so that it ends up with the 2899 lowest/highest priority depending on FIRST_P. */ 2900 2901 HAIFA_INLINE static void 2902 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p) 2903 { 2904 if (!first_p) 2905 { 2906 if (ready->first == ready->n_ready) 2907 { 2908 memmove (ready->vec + ready->veclen - ready->n_ready, 2909 ready_lastpos (ready), 2910 ready->n_ready * sizeof (rtx)); 2911 ready->first = ready->veclen - 1; 2912 } 2913 ready->vec[ready->first - ready->n_ready] = insn; 2914 } 2915 else 2916 { 2917 if (ready->first == ready->veclen - 1) 2918 { 2919 if (ready->n_ready) 2920 /* ready_lastpos() fails when called with (ready->n_ready == 0). */ 2921 memmove (ready->vec + ready->veclen - ready->n_ready - 1, 2922 ready_lastpos (ready), 2923 ready->n_ready * sizeof (rtx)); 2924 ready->first = ready->veclen - 2; 2925 } 2926 ready->vec[++(ready->first)] = insn; 2927 } 2928 2929 ready->n_ready++; 2930 if (DEBUG_INSN_P (insn)) 2931 ready->n_debug++; 2932 2933 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY); 2934 QUEUE_INDEX (insn) = QUEUE_READY; 2935 2936 if (INSN_EXACT_TICK (insn) != INVALID_TICK 2937 && INSN_EXACT_TICK (insn) < clock_var) 2938 { 2939 must_backtrack = true; 2940 } 2941 } 2942 2943 /* Remove the element with the highest priority from the ready list and 2944 return it. */ 2945 2946 HAIFA_INLINE static rtx_insn * 2947 ready_remove_first (struct ready_list *ready) 2948 { 2949 rtx_insn *t; 2950 2951 gcc_assert (ready->n_ready); 2952 t = ready->vec[ready->first--]; 2953 ready->n_ready--; 2954 if (DEBUG_INSN_P (t)) 2955 ready->n_debug--; 2956 /* If the queue becomes empty, reset it. */ 2957 if (ready->n_ready == 0) 2958 ready->first = ready->veclen - 1; 2959 2960 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY); 2961 QUEUE_INDEX (t) = QUEUE_NOWHERE; 2962 2963 return t; 2964 } 2965 2966 /* The following code implements multi-pass scheduling for the first 2967 cycle. In other words, we will try to choose ready insn which 2968 permits to start maximum number of insns on the same cycle. */ 2969 2970 /* Return a pointer to the element INDEX from the ready. INDEX for 2971 insn with the highest priority is 0, and the lowest priority has 2972 N_READY - 1. */ 2973 2974 rtx_insn * 2975 ready_element (struct ready_list *ready, int index) 2976 { 2977 gcc_assert (ready->n_ready && index < ready->n_ready); 2978 2979 return ready->vec[ready->first - index]; 2980 } 2981 2982 /* Remove the element INDEX from the ready list and return it. INDEX 2983 for insn with the highest priority is 0, and the lowest priority 2984 has N_READY - 1. */ 2985 2986 HAIFA_INLINE static rtx_insn * 2987 ready_remove (struct ready_list *ready, int index) 2988 { 2989 rtx_insn *t; 2990 int i; 2991 2992 if (index == 0) 2993 return ready_remove_first (ready); 2994 gcc_assert (ready->n_ready && index < ready->n_ready); 2995 t = ready->vec[ready->first - index]; 2996 ready->n_ready--; 2997 if (DEBUG_INSN_P (t)) 2998 ready->n_debug--; 2999 for (i = index; i < ready->n_ready; i++) 3000 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1]; 3001 QUEUE_INDEX (t) = QUEUE_NOWHERE; 3002 return t; 3003 } 3004 3005 /* Remove INSN from the ready list. */ 3006 static void 3007 ready_remove_insn (rtx_insn *insn) 3008 { 3009 int i; 3010 3011 for (i = 0; i < readyp->n_ready; i++) 3012 if (ready_element (readyp, i) == insn) 3013 { 3014 ready_remove (readyp, i); 3015 return; 3016 } 3017 gcc_unreachable (); 3018 } 3019 3020 /* Calculate difference of two statistics set WAS and NOW. 3021 Result returned in WAS. */ 3022 static void 3023 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was, 3024 const rank_for_schedule_stats_t *now) 3025 { 3026 for (int i = 0; i < RFS_N; ++i) 3027 was->stats[i] = now->stats[i] - was->stats[i]; 3028 } 3029 3030 /* Print rank_for_schedule statistics. */ 3031 static void 3032 print_rank_for_schedule_stats (const char *prefix, 3033 const rank_for_schedule_stats_t *stats, 3034 struct ready_list *ready) 3035 { 3036 for (int i = 0; i < RFS_N; ++i) 3037 if (stats->stats[i]) 3038 { 3039 fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]); 3040 3041 if (ready != NULL) 3042 /* Print out insns that won due to RFS_<I>. */ 3043 { 3044 rtx_insn **p = ready_lastpos (ready); 3045 3046 fprintf (sched_dump, ":"); 3047 /* Start with 1 since least-priority insn didn't have any wins. */ 3048 for (int j = 1; j < ready->n_ready; ++j) 3049 if (INSN_LAST_RFS_WIN (p[j]) == i) 3050 fprintf (sched_dump, " %s", 3051 (*current_sched_info->print_insn) (p[j], 0)); 3052 } 3053 fprintf (sched_dump, "\n"); 3054 } 3055 } 3056 3057 /* Separate DEBUG_INSNS from normal insns. DEBUG_INSNs go to the end 3058 of array. */ 3059 static void 3060 ready_sort_debug (struct ready_list *ready) 3061 { 3062 int i; 3063 rtx_insn **first = ready_lastpos (ready); 3064 3065 for (i = 0; i < ready->n_ready; ++i) 3066 if (!DEBUG_INSN_P (first[i])) 3067 INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i; 3068 3069 qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug); 3070 } 3071 3072 /* Sort non-debug insns in the ready list READY by ascending priority. 3073 Assumes that all debug insns are separated from the real insns. */ 3074 static void 3075 ready_sort_real (struct ready_list *ready) 3076 { 3077 int i; 3078 rtx_insn **first = ready_lastpos (ready); 3079 int n_ready_real = ready->n_ready - ready->n_debug; 3080 3081 if (sched_pressure == SCHED_PRESSURE_WEIGHTED) 3082 for (i = 0; i < n_ready_real; ++i) 3083 setup_insn_reg_pressure_info (first[i]); 3084 else if (sched_pressure == SCHED_PRESSURE_MODEL 3085 && model_curr_point < model_num_insns) 3086 model_set_excess_costs (first, n_ready_real); 3087 3088 rank_for_schedule_stats_t stats1; 3089 if (sched_verbose >= 4) 3090 stats1 = rank_for_schedule_stats; 3091 3092 if (n_ready_real == 2) 3093 swap_sort (first, n_ready_real); 3094 else if (n_ready_real > 2) 3095 qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule); 3096 3097 if (sched_verbose >= 4) 3098 { 3099 rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats); 3100 print_rank_for_schedule_stats (";;\t\t", &stats1, ready); 3101 } 3102 } 3103 3104 /* Sort the ready list READY by ascending priority. */ 3105 static void 3106 ready_sort (struct ready_list *ready) 3107 { 3108 if (ready->n_debug > 0) 3109 ready_sort_debug (ready); 3110 else 3111 ready_sort_real (ready); 3112 } 3113 3114 /* PREV is an insn that is ready to execute. Adjust its priority if that 3115 will help shorten or lengthen register lifetimes as appropriate. Also 3116 provide a hook for the target to tweak itself. */ 3117 3118 HAIFA_INLINE static void 3119 adjust_priority (rtx_insn *prev) 3120 { 3121 /* ??? There used to be code here to try and estimate how an insn 3122 affected register lifetimes, but it did it by looking at REG_DEAD 3123 notes, which we removed in schedule_region. Nor did it try to 3124 take into account register pressure or anything useful like that. 3125 3126 Revisit when we have a machine model to work with and not before. */ 3127 3128 if (targetm.sched.adjust_priority) 3129 INSN_PRIORITY (prev) = 3130 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev)); 3131 } 3132 3133 /* Advance DFA state STATE on one cycle. */ 3134 void 3135 advance_state (state_t state) 3136 { 3137 if (targetm.sched.dfa_pre_advance_cycle) 3138 targetm.sched.dfa_pre_advance_cycle (); 3139 3140 if (targetm.sched.dfa_pre_cycle_insn) 3141 state_transition (state, 3142 targetm.sched.dfa_pre_cycle_insn ()); 3143 3144 state_transition (state, NULL); 3145 3146 if (targetm.sched.dfa_post_cycle_insn) 3147 state_transition (state, 3148 targetm.sched.dfa_post_cycle_insn ()); 3149 3150 if (targetm.sched.dfa_post_advance_cycle) 3151 targetm.sched.dfa_post_advance_cycle (); 3152 } 3153 3154 /* Advance time on one cycle. */ 3155 HAIFA_INLINE static void 3156 advance_one_cycle (void) 3157 { 3158 advance_state (curr_state); 3159 if (sched_verbose >= 4) 3160 fprintf (sched_dump, ";;\tAdvance the current state.\n"); 3161 } 3162 3163 /* Update register pressure after scheduling INSN. */ 3164 static void 3165 update_register_pressure (rtx_insn *insn) 3166 { 3167 struct reg_use_data *use; 3168 struct reg_set_data *set; 3169 3170 gcc_checking_assert (!DEBUG_INSN_P (insn)); 3171 3172 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use) 3173 if (dying_use_p (use)) 3174 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, 3175 use->regno, false); 3176 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set) 3177 mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, 3178 set->regno, true); 3179 } 3180 3181 /* Set up or update (if UPDATE_P) max register pressure (see its 3182 meaning in sched-int.h::_haifa_insn_data) for all current BB insns 3183 after insn AFTER. */ 3184 static void 3185 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p) 3186 { 3187 int i, p; 3188 bool eq_p; 3189 rtx_insn *insn; 3190 static int max_reg_pressure[N_REG_CLASSES]; 3191 3192 save_reg_pressure (); 3193 for (i = 0; i < ira_pressure_classes_num; i++) 3194 max_reg_pressure[ira_pressure_classes[i]] 3195 = curr_reg_pressure[ira_pressure_classes[i]]; 3196 for (insn = NEXT_INSN (after); 3197 insn != NULL_RTX && ! BARRIER_P (insn) 3198 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after); 3199 insn = NEXT_INSN (insn)) 3200 if (NONDEBUG_INSN_P (insn)) 3201 { 3202 eq_p = true; 3203 for (i = 0; i < ira_pressure_classes_num; i++) 3204 { 3205 p = max_reg_pressure[ira_pressure_classes[i]]; 3206 if (INSN_MAX_REG_PRESSURE (insn)[i] != p) 3207 { 3208 eq_p = false; 3209 INSN_MAX_REG_PRESSURE (insn)[i] 3210 = max_reg_pressure[ira_pressure_classes[i]]; 3211 } 3212 } 3213 if (update_p && eq_p) 3214 break; 3215 update_register_pressure (insn); 3216 for (i = 0; i < ira_pressure_classes_num; i++) 3217 if (max_reg_pressure[ira_pressure_classes[i]] 3218 < curr_reg_pressure[ira_pressure_classes[i]]) 3219 max_reg_pressure[ira_pressure_classes[i]] 3220 = curr_reg_pressure[ira_pressure_classes[i]]; 3221 } 3222 restore_reg_pressure (); 3223 } 3224 3225 /* Update the current register pressure after scheduling INSN. Update 3226 also max register pressure for unscheduled insns of the current 3227 BB. */ 3228 static void 3229 update_reg_and_insn_max_reg_pressure (rtx_insn *insn) 3230 { 3231 int i; 3232 int before[N_REG_CLASSES]; 3233 3234 for (i = 0; i < ira_pressure_classes_num; i++) 3235 before[i] = curr_reg_pressure[ira_pressure_classes[i]]; 3236 update_register_pressure (insn); 3237 for (i = 0; i < ira_pressure_classes_num; i++) 3238 if (curr_reg_pressure[ira_pressure_classes[i]] != before[i]) 3239 break; 3240 if (i < ira_pressure_classes_num) 3241 setup_insn_max_reg_pressure (insn, true); 3242 } 3243 3244 /* Set up register pressure at the beginning of basic block BB whose 3245 insns starting after insn AFTER. Set up also max register pressure 3246 for all insns of the basic block. */ 3247 void 3248 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after) 3249 { 3250 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED); 3251 initiate_bb_reg_pressure_info (bb); 3252 setup_insn_max_reg_pressure (after, false); 3253 } 3254 3255 /* If doing predication while scheduling, verify whether INSN, which 3256 has just been scheduled, clobbers the conditions of any 3257 instructions that must be predicated in order to break their 3258 dependencies. If so, remove them from the queues so that they will 3259 only be scheduled once their control dependency is resolved. */ 3260 3261 static void 3262 check_clobbered_conditions (rtx_insn *insn) 3263 { 3264 HARD_REG_SET t; 3265 int i; 3266 3267 if ((current_sched_info->flags & DO_PREDICATION) == 0) 3268 return; 3269 3270 find_all_hard_reg_sets (insn, &t, true); 3271 3272 restart: 3273 for (i = 0; i < ready.n_ready; i++) 3274 { 3275 rtx_insn *x = ready_element (&ready, i); 3276 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t)) 3277 { 3278 ready_remove_insn (x); 3279 goto restart; 3280 } 3281 } 3282 for (i = 0; i <= max_insn_queue_index; i++) 3283 { 3284 rtx_insn_list *link; 3285 int q = NEXT_Q_AFTER (q_ptr, i); 3286 3287 restart_queue: 3288 for (link = insn_queue[q]; link; link = link->next ()) 3289 { 3290 rtx_insn *x = link->insn (); 3291 if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t)) 3292 { 3293 queue_remove (x); 3294 goto restart_queue; 3295 } 3296 } 3297 } 3298 } 3299 3300 /* Return (in order): 3301 3302 - positive if INSN adversely affects the pressure on one 3303 register class 3304 3305 - negative if INSN reduces the pressure on one register class 3306 3307 - 0 if INSN doesn't affect the pressure on any register class. */ 3308 3309 static int 3310 model_classify_pressure (struct model_insn_info *insn) 3311 { 3312 struct reg_pressure_data *reg_pressure; 3313 int death[N_REG_CLASSES]; 3314 int pci, cl, sum; 3315 3316 calculate_reg_deaths (insn->insn, death); 3317 reg_pressure = INSN_REG_PRESSURE (insn->insn); 3318 sum = 0; 3319 for (pci = 0; pci < ira_pressure_classes_num; pci++) 3320 { 3321 cl = ira_pressure_classes[pci]; 3322 if (death[cl] < reg_pressure[pci].set_increase) 3323 return 1; 3324 sum += reg_pressure[pci].set_increase - death[cl]; 3325 } 3326 return sum; 3327 } 3328 3329 /* Return true if INSN1 should come before INSN2 in the model schedule. */ 3330 3331 static int 3332 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2) 3333 { 3334 unsigned int height1, height2; 3335 unsigned int priority1, priority2; 3336 3337 /* Prefer instructions with a higher model priority. */ 3338 if (insn1->model_priority != insn2->model_priority) 3339 return insn1->model_priority > insn2->model_priority; 3340 3341 /* Combine the length of the longest path of satisfied true dependencies 3342 that leads to each instruction (depth) with the length of the longest 3343 path of any dependencies that leads from the instruction (alap). 3344 Prefer instructions with the greatest combined length. If the combined 3345 lengths are equal, prefer instructions with the greatest depth. 3346 3347 The idea is that, if we have a set S of "equal" instructions that each 3348 have ALAP value X, and we pick one such instruction I, any true-dependent 3349 successors of I that have ALAP value X - 1 should be preferred over S. 3350 This encourages the schedule to be "narrow" rather than "wide". 3351 However, if I is a low-priority instruction that we decided to 3352 schedule because of its model_classify_pressure, and if there 3353 is a set of higher-priority instructions T, the aforementioned 3354 successors of I should not have the edge over T. */ 3355 height1 = insn1->depth + insn1->alap; 3356 height2 = insn2->depth + insn2->alap; 3357 if (height1 != height2) 3358 return height1 > height2; 3359 if (insn1->depth != insn2->depth) 3360 return insn1->depth > insn2->depth; 3361 3362 /* We have no real preference between INSN1 an INSN2 as far as attempts 3363 to reduce pressure go. Prefer instructions with higher priorities. */ 3364 priority1 = INSN_PRIORITY (insn1->insn); 3365 priority2 = INSN_PRIORITY (insn2->insn); 3366 if (priority1 != priority2) 3367 return priority1 > priority2; 3368 3369 /* Use the original rtl sequence as a tie-breaker. */ 3370 return insn1 < insn2; 3371 } 3372 3373 /* Add INSN to the model worklist immediately after PREV. Add it to the 3374 beginning of the list if PREV is null. */ 3375 3376 static void 3377 model_add_to_worklist_at (struct model_insn_info *insn, 3378 struct model_insn_info *prev) 3379 { 3380 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE); 3381 QUEUE_INDEX (insn->insn) = QUEUE_READY; 3382 3383 insn->prev = prev; 3384 if (prev) 3385 { 3386 insn->next = prev->next; 3387 prev->next = insn; 3388 } 3389 else 3390 { 3391 insn->next = model_worklist; 3392 model_worklist = insn; 3393 } 3394 if (insn->next) 3395 insn->next->prev = insn; 3396 } 3397 3398 /* Remove INSN from the model worklist. */ 3399 3400 static void 3401 model_remove_from_worklist (struct model_insn_info *insn) 3402 { 3403 gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY); 3404 QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE; 3405 3406 if (insn->prev) 3407 insn->prev->next = insn->next; 3408 else 3409 model_worklist = insn->next; 3410 if (insn->next) 3411 insn->next->prev = insn->prev; 3412 } 3413 3414 /* Add INSN to the model worklist. Start looking for a suitable position 3415 between neighbors PREV and NEXT, testing at most param_max_sched_ready_insns 3416 insns either side. A null PREV indicates the beginning of the list and 3417 a null NEXT indicates the end. */ 3418 3419 static void 3420 model_add_to_worklist (struct model_insn_info *insn, 3421 struct model_insn_info *prev, 3422 struct model_insn_info *next) 3423 { 3424 int count; 3425 3426 count = param_max_sched_ready_insns; 3427 if (count > 0 && prev && model_order_p (insn, prev)) 3428 do 3429 { 3430 count--; 3431 prev = prev->prev; 3432 } 3433 while (count > 0 && prev && model_order_p (insn, prev)); 3434 else 3435 while (count > 0 && next && model_order_p (next, insn)) 3436 { 3437 count--; 3438 prev = next; 3439 next = next->next; 3440 } 3441 model_add_to_worklist_at (insn, prev); 3442 } 3443 3444 /* INSN may now have a higher priority (in the model_order_p sense) 3445 than before. Move it up the worklist if necessary. */ 3446 3447 static void 3448 model_promote_insn (struct model_insn_info *insn) 3449 { 3450 struct model_insn_info *prev; 3451 int count; 3452 3453 prev = insn->prev; 3454 count = param_max_sched_ready_insns; 3455 while (count > 0 && prev && model_order_p (insn, prev)) 3456 { 3457 count--; 3458 prev = prev->prev; 3459 } 3460 if (prev != insn->prev) 3461 { 3462 model_remove_from_worklist (insn); 3463 model_add_to_worklist_at (insn, prev); 3464 } 3465 } 3466 3467 /* Add INSN to the end of the model schedule. */ 3468 3469 static void 3470 model_add_to_schedule (rtx_insn *insn) 3471 { 3472 unsigned int point; 3473 3474 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE); 3475 QUEUE_INDEX (insn) = QUEUE_SCHEDULED; 3476 3477 point = model_schedule.length (); 3478 model_schedule.quick_push (insn); 3479 INSN_MODEL_INDEX (insn) = point + 1; 3480 } 3481 3482 /* Analyze the instructions that are to be scheduled, setting up 3483 MODEL_INSN_INFO (...) and model_num_insns accordingly. Add ready 3484 instructions to model_worklist. */ 3485 3486 static void 3487 model_analyze_insns (void) 3488 { 3489 rtx_insn *start, *end, *iter; 3490 sd_iterator_def sd_it; 3491 dep_t dep; 3492 struct model_insn_info *insn, *con; 3493 3494 model_num_insns = 0; 3495 start = PREV_INSN (current_sched_info->next_tail); 3496 end = current_sched_info->prev_head; 3497 for (iter = start; iter != end; iter = PREV_INSN (iter)) 3498 if (NONDEBUG_INSN_P (iter)) 3499 { 3500 insn = MODEL_INSN_INFO (iter); 3501 insn->insn = iter; 3502 FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep) 3503 { 3504 con = MODEL_INSN_INFO (DEP_CON (dep)); 3505 if (con->insn && insn->alap < con->alap + 1) 3506 insn->alap = con->alap + 1; 3507 } 3508 3509 insn->old_queue = QUEUE_INDEX (iter); 3510 QUEUE_INDEX (iter) = QUEUE_NOWHERE; 3511 3512 insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK); 3513 if (insn->unscheduled_preds == 0) 3514 model_add_to_worklist (insn, NULL, model_worklist); 3515 3516 model_num_insns++; 3517 } 3518 } 3519 3520 /* The global state describes the register pressure at the start of the 3521 model schedule. Initialize GROUP accordingly. */ 3522 3523 static void 3524 model_init_pressure_group (struct model_pressure_group *group) 3525 { 3526 int pci, cl; 3527 3528 for (pci = 0; pci < ira_pressure_classes_num; pci++) 3529 { 3530 cl = ira_pressure_classes[pci]; 3531 group->limits[pci].pressure = curr_reg_pressure[cl]; 3532 group->limits[pci].point = 0; 3533 } 3534 /* Use index model_num_insns to record the state after the last 3535 instruction in the model schedule. */ 3536 group->model = XNEWVEC (struct model_pressure_data, 3537 (model_num_insns + 1) * ira_pressure_classes_num); 3538 } 3539 3540 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE. 3541 Update the maximum pressure for the whole schedule. */ 3542 3543 static void 3544 model_record_pressure (struct model_pressure_group *group, 3545 int point, int pci, int pressure) 3546 { 3547 MODEL_REF_PRESSURE (group, point, pci) = pressure; 3548 if (group->limits[pci].pressure < pressure) 3549 { 3550 group->limits[pci].pressure = pressure; 3551 group->limits[pci].point = point; 3552 } 3553 } 3554 3555 /* INSN has just been added to the end of the model schedule. Record its 3556 register-pressure information. */ 3557 3558 static void 3559 model_record_pressures (struct model_insn_info *insn) 3560 { 3561 struct reg_pressure_data *reg_pressure; 3562 int point, pci, cl, delta; 3563 int death[N_REG_CLASSES]; 3564 3565 point = model_index (insn->insn); 3566 if (sched_verbose >= 2) 3567 { 3568 if (point == 0) 3569 { 3570 fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n"); 3571 fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n"); 3572 } 3573 fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ", 3574 point, INSN_UID (insn->insn), insn->model_priority, 3575 insn->depth + insn->alap, insn->depth, 3576 INSN_PRIORITY (insn->insn), 3577 str_pattern_slim (PATTERN (insn->insn))); 3578 } 3579 calculate_reg_deaths (insn->insn, death); 3580 reg_pressure = INSN_REG_PRESSURE (insn->insn); 3581 for (pci = 0; pci < ira_pressure_classes_num; pci++) 3582 { 3583 cl = ira_pressure_classes[pci]; 3584 delta = reg_pressure[pci].set_increase - death[cl]; 3585 if (sched_verbose >= 2) 3586 fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl], 3587 curr_reg_pressure[cl], delta); 3588 model_record_pressure (&model_before_pressure, point, pci, 3589 curr_reg_pressure[cl]); 3590 } 3591 if (sched_verbose >= 2) 3592 fprintf (sched_dump, "\n"); 3593 } 3594 3595 /* All instructions have been added to the model schedule. Record the 3596 final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs. */ 3597 3598 static void 3599 model_record_final_pressures (struct model_pressure_group *group) 3600 { 3601 int point, pci, max_pressure, ref_pressure, cl; 3602 3603 for (pci = 0; pci < ira_pressure_classes_num; pci++) 3604 { 3605 /* Record the final pressure for this class. */ 3606 cl = ira_pressure_classes[pci]; 3607 point = model_num_insns; 3608 ref_pressure = curr_reg_pressure[cl]; 3609 model_record_pressure (group, point, pci, ref_pressure); 3610 3611 /* Record the original maximum pressure. */ 3612 group->limits[pci].orig_pressure = group->limits[pci].pressure; 3613 3614 /* Update the MODEL_MAX_PRESSURE for every point of the schedule. */ 3615 max_pressure = ref_pressure; 3616 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure; 3617 while (point > 0) 3618 { 3619 point--; 3620 ref_pressure = MODEL_REF_PRESSURE (group, point, pci); 3621 max_pressure = MAX (max_pressure, ref_pressure); 3622 MODEL_MAX_PRESSURE (group, point, pci) = max_pressure; 3623 } 3624 } 3625 } 3626 3627 /* Update all successors of INSN, given that INSN has just been scheduled. */ 3628 3629 static void 3630 model_add_successors_to_worklist (struct model_insn_info *insn) 3631 { 3632 sd_iterator_def sd_it; 3633 struct model_insn_info *con; 3634 dep_t dep; 3635 3636 FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep) 3637 { 3638 con = MODEL_INSN_INFO (DEP_CON (dep)); 3639 /* Ignore debug instructions, and instructions from other blocks. */ 3640 if (con->insn) 3641 { 3642 con->unscheduled_preds--; 3643 3644 /* Update the depth field of each true-dependent successor. 3645 Increasing the depth gives them a higher priority than 3646 before. */ 3647 if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1) 3648 { 3649 con->depth = insn->depth + 1; 3650 if (QUEUE_INDEX (con->insn) == QUEUE_READY) 3651 model_promote_insn (con); 3652 } 3653 3654 /* If this is a true dependency, or if there are no remaining 3655 dependencies for CON (meaning that CON only had non-true 3656 dependencies), make sure that CON is on the worklist. 3657 We don't bother otherwise because it would tend to fill the 3658 worklist with a lot of low-priority instructions that are not 3659 yet ready to issue. */ 3660 if ((con->depth > 0 || con->unscheduled_preds == 0) 3661 && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE) 3662 model_add_to_worklist (con, insn, insn->next); 3663 } 3664 } 3665 } 3666 3667 /* Give INSN a higher priority than any current instruction, then give 3668 unscheduled predecessors of INSN a higher priority still. If any of 3669 those predecessors are not on the model worklist, do the same for its 3670 predecessors, and so on. */ 3671 3672 static void 3673 model_promote_predecessors (struct model_insn_info *insn) 3674 { 3675 struct model_insn_info *pro, *first; 3676 sd_iterator_def sd_it; 3677 dep_t dep; 3678 3679 if (sched_verbose >= 7) 3680 fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of", 3681 INSN_UID (insn->insn), model_next_priority); 3682 insn->model_priority = model_next_priority++; 3683 model_remove_from_worklist (insn); 3684 model_add_to_worklist_at (insn, NULL); 3685 3686 first = NULL; 3687 for (;;) 3688 { 3689 FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep) 3690 { 3691 pro = MODEL_INSN_INFO (DEP_PRO (dep)); 3692 /* The first test is to ignore debug instructions, and instructions 3693 from other blocks. */ 3694 if (pro->insn 3695 && pro->model_priority != model_next_priority 3696 && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED) 3697 { 3698 pro->model_priority = model_next_priority; 3699 if (sched_verbose >= 7) 3700 fprintf (sched_dump, " %d", INSN_UID (pro->insn)); 3701 if (QUEUE_INDEX (pro->insn) == QUEUE_READY) 3702 { 3703 /* PRO is already in the worklist, but it now has 3704 a higher priority than before. Move it at the 3705 appropriate place. */ 3706 model_remove_from_worklist (pro); 3707 model_add_to_worklist (pro, NULL, model_worklist); 3708 } 3709 else 3710 { 3711 /* PRO isn't in the worklist. Recursively process 3712 its predecessors until we find one that is. */ 3713 pro->next = first; 3714 first = pro; 3715 } 3716 } 3717 } 3718 if (!first) 3719 break; 3720 insn = first; 3721 first = insn->next; 3722 } 3723 if (sched_verbose >= 7) 3724 fprintf (sched_dump, " = %d\n", model_next_priority); 3725 model_next_priority++; 3726 } 3727 3728 /* Pick one instruction from model_worklist and process it. */ 3729 3730 static void 3731 model_choose_insn (void) 3732 { 3733 struct model_insn_info *insn, *fallback; 3734 int count; 3735 3736 if (sched_verbose >= 7) 3737 { 3738 fprintf (sched_dump, ";;\t+--- worklist:\n"); 3739 insn = model_worklist; 3740 count = param_max_sched_ready_insns; 3741 while (count > 0 && insn) 3742 { 3743 fprintf (sched_dump, ";;\t+--- %d [%d, %d, %d, %d]\n", 3744 INSN_UID (insn->insn), insn->model_priority, 3745 insn->depth + insn->alap, insn->depth, 3746 INSN_PRIORITY (insn->insn)); 3747 count--; 3748 insn = insn->next; 3749 } 3750 } 3751 3752 /* Look for a ready instruction whose model_classify_priority is zero 3753 or negative, picking the highest-priority one. Adding such an 3754 instruction to the schedule now should do no harm, and may actually 3755 do some good. 3756 3757 Failing that, see whether there is an instruction with the highest 3758 extant model_priority that is not yet ready, but which would reduce 3759 pressure if it became ready. This is designed to catch cases like: 3760 3761 (set (mem (reg R1)) (reg R2)) 3762 3763 where the instruction is the last remaining use of R1 and where the 3764 value of R2 is not yet available (or vice versa). The death of R1 3765 means that this instruction already reduces pressure. It is of 3766 course possible that the computation of R2 involves other registers 3767 that are hard to kill, but such cases are rare enough for this 3768 heuristic to be a win in general. 3769 3770 Failing that, just pick the highest-priority instruction in the 3771 worklist. */ 3772 count = param_max_sched_ready_insns; 3773 insn = model_worklist; 3774 fallback = 0; 3775 for (;;) 3776 { 3777 if (count == 0 || !insn) 3778 { 3779 insn = fallback ? fallback : model_worklist; 3780 break; 3781 } 3782 if (insn->unscheduled_preds) 3783 { 3784 if (model_worklist->model_priority == insn->model_priority 3785 && !fallback 3786 && model_classify_pressure (insn) < 0) 3787 fallback = insn; 3788 } 3789 else 3790 { 3791 if (model_classify_pressure (insn) <= 0) 3792 break; 3793 } 3794 count--; 3795 insn = insn->next; 3796 } 3797 3798 if (sched_verbose >= 7 && insn != model_worklist) 3799 { 3800 if (insn->unscheduled_preds) 3801 fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n", 3802 INSN_UID (insn->insn)); 3803 else 3804 fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n", 3805 INSN_UID (insn->insn)); 3806 } 3807 if (insn->unscheduled_preds) 3808 /* INSN isn't yet ready to issue. Give all its predecessors the 3809 highest priority. */ 3810 model_promote_predecessors (insn); 3811 else 3812 { 3813 /* INSN is ready. Add it to the end of model_schedule and 3814 process its successors. */ 3815 model_add_successors_to_worklist (insn); 3816 model_remove_from_worklist (insn); 3817 model_add_to_schedule (insn->insn); 3818 model_record_pressures (insn); 3819 update_register_pressure (insn->insn); 3820 } 3821 } 3822 3823 /* Restore all QUEUE_INDEXs to the values that they had before 3824 model_start_schedule was called. */ 3825 3826 static void 3827 model_reset_queue_indices (void) 3828 { 3829 unsigned int i; 3830 rtx_insn *insn; 3831 3832 FOR_EACH_VEC_ELT (model_schedule, i, insn) 3833 QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue; 3834 } 3835 3836 /* We have calculated the model schedule and spill costs. Print a summary 3837 to sched_dump. */ 3838 3839 static void 3840 model_dump_pressure_summary (void) 3841 { 3842 int pci, cl; 3843 3844 fprintf (sched_dump, ";; Pressure summary:"); 3845 for (pci = 0; pci < ira_pressure_classes_num; pci++) 3846 { 3847 cl = ira_pressure_classes[pci]; 3848 fprintf (sched_dump, " %s:%d", reg_class_names[cl], 3849 model_before_pressure.limits[pci].pressure); 3850 } 3851 fprintf (sched_dump, "\n\n"); 3852 } 3853 3854 /* Initialize the SCHED_PRESSURE_MODEL information for the current 3855 scheduling region. */ 3856 3857 static void 3858 model_start_schedule (basic_block bb) 3859 { 3860 model_next_priority = 1; 3861 model_schedule.create (sched_max_luid); 3862 model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid); 3863 3864 gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head))); 3865 initiate_reg_pressure_info (df_get_live_in (bb)); 3866 3867 model_analyze_insns (); 3868 model_init_pressure_group (&model_before_pressure); 3869 while (model_worklist) 3870 model_choose_insn (); 3871 gcc_assert (model_num_insns == (int) model_schedule.length ()); 3872 if (sched_verbose >= 2) 3873 fprintf (sched_dump, "\n"); 3874 3875 model_record_final_pressures (&model_before_pressure); 3876 model_reset_queue_indices (); 3877 3878 XDELETEVEC (model_insns); 3879 3880 model_curr_point = 0; 3881 initiate_reg_pressure_info (df_get_live_in (bb)); 3882 if (sched_verbose >= 1) 3883 model_dump_pressure_summary (); 3884 } 3885 3886 /* Free the information associated with GROUP. */ 3887 3888 static void 3889 model_finalize_pressure_group (struct model_pressure_group *group) 3890 { 3891 XDELETEVEC (group->model); 3892 } 3893 3894 /* Free the information created by model_start_schedule. */ 3895 3896 static void 3897 model_end_schedule (void) 3898 { 3899 model_finalize_pressure_group (&model_before_pressure); 3900 model_schedule.release (); 3901 } 3902 3903 /* Prepare reg pressure scheduling for basic block BB. */ 3904 static void 3905 sched_pressure_start_bb (basic_block bb) 3906 { 3907 /* Set the number of available registers for each class taking into account 3908 relative probability of current basic block versus function prologue and 3909 epilogue. 3910 * If the basic block executes much more often than the prologue/epilogue 3911 (e.g., inside a hot loop), then cost of spill in the prologue is close to 3912 nil, so the effective number of available registers is 3913 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0). 3914 * If the basic block executes as often as the prologue/epilogue, 3915 then spill in the block is as costly as in the prologue, so the effective 3916 number of available registers is 3917 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] 3918 - call_saved_regs_num[cl]). 3919 Note that all-else-equal, we prefer to spill in the prologue, since that 3920 allows "extra" registers for other basic blocks of the function. 3921 * If the basic block is on the cold path of the function and executes 3922 rarely, then we should always prefer to spill in the block, rather than 3923 in the prologue/epilogue. The effective number of available register is 3924 (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] 3925 - call_saved_regs_num[cl]). */ 3926 { 3927 int i; 3928 int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun); 3929 int bb_freq = bb->count.to_frequency (cfun); 3930 3931 if (bb_freq == 0) 3932 { 3933 if (entry_freq == 0) 3934 entry_freq = bb_freq = 1; 3935 } 3936 if (bb_freq < entry_freq) 3937 bb_freq = entry_freq; 3938 3939 for (i = 0; i < ira_pressure_classes_num; ++i) 3940 { 3941 enum reg_class cl = ira_pressure_classes[i]; 3942 sched_class_regs_num[cl] = ira_class_hard_regs_num[cl] 3943 - fixed_regs_num[cl]; 3944 sched_class_regs_num[cl] 3945 -= (call_saved_regs_num[cl] * entry_freq) / bb_freq; 3946 } 3947 } 3948 3949 if (sched_pressure == SCHED_PRESSURE_MODEL) 3950 model_start_schedule (bb); 3951 } 3952 3953 /* A structure that holds local state for the loop in schedule_block. */ 3954 struct sched_block_state 3955 { 3956 /* True if no real insns have been scheduled in the current cycle. */ 3957 bool first_cycle_insn_p; 3958 /* True if a shadow insn has been scheduled in the current cycle, which 3959 means that no more normal insns can be issued. */ 3960 bool shadows_only_p; 3961 /* True if we're winding down a modulo schedule, which means that we only 3962 issue insns with INSN_EXACT_TICK set. */ 3963 bool modulo_epilogue; 3964 /* Initialized with the machine's issue rate every cycle, and updated 3965 by calls to the variable_issue hook. */ 3966 int can_issue_more; 3967 }; 3968 3969 /* INSN is the "currently executing insn". Launch each insn which was 3970 waiting on INSN. READY is the ready list which contains the insns 3971 that are ready to fire. CLOCK is the current cycle. The function 3972 returns necessary cycle advance after issuing the insn (it is not 3973 zero for insns in a schedule group). */ 3974 3975 static int 3976 schedule_insn (rtx_insn *insn) 3977 { 3978 sd_iterator_def sd_it; 3979 dep_t dep; 3980 int i; 3981 int advance = 0; 3982 3983 if (sched_verbose >= 1) 3984 { 3985 struct reg_pressure_data *pressure_info; 3986 fprintf (sched_dump, ";;\t%3i--> %s %-40s:", 3987 clock_var, (*current_sched_info->print_insn) (insn, 1), 3988 str_pattern_slim (PATTERN (insn))); 3989 3990 if (recog_memoized (insn) < 0) 3991 fprintf (sched_dump, "nothing"); 3992 else 3993 print_reservation (sched_dump, insn); 3994 pressure_info = INSN_REG_PRESSURE (insn); 3995 if (pressure_info != NULL) 3996 { 3997 fputc (':', sched_dump); 3998 for (i = 0; i < ira_pressure_classes_num; i++) 3999 fprintf (sched_dump, "%s%s%+d(%d)", 4000 scheduled_insns.length () > 1 4001 && INSN_LUID (insn) 4002 < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "", 4003 reg_class_names[ira_pressure_classes[i]], 4004 pressure_info[i].set_increase, pressure_info[i].change); 4005 } 4006 if (sched_pressure == SCHED_PRESSURE_MODEL 4007 && model_curr_point < model_num_insns 4008 && model_index (insn) == model_curr_point) 4009 fprintf (sched_dump, ":model %d", model_curr_point); 4010 fputc ('\n', sched_dump); 4011 } 4012 4013 if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn)) 4014 update_reg_and_insn_max_reg_pressure (insn); 4015 4016 /* Scheduling instruction should have all its dependencies resolved and 4017 should have been removed from the ready list. */ 4018 gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK)); 4019 4020 /* Reset debug insns invalidated by moving this insn. */ 4021 if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn)) 4022 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK); 4023 sd_iterator_cond (&sd_it, &dep);) 4024 { 4025 rtx_insn *dbg = DEP_PRO (dep); 4026 struct reg_use_data *use, *next; 4027 4028 if (DEP_STATUS (dep) & DEP_CANCELLED) 4029 { 4030 sd_iterator_next (&sd_it); 4031 continue; 4032 } 4033 4034 gcc_assert (DEBUG_BIND_INSN_P (dbg)); 4035 4036 if (sched_verbose >= 6) 4037 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n", 4038 INSN_UID (dbg)); 4039 4040 /* ??? Rather than resetting the debug insn, we might be able 4041 to emit a debug temp before the just-scheduled insn, but 4042 this would involve checking that the expression at the 4043 point of the debug insn is equivalent to the expression 4044 before the just-scheduled insn. They might not be: the 4045 expression in the debug insn may depend on other insns not 4046 yet scheduled that set MEMs, REGs or even other debug 4047 insns. It's not clear that attempting to preserve debug 4048 information in these cases is worth the effort, given how 4049 uncommon these resets are and the likelihood that the debug 4050 temps introduced won't survive the schedule change. */ 4051 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC (); 4052 df_insn_rescan (dbg); 4053 4054 /* Unknown location doesn't use any registers. */ 4055 for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next) 4056 { 4057 struct reg_use_data *prev = use; 4058 4059 /* Remove use from the cyclic next_regno_use chain first. */ 4060 while (prev->next_regno_use != use) 4061 prev = prev->next_regno_use; 4062 prev->next_regno_use = use->next_regno_use; 4063 next = use->next_insn_use; 4064 free (use); 4065 } 4066 INSN_REG_USE_LIST (dbg) = NULL; 4067 4068 /* We delete rather than resolve these deps, otherwise we 4069 crash in sched_free_deps(), because forward deps are 4070 expected to be released before backward deps. */ 4071 sd_delete_dep (sd_it); 4072 } 4073 4074 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE); 4075 QUEUE_INDEX (insn) = QUEUE_SCHEDULED; 4076 4077 if (sched_pressure == SCHED_PRESSURE_MODEL 4078 && model_curr_point < model_num_insns 4079 && NONDEBUG_INSN_P (insn)) 4080 { 4081 if (model_index (insn) == model_curr_point) 4082 do 4083 model_curr_point++; 4084 while (model_curr_point < model_num_insns 4085 && (QUEUE_INDEX (MODEL_INSN (model_curr_point)) 4086 == QUEUE_SCHEDULED)); 4087 else 4088 model_recompute (insn); 4089 model_update_limit_points (); 4090 update_register_pressure (insn); 4091 if (sched_verbose >= 2) 4092 print_curr_reg_pressure (); 4093 } 4094 4095 gcc_assert (INSN_TICK (insn) >= MIN_TICK); 4096 if (INSN_TICK (insn) > clock_var) 4097 /* INSN has been prematurely moved from the queue to the ready list. 4098 This is possible only if following flags are set. */ 4099 gcc_assert (flag_sched_stalled_insns || sched_fusion); 4100 4101 /* ??? Probably, if INSN is scheduled prematurely, we should leave 4102 INSN_TICK untouched. This is a machine-dependent issue, actually. */ 4103 INSN_TICK (insn) = clock_var; 4104 4105 check_clobbered_conditions (insn); 4106 4107 /* Update dependent instructions. First, see if by scheduling this insn 4108 now we broke a dependence in a way that requires us to change another 4109 insn. */ 4110 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK); 4111 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it)) 4112 { 4113 struct dep_replacement *desc = DEP_REPLACE (dep); 4114 rtx_insn *pro = DEP_PRO (dep); 4115 if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED 4116 && desc != NULL && desc->insn == pro) 4117 apply_replacement (dep, false); 4118 } 4119 4120 /* Go through and resolve forward dependencies. */ 4121 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW); 4122 sd_iterator_cond (&sd_it, &dep);) 4123 { 4124 rtx_insn *next = DEP_CON (dep); 4125 bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0; 4126 4127 /* Resolve the dependence between INSN and NEXT. 4128 sd_resolve_dep () moves current dep to another list thus 4129 advancing the iterator. */ 4130 sd_resolve_dep (sd_it); 4131 4132 if (cancelled) 4133 { 4134 if (must_restore_pattern_p (next, dep)) 4135 restore_pattern (dep, false); 4136 continue; 4137 } 4138 4139 /* Don't bother trying to mark next as ready if insn is a debug 4140 insn. If insn is the last hard dependency, it will have 4141 already been discounted. */ 4142 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next)) 4143 continue; 4144 4145 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn)) 4146 { 4147 int effective_cost; 4148 4149 effective_cost = try_ready (next); 4150 4151 if (effective_cost >= 0 4152 && SCHED_GROUP_P (next) 4153 && advance < effective_cost) 4154 advance = effective_cost; 4155 } 4156 else 4157 /* Check always has only one forward dependence (to the first insn in 4158 the recovery block), therefore, this will be executed only once. */ 4159 { 4160 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW)); 4161 fix_recovery_deps (RECOVERY_BLOCK (insn)); 4162 } 4163 } 4164 4165 /* Annotate the instruction with issue information -- TImode 4166 indicates that the instruction is expected not to be able 4167 to issue on the same cycle as the previous insn. A machine 4168 may use this information to decide how the instruction should 4169 be aligned. */ 4170 if (issue_rate > 1 4171 && GET_CODE (PATTERN (insn)) != USE 4172 && GET_CODE (PATTERN (insn)) != CLOBBER 4173 && !DEBUG_INSN_P (insn)) 4174 { 4175 if (reload_completed) 4176 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode); 4177 last_clock_var = clock_var; 4178 } 4179 4180 if (nonscheduled_insns_begin != NULL_RTX) 4181 /* Indicate to debug counters that INSN is scheduled. */ 4182 nonscheduled_insns_begin = insn; 4183 4184 return advance; 4185 } 4186 4187 /* Functions for handling of notes. */ 4188 4189 /* Add note list that ends on FROM_END to the end of TO_ENDP. */ 4190 void 4191 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp) 4192 { 4193 rtx_insn *from_start; 4194 4195 /* It's easy when have nothing to concat. */ 4196 if (from_end == NULL) 4197 return; 4198 4199 /* It's also easy when destination is empty. */ 4200 if (*to_endp == NULL) 4201 { 4202 *to_endp = from_end; 4203 return; 4204 } 4205 4206 from_start = from_end; 4207 while (PREV_INSN (from_start) != NULL) 4208 from_start = PREV_INSN (from_start); 4209 4210 SET_PREV_INSN (from_start) = *to_endp; 4211 SET_NEXT_INSN (*to_endp) = from_start; 4212 *to_endp = from_end; 4213 } 4214 4215 /* Delete notes between HEAD and TAIL and put them in the chain 4216 of notes ended by NOTE_LIST. */ 4217 void 4218 remove_notes (rtx_insn *head, rtx_insn *tail) 4219 { 4220 rtx_insn *next_tail, *insn, *next; 4221 4222 note_list = 0; 4223 if (head == tail && !INSN_P (head)) 4224 return; 4225 4226 next_tail = NEXT_INSN (tail); 4227 for (insn = head; insn != next_tail; insn = next) 4228 { 4229 next = NEXT_INSN (insn); 4230 if (!NOTE_P (insn)) 4231 continue; 4232 4233 switch (NOTE_KIND (insn)) 4234 { 4235 case NOTE_INSN_BASIC_BLOCK: 4236 continue; 4237 4238 case NOTE_INSN_EPILOGUE_BEG: 4239 if (insn != tail) 4240 { 4241 remove_insn (insn); 4242 /* If an insn was split just before the EPILOGUE_BEG note and 4243 that split created new basic blocks, we could have a 4244 BASIC_BLOCK note here. Safely advance over it in that case 4245 and assert that we land on a real insn. */ 4246 if (NOTE_P (next) 4247 && NOTE_KIND (next) == NOTE_INSN_BASIC_BLOCK 4248 && next != next_tail) 4249 next = NEXT_INSN (next); 4250 gcc_assert (INSN_P (next)); 4251 add_reg_note (next, REG_SAVE_NOTE, 4252 GEN_INT (NOTE_INSN_EPILOGUE_BEG)); 4253 break; 4254 } 4255 /* FALLTHRU */ 4256 4257 default: 4258 remove_insn (insn); 4259 4260 /* Add the note to list that ends at NOTE_LIST. */ 4261 SET_PREV_INSN (insn) = note_list; 4262 SET_NEXT_INSN (insn) = NULL_RTX; 4263 if (note_list) 4264 SET_NEXT_INSN (note_list) = insn; 4265 note_list = insn; 4266 break; 4267 } 4268 4269 gcc_assert ((sel_sched_p () || insn != tail) && insn != head); 4270 } 4271 } 4272 4273 /* A structure to record enough data to allow us to backtrack the scheduler to 4274 a previous state. */ 4275 struct haifa_saved_data 4276 { 4277 /* Next entry on the list. */ 4278 struct haifa_saved_data *next; 4279 4280 /* Backtracking is associated with scheduling insns that have delay slots. 4281 DELAY_PAIR points to the structure that contains the insns involved, and 4282 the number of cycles between them. */ 4283 struct delay_pair *delay_pair; 4284 4285 /* Data used by the frontend (e.g. sched-ebb or sched-rgn). */ 4286 void *fe_saved_data; 4287 /* Data used by the backend. */ 4288 void *be_saved_data; 4289 4290 /* Copies of global state. */ 4291 int clock_var, last_clock_var; 4292 struct ready_list ready; 4293 state_t curr_state; 4294 4295 rtx_insn *last_scheduled_insn; 4296 rtx_insn *last_nondebug_scheduled_insn; 4297 rtx_insn *nonscheduled_insns_begin; 4298 int cycle_issued_insns; 4299 4300 /* Copies of state used in the inner loop of schedule_block. */ 4301 struct sched_block_state sched_block; 4302 4303 /* We don't need to save q_ptr, as its value is arbitrary and we can set it 4304 to 0 when restoring. */ 4305 int q_size; 4306 rtx_insn_list **insn_queue; 4307 4308 /* Describe pattern replacements that occurred since this backtrack point 4309 was queued. */ 4310 vec<dep_t> replacement_deps; 4311 vec<int> replace_apply; 4312 4313 /* A copy of the next-cycle replacement vectors at the time of the backtrack 4314 point. */ 4315 vec<dep_t> next_cycle_deps; 4316 vec<int> next_cycle_apply; 4317 }; 4318 4319 /* A record, in reverse order, of all scheduled insns which have delay slots 4320 and may require backtracking. */ 4321 static struct haifa_saved_data *backtrack_queue; 4322 4323 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according 4324 to SET_P. */ 4325 static void 4326 mark_backtrack_feeds (rtx_insn *insn, int set_p) 4327 { 4328 sd_iterator_def sd_it; 4329 dep_t dep; 4330 FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep) 4331 { 4332 FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p; 4333 } 4334 } 4335 4336 /* Save the current scheduler state so that we can backtrack to it 4337 later if necessary. PAIR gives the insns that make it necessary to 4338 save this point. SCHED_BLOCK is the local state of schedule_block 4339 that need to be saved. */ 4340 static void 4341 save_backtrack_point (struct delay_pair *pair, 4342 struct sched_block_state sched_block) 4343 { 4344 int i; 4345 struct haifa_saved_data *save = XNEW (struct haifa_saved_data); 4346 4347 save->curr_state = xmalloc (dfa_state_size); 4348 memcpy (save->curr_state, curr_state, dfa_state_size); 4349 4350 save->ready.first = ready.first; 4351 save->ready.n_ready = ready.n_ready; 4352 save->ready.n_debug = ready.n_debug; 4353 save->ready.veclen = ready.veclen; 4354 save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen); 4355 memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx)); 4356 4357 save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1); 4358 save->q_size = q_size; 4359 for (i = 0; i <= max_insn_queue_index; i++) 4360 { 4361 int q = NEXT_Q_AFTER (q_ptr, i); 4362 save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]); 4363 } 4364 4365 save->clock_var = clock_var; 4366 save->last_clock_var = last_clock_var; 4367 save->cycle_issued_insns = cycle_issued_insns; 4368 save->last_scheduled_insn = last_scheduled_insn; 4369 save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn; 4370 save->nonscheduled_insns_begin = nonscheduled_insns_begin; 4371 4372 save->sched_block = sched_block; 4373 4374 save->replacement_deps.create (0); 4375 save->replace_apply.create (0); 4376 save->next_cycle_deps = next_cycle_replace_deps.copy (); 4377 save->next_cycle_apply = next_cycle_apply.copy (); 4378 4379 if (current_sched_info->save_state) 4380 save->fe_saved_data = (*current_sched_info->save_state) (); 4381 4382 if (targetm.sched.alloc_sched_context) 4383 { 4384 save->be_saved_data = targetm.sched.alloc_sched_context (); 4385 targetm.sched.init_sched_context (save->be_saved_data, false); 4386 } 4387 else 4388 save->be_saved_data = NULL; 4389 4390 save->delay_pair = pair; 4391 4392 save->next = backtrack_queue; 4393 backtrack_queue = save; 4394 4395 while (pair) 4396 { 4397 mark_backtrack_feeds (pair->i2, 1); 4398 INSN_TICK (pair->i2) = INVALID_TICK; 4399 INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair); 4400 SHADOW_P (pair->i2) = pair->stages == 0; 4401 pair = pair->next_same_i1; 4402 } 4403 } 4404 4405 /* Walk the ready list and all queues. If any insns have unresolved backwards 4406 dependencies, these must be cancelled deps, broken by predication. Set or 4407 clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS. */ 4408 4409 static void 4410 toggle_cancelled_flags (bool set) 4411 { 4412 int i; 4413 sd_iterator_def sd_it; 4414 dep_t dep; 4415 4416 if (ready.n_ready > 0) 4417 { 4418 rtx_insn **first = ready_lastpos (&ready); 4419 for (i = 0; i < ready.n_ready; i++) 4420 FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep) 4421 if (!DEBUG_INSN_P (DEP_PRO (dep))) 4422 { 4423 if (set) 4424 DEP_STATUS (dep) |= DEP_CANCELLED; 4425 else 4426 DEP_STATUS (dep) &= ~DEP_CANCELLED; 4427 } 4428 } 4429 for (i = 0; i <= max_insn_queue_index; i++) 4430 { 4431 int q = NEXT_Q_AFTER (q_ptr, i); 4432 rtx_insn_list *link; 4433 for (link = insn_queue[q]; link; link = link->next ()) 4434 { 4435 rtx_insn *insn = link->insn (); 4436 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep) 4437 if (!DEBUG_INSN_P (DEP_PRO (dep))) 4438 { 4439 if (set) 4440 DEP_STATUS (dep) |= DEP_CANCELLED; 4441 else 4442 DEP_STATUS (dep) &= ~DEP_CANCELLED; 4443 } 4444 } 4445 } 4446 } 4447 4448 /* Undo the replacements that have occurred after backtrack point SAVE 4449 was placed. */ 4450 static void 4451 undo_replacements_for_backtrack (struct haifa_saved_data *save) 4452 { 4453 while (!save->replacement_deps.is_empty ()) 4454 { 4455 dep_t dep = save->replacement_deps.pop (); 4456 int apply_p = save->replace_apply.pop (); 4457 4458 if (apply_p) 4459 restore_pattern (dep, true); 4460 else 4461 apply_replacement (dep, true); 4462 } 4463 save->replacement_deps.release (); 4464 save->replace_apply.release (); 4465 } 4466 4467 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN. 4468 Restore their dependencies to an unresolved state, and mark them as 4469 queued nowhere. */ 4470 4471 static void 4472 unschedule_insns_until (rtx_insn *insn) 4473 { 4474 auto_vec<rtx_insn *> recompute_vec; 4475 4476 /* Make two passes over the insns to be unscheduled. First, we clear out 4477 dependencies and other trivial bookkeeping. */ 4478 for (;;) 4479 { 4480 rtx_insn *last; 4481 sd_iterator_def sd_it; 4482 dep_t dep; 4483 4484 last = scheduled_insns.pop (); 4485 4486 /* This will be changed by restore_backtrack_point if the insn is in 4487 any queue. */ 4488 QUEUE_INDEX (last) = QUEUE_NOWHERE; 4489 if (last != insn) 4490 INSN_TICK (last) = INVALID_TICK; 4491 4492 if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid) 4493 modulo_insns_scheduled--; 4494 4495 for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW); 4496 sd_iterator_cond (&sd_it, &dep);) 4497 { 4498 rtx_insn *con = DEP_CON (dep); 4499 sd_unresolve_dep (sd_it); 4500 if (!MUST_RECOMPUTE_SPEC_P (con)) 4501 { 4502 MUST_RECOMPUTE_SPEC_P (con) = 1; 4503 recompute_vec.safe_push (con); 4504 } 4505 } 4506 4507 if (last == insn) 4508 break; 4509 } 4510 4511 /* A second pass, to update ready and speculation status for insns 4512 depending on the unscheduled ones. The first pass must have 4513 popped the scheduled_insns vector up to the point where we 4514 restart scheduling, as recompute_todo_spec requires it to be 4515 up-to-date. */ 4516 while (!recompute_vec.is_empty ()) 4517 { 4518 rtx_insn *con; 4519 4520 con = recompute_vec.pop (); 4521 MUST_RECOMPUTE_SPEC_P (con) = 0; 4522 if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK)) 4523 { 4524 TODO_SPEC (con) = HARD_DEP; 4525 INSN_TICK (con) = INVALID_TICK; 4526 if (PREDICATED_PAT (con) != NULL_RTX) 4527 haifa_change_pattern (con, ORIG_PAT (con)); 4528 } 4529 else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED) 4530 TODO_SPEC (con) = recompute_todo_spec (con, true); 4531 } 4532 } 4533 4534 /* Restore scheduler state from the topmost entry on the backtracking queue. 4535 PSCHED_BLOCK_P points to the local data of schedule_block that we must 4536 overwrite with the saved data. 4537 The caller must already have called unschedule_insns_until. */ 4538 4539 static void 4540 restore_last_backtrack_point (struct sched_block_state *psched_block) 4541 { 4542 int i; 4543 struct haifa_saved_data *save = backtrack_queue; 4544 4545 backtrack_queue = save->next; 4546 4547 if (current_sched_info->restore_state) 4548 (*current_sched_info->restore_state) (save->fe_saved_data); 4549 4550 if (targetm.sched.alloc_sched_context) 4551 { 4552 targetm.sched.set_sched_context (save->be_saved_data); 4553 targetm.sched.free_sched_context (save->be_saved_data); 4554 } 4555 4556 /* Do this first since it clobbers INSN_TICK of the involved 4557 instructions. */ 4558 undo_replacements_for_backtrack (save); 4559 4560 /* Clear the QUEUE_INDEX of everything in the ready list or one 4561 of the queues. */ 4562 if (ready.n_ready > 0) 4563 { 4564 rtx_insn **first = ready_lastpos (&ready); 4565 for (i = 0; i < ready.n_ready; i++) 4566 { 4567 rtx_insn *insn = first[i]; 4568 QUEUE_INDEX (insn) = QUEUE_NOWHERE; 4569 INSN_TICK (insn) = INVALID_TICK; 4570 } 4571 } 4572 for (i = 0; i <= max_insn_queue_index; i++) 4573 { 4574 int q = NEXT_Q_AFTER (q_ptr, i); 4575 4576 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ()) 4577 { 4578 rtx_insn *x = link->insn (); 4579 QUEUE_INDEX (x) = QUEUE_NOWHERE; 4580 INSN_TICK (x) = INVALID_TICK; 4581 } 4582 free_INSN_LIST_list (&insn_queue[q]); 4583 } 4584 4585 free (ready.vec); 4586 ready = save->ready; 4587 4588 if (ready.n_ready > 0) 4589 { 4590 rtx_insn **first = ready_lastpos (&ready); 4591 for (i = 0; i < ready.n_ready; i++) 4592 { 4593 rtx_insn *insn = first[i]; 4594 QUEUE_INDEX (insn) = QUEUE_READY; 4595 TODO_SPEC (insn) = recompute_todo_spec (insn, true); 4596 INSN_TICK (insn) = save->clock_var; 4597 } 4598 } 4599 4600 q_ptr = 0; 4601 q_size = save->q_size; 4602 for (i = 0; i <= max_insn_queue_index; i++) 4603 { 4604 int q = NEXT_Q_AFTER (q_ptr, i); 4605 4606 insn_queue[q] = save->insn_queue[q]; 4607 4608 for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ()) 4609 { 4610 rtx_insn *x = link->insn (); 4611 QUEUE_INDEX (x) = i; 4612 TODO_SPEC (x) = recompute_todo_spec (x, true); 4613 INSN_TICK (x) = save->clock_var + i; 4614 } 4615 } 4616 free (save->insn_queue); 4617 4618 toggle_cancelled_flags (true); 4619 4620 clock_var = save->clock_var; 4621 last_clock_var = save->last_clock_var; 4622 cycle_issued_insns = save->cycle_issued_insns; 4623 last_scheduled_insn = save->last_scheduled_insn; 4624 last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn; 4625 nonscheduled_insns_begin = save->nonscheduled_insns_begin; 4626 4627 *psched_block = save->sched_block; 4628 4629 memcpy (curr_state, save->curr_state, dfa_state_size); 4630 free (save->curr_state); 4631 4632 mark_backtrack_feeds (save->delay_pair->i2, 0); 4633 4634 gcc_assert (next_cycle_replace_deps.is_empty ()); 4635 next_cycle_replace_deps = save->next_cycle_deps.copy (); 4636 next_cycle_apply = save->next_cycle_apply.copy (); 4637 4638 free (save); 4639 4640 for (save = backtrack_queue; save; save = save->next) 4641 { 4642 mark_backtrack_feeds (save->delay_pair->i2, 1); 4643 } 4644 } 4645 4646 /* Discard all data associated with the topmost entry in the backtrack 4647 queue. If RESET_TICK is false, we just want to free the data. If true, 4648 we are doing this because we discovered a reason to backtrack. In the 4649 latter case, also reset the INSN_TICK for the shadow insn. */ 4650 static void 4651 free_topmost_backtrack_point (bool reset_tick) 4652 { 4653 struct haifa_saved_data *save = backtrack_queue; 4654 int i; 4655 4656 backtrack_queue = save->next; 4657 4658 if (reset_tick) 4659 { 4660 struct delay_pair *pair = save->delay_pair; 4661 while (pair) 4662 { 4663 INSN_TICK (pair->i2) = INVALID_TICK; 4664 INSN_EXACT_TICK (pair->i2) = INVALID_TICK; 4665 pair = pair->next_same_i1; 4666 } 4667 undo_replacements_for_backtrack (save); 4668 } 4669 else 4670 { 4671 save->replacement_deps.release (); 4672 save->replace_apply.release (); 4673 } 4674 4675 if (targetm.sched.free_sched_context) 4676 targetm.sched.free_sched_context (save->be_saved_data); 4677 if (current_sched_info->restore_state) 4678 free (save->fe_saved_data); 4679 for (i = 0; i <= max_insn_queue_index; i++) 4680 free_INSN_LIST_list (&save->insn_queue[i]); 4681 free (save->insn_queue); 4682 free (save->curr_state); 4683 free (save->ready.vec); 4684 free (save); 4685 } 4686 4687 /* Free the entire backtrack queue. */ 4688 static void 4689 free_backtrack_queue (void) 4690 { 4691 while (backtrack_queue) 4692 free_topmost_backtrack_point (false); 4693 } 4694 4695 /* Apply a replacement described by DESC. If IMMEDIATELY is false, we 4696 may have to postpone the replacement until the start of the next cycle, 4697 at which point we will be called again with IMMEDIATELY true. This is 4698 only done for machines which have instruction packets with explicit 4699 parallelism however. */ 4700 static void 4701 apply_replacement (dep_t dep, bool immediately) 4702 { 4703 struct dep_replacement *desc = DEP_REPLACE (dep); 4704 if (!immediately && targetm.sched.exposed_pipeline && reload_completed) 4705 { 4706 next_cycle_replace_deps.safe_push (dep); 4707 next_cycle_apply.safe_push (1); 4708 } 4709 else 4710 { 4711 bool success; 4712 4713 if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED) 4714 return; 4715 4716 if (sched_verbose >= 5) 4717 fprintf (sched_dump, "applying replacement for insn %d\n", 4718 INSN_UID (desc->insn)); 4719 4720 success = validate_change (desc->insn, desc->loc, desc->newval, 0); 4721 gcc_assert (success); 4722 4723 rtx_insn *insn = DEP_PRO (dep); 4724 4725 /* Recompute priority since dependent priorities may have changed. */ 4726 priority (insn, true); 4727 update_insn_after_change (desc->insn); 4728 4729 if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0) 4730 fix_tick_ready (desc->insn); 4731 4732 if (backtrack_queue != NULL) 4733 { 4734 backtrack_queue->replacement_deps.safe_push (dep); 4735 backtrack_queue->replace_apply.safe_push (1); 4736 } 4737 } 4738 } 4739 4740 /* We have determined that a pattern involved in DEP must be restored. 4741 If IMMEDIATELY is false, we may have to postpone the replacement 4742 until the start of the next cycle, at which point we will be called 4743 again with IMMEDIATELY true. */ 4744 static void 4745 restore_pattern (dep_t dep, bool immediately) 4746 { 4747 rtx_insn *next = DEP_CON (dep); 4748 int tick = INSN_TICK (next); 4749 4750 /* If we already scheduled the insn, the modified version is 4751 correct. */ 4752 if (QUEUE_INDEX (next) == QUEUE_SCHEDULED) 4753 return; 4754 4755 if (!immediately && targetm.sched.exposed_pipeline && reload_completed) 4756 { 4757 next_cycle_replace_deps.safe_push (dep); 4758 next_cycle_apply.safe_push (0); 4759 return; 4760 } 4761 4762 4763 if (DEP_TYPE (dep) == REG_DEP_CONTROL) 4764 { 4765 if (sched_verbose >= 5) 4766 fprintf (sched_dump, "restoring pattern for insn %d\n", 4767 INSN_UID (next)); 4768 haifa_change_pattern (next, ORIG_PAT (next)); 4769 } 4770 else 4771 { 4772 struct dep_replacement *desc = DEP_REPLACE (dep); 4773 bool success; 4774 4775 if (sched_verbose >= 5) 4776 fprintf (sched_dump, "restoring pattern for insn %d\n", 4777 INSN_UID (desc->insn)); 4778 tick = INSN_TICK (desc->insn); 4779 4780 success = validate_change (desc->insn, desc->loc, desc->orig, 0); 4781 gcc_assert (success); 4782 4783 rtx_insn *insn = DEP_PRO (dep); 4784 4785 if (QUEUE_INDEX (insn) != QUEUE_SCHEDULED) 4786 { 4787 /* Recompute priority since dependent priorities may have changed. */ 4788 priority (insn, true); 4789 } 4790 4791 update_insn_after_change (desc->insn); 4792 4793 if (backtrack_queue != NULL) 4794 { 4795 backtrack_queue->replacement_deps.safe_push (dep); 4796 backtrack_queue->replace_apply.safe_push (0); 4797 } 4798 } 4799 INSN_TICK (next) = tick; 4800 if (TODO_SPEC (next) == DEP_POSTPONED) 4801 return; 4802 4803 if (sd_lists_empty_p (next, SD_LIST_BACK)) 4804 TODO_SPEC (next) = 0; 4805 else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK)) 4806 TODO_SPEC (next) = HARD_DEP; 4807 } 4808 4809 /* Perform pattern replacements that were queued up until the next 4810 cycle. */ 4811 static void 4812 perform_replacements_new_cycle (void) 4813 { 4814 int i; 4815 dep_t dep; 4816 FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep) 4817 { 4818 int apply_p = next_cycle_apply[i]; 4819 if (apply_p) 4820 apply_replacement (dep, true); 4821 else 4822 restore_pattern (dep, true); 4823 } 4824 next_cycle_replace_deps.truncate (0); 4825 next_cycle_apply.truncate (0); 4826 } 4827 4828 /* Compute INSN_TICK_ESTIMATE for INSN. PROCESSED is a bitmap of 4829 instructions we've previously encountered, a set bit prevents 4830 recursion. BUDGET is a limit on how far ahead we look, it is 4831 reduced on recursive calls. Return true if we produced a good 4832 estimate, or false if we exceeded the budget. */ 4833 static bool 4834 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget) 4835 { 4836 sd_iterator_def sd_it; 4837 dep_t dep; 4838 int earliest = INSN_TICK (insn); 4839 4840 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep) 4841 { 4842 rtx_insn *pro = DEP_PRO (dep); 4843 int t; 4844 4845 if (DEP_STATUS (dep) & DEP_CANCELLED) 4846 continue; 4847 4848 if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED) 4849 gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn)); 4850 else 4851 { 4852 int cost = dep_cost (dep); 4853 if (cost >= budget) 4854 return false; 4855 if (!bitmap_bit_p (processed, INSN_LUID (pro))) 4856 { 4857 if (!estimate_insn_tick (processed, pro, budget - cost)) 4858 return false; 4859 } 4860 gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK); 4861 t = INSN_TICK_ESTIMATE (pro) + cost; 4862 if (earliest == INVALID_TICK || t > earliest) 4863 earliest = t; 4864 } 4865 } 4866 bitmap_set_bit (processed, INSN_LUID (insn)); 4867 INSN_TICK_ESTIMATE (insn) = earliest; 4868 return true; 4869 } 4870 4871 /* Examine the pair of insns in P, and estimate (optimistically, assuming 4872 infinite resources) the cycle in which the delayed shadow can be issued. 4873 Return the number of cycles that must pass before the real insn can be 4874 issued in order to meet this constraint. */ 4875 static int 4876 estimate_shadow_tick (struct delay_pair *p) 4877 { 4878 auto_bitmap processed; 4879 int t; 4880 bool cutoff; 4881 4882 cutoff = !estimate_insn_tick (processed, p->i2, 4883 max_insn_queue_index + pair_delay (p)); 4884 if (cutoff) 4885 return max_insn_queue_index; 4886 t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1); 4887 if (t > 0) 4888 return t; 4889 return 0; 4890 } 4891 4892 /* If INSN has no unresolved backwards dependencies, add it to the schedule and 4893 recursively resolve all its forward dependencies. */ 4894 static void 4895 resolve_dependencies (rtx_insn *insn) 4896 { 4897 sd_iterator_def sd_it; 4898 dep_t dep; 4899 4900 /* Don't use sd_lists_empty_p; it ignores debug insns. */ 4901 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL 4902 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL) 4903 return; 4904 4905 if (sched_verbose >= 4) 4906 fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn)); 4907 4908 if (QUEUE_INDEX (insn) >= 0) 4909 queue_remove (insn); 4910 4911 scheduled_insns.safe_push (insn); 4912 4913 /* Update dependent instructions. */ 4914 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW); 4915 sd_iterator_cond (&sd_it, &dep);) 4916 { 4917 rtx_insn *next = DEP_CON (dep); 4918 4919 if (sched_verbose >= 4) 4920 fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn), 4921 INSN_UID (next)); 4922 4923 /* Resolve the dependence between INSN and NEXT. 4924 sd_resolve_dep () moves current dep to another list thus 4925 advancing the iterator. */ 4926 sd_resolve_dep (sd_it); 4927 4928 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn)) 4929 { 4930 resolve_dependencies (next); 4931 } 4932 else 4933 /* Check always has only one forward dependence (to the first insn in 4934 the recovery block), therefore, this will be executed only once. */ 4935 { 4936 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW)); 4937 } 4938 } 4939 } 4940 4941 4942 /* Return the head and tail pointers of ebb starting at BEG and ending 4943 at END. */ 4944 void 4945 get_ebb_head_tail (basic_block beg, basic_block end, 4946 rtx_insn **headp, rtx_insn **tailp) 4947 { 4948 rtx_insn *beg_head = BB_HEAD (beg); 4949 rtx_insn * beg_tail = BB_END (beg); 4950 rtx_insn * end_head = BB_HEAD (end); 4951 rtx_insn * end_tail = BB_END (end); 4952 4953 /* Don't include any notes or labels at the beginning of the BEG 4954 basic block, or notes at the end of the END basic blocks. */ 4955 4956 if (LABEL_P (beg_head)) 4957 beg_head = NEXT_INSN (beg_head); 4958 4959 while (beg_head != beg_tail) 4960 if (NOTE_P (beg_head)) 4961 beg_head = NEXT_INSN (beg_head); 4962 else if (DEBUG_INSN_P (beg_head)) 4963 { 4964 rtx_insn * note, *next; 4965 4966 for (note = NEXT_INSN (beg_head); 4967 note != beg_tail; 4968 note = next) 4969 { 4970 next = NEXT_INSN (note); 4971 if (NOTE_P (note)) 4972 { 4973 if (sched_verbose >= 9) 4974 fprintf (sched_dump, "reorder %i\n", INSN_UID (note)); 4975 4976 reorder_insns_nobb (note, note, PREV_INSN (beg_head)); 4977 4978 if (BLOCK_FOR_INSN (note) != beg) 4979 df_insn_change_bb (note, beg); 4980 } 4981 else if (!DEBUG_INSN_P (note)) 4982 break; 4983 } 4984 4985 break; 4986 } 4987 else 4988 break; 4989 4990 *headp = beg_head; 4991 4992 if (beg == end) 4993 end_head = beg_head; 4994 else if (LABEL_P (end_head)) 4995 end_head = NEXT_INSN (end_head); 4996 4997 while (end_head != end_tail) 4998 if (NOTE_P (end_tail)) 4999 end_tail = PREV_INSN (end_tail); 5000 else if (DEBUG_INSN_P (end_tail)) 5001 { 5002 rtx_insn * note, *prev; 5003 5004 for (note = PREV_INSN (end_tail); 5005 note != end_head; 5006 note = prev) 5007 { 5008 prev = PREV_INSN (note); 5009 if (NOTE_P (note)) 5010 { 5011 if (sched_verbose >= 9) 5012 fprintf (sched_dump, "reorder %i\n", INSN_UID (note)); 5013 5014 reorder_insns_nobb (note, note, end_tail); 5015 5016 if (end_tail == BB_END (end)) 5017 BB_END (end) = note; 5018 5019 if (BLOCK_FOR_INSN (note) != end) 5020 df_insn_change_bb (note, end); 5021 } 5022 else if (!DEBUG_INSN_P (note)) 5023 break; 5024 } 5025 5026 break; 5027 } 5028 else 5029 break; 5030 5031 *tailp = end_tail; 5032 } 5033 5034 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */ 5035 5036 int 5037 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail) 5038 { 5039 while (head != NEXT_INSN (tail)) 5040 { 5041 if (!NOTE_P (head) && !LABEL_P (head)) 5042 return 0; 5043 head = NEXT_INSN (head); 5044 } 5045 return 1; 5046 } 5047 5048 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes 5049 previously found among the insns. Insert them just before HEAD. */ 5050 rtx_insn * 5051 restore_other_notes (rtx_insn *head, basic_block head_bb) 5052 { 5053 if (note_list != 0) 5054 { 5055 rtx_insn *note_head = note_list; 5056 5057 if (head) 5058 head_bb = BLOCK_FOR_INSN (head); 5059 else 5060 head = NEXT_INSN (bb_note (head_bb)); 5061 5062 while (PREV_INSN (note_head)) 5063 { 5064 set_block_for_insn (note_head, head_bb); 5065 note_head = PREV_INSN (note_head); 5066 } 5067 /* In the above cycle we've missed this note. */ 5068 set_block_for_insn (note_head, head_bb); 5069 5070 SET_PREV_INSN (note_head) = PREV_INSN (head); 5071 SET_NEXT_INSN (PREV_INSN (head)) = note_head; 5072 SET_PREV_INSN (head) = note_list; 5073 SET_NEXT_INSN (note_list) = head; 5074 5075 if (BLOCK_FOR_INSN (head) != head_bb) 5076 BB_END (head_bb) = note_list; 5077 5078 head = note_head; 5079 } 5080 5081 return head; 5082 } 5083 5084 /* When we know we are going to discard the schedule due to a failed attempt 5085 at modulo scheduling, undo all replacements. */ 5086 static void 5087 undo_all_replacements (void) 5088 { 5089 rtx_insn *insn; 5090 int i; 5091 5092 FOR_EACH_VEC_ELT (scheduled_insns, i, insn) 5093 { 5094 sd_iterator_def sd_it; 5095 dep_t dep; 5096 5097 /* See if we must undo a replacement. */ 5098 for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW); 5099 sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it)) 5100 { 5101 struct dep_replacement *desc = DEP_REPLACE (dep); 5102 if (desc != NULL) 5103 validate_change (desc->insn, desc->loc, desc->orig, 0); 5104 } 5105 } 5106 } 5107 5108 /* Return first non-scheduled insn in the current scheduling block. 5109 This is mostly used for debug-counter purposes. */ 5110 static rtx_insn * 5111 first_nonscheduled_insn (void) 5112 { 5113 rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX 5114 ? nonscheduled_insns_begin 5115 : current_sched_info->prev_head); 5116 5117 do 5118 { 5119 insn = next_nonnote_nondebug_insn (insn); 5120 } 5121 while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED); 5122 5123 return insn; 5124 } 5125 5126 /* Move insns that became ready to fire from queue to ready list. */ 5127 5128 static void 5129 queue_to_ready (struct ready_list *ready) 5130 { 5131 rtx_insn *insn; 5132 rtx_insn_list *link; 5133 rtx_insn *skip_insn; 5134 5135 q_ptr = NEXT_Q (q_ptr); 5136 5137 if (dbg_cnt (sched_insn) == false) 5138 /* If debug counter is activated do not requeue the first 5139 nonscheduled insn. */ 5140 skip_insn = first_nonscheduled_insn (); 5141 else 5142 skip_insn = NULL; 5143 5144 /* Add all pending insns that can be scheduled without stalls to the 5145 ready list. */ 5146 for (link = insn_queue[q_ptr]; link; link = link->next ()) 5147 { 5148 insn = link->insn (); 5149 q_size -= 1; 5150 5151 if (sched_verbose >= 2) 5152 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ", 5153 (*current_sched_info->print_insn) (insn, 0)); 5154 5155 /* If the ready list is full, delay the insn for 1 cycle. 5156 See the comment in schedule_block for the rationale. */ 5157 if (!reload_completed 5158 && (ready->n_ready - ready->n_debug > param_max_sched_ready_insns 5159 || (sched_pressure == SCHED_PRESSURE_MODEL 5160 /* Limit pressure recalculations to 5161 param_max_sched_ready_insns instructions too. */ 5162 && model_index (insn) > (model_curr_point 5163 + param_max_sched_ready_insns))) 5164 && !(sched_pressure == SCHED_PRESSURE_MODEL 5165 && model_curr_point < model_num_insns 5166 /* Always allow the next model instruction to issue. */ 5167 && model_index (insn) == model_curr_point) 5168 && !SCHED_GROUP_P (insn) 5169 && insn != skip_insn) 5170 { 5171 if (sched_verbose >= 2) 5172 fprintf (sched_dump, "keeping in queue, ready full\n"); 5173 queue_insn (insn, 1, "ready full"); 5174 } 5175 else 5176 { 5177 ready_add (ready, insn, false); 5178 if (sched_verbose >= 2) 5179 fprintf (sched_dump, "moving to ready without stalls\n"); 5180 } 5181 } 5182 free_INSN_LIST_list (&insn_queue[q_ptr]); 5183 5184 /* If there are no ready insns, stall until one is ready and add all 5185 of the pending insns at that point to the ready list. */ 5186 if (ready->n_ready == 0) 5187 { 5188 int stalls; 5189 5190 for (stalls = 1; stalls <= max_insn_queue_index; stalls++) 5191 { 5192 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)])) 5193 { 5194 for (; link; link = link->next ()) 5195 { 5196 insn = link->insn (); 5197 q_size -= 1; 5198 5199 if (sched_verbose >= 2) 5200 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ", 5201 (*current_sched_info->print_insn) (insn, 0)); 5202 5203 ready_add (ready, insn, false); 5204 if (sched_verbose >= 2) 5205 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls); 5206 } 5207 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]); 5208 5209 advance_one_cycle (); 5210 5211 break; 5212 } 5213 5214 advance_one_cycle (); 5215 } 5216 5217 q_ptr = NEXT_Q_AFTER (q_ptr, stalls); 5218 clock_var += stalls; 5219 if (sched_verbose >= 2) 5220 fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n", 5221 stalls, clock_var); 5222 } 5223 } 5224 5225 /* Used by early_queue_to_ready. Determines whether it is "ok" to 5226 prematurely move INSN from the queue to the ready list. Currently, 5227 if a target defines the hook 'is_costly_dependence', this function 5228 uses the hook to check whether there exist any dependences which are 5229 considered costly by the target, between INSN and other insns that 5230 have already been scheduled. Dependences are checked up to Y cycles 5231 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows 5232 controlling this value. 5233 (Other considerations could be taken into account instead (or in 5234 addition) depending on user flags and target hooks. */ 5235 5236 static bool 5237 ok_for_early_queue_removal (rtx_insn *insn) 5238 { 5239 if (targetm.sched.is_costly_dependence) 5240 { 5241 int n_cycles; 5242 int i = scheduled_insns.length (); 5243 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--) 5244 { 5245 while (i-- > 0) 5246 { 5247 int cost; 5248 5249 rtx_insn *prev_insn = scheduled_insns[i]; 5250 5251 if (!NOTE_P (prev_insn)) 5252 { 5253 dep_t dep; 5254 5255 dep = sd_find_dep_between (prev_insn, insn, true); 5256 5257 if (dep != NULL) 5258 { 5259 cost = dep_cost (dep); 5260 5261 if (targetm.sched.is_costly_dependence (dep, cost, 5262 flag_sched_stalled_insns_dep - n_cycles)) 5263 return false; 5264 } 5265 } 5266 5267 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */ 5268 break; 5269 } 5270 5271 if (i == 0) 5272 break; 5273 } 5274 } 5275 5276 return true; 5277 } 5278 5279 5280 /* Remove insns from the queue, before they become "ready" with respect 5281 to FU latency considerations. */ 5282 5283 static int 5284 early_queue_to_ready (state_t state, struct ready_list *ready) 5285 { 5286 rtx_insn *insn; 5287 rtx_insn_list *link; 5288 rtx_insn_list *next_link; 5289 rtx_insn_list *prev_link; 5290 bool move_to_ready; 5291 int cost; 5292 state_t temp_state = alloca (dfa_state_size); 5293 int stalls; 5294 int insns_removed = 0; 5295 5296 /* 5297 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this 5298 function: 5299 5300 X == 0: There is no limit on how many queued insns can be removed 5301 prematurely. (flag_sched_stalled_insns = -1). 5302 5303 X >= 1: Only X queued insns can be removed prematurely in each 5304 invocation. (flag_sched_stalled_insns = X). 5305 5306 Otherwise: Early queue removal is disabled. 5307 (flag_sched_stalled_insns = 0) 5308 */ 5309 5310 if (! flag_sched_stalled_insns) 5311 return 0; 5312 5313 for (stalls = 0; stalls <= max_insn_queue_index; stalls++) 5314 { 5315 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)])) 5316 { 5317 if (sched_verbose > 6) 5318 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls); 5319 5320 prev_link = 0; 5321 while (link) 5322 { 5323 next_link = link->next (); 5324 insn = link->insn (); 5325 if (insn && sched_verbose > 6) 5326 print_rtl_single (sched_dump, insn); 5327 5328 memcpy (temp_state, state, dfa_state_size); 5329 if (recog_memoized (insn) < 0) 5330 /* non-negative to indicate that it's not ready 5331 to avoid infinite Q->R->Q->R... */ 5332 cost = 0; 5333 else 5334 cost = state_transition (temp_state, insn); 5335 5336 if (sched_verbose >= 6) 5337 fprintf (sched_dump, "transition cost = %d\n", cost); 5338 5339 move_to_ready = false; 5340 if (cost < 0) 5341 { 5342 move_to_ready = ok_for_early_queue_removal (insn); 5343 if (move_to_ready == true) 5344 { 5345 /* move from Q to R */ 5346 q_size -= 1; 5347 ready_add (ready, insn, false); 5348 5349 if (prev_link) 5350 XEXP (prev_link, 1) = next_link; 5351 else 5352 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link; 5353 5354 free_INSN_LIST_node (link); 5355 5356 if (sched_verbose >= 2) 5357 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n", 5358 (*current_sched_info->print_insn) (insn, 0)); 5359 5360 insns_removed++; 5361 if (insns_removed == flag_sched_stalled_insns) 5362 /* Remove no more than flag_sched_stalled_insns insns 5363 from Q at a time. */ 5364 return insns_removed; 5365 } 5366 } 5367 5368 if (move_to_ready == false) 5369 prev_link = link; 5370 5371 link = next_link; 5372 } /* while link */ 5373 } /* if link */ 5374 5375 } /* for stalls.. */ 5376 5377 return insns_removed; 5378 } 5379 5380 5381 /* Print the ready list for debugging purposes. 5382 If READY_TRY is non-zero then only print insns that max_issue 5383 will consider. */ 5384 static void 5385 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try) 5386 { 5387 rtx_insn **p; 5388 int i; 5389 5390 if (ready->n_ready == 0) 5391 { 5392 fprintf (sched_dump, "\n"); 5393 return; 5394 } 5395 5396 p = ready_lastpos (ready); 5397 for (i = 0; i < ready->n_ready; i++) 5398 { 5399 if (ready_try != NULL && ready_try[ready->n_ready - i - 1]) 5400 continue; 5401 5402 fprintf (sched_dump, " %s:%d", 5403 (*current_sched_info->print_insn) (p[i], 0), 5404 INSN_LUID (p[i])); 5405 if (sched_pressure != SCHED_PRESSURE_NONE) 5406 fprintf (sched_dump, "(cost=%d", 5407 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i])); 5408 fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i])); 5409 if (INSN_TICK (p[i]) > clock_var) 5410 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var); 5411 if (sched_pressure == SCHED_PRESSURE_MODEL) 5412 fprintf (sched_dump, ":idx=%d", 5413 model_index (p[i])); 5414 if (sched_pressure != SCHED_PRESSURE_NONE) 5415 fprintf (sched_dump, ")"); 5416 } 5417 fprintf (sched_dump, "\n"); 5418 } 5419 5420 /* Print the ready list. Callable from debugger. */ 5421 static void 5422 debug_ready_list (struct ready_list *ready) 5423 { 5424 debug_ready_list_1 (ready, NULL); 5425 } 5426 5427 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn 5428 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb 5429 replaces the epilogue note in the correct basic block. */ 5430 void 5431 reemit_notes (rtx_insn *insn) 5432 { 5433 rtx note; 5434 rtx_insn *last = insn; 5435 5436 for (note = REG_NOTES (insn); note; note = XEXP (note, 1)) 5437 { 5438 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE) 5439 { 5440 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0)); 5441 5442 last = emit_note_before (note_type, last); 5443 remove_note (insn, note); 5444 df_insn_create_insn_record (last); 5445 } 5446 } 5447 } 5448 5449 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */ 5450 static void 5451 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt) 5452 { 5453 if (PREV_INSN (insn) != last) 5454 { 5455 basic_block bb; 5456 rtx_insn *note; 5457 int jump_p = 0; 5458 5459 bb = BLOCK_FOR_INSN (insn); 5460 5461 /* BB_HEAD is either LABEL or NOTE. */ 5462 gcc_assert (BB_HEAD (bb) != insn); 5463 5464 if (BB_END (bb) == insn) 5465 /* If this is last instruction in BB, move end marker one 5466 instruction up. */ 5467 { 5468 /* Jumps are always placed at the end of basic block. */ 5469 jump_p = control_flow_insn_p (insn); 5470 5471 gcc_assert (!jump_p 5472 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS) 5473 && IS_SPECULATION_BRANCHY_CHECK_P (insn)) 5474 || (common_sched_info->sched_pass_id 5475 == SCHED_EBB_PASS)); 5476 5477 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb); 5478 5479 BB_END (bb) = PREV_INSN (insn); 5480 } 5481 5482 gcc_assert (BB_END (bb) != last); 5483 5484 if (jump_p) 5485 /* We move the block note along with jump. */ 5486 { 5487 gcc_assert (nt); 5488 5489 note = NEXT_INSN (insn); 5490 while (NOTE_NOT_BB_P (note) && note != nt) 5491 note = NEXT_INSN (note); 5492 5493 if (note != nt 5494 && (LABEL_P (note) 5495 || BARRIER_P (note))) 5496 note = NEXT_INSN (note); 5497 5498 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note)); 5499 } 5500 else 5501 note = insn; 5502 5503 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note); 5504 SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn); 5505 5506 SET_NEXT_INSN (note) = NEXT_INSN (last); 5507 SET_PREV_INSN (NEXT_INSN (last)) = note; 5508 5509 SET_NEXT_INSN (last) = insn; 5510 SET_PREV_INSN (insn) = last; 5511 5512 bb = BLOCK_FOR_INSN (last); 5513 5514 if (jump_p) 5515 { 5516 fix_jump_move (insn); 5517 5518 if (BLOCK_FOR_INSN (insn) != bb) 5519 move_block_after_check (insn); 5520 5521 gcc_assert (BB_END (bb) == last); 5522 } 5523 5524 df_insn_change_bb (insn, bb); 5525 5526 /* Update BB_END, if needed. */ 5527 if (BB_END (bb) == last) 5528 BB_END (bb) = insn; 5529 } 5530 5531 SCHED_GROUP_P (insn) = 0; 5532 } 5533 5534 /* Return true if scheduling INSN will finish current clock cycle. */ 5535 static bool 5536 insn_finishes_cycle_p (rtx_insn *insn) 5537 { 5538 if (SCHED_GROUP_P (insn)) 5539 /* After issuing INSN, rest of the sched_group will be forced to issue 5540 in order. Don't make any plans for the rest of cycle. */ 5541 return true; 5542 5543 /* Finishing the block will, apparently, finish the cycle. */ 5544 if (current_sched_info->insn_finishes_block_p 5545 && current_sched_info->insn_finishes_block_p (insn)) 5546 return true; 5547 5548 return false; 5549 } 5550 5551 /* Helper for autopref_multipass_init. Given a SET in PAT and whether 5552 we're expecting a memory WRITE or not, check that the insn is relevant to 5553 the autoprefetcher modelling code. Return true iff that is the case. 5554 If it is relevant, record the base register of the memory op in BASE and 5555 the offset in OFFSET. */ 5556 5557 static bool 5558 analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset) 5559 { 5560 if (GET_CODE (pat) != SET) 5561 return false; 5562 5563 rtx mem = write ? SET_DEST (pat) : SET_SRC (pat); 5564 if (!MEM_P (mem)) 5565 return false; 5566 5567 struct address_info info; 5568 decompose_mem_address (&info, mem); 5569 5570 /* TODO: Currently only (base+const) addressing is supported. */ 5571 if (info.base == NULL || !REG_P (*info.base) 5572 || (info.disp != NULL && !CONST_INT_P (*info.disp))) 5573 return false; 5574 5575 *base = *info.base; 5576 *offset = info.disp ? INTVAL (*info.disp) : 0; 5577 return true; 5578 } 5579 5580 /* Functions to model cache auto-prefetcher. 5581 5582 Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate 5583 memory prefetches if it sees instructions with consequitive memory accesses 5584 in the instruction stream. Details of such hardware units are not published, 5585 so we can only guess what exactly is going on there. 5586 In the scheduler, we model abstract auto-prefetcher. If there are memory 5587 insns in the ready list (or the queue) that have same memory base, but 5588 different offsets, then we delay the insns with larger offsets until insns 5589 with smaller offsets get scheduled. If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH 5590 is "1", then we look at the ready list; if it is N>1, then we also look 5591 through N-1 queue entries. 5592 If the param is N>=0, then rank_for_schedule will consider auto-prefetching 5593 among its heuristics. 5594 Param value of "-1" disables modelling of the auto-prefetcher. */ 5595 5596 /* Initialize autoprefetcher model data for INSN. */ 5597 static void 5598 autopref_multipass_init (const rtx_insn *insn, int write) 5599 { 5600 autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write]; 5601 5602 gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED); 5603 data->base = NULL_RTX; 5604 data->offset = 0; 5605 /* Set insn entry initialized, but not relevant for auto-prefetcher. */ 5606 data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT; 5607 5608 rtx pat = PATTERN (insn); 5609 5610 /* We have a multi-set insn like a load-multiple or store-multiple. 5611 We care about these as long as all the memory ops inside the PARALLEL 5612 have the same base register. We care about the minimum and maximum 5613 offsets from that base but don't check for the order of those offsets 5614 within the PARALLEL insn itself. */ 5615 if (GET_CODE (pat) == PARALLEL) 5616 { 5617 int n_elems = XVECLEN (pat, 0); 5618 5619 int i, offset; 5620 rtx base, prev_base = NULL_RTX; 5621 int min_offset = INT_MAX; 5622 5623 for (i = 0; i < n_elems; i++) 5624 { 5625 rtx set = XVECEXP (pat, 0, i); 5626 if (GET_CODE (set) != SET) 5627 return; 5628 5629 if (!analyze_set_insn_for_autopref (set, write, &base, &offset)) 5630 return; 5631 5632 /* Ensure that all memory operations in the PARALLEL use the same 5633 base register. */ 5634 if (i > 0 && REGNO (base) != REGNO (prev_base)) 5635 return; 5636 prev_base = base; 5637 min_offset = MIN (min_offset, offset); 5638 } 5639 5640 /* If we reached here then we have a valid PARALLEL of multiple memory ops 5641 with prev_base as the base and min_offset containing the offset. */ 5642 gcc_assert (prev_base); 5643 data->base = prev_base; 5644 data->offset = min_offset; 5645 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL; 5646 return; 5647 } 5648 5649 /* Otherwise this is a single set memory operation. */ 5650 rtx set = single_set (insn); 5651 if (set == NULL_RTX) 5652 return; 5653 5654 if (!analyze_set_insn_for_autopref (set, write, &data->base, 5655 &data->offset)) 5656 return; 5657 5658 /* This insn is relevant for the auto-prefetcher. 5659 The base and offset fields will have been filled in the 5660 analyze_set_insn_for_autopref call above. */ 5661 data->status = AUTOPREF_MULTIPASS_DATA_NORMAL; 5662 } 5663 5664 /* Helper function for rank_for_schedule sorting. */ 5665 static int 5666 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2) 5667 { 5668 int r = 0; 5669 for (int write = 0; write < 2 && !r; ++write) 5670 { 5671 autopref_multipass_data_t data1 5672 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write]; 5673 autopref_multipass_data_t data2 5674 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write]; 5675 5676 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED) 5677 autopref_multipass_init (insn1, write); 5678 5679 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED) 5680 autopref_multipass_init (insn2, write); 5681 5682 int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT; 5683 int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT; 5684 5685 if (!irrel1 && !irrel2) 5686 r = data1->offset - data2->offset; 5687 else 5688 r = irrel2 - irrel1; 5689 } 5690 5691 return r; 5692 } 5693 5694 /* True if header of debug dump was printed. */ 5695 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p; 5696 5697 /* Helper for autopref_multipass_dfa_lookahead_guard. 5698 Return "1" if INSN1 should be delayed in favor of INSN2. */ 5699 static int 5700 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1, 5701 const rtx_insn *insn2, int write) 5702 { 5703 autopref_multipass_data_t data1 5704 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write]; 5705 autopref_multipass_data_t data2 5706 = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write]; 5707 5708 if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED) 5709 autopref_multipass_init (insn2, write); 5710 if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT) 5711 return 0; 5712 5713 if (rtx_equal_p (data1->base, data2->base) 5714 && data1->offset > data2->offset) 5715 { 5716 if (sched_verbose >= 2) 5717 { 5718 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p) 5719 { 5720 fprintf (sched_dump, 5721 ";;\t\tnot trying in max_issue due to autoprefetch " 5722 "model: "); 5723 autopref_multipass_dfa_lookahead_guard_started_dump_p = true; 5724 } 5725 5726 fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2)); 5727 } 5728 5729 return 1; 5730 } 5731 5732 return 0; 5733 } 5734 5735 /* General note: 5736 5737 We could have also hooked autoprefetcher model into 5738 first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks 5739 to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle 5740 (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets 5741 unblocked). We don't bother about this yet because target of interest 5742 (ARM Cortex-A15) can issue only 1 memory operation per cycle. */ 5743 5744 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook. 5745 Return "1" if INSN1 should not be considered in max_issue due to 5746 auto-prefetcher considerations. */ 5747 int 5748 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index) 5749 { 5750 int r = 0; 5751 5752 /* Exit early if the param forbids this or if we're not entering here through 5753 normal haifa scheduling. This can happen if selective scheduling is 5754 explicitly enabled. */ 5755 if (!insn_queue || param_sched_autopref_queue_depth <= 0) 5756 return 0; 5757 5758 if (sched_verbose >= 2 && ready_index == 0) 5759 autopref_multipass_dfa_lookahead_guard_started_dump_p = false; 5760 5761 for (int write = 0; write < 2; ++write) 5762 { 5763 autopref_multipass_data_t data1 5764 = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write]; 5765 5766 if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED) 5767 autopref_multipass_init (insn1, write); 5768 if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT) 5769 continue; 5770 5771 if (ready_index == 0 5772 && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY) 5773 /* We allow only a single delay on priviledged instructions. 5774 Doing otherwise would cause infinite loop. */ 5775 { 5776 if (sched_verbose >= 2) 5777 { 5778 if (!autopref_multipass_dfa_lookahead_guard_started_dump_p) 5779 { 5780 fprintf (sched_dump, 5781 ";;\t\tnot trying in max_issue due to autoprefetch " 5782 "model: "); 5783 autopref_multipass_dfa_lookahead_guard_started_dump_p = true; 5784 } 5785 5786 fprintf (sched_dump, " *%d*", INSN_UID (insn1)); 5787 } 5788 continue; 5789 } 5790 5791 for (int i2 = 0; i2 < ready.n_ready; ++i2) 5792 { 5793 rtx_insn *insn2 = get_ready_element (i2); 5794 if (insn1 == insn2) 5795 continue; 5796 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write); 5797 if (r) 5798 { 5799 if (ready_index == 0) 5800 { 5801 r = -1; 5802 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY; 5803 } 5804 goto finish; 5805 } 5806 } 5807 5808 if (param_sched_autopref_queue_depth == 1) 5809 continue; 5810 5811 /* Everything from the current queue slot should have been moved to 5812 the ready list. */ 5813 gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX); 5814 5815 int n_stalls = param_sched_autopref_queue_depth - 1; 5816 if (n_stalls > max_insn_queue_index) 5817 n_stalls = max_insn_queue_index; 5818 5819 for (int stalls = 1; stalls <= n_stalls; ++stalls) 5820 { 5821 for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]; 5822 link != NULL_RTX; 5823 link = link->next ()) 5824 { 5825 rtx_insn *insn2 = link->insn (); 5826 r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, 5827 write); 5828 if (r) 5829 { 5830 /* Queue INSN1 until INSN2 can issue. */ 5831 r = -stalls; 5832 if (ready_index == 0) 5833 data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY; 5834 goto finish; 5835 } 5836 } 5837 } 5838 } 5839 5840 finish: 5841 if (sched_verbose >= 2 5842 && autopref_multipass_dfa_lookahead_guard_started_dump_p 5843 && (ready_index == ready.n_ready - 1 || r < 0)) 5844 /* This does not /always/ trigger. We don't output EOL if the last 5845 insn is not recognized (INSN_CODE < 0) and lookahead_guard is not 5846 called. We can live with this. */ 5847 fprintf (sched_dump, "\n"); 5848 5849 return r; 5850 } 5851 5852 /* Define type for target data used in multipass scheduling. */ 5853 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T 5854 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int 5855 #endif 5856 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t; 5857 5858 /* The following structure describe an entry of the stack of choices. */ 5859 struct choice_entry 5860 { 5861 /* Ordinal number of the issued insn in the ready queue. */ 5862 int index; 5863 /* The number of the rest insns whose issues we should try. */ 5864 int rest; 5865 /* The number of issued essential insns. */ 5866 int n; 5867 /* State after issuing the insn. */ 5868 state_t state; 5869 /* Target-specific data. */ 5870 first_cycle_multipass_data_t target_data; 5871 }; 5872 5873 /* The following array is used to implement a stack of choices used in 5874 function max_issue. */ 5875 static struct choice_entry *choice_stack; 5876 5877 /* This holds the value of the target dfa_lookahead hook. */ 5878 int dfa_lookahead; 5879 5880 /* The following variable value is maximal number of tries of issuing 5881 insns for the first cycle multipass insn scheduling. We define 5882 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not 5883 need this constraint if all real insns (with non-negative codes) 5884 had reservations because in this case the algorithm complexity is 5885 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions 5886 might be incomplete and such insn might occur. For such 5887 descriptions, the complexity of algorithm (without the constraint) 5888 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */ 5889 static int max_lookahead_tries; 5890 5891 /* The following function returns maximal (or close to maximal) number 5892 of insns which can be issued on the same cycle and one of which 5893 insns is insns with the best rank (the first insn in READY). To 5894 make this function tries different samples of ready insns. READY 5895 is current queue `ready'. Global array READY_TRY reflects what 5896 insns are already issued in this try. The function stops immediately, 5897 if it reached the such a solution, that all instruction can be issued. 5898 INDEX will contain index of the best insn in READY. The following 5899 function is used only for first cycle multipass scheduling. 5900 5901 PRIVILEGED_N >= 0 5902 5903 This function expects recognized insns only. All USEs, 5904 CLOBBERs, etc must be filtered elsewhere. */ 5905 int 5906 max_issue (struct ready_list *ready, int privileged_n, state_t state, 5907 bool first_cycle_insn_p, int *index) 5908 { 5909 int n, i, all, n_ready, best, delay, tries_num; 5910 int more_issue; 5911 struct choice_entry *top; 5912 rtx_insn *insn; 5913 5914 if (sched_fusion) 5915 return 0; 5916 5917 n_ready = ready->n_ready; 5918 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0 5919 && privileged_n <= n_ready); 5920 5921 /* Init MAX_LOOKAHEAD_TRIES. */ 5922 if (max_lookahead_tries == 0) 5923 { 5924 max_lookahead_tries = 100; 5925 for (i = 0; i < issue_rate; i++) 5926 max_lookahead_tries *= dfa_lookahead; 5927 } 5928 5929 /* Init max_points. */ 5930 more_issue = issue_rate - cycle_issued_insns; 5931 gcc_assert (more_issue >= 0); 5932 5933 /* The number of the issued insns in the best solution. */ 5934 best = 0; 5935 5936 top = choice_stack; 5937 5938 /* Set initial state of the search. */ 5939 memcpy (top->state, state, dfa_state_size); 5940 top->rest = dfa_lookahead; 5941 top->n = 0; 5942 if (targetm.sched.first_cycle_multipass_begin) 5943 targetm.sched.first_cycle_multipass_begin (&top->target_data, 5944 ready_try, n_ready, 5945 first_cycle_insn_p); 5946 5947 /* Count the number of the insns to search among. */ 5948 for (all = i = 0; i < n_ready; i++) 5949 if (!ready_try [i]) 5950 all++; 5951 5952 if (sched_verbose >= 2) 5953 { 5954 fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all); 5955 debug_ready_list_1 (ready, ready_try); 5956 } 5957 5958 /* I is the index of the insn to try next. */ 5959 i = 0; 5960 tries_num = 0; 5961 for (;;) 5962 { 5963 if (/* If we've reached a dead end or searched enough of what we have 5964 been asked... */ 5965 top->rest == 0 5966 /* or have nothing else to try... */ 5967 || i >= n_ready 5968 /* or should not issue more. */ 5969 || top->n >= more_issue) 5970 { 5971 /* ??? (... || i == n_ready). */ 5972 gcc_assert (i <= n_ready); 5973 5974 /* We should not issue more than issue_rate instructions. */ 5975 gcc_assert (top->n <= more_issue); 5976 5977 if (top == choice_stack) 5978 break; 5979 5980 if (best < top - choice_stack) 5981 { 5982 if (privileged_n) 5983 { 5984 n = privileged_n; 5985 /* Try to find issued privileged insn. */ 5986 while (n && !ready_try[--n]) 5987 ; 5988 } 5989 5990 if (/* If all insns are equally good... */ 5991 privileged_n == 0 5992 /* Or a privileged insn will be issued. */ 5993 || ready_try[n]) 5994 /* Then we have a solution. */ 5995 { 5996 best = top - choice_stack; 5997 /* This is the index of the insn issued first in this 5998 solution. */ 5999 *index = choice_stack [1].index; 6000 if (top->n == more_issue || best == all) 6001 break; 6002 } 6003 } 6004 6005 /* Set ready-list index to point to the last insn 6006 ('i++' below will advance it to the next insn). */ 6007 i = top->index; 6008 6009 /* Backtrack. */ 6010 ready_try [i] = 0; 6011 6012 if (targetm.sched.first_cycle_multipass_backtrack) 6013 targetm.sched.first_cycle_multipass_backtrack (&top->target_data, 6014 ready_try, n_ready); 6015 6016 top--; 6017 memcpy (state, top->state, dfa_state_size); 6018 } 6019 else if (!ready_try [i]) 6020 { 6021 tries_num++; 6022 if (tries_num > max_lookahead_tries) 6023 break; 6024 insn = ready_element (ready, i); 6025 delay = state_transition (state, insn); 6026 if (delay < 0) 6027 { 6028 if (state_dead_lock_p (state) 6029 || insn_finishes_cycle_p (insn)) 6030 /* We won't issue any more instructions in the next 6031 choice_state. */ 6032 top->rest = 0; 6033 else 6034 top->rest--; 6035 6036 n = top->n; 6037 if (memcmp (top->state, state, dfa_state_size) != 0) 6038 n++; 6039 6040 /* Advance to the next choice_entry. */ 6041 top++; 6042 /* Initialize it. */ 6043 top->rest = dfa_lookahead; 6044 top->index = i; 6045 top->n = n; 6046 memcpy (top->state, state, dfa_state_size); 6047 ready_try [i] = 1; 6048 6049 if (targetm.sched.first_cycle_multipass_issue) 6050 targetm.sched.first_cycle_multipass_issue (&top->target_data, 6051 ready_try, n_ready, 6052 insn, 6053 &((top - 1) 6054 ->target_data)); 6055 6056 i = -1; 6057 } 6058 } 6059 6060 /* Increase ready-list index. */ 6061 i++; 6062 } 6063 6064 if (targetm.sched.first_cycle_multipass_end) 6065 targetm.sched.first_cycle_multipass_end (best != 0 6066 ? &choice_stack[1].target_data 6067 : NULL); 6068 6069 /* Restore the original state of the DFA. */ 6070 memcpy (state, choice_stack->state, dfa_state_size); 6071 6072 return best; 6073 } 6074 6075 /* The following function chooses insn from READY and modifies 6076 READY. The following function is used only for first 6077 cycle multipass scheduling. 6078 Return: 6079 -1 if cycle should be advanced, 6080 0 if INSN_PTR is set to point to the desirable insn, 6081 1 if choose_ready () should be restarted without advancing the cycle. */ 6082 static int 6083 choose_ready (struct ready_list *ready, bool first_cycle_insn_p, 6084 rtx_insn **insn_ptr) 6085 { 6086 if (dbg_cnt (sched_insn) == false) 6087 { 6088 if (nonscheduled_insns_begin == NULL_RTX) 6089 nonscheduled_insns_begin = current_sched_info->prev_head; 6090 6091 rtx_insn *insn = first_nonscheduled_insn (); 6092 6093 if (QUEUE_INDEX (insn) == QUEUE_READY) 6094 /* INSN is in the ready_list. */ 6095 { 6096 ready_remove_insn (insn); 6097 *insn_ptr = insn; 6098 return 0; 6099 } 6100 6101 /* INSN is in the queue. Advance cycle to move it to the ready list. */ 6102 gcc_assert (QUEUE_INDEX (insn) >= 0); 6103 return -1; 6104 } 6105 6106 if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)) 6107 || DEBUG_INSN_P (ready_element (ready, 0))) 6108 { 6109 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON)) 6110 *insn_ptr = ready_remove_first_dispatch (ready); 6111 else 6112 *insn_ptr = ready_remove_first (ready); 6113 6114 return 0; 6115 } 6116 else 6117 { 6118 /* Try to choose the best insn. */ 6119 int index = 0, i; 6120 rtx_insn *insn; 6121 6122 insn = ready_element (ready, 0); 6123 if (INSN_CODE (insn) < 0) 6124 { 6125 *insn_ptr = ready_remove_first (ready); 6126 return 0; 6127 } 6128 6129 /* Filter the search space. */ 6130 for (i = 0; i < ready->n_ready; i++) 6131 { 6132 ready_try[i] = 0; 6133 6134 insn = ready_element (ready, i); 6135 6136 /* If this insn is recognizable we should have already 6137 recognized it earlier. 6138 ??? Not very clear where this is supposed to be done. 6139 See dep_cost_1. */ 6140 gcc_checking_assert (INSN_CODE (insn) >= 0 6141 || recog_memoized (insn) < 0); 6142 if (INSN_CODE (insn) < 0) 6143 { 6144 /* Non-recognized insns at position 0 are handled above. */ 6145 gcc_assert (i > 0); 6146 ready_try[i] = 1; 6147 continue; 6148 } 6149 6150 if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard) 6151 { 6152 ready_try[i] 6153 = (targetm.sched.first_cycle_multipass_dfa_lookahead_guard 6154 (insn, i)); 6155 6156 if (ready_try[i] < 0) 6157 /* Queue instruction for several cycles. 6158 We need to restart choose_ready as we have changed 6159 the ready list. */ 6160 { 6161 change_queue_index (insn, -ready_try[i]); 6162 return 1; 6163 } 6164 6165 /* Make sure that we didn't end up with 0'th insn filtered out. 6166 Don't be tempted to make life easier for backends and just 6167 requeue 0'th insn if (ready_try[0] == 0) and restart 6168 choose_ready. Backends should be very considerate about 6169 requeueing instructions -- especially the highest priority 6170 one at position 0. */ 6171 gcc_assert (ready_try[i] == 0 || i > 0); 6172 if (ready_try[i]) 6173 continue; 6174 } 6175 6176 gcc_assert (ready_try[i] == 0); 6177 /* INSN made it through the scrutiny of filters! */ 6178 } 6179 6180 if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0) 6181 { 6182 *insn_ptr = ready_remove_first (ready); 6183 if (sched_verbose >= 4) 6184 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n", 6185 (*current_sched_info->print_insn) (*insn_ptr, 0)); 6186 return 0; 6187 } 6188 else 6189 { 6190 if (sched_verbose >= 4) 6191 fprintf (sched_dump, ";;\t\tChosen insn : %s\n", 6192 (*current_sched_info->print_insn) 6193 (ready_element (ready, index), 0)); 6194 6195 *insn_ptr = ready_remove (ready, index); 6196 return 0; 6197 } 6198 } 6199 } 6200 6201 /* This function is called when we have successfully scheduled a 6202 block. It uses the schedule stored in the scheduled_insns vector 6203 to rearrange the RTL. PREV_HEAD is used as the anchor to which we 6204 append the scheduled insns; TAIL is the insn after the scheduled 6205 block. TARGET_BB is the argument passed to schedule_block. */ 6206 6207 static void 6208 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb) 6209 { 6210 unsigned int i; 6211 rtx_insn *insn; 6212 6213 last_scheduled_insn = prev_head; 6214 for (i = 0; 6215 scheduled_insns.iterate (i, &insn); 6216 i++) 6217 { 6218 if (control_flow_insn_p (last_scheduled_insn) 6219 || current_sched_info->advance_target_bb (*target_bb, insn)) 6220 { 6221 *target_bb = current_sched_info->advance_target_bb (*target_bb, 0); 6222 6223 if (sched_verbose) 6224 { 6225 rtx_insn *x; 6226 6227 x = next_real_insn (last_scheduled_insn); 6228 gcc_assert (x); 6229 dump_new_block_header (1, *target_bb, x, tail); 6230 } 6231 6232 last_scheduled_insn = bb_note (*target_bb); 6233 } 6234 6235 if (current_sched_info->begin_move_insn) 6236 (*current_sched_info->begin_move_insn) (insn, last_scheduled_insn); 6237 move_insn (insn, last_scheduled_insn, 6238 current_sched_info->next_tail); 6239 if (!DEBUG_INSN_P (insn)) 6240 reemit_notes (insn); 6241 last_scheduled_insn = insn; 6242 } 6243 6244 scheduled_insns.truncate (0); 6245 } 6246 6247 /* Examine all insns on the ready list and queue those which can't be 6248 issued in this cycle. TEMP_STATE is temporary scheduler state we 6249 can use as scratch space. If FIRST_CYCLE_INSN_P is true, no insns 6250 have been issued for the current cycle, which means it is valid to 6251 issue an asm statement. 6252 6253 If SHADOWS_ONLY_P is true, we eliminate all real insns and only 6254 leave those for which SHADOW_P is true. If MODULO_EPILOGUE is true, 6255 we only leave insns which have an INSN_EXACT_TICK. */ 6256 6257 static void 6258 prune_ready_list (state_t temp_state, bool first_cycle_insn_p, 6259 bool shadows_only_p, bool modulo_epilogue_p) 6260 { 6261 int i, pass; 6262 bool sched_group_found = false; 6263 int min_cost_group = 0; 6264 6265 if (sched_fusion) 6266 return; 6267 6268 for (i = 0; i < ready.n_ready; i++) 6269 { 6270 rtx_insn *insn = ready_element (&ready, i); 6271 if (SCHED_GROUP_P (insn)) 6272 { 6273 sched_group_found = true; 6274 break; 6275 } 6276 } 6277 6278 /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle 6279 such an insn first and note its cost. If at least one SCHED_GROUP_P insn 6280 gets queued, then all other insns get queued for one cycle later. */ 6281 for (pass = sched_group_found ? 0 : 1; pass < 2; ) 6282 { 6283 int n = ready.n_ready; 6284 for (i = 0; i < n; i++) 6285 { 6286 rtx_insn *insn = ready_element (&ready, i); 6287 int cost = 0; 6288 const char *reason = "resource conflict"; 6289 6290 if (DEBUG_INSN_P (insn)) 6291 continue; 6292 6293 if (sched_group_found && !SCHED_GROUP_P (insn) 6294 && ((pass == 0) || (min_cost_group >= 1))) 6295 { 6296 if (pass == 0) 6297 continue; 6298 cost = min_cost_group; 6299 reason = "not in sched group"; 6300 } 6301 else if (modulo_epilogue_p 6302 && INSN_EXACT_TICK (insn) == INVALID_TICK) 6303 { 6304 cost = max_insn_queue_index; 6305 reason = "not an epilogue insn"; 6306 } 6307 else if (shadows_only_p && !SHADOW_P (insn)) 6308 { 6309 cost = 1; 6310 reason = "not a shadow"; 6311 } 6312 else if (recog_memoized (insn) < 0) 6313 { 6314 if (!first_cycle_insn_p 6315 && (GET_CODE (PATTERN (insn)) == ASM_INPUT 6316 || asm_noperands (PATTERN (insn)) >= 0)) 6317 cost = 1; 6318 reason = "asm"; 6319 } 6320 else if (sched_pressure != SCHED_PRESSURE_NONE) 6321 { 6322 if (sched_pressure == SCHED_PRESSURE_MODEL 6323 && INSN_TICK (insn) <= clock_var) 6324 { 6325 memcpy (temp_state, curr_state, dfa_state_size); 6326 if (state_transition (temp_state, insn) >= 0) 6327 INSN_TICK (insn) = clock_var + 1; 6328 } 6329 cost = 0; 6330 } 6331 else 6332 { 6333 int delay_cost = 0; 6334 6335 if (delay_htab) 6336 { 6337 struct delay_pair *delay_entry; 6338 delay_entry 6339 = delay_htab->find_with_hash (insn, 6340 htab_hash_pointer (insn)); 6341 while (delay_entry && delay_cost == 0) 6342 { 6343 delay_cost = estimate_shadow_tick (delay_entry); 6344 if (delay_cost > max_insn_queue_index) 6345 delay_cost = max_insn_queue_index; 6346 delay_entry = delay_entry->next_same_i1; 6347 } 6348 } 6349 6350 memcpy (temp_state, curr_state, dfa_state_size); 6351 cost = state_transition (temp_state, insn); 6352 if (cost < 0) 6353 cost = 0; 6354 else if (cost == 0) 6355 cost = 1; 6356 if (cost < delay_cost) 6357 { 6358 cost = delay_cost; 6359 reason = "shadow tick"; 6360 } 6361 } 6362 if (cost >= 1) 6363 { 6364 if (SCHED_GROUP_P (insn) && cost > min_cost_group) 6365 min_cost_group = cost; 6366 ready_remove (&ready, i); 6367 /* Normally we'd want to queue INSN for COST cycles. However, 6368 if SCHED_GROUP_P is set, then we must ensure that nothing 6369 else comes between INSN and its predecessor. If there is 6370 some other insn ready to fire on the next cycle, then that 6371 invariant would be broken. 6372 6373 So when SCHED_GROUP_P is set, just queue this insn for a 6374 single cycle. */ 6375 queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason); 6376 if (i + 1 < n) 6377 break; 6378 } 6379 } 6380 if (i == n) 6381 pass++; 6382 } 6383 } 6384 6385 /* Called when we detect that the schedule is impossible. We examine the 6386 backtrack queue to find the earliest insn that caused this condition. */ 6387 6388 static struct haifa_saved_data * 6389 verify_shadows (void) 6390 { 6391 struct haifa_saved_data *save, *earliest_fail = NULL; 6392 for (save = backtrack_queue; save; save = save->next) 6393 { 6394 int t; 6395 struct delay_pair *pair = save->delay_pair; 6396 rtx_insn *i1 = pair->i1; 6397 6398 for (; pair; pair = pair->next_same_i1) 6399 { 6400 rtx_insn *i2 = pair->i2; 6401 6402 if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED) 6403 continue; 6404 6405 t = INSN_TICK (i1) + pair_delay (pair); 6406 if (t < clock_var) 6407 { 6408 if (sched_verbose >= 2) 6409 fprintf (sched_dump, 6410 ";;\t\tfailed delay requirements for %d/%d (%d->%d)" 6411 ", not ready\n", 6412 INSN_UID (pair->i1), INSN_UID (pair->i2), 6413 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2)); 6414 earliest_fail = save; 6415 break; 6416 } 6417 if (QUEUE_INDEX (i2) >= 0) 6418 { 6419 int queued_for = INSN_TICK (i2); 6420 6421 if (t < queued_for) 6422 { 6423 if (sched_verbose >= 2) 6424 fprintf (sched_dump, 6425 ";;\t\tfailed delay requirements for %d/%d" 6426 " (%d->%d), queued too late\n", 6427 INSN_UID (pair->i1), INSN_UID (pair->i2), 6428 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2)); 6429 earliest_fail = save; 6430 break; 6431 } 6432 } 6433 } 6434 } 6435 6436 return earliest_fail; 6437 } 6438 6439 /* Print instructions together with useful scheduling information between 6440 HEAD and TAIL (inclusive). */ 6441 static void 6442 dump_insn_stream (rtx_insn *head, rtx_insn *tail) 6443 { 6444 fprintf (sched_dump, ";;\t| insn | prio |\n"); 6445 6446 rtx_insn *next_tail = NEXT_INSN (tail); 6447 for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn)) 6448 { 6449 int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn); 6450 const char *pattern = (NOTE_P (insn) 6451 ? "note" 6452 : str_pattern_slim (PATTERN (insn))); 6453 6454 fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ", 6455 INSN_UID (insn), priority, pattern); 6456 6457 if (sched_verbose >= 4) 6458 { 6459 if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0) 6460 fprintf (sched_dump, "nothing"); 6461 else 6462 print_reservation (sched_dump, insn); 6463 } 6464 fprintf (sched_dump, "\n"); 6465 } 6466 } 6467 6468 /* Use forward list scheduling to rearrange insns of block pointed to by 6469 TARGET_BB, possibly bringing insns from subsequent blocks in the same 6470 region. */ 6471 6472 bool 6473 schedule_block (basic_block *target_bb, state_t init_state) 6474 { 6475 int i; 6476 bool success = modulo_ii == 0; 6477 struct sched_block_state ls; 6478 state_t temp_state = NULL; /* It is used for multipass scheduling. */ 6479 int sort_p, advance, start_clock_var; 6480 6481 /* Head/tail info for this block. */ 6482 rtx_insn *prev_head = current_sched_info->prev_head; 6483 rtx_insn *next_tail = current_sched_info->next_tail; 6484 rtx_insn *head = NEXT_INSN (prev_head); 6485 rtx_insn *tail = PREV_INSN (next_tail); 6486 6487 if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0 6488 && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion) 6489 find_modifiable_mems (head, tail); 6490 6491 /* We used to have code to avoid getting parameters moved from hard 6492 argument registers into pseudos. 6493 6494 However, it was removed when it proved to be of marginal benefit 6495 and caused problems because schedule_block and compute_forward_dependences 6496 had different notions of what the "head" insn was. */ 6497 6498 gcc_assert (head != tail || INSN_P (head)); 6499 6500 haifa_recovery_bb_recently_added_p = false; 6501 6502 backtrack_queue = NULL; 6503 6504 /* Debug info. */ 6505 if (sched_verbose) 6506 { 6507 dump_new_block_header (0, *target_bb, head, tail); 6508 6509 if (sched_verbose >= 2) 6510 { 6511 dump_insn_stream (head, tail); 6512 memset (&rank_for_schedule_stats, 0, 6513 sizeof (rank_for_schedule_stats)); 6514 } 6515 } 6516 6517 if (init_state == NULL) 6518 state_reset (curr_state); 6519 else 6520 memcpy (curr_state, init_state, dfa_state_size); 6521 6522 /* Clear the ready list. */ 6523 ready.first = ready.veclen - 1; 6524 ready.n_ready = 0; 6525 ready.n_debug = 0; 6526 6527 /* It is used for first cycle multipass scheduling. */ 6528 temp_state = alloca (dfa_state_size); 6529 6530 if (targetm.sched.init) 6531 targetm.sched.init (sched_dump, sched_verbose, ready.veclen); 6532 6533 /* We start inserting insns after PREV_HEAD. */ 6534 last_scheduled_insn = prev_head; 6535 last_nondebug_scheduled_insn = NULL; 6536 nonscheduled_insns_begin = NULL; 6537 6538 gcc_assert ((NOTE_P (last_scheduled_insn) 6539 || DEBUG_INSN_P (last_scheduled_insn)) 6540 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb); 6541 6542 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the 6543 queue. */ 6544 q_ptr = 0; 6545 q_size = 0; 6546 6547 insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1); 6548 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx)); 6549 6550 /* Start just before the beginning of time. */ 6551 clock_var = -1; 6552 6553 /* We need queue and ready lists and clock_var be initialized 6554 in try_ready () (which is called through init_ready_list ()). */ 6555 (*current_sched_info->init_ready_list) (); 6556 6557 if (sched_pressure) 6558 sched_pressure_start_bb (*target_bb); 6559 6560 /* The algorithm is O(n^2) in the number of ready insns at any given 6561 time in the worst case. Before reload we are more likely to have 6562 big lists so truncate them to a reasonable size. */ 6563 if (!reload_completed 6564 && ready.n_ready - ready.n_debug > param_max_sched_ready_insns) 6565 { 6566 ready_sort_debug (&ready); 6567 ready_sort_real (&ready); 6568 6569 /* Find first free-standing insn past param_max_sched_ready_insns. 6570 If there are debug insns, we know they're first. */ 6571 for (i = param_max_sched_ready_insns + ready.n_debug; i < ready.n_ready; 6572 i++) 6573 if (!SCHED_GROUP_P (ready_element (&ready, i))) 6574 break; 6575 6576 if (sched_verbose >= 2) 6577 { 6578 fprintf (sched_dump, 6579 ";;\t\tReady list on entry: %d insns: ", ready.n_ready); 6580 debug_ready_list (&ready); 6581 fprintf (sched_dump, 6582 ";;\t\t before reload => truncated to %d insns\n", i); 6583 } 6584 6585 /* Delay all insns past it for 1 cycle. If debug counter is 6586 activated make an exception for the insn right after 6587 nonscheduled_insns_begin. */ 6588 { 6589 rtx_insn *skip_insn; 6590 6591 if (dbg_cnt (sched_insn) == false) 6592 skip_insn = first_nonscheduled_insn (); 6593 else 6594 skip_insn = NULL; 6595 6596 while (i < ready.n_ready) 6597 { 6598 rtx_insn *insn; 6599 6600 insn = ready_remove (&ready, i); 6601 6602 if (insn != skip_insn) 6603 queue_insn (insn, 1, "list truncated"); 6604 } 6605 if (skip_insn) 6606 ready_add (&ready, skip_insn, true); 6607 } 6608 } 6609 6610 /* Now we can restore basic block notes and maintain precise cfg. */ 6611 restore_bb_notes (*target_bb); 6612 6613 last_clock_var = -1; 6614 6615 advance = 0; 6616 6617 gcc_assert (scheduled_insns.length () == 0); 6618 sort_p = TRUE; 6619 must_backtrack = false; 6620 modulo_insns_scheduled = 0; 6621 6622 ls.modulo_epilogue = false; 6623 ls.first_cycle_insn_p = true; 6624 6625 /* Loop until all the insns in BB are scheduled. */ 6626 while ((*current_sched_info->schedule_more_p) ()) 6627 { 6628 perform_replacements_new_cycle (); 6629 do 6630 { 6631 start_clock_var = clock_var; 6632 6633 clock_var++; 6634 6635 advance_one_cycle (); 6636 6637 /* Add to the ready list all pending insns that can be issued now. 6638 If there are no ready insns, increment clock until one 6639 is ready and add all pending insns at that point to the ready 6640 list. */ 6641 queue_to_ready (&ready); 6642 6643 gcc_assert (ready.n_ready); 6644 6645 if (sched_verbose >= 2) 6646 { 6647 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:"); 6648 debug_ready_list (&ready); 6649 } 6650 advance -= clock_var - start_clock_var; 6651 } 6652 while (advance > 0); 6653 6654 if (ls.modulo_epilogue) 6655 { 6656 int stage = clock_var / modulo_ii; 6657 if (stage > modulo_last_stage * 2 + 2) 6658 { 6659 if (sched_verbose >= 2) 6660 fprintf (sched_dump, 6661 ";;\t\tmodulo scheduled succeeded at II %d\n", 6662 modulo_ii); 6663 success = true; 6664 goto end_schedule; 6665 } 6666 } 6667 else if (modulo_ii > 0) 6668 { 6669 int stage = clock_var / modulo_ii; 6670 if (stage > modulo_max_stages) 6671 { 6672 if (sched_verbose >= 2) 6673 fprintf (sched_dump, 6674 ";;\t\tfailing schedule due to excessive stages\n"); 6675 goto end_schedule; 6676 } 6677 if (modulo_n_insns == modulo_insns_scheduled 6678 && stage > modulo_last_stage) 6679 { 6680 if (sched_verbose >= 2) 6681 fprintf (sched_dump, 6682 ";;\t\tfound kernel after %d stages, II %d\n", 6683 stage, modulo_ii); 6684 ls.modulo_epilogue = true; 6685 } 6686 } 6687 6688 prune_ready_list (temp_state, true, false, ls.modulo_epilogue); 6689 if (ready.n_ready == 0) 6690 continue; 6691 if (must_backtrack) 6692 goto do_backtrack; 6693 6694 ls.shadows_only_p = false; 6695 cycle_issued_insns = 0; 6696 ls.can_issue_more = issue_rate; 6697 for (;;) 6698 { 6699 rtx_insn *insn; 6700 int cost; 6701 bool asm_p; 6702 6703 if (sort_p && ready.n_ready > 0) 6704 { 6705 /* Sort the ready list based on priority. This must be 6706 done every iteration through the loop, as schedule_insn 6707 may have readied additional insns that will not be 6708 sorted correctly. */ 6709 ready_sort (&ready); 6710 6711 if (sched_verbose >= 2) 6712 { 6713 fprintf (sched_dump, 6714 ";;\t\tReady list after ready_sort: "); 6715 debug_ready_list (&ready); 6716 } 6717 } 6718 6719 /* We don't want md sched reorder to even see debug isns, so put 6720 them out right away. */ 6721 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)) 6722 && (*current_sched_info->schedule_more_p) ()) 6723 { 6724 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))) 6725 { 6726 rtx_insn *insn = ready_remove_first (&ready); 6727 gcc_assert (DEBUG_INSN_P (insn)); 6728 (*current_sched_info->begin_schedule_ready) (insn); 6729 scheduled_insns.safe_push (insn); 6730 last_scheduled_insn = insn; 6731 advance = schedule_insn (insn); 6732 gcc_assert (advance == 0); 6733 if (ready.n_ready > 0) 6734 ready_sort (&ready); 6735 } 6736 } 6737 6738 if (ls.first_cycle_insn_p && !ready.n_ready) 6739 break; 6740 6741 resume_after_backtrack: 6742 /* Allow the target to reorder the list, typically for 6743 better instruction bundling. */ 6744 if (sort_p 6745 && (ready.n_ready == 0 6746 || !SCHED_GROUP_P (ready_element (&ready, 0)))) 6747 { 6748 if (ls.first_cycle_insn_p && targetm.sched.reorder) 6749 ls.can_issue_more 6750 = targetm.sched.reorder (sched_dump, sched_verbose, 6751 ready_lastpos (&ready), 6752 &ready.n_ready, clock_var); 6753 else if (!ls.first_cycle_insn_p && targetm.sched.reorder2) 6754 ls.can_issue_more 6755 = targetm.sched.reorder2 (sched_dump, sched_verbose, 6756 ready.n_ready 6757 ? ready_lastpos (&ready) : NULL, 6758 &ready.n_ready, clock_var); 6759 } 6760 6761 restart_choose_ready: 6762 if (sched_verbose >= 2) 6763 { 6764 fprintf (sched_dump, ";;\tReady list (t = %3d): ", 6765 clock_var); 6766 debug_ready_list (&ready); 6767 if (sched_pressure == SCHED_PRESSURE_WEIGHTED) 6768 print_curr_reg_pressure (); 6769 } 6770 6771 if (ready.n_ready == 0 6772 && ls.can_issue_more 6773 && reload_completed) 6774 { 6775 /* Allow scheduling insns directly from the queue in case 6776 there's nothing better to do (ready list is empty) but 6777 there are still vacant dispatch slots in the current cycle. */ 6778 if (sched_verbose >= 6) 6779 fprintf (sched_dump,";;\t\tSecond chance\n"); 6780 memcpy (temp_state, curr_state, dfa_state_size); 6781 if (early_queue_to_ready (temp_state, &ready)) 6782 ready_sort (&ready); 6783 } 6784 6785 if (ready.n_ready == 0 6786 || !ls.can_issue_more 6787 || state_dead_lock_p (curr_state) 6788 || !(*current_sched_info->schedule_more_p) ()) 6789 break; 6790 6791 /* Select and remove the insn from the ready list. */ 6792 if (sort_p) 6793 { 6794 int res; 6795 6796 insn = NULL; 6797 res = choose_ready (&ready, ls.first_cycle_insn_p, &insn); 6798 6799 if (res < 0) 6800 /* Finish cycle. */ 6801 break; 6802 if (res > 0) 6803 goto restart_choose_ready; 6804 6805 gcc_assert (insn != NULL_RTX); 6806 } 6807 else 6808 insn = ready_remove_first (&ready); 6809 6810 if (sched_pressure != SCHED_PRESSURE_NONE 6811 && INSN_TICK (insn) > clock_var) 6812 { 6813 ready_add (&ready, insn, true); 6814 advance = 1; 6815 break; 6816 } 6817 6818 if (targetm.sched.dfa_new_cycle 6819 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, 6820 insn, last_clock_var, 6821 clock_var, &sort_p)) 6822 /* SORT_P is used by the target to override sorting 6823 of the ready list. This is needed when the target 6824 has modified its internal structures expecting that 6825 the insn will be issued next. As we need the insn 6826 to have the highest priority (so it will be returned by 6827 the ready_remove_first call above), we invoke 6828 ready_add (&ready, insn, true). 6829 But, still, there is one issue: INSN can be later 6830 discarded by scheduler's front end through 6831 current_sched_info->can_schedule_ready_p, hence, won't 6832 be issued next. */ 6833 { 6834 ready_add (&ready, insn, true); 6835 break; 6836 } 6837 6838 sort_p = TRUE; 6839 6840 if (current_sched_info->can_schedule_ready_p 6841 && ! (*current_sched_info->can_schedule_ready_p) (insn)) 6842 /* We normally get here only if we don't want to move 6843 insn from the split block. */ 6844 { 6845 TODO_SPEC (insn) = DEP_POSTPONED; 6846 goto restart_choose_ready; 6847 } 6848 6849 if (delay_htab) 6850 { 6851 /* If this insn is the first part of a delay-slot pair, record a 6852 backtrack point. */ 6853 struct delay_pair *delay_entry; 6854 delay_entry 6855 = delay_htab->find_with_hash (insn, htab_hash_pointer (insn)); 6856 if (delay_entry) 6857 { 6858 save_backtrack_point (delay_entry, ls); 6859 if (sched_verbose >= 2) 6860 fprintf (sched_dump, ";;\t\tsaving backtrack point\n"); 6861 } 6862 } 6863 6864 /* DECISION is made. */ 6865 6866 if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid) 6867 { 6868 modulo_insns_scheduled++; 6869 modulo_last_stage = clock_var / modulo_ii; 6870 } 6871 if (TODO_SPEC (insn) & SPECULATIVE) 6872 generate_recovery_code (insn); 6873 6874 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON)) 6875 targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW); 6876 6877 /* Update counters, etc in the scheduler's front end. */ 6878 (*current_sched_info->begin_schedule_ready) (insn); 6879 scheduled_insns.safe_push (insn); 6880 gcc_assert (NONDEBUG_INSN_P (insn)); 6881 last_nondebug_scheduled_insn = last_scheduled_insn = insn; 6882 6883 if (recog_memoized (insn) >= 0) 6884 { 6885 memcpy (temp_state, curr_state, dfa_state_size); 6886 cost = state_transition (curr_state, insn); 6887 if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion) 6888 gcc_assert (cost < 0); 6889 if (memcmp (temp_state, curr_state, dfa_state_size) != 0) 6890 cycle_issued_insns++; 6891 asm_p = false; 6892 } 6893 else 6894 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT 6895 || asm_noperands (PATTERN (insn)) >= 0); 6896 6897 if (targetm.sched.variable_issue) 6898 ls.can_issue_more = 6899 targetm.sched.variable_issue (sched_dump, sched_verbose, 6900 insn, ls.can_issue_more); 6901 /* A naked CLOBBER or USE generates no instruction, so do 6902 not count them against the issue rate. */ 6903 else if (GET_CODE (PATTERN (insn)) != USE 6904 && GET_CODE (PATTERN (insn)) != CLOBBER) 6905 ls.can_issue_more--; 6906 advance = schedule_insn (insn); 6907 6908 if (SHADOW_P (insn)) 6909 ls.shadows_only_p = true; 6910 6911 /* After issuing an asm insn we should start a new cycle. */ 6912 if (advance == 0 && asm_p) 6913 advance = 1; 6914 6915 if (must_backtrack) 6916 break; 6917 6918 if (advance != 0) 6919 break; 6920 6921 ls.first_cycle_insn_p = false; 6922 if (ready.n_ready > 0) 6923 prune_ready_list (temp_state, false, ls.shadows_only_p, 6924 ls.modulo_epilogue); 6925 } 6926 6927 do_backtrack: 6928 if (!must_backtrack) 6929 for (i = 0; i < ready.n_ready; i++) 6930 { 6931 rtx_insn *insn = ready_element (&ready, i); 6932 if (INSN_EXACT_TICK (insn) == clock_var) 6933 { 6934 must_backtrack = true; 6935 clock_var++; 6936 break; 6937 } 6938 } 6939 if (must_backtrack && modulo_ii > 0) 6940 { 6941 if (modulo_backtracks_left == 0) 6942 goto end_schedule; 6943 modulo_backtracks_left--; 6944 } 6945 while (must_backtrack) 6946 { 6947 struct haifa_saved_data *failed; 6948 rtx_insn *failed_insn; 6949 6950 must_backtrack = false; 6951 failed = verify_shadows (); 6952 gcc_assert (failed); 6953 6954 failed_insn = failed->delay_pair->i1; 6955 /* Clear these queues. */ 6956 perform_replacements_new_cycle (); 6957 toggle_cancelled_flags (false); 6958 unschedule_insns_until (failed_insn); 6959 while (failed != backtrack_queue) 6960 free_topmost_backtrack_point (true); 6961 restore_last_backtrack_point (&ls); 6962 if (sched_verbose >= 2) 6963 fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var); 6964 /* Delay by at least a cycle. This could cause additional 6965 backtracking. */ 6966 queue_insn (failed_insn, 1, "backtracked"); 6967 advance = 0; 6968 if (must_backtrack) 6969 continue; 6970 if (ready.n_ready > 0) 6971 goto resume_after_backtrack; 6972 else 6973 { 6974 if (clock_var == 0 && ls.first_cycle_insn_p) 6975 goto end_schedule; 6976 advance = 1; 6977 break; 6978 } 6979 } 6980 ls.first_cycle_insn_p = true; 6981 } 6982 if (ls.modulo_epilogue) 6983 success = true; 6984 end_schedule: 6985 if (!ls.first_cycle_insn_p || advance) 6986 advance_one_cycle (); 6987 perform_replacements_new_cycle (); 6988 if (modulo_ii > 0) 6989 { 6990 /* Once again, debug insn suckiness: they can be on the ready list 6991 even if they have unresolved dependencies. To make our view 6992 of the world consistent, remove such "ready" insns. */ 6993 restart_debug_insn_loop: 6994 for (i = ready.n_ready - 1; i >= 0; i--) 6995 { 6996 rtx_insn *x; 6997 6998 x = ready_element (&ready, i); 6999 if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL 7000 || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL) 7001 { 7002 ready_remove (&ready, i); 7003 goto restart_debug_insn_loop; 7004 } 7005 } 7006 for (i = ready.n_ready - 1; i >= 0; i--) 7007 { 7008 rtx_insn *x; 7009 7010 x = ready_element (&ready, i); 7011 resolve_dependencies (x); 7012 } 7013 for (i = 0; i <= max_insn_queue_index; i++) 7014 { 7015 rtx_insn_list *link; 7016 while ((link = insn_queue[i]) != NULL) 7017 { 7018 rtx_insn *x = link->insn (); 7019 insn_queue[i] = link->next (); 7020 QUEUE_INDEX (x) = QUEUE_NOWHERE; 7021 free_INSN_LIST_node (link); 7022 resolve_dependencies (x); 7023 } 7024 } 7025 } 7026 7027 if (!success) 7028 undo_all_replacements (); 7029 7030 /* Debug info. */ 7031 if (sched_verbose) 7032 { 7033 fprintf (sched_dump, ";;\tReady list (final): "); 7034 debug_ready_list (&ready); 7035 } 7036 7037 if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty) 7038 /* Sanity check -- queue must be empty now. Meaningless if region has 7039 multiple bbs. */ 7040 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug); 7041 else if (modulo_ii == 0) 7042 { 7043 /* We must maintain QUEUE_INDEX between blocks in region. */ 7044 for (i = ready.n_ready - 1; i >= 0; i--) 7045 { 7046 rtx_insn *x; 7047 7048 x = ready_element (&ready, i); 7049 QUEUE_INDEX (x) = QUEUE_NOWHERE; 7050 TODO_SPEC (x) = HARD_DEP; 7051 } 7052 7053 if (q_size) 7054 for (i = 0; i <= max_insn_queue_index; i++) 7055 { 7056 rtx_insn_list *link; 7057 for (link = insn_queue[i]; link; link = link->next ()) 7058 { 7059 rtx_insn *x; 7060 7061 x = link->insn (); 7062 QUEUE_INDEX (x) = QUEUE_NOWHERE; 7063 TODO_SPEC (x) = HARD_DEP; 7064 } 7065 free_INSN_LIST_list (&insn_queue[i]); 7066 } 7067 } 7068 7069 if (sched_pressure == SCHED_PRESSURE_MODEL) 7070 model_end_schedule (); 7071 7072 if (success) 7073 { 7074 commit_schedule (prev_head, tail, target_bb); 7075 if (sched_verbose) 7076 fprintf (sched_dump, ";; total time = %d\n", clock_var); 7077 } 7078 else 7079 last_scheduled_insn = tail; 7080 7081 scheduled_insns.truncate (0); 7082 7083 if (!current_sched_info->queue_must_finish_empty 7084 || haifa_recovery_bb_recently_added_p) 7085 { 7086 /* INSN_TICK (minimum clock tick at which the insn becomes 7087 ready) may be not correct for the insn in the subsequent 7088 blocks of the region. We should use a correct value of 7089 `clock_var' or modify INSN_TICK. It is better to keep 7090 clock_var value equal to 0 at the start of a basic block. 7091 Therefore we modify INSN_TICK here. */ 7092 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn); 7093 } 7094 7095 if (targetm.sched.finish) 7096 { 7097 targetm.sched.finish (sched_dump, sched_verbose); 7098 /* Target might have added some instructions to the scheduled block 7099 in its md_finish () hook. These new insns don't have any data 7100 initialized and to identify them we extend h_i_d so that they'll 7101 get zero luids. */ 7102 sched_extend_luids (); 7103 } 7104 7105 /* Update head/tail boundaries. */ 7106 head = NEXT_INSN (prev_head); 7107 tail = last_scheduled_insn; 7108 7109 if (sched_verbose) 7110 { 7111 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n", 7112 INSN_UID (head), INSN_UID (tail)); 7113 7114 if (sched_verbose >= 2) 7115 { 7116 dump_insn_stream (head, tail); 7117 print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats, 7118 NULL); 7119 } 7120 7121 fprintf (sched_dump, "\n"); 7122 } 7123 7124 head = restore_other_notes (head, NULL); 7125 7126 current_sched_info->head = head; 7127 current_sched_info->tail = tail; 7128 7129 free_backtrack_queue (); 7130 7131 return success; 7132 } 7133 7134 /* Set_priorities: compute priority of each insn in the block. */ 7135 7136 int 7137 set_priorities (rtx_insn *head, rtx_insn *tail) 7138 { 7139 rtx_insn *insn; 7140 int n_insn; 7141 int sched_max_insns_priority = 7142 current_sched_info->sched_max_insns_priority; 7143 rtx_insn *prev_head; 7144 7145 if (head == tail && ! INSN_P (head)) 7146 gcc_unreachable (); 7147 7148 n_insn = 0; 7149 7150 prev_head = PREV_INSN (head); 7151 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn)) 7152 { 7153 if (!INSN_P (insn)) 7154 continue; 7155 7156 n_insn++; 7157 (void) priority (insn); 7158 7159 gcc_assert (INSN_PRIORITY_KNOWN (insn)); 7160 7161 sched_max_insns_priority = MAX (sched_max_insns_priority, 7162 INSN_PRIORITY (insn)); 7163 } 7164 7165 current_sched_info->sched_max_insns_priority = sched_max_insns_priority; 7166 7167 return n_insn; 7168 } 7169 7170 /* Set sched_dump and sched_verbose for the desired debugging output. */ 7171 void 7172 setup_sched_dump (void) 7173 { 7174 sched_verbose = sched_verbose_param; 7175 sched_dump = dump_file; 7176 if (!dump_file) 7177 sched_verbose = 0; 7178 } 7179 7180 /* Allocate data for register pressure sensitive scheduling. */ 7181 static void 7182 alloc_global_sched_pressure_data (void) 7183 { 7184 if (sched_pressure != SCHED_PRESSURE_NONE) 7185 { 7186 int i, max_regno = max_reg_num (); 7187 7188 if (sched_dump != NULL) 7189 /* We need info about pseudos for rtl dumps about pseudo 7190 classes and costs. */ 7191 regstat_init_n_sets_and_refs (); 7192 ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL); 7193 sched_regno_pressure_class 7194 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class)); 7195 for (i = 0; i < max_regno; i++) 7196 sched_regno_pressure_class[i] 7197 = (i < FIRST_PSEUDO_REGISTER 7198 ? ira_pressure_class_translate[REGNO_REG_CLASS (i)] 7199 : ira_pressure_class_translate[reg_allocno_class (i)]); 7200 curr_reg_live = BITMAP_ALLOC (NULL); 7201 if (sched_pressure == SCHED_PRESSURE_WEIGHTED) 7202 { 7203 saved_reg_live = BITMAP_ALLOC (NULL); 7204 region_ref_regs = BITMAP_ALLOC (NULL); 7205 } 7206 if (sched_pressure == SCHED_PRESSURE_MODEL) 7207 tmp_bitmap = BITMAP_ALLOC (NULL); 7208 7209 /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes 7210 that we calculate register pressure for. */ 7211 for (int c = 0; c < ira_pressure_classes_num; ++c) 7212 { 7213 enum reg_class cl = ira_pressure_classes[c]; 7214 7215 call_saved_regs_num[cl] = 0; 7216 fixed_regs_num[cl] = 0; 7217 7218 for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i) 7219 { 7220 unsigned int regno = ira_class_hard_regs[cl][i]; 7221 if (fixed_regs[regno]) 7222 ++fixed_regs_num[cl]; 7223 else if (!crtl->abi->clobbers_full_reg_p (regno)) 7224 ++call_saved_regs_num[cl]; 7225 } 7226 } 7227 } 7228 } 7229 7230 /* Free data for register pressure sensitive scheduling. Also called 7231 from schedule_region when stopping sched-pressure early. */ 7232 void 7233 free_global_sched_pressure_data (void) 7234 { 7235 if (sched_pressure != SCHED_PRESSURE_NONE) 7236 { 7237 if (regstat_n_sets_and_refs != NULL) 7238 regstat_free_n_sets_and_refs (); 7239 if (sched_pressure == SCHED_PRESSURE_WEIGHTED) 7240 { 7241 BITMAP_FREE (region_ref_regs); 7242 BITMAP_FREE (saved_reg_live); 7243 } 7244 if (sched_pressure == SCHED_PRESSURE_MODEL) 7245 BITMAP_FREE (tmp_bitmap); 7246 BITMAP_FREE (curr_reg_live); 7247 free (sched_regno_pressure_class); 7248 } 7249 } 7250 7251 /* Initialize some global state for the scheduler. This function works 7252 with the common data shared between all the schedulers. It is called 7253 from the scheduler specific initialization routine. */ 7254 7255 void 7256 sched_init (void) 7257 { 7258 /* Disable speculative loads in their presence if cc0 defined. */ 7259 if (HAVE_cc0) 7260 flag_schedule_speculative_load = 0; 7261 7262 if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON)) 7263 targetm.sched.dispatch_do (NULL, DISPATCH_INIT); 7264 7265 if (live_range_shrinkage_p) 7266 sched_pressure = SCHED_PRESSURE_WEIGHTED; 7267 else if (flag_sched_pressure 7268 && !reload_completed 7269 && common_sched_info->sched_pass_id == SCHED_RGN_PASS) 7270 sched_pressure = ((enum sched_pressure_algorithm) 7271 param_sched_pressure_algorithm); 7272 else 7273 sched_pressure = SCHED_PRESSURE_NONE; 7274 7275 if (sched_pressure != SCHED_PRESSURE_NONE) 7276 ira_setup_eliminable_regset (); 7277 7278 /* Initialize SPEC_INFO. */ 7279 if (targetm.sched.set_sched_flags) 7280 { 7281 spec_info = &spec_info_var; 7282 targetm.sched.set_sched_flags (spec_info); 7283 7284 if (spec_info->mask != 0) 7285 { 7286 spec_info->data_weakness_cutoff 7287 = (param_sched_spec_prob_cutoff * MAX_DEP_WEAK) / 100; 7288 spec_info->control_weakness_cutoff 7289 = (param_sched_spec_prob_cutoff * REG_BR_PROB_BASE) / 100; 7290 } 7291 else 7292 /* So we won't read anything accidentally. */ 7293 spec_info = NULL; 7294 7295 } 7296 else 7297 /* So we won't read anything accidentally. */ 7298 spec_info = 0; 7299 7300 /* Initialize issue_rate. */ 7301 if (targetm.sched.issue_rate) 7302 issue_rate = targetm.sched.issue_rate (); 7303 else 7304 issue_rate = 1; 7305 7306 if (targetm.sched.first_cycle_multipass_dfa_lookahead 7307 /* Don't use max_issue with reg_pressure scheduling. Multipass 7308 scheduling and reg_pressure scheduling undo each other's decisions. */ 7309 && sched_pressure == SCHED_PRESSURE_NONE) 7310 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead (); 7311 else 7312 dfa_lookahead = 0; 7313 7314 /* Set to "0" so that we recalculate. */ 7315 max_lookahead_tries = 0; 7316 7317 if (targetm.sched.init_dfa_pre_cycle_insn) 7318 targetm.sched.init_dfa_pre_cycle_insn (); 7319 7320 if (targetm.sched.init_dfa_post_cycle_insn) 7321 targetm.sched.init_dfa_post_cycle_insn (); 7322 7323 dfa_start (); 7324 dfa_state_size = state_size (); 7325 7326 init_alias_analysis (); 7327 7328 if (!sched_no_dce) 7329 df_set_flags (DF_LR_RUN_DCE); 7330 df_note_add_problem (); 7331 7332 /* More problems needed for interloop dep calculation in SMS. */ 7333 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS) 7334 { 7335 df_rd_add_problem (); 7336 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN); 7337 } 7338 7339 df_analyze (); 7340 7341 /* Do not run DCE after reload, as this can kill nops inserted 7342 by bundling. */ 7343 if (reload_completed) 7344 df_clear_flags (DF_LR_RUN_DCE); 7345 7346 regstat_compute_calls_crossed (); 7347 7348 if (targetm.sched.init_global) 7349 targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1); 7350 7351 alloc_global_sched_pressure_data (); 7352 7353 curr_state = xmalloc (dfa_state_size); 7354 } 7355 7356 static void haifa_init_only_bb (basic_block, basic_block); 7357 7358 /* Initialize data structures specific to the Haifa scheduler. */ 7359 void 7360 haifa_sched_init (void) 7361 { 7362 setup_sched_dump (); 7363 sched_init (); 7364 7365 scheduled_insns.create (0); 7366 7367 if (spec_info != NULL) 7368 { 7369 sched_deps_info->use_deps_list = 1; 7370 sched_deps_info->generate_spec_deps = 1; 7371 } 7372 7373 /* Initialize luids, dependency caches, target and h_i_d for the 7374 whole function. */ 7375 { 7376 sched_init_bbs (); 7377 7378 auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun)); 7379 basic_block bb; 7380 FOR_EACH_BB_FN (bb, cfun) 7381 bbs.quick_push (bb); 7382 sched_init_luids (bbs); 7383 sched_deps_init (true); 7384 sched_extend_target (); 7385 haifa_init_h_i_d (bbs); 7386 } 7387 7388 sched_init_only_bb = haifa_init_only_bb; 7389 sched_split_block = sched_split_block_1; 7390 sched_create_empty_bb = sched_create_empty_bb_1; 7391 haifa_recovery_bb_ever_added_p = false; 7392 7393 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0; 7394 before_recovery = 0; 7395 after_recovery = 0; 7396 7397 modulo_ii = 0; 7398 } 7399 7400 /* Finish work with the data specific to the Haifa scheduler. */ 7401 void 7402 haifa_sched_finish (void) 7403 { 7404 sched_create_empty_bb = NULL; 7405 sched_split_block = NULL; 7406 sched_init_only_bb = NULL; 7407 7408 if (spec_info && spec_info->dump) 7409 { 7410 char c = reload_completed ? 'a' : 'b'; 7411 7412 fprintf (spec_info->dump, 7413 ";; %s:\n", current_function_name ()); 7414 7415 fprintf (spec_info->dump, 7416 ";; Procedure %cr-begin-data-spec motions == %d\n", 7417 c, nr_begin_data); 7418 fprintf (spec_info->dump, 7419 ";; Procedure %cr-be-in-data-spec motions == %d\n", 7420 c, nr_be_in_data); 7421 fprintf (spec_info->dump, 7422 ";; Procedure %cr-begin-control-spec motions == %d\n", 7423 c, nr_begin_control); 7424 fprintf (spec_info->dump, 7425 ";; Procedure %cr-be-in-control-spec motions == %d\n", 7426 c, nr_be_in_control); 7427 } 7428 7429 scheduled_insns.release (); 7430 7431 /* Finalize h_i_d, dependency caches, and luids for the whole 7432 function. Target will be finalized in md_global_finish (). */ 7433 sched_deps_finish (); 7434 sched_finish_luids (); 7435 current_sched_info = NULL; 7436 insn_queue = NULL; 7437 sched_finish (); 7438 } 7439 7440 /* Free global data used during insn scheduling. This function works with 7441 the common data shared between the schedulers. */ 7442 7443 void 7444 sched_finish (void) 7445 { 7446 haifa_finish_h_i_d (); 7447 free_global_sched_pressure_data (); 7448 free (curr_state); 7449 7450 if (targetm.sched.finish_global) 7451 targetm.sched.finish_global (sched_dump, sched_verbose); 7452 7453 end_alias_analysis (); 7454 7455 regstat_free_calls_crossed (); 7456 7457 dfa_finish (); 7458 } 7459 7460 /* Free all delay_pair structures that were recorded. */ 7461 void 7462 free_delay_pairs (void) 7463 { 7464 if (delay_htab) 7465 { 7466 delay_htab->empty (); 7467 delay_htab_i2->empty (); 7468 } 7469 } 7470 7471 /* Fix INSN_TICKs of the instructions in the current block as well as 7472 INSN_TICKs of their dependents. 7473 HEAD and TAIL are the begin and the end of the current scheduled block. */ 7474 static void 7475 fix_inter_tick (rtx_insn *head, rtx_insn *tail) 7476 { 7477 /* Set of instructions with corrected INSN_TICK. */ 7478 auto_bitmap processed; 7479 /* ??? It is doubtful if we should assume that cycle advance happens on 7480 basic block boundaries. Basically insns that are unconditionally ready 7481 on the start of the block are more preferable then those which have 7482 a one cycle dependency over insn from the previous block. */ 7483 int next_clock = clock_var + 1; 7484 7485 /* Iterates over scheduled instructions and fix their INSN_TICKs and 7486 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent 7487 across different blocks. */ 7488 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head)) 7489 { 7490 if (INSN_P (head)) 7491 { 7492 int tick; 7493 sd_iterator_def sd_it; 7494 dep_t dep; 7495 7496 tick = INSN_TICK (head); 7497 gcc_assert (tick >= MIN_TICK); 7498 7499 /* Fix INSN_TICK of instruction from just scheduled block. */ 7500 if (bitmap_set_bit (processed, INSN_LUID (head))) 7501 { 7502 tick -= next_clock; 7503 7504 if (tick < MIN_TICK) 7505 tick = MIN_TICK; 7506 7507 INSN_TICK (head) = tick; 7508 } 7509 7510 if (DEBUG_INSN_P (head)) 7511 continue; 7512 7513 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep) 7514 { 7515 rtx_insn *next; 7516 7517 next = DEP_CON (dep); 7518 tick = INSN_TICK (next); 7519 7520 if (tick != INVALID_TICK 7521 /* If NEXT has its INSN_TICK calculated, fix it. 7522 If not - it will be properly calculated from 7523 scratch later in fix_tick_ready. */ 7524 && bitmap_set_bit (processed, INSN_LUID (next))) 7525 { 7526 tick -= next_clock; 7527 7528 if (tick < MIN_TICK) 7529 tick = MIN_TICK; 7530 7531 if (tick > INTER_TICK (next)) 7532 INTER_TICK (next) = tick; 7533 else 7534 tick = INTER_TICK (next); 7535 7536 INSN_TICK (next) = tick; 7537 } 7538 } 7539 } 7540 } 7541 } 7542 7543 /* Check if NEXT is ready to be added to the ready or queue list. 7544 If "yes", add it to the proper list. 7545 Returns: 7546 -1 - is not ready yet, 7547 0 - added to the ready list, 7548 0 < N - queued for N cycles. */ 7549 int 7550 try_ready (rtx_insn *next) 7551 { 7552 ds_t old_ts, new_ts; 7553 7554 old_ts = TODO_SPEC (next); 7555 7556 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED)) 7557 && (old_ts == HARD_DEP 7558 || old_ts == DEP_POSTPONED 7559 || (old_ts & SPECULATIVE) 7560 || old_ts == DEP_CONTROL)); 7561 7562 new_ts = recompute_todo_spec (next, false); 7563 7564 if (new_ts & (HARD_DEP | DEP_POSTPONED)) 7565 gcc_assert (new_ts == old_ts 7566 && QUEUE_INDEX (next) == QUEUE_NOWHERE); 7567 else if (current_sched_info->new_ready) 7568 new_ts = current_sched_info->new_ready (next, new_ts); 7569 7570 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might 7571 have its original pattern or changed (speculative) one. This is due 7572 to changing ebb in region scheduling. 7573 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn 7574 has speculative pattern. 7575 7576 We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because 7577 control-speculative NEXT could have been discarded by sched-rgn.c 7578 (the same case as when discarded by can_schedule_ready_p ()). */ 7579 7580 if ((new_ts & SPECULATIVE) 7581 /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't 7582 need to change anything. */ 7583 && new_ts != old_ts) 7584 { 7585 int res; 7586 rtx new_pat; 7587 7588 gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE)); 7589 7590 res = haifa_speculate_insn (next, new_ts, &new_pat); 7591 7592 switch (res) 7593 { 7594 case -1: 7595 /* It would be nice to change DEP_STATUS of all dependences, 7596 which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP, 7597 so we won't reanalyze anything. */ 7598 new_ts = HARD_DEP; 7599 break; 7600 7601 case 0: 7602 /* We follow the rule, that every speculative insn 7603 has non-null ORIG_PAT. */ 7604 if (!ORIG_PAT (next)) 7605 ORIG_PAT (next) = PATTERN (next); 7606 break; 7607 7608 case 1: 7609 if (!ORIG_PAT (next)) 7610 /* If we gonna to overwrite the original pattern of insn, 7611 save it. */ 7612 ORIG_PAT (next) = PATTERN (next); 7613 7614 res = haifa_change_pattern (next, new_pat); 7615 gcc_assert (res); 7616 break; 7617 7618 default: 7619 gcc_unreachable (); 7620 } 7621 } 7622 7623 /* We need to restore pattern only if (new_ts == 0), because otherwise it is 7624 either correct (new_ts & SPECULATIVE), 7625 or we simply don't care (new_ts & HARD_DEP). */ 7626 7627 gcc_assert (!ORIG_PAT (next) 7628 || !IS_SPECULATION_BRANCHY_CHECK_P (next)); 7629 7630 TODO_SPEC (next) = new_ts; 7631 7632 if (new_ts & (HARD_DEP | DEP_POSTPONED)) 7633 { 7634 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because 7635 control-speculative NEXT could have been discarded by sched-rgn.c 7636 (the same case as when discarded by can_schedule_ready_p ()). */ 7637 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/ 7638 7639 change_queue_index (next, QUEUE_NOWHERE); 7640 7641 return -1; 7642 } 7643 else if (!(new_ts & BEGIN_SPEC) 7644 && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX 7645 && !IS_SPECULATION_CHECK_P (next)) 7646 /* We should change pattern of every previously speculative 7647 instruction - and we determine if NEXT was speculative by using 7648 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT 7649 pat too, so skip them. */ 7650 { 7651 bool success = haifa_change_pattern (next, ORIG_PAT (next)); 7652 gcc_assert (success); 7653 ORIG_PAT (next) = 0; 7654 } 7655 7656 if (sched_verbose >= 2) 7657 { 7658 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s", 7659 (*current_sched_info->print_insn) (next, 0)); 7660 7661 if (spec_info && spec_info->dump) 7662 { 7663 if (new_ts & BEGIN_DATA) 7664 fprintf (spec_info->dump, "; data-spec;"); 7665 if (new_ts & BEGIN_CONTROL) 7666 fprintf (spec_info->dump, "; control-spec;"); 7667 if (new_ts & BE_IN_CONTROL) 7668 fprintf (spec_info->dump, "; in-control-spec;"); 7669 } 7670 if (TODO_SPEC (next) & DEP_CONTROL) 7671 fprintf (sched_dump, " predicated"); 7672 fprintf (sched_dump, "\n"); 7673 } 7674 7675 adjust_priority (next); 7676 7677 return fix_tick_ready (next); 7678 } 7679 7680 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */ 7681 static int 7682 fix_tick_ready (rtx_insn *next) 7683 { 7684 int tick, delay; 7685 7686 if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK)) 7687 { 7688 int full_p; 7689 sd_iterator_def sd_it; 7690 dep_t dep; 7691 7692 tick = INSN_TICK (next); 7693 /* if tick is not equal to INVALID_TICK, then update 7694 INSN_TICK of NEXT with the most recent resolved dependence 7695 cost. Otherwise, recalculate from scratch. */ 7696 full_p = (tick == INVALID_TICK); 7697 7698 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep) 7699 { 7700 rtx_insn *pro = DEP_PRO (dep); 7701 int tick1; 7702 7703 gcc_assert (INSN_TICK (pro) >= MIN_TICK); 7704 7705 tick1 = INSN_TICK (pro) + dep_cost (dep); 7706 if (tick1 > tick) 7707 tick = tick1; 7708 7709 if (!full_p) 7710 break; 7711 } 7712 } 7713 else 7714 tick = -1; 7715 7716 INSN_TICK (next) = tick; 7717 7718 delay = tick - clock_var; 7719 if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion) 7720 delay = QUEUE_READY; 7721 7722 change_queue_index (next, delay); 7723 7724 return delay; 7725 } 7726 7727 /* Move NEXT to the proper queue list with (DELAY >= 1), 7728 or add it to the ready list (DELAY == QUEUE_READY), 7729 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */ 7730 static void 7731 change_queue_index (rtx_insn *next, int delay) 7732 { 7733 int i = QUEUE_INDEX (next); 7734 7735 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index 7736 && delay != 0); 7737 gcc_assert (i != QUEUE_SCHEDULED); 7738 7739 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i) 7740 || (delay < 0 && delay == i)) 7741 /* We have nothing to do. */ 7742 return; 7743 7744 /* Remove NEXT from wherever it is now. */ 7745 if (i == QUEUE_READY) 7746 ready_remove_insn (next); 7747 else if (i >= 0) 7748 queue_remove (next); 7749 7750 /* Add it to the proper place. */ 7751 if (delay == QUEUE_READY) 7752 ready_add (readyp, next, false); 7753 else if (delay >= 1) 7754 queue_insn (next, delay, "change queue index"); 7755 7756 if (sched_verbose >= 2) 7757 { 7758 fprintf (sched_dump, ";;\t\ttick updated: insn %s", 7759 (*current_sched_info->print_insn) (next, 0)); 7760 7761 if (delay == QUEUE_READY) 7762 fprintf (sched_dump, " into ready\n"); 7763 else if (delay >= 1) 7764 fprintf (sched_dump, " into queue with cost=%d\n", delay); 7765 else 7766 fprintf (sched_dump, " removed from ready or queue lists\n"); 7767 } 7768 } 7769 7770 static int sched_ready_n_insns = -1; 7771 7772 /* Initialize per region data structures. */ 7773 void 7774 sched_extend_ready_list (int new_sched_ready_n_insns) 7775 { 7776 int i; 7777 7778 if (sched_ready_n_insns == -1) 7779 /* At the first call we need to initialize one more choice_stack 7780 entry. */ 7781 { 7782 i = 0; 7783 sched_ready_n_insns = 0; 7784 scheduled_insns.reserve (new_sched_ready_n_insns); 7785 } 7786 else 7787 i = sched_ready_n_insns + 1; 7788 7789 ready.veclen = new_sched_ready_n_insns + issue_rate; 7790 ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen); 7791 7792 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns); 7793 7794 ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns, 7795 sched_ready_n_insns, 7796 sizeof (*ready_try)); 7797 7798 /* We allocate +1 element to save initial state in the choice_stack[0] 7799 entry. */ 7800 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack, 7801 new_sched_ready_n_insns + 1); 7802 7803 for (; i <= new_sched_ready_n_insns; i++) 7804 { 7805 choice_stack[i].state = xmalloc (dfa_state_size); 7806 7807 if (targetm.sched.first_cycle_multipass_init) 7808 targetm.sched.first_cycle_multipass_init (&(choice_stack[i] 7809 .target_data)); 7810 } 7811 7812 sched_ready_n_insns = new_sched_ready_n_insns; 7813 } 7814 7815 /* Free per region data structures. */ 7816 void 7817 sched_finish_ready_list (void) 7818 { 7819 int i; 7820 7821 free (ready.vec); 7822 ready.vec = NULL; 7823 ready.veclen = 0; 7824 7825 free (ready_try); 7826 ready_try = NULL; 7827 7828 for (i = 0; i <= sched_ready_n_insns; i++) 7829 { 7830 if (targetm.sched.first_cycle_multipass_fini) 7831 targetm.sched.first_cycle_multipass_fini (&(choice_stack[i] 7832 .target_data)); 7833 7834 free (choice_stack [i].state); 7835 } 7836 free (choice_stack); 7837 choice_stack = NULL; 7838 7839 sched_ready_n_insns = -1; 7840 } 7841 7842 static int 7843 haifa_luid_for_non_insn (rtx x) 7844 { 7845 gcc_assert (NOTE_P (x) || LABEL_P (x)); 7846 7847 return 0; 7848 } 7849 7850 /* Generates recovery code for INSN. */ 7851 static void 7852 generate_recovery_code (rtx_insn *insn) 7853 { 7854 if (TODO_SPEC (insn) & BEGIN_SPEC) 7855 begin_speculative_block (insn); 7856 7857 /* Here we have insn with no dependencies to 7858 instructions other then CHECK_SPEC ones. */ 7859 7860 if (TODO_SPEC (insn) & BE_IN_SPEC) 7861 add_to_speculative_block (insn); 7862 } 7863 7864 /* Helper function. 7865 Tries to add speculative dependencies of type FS between instructions 7866 in deps_list L and TWIN. */ 7867 static void 7868 process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs) 7869 { 7870 sd_iterator_def sd_it; 7871 dep_t dep; 7872 7873 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep) 7874 { 7875 ds_t ds; 7876 rtx_insn *consumer; 7877 7878 consumer = DEP_CON (dep); 7879 7880 ds = DEP_STATUS (dep); 7881 7882 if (/* If we want to create speculative dep. */ 7883 fs 7884 /* And we can do that because this is a true dep. */ 7885 && (ds & DEP_TYPES) == DEP_TRUE) 7886 { 7887 gcc_assert (!(ds & BE_IN_SPEC)); 7888 7889 if (/* If this dep can be overcome with 'begin speculation'. */ 7890 ds & BEGIN_SPEC) 7891 /* Then we have a choice: keep the dep 'begin speculative' 7892 or transform it into 'be in speculative'. */ 7893 { 7894 if (/* In try_ready we assert that if insn once became ready 7895 it can be removed from the ready (or queue) list only 7896 due to backend decision. Hence we can't let the 7897 probability of the speculative dep to decrease. */ 7898 ds_weak (ds) <= ds_weak (fs)) 7899 { 7900 ds_t new_ds; 7901 7902 new_ds = (ds & ~BEGIN_SPEC) | fs; 7903 7904 if (/* consumer can 'be in speculative'. */ 7905 sched_insn_is_legitimate_for_speculation_p (consumer, 7906 new_ds)) 7907 /* Transform it to be in speculative. */ 7908 ds = new_ds; 7909 } 7910 } 7911 else 7912 /* Mark the dep as 'be in speculative'. */ 7913 ds |= fs; 7914 } 7915 7916 { 7917 dep_def _new_dep, *new_dep = &_new_dep; 7918 7919 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds); 7920 sd_add_dep (new_dep, false); 7921 } 7922 } 7923 } 7924 7925 /* Generates recovery code for BEGIN speculative INSN. */ 7926 static void 7927 begin_speculative_block (rtx_insn *insn) 7928 { 7929 if (TODO_SPEC (insn) & BEGIN_DATA) 7930 nr_begin_data++; 7931 if (TODO_SPEC (insn) & BEGIN_CONTROL) 7932 nr_begin_control++; 7933 7934 create_check_block_twin (insn, false); 7935 7936 TODO_SPEC (insn) &= ~BEGIN_SPEC; 7937 } 7938 7939 static void haifa_init_insn (rtx_insn *); 7940 7941 /* Generates recovery code for BE_IN speculative INSN. */ 7942 static void 7943 add_to_speculative_block (rtx_insn *insn) 7944 { 7945 ds_t ts; 7946 sd_iterator_def sd_it; 7947 dep_t dep; 7948 auto_vec<rtx_insn *, 10> twins; 7949 7950 ts = TODO_SPEC (insn); 7951 gcc_assert (!(ts & ~BE_IN_SPEC)); 7952 7953 if (ts & BE_IN_DATA) 7954 nr_be_in_data++; 7955 if (ts & BE_IN_CONTROL) 7956 nr_be_in_control++; 7957 7958 TODO_SPEC (insn) &= ~BE_IN_SPEC; 7959 gcc_assert (!TODO_SPEC (insn)); 7960 7961 DONE_SPEC (insn) |= ts; 7962 7963 /* First we convert all simple checks to branchy. */ 7964 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK); 7965 sd_iterator_cond (&sd_it, &dep);) 7966 { 7967 rtx_insn *check = DEP_PRO (dep); 7968 7969 if (IS_SPECULATION_SIMPLE_CHECK_P (check)) 7970 { 7971 create_check_block_twin (check, true); 7972 7973 /* Restart search. */ 7974 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK); 7975 } 7976 else 7977 /* Continue search. */ 7978 sd_iterator_next (&sd_it); 7979 } 7980 7981 auto_vec<rtx_insn *> priorities_roots; 7982 clear_priorities (insn, &priorities_roots); 7983 7984 while (1) 7985 { 7986 rtx_insn *check, *twin; 7987 basic_block rec; 7988 7989 /* Get the first backward dependency of INSN. */ 7990 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK); 7991 if (!sd_iterator_cond (&sd_it, &dep)) 7992 /* INSN has no backward dependencies left. */ 7993 break; 7994 7995 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0 7996 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0 7997 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE); 7998 7999 check = DEP_PRO (dep); 8000 8001 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check) 8002 && QUEUE_INDEX (check) == QUEUE_NOWHERE); 8003 8004 rec = BLOCK_FOR_INSN (check); 8005 8006 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec)); 8007 haifa_init_insn (twin); 8008 8009 sd_copy_back_deps (twin, insn, true); 8010 8011 if (sched_verbose && spec_info->dump) 8012 /* INSN_BB (insn) isn't determined for twin insns yet. 8013 So we can't use current_sched_info->print_insn. */ 8014 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n", 8015 INSN_UID (twin), rec->index); 8016 8017 twins.safe_push (twin); 8018 8019 /* Add dependences between TWIN and all appropriate 8020 instructions from REC. */ 8021 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep) 8022 { 8023 rtx_insn *pro = DEP_PRO (dep); 8024 8025 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE); 8026 8027 /* INSN might have dependencies from the instructions from 8028 several recovery blocks. At this iteration we process those 8029 producers that reside in REC. */ 8030 if (BLOCK_FOR_INSN (pro) == rec) 8031 { 8032 dep_def _new_dep, *new_dep = &_new_dep; 8033 8034 init_dep (new_dep, pro, twin, REG_DEP_TRUE); 8035 sd_add_dep (new_dep, false); 8036 } 8037 } 8038 8039 process_insn_forw_deps_be_in_spec (insn, twin, ts); 8040 8041 /* Remove all dependencies between INSN and insns in REC. */ 8042 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK); 8043 sd_iterator_cond (&sd_it, &dep);) 8044 { 8045 rtx_insn *pro = DEP_PRO (dep); 8046 8047 if (BLOCK_FOR_INSN (pro) == rec) 8048 sd_delete_dep (sd_it); 8049 else 8050 sd_iterator_next (&sd_it); 8051 } 8052 } 8053 8054 /* We couldn't have added the dependencies between INSN and TWINS earlier 8055 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */ 8056 unsigned int i; 8057 rtx_insn *twin; 8058 FOR_EACH_VEC_ELT_REVERSE (twins, i, twin) 8059 { 8060 dep_def _new_dep, *new_dep = &_new_dep; 8061 8062 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT); 8063 sd_add_dep (new_dep, false); 8064 } 8065 8066 calc_priorities (priorities_roots); 8067 } 8068 8069 /* Extends and fills with zeros (only the new part) array pointed to by P. */ 8070 void * 8071 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size) 8072 { 8073 gcc_assert (new_nmemb >= old_nmemb); 8074 p = XRESIZEVAR (void, p, new_nmemb * size); 8075 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size); 8076 return p; 8077 } 8078 8079 /* Helper function. 8080 Find fallthru edge from PRED. */ 8081 edge 8082 find_fallthru_edge_from (basic_block pred) 8083 { 8084 edge e; 8085 basic_block succ; 8086 8087 succ = pred->next_bb; 8088 gcc_assert (succ->prev_bb == pred); 8089 8090 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds)) 8091 { 8092 e = find_fallthru_edge (pred->succs); 8093 8094 if (e) 8095 { 8096 gcc_assert (e->dest == succ || e->dest->index == EXIT_BLOCK); 8097 return e; 8098 } 8099 } 8100 else 8101 { 8102 e = find_fallthru_edge (succ->preds); 8103 8104 if (e) 8105 { 8106 gcc_assert (e->src == pred); 8107 return e; 8108 } 8109 } 8110 8111 return NULL; 8112 } 8113 8114 /* Extend per basic block data structures. */ 8115 static void 8116 sched_extend_bb (void) 8117 { 8118 /* The following is done to keep current_sched_info->next_tail non null. */ 8119 rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb); 8120 rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end; 8121 if (NEXT_INSN (end) == 0 8122 || (!NOTE_P (insn) 8123 && !LABEL_P (insn) 8124 /* Don't emit a NOTE if it would end up before a BARRIER. */ 8125 && !BARRIER_P (next_nondebug_insn (end)))) 8126 { 8127 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end); 8128 /* Make note appear outside BB. */ 8129 set_block_for_insn (note, NULL); 8130 BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end; 8131 } 8132 } 8133 8134 /* Init per basic block data structures. */ 8135 void 8136 sched_init_bbs (void) 8137 { 8138 sched_extend_bb (); 8139 } 8140 8141 /* Initialize BEFORE_RECOVERY variable. */ 8142 static void 8143 init_before_recovery (basic_block *before_recovery_ptr) 8144 { 8145 basic_block last; 8146 edge e; 8147 8148 last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb; 8149 e = find_fallthru_edge_from (last); 8150 8151 if (e) 8152 { 8153 /* We create two basic blocks: 8154 1. Single instruction block is inserted right after E->SRC 8155 and has jump to 8156 2. Empty block right before EXIT_BLOCK. 8157 Between these two blocks recovery blocks will be emitted. */ 8158 8159 basic_block single, empty; 8160 8161 /* If the fallthrough edge to exit we've found is from the block we've 8162 created before, don't do anything more. */ 8163 if (last == after_recovery) 8164 return; 8165 8166 adding_bb_to_current_region_p = false; 8167 8168 single = sched_create_empty_bb (last); 8169 empty = sched_create_empty_bb (single); 8170 8171 /* Add new blocks to the root loop. */ 8172 if (current_loops != NULL) 8173 { 8174 add_bb_to_loop (single, (*current_loops->larray)[0]); 8175 add_bb_to_loop (empty, (*current_loops->larray)[0]); 8176 } 8177 8178 single->count = last->count; 8179 empty->count = last->count; 8180 BB_COPY_PARTITION (single, last); 8181 BB_COPY_PARTITION (empty, last); 8182 8183 redirect_edge_succ (e, single); 8184 make_single_succ_edge (single, empty, 0); 8185 make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun), 8186 EDGE_FALLTHRU); 8187 8188 rtx_code_label *label = block_label (empty); 8189 rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label), 8190 BB_END (single)); 8191 JUMP_LABEL (x) = label; 8192 LABEL_NUSES (label)++; 8193 haifa_init_insn (x); 8194 8195 emit_barrier_after (x); 8196 8197 sched_init_only_bb (empty, NULL); 8198 sched_init_only_bb (single, NULL); 8199 sched_extend_bb (); 8200 8201 adding_bb_to_current_region_p = true; 8202 before_recovery = single; 8203 after_recovery = empty; 8204 8205 if (before_recovery_ptr) 8206 *before_recovery_ptr = before_recovery; 8207 8208 if (sched_verbose >= 2 && spec_info->dump) 8209 fprintf (spec_info->dump, 8210 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n", 8211 last->index, single->index, empty->index); 8212 } 8213 else 8214 before_recovery = last; 8215 } 8216 8217 /* Returns new recovery block. */ 8218 basic_block 8219 sched_create_recovery_block (basic_block *before_recovery_ptr) 8220 { 8221 rtx_insn *barrier; 8222 basic_block rec; 8223 8224 haifa_recovery_bb_recently_added_p = true; 8225 haifa_recovery_bb_ever_added_p = true; 8226 8227 init_before_recovery (before_recovery_ptr); 8228 8229 barrier = get_last_bb_insn (before_recovery); 8230 gcc_assert (BARRIER_P (barrier)); 8231 8232 rtx_insn *label = emit_label_after (gen_label_rtx (), barrier); 8233 8234 rec = create_basic_block (label, label, before_recovery); 8235 8236 /* A recovery block always ends with an unconditional jump. */ 8237 emit_barrier_after (BB_END (rec)); 8238 8239 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED) 8240 BB_SET_PARTITION (rec, BB_COLD_PARTITION); 8241 8242 if (sched_verbose && spec_info->dump) 8243 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n", 8244 rec->index); 8245 8246 return rec; 8247 } 8248 8249 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB 8250 and emit necessary jumps. */ 8251 void 8252 sched_create_recovery_edges (basic_block first_bb, basic_block rec, 8253 basic_block second_bb) 8254 { 8255 int edge_flags; 8256 8257 /* This is fixing of incoming edge. */ 8258 /* ??? Which other flags should be specified? */ 8259 if (BB_PARTITION (first_bb) != BB_PARTITION (rec)) 8260 /* Partition type is the same, if it is "unpartitioned". */ 8261 edge_flags = EDGE_CROSSING; 8262 else 8263 edge_flags = 0; 8264 8265 edge e2 = single_succ_edge (first_bb); 8266 edge e = make_edge (first_bb, rec, edge_flags); 8267 8268 /* TODO: The actual probability can be determined and is computed as 8269 'todo_spec' variable in create_check_block_twin and 8270 in sel-sched.c `check_ds' in create_speculation_check. */ 8271 e->probability = profile_probability::very_unlikely (); 8272 rec->count = e->count (); 8273 e2->probability = e->probability.invert (); 8274 8275 rtx_code_label *label = block_label (second_bb); 8276 rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label), 8277 BB_END (rec)); 8278 JUMP_LABEL (jump) = label; 8279 LABEL_NUSES (label)++; 8280 8281 if (BB_PARTITION (second_bb) != BB_PARTITION (rec)) 8282 /* Partition type is the same, if it is "unpartitioned". */ 8283 { 8284 /* Rewritten from cfgrtl.c. */ 8285 if (crtl->has_bb_partition && targetm_common.have_named_sections) 8286 { 8287 /* We don't need the same note for the check because 8288 any_condjump_p (check) == true. */ 8289 CROSSING_JUMP_P (jump) = 1; 8290 } 8291 edge_flags = EDGE_CROSSING; 8292 } 8293 else 8294 edge_flags = 0; 8295 8296 make_single_succ_edge (rec, second_bb, edge_flags); 8297 if (dom_info_available_p (CDI_DOMINATORS)) 8298 set_immediate_dominator (CDI_DOMINATORS, rec, first_bb); 8299 } 8300 8301 /* This function creates recovery code for INSN. If MUTATE_P is nonzero, 8302 INSN is a simple check, that should be converted to branchy one. */ 8303 static void 8304 create_check_block_twin (rtx_insn *insn, bool mutate_p) 8305 { 8306 basic_block rec; 8307 rtx_insn *label, *check, *twin; 8308 rtx check_pat; 8309 ds_t fs; 8310 sd_iterator_def sd_it; 8311 dep_t dep; 8312 dep_def _new_dep, *new_dep = &_new_dep; 8313 ds_t todo_spec; 8314 8315 gcc_assert (ORIG_PAT (insn) != NULL_RTX); 8316 8317 if (!mutate_p) 8318 todo_spec = TODO_SPEC (insn); 8319 else 8320 { 8321 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn) 8322 && (TODO_SPEC (insn) & SPECULATIVE) == 0); 8323 8324 todo_spec = CHECK_SPEC (insn); 8325 } 8326 8327 todo_spec &= SPECULATIVE; 8328 8329 /* Create recovery block. */ 8330 if (mutate_p || targetm.sched.needs_block_p (todo_spec)) 8331 { 8332 rec = sched_create_recovery_block (NULL); 8333 label = BB_HEAD (rec); 8334 } 8335 else 8336 { 8337 rec = EXIT_BLOCK_PTR_FOR_FN (cfun); 8338 label = NULL; 8339 } 8340 8341 /* Emit CHECK. */ 8342 check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec); 8343 8344 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8345 { 8346 /* To have mem_reg alive at the beginning of second_bb, 8347 we emit check BEFORE insn, so insn after splitting 8348 insn will be at the beginning of second_bb, which will 8349 provide us with the correct life information. */ 8350 check = emit_jump_insn_before (check_pat, insn); 8351 JUMP_LABEL (check) = label; 8352 LABEL_NUSES (label)++; 8353 } 8354 else 8355 check = emit_insn_before (check_pat, insn); 8356 8357 /* Extend data structures. */ 8358 haifa_init_insn (check); 8359 8360 /* CHECK is being added to current region. Extend ready list. */ 8361 gcc_assert (sched_ready_n_insns != -1); 8362 sched_extend_ready_list (sched_ready_n_insns + 1); 8363 8364 if (current_sched_info->add_remove_insn) 8365 current_sched_info->add_remove_insn (insn, 0); 8366 8367 RECOVERY_BLOCK (check) = rec; 8368 8369 if (sched_verbose && spec_info->dump) 8370 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n", 8371 (*current_sched_info->print_insn) (check, 0)); 8372 8373 gcc_assert (ORIG_PAT (insn)); 8374 8375 /* Initialize TWIN (twin is a duplicate of original instruction 8376 in the recovery block). */ 8377 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8378 { 8379 sd_iterator_def sd_it; 8380 dep_t dep; 8381 8382 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep) 8383 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0) 8384 { 8385 struct _dep _dep2, *dep2 = &_dep2; 8386 8387 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE); 8388 8389 sd_add_dep (dep2, true); 8390 } 8391 8392 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec)); 8393 haifa_init_insn (twin); 8394 8395 if (sched_verbose && spec_info->dump) 8396 /* INSN_BB (insn) isn't determined for twin insns yet. 8397 So we can't use current_sched_info->print_insn. */ 8398 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n", 8399 INSN_UID (twin), rec->index); 8400 } 8401 else 8402 { 8403 ORIG_PAT (check) = ORIG_PAT (insn); 8404 HAS_INTERNAL_DEP (check) = 1; 8405 twin = check; 8406 /* ??? We probably should change all OUTPUT dependencies to 8407 (TRUE | OUTPUT). */ 8408 } 8409 8410 /* Copy all resolved back dependencies of INSN to TWIN. This will 8411 provide correct value for INSN_TICK (TWIN). */ 8412 sd_copy_back_deps (twin, insn, true); 8413 8414 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8415 /* In case of branchy check, fix CFG. */ 8416 { 8417 basic_block first_bb, second_bb; 8418 rtx_insn *jump; 8419 8420 first_bb = BLOCK_FOR_INSN (check); 8421 second_bb = sched_split_block (first_bb, check); 8422 8423 sched_create_recovery_edges (first_bb, rec, second_bb); 8424 8425 sched_init_only_bb (second_bb, first_bb); 8426 sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun)); 8427 8428 jump = BB_END (rec); 8429 haifa_init_insn (jump); 8430 } 8431 8432 /* Move backward dependences from INSN to CHECK and 8433 move forward dependences from INSN to TWIN. */ 8434 8435 /* First, create dependencies between INSN's producers and CHECK & TWIN. */ 8436 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep) 8437 { 8438 rtx_insn *pro = DEP_PRO (dep); 8439 ds_t ds; 8440 8441 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]: 8442 check --TRUE--> producer ??? or ANTI ??? 8443 twin --TRUE--> producer 8444 twin --ANTI--> check 8445 8446 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]: 8447 check --ANTI--> producer 8448 twin --ANTI--> producer 8449 twin --ANTI--> check 8450 8451 If BE_IN_SPEC: [insn ~~TRUE~~> producer]: 8452 check ~~TRUE~~> producer 8453 twin ~~TRUE~~> producer 8454 twin --ANTI--> check */ 8455 8456 ds = DEP_STATUS (dep); 8457 8458 if (ds & BEGIN_SPEC) 8459 { 8460 gcc_assert (!mutate_p); 8461 ds &= ~BEGIN_SPEC; 8462 } 8463 8464 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds); 8465 sd_add_dep (new_dep, false); 8466 8467 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8468 { 8469 DEP_CON (new_dep) = twin; 8470 sd_add_dep (new_dep, false); 8471 } 8472 } 8473 8474 /* Second, remove backward dependencies of INSN. */ 8475 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK); 8476 sd_iterator_cond (&sd_it, &dep);) 8477 { 8478 if ((DEP_STATUS (dep) & BEGIN_SPEC) 8479 || mutate_p) 8480 /* We can delete this dep because we overcome it with 8481 BEGIN_SPECULATION. */ 8482 sd_delete_dep (sd_it); 8483 else 8484 sd_iterator_next (&sd_it); 8485 } 8486 8487 /* Future Speculations. Determine what BE_IN speculations will be like. */ 8488 fs = 0; 8489 8490 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only 8491 here. */ 8492 8493 gcc_assert (!DONE_SPEC (insn)); 8494 8495 if (!mutate_p) 8496 { 8497 ds_t ts = TODO_SPEC (insn); 8498 8499 DONE_SPEC (insn) = ts & BEGIN_SPEC; 8500 CHECK_SPEC (check) = ts & BEGIN_SPEC; 8501 8502 /* Luckiness of future speculations solely depends upon initial 8503 BEGIN speculation. */ 8504 if (ts & BEGIN_DATA) 8505 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA)); 8506 if (ts & BEGIN_CONTROL) 8507 fs = set_dep_weak (fs, BE_IN_CONTROL, 8508 get_dep_weak (ts, BEGIN_CONTROL)); 8509 } 8510 else 8511 CHECK_SPEC (check) = CHECK_SPEC (insn); 8512 8513 /* Future speculations: call the helper. */ 8514 process_insn_forw_deps_be_in_spec (insn, twin, fs); 8515 8516 if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8517 { 8518 /* Which types of dependencies should we use here is, 8519 generally, machine-dependent question... But, for now, 8520 it is not. */ 8521 8522 if (!mutate_p) 8523 { 8524 init_dep (new_dep, insn, check, REG_DEP_TRUE); 8525 sd_add_dep (new_dep, false); 8526 8527 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT); 8528 sd_add_dep (new_dep, false); 8529 } 8530 else 8531 { 8532 if (spec_info->dump) 8533 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n", 8534 (*current_sched_info->print_insn) (insn, 0)); 8535 8536 /* Remove all dependencies of the INSN. */ 8537 { 8538 sd_it = sd_iterator_start (insn, (SD_LIST_FORW 8539 | SD_LIST_BACK 8540 | SD_LIST_RES_BACK)); 8541 while (sd_iterator_cond (&sd_it, &dep)) 8542 sd_delete_dep (sd_it); 8543 } 8544 8545 /* If former check (INSN) already was moved to the ready (or queue) 8546 list, add new check (CHECK) there too. */ 8547 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE) 8548 try_ready (check); 8549 8550 /* Remove old check from instruction stream and free its 8551 data. */ 8552 sched_remove_insn (insn); 8553 } 8554 8555 init_dep (new_dep, check, twin, REG_DEP_ANTI); 8556 sd_add_dep (new_dep, false); 8557 } 8558 else 8559 { 8560 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT); 8561 sd_add_dep (new_dep, false); 8562 } 8563 8564 if (!mutate_p) 8565 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary, 8566 because it'll be done later in add_to_speculative_block. */ 8567 { 8568 auto_vec<rtx_insn *> priorities_roots; 8569 8570 clear_priorities (twin, &priorities_roots); 8571 calc_priorities (priorities_roots); 8572 } 8573 } 8574 8575 /* Removes dependency between instructions in the recovery block REC 8576 and usual region instructions. It keeps inner dependences so it 8577 won't be necessary to recompute them. */ 8578 static void 8579 fix_recovery_deps (basic_block rec) 8580 { 8581 rtx_insn *note, *insn, *jump; 8582 auto_vec<rtx_insn *, 10> ready_list; 8583 auto_bitmap in_ready; 8584 8585 /* NOTE - a basic block note. */ 8586 note = NEXT_INSN (BB_HEAD (rec)); 8587 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note)); 8588 insn = BB_END (rec); 8589 gcc_assert (JUMP_P (insn)); 8590 insn = PREV_INSN (insn); 8591 8592 do 8593 { 8594 sd_iterator_def sd_it; 8595 dep_t dep; 8596 8597 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW); 8598 sd_iterator_cond (&sd_it, &dep);) 8599 { 8600 rtx_insn *consumer = DEP_CON (dep); 8601 8602 if (BLOCK_FOR_INSN (consumer) != rec) 8603 { 8604 sd_delete_dep (sd_it); 8605 8606 if (bitmap_set_bit (in_ready, INSN_LUID (consumer))) 8607 ready_list.safe_push (consumer); 8608 } 8609 else 8610 { 8611 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE); 8612 8613 sd_iterator_next (&sd_it); 8614 } 8615 } 8616 8617 insn = PREV_INSN (insn); 8618 } 8619 while (insn != note); 8620 8621 /* Try to add instructions to the ready or queue list. */ 8622 unsigned int i; 8623 rtx_insn *temp; 8624 FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp) 8625 try_ready (temp); 8626 8627 /* Fixing jump's dependences. */ 8628 insn = BB_HEAD (rec); 8629 jump = BB_END (rec); 8630 8631 gcc_assert (LABEL_P (insn)); 8632 insn = NEXT_INSN (insn); 8633 8634 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn)); 8635 add_jump_dependencies (insn, jump); 8636 } 8637 8638 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa 8639 instruction data. */ 8640 static bool 8641 haifa_change_pattern (rtx_insn *insn, rtx new_pat) 8642 { 8643 int t; 8644 8645 t = validate_change (insn, &PATTERN (insn), new_pat, 0); 8646 if (!t) 8647 return false; 8648 8649 update_insn_after_change (insn); 8650 return true; 8651 } 8652 8653 /* -1 - can't speculate, 8654 0 - for speculation with REQUEST mode it is OK to use 8655 current instruction pattern, 8656 1 - need to change pattern for *NEW_PAT to be speculative. */ 8657 int 8658 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat) 8659 { 8660 gcc_assert (current_sched_info->flags & DO_SPECULATION 8661 && (request & SPECULATIVE) 8662 && sched_insn_is_legitimate_for_speculation_p (insn, request)); 8663 8664 if ((request & spec_info->mask) != request) 8665 return -1; 8666 8667 if (request & BE_IN_SPEC 8668 && !(request & BEGIN_SPEC)) 8669 return 0; 8670 8671 return targetm.sched.speculate_insn (insn, request, new_pat); 8672 } 8673 8674 static int 8675 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat) 8676 { 8677 gcc_assert (sched_deps_info->generate_spec_deps 8678 && !IS_SPECULATION_CHECK_P (insn)); 8679 8680 if (HAS_INTERNAL_DEP (insn) 8681 || SCHED_GROUP_P (insn)) 8682 return -1; 8683 8684 return sched_speculate_insn (insn, request, new_pat); 8685 } 8686 8687 /* Print some information about block BB, which starts with HEAD and 8688 ends with TAIL, before scheduling it. 8689 I is zero, if scheduler is about to start with the fresh ebb. */ 8690 static void 8691 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail) 8692 { 8693 if (!i) 8694 fprintf (sched_dump, 8695 ";; ======================================================\n"); 8696 else 8697 fprintf (sched_dump, 8698 ";; =====================ADVANCING TO=====================\n"); 8699 fprintf (sched_dump, 8700 ";; -- basic block %d from %d to %d -- %s reload\n", 8701 bb->index, INSN_UID (head), INSN_UID (tail), 8702 (reload_completed ? "after" : "before")); 8703 fprintf (sched_dump, 8704 ";; ======================================================\n"); 8705 fprintf (sched_dump, "\n"); 8706 } 8707 8708 /* Unlink basic block notes and labels and saves them, so they 8709 can be easily restored. We unlink basic block notes in EBB to 8710 provide back-compatibility with the previous code, as target backends 8711 assume, that there'll be only instructions between 8712 current_sched_info->{head and tail}. We restore these notes as soon 8713 as we can. 8714 FIRST (LAST) is the first (last) basic block in the ebb. 8715 NB: In usual case (FIRST == LAST) nothing is really done. */ 8716 void 8717 unlink_bb_notes (basic_block first, basic_block last) 8718 { 8719 /* We DON'T unlink basic block notes of the first block in the ebb. */ 8720 if (first == last) 8721 return; 8722 8723 bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun)); 8724 8725 /* Make a sentinel. */ 8726 if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun)) 8727 bb_header[last->next_bb->index] = 0; 8728 8729 first = first->next_bb; 8730 do 8731 { 8732 rtx_insn *prev, *label, *note, *next; 8733 8734 label = BB_HEAD (last); 8735 if (LABEL_P (label)) 8736 note = NEXT_INSN (label); 8737 else 8738 note = label; 8739 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note)); 8740 8741 prev = PREV_INSN (label); 8742 next = NEXT_INSN (note); 8743 gcc_assert (prev && next); 8744 8745 SET_NEXT_INSN (prev) = next; 8746 SET_PREV_INSN (next) = prev; 8747 8748 bb_header[last->index] = label; 8749 8750 if (last == first) 8751 break; 8752 8753 last = last->prev_bb; 8754 } 8755 while (1); 8756 } 8757 8758 /* Restore basic block notes. 8759 FIRST is the first basic block in the ebb. */ 8760 static void 8761 restore_bb_notes (basic_block first) 8762 { 8763 if (!bb_header) 8764 return; 8765 8766 /* We DON'T unlink basic block notes of the first block in the ebb. */ 8767 first = first->next_bb; 8768 /* Remember: FIRST is actually a second basic block in the ebb. */ 8769 8770 while (first != EXIT_BLOCK_PTR_FOR_FN (cfun) 8771 && bb_header[first->index]) 8772 { 8773 rtx_insn *prev, *label, *note, *next; 8774 8775 label = bb_header[first->index]; 8776 prev = PREV_INSN (label); 8777 next = NEXT_INSN (prev); 8778 8779 if (LABEL_P (label)) 8780 note = NEXT_INSN (label); 8781 else 8782 note = label; 8783 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note)); 8784 8785 bb_header[first->index] = 0; 8786 8787 SET_NEXT_INSN (prev) = label; 8788 SET_NEXT_INSN (note) = next; 8789 SET_PREV_INSN (next) = note; 8790 8791 first = first->next_bb; 8792 } 8793 8794 free (bb_header); 8795 bb_header = 0; 8796 } 8797 8798 /* Helper function. 8799 Fix CFG after both in- and inter-block movement of 8800 control_flow_insn_p JUMP. */ 8801 static void 8802 fix_jump_move (rtx_insn *jump) 8803 { 8804 basic_block bb, jump_bb, jump_bb_next; 8805 8806 bb = BLOCK_FOR_INSN (PREV_INSN (jump)); 8807 jump_bb = BLOCK_FOR_INSN (jump); 8808 jump_bb_next = jump_bb->next_bb; 8809 8810 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS 8811 || IS_SPECULATION_BRANCHY_CHECK_P (jump)); 8812 8813 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next))) 8814 /* if jump_bb_next is not empty. */ 8815 BB_END (jump_bb) = BB_END (jump_bb_next); 8816 8817 if (BB_END (bb) != PREV_INSN (jump)) 8818 /* Then there are instruction after jump that should be placed 8819 to jump_bb_next. */ 8820 BB_END (jump_bb_next) = BB_END (bb); 8821 else 8822 /* Otherwise jump_bb_next is empty. */ 8823 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next)); 8824 8825 /* To make assertion in move_insn happy. */ 8826 BB_END (bb) = PREV_INSN (jump); 8827 8828 update_bb_for_insn (jump_bb_next); 8829 } 8830 8831 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */ 8832 static void 8833 move_block_after_check (rtx_insn *jump) 8834 { 8835 basic_block bb, jump_bb, jump_bb_next; 8836 vec<edge, va_gc> *t; 8837 8838 bb = BLOCK_FOR_INSN (PREV_INSN (jump)); 8839 jump_bb = BLOCK_FOR_INSN (jump); 8840 jump_bb_next = jump_bb->next_bb; 8841 8842 update_bb_for_insn (jump_bb); 8843 8844 gcc_assert (IS_SPECULATION_CHECK_P (jump) 8845 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next))); 8846 8847 unlink_block (jump_bb_next); 8848 link_block (jump_bb_next, bb); 8849 8850 t = bb->succs; 8851 bb->succs = 0; 8852 move_succs (&(jump_bb->succs), bb); 8853 move_succs (&(jump_bb_next->succs), jump_bb); 8854 move_succs (&t, jump_bb_next); 8855 8856 df_mark_solutions_dirty (); 8857 8858 common_sched_info->fix_recovery_cfg 8859 (bb->index, jump_bb->index, jump_bb_next->index); 8860 } 8861 8862 /* Helper function for move_block_after_check. 8863 This functions attaches edge vector pointed to by SUCCSP to 8864 block TO. */ 8865 static void 8866 move_succs (vec<edge, va_gc> **succsp, basic_block to) 8867 { 8868 edge e; 8869 edge_iterator ei; 8870 8871 gcc_assert (to->succs == 0); 8872 8873 to->succs = *succsp; 8874 8875 FOR_EACH_EDGE (e, ei, to->succs) 8876 e->src = to; 8877 8878 *succsp = 0; 8879 } 8880 8881 /* Remove INSN from the instruction stream. 8882 INSN should have any dependencies. */ 8883 static void 8884 sched_remove_insn (rtx_insn *insn) 8885 { 8886 sd_finish_insn (insn); 8887 8888 change_queue_index (insn, QUEUE_NOWHERE); 8889 current_sched_info->add_remove_insn (insn, 1); 8890 delete_insn (insn); 8891 } 8892 8893 /* Clear priorities of all instructions, that are forward dependent on INSN. 8894 Store in vector pointed to by ROOTS_PTR insns on which priority () should 8895 be invoked to initialize all cleared priorities. */ 8896 static void 8897 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr) 8898 { 8899 sd_iterator_def sd_it; 8900 dep_t dep; 8901 bool insn_is_root_p = true; 8902 8903 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED); 8904 8905 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep) 8906 { 8907 rtx_insn *pro = DEP_PRO (dep); 8908 8909 if (INSN_PRIORITY_STATUS (pro) >= 0 8910 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED) 8911 { 8912 /* If DEP doesn't contribute to priority then INSN itself should 8913 be added to priority roots. */ 8914 if (contributes_to_priority_p (dep)) 8915 insn_is_root_p = false; 8916 8917 INSN_PRIORITY_STATUS (pro) = -1; 8918 clear_priorities (pro, roots_ptr); 8919 } 8920 } 8921 8922 if (insn_is_root_p) 8923 roots_ptr->safe_push (insn); 8924 } 8925 8926 /* Recompute priorities of instructions, whose priorities might have been 8927 changed. ROOTS is a vector of instructions whose priority computation will 8928 trigger initialization of all cleared priorities. */ 8929 static void 8930 calc_priorities (rtx_vec_t roots) 8931 { 8932 int i; 8933 rtx_insn *insn; 8934 8935 FOR_EACH_VEC_ELT (roots, i, insn) 8936 priority (insn); 8937 } 8938 8939 8940 /* Add dependences between JUMP and other instructions in the recovery 8941 block. INSN is the first insn the recovery block. */ 8942 static void 8943 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump) 8944 { 8945 do 8946 { 8947 insn = NEXT_INSN (insn); 8948 if (insn == jump) 8949 break; 8950 8951 if (dep_list_size (insn, SD_LIST_FORW) == 0) 8952 { 8953 dep_def _new_dep, *new_dep = &_new_dep; 8954 8955 init_dep (new_dep, insn, jump, REG_DEP_ANTI); 8956 sd_add_dep (new_dep, false); 8957 } 8958 } 8959 while (1); 8960 8961 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK)); 8962 } 8963 8964 /* Extend data structures for logical insn UID. */ 8965 void 8966 sched_extend_luids (void) 8967 { 8968 int new_luids_max_uid = get_max_uid () + 1; 8969 8970 sched_luids.safe_grow_cleared (new_luids_max_uid); 8971 } 8972 8973 /* Initialize LUID for INSN. */ 8974 void 8975 sched_init_insn_luid (rtx_insn *insn) 8976 { 8977 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn); 8978 int luid; 8979 8980 if (i >= 0) 8981 { 8982 luid = sched_max_luid; 8983 sched_max_luid += i; 8984 } 8985 else 8986 luid = -1; 8987 8988 SET_INSN_LUID (insn, luid); 8989 } 8990 8991 /* Initialize luids for BBS. 8992 The hook common_sched_info->luid_for_non_insn () is used to determine 8993 if notes, labels, etc. need luids. */ 8994 void 8995 sched_init_luids (bb_vec_t bbs) 8996 { 8997 int i; 8998 basic_block bb; 8999 9000 sched_extend_luids (); 9001 FOR_EACH_VEC_ELT (bbs, i, bb) 9002 { 9003 rtx_insn *insn; 9004 9005 FOR_BB_INSNS (bb, insn) 9006 sched_init_insn_luid (insn); 9007 } 9008 } 9009 9010 /* Free LUIDs. */ 9011 void 9012 sched_finish_luids (void) 9013 { 9014 sched_luids.release (); 9015 sched_max_luid = 1; 9016 } 9017 9018 /* Return logical uid of INSN. Helpful while debugging. */ 9019 int 9020 insn_luid (rtx_insn *insn) 9021 { 9022 return INSN_LUID (insn); 9023 } 9024 9025 /* Extend per insn data in the target. */ 9026 void 9027 sched_extend_target (void) 9028 { 9029 if (targetm.sched.h_i_d_extended) 9030 targetm.sched.h_i_d_extended (); 9031 } 9032 9033 /* Extend global scheduler structures (those, that live across calls to 9034 schedule_block) to include information about just emitted INSN. */ 9035 static void 9036 extend_h_i_d (void) 9037 { 9038 int reserve = (get_max_uid () + 1 - h_i_d.length ()); 9039 if (reserve > 0 9040 && ! h_i_d.space (reserve)) 9041 { 9042 h_i_d.safe_grow_cleared (3 * get_max_uid () / 2); 9043 sched_extend_target (); 9044 } 9045 } 9046 9047 /* Initialize h_i_d entry of the INSN with default values. 9048 Values, that are not explicitly initialized here, hold zero. */ 9049 static void 9050 init_h_i_d (rtx_insn *insn) 9051 { 9052 if (INSN_LUID (insn) > 0) 9053 { 9054 INSN_COST (insn) = -1; 9055 QUEUE_INDEX (insn) = QUEUE_NOWHERE; 9056 INSN_TICK (insn) = INVALID_TICK; 9057 INSN_EXACT_TICK (insn) = INVALID_TICK; 9058 INTER_TICK (insn) = INVALID_TICK; 9059 TODO_SPEC (insn) = HARD_DEP; 9060 INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status 9061 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED; 9062 INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status 9063 = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED; 9064 } 9065 } 9066 9067 /* Initialize haifa_insn_data for BBS. */ 9068 void 9069 haifa_init_h_i_d (bb_vec_t bbs) 9070 { 9071 int i; 9072 basic_block bb; 9073 9074 extend_h_i_d (); 9075 FOR_EACH_VEC_ELT (bbs, i, bb) 9076 { 9077 rtx_insn *insn; 9078 9079 FOR_BB_INSNS (bb, insn) 9080 init_h_i_d (insn); 9081 } 9082 } 9083 9084 /* Finalize haifa_insn_data. */ 9085 void 9086 haifa_finish_h_i_d (void) 9087 { 9088 int i; 9089 haifa_insn_data_t data; 9090 reg_use_data *use, *next_use; 9091 reg_set_data *set, *next_set; 9092 9093 FOR_EACH_VEC_ELT (h_i_d, i, data) 9094 { 9095 free (data->max_reg_pressure); 9096 free (data->reg_pressure); 9097 for (use = data->reg_use_list; use != NULL; use = next_use) 9098 { 9099 next_use = use->next_insn_use; 9100 free (use); 9101 } 9102 for (set = data->reg_set_list; set != NULL; set = next_set) 9103 { 9104 next_set = set->next_insn_set; 9105 free (set); 9106 } 9107 9108 } 9109 h_i_d.release (); 9110 } 9111 9112 /* Init data for the new insn INSN. */ 9113 static void 9114 haifa_init_insn (rtx_insn *insn) 9115 { 9116 gcc_assert (insn != NULL); 9117 9118 sched_extend_luids (); 9119 sched_init_insn_luid (insn); 9120 sched_extend_target (); 9121 sched_deps_init (false); 9122 extend_h_i_d (); 9123 init_h_i_d (insn); 9124 9125 if (adding_bb_to_current_region_p) 9126 { 9127 sd_init_insn (insn); 9128 9129 /* Extend dependency caches by one element. */ 9130 extend_dependency_caches (1, false); 9131 } 9132 if (sched_pressure != SCHED_PRESSURE_NONE) 9133 init_insn_reg_pressure_info (insn); 9134 } 9135 9136 /* Init data for the new basic block BB which comes after AFTER. */ 9137 static void 9138 haifa_init_only_bb (basic_block bb, basic_block after) 9139 { 9140 gcc_assert (bb != NULL); 9141 9142 sched_init_bbs (); 9143 9144 if (common_sched_info->add_block) 9145 /* This changes only data structures of the front-end. */ 9146 common_sched_info->add_block (bb, after); 9147 } 9148 9149 /* A generic version of sched_split_block (). */ 9150 basic_block 9151 sched_split_block_1 (basic_block first_bb, rtx after) 9152 { 9153 edge e; 9154 9155 e = split_block (first_bb, after); 9156 gcc_assert (e->src == first_bb); 9157 9158 /* sched_split_block emits note if *check == BB_END. Probably it 9159 is better to rip that note off. */ 9160 9161 return e->dest; 9162 } 9163 9164 /* A generic version of sched_create_empty_bb (). */ 9165 basic_block 9166 sched_create_empty_bb_1 (basic_block after) 9167 { 9168 return create_empty_bb (after); 9169 } 9170 9171 /* Insert PAT as an INSN into the schedule and update the necessary data 9172 structures to account for it. */ 9173 rtx_insn * 9174 sched_emit_insn (rtx pat) 9175 { 9176 rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ()); 9177 haifa_init_insn (insn); 9178 9179 if (current_sched_info->add_remove_insn) 9180 current_sched_info->add_remove_insn (insn, 0); 9181 9182 (*current_sched_info->begin_schedule_ready) (insn); 9183 scheduled_insns.safe_push (insn); 9184 9185 last_scheduled_insn = insn; 9186 return insn; 9187 } 9188 9189 /* This function returns a candidate satisfying dispatch constraints from 9190 the ready list. */ 9191 9192 static rtx_insn * 9193 ready_remove_first_dispatch (struct ready_list *ready) 9194 { 9195 int i; 9196 rtx_insn *insn = ready_element (ready, 0); 9197 9198 if (ready->n_ready == 1 9199 || !INSN_P (insn) 9200 || INSN_CODE (insn) < 0 9201 || !active_insn_p (insn) 9202 || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW)) 9203 return ready_remove_first (ready); 9204 9205 for (i = 1; i < ready->n_ready; i++) 9206 { 9207 insn = ready_element (ready, i); 9208 9209 if (!INSN_P (insn) 9210 || INSN_CODE (insn) < 0 9211 || !active_insn_p (insn)) 9212 continue; 9213 9214 if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW)) 9215 { 9216 /* Return ith element of ready. */ 9217 insn = ready_remove (ready, i); 9218 return insn; 9219 } 9220 } 9221 9222 if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION)) 9223 return ready_remove_first (ready); 9224 9225 for (i = 1; i < ready->n_ready; i++) 9226 { 9227 insn = ready_element (ready, i); 9228 9229 if (!INSN_P (insn) 9230 || INSN_CODE (insn) < 0 9231 || !active_insn_p (insn)) 9232 continue; 9233 9234 /* Return i-th element of ready. */ 9235 if (targetm.sched.dispatch (insn, IS_CMP)) 9236 return ready_remove (ready, i); 9237 } 9238 9239 return ready_remove_first (ready); 9240 } 9241 9242 /* Get number of ready insn in the ready list. */ 9243 9244 int 9245 number_in_ready (void) 9246 { 9247 return ready.n_ready; 9248 } 9249 9250 /* Get number of ready's in the ready list. */ 9251 9252 rtx_insn * 9253 get_ready_element (int i) 9254 { 9255 return ready_element (&ready, i); 9256 } 9257 9258 #endif /* INSN_SCHEDULING */ 9259