xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/haifa-sched.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Instruction scheduling pass.
2    Copyright (C) 1992-2015 Free Software Foundation, Inc.
3    Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4    and currently maintained by, Jim Wilson (wilson@cygnus.com)
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* Instruction scheduling pass.  This file, along with sched-deps.c,
23    contains the generic parts.  The actual entry point for
24    the normal instruction scheduling pass is found in sched-rgn.c.
25 
26    We compute insn priorities based on data dependencies.  Flow
27    analysis only creates a fraction of the data-dependencies we must
28    observe: namely, only those dependencies which the combiner can be
29    expected to use.  For this pass, we must therefore create the
30    remaining dependencies we need to observe: register dependencies,
31    memory dependencies, dependencies to keep function calls in order,
32    and the dependence between a conditional branch and the setting of
33    condition codes are all dealt with here.
34 
35    The scheduler first traverses the data flow graph, starting with
36    the last instruction, and proceeding to the first, assigning values
37    to insn_priority as it goes.  This sorts the instructions
38    topologically by data dependence.
39 
40    Once priorities have been established, we order the insns using
41    list scheduling.  This works as follows: starting with a list of
42    all the ready insns, and sorted according to priority number, we
43    schedule the insn from the end of the list by placing its
44    predecessors in the list according to their priority order.  We
45    consider this insn scheduled by setting the pointer to the "end" of
46    the list to point to the previous insn.  When an insn has no
47    predecessors, we either queue it until sufficient time has elapsed
48    or add it to the ready list.  As the instructions are scheduled or
49    when stalls are introduced, the queue advances and dumps insns into
50    the ready list.  When all insns down to the lowest priority have
51    been scheduled, the critical path of the basic block has been made
52    as short as possible.  The remaining insns are then scheduled in
53    remaining slots.
54 
55    The following list shows the order in which we want to break ties
56    among insns in the ready list:
57 
58    1.  choose insn with the longest path to end of bb, ties
59    broken by
60    2.  choose insn with least contribution to register pressure,
61    ties broken by
62    3.  prefer in-block upon interblock motion, ties broken by
63    4.  prefer useful upon speculative motion, ties broken by
64    5.  choose insn with largest control flow probability, ties
65    broken by
66    6.  choose insn with the least dependences upon the previously
67    scheduled insn, or finally
68    7   choose the insn which has the most insns dependent on it.
69    8.  choose insn with lowest UID.
70 
71    Memory references complicate matters.  Only if we can be certain
72    that memory references are not part of the data dependency graph
73    (via true, anti, or output dependence), can we move operations past
74    memory references.  To first approximation, reads can be done
75    independently, while writes introduce dependencies.  Better
76    approximations will yield fewer dependencies.
77 
78    Before reload, an extended analysis of interblock data dependences
79    is required for interblock scheduling.  This is performed in
80    compute_block_dependences ().
81 
82    Dependencies set up by memory references are treated in exactly the
83    same way as other dependencies, by using insn backward dependences
84    INSN_BACK_DEPS.  INSN_BACK_DEPS are translated into forward dependences
85    INSN_FORW_DEPS for the purpose of forward list scheduling.
86 
87    Having optimized the critical path, we may have also unduly
88    extended the lifetimes of some registers.  If an operation requires
89    that constants be loaded into registers, it is certainly desirable
90    to load those constants as early as necessary, but no earlier.
91    I.e., it will not do to load up a bunch of registers at the
92    beginning of a basic block only to use them at the end, if they
93    could be loaded later, since this may result in excessive register
94    utilization.
95 
96    Note that since branches are never in basic blocks, but only end
97    basic blocks, this pass will not move branches.  But that is ok,
98    since we can use GNU's delayed branch scheduling pass to take care
99    of this case.
100 
101    Also note that no further optimizations based on algebraic
102    identities are performed, so this pass would be a good one to
103    perform instruction splitting, such as breaking up a multiply
104    instruction into shifts and adds where that is profitable.
105 
106    Given the memory aliasing analysis that this pass should perform,
107    it should be possible to remove redundant stores to memory, and to
108    load values from registers instead of hitting memory.
109 
110    Before reload, speculative insns are moved only if a 'proof' exists
111    that no exception will be caused by this, and if no live registers
112    exist that inhibit the motion (live registers constraints are not
113    represented by data dependence edges).
114 
115    This pass must update information that subsequent passes expect to
116    be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
117    reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.
118 
119    The information in the line number notes is carefully retained by
120    this pass.  Notes that refer to the starting and ending of
121    exception regions are also carefully retained by this pass.  All
122    other NOTE insns are grouped in their same relative order at the
123    beginning of basic blocks and regions that have been scheduled.  */
124 
125 #include "config.h"
126 #include "system.h"
127 #include "coretypes.h"
128 #include "tm.h"
129 #include "diagnostic-core.h"
130 #include "hard-reg-set.h"
131 #include "rtl.h"
132 #include "tm_p.h"
133 #include "regs.h"
134 #include "hashtab.h"
135 #include "hash-set.h"
136 #include "vec.h"
137 #include "machmode.h"
138 #include "input.h"
139 #include "function.h"
140 #include "flags.h"
141 #include "insn-config.h"
142 #include "insn-attr.h"
143 #include "except.h"
144 #include "recog.h"
145 #include "dominance.h"
146 #include "cfg.h"
147 #include "cfgrtl.h"
148 #include "cfgbuild.h"
149 #include "predict.h"
150 #include "basic-block.h"
151 #include "sched-int.h"
152 #include "target.h"
153 #include "common/common-target.h"
154 #include "params.h"
155 #include "dbgcnt.h"
156 #include "cfgloop.h"
157 #include "ira.h"
158 #include "emit-rtl.h"  /* FIXME: Can go away once crtl is moved to rtl.h.  */
159 #include "hash-table.h"
160 #include "dumpfile.h"
161 
162 #ifdef INSN_SCHEDULING
163 
164 /* True if we do register pressure relief through live-range
165    shrinkage.  */
166 static bool live_range_shrinkage_p;
167 
168 /* Switch on live range shrinkage.  */
169 void
170 initialize_live_range_shrinkage (void)
171 {
172   live_range_shrinkage_p = true;
173 }
174 
175 /* Switch off live range shrinkage.  */
176 void
177 finish_live_range_shrinkage (void)
178 {
179   live_range_shrinkage_p = false;
180 }
181 
182 /* issue_rate is the number of insns that can be scheduled in the same
183    machine cycle.  It can be defined in the config/mach/mach.h file,
184    otherwise we set it to 1.  */
185 
186 int issue_rate;
187 
188 /* This can be set to true by a backend if the scheduler should not
189    enable a DCE pass.  */
190 bool sched_no_dce;
191 
192 /* The current initiation interval used when modulo scheduling.  */
193 static int modulo_ii;
194 
195 /* The maximum number of stages we are prepared to handle.  */
196 static int modulo_max_stages;
197 
198 /* The number of insns that exist in each iteration of the loop.  We use this
199    to detect when we've scheduled all insns from the first iteration.  */
200 static int modulo_n_insns;
201 
202 /* The current count of insns in the first iteration of the loop that have
203    already been scheduled.  */
204 static int modulo_insns_scheduled;
205 
206 /* The maximum uid of insns from the first iteration of the loop.  */
207 static int modulo_iter0_max_uid;
208 
209 /* The number of times we should attempt to backtrack when modulo scheduling.
210    Decreased each time we have to backtrack.  */
211 static int modulo_backtracks_left;
212 
213 /* The stage in which the last insn from the original loop was
214    scheduled.  */
215 static int modulo_last_stage;
216 
217 /* sched-verbose controls the amount of debugging output the
218    scheduler prints.  It is controlled by -fsched-verbose=N:
219    N>0 and no -DSR : the output is directed to stderr.
220    N>=10 will direct the printouts to stderr (regardless of -dSR).
221    N=1: same as -dSR.
222    N=2: bb's probabilities, detailed ready list info, unit/insn info.
223    N=3: rtl at abort point, control-flow, regions info.
224    N=5: dependences info.  */
225 
226 int sched_verbose = 0;
227 
228 /* Debugging file.  All printouts are sent to dump, which is always set,
229    either to stderr, or to the dump listing file (-dRS).  */
230 FILE *sched_dump = 0;
231 
232 /* This is a placeholder for the scheduler parameters common
233    to all schedulers.  */
234 struct common_sched_info_def *common_sched_info;
235 
236 #define INSN_TICK(INSN)	(HID (INSN)->tick)
237 #define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
238 #define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
239 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
240 #define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
241 #define SHADOW_P(INSN) (HID (INSN)->shadow_p)
242 #define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
243 /* Cached cost of the instruction.  Use insn_cost to get cost of the
244    insn.  -1 here means that the field is not initialized.  */
245 #define INSN_COST(INSN)	(HID (INSN)->cost)
246 
247 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
248    then it should be recalculated from scratch.  */
249 #define INVALID_TICK (-(max_insn_queue_index + 1))
250 /* The minimal value of the INSN_TICK of an instruction.  */
251 #define MIN_TICK (-max_insn_queue_index)
252 
253 /* Original order of insns in the ready list.
254    Used to keep order of normal insns while separating DEBUG_INSNs.  */
255 #define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)
256 
257 /* The deciding reason for INSN's place in the ready list.  */
258 #define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)
259 
260 /* List of important notes we must keep around.  This is a pointer to the
261    last element in the list.  */
262 rtx_insn *note_list;
263 
264 static struct spec_info_def spec_info_var;
265 /* Description of the speculative part of the scheduling.
266    If NULL - no speculation.  */
267 spec_info_t spec_info = NULL;
268 
269 /* True, if recovery block was added during scheduling of current block.
270    Used to determine, if we need to fix INSN_TICKs.  */
271 static bool haifa_recovery_bb_recently_added_p;
272 
273 /* True, if recovery block was added during this scheduling pass.
274    Used to determine if we should have empty memory pools of dependencies
275    after finishing current region.  */
276 bool haifa_recovery_bb_ever_added_p;
277 
278 /* Counters of different types of speculative instructions.  */
279 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
280 
281 /* Array used in {unlink, restore}_bb_notes.  */
282 static rtx_insn **bb_header = 0;
283 
284 /* Basic block after which recovery blocks will be created.  */
285 static basic_block before_recovery;
286 
287 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
288    created it.  */
289 basic_block after_recovery;
290 
291 /* FALSE if we add bb to another region, so we don't need to initialize it.  */
292 bool adding_bb_to_current_region_p = true;
293 
294 /* Queues, etc.  */
295 
296 /* An instruction is ready to be scheduled when all insns preceding it
297    have already been scheduled.  It is important to ensure that all
298    insns which use its result will not be executed until its result
299    has been computed.  An insn is maintained in one of four structures:
300 
301    (P) the "Pending" set of insns which cannot be scheduled until
302    their dependencies have been satisfied.
303    (Q) the "Queued" set of insns that can be scheduled when sufficient
304    time has passed.
305    (R) the "Ready" list of unscheduled, uncommitted insns.
306    (S) the "Scheduled" list of insns.
307 
308    Initially, all insns are either "Pending" or "Ready" depending on
309    whether their dependencies are satisfied.
310 
311    Insns move from the "Ready" list to the "Scheduled" list as they
312    are committed to the schedule.  As this occurs, the insns in the
313    "Pending" list have their dependencies satisfied and move to either
314    the "Ready" list or the "Queued" set depending on whether
315    sufficient time has passed to make them ready.  As time passes,
316    insns move from the "Queued" set to the "Ready" list.
317 
318    The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
319    unscheduled insns, i.e., those that are ready, queued, and pending.
320    The "Queued" set (Q) is implemented by the variable `insn_queue'.
321    The "Ready" list (R) is implemented by the variables `ready' and
322    `n_ready'.
323    The "Scheduled" list (S) is the new insn chain built by this pass.
324 
325    The transition (R->S) is implemented in the scheduling loop in
326    `schedule_block' when the best insn to schedule is chosen.
327    The transitions (P->R and P->Q) are implemented in `schedule_insn' as
328    insns move from the ready list to the scheduled list.
329    The transition (Q->R) is implemented in 'queue_to_insn' as time
330    passes or stalls are introduced.  */
331 
332 /* Implement a circular buffer to delay instructions until sufficient
333    time has passed.  For the new pipeline description interface,
334    MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
335    than maximal time of instruction execution computed by genattr.c on
336    the base maximal time of functional unit reservations and getting a
337    result.  This is the longest time an insn may be queued.  */
338 
339 static rtx_insn_list **insn_queue;
340 static int q_ptr = 0;
341 static int q_size = 0;
342 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
343 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
344 
345 #define QUEUE_SCHEDULED (-3)
346 #define QUEUE_NOWHERE   (-2)
347 #define QUEUE_READY     (-1)
348 /* QUEUE_SCHEDULED - INSN is scheduled.
349    QUEUE_NOWHERE   - INSN isn't scheduled yet and is neither in
350    queue or ready list.
351    QUEUE_READY     - INSN is in ready list.
352    N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles.  */
353 
354 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
355 
356 /* The following variable value refers for all current and future
357    reservations of the processor units.  */
358 state_t curr_state;
359 
360 /* The following variable value is size of memory representing all
361    current and future reservations of the processor units.  */
362 size_t dfa_state_size;
363 
364 /* The following array is used to find the best insn from ready when
365    the automaton pipeline interface is used.  */
366 signed char *ready_try = NULL;
367 
368 /* The ready list.  */
369 struct ready_list ready = {NULL, 0, 0, 0, 0};
370 
371 /* The pointer to the ready list (to be removed).  */
372 static struct ready_list *readyp = &ready;
373 
374 /* Scheduling clock.  */
375 static int clock_var;
376 
377 /* Clock at which the previous instruction was issued.  */
378 static int last_clock_var;
379 
380 /* Set to true if, when queuing a shadow insn, we discover that it would be
381    scheduled too late.  */
382 static bool must_backtrack;
383 
384 /* The following variable value is number of essential insns issued on
385    the current cycle.  An insn is essential one if it changes the
386    processors state.  */
387 int cycle_issued_insns;
388 
389 /* This records the actual schedule.  It is built up during the main phase
390    of schedule_block, and afterwards used to reorder the insns in the RTL.  */
391 static vec<rtx_insn *> scheduled_insns;
392 
393 static int may_trap_exp (const_rtx, int);
394 
395 /* Nonzero iff the address is comprised from at most 1 register.  */
396 #define CONST_BASED_ADDRESS_P(x)			\
397   (REG_P (x)					\
398    || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS	\
399 	|| (GET_CODE (x) == LO_SUM))			\
400        && (CONSTANT_P (XEXP (x, 0))			\
401 	   || CONSTANT_P (XEXP (x, 1)))))
402 
403 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
404    as found by analyzing insn's expression.  */
405 
406 
407 static int haifa_luid_for_non_insn (rtx x);
408 
409 /* Haifa version of sched_info hooks common to all headers.  */
410 const struct common_sched_info_def haifa_common_sched_info =
411   {
412     NULL, /* fix_recovery_cfg */
413     NULL, /* add_block */
414     NULL, /* estimate_number_of_insns */
415     haifa_luid_for_non_insn, /* luid_for_non_insn */
416     SCHED_PASS_UNKNOWN /* sched_pass_id */
417   };
418 
419 /* Mapping from instruction UID to its Logical UID.  */
420 vec<int> sched_luids = vNULL;
421 
422 /* Next LUID to assign to an instruction.  */
423 int sched_max_luid = 1;
424 
425 /* Haifa Instruction Data.  */
426 vec<haifa_insn_data_def> h_i_d = vNULL;
427 
428 void (* sched_init_only_bb) (basic_block, basic_block);
429 
430 /* Split block function.  Different schedulers might use different functions
431    to handle their internal data consistent.  */
432 basic_block (* sched_split_block) (basic_block, rtx);
433 
434 /* Create empty basic block after the specified block.  */
435 basic_block (* sched_create_empty_bb) (basic_block);
436 
437 /* Return the number of cycles until INSN is expected to be ready.
438    Return zero if it already is.  */
439 static int
440 insn_delay (rtx_insn *insn)
441 {
442   return MAX (INSN_TICK (insn) - clock_var, 0);
443 }
444 
445 static int
446 may_trap_exp (const_rtx x, int is_store)
447 {
448   enum rtx_code code;
449 
450   if (x == 0)
451     return TRAP_FREE;
452   code = GET_CODE (x);
453   if (is_store)
454     {
455       if (code == MEM && may_trap_p (x))
456 	return TRAP_RISKY;
457       else
458 	return TRAP_FREE;
459     }
460   if (code == MEM)
461     {
462       /* The insn uses memory:  a volatile load.  */
463       if (MEM_VOLATILE_P (x))
464 	return IRISKY;
465       /* An exception-free load.  */
466       if (!may_trap_p (x))
467 	return IFREE;
468       /* A load with 1 base register, to be further checked.  */
469       if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
470 	return PFREE_CANDIDATE;
471       /* No info on the load, to be further checked.  */
472       return PRISKY_CANDIDATE;
473     }
474   else
475     {
476       const char *fmt;
477       int i, insn_class = TRAP_FREE;
478 
479       /* Neither store nor load, check if it may cause a trap.  */
480       if (may_trap_p (x))
481 	return TRAP_RISKY;
482       /* Recursive step: walk the insn...  */
483       fmt = GET_RTX_FORMAT (code);
484       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
485 	{
486 	  if (fmt[i] == 'e')
487 	    {
488 	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
489 	      insn_class = WORST_CLASS (insn_class, tmp_class);
490 	    }
491 	  else if (fmt[i] == 'E')
492 	    {
493 	      int j;
494 	      for (j = 0; j < XVECLEN (x, i); j++)
495 		{
496 		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
497 		  insn_class = WORST_CLASS (insn_class, tmp_class);
498 		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
499 		    break;
500 		}
501 	    }
502 	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
503 	    break;
504 	}
505       return insn_class;
506     }
507 }
508 
509 /* Classifies rtx X of an insn for the purpose of verifying that X can be
510    executed speculatively (and consequently the insn can be moved
511    speculatively), by examining X, returning:
512    TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
513    TRAP_FREE: non-load insn.
514    IFREE: load from a globally safe location.
515    IRISKY: volatile load.
516    PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
517    being either PFREE or PRISKY.  */
518 
519 static int
520 haifa_classify_rtx (const_rtx x)
521 {
522   int tmp_class = TRAP_FREE;
523   int insn_class = TRAP_FREE;
524   enum rtx_code code;
525 
526   if (GET_CODE (x) == PARALLEL)
527     {
528       int i, len = XVECLEN (x, 0);
529 
530       for (i = len - 1; i >= 0; i--)
531 	{
532 	  tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
533 	  insn_class = WORST_CLASS (insn_class, tmp_class);
534 	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
535 	    break;
536 	}
537     }
538   else
539     {
540       code = GET_CODE (x);
541       switch (code)
542 	{
543 	case CLOBBER:
544 	  /* Test if it is a 'store'.  */
545 	  tmp_class = may_trap_exp (XEXP (x, 0), 1);
546 	  break;
547 	case SET:
548 	  /* Test if it is a store.  */
549 	  tmp_class = may_trap_exp (SET_DEST (x), 1);
550 	  if (tmp_class == TRAP_RISKY)
551 	    break;
552 	  /* Test if it is a load.  */
553 	  tmp_class =
554 	    WORST_CLASS (tmp_class,
555 			 may_trap_exp (SET_SRC (x), 0));
556 	  break;
557 	case COND_EXEC:
558 	  tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
559 	  if (tmp_class == TRAP_RISKY)
560 	    break;
561 	  tmp_class = WORST_CLASS (tmp_class,
562 				   may_trap_exp (COND_EXEC_TEST (x), 0));
563 	  break;
564 	case TRAP_IF:
565 	  tmp_class = TRAP_RISKY;
566 	  break;
567 	default:;
568 	}
569       insn_class = tmp_class;
570     }
571 
572   return insn_class;
573 }
574 
575 int
576 haifa_classify_insn (const_rtx insn)
577 {
578   return haifa_classify_rtx (PATTERN (insn));
579 }
580 
581 /* After the scheduler initialization function has been called, this function
582    can be called to enable modulo scheduling.  II is the initiation interval
583    we should use, it affects the delays for delay_pairs that were recorded as
584    separated by a given number of stages.
585 
586    MAX_STAGES provides us with a limit
587    after which we give up scheduling; the caller must have unrolled at least
588    as many copies of the loop body and recorded delay_pairs for them.
589 
590    INSNS is the number of real (non-debug) insns in one iteration of
591    the loop.  MAX_UID can be used to test whether an insn belongs to
592    the first iteration of the loop; all of them have a uid lower than
593    MAX_UID.  */
594 void
595 set_modulo_params (int ii, int max_stages, int insns, int max_uid)
596 {
597   modulo_ii = ii;
598   modulo_max_stages = max_stages;
599   modulo_n_insns = insns;
600   modulo_iter0_max_uid = max_uid;
601   modulo_backtracks_left = PARAM_VALUE (PARAM_MAX_MODULO_BACKTRACK_ATTEMPTS);
602 }
603 
604 /* A structure to record a pair of insns where the first one is a real
605    insn that has delay slots, and the second is its delayed shadow.
606    I1 is scheduled normally and will emit an assembly instruction,
607    while I2 describes the side effect that takes place at the
608    transition between cycles CYCLES and (CYCLES + 1) after I1.  */
609 struct delay_pair
610 {
611   struct delay_pair *next_same_i1;
612   rtx_insn *i1, *i2;
613   int cycles;
614   /* When doing modulo scheduling, we a delay_pair can also be used to
615      show that I1 and I2 are the same insn in a different stage.  If that
616      is the case, STAGES will be nonzero.  */
617   int stages;
618 };
619 
620 /* Helpers for delay hashing.  */
621 
622 struct delay_i1_hasher : typed_noop_remove <delay_pair>
623 {
624   typedef delay_pair value_type;
625   typedef void compare_type;
626   static inline hashval_t hash (const value_type *);
627   static inline bool equal (const value_type *, const compare_type *);
628 };
629 
630 /* Returns a hash value for X, based on hashing just I1.  */
631 
632 inline hashval_t
633 delay_i1_hasher::hash (const value_type *x)
634 {
635   return htab_hash_pointer (x->i1);
636 }
637 
638 /* Return true if I1 of pair X is the same as that of pair Y.  */
639 
640 inline bool
641 delay_i1_hasher::equal (const value_type *x, const compare_type *y)
642 {
643   return x->i1 == y;
644 }
645 
646 struct delay_i2_hasher : typed_free_remove <delay_pair>
647 {
648   typedef delay_pair value_type;
649   typedef void compare_type;
650   static inline hashval_t hash (const value_type *);
651   static inline bool equal (const value_type *, const compare_type *);
652 };
653 
654 /* Returns a hash value for X, based on hashing just I2.  */
655 
656 inline hashval_t
657 delay_i2_hasher::hash (const value_type *x)
658 {
659   return htab_hash_pointer (x->i2);
660 }
661 
662 /* Return true if I2 of pair X is the same as that of pair Y.  */
663 
664 inline bool
665 delay_i2_hasher::equal (const value_type *x, const compare_type *y)
666 {
667   return x->i2 == y;
668 }
669 
670 /* Two hash tables to record delay_pairs, one indexed by I1 and the other
671    indexed by I2.  */
672 static hash_table<delay_i1_hasher> *delay_htab;
673 static hash_table<delay_i2_hasher> *delay_htab_i2;
674 
675 /* Called through htab_traverse.  Walk the hashtable using I2 as
676    index, and delete all elements involving an UID higher than
677    that pointed to by *DATA.  */
678 int
679 haifa_htab_i2_traverse (delay_pair **slot, int *data)
680 {
681   int maxuid = *data;
682   struct delay_pair *p = *slot;
683   if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
684     {
685       delay_htab_i2->clear_slot (slot);
686     }
687   return 1;
688 }
689 
690 /* Called through htab_traverse.  Walk the hashtable using I2 as
691    index, and delete all elements involving an UID higher than
692    that pointed to by *DATA.  */
693 int
694 haifa_htab_i1_traverse (delay_pair **pslot, int *data)
695 {
696   int maxuid = *data;
697   struct delay_pair *p, *first, **pprev;
698 
699   if (INSN_UID ((*pslot)->i1) >= maxuid)
700     {
701       delay_htab->clear_slot (pslot);
702       return 1;
703     }
704   pprev = &first;
705   for (p = *pslot; p; p = p->next_same_i1)
706     {
707       if (INSN_UID (p->i2) < maxuid)
708 	{
709 	  *pprev = p;
710 	  pprev = &p->next_same_i1;
711 	}
712     }
713   *pprev = NULL;
714   if (first == NULL)
715     delay_htab->clear_slot (pslot);
716   else
717     *pslot = first;
718   return 1;
719 }
720 
721 /* Discard all delay pairs which involve an insn with an UID higher
722    than MAX_UID.  */
723 void
724 discard_delay_pairs_above (int max_uid)
725 {
726   delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
727   delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
728 }
729 
730 /* This function can be called by a port just before it starts the final
731    scheduling pass.  It records the fact that an instruction with delay
732    slots has been split into two insns, I1 and I2.  The first one will be
733    scheduled normally and initiates the operation.  The second one is a
734    shadow which must follow a specific number of cycles after I1; its only
735    purpose is to show the side effect that occurs at that cycle in the RTL.
736    If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
737    while I2 retains the original insn type.
738 
739    There are two ways in which the number of cycles can be specified,
740    involving the CYCLES and STAGES arguments to this function.  If STAGES
741    is zero, we just use the value of CYCLES.  Otherwise, STAGES is a factor
742    which is multiplied by MODULO_II to give the number of cycles.  This is
743    only useful if the caller also calls set_modulo_params to enable modulo
744    scheduling.  */
745 
746 void
747 record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
748 {
749   struct delay_pair *p = XNEW (struct delay_pair);
750   struct delay_pair **slot;
751 
752   p->i1 = i1;
753   p->i2 = i2;
754   p->cycles = cycles;
755   p->stages = stages;
756 
757   if (!delay_htab)
758     {
759       delay_htab = new hash_table<delay_i1_hasher> (10);
760       delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
761     }
762   slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
763   p->next_same_i1 = *slot;
764   *slot = p;
765   slot = delay_htab_i2->find_slot (p, INSERT);
766   *slot = p;
767 }
768 
769 /* Examine the delay pair hashtable to see if INSN is a shadow for another,
770    and return the other insn if so.  Return NULL otherwise.  */
771 rtx_insn *
772 real_insn_for_shadow (rtx_insn *insn)
773 {
774   struct delay_pair *pair;
775 
776   if (!delay_htab)
777     return NULL;
778 
779   pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
780   if (!pair || pair->stages > 0)
781     return NULL;
782   return pair->i1;
783 }
784 
785 /* For a pair P of insns, return the fixed distance in cycles from the first
786    insn after which the second must be scheduled.  */
787 static int
788 pair_delay (struct delay_pair *p)
789 {
790   if (p->stages == 0)
791     return p->cycles;
792   else
793     return p->stages * modulo_ii;
794 }
795 
796 /* Given an insn INSN, add a dependence on its delayed shadow if it
797    has one.  Also try to find situations where shadows depend on each other
798    and add dependencies to the real insns to limit the amount of backtracking
799    needed.  */
800 void
801 add_delay_dependencies (rtx_insn *insn)
802 {
803   struct delay_pair *pair;
804   sd_iterator_def sd_it;
805   dep_t dep;
806 
807   if (!delay_htab)
808     return;
809 
810   pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
811   if (!pair)
812     return;
813   add_dependence (insn, pair->i1, REG_DEP_ANTI);
814   if (pair->stages)
815     return;
816 
817   FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
818     {
819       rtx_insn *pro = DEP_PRO (dep);
820       struct delay_pair *other_pair
821 	= delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
822       if (!other_pair || other_pair->stages)
823 	continue;
824       if (pair_delay (other_pair) >= pair_delay (pair))
825 	{
826 	  if (sched_verbose >= 4)
827 	    {
828 	      fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
829 		       INSN_UID (other_pair->i1),
830 		       INSN_UID (pair->i1));
831 	      fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
832 		       INSN_UID (pair->i1),
833 		       INSN_UID (pair->i2),
834 		       pair_delay (pair));
835 	      fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
836 		       INSN_UID (other_pair->i1),
837 		       INSN_UID (other_pair->i2),
838 		       pair_delay (other_pair));
839 	    }
840 	  add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
841 	}
842     }
843 }
844 
845 /* Forward declarations.  */
846 
847 static int priority (rtx_insn *);
848 static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
849 static int rank_for_schedule (const void *, const void *);
850 static void swap_sort (rtx_insn **, int);
851 static void queue_insn (rtx_insn *, int, const char *);
852 static int schedule_insn (rtx_insn *);
853 static void adjust_priority (rtx_insn *);
854 static void advance_one_cycle (void);
855 static void extend_h_i_d (void);
856 
857 
858 /* Notes handling mechanism:
859    =========================
860    Generally, NOTES are saved before scheduling and restored after scheduling.
861    The scheduler distinguishes between two types of notes:
862 
863    (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
864    Before scheduling a region, a pointer to the note is added to the insn
865    that follows or precedes it.  (This happens as part of the data dependence
866    computation).  After scheduling an insn, the pointer contained in it is
867    used for regenerating the corresponding note (in reemit_notes).
868 
869    (2) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
870    these notes are put in a list (in rm_other_notes() and
871    unlink_other_notes ()).  After scheduling the block, these notes are
872    inserted at the beginning of the block (in schedule_block()).  */
873 
874 static void ready_add (struct ready_list *, rtx_insn *, bool);
875 static rtx_insn *ready_remove_first (struct ready_list *);
876 static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);
877 
878 static void queue_to_ready (struct ready_list *);
879 static int early_queue_to_ready (state_t, struct ready_list *);
880 
881 /* The following functions are used to implement multi-pass scheduling
882    on the first cycle.  */
883 static rtx_insn *ready_remove (struct ready_list *, int);
884 static void ready_remove_insn (rtx);
885 
886 static void fix_inter_tick (rtx_insn *, rtx_insn *);
887 static int fix_tick_ready (rtx_insn *);
888 static void change_queue_index (rtx_insn *, int);
889 
890 /* The following functions are used to implement scheduling of data/control
891    speculative instructions.  */
892 
893 static void extend_h_i_d (void);
894 static void init_h_i_d (rtx_insn *);
895 static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
896 static void generate_recovery_code (rtx_insn *);
897 static void process_insn_forw_deps_be_in_spec (rtx, rtx_insn *, ds_t);
898 static void begin_speculative_block (rtx_insn *);
899 static void add_to_speculative_block (rtx_insn *);
900 static void init_before_recovery (basic_block *);
901 static void create_check_block_twin (rtx_insn *, bool);
902 static void fix_recovery_deps (basic_block);
903 static bool haifa_change_pattern (rtx_insn *, rtx);
904 static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
905 static void restore_bb_notes (basic_block);
906 static void fix_jump_move (rtx_insn *);
907 static void move_block_after_check (rtx_insn *);
908 static void move_succs (vec<edge, va_gc> **, basic_block);
909 static void sched_remove_insn (rtx_insn *);
910 static void clear_priorities (rtx_insn *, rtx_vec_t *);
911 static void calc_priorities (rtx_vec_t);
912 static void add_jump_dependencies (rtx_insn *, rtx_insn *);
913 
914 #endif /* INSN_SCHEDULING */
915 
916 /* Point to state used for the current scheduling pass.  */
917 struct haifa_sched_info *current_sched_info;
918 
919 #ifndef INSN_SCHEDULING
920 void
921 schedule_insns (void)
922 {
923 }
924 #else
925 
926 /* Do register pressure sensitive insn scheduling if the flag is set
927    up.  */
928 enum sched_pressure_algorithm sched_pressure;
929 
930 /* Map regno -> its pressure class.  The map defined only when
931    SCHED_PRESSURE != SCHED_PRESSURE_NONE.  */
932 enum reg_class *sched_regno_pressure_class;
933 
934 /* The current register pressure.  Only elements corresponding pressure
935    classes are defined.  */
936 static int curr_reg_pressure[N_REG_CLASSES];
937 
938 /* Saved value of the previous array.  */
939 static int saved_reg_pressure[N_REG_CLASSES];
940 
941 /* Register living at given scheduling point.  */
942 static bitmap curr_reg_live;
943 
944 /* Saved value of the previous array.  */
945 static bitmap saved_reg_live;
946 
947 /* Registers mentioned in the current region.  */
948 static bitmap region_ref_regs;
949 
950 /* Effective number of available registers of a given class (see comment
951    in sched_pressure_start_bb).  */
952 static int sched_class_regs_num[N_REG_CLASSES];
953 /* Number of call_used_regs.  This is a helper for calculating of
954    sched_class_regs_num.  */
955 static int call_used_regs_num[N_REG_CLASSES];
956 
957 /* Initiate register pressure relative info for scheduling the current
958    region.  Currently it is only clearing register mentioned in the
959    current region.  */
960 void
961 sched_init_region_reg_pressure_info (void)
962 {
963   bitmap_clear (region_ref_regs);
964 }
965 
966 /* PRESSURE[CL] describes the pressure on register class CL.  Update it
967    for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
968    LIVE tracks the set of live registers; if it is null, assume that
969    every birth or death is genuine.  */
970 static inline void
971 mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
972 {
973   enum reg_class pressure_class;
974 
975   pressure_class = sched_regno_pressure_class[regno];
976   if (regno >= FIRST_PSEUDO_REGISTER)
977     {
978       if (pressure_class != NO_REGS)
979 	{
980 	  if (birth_p)
981 	    {
982 	      if (!live || bitmap_set_bit (live, regno))
983 		pressure[pressure_class]
984 		  += (ira_reg_class_max_nregs
985 		      [pressure_class][PSEUDO_REGNO_MODE (regno)]);
986 	    }
987 	  else
988 	    {
989 	      if (!live || bitmap_clear_bit (live, regno))
990 		pressure[pressure_class]
991 		  -= (ira_reg_class_max_nregs
992 		      [pressure_class][PSEUDO_REGNO_MODE (regno)]);
993 	    }
994 	}
995     }
996   else if (pressure_class != NO_REGS
997 	   && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
998     {
999       if (birth_p)
1000 	{
1001 	  if (!live || bitmap_set_bit (live, regno))
1002 	    pressure[pressure_class]++;
1003 	}
1004       else
1005 	{
1006 	  if (!live || bitmap_clear_bit (live, regno))
1007 	    pressure[pressure_class]--;
1008 	}
1009     }
1010 }
1011 
1012 /* Initiate current register pressure related info from living
1013    registers given by LIVE.  */
1014 static void
1015 initiate_reg_pressure_info (bitmap live)
1016 {
1017   int i;
1018   unsigned int j;
1019   bitmap_iterator bi;
1020 
1021   for (i = 0; i < ira_pressure_classes_num; i++)
1022     curr_reg_pressure[ira_pressure_classes[i]] = 0;
1023   bitmap_clear (curr_reg_live);
1024   EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
1025     if (sched_pressure == SCHED_PRESSURE_MODEL
1026 	|| current_nr_blocks == 1
1027 	|| bitmap_bit_p (region_ref_regs, j))
1028       mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
1029 }
1030 
1031 /* Mark registers in X as mentioned in the current region.  */
1032 static void
1033 setup_ref_regs (rtx x)
1034 {
1035   int i, j, regno;
1036   const RTX_CODE code = GET_CODE (x);
1037   const char *fmt;
1038 
1039   if (REG_P (x))
1040     {
1041       regno = REGNO (x);
1042       if (HARD_REGISTER_NUM_P (regno))
1043 	bitmap_set_range (region_ref_regs, regno,
1044 			  hard_regno_nregs[regno][GET_MODE (x)]);
1045       else
1046 	bitmap_set_bit (region_ref_regs, REGNO (x));
1047       return;
1048     }
1049   fmt = GET_RTX_FORMAT (code);
1050   for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1051     if (fmt[i] == 'e')
1052       setup_ref_regs (XEXP (x, i));
1053     else if (fmt[i] == 'E')
1054       {
1055 	for (j = 0; j < XVECLEN (x, i); j++)
1056 	  setup_ref_regs (XVECEXP (x, i, j));
1057       }
1058 }
1059 
1060 /* Initiate current register pressure related info at the start of
1061    basic block BB.  */
1062 static void
1063 initiate_bb_reg_pressure_info (basic_block bb)
1064 {
1065   unsigned int i ATTRIBUTE_UNUSED;
1066   rtx_insn *insn;
1067 
1068   if (current_nr_blocks > 1)
1069     FOR_BB_INSNS (bb, insn)
1070       if (NONDEBUG_INSN_P (insn))
1071 	setup_ref_regs (PATTERN (insn));
1072   initiate_reg_pressure_info (df_get_live_in (bb));
1073 #ifdef EH_RETURN_DATA_REGNO
1074   if (bb_has_eh_pred (bb))
1075     for (i = 0; ; ++i)
1076       {
1077 	unsigned int regno = EH_RETURN_DATA_REGNO (i);
1078 
1079 	if (regno == INVALID_REGNUM)
1080 	  break;
1081 	if (! bitmap_bit_p (df_get_live_in (bb), regno))
1082 	  mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
1083 				     regno, true);
1084       }
1085 #endif
1086 }
1087 
1088 /* Save current register pressure related info.  */
1089 static void
1090 save_reg_pressure (void)
1091 {
1092   int i;
1093 
1094   for (i = 0; i < ira_pressure_classes_num; i++)
1095     saved_reg_pressure[ira_pressure_classes[i]]
1096       = curr_reg_pressure[ira_pressure_classes[i]];
1097   bitmap_copy (saved_reg_live, curr_reg_live);
1098 }
1099 
1100 /* Restore saved register pressure related info.  */
1101 static void
1102 restore_reg_pressure (void)
1103 {
1104   int i;
1105 
1106   for (i = 0; i < ira_pressure_classes_num; i++)
1107     curr_reg_pressure[ira_pressure_classes[i]]
1108       = saved_reg_pressure[ira_pressure_classes[i]];
1109   bitmap_copy (curr_reg_live, saved_reg_live);
1110 }
1111 
1112 /* Return TRUE if the register is dying after its USE.  */
1113 static bool
1114 dying_use_p (struct reg_use_data *use)
1115 {
1116   struct reg_use_data *next;
1117 
1118   for (next = use->next_regno_use; next != use; next = next->next_regno_use)
1119     if (NONDEBUG_INSN_P (next->insn)
1120 	&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
1121       return false;
1122   return true;
1123 }
1124 
1125 /* Print info about the current register pressure and its excess for
1126    each pressure class.  */
1127 static void
1128 print_curr_reg_pressure (void)
1129 {
1130   int i;
1131   enum reg_class cl;
1132 
1133   fprintf (sched_dump, ";;\t");
1134   for (i = 0; i < ira_pressure_classes_num; i++)
1135     {
1136       cl = ira_pressure_classes[i];
1137       gcc_assert (curr_reg_pressure[cl] >= 0);
1138       fprintf (sched_dump, "  %s:%d(%d)", reg_class_names[cl],
1139 	       curr_reg_pressure[cl],
1140 	       curr_reg_pressure[cl] - sched_class_regs_num[cl]);
1141     }
1142   fprintf (sched_dump, "\n");
1143 }
1144 
1145 /* Determine if INSN has a condition that is clobbered if a register
1146    in SET_REGS is modified.  */
1147 static bool
1148 cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
1149 {
1150   rtx pat = PATTERN (insn);
1151   gcc_assert (GET_CODE (pat) == COND_EXEC);
1152   if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
1153     {
1154       sd_iterator_def sd_it;
1155       dep_t dep;
1156       haifa_change_pattern (insn, ORIG_PAT (insn));
1157       FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1158 	DEP_STATUS (dep) &= ~DEP_CANCELLED;
1159       TODO_SPEC (insn) = HARD_DEP;
1160       if (sched_verbose >= 2)
1161 	fprintf (sched_dump,
1162 		 ";;\t\tdequeue insn %s because of clobbered condition\n",
1163 		 (*current_sched_info->print_insn) (insn, 0));
1164       return true;
1165     }
1166 
1167   return false;
1168 }
1169 
1170 /* This function should be called after modifying the pattern of INSN,
1171    to update scheduler data structures as needed.  */
1172 static void
1173 update_insn_after_change (rtx_insn *insn)
1174 {
1175   sd_iterator_def sd_it;
1176   dep_t dep;
1177 
1178   dfa_clear_single_insn_cache (insn);
1179 
1180   sd_it = sd_iterator_start (insn,
1181 			     SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
1182   while (sd_iterator_cond (&sd_it, &dep))
1183     {
1184       DEP_COST (dep) = UNKNOWN_DEP_COST;
1185       sd_iterator_next (&sd_it);
1186     }
1187 
1188   /* Invalidate INSN_COST, so it'll be recalculated.  */
1189   INSN_COST (insn) = -1;
1190   /* Invalidate INSN_TICK, so it'll be recalculated.  */
1191   INSN_TICK (insn) = INVALID_TICK;
1192 
1193   /* Invalidate autoprefetch data entry.  */
1194   INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
1195     = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1196   INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
1197     = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
1198 }
1199 
1200 
1201 /* Two VECs, one to hold dependencies for which pattern replacements
1202    need to be applied or restored at the start of the next cycle, and
1203    another to hold an integer that is either one, to apply the
1204    corresponding replacement, or zero to restore it.  */
1205 static vec<dep_t> next_cycle_replace_deps;
1206 static vec<int> next_cycle_apply;
1207 
1208 static void apply_replacement (dep_t, bool);
1209 static void restore_pattern (dep_t, bool);
1210 
1211 /* Look at the remaining dependencies for insn NEXT, and compute and return
1212    the TODO_SPEC value we should use for it.  This is called after one of
1213    NEXT's dependencies has been resolved.
1214    We also perform pattern replacements for predication, and for broken
1215    replacement dependencies.  The latter is only done if FOR_BACKTRACK is
1216    false.  */
1217 
1218 static ds_t
1219 recompute_todo_spec (rtx_insn *next, bool for_backtrack)
1220 {
1221   ds_t new_ds;
1222   sd_iterator_def sd_it;
1223   dep_t dep, modify_dep = NULL;
1224   int n_spec = 0;
1225   int n_control = 0;
1226   int n_replace = 0;
1227   bool first_p = true;
1228 
1229   if (sd_lists_empty_p (next, SD_LIST_BACK))
1230     /* NEXT has all its dependencies resolved.  */
1231     return 0;
1232 
1233   if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
1234     return HARD_DEP;
1235 
1236   /* If NEXT is intended to sit adjacent to this instruction, we don't
1237      want to try to break any dependencies.  Treat it as a HARD_DEP.  */
1238   if (SCHED_GROUP_P (next))
1239     return HARD_DEP;
1240 
1241   /* Now we've got NEXT with speculative deps only.
1242      1. Look at the deps to see what we have to do.
1243      2. Check if we can do 'todo'.  */
1244   new_ds = 0;
1245 
1246   FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1247     {
1248       rtx_insn *pro = DEP_PRO (dep);
1249       ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
1250 
1251       if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
1252 	continue;
1253 
1254       if (ds)
1255 	{
1256 	  n_spec++;
1257 	  if (first_p)
1258 	    {
1259 	      first_p = false;
1260 
1261 	      new_ds = ds;
1262 	    }
1263 	  else
1264 	    new_ds = ds_merge (new_ds, ds);
1265 	}
1266       else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
1267 	{
1268 	  if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1269 	    {
1270 	      n_control++;
1271 	      modify_dep = dep;
1272 	    }
1273 	  DEP_STATUS (dep) &= ~DEP_CANCELLED;
1274 	}
1275       else if (DEP_REPLACE (dep) != NULL)
1276 	{
1277 	  if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
1278 	    {
1279 	      n_replace++;
1280 	      modify_dep = dep;
1281 	    }
1282 	  DEP_STATUS (dep) &= ~DEP_CANCELLED;
1283 	}
1284     }
1285 
1286   if (n_replace > 0 && n_control == 0 && n_spec == 0)
1287     {
1288       if (!dbg_cnt (sched_breakdep))
1289 	return HARD_DEP;
1290       FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
1291 	{
1292 	  struct dep_replacement *desc = DEP_REPLACE (dep);
1293 	  if (desc != NULL)
1294 	    {
1295 	      if (desc->insn == next && !for_backtrack)
1296 		{
1297 		  gcc_assert (n_replace == 1);
1298 		  apply_replacement (dep, true);
1299 		}
1300 	      DEP_STATUS (dep) |= DEP_CANCELLED;
1301 	    }
1302 	}
1303       return 0;
1304     }
1305 
1306   else if (n_control == 1 && n_replace == 0 && n_spec == 0)
1307     {
1308       rtx_insn *pro, *other;
1309       rtx new_pat;
1310       rtx cond = NULL_RTX;
1311       bool success;
1312       rtx_insn *prev = NULL;
1313       int i;
1314       unsigned regno;
1315 
1316       if ((current_sched_info->flags & DO_PREDICATION) == 0
1317 	  || (ORIG_PAT (next) != NULL_RTX
1318 	      && PREDICATED_PAT (next) == NULL_RTX))
1319 	return HARD_DEP;
1320 
1321       pro = DEP_PRO (modify_dep);
1322       other = real_insn_for_shadow (pro);
1323       if (other != NULL_RTX)
1324 	pro = other;
1325 
1326       cond = sched_get_reverse_condition_uncached (pro);
1327       regno = REGNO (XEXP (cond, 0));
1328 
1329       /* Find the last scheduled insn that modifies the condition register.
1330 	 We can stop looking once we find the insn we depend on through the
1331 	 REG_DEP_CONTROL; if the condition register isn't modified after it,
1332 	 we know that it still has the right value.  */
1333       if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
1334 	FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
1335 	  {
1336 	    HARD_REG_SET t;
1337 
1338 	    find_all_hard_reg_sets (prev, &t, true);
1339 	    if (TEST_HARD_REG_BIT (t, regno))
1340 	      return HARD_DEP;
1341 	    if (prev == pro)
1342 	      break;
1343 	  }
1344       if (ORIG_PAT (next) == NULL_RTX)
1345 	{
1346 	  ORIG_PAT (next) = PATTERN (next);
1347 
1348 	  new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
1349 	  success = haifa_change_pattern (next, new_pat);
1350 	  if (!success)
1351 	    return HARD_DEP;
1352 	  PREDICATED_PAT (next) = new_pat;
1353 	}
1354       else if (PATTERN (next) != PREDICATED_PAT (next))
1355 	{
1356 	  bool success = haifa_change_pattern (next,
1357 					       PREDICATED_PAT (next));
1358 	  gcc_assert (success);
1359 	}
1360       DEP_STATUS (modify_dep) |= DEP_CANCELLED;
1361       return DEP_CONTROL;
1362     }
1363 
1364   if (PREDICATED_PAT (next) != NULL_RTX)
1365     {
1366       int tick = INSN_TICK (next);
1367       bool success = haifa_change_pattern (next,
1368 					   ORIG_PAT (next));
1369       INSN_TICK (next) = tick;
1370       gcc_assert (success);
1371     }
1372 
1373   /* We can't handle the case where there are both speculative and control
1374      dependencies, so we return HARD_DEP in such a case.  Also fail if
1375      we have speculative dependencies with not enough points, or more than
1376      one control dependency.  */
1377   if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
1378       || (n_spec > 0
1379 	  /* Too few points?  */
1380 	  && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
1381       || n_control > 0
1382       || n_replace > 0)
1383     return HARD_DEP;
1384 
1385   return new_ds;
1386 }
1387 
1388 /* Pointer to the last instruction scheduled.  */
1389 static rtx_insn *last_scheduled_insn;
1390 
1391 /* Pointer to the last nondebug instruction scheduled within the
1392    block, or the prev_head of the scheduling block.  Used by
1393    rank_for_schedule, so that insns independent of the last scheduled
1394    insn will be preferred over dependent instructions.  */
1395 static rtx last_nondebug_scheduled_insn;
1396 
1397 /* Pointer that iterates through the list of unscheduled insns if we
1398    have a dbg_cnt enabled.  It always points at an insn prior to the
1399    first unscheduled one.  */
1400 static rtx_insn *nonscheduled_insns_begin;
1401 
1402 /* Compute cost of executing INSN.
1403    This is the number of cycles between instruction issue and
1404    instruction results.  */
1405 int
1406 insn_cost (rtx_insn *insn)
1407 {
1408   int cost;
1409 
1410   if (sched_fusion)
1411     return 0;
1412 
1413   if (sel_sched_p ())
1414     {
1415       if (recog_memoized (insn) < 0)
1416 	return 0;
1417 
1418       cost = insn_default_latency (insn);
1419       if (cost < 0)
1420 	cost = 0;
1421 
1422       return cost;
1423     }
1424 
1425   cost = INSN_COST (insn);
1426 
1427   if (cost < 0)
1428     {
1429       /* A USE insn, or something else we don't need to
1430 	 understand.  We can't pass these directly to
1431 	 result_ready_cost or insn_default_latency because it will
1432 	 trigger a fatal error for unrecognizable insns.  */
1433       if (recog_memoized (insn) < 0)
1434 	{
1435 	  INSN_COST (insn) = 0;
1436 	  return 0;
1437 	}
1438       else
1439 	{
1440 	  cost = insn_default_latency (insn);
1441 	  if (cost < 0)
1442 	    cost = 0;
1443 
1444 	  INSN_COST (insn) = cost;
1445 	}
1446     }
1447 
1448   return cost;
1449 }
1450 
1451 /* Compute cost of dependence LINK.
1452    This is the number of cycles between instruction issue and
1453    instruction results.
1454    ??? We also use this function to call recog_memoized on all insns.  */
1455 int
1456 dep_cost_1 (dep_t link, dw_t dw)
1457 {
1458   rtx_insn *insn = DEP_PRO (link);
1459   rtx_insn *used = DEP_CON (link);
1460   int cost;
1461 
1462   if (DEP_COST (link) != UNKNOWN_DEP_COST)
1463     return DEP_COST (link);
1464 
1465   if (delay_htab)
1466     {
1467       struct delay_pair *delay_entry;
1468       delay_entry
1469 	= delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
1470       if (delay_entry)
1471 	{
1472 	  if (delay_entry->i1 == insn)
1473 	    {
1474 	      DEP_COST (link) = pair_delay (delay_entry);
1475 	      return DEP_COST (link);
1476 	    }
1477 	}
1478     }
1479 
1480   /* A USE insn should never require the value used to be computed.
1481      This allows the computation of a function's result and parameter
1482      values to overlap the return and call.  We don't care about the
1483      dependence cost when only decreasing register pressure.  */
1484   if (recog_memoized (used) < 0)
1485     {
1486       cost = 0;
1487       recog_memoized (insn);
1488     }
1489   else
1490     {
1491       enum reg_note dep_type = DEP_TYPE (link);
1492 
1493       cost = insn_cost (insn);
1494 
1495       if (INSN_CODE (insn) >= 0)
1496 	{
1497 	  if (dep_type == REG_DEP_ANTI)
1498 	    cost = 0;
1499 	  else if (dep_type == REG_DEP_OUTPUT)
1500 	    {
1501 	      cost = (insn_default_latency (insn)
1502 		      - insn_default_latency (used));
1503 	      if (cost <= 0)
1504 		cost = 1;
1505 	    }
1506 	  else if (bypass_p (insn))
1507 	    cost = insn_latency (insn, used);
1508 	}
1509 
1510 
1511       if (targetm.sched.adjust_cost_2)
1512 	cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
1513 					    dw);
1514       else if (targetm.sched.adjust_cost != NULL)
1515 	{
1516 	  /* This variable is used for backward compatibility with the
1517 	     targets.  */
1518 	  rtx_insn_list *dep_cost_rtx_link =
1519 	    alloc_INSN_LIST (NULL_RTX, NULL);
1520 
1521 	  /* Make it self-cycled, so that if some tries to walk over this
1522 	     incomplete list he/she will be caught in an endless loop.  */
1523 	  XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
1524 
1525 	  /* Targets use only REG_NOTE_KIND of the link.  */
1526 	  PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
1527 
1528 	  cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
1529 					    insn, cost);
1530 
1531 	  free_INSN_LIST_node (dep_cost_rtx_link);
1532 	}
1533 
1534       if (cost < 0)
1535 	cost = 0;
1536     }
1537 
1538   DEP_COST (link) = cost;
1539   return cost;
1540 }
1541 
1542 /* Compute cost of dependence LINK.
1543    This is the number of cycles between instruction issue and
1544    instruction results.  */
1545 int
1546 dep_cost (dep_t link)
1547 {
1548   return dep_cost_1 (link, 0);
1549 }
1550 
1551 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
1552    INSN_PRIORITY explicitly.  */
1553 void
1554 increase_insn_priority (rtx_insn *insn, int amount)
1555 {
1556   if (!sel_sched_p ())
1557     {
1558       /* We're dealing with haifa-sched.c INSN_PRIORITY.  */
1559       if (INSN_PRIORITY_KNOWN (insn))
1560 	  INSN_PRIORITY (insn) += amount;
1561     }
1562   else
1563     {
1564       /* In sel-sched.c INSN_PRIORITY is not kept up to date.
1565 	 Use EXPR_PRIORITY instead. */
1566       sel_add_to_insn_priority (insn, amount);
1567     }
1568 }
1569 
1570 /* Return 'true' if DEP should be included in priority calculations.  */
1571 static bool
1572 contributes_to_priority_p (dep_t dep)
1573 {
1574   if (DEBUG_INSN_P (DEP_CON (dep))
1575       || DEBUG_INSN_P (DEP_PRO (dep)))
1576     return false;
1577 
1578   /* Critical path is meaningful in block boundaries only.  */
1579   if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
1580 						    DEP_PRO (dep)))
1581     return false;
1582 
1583   if (DEP_REPLACE (dep) != NULL)
1584     return false;
1585 
1586   /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
1587      then speculative instructions will less likely be
1588      scheduled.  That is because the priority of
1589      their producers will increase, and, thus, the
1590      producers will more likely be scheduled, thus,
1591      resolving the dependence.  */
1592   if (sched_deps_info->generate_spec_deps
1593       && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
1594       && (DEP_STATUS (dep) & SPECULATIVE))
1595     return false;
1596 
1597   return true;
1598 }
1599 
1600 /* Compute the number of nondebug deps in list LIST for INSN.  */
1601 
1602 static int
1603 dep_list_size (rtx insn, sd_list_types_def list)
1604 {
1605   sd_iterator_def sd_it;
1606   dep_t dep;
1607   int dbgcount = 0, nodbgcount = 0;
1608 
1609   if (!MAY_HAVE_DEBUG_INSNS)
1610     return sd_lists_size (insn, list);
1611 
1612   FOR_EACH_DEP (insn, list, sd_it, dep)
1613     {
1614       if (DEBUG_INSN_P (DEP_CON (dep)))
1615 	dbgcount++;
1616       else if (!DEBUG_INSN_P (DEP_PRO (dep)))
1617 	nodbgcount++;
1618     }
1619 
1620   gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));
1621 
1622   return nodbgcount;
1623 }
1624 
1625 bool sched_fusion;
1626 
1627 /* Compute the priority number for INSN.  */
1628 static int
1629 priority (rtx_insn *insn)
1630 {
1631   if (! INSN_P (insn))
1632     return 0;
1633 
1634   /* We should not be interested in priority of an already scheduled insn.  */
1635   gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1636 
1637   if (!INSN_PRIORITY_KNOWN (insn))
1638     {
1639       int this_priority = -1;
1640 
1641       if (sched_fusion)
1642 	{
1643 	  int this_fusion_priority;
1644 
1645 	  targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
1646 					 &this_fusion_priority, &this_priority);
1647 	  INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
1648 	}
1649       else if (dep_list_size (insn, SD_LIST_FORW) == 0)
1650 	/* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1651 	   some forward deps but all of them are ignored by
1652 	   contributes_to_priority hook.  At the moment we set priority of
1653 	   such insn to 0.  */
1654 	this_priority = insn_cost (insn);
1655       else
1656 	{
1657 	  rtx_insn *prev_first, *twin;
1658 	  basic_block rec;
1659 
1660 	  /* For recovery check instructions we calculate priority slightly
1661 	     different than that of normal instructions.  Instead of walking
1662 	     through INSN_FORW_DEPS (check) list, we walk through
1663 	     INSN_FORW_DEPS list of each instruction in the corresponding
1664 	     recovery block.  */
1665 
1666           /* Selective scheduling does not define RECOVERY_BLOCK macro.  */
1667 	  rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1668 	  if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
1669 	    {
1670 	      prev_first = PREV_INSN (insn);
1671 	      twin = insn;
1672 	    }
1673 	  else
1674 	    {
1675 	      prev_first = NEXT_INSN (BB_HEAD (rec));
1676 	      twin = PREV_INSN (BB_END (rec));
1677 	    }
1678 
1679 	  do
1680 	    {
1681 	      sd_iterator_def sd_it;
1682 	      dep_t dep;
1683 
1684 	      FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1685 		{
1686 		  rtx_insn *next;
1687 		  int next_priority;
1688 
1689 		  next = DEP_CON (dep);
1690 
1691 		  if (BLOCK_FOR_INSN (next) != rec)
1692 		    {
1693 		      int cost;
1694 
1695 		      if (!contributes_to_priority_p (dep))
1696 			continue;
1697 
1698 		      if (twin == insn)
1699 			cost = dep_cost (dep);
1700 		      else
1701 			{
1702 			  struct _dep _dep1, *dep1 = &_dep1;
1703 
1704 			  init_dep (dep1, insn, next, REG_DEP_ANTI);
1705 
1706 			  cost = dep_cost (dep1);
1707 			}
1708 
1709 		      next_priority = cost + priority (next);
1710 
1711 		      if (next_priority > this_priority)
1712 			this_priority = next_priority;
1713 		    }
1714 		}
1715 
1716 	      twin = PREV_INSN (twin);
1717 	    }
1718 	  while (twin != prev_first);
1719 	}
1720 
1721       if (this_priority < 0)
1722 	{
1723 	  gcc_assert (this_priority == -1);
1724 
1725 	  this_priority = insn_cost (insn);
1726 	}
1727 
1728       INSN_PRIORITY (insn) = this_priority;
1729       INSN_PRIORITY_STATUS (insn) = 1;
1730     }
1731 
1732   return INSN_PRIORITY (insn);
1733 }
1734 
1735 /* Macros and functions for keeping the priority queue sorted, and
1736    dealing with queuing and dequeuing of instructions.  */
1737 
1738 /* For each pressure class CL, set DEATH[CL] to the number of registers
1739    in that class that die in INSN.  */
1740 
1741 static void
1742 calculate_reg_deaths (rtx_insn *insn, int *death)
1743 {
1744   int i;
1745   struct reg_use_data *use;
1746 
1747   for (i = 0; i < ira_pressure_classes_num; i++)
1748     death[ira_pressure_classes[i]] = 0;
1749   for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1750     if (dying_use_p (use))
1751       mark_regno_birth_or_death (0, death, use->regno, true);
1752 }
1753 
1754 /* Setup info about the current register pressure impact of scheduling
1755    INSN at the current scheduling point.  */
1756 static void
1757 setup_insn_reg_pressure_info (rtx_insn *insn)
1758 {
1759   int i, change, before, after, hard_regno;
1760   int excess_cost_change;
1761   machine_mode mode;
1762   enum reg_class cl;
1763   struct reg_pressure_data *pressure_info;
1764   int *max_reg_pressure;
1765   static int death[N_REG_CLASSES];
1766 
1767   gcc_checking_assert (!DEBUG_INSN_P (insn));
1768 
1769   excess_cost_change = 0;
1770   calculate_reg_deaths (insn, death);
1771   pressure_info = INSN_REG_PRESSURE (insn);
1772   max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1773   gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1774   for (i = 0; i < ira_pressure_classes_num; i++)
1775     {
1776       cl = ira_pressure_classes[i];
1777       gcc_assert (curr_reg_pressure[cl] >= 0);
1778       change = (int) pressure_info[i].set_increase - death[cl];
1779       before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
1780       after = MAX (0, max_reg_pressure[i] + change
1781 		   - sched_class_regs_num[cl]);
1782       hard_regno = ira_class_hard_regs[cl][0];
1783       gcc_assert (hard_regno >= 0);
1784       mode = reg_raw_mode[hard_regno];
1785       excess_cost_change += ((after - before)
1786 			     * (ira_memory_move_cost[mode][cl][0]
1787 				+ ira_memory_move_cost[mode][cl][1]));
1788     }
1789   INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1790 }
1791 
1792 /* This is the first page of code related to SCHED_PRESSURE_MODEL.
1793    It tries to make the scheduler take register pressure into account
1794    without introducing too many unnecessary stalls.  It hooks into the
1795    main scheduling algorithm at several points:
1796 
1797     - Before scheduling starts, model_start_schedule constructs a
1798       "model schedule" for the current block.  This model schedule is
1799       chosen solely to keep register pressure down.  It does not take the
1800       target's pipeline or the original instruction order into account,
1801       except as a tie-breaker.  It also doesn't work to a particular
1802       pressure limit.
1803 
1804       This model schedule gives us an idea of what pressure can be
1805       achieved for the block and gives us an example of a schedule that
1806       keeps to that pressure.  It also makes the final schedule less
1807       dependent on the original instruction order.  This is important
1808       because the original order can either be "wide" (many values live
1809       at once, such as in user-scheduled code) or "narrow" (few values
1810       live at once, such as after loop unrolling, where several
1811       iterations are executed sequentially).
1812 
1813       We do not apply this model schedule to the rtx stream.  We simply
1814       record it in model_schedule.  We also compute the maximum pressure,
1815       MP, that was seen during this schedule.
1816 
1817     - Instructions are added to the ready queue even if they require
1818       a stall.  The length of the stall is instead computed as:
1819 
1820 	 MAX (INSN_TICK (INSN) - clock_var, 0)
1821 
1822       (= insn_delay).  This allows rank_for_schedule to choose between
1823       introducing a deliberate stall or increasing pressure.
1824 
1825     - Before sorting the ready queue, model_set_excess_costs assigns
1826       a pressure-based cost to each ready instruction in the queue.
1827       This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
1828       (ECC for short) and is effectively measured in cycles.
1829 
1830     - rank_for_schedule ranks instructions based on:
1831 
1832 	ECC (insn) + insn_delay (insn)
1833 
1834       then as:
1835 
1836 	insn_delay (insn)
1837 
1838       So, for example, an instruction X1 with an ECC of 1 that can issue
1839       now will win over an instruction X0 with an ECC of zero that would
1840       introduce a stall of one cycle.  However, an instruction X2 with an
1841       ECC of 2 that can issue now will lose to both X0 and X1.
1842 
1843     - When an instruction is scheduled, model_recompute updates the model
1844       schedule with the new pressures (some of which might now exceed the
1845       original maximum pressure MP).  model_update_limit_points then searches
1846       for the new point of maximum pressure, if not already known.  */
1847 
1848 /* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
1849    from surrounding debug information.  */
1850 #define MODEL_BAR \
1851   ";;\t\t+------------------------------------------------------\n"
1852 
1853 /* Information about the pressure on a particular register class at a
1854    particular point of the model schedule.  */
1855 struct model_pressure_data {
1856   /* The pressure at this point of the model schedule, or -1 if the
1857      point is associated with an instruction that has already been
1858      scheduled.  */
1859   int ref_pressure;
1860 
1861   /* The maximum pressure during or after this point of the model schedule.  */
1862   int max_pressure;
1863 };
1864 
1865 /* Per-instruction information that is used while building the model
1866    schedule.  Here, "schedule" refers to the model schedule rather
1867    than the main schedule.  */
1868 struct model_insn_info {
1869   /* The instruction itself.  */
1870   rtx_insn *insn;
1871 
1872   /* If this instruction is in model_worklist, these fields link to the
1873      previous (higher-priority) and next (lower-priority) instructions
1874      in the list.  */
1875   struct model_insn_info *prev;
1876   struct model_insn_info *next;
1877 
1878   /* While constructing the schedule, QUEUE_INDEX describes whether an
1879      instruction has already been added to the schedule (QUEUE_SCHEDULED),
1880      is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
1881      old_queue records the value that QUEUE_INDEX had before scheduling
1882      started, so that we can restore it once the schedule is complete.  */
1883   int old_queue;
1884 
1885   /* The relative importance of an unscheduled instruction.  Higher
1886      values indicate greater importance.  */
1887   unsigned int model_priority;
1888 
1889   /* The length of the longest path of satisfied true dependencies
1890      that leads to this instruction.  */
1891   unsigned int depth;
1892 
1893   /* The length of the longest path of dependencies of any kind
1894      that leads from this instruction.  */
1895   unsigned int alap;
1896 
1897   /* The number of predecessor nodes that must still be scheduled.  */
1898   int unscheduled_preds;
1899 };
1900 
1901 /* Information about the pressure limit for a particular register class.
1902    This structure is used when applying a model schedule to the main
1903    schedule.  */
1904 struct model_pressure_limit {
1905   /* The maximum register pressure seen in the original model schedule.  */
1906   int orig_pressure;
1907 
1908   /* The maximum register pressure seen in the current model schedule
1909      (which excludes instructions that have already been scheduled).  */
1910   int pressure;
1911 
1912   /* The point of the current model schedule at which PRESSURE is first
1913      reached.  It is set to -1 if the value needs to be recomputed.  */
1914   int point;
1915 };
1916 
1917 /* Describes a particular way of measuring register pressure.  */
1918 struct model_pressure_group {
1919   /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI].  */
1920   struct model_pressure_limit limits[N_REG_CLASSES];
1921 
1922   /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
1923      on register class ira_pressure_classes[PCI] at point POINT of the
1924      current model schedule.  A POINT of model_num_insns describes the
1925      pressure at the end of the schedule.  */
1926   struct model_pressure_data *model;
1927 };
1928 
1929 /* Index POINT gives the instruction at point POINT of the model schedule.
1930    This array doesn't change during main scheduling.  */
1931 static vec<rtx_insn *> model_schedule;
1932 
1933 /* The list of instructions in the model worklist, sorted in order of
1934    decreasing priority.  */
1935 static struct model_insn_info *model_worklist;
1936 
1937 /* Index I describes the instruction with INSN_LUID I.  */
1938 static struct model_insn_info *model_insns;
1939 
1940 /* The number of instructions in the model schedule.  */
1941 static int model_num_insns;
1942 
1943 /* The index of the first instruction in model_schedule that hasn't yet been
1944    added to the main schedule, or model_num_insns if all of them have.  */
1945 static int model_curr_point;
1946 
1947 /* Describes the pressure before each instruction in the model schedule.  */
1948 static struct model_pressure_group model_before_pressure;
1949 
1950 /* The first unused model_priority value (as used in model_insn_info).  */
1951 static unsigned int model_next_priority;
1952 
1953 
1954 /* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
1955    at point POINT of the model schedule.  */
1956 #define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
1957   (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])
1958 
1959 /* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
1960    after point POINT of the model schedule.  */
1961 #define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
1962   (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)
1963 
1964 /* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
1965    of the model schedule.  */
1966 #define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
1967   (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)
1968 
1969 /* Information about INSN that is used when creating the model schedule.  */
1970 #define MODEL_INSN_INFO(INSN) \
1971   (&model_insns[INSN_LUID (INSN)])
1972 
1973 /* The instruction at point POINT of the model schedule.  */
1974 #define MODEL_INSN(POINT) \
1975   (model_schedule[POINT])
1976 
1977 
1978 /* Return INSN's index in the model schedule, or model_num_insns if it
1979    doesn't belong to that schedule.  */
1980 
1981 static int
1982 model_index (rtx_insn *insn)
1983 {
1984   if (INSN_MODEL_INDEX (insn) == 0)
1985     return model_num_insns;
1986   return INSN_MODEL_INDEX (insn) - 1;
1987 }
1988 
1989 /* Make sure that GROUP->limits is up-to-date for the current point
1990    of the model schedule.  */
1991 
1992 static void
1993 model_update_limit_points_in_group (struct model_pressure_group *group)
1994 {
1995   int pci, max_pressure, point;
1996 
1997   for (pci = 0; pci < ira_pressure_classes_num; pci++)
1998     {
1999       /* We may have passed the final point at which the pressure in
2000 	 group->limits[pci].pressure was reached.  Update the limit if so.  */
2001       max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
2002       group->limits[pci].pressure = max_pressure;
2003 
2004       /* Find the point at which MAX_PRESSURE is first reached.  We need
2005 	 to search in three cases:
2006 
2007 	 - We've already moved past the previous pressure point.
2008 	   In this case we search forward from model_curr_point.
2009 
2010 	 - We scheduled the previous point of maximum pressure ahead of
2011 	   its position in the model schedule, but doing so didn't bring
2012 	   the pressure point earlier.  In this case we search forward
2013 	   from that previous pressure point.
2014 
2015 	 - Scheduling an instruction early caused the maximum pressure
2016 	   to decrease.  In this case we will have set the pressure
2017 	   point to -1, and we search forward from model_curr_point.  */
2018       point = MAX (group->limits[pci].point, model_curr_point);
2019       while (point < model_num_insns
2020 	     && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
2021 	point++;
2022       group->limits[pci].point = point;
2023 
2024       gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
2025       gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
2026     }
2027 }
2028 
2029 /* Make sure that all register-pressure limits are up-to-date for the
2030    current position in the model schedule.  */
2031 
2032 static void
2033 model_update_limit_points (void)
2034 {
2035   model_update_limit_points_in_group (&model_before_pressure);
2036 }
2037 
2038 /* Return the model_index of the last unscheduled use in chain USE
2039    outside of USE's instruction.  Return -1 if there are no other uses,
2040    or model_num_insns if the register is live at the end of the block.  */
2041 
2042 static int
2043 model_last_use_except (struct reg_use_data *use)
2044 {
2045   struct reg_use_data *next;
2046   int last, index;
2047 
2048   last = -1;
2049   for (next = use->next_regno_use; next != use; next = next->next_regno_use)
2050     if (NONDEBUG_INSN_P (next->insn)
2051 	&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
2052       {
2053 	index = model_index (next->insn);
2054 	if (index == model_num_insns)
2055 	  return model_num_insns;
2056 	if (last < index)
2057 	  last = index;
2058       }
2059   return last;
2060 }
2061 
2062 /* An instruction with model_index POINT has just been scheduled, and it
2063    adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
2064    Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
2065    MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly.  */
2066 
2067 static void
2068 model_start_update_pressure (struct model_pressure_group *group,
2069 			     int point, int pci, int delta)
2070 {
2071   int next_max_pressure;
2072 
2073   if (point == model_num_insns)
2074     {
2075       /* The instruction wasn't part of the model schedule; it was moved
2076 	 from a different block.  Update the pressure for the end of
2077 	 the model schedule.  */
2078       MODEL_REF_PRESSURE (group, point, pci) += delta;
2079       MODEL_MAX_PRESSURE (group, point, pci) += delta;
2080     }
2081   else
2082     {
2083       /* Record that this instruction has been scheduled.  Nothing now
2084 	 changes between POINT and POINT + 1, so get the maximum pressure
2085 	 from the latter.  If the maximum pressure decreases, the new
2086 	 pressure point may be before POINT.  */
2087       MODEL_REF_PRESSURE (group, point, pci) = -1;
2088       next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2089       if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
2090 	{
2091 	  MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
2092 	  if (group->limits[pci].point == point)
2093 	    group->limits[pci].point = -1;
2094 	}
2095     }
2096 }
2097 
2098 /* Record that scheduling a later instruction has changed the pressure
2099    at point POINT of the model schedule by DELTA (which might be 0).
2100    Update GROUP accordingly.  Return nonzero if these changes might
2101    trigger changes to previous points as well.  */
2102 
2103 static int
2104 model_update_pressure (struct model_pressure_group *group,
2105 		       int point, int pci, int delta)
2106 {
2107   int ref_pressure, max_pressure, next_max_pressure;
2108 
2109   /* If POINT hasn't yet been scheduled, update its pressure.  */
2110   ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
2111   if (ref_pressure >= 0 && delta != 0)
2112     {
2113       ref_pressure += delta;
2114       MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;
2115 
2116       /* Check whether the maximum pressure in the overall schedule
2117 	 has increased.  (This means that the MODEL_MAX_PRESSURE of
2118 	 every point <= POINT will need to increase too; see below.)  */
2119       if (group->limits[pci].pressure < ref_pressure)
2120 	group->limits[pci].pressure = ref_pressure;
2121 
2122       /* If we are at maximum pressure, and the maximum pressure
2123 	 point was previously unknown or later than POINT,
2124 	 bring it forward.  */
2125       if (group->limits[pci].pressure == ref_pressure
2126 	  && !IN_RANGE (group->limits[pci].point, 0, point))
2127 	group->limits[pci].point = point;
2128 
2129       /* If POINT used to be the point of maximum pressure, but isn't
2130 	 any longer, we need to recalculate it using a forward walk.  */
2131       if (group->limits[pci].pressure > ref_pressure
2132 	  && group->limits[pci].point == point)
2133 	group->limits[pci].point = -1;
2134     }
2135 
2136   /* Update the maximum pressure at POINT.  Changes here might also
2137      affect the maximum pressure at POINT - 1.  */
2138   next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
2139   max_pressure = MAX (ref_pressure, next_max_pressure);
2140   if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
2141     {
2142       MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
2143       return 1;
2144     }
2145   return 0;
2146 }
2147 
2148 /* INSN has just been scheduled.  Update the model schedule accordingly.  */
2149 
2150 static void
2151 model_recompute (rtx_insn *insn)
2152 {
2153   struct {
2154     int last_use;
2155     int regno;
2156   } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
2157   struct reg_use_data *use;
2158   struct reg_pressure_data *reg_pressure;
2159   int delta[N_REG_CLASSES];
2160   int pci, point, mix, new_last, cl, ref_pressure, queue;
2161   unsigned int i, num_uses, num_pending_births;
2162   bool print_p;
2163 
2164   /* The destinations of INSN were previously live from POINT onwards, but are
2165      now live from model_curr_point onwards.  Set up DELTA accordingly.  */
2166   point = model_index (insn);
2167   reg_pressure = INSN_REG_PRESSURE (insn);
2168   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2169     {
2170       cl = ira_pressure_classes[pci];
2171       delta[cl] = reg_pressure[pci].set_increase;
2172     }
2173 
2174   /* Record which registers previously died at POINT, but which now die
2175      before POINT.  Adjust DELTA so that it represents the effect of
2176      this change after POINT - 1.  Set NUM_PENDING_BIRTHS to the number of
2177      registers that will be born in the range [model_curr_point, POINT).  */
2178   num_uses = 0;
2179   num_pending_births = 0;
2180   for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2181     {
2182       new_last = model_last_use_except (use);
2183       if (new_last < point)
2184 	{
2185 	  gcc_assert (num_uses < ARRAY_SIZE (uses));
2186 	  uses[num_uses].last_use = new_last;
2187 	  uses[num_uses].regno = use->regno;
2188 	  /* This register is no longer live after POINT - 1.  */
2189 	  mark_regno_birth_or_death (NULL, delta, use->regno, false);
2190 	  num_uses++;
2191 	  if (new_last >= 0)
2192 	    num_pending_births++;
2193 	}
2194     }
2195 
2196   /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
2197      Also set each group pressure limit for POINT.  */
2198   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2199     {
2200       cl = ira_pressure_classes[pci];
2201       model_start_update_pressure (&model_before_pressure,
2202 				   point, pci, delta[cl]);
2203     }
2204 
2205   /* Walk the model schedule backwards, starting immediately before POINT.  */
2206   print_p = false;
2207   if (point != model_curr_point)
2208     do
2209       {
2210 	point--;
2211 	insn = MODEL_INSN (point);
2212 	queue = QUEUE_INDEX (insn);
2213 
2214 	if (queue != QUEUE_SCHEDULED)
2215 	  {
2216 	    /* DELTA describes the effect of the move on the register pressure
2217 	       after POINT.  Make it describe the effect on the pressure
2218 	       before POINT.  */
2219 	    i = 0;
2220 	    while (i < num_uses)
2221 	      {
2222 		if (uses[i].last_use == point)
2223 		  {
2224 		    /* This register is now live again.  */
2225 		    mark_regno_birth_or_death (NULL, delta,
2226 					       uses[i].regno, true);
2227 
2228 		    /* Remove this use from the array.  */
2229 		    uses[i] = uses[num_uses - 1];
2230 		    num_uses--;
2231 		    num_pending_births--;
2232 		  }
2233 		else
2234 		  i++;
2235 	      }
2236 
2237 	    if (sched_verbose >= 5)
2238 	      {
2239 		if (!print_p)
2240 		  {
2241 		    fprintf (sched_dump, MODEL_BAR);
2242 		    fprintf (sched_dump, ";;\t\t| New pressure for model"
2243 			     " schedule\n");
2244 		    fprintf (sched_dump, MODEL_BAR);
2245 		    print_p = true;
2246 		  }
2247 
2248 		fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
2249 			 point, INSN_UID (insn),
2250 			 str_pattern_slim (PATTERN (insn)));
2251 		for (pci = 0; pci < ira_pressure_classes_num; pci++)
2252 		  {
2253 		    cl = ira_pressure_classes[pci];
2254 		    ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
2255 						       point, pci);
2256 		    fprintf (sched_dump, " %s:[%d->%d]",
2257 			     reg_class_names[ira_pressure_classes[pci]],
2258 			     ref_pressure, ref_pressure + delta[cl]);
2259 		  }
2260 		fprintf (sched_dump, "\n");
2261 	      }
2262 	  }
2263 
2264 	/* Adjust the pressure at POINT.  Set MIX to nonzero if POINT - 1
2265 	   might have changed as well.  */
2266 	mix = num_pending_births;
2267 	for (pci = 0; pci < ira_pressure_classes_num; pci++)
2268 	  {
2269 	    cl = ira_pressure_classes[pci];
2270 	    mix |= delta[cl];
2271 	    mix |= model_update_pressure (&model_before_pressure,
2272 					  point, pci, delta[cl]);
2273 	  }
2274       }
2275     while (mix && point > model_curr_point);
2276 
2277   if (print_p)
2278     fprintf (sched_dump, MODEL_BAR);
2279 }
2280 
2281 /* After DEP, which was cancelled, has been resolved for insn NEXT,
2282    check whether the insn's pattern needs restoring.  */
2283 static bool
2284 must_restore_pattern_p (rtx_insn *next, dep_t dep)
2285 {
2286   if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
2287     return false;
2288 
2289   if (DEP_TYPE (dep) == REG_DEP_CONTROL)
2290     {
2291       gcc_assert (ORIG_PAT (next) != NULL_RTX);
2292       gcc_assert (next == DEP_CON (dep));
2293     }
2294   else
2295     {
2296       struct dep_replacement *desc = DEP_REPLACE (dep);
2297       if (desc->insn != next)
2298 	{
2299 	  gcc_assert (*desc->loc == desc->orig);
2300 	  return false;
2301 	}
2302     }
2303   return true;
2304 }
2305 
2306 /* model_spill_cost (CL, P, P') returns the cost of increasing the
2307    pressure on CL from P to P'.  We use this to calculate a "base ECC",
2308    baseECC (CL, X), for each pressure class CL and each instruction X.
2309    Supposing X changes the pressure on CL from P to P', and that the
2310    maximum pressure on CL in the current model schedule is MP', then:
2311 
2312    * if X occurs before or at the next point of maximum pressure in
2313      the model schedule and P' > MP', then:
2314 
2315        baseECC (CL, X) = model_spill_cost (CL, MP, P')
2316 
2317      The idea is that the pressure after scheduling a fixed set of
2318      instructions -- in this case, the set up to and including the
2319      next maximum pressure point -- is going to be the same regardless
2320      of the order; we simply want to keep the intermediate pressure
2321      under control.  Thus X has a cost of zero unless scheduling it
2322      now would exceed MP'.
2323 
2324      If all increases in the set are by the same amount, no zero-cost
2325      instruction will ever cause the pressure to exceed MP'.  However,
2326      if X is instead moved past an instruction X' with pressure in the
2327      range (MP' - (P' - P), MP'), the pressure at X' will increase
2328      beyond MP'.  Since baseECC is very much a heuristic anyway,
2329      it doesn't seem worth the overhead of tracking cases like these.
2330 
2331      The cost of exceeding MP' is always based on the original maximum
2332      pressure MP.  This is so that going 2 registers over the original
2333      limit has the same cost regardless of whether it comes from two
2334      separate +1 deltas or from a single +2 delta.
2335 
2336    * if X occurs after the next point of maximum pressure in the model
2337      schedule and P' > P, then:
2338 
2339        baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))
2340 
2341      That is, if we move X forward across a point of maximum pressure,
2342      and if X increases the pressure by P' - P, then we conservatively
2343      assume that scheduling X next would increase the maximum pressure
2344      by P' - P.  Again, the cost of doing this is based on the original
2345      maximum pressure MP, for the same reason as above.
2346 
2347    * if P' < P, P > MP, and X occurs at or after the next point of
2348      maximum pressure, then:
2349 
2350        baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)
2351 
2352      That is, if we have already exceeded the original maximum pressure MP,
2353      and if X might reduce the maximum pressure again -- or at least push
2354      it further back, and thus allow more scheduling freedom -- it is given
2355      a negative cost to reflect the improvement.
2356 
2357    * otherwise,
2358 
2359        baseECC (CL, X) = 0
2360 
2361      In this case, X is not expected to affect the maximum pressure MP',
2362      so it has zero cost.
2363 
2364    We then create a combined value baseECC (X) that is the sum of
2365    baseECC (CL, X) for each pressure class CL.
2366 
2367    baseECC (X) could itself be used as the ECC value described above.
2368    However, this is often too conservative, in the sense that it
2369    tends to make high-priority instructions that increase pressure
2370    wait too long in cases where introducing a spill would be better.
2371    For this reason the final ECC is a priority-adjusted form of
2372    baseECC (X).  Specifically, we calculate:
2373 
2374      P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
2375      baseP = MAX { P (X) | baseECC (X) <= 0 }
2376 
2377    Then:
2378 
2379      ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)
2380 
2381    Thus an instruction's effect on pressure is ignored if it has a high
2382    enough priority relative to the ones that don't increase pressure.
2383    Negative values of baseECC (X) do not increase the priority of X
2384    itself, but they do make it harder for other instructions to
2385    increase the pressure further.
2386 
2387    This pressure cost is deliberately timid.  The intention has been
2388    to choose a heuristic that rarely interferes with the normal list
2389    scheduler in cases where that scheduler would produce good code.
2390    We simply want to curb some of its worst excesses.  */
2391 
2392 /* Return the cost of increasing the pressure in class CL from FROM to TO.
2393 
2394    Here we use the very simplistic cost model that every register above
2395    sched_class_regs_num[CL] has a spill cost of 1.  We could use other
2396    measures instead, such as one based on MEMORY_MOVE_COST.  However:
2397 
2398       (1) In order for an instruction to be scheduled, the higher cost
2399 	  would need to be justified in a single saving of that many stalls.
2400 	  This is overly pessimistic, because the benefit of spilling is
2401 	  often to avoid a sequence of several short stalls rather than
2402 	  a single long one.
2403 
2404       (2) The cost is still arbitrary.  Because we are not allocating
2405 	  registers during scheduling, we have no way of knowing for
2406 	  sure how many memory accesses will be required by each spill,
2407 	  where the spills will be placed within the block, or even
2408 	  which block(s) will contain the spills.
2409 
2410    So a higher cost than 1 is often too conservative in practice,
2411    forcing blocks to contain unnecessary stalls instead of spill code.
2412    The simple cost below seems to be the best compromise.  It reduces
2413    the interference with the normal list scheduler, which helps make
2414    it more suitable for a default-on option.  */
2415 
2416 static int
2417 model_spill_cost (int cl, int from, int to)
2418 {
2419   from = MAX (from, sched_class_regs_num[cl]);
2420   return MAX (to, from) - from;
2421 }
2422 
2423 /* Return baseECC (ira_pressure_classes[PCI], POINT), given that
2424    P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
2425    P' = P + DELTA.  */
2426 
2427 static int
2428 model_excess_group_cost (struct model_pressure_group *group,
2429 			 int point, int pci, int delta)
2430 {
2431   int pressure, cl;
2432 
2433   cl = ira_pressure_classes[pci];
2434   if (delta < 0 && point >= group->limits[pci].point)
2435     {
2436       pressure = MAX (group->limits[pci].orig_pressure,
2437 		      curr_reg_pressure[cl] + delta);
2438       return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
2439     }
2440 
2441   if (delta > 0)
2442     {
2443       if (point > group->limits[pci].point)
2444 	pressure = group->limits[pci].pressure + delta;
2445       else
2446 	pressure = curr_reg_pressure[cl] + delta;
2447 
2448       if (pressure > group->limits[pci].pressure)
2449 	return model_spill_cost (cl, group->limits[pci].orig_pressure,
2450 				 pressure);
2451     }
2452 
2453   return 0;
2454 }
2455 
2456 /* Return baseECC (MODEL_INSN (INSN)).  Dump the costs to sched_dump
2457    if PRINT_P.  */
2458 
2459 static int
2460 model_excess_cost (rtx_insn *insn, bool print_p)
2461 {
2462   int point, pci, cl, cost, this_cost, delta;
2463   struct reg_pressure_data *insn_reg_pressure;
2464   int insn_death[N_REG_CLASSES];
2465 
2466   calculate_reg_deaths (insn, insn_death);
2467   point = model_index (insn);
2468   insn_reg_pressure = INSN_REG_PRESSURE (insn);
2469   cost = 0;
2470 
2471   if (print_p)
2472     fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
2473 	     INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));
2474 
2475   /* Sum up the individual costs for each register class.  */
2476   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2477     {
2478       cl = ira_pressure_classes[pci];
2479       delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
2480       this_cost = model_excess_group_cost (&model_before_pressure,
2481 					   point, pci, delta);
2482       cost += this_cost;
2483       if (print_p)
2484 	fprintf (sched_dump, " %s:[%d base cost %d]",
2485 		 reg_class_names[cl], delta, this_cost);
2486     }
2487 
2488   if (print_p)
2489     fprintf (sched_dump, "\n");
2490 
2491   return cost;
2492 }
2493 
2494 /* Dump the next points of maximum pressure for GROUP.  */
2495 
2496 static void
2497 model_dump_pressure_points (struct model_pressure_group *group)
2498 {
2499   int pci, cl;
2500 
2501   fprintf (sched_dump, ";;\t\t|  pressure points");
2502   for (pci = 0; pci < ira_pressure_classes_num; pci++)
2503     {
2504       cl = ira_pressure_classes[pci];
2505       fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
2506 	       curr_reg_pressure[cl], group->limits[pci].pressure);
2507       if (group->limits[pci].point < model_num_insns)
2508 	fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
2509 		 INSN_UID (MODEL_INSN (group->limits[pci].point)));
2510       else
2511 	fprintf (sched_dump, "end]");
2512     }
2513   fprintf (sched_dump, "\n");
2514 }
2515 
2516 /* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1].  */
2517 
2518 static void
2519 model_set_excess_costs (rtx_insn **insns, int count)
2520 {
2521   int i, cost, priority_base, priority;
2522   bool print_p;
2523 
2524   /* Record the baseECC value for each instruction in the model schedule,
2525      except that negative costs are converted to zero ones now rather than
2526      later.  Do not assign a cost to debug instructions, since they must
2527      not change code-generation decisions.  Experiments suggest we also
2528      get better results by not assigning a cost to instructions from
2529      a different block.
2530 
2531      Set PRIORITY_BASE to baseP in the block comment above.  This is the
2532      maximum priority of the "cheap" instructions, which should always
2533      include the next model instruction.  */
2534   priority_base = 0;
2535   print_p = false;
2536   for (i = 0; i < count; i++)
2537     if (INSN_MODEL_INDEX (insns[i]))
2538       {
2539 	if (sched_verbose >= 6 && !print_p)
2540 	  {
2541 	    fprintf (sched_dump, MODEL_BAR);
2542 	    fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
2543 	    model_dump_pressure_points (&model_before_pressure);
2544 	    fprintf (sched_dump, MODEL_BAR);
2545 	    print_p = true;
2546 	  }
2547 	cost = model_excess_cost (insns[i], print_p);
2548 	if (cost <= 0)
2549 	  {
2550 	    priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
2551 	    priority_base = MAX (priority_base, priority);
2552 	    cost = 0;
2553 	  }
2554 	INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
2555       }
2556   if (print_p)
2557     fprintf (sched_dump, MODEL_BAR);
2558 
2559   /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
2560      instruction.  */
2561   for (i = 0; i < count; i++)
2562     {
2563       cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
2564       priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
2565       if (cost > 0 && priority > priority_base)
2566 	{
2567 	  cost += priority_base - priority;
2568 	  INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
2569 	}
2570     }
2571 }
2572 
2573 
2574 /* Enum of rank_for_schedule heuristic decisions.  */
2575 enum rfs_decision {
2576   RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
2577   RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
2578   RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_SPECULATION,
2579   RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
2580   RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_N };
2581 
2582 /* Corresponding strings for print outs.  */
2583 static const char *rfs_str[RFS_N] = {
2584   "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
2585   "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
2586   "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_SPECULATION",
2587   "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
2588   "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION" };
2589 
2590 /* Statistical breakdown of rank_for_schedule decisions.  */
2591 typedef struct { unsigned stats[RFS_N]; } rank_for_schedule_stats_t;
2592 static rank_for_schedule_stats_t rank_for_schedule_stats;
2593 
2594 /* Return the result of comparing insns TMP and TMP2 and update
2595    Rank_For_Schedule statistics.  */
2596 static int
2597 rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
2598 {
2599   ++rank_for_schedule_stats.stats[decision];
2600   if (result < 0)
2601     INSN_LAST_RFS_WIN (tmp) = decision;
2602   else if (result > 0)
2603     INSN_LAST_RFS_WIN (tmp2) = decision;
2604   else
2605     gcc_unreachable ();
2606   return result;
2607 }
2608 
2609 /* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
2610    keeping normal insns in original order.  */
2611 
2612 static int
2613 rank_for_schedule_debug (const void *x, const void *y)
2614 {
2615   rtx_insn *tmp = *(rtx_insn * const *) y;
2616   rtx_insn *tmp2 = *(rtx_insn * const *) x;
2617 
2618   /* Schedule debug insns as early as possible.  */
2619   if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
2620     return -1;
2621   else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2622     return 1;
2623   else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
2624     return INSN_LUID (tmp) - INSN_LUID (tmp2);
2625   else
2626     return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
2627 }
2628 
2629 /* Returns a positive value if x is preferred; returns a negative value if
2630    y is preferred.  Should never return 0, since that will make the sort
2631    unstable.  */
2632 
2633 static int
2634 rank_for_schedule (const void *x, const void *y)
2635 {
2636   rtx_insn *tmp = *(rtx_insn * const *) y;
2637   rtx_insn *tmp2 = *(rtx_insn * const *) x;
2638   int tmp_class, tmp2_class;
2639   int val, priority_val, info_val, diff;
2640 
2641   if (live_range_shrinkage_p)
2642     {
2643       /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
2644 	 code.  */
2645       gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
2646       if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
2647 	   || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
2648 	  && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2649 		      - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
2650 	return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
2651       /* Sort by INSN_LUID (original insn order), so that we make the
2652 	 sort stable.  This minimizes instruction movement, thus
2653 	 minimizing sched's effect on debugging and cross-jumping.  */
2654       return rfs_result (RFS_LIVE_RANGE_SHRINK2,
2655 			 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2656     }
2657 
2658   /* The insn in a schedule group should be issued the first.  */
2659   if (flag_sched_group_heuristic &&
2660       SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
2661     return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
2662 		       tmp, tmp2);
2663 
2664   /* Make sure that priority of TMP and TMP2 are initialized.  */
2665   gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
2666 
2667   if (sched_fusion)
2668     {
2669       /* The instruction that has the same fusion priority as the last
2670 	 instruction is the instruction we picked next.  If that is not
2671 	 the case, we sort ready list firstly by fusion priority, then
2672 	 by priority, and at last by INSN_LUID.  */
2673       int a = INSN_FUSION_PRIORITY (tmp);
2674       int b = INSN_FUSION_PRIORITY (tmp2);
2675       int last = -1;
2676 
2677       if (last_nondebug_scheduled_insn
2678 	  && !NOTE_P (last_nondebug_scheduled_insn)
2679 	  && BLOCK_FOR_INSN (tmp)
2680 	       == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
2681 	last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);
2682 
2683       if (a != last && b != last)
2684 	{
2685 	  if (a == b)
2686 	    {
2687 	      a = INSN_PRIORITY (tmp);
2688 	      b = INSN_PRIORITY (tmp2);
2689 	    }
2690 	  if (a != b)
2691 	    return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
2692 	  else
2693 	    return rfs_result (RFS_FUSION,
2694 			       INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2695 	}
2696       else if (a == b)
2697 	{
2698 	  gcc_assert (last_nondebug_scheduled_insn
2699 		      && !NOTE_P (last_nondebug_scheduled_insn));
2700 	  last = INSN_PRIORITY (last_nondebug_scheduled_insn);
2701 
2702 	  a = abs (INSN_PRIORITY (tmp) - last);
2703 	  b = abs (INSN_PRIORITY (tmp2) - last);
2704 	  if (a != b)
2705 	    return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
2706 	  else
2707 	    return rfs_result (RFS_FUSION,
2708 			       INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2709 	}
2710       else if (a == last)
2711 	return rfs_result (RFS_FUSION, -1, tmp, tmp2);
2712       else
2713 	return rfs_result (RFS_FUSION, 1, tmp, tmp2);
2714     }
2715 
2716   if (sched_pressure != SCHED_PRESSURE_NONE)
2717     {
2718       /* Prefer insn whose scheduling results in the smallest register
2719 	 pressure excess.  */
2720       if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
2721 		   + insn_delay (tmp)
2722 		   - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
2723 		   - insn_delay (tmp2))))
2724 	return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
2725     }
2726 
2727   if (sched_pressure != SCHED_PRESSURE_NONE
2728       && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
2729       && INSN_TICK (tmp2) != INSN_TICK (tmp))
2730     {
2731       diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
2732       return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
2733     }
2734 
2735   /* If we are doing backtracking in this schedule, prefer insns that
2736      have forward dependencies with negative cost against an insn that
2737      was already scheduled.  */
2738   if (current_sched_info->flags & DO_BACKTRACKING)
2739     {
2740       priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
2741       if (priority_val)
2742 	return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
2743     }
2744 
2745   /* Prefer insn with higher priority.  */
2746   priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
2747 
2748   if (flag_sched_critical_path_heuristic && priority_val)
2749     return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);
2750 
2751   if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) >= 0)
2752     {
2753       int autopref = autopref_rank_for_schedule (tmp, tmp2);
2754       if (autopref != 0)
2755 	return autopref;
2756     }
2757 
2758   /* Prefer speculative insn with greater dependencies weakness.  */
2759   if (flag_sched_spec_insn_heuristic && spec_info)
2760     {
2761       ds_t ds1, ds2;
2762       dw_t dw1, dw2;
2763       int dw;
2764 
2765       ds1 = TODO_SPEC (tmp) & SPECULATIVE;
2766       if (ds1)
2767 	dw1 = ds_weak (ds1);
2768       else
2769 	dw1 = NO_DEP_WEAK;
2770 
2771       ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
2772       if (ds2)
2773 	dw2 = ds_weak (ds2);
2774       else
2775 	dw2 = NO_DEP_WEAK;
2776 
2777       dw = dw2 - dw1;
2778       if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
2779 	return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
2780     }
2781 
2782   info_val = (*current_sched_info->rank) (tmp, tmp2);
2783   if (flag_sched_rank_heuristic && info_val)
2784     return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);
2785 
2786   /* Compare insns based on their relation to the last scheduled
2787      non-debug insn.  */
2788   if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
2789     {
2790       dep_t dep1;
2791       dep_t dep2;
2792       rtx last = last_nondebug_scheduled_insn;
2793 
2794       /* Classify the instructions into three classes:
2795          1) Data dependent on last schedule insn.
2796          2) Anti/Output dependent on last scheduled insn.
2797          3) Independent of last scheduled insn, or has latency of one.
2798          Choose the insn from the highest numbered class if different.  */
2799       dep1 = sd_find_dep_between (last, tmp, true);
2800 
2801       if (dep1 == NULL || dep_cost (dep1) == 1)
2802 	tmp_class = 3;
2803       else if (/* Data dependence.  */
2804 	       DEP_TYPE (dep1) == REG_DEP_TRUE)
2805 	tmp_class = 1;
2806       else
2807 	tmp_class = 2;
2808 
2809       dep2 = sd_find_dep_between (last, tmp2, true);
2810 
2811       if (dep2 == NULL || dep_cost (dep2)  == 1)
2812 	tmp2_class = 3;
2813       else if (/* Data dependence.  */
2814 	       DEP_TYPE (dep2) == REG_DEP_TRUE)
2815 	tmp2_class = 1;
2816       else
2817 	tmp2_class = 2;
2818 
2819       if ((val = tmp2_class - tmp_class))
2820 	return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
2821     }
2822 
2823   /* Prefer instructions that occur earlier in the model schedule.  */
2824   if (sched_pressure == SCHED_PRESSURE_MODEL
2825       && INSN_BB (tmp) == target_bb && INSN_BB (tmp2) == target_bb)
2826     {
2827       diff = model_index (tmp) - model_index (tmp2);
2828       gcc_assert (diff != 0);
2829       return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
2830     }
2831 
2832   /* Prefer the insn which has more later insns that depend on it.
2833      This gives the scheduler more freedom when scheduling later
2834      instructions at the expense of added register pressure.  */
2835 
2836   val = (dep_list_size (tmp2, SD_LIST_FORW)
2837 	 - dep_list_size (tmp, SD_LIST_FORW));
2838 
2839   if (flag_sched_dep_count_heuristic && val != 0)
2840     return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);
2841 
2842   /* If insns are equally good, sort by INSN_LUID (original insn order),
2843      so that we make the sort stable.  This minimizes instruction movement,
2844      thus minimizing sched's effect on debugging and cross-jumping.  */
2845   return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
2846 }
2847 
2848 /* Resort the array A in which only element at index N may be out of order.  */
2849 
2850 HAIFA_INLINE static void
2851 swap_sort (rtx_insn **a, int n)
2852 {
2853   rtx_insn *insn = a[n - 1];
2854   int i = n - 2;
2855 
2856   while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
2857     {
2858       a[i + 1] = a[i];
2859       i -= 1;
2860     }
2861   a[i + 1] = insn;
2862 }
2863 
2864 /* Add INSN to the insn queue so that it can be executed at least
2865    N_CYCLES after the currently executing insn.  Preserve insns
2866    chain for debugging purposes.  REASON will be printed in debugging
2867    output.  */
2868 
2869 HAIFA_INLINE static void
2870 queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
2871 {
2872   int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
2873   rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
2874   int new_tick;
2875 
2876   gcc_assert (n_cycles <= max_insn_queue_index);
2877   gcc_assert (!DEBUG_INSN_P (insn));
2878 
2879   insn_queue[next_q] = link;
2880   q_size += 1;
2881 
2882   if (sched_verbose >= 2)
2883     {
2884       fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
2885 	       (*current_sched_info->print_insn) (insn, 0));
2886 
2887       fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
2888     }
2889 
2890   QUEUE_INDEX (insn) = next_q;
2891 
2892   if (current_sched_info->flags & DO_BACKTRACKING)
2893     {
2894       new_tick = clock_var + n_cycles;
2895       if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
2896 	INSN_TICK (insn) = new_tick;
2897 
2898       if (INSN_EXACT_TICK (insn) != INVALID_TICK
2899 	  && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
2900 	{
2901 	  must_backtrack = true;
2902 	  if (sched_verbose >= 2)
2903 	    fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
2904 	}
2905     }
2906 }
2907 
2908 /* Remove INSN from queue.  */
2909 static void
2910 queue_remove (rtx_insn *insn)
2911 {
2912   gcc_assert (QUEUE_INDEX (insn) >= 0);
2913   remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
2914   q_size--;
2915   QUEUE_INDEX (insn) = QUEUE_NOWHERE;
2916 }
2917 
2918 /* Return a pointer to the bottom of the ready list, i.e. the insn
2919    with the lowest priority.  */
2920 
2921 rtx_insn **
2922 ready_lastpos (struct ready_list *ready)
2923 {
2924   gcc_assert (ready->n_ready >= 1);
2925   return ready->vec + ready->first - ready->n_ready + 1;
2926 }
2927 
2928 /* Add an element INSN to the ready list so that it ends up with the
2929    lowest/highest priority depending on FIRST_P.  */
2930 
2931 HAIFA_INLINE static void
2932 ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
2933 {
2934   if (!first_p)
2935     {
2936       if (ready->first == ready->n_ready)
2937 	{
2938 	  memmove (ready->vec + ready->veclen - ready->n_ready,
2939 		   ready_lastpos (ready),
2940 		   ready->n_ready * sizeof (rtx));
2941 	  ready->first = ready->veclen - 1;
2942 	}
2943       ready->vec[ready->first - ready->n_ready] = insn;
2944     }
2945   else
2946     {
2947       if (ready->first == ready->veclen - 1)
2948 	{
2949 	  if (ready->n_ready)
2950 	    /* ready_lastpos() fails when called with (ready->n_ready == 0).  */
2951 	    memmove (ready->vec + ready->veclen - ready->n_ready - 1,
2952 		     ready_lastpos (ready),
2953 		     ready->n_ready * sizeof (rtx));
2954 	  ready->first = ready->veclen - 2;
2955 	}
2956       ready->vec[++(ready->first)] = insn;
2957     }
2958 
2959   ready->n_ready++;
2960   if (DEBUG_INSN_P (insn))
2961     ready->n_debug++;
2962 
2963   gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
2964   QUEUE_INDEX (insn) = QUEUE_READY;
2965 
2966   if (INSN_EXACT_TICK (insn) != INVALID_TICK
2967       && INSN_EXACT_TICK (insn) < clock_var)
2968     {
2969       must_backtrack = true;
2970     }
2971 }
2972 
2973 /* Remove the element with the highest priority from the ready list and
2974    return it.  */
2975 
2976 HAIFA_INLINE static rtx_insn *
2977 ready_remove_first (struct ready_list *ready)
2978 {
2979   rtx_insn *t;
2980 
2981   gcc_assert (ready->n_ready);
2982   t = ready->vec[ready->first--];
2983   ready->n_ready--;
2984   if (DEBUG_INSN_P (t))
2985     ready->n_debug--;
2986   /* If the queue becomes empty, reset it.  */
2987   if (ready->n_ready == 0)
2988     ready->first = ready->veclen - 1;
2989 
2990   gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
2991   QUEUE_INDEX (t) = QUEUE_NOWHERE;
2992 
2993   return t;
2994 }
2995 
2996 /* The following code implements multi-pass scheduling for the first
2997    cycle.  In other words, we will try to choose ready insn which
2998    permits to start maximum number of insns on the same cycle.  */
2999 
3000 /* Return a pointer to the element INDEX from the ready.  INDEX for
3001    insn with the highest priority is 0, and the lowest priority has
3002    N_READY - 1.  */
3003 
3004 rtx_insn *
3005 ready_element (struct ready_list *ready, int index)
3006 {
3007   gcc_assert (ready->n_ready && index < ready->n_ready);
3008 
3009   return ready->vec[ready->first - index];
3010 }
3011 
3012 /* Remove the element INDEX from the ready list and return it.  INDEX
3013    for insn with the highest priority is 0, and the lowest priority
3014    has N_READY - 1.  */
3015 
3016 HAIFA_INLINE static rtx_insn *
3017 ready_remove (struct ready_list *ready, int index)
3018 {
3019   rtx_insn *t;
3020   int i;
3021 
3022   if (index == 0)
3023     return ready_remove_first (ready);
3024   gcc_assert (ready->n_ready && index < ready->n_ready);
3025   t = ready->vec[ready->first - index];
3026   ready->n_ready--;
3027   if (DEBUG_INSN_P (t))
3028     ready->n_debug--;
3029   for (i = index; i < ready->n_ready; i++)
3030     ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
3031   QUEUE_INDEX (t) = QUEUE_NOWHERE;
3032   return t;
3033 }
3034 
3035 /* Remove INSN from the ready list.  */
3036 static void
3037 ready_remove_insn (rtx insn)
3038 {
3039   int i;
3040 
3041   for (i = 0; i < readyp->n_ready; i++)
3042     if (ready_element (readyp, i) == insn)
3043       {
3044         ready_remove (readyp, i);
3045         return;
3046       }
3047   gcc_unreachable ();
3048 }
3049 
3050 /* Calculate difference of two statistics set WAS and NOW.
3051    Result returned in WAS.  */
3052 static void
3053 rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
3054 			      const rank_for_schedule_stats_t *now)
3055 {
3056   for (int i = 0; i < RFS_N; ++i)
3057     was->stats[i] = now->stats[i] - was->stats[i];
3058 }
3059 
3060 /* Print rank_for_schedule statistics.  */
3061 static void
3062 print_rank_for_schedule_stats (const char *prefix,
3063 			       const rank_for_schedule_stats_t *stats,
3064 			       struct ready_list *ready)
3065 {
3066   for (int i = 0; i < RFS_N; ++i)
3067     if (stats->stats[i])
3068       {
3069 	fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);
3070 
3071 	if (ready != NULL)
3072 	  /* Print out insns that won due to RFS_<I>.  */
3073 	  {
3074 	    rtx_insn **p = ready_lastpos (ready);
3075 
3076 	    fprintf (sched_dump, ":");
3077 	    /* Start with 1 since least-priority insn didn't have any wins.  */
3078 	    for (int j = 1; j < ready->n_ready; ++j)
3079 	      if (INSN_LAST_RFS_WIN (p[j]) == i)
3080 		fprintf (sched_dump, " %s",
3081 			 (*current_sched_info->print_insn) (p[j], 0));
3082 	  }
3083 	fprintf (sched_dump, "\n");
3084       }
3085 }
3086 
3087 /* Separate DEBUG_INSNS from normal insns.  DEBUG_INSNs go to the end
3088    of array.  */
3089 static void
3090 ready_sort_debug (struct ready_list *ready)
3091 {
3092   int i;
3093   rtx_insn **first = ready_lastpos (ready);
3094 
3095   for (i = 0; i < ready->n_ready; ++i)
3096     if (!DEBUG_INSN_P (first[i]))
3097       INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;
3098 
3099   qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
3100 }
3101 
3102 /* Sort non-debug insns in the ready list READY by ascending priority.
3103    Assumes that all debug insns are separated from the real insns.  */
3104 static void
3105 ready_sort_real (struct ready_list *ready)
3106 {
3107   int i;
3108   rtx_insn **first = ready_lastpos (ready);
3109   int n_ready_real = ready->n_ready - ready->n_debug;
3110 
3111   if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3112     for (i = 0; i < n_ready_real; ++i)
3113       setup_insn_reg_pressure_info (first[i]);
3114   else if (sched_pressure == SCHED_PRESSURE_MODEL
3115 	   && model_curr_point < model_num_insns)
3116     model_set_excess_costs (first, n_ready_real);
3117 
3118   rank_for_schedule_stats_t stats1;
3119   if (sched_verbose >= 4)
3120     stats1 = rank_for_schedule_stats;
3121 
3122   if (n_ready_real == 2)
3123     swap_sort (first, n_ready_real);
3124   else if (n_ready_real > 2)
3125     qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);
3126 
3127   if (sched_verbose >= 4)
3128     {
3129       rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
3130       print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
3131     }
3132 }
3133 
3134 /* Sort the ready list READY by ascending priority.  */
3135 static void
3136 ready_sort (struct ready_list *ready)
3137 {
3138   if (ready->n_debug > 0)
3139     ready_sort_debug (ready);
3140   else
3141     ready_sort_real (ready);
3142 }
3143 
3144 /* PREV is an insn that is ready to execute.  Adjust its priority if that
3145    will help shorten or lengthen register lifetimes as appropriate.  Also
3146    provide a hook for the target to tweak itself.  */
3147 
3148 HAIFA_INLINE static void
3149 adjust_priority (rtx_insn *prev)
3150 {
3151   /* ??? There used to be code here to try and estimate how an insn
3152      affected register lifetimes, but it did it by looking at REG_DEAD
3153      notes, which we removed in schedule_region.  Nor did it try to
3154      take into account register pressure or anything useful like that.
3155 
3156      Revisit when we have a machine model to work with and not before.  */
3157 
3158   if (targetm.sched.adjust_priority)
3159     INSN_PRIORITY (prev) =
3160       targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
3161 }
3162 
3163 /* Advance DFA state STATE on one cycle.  */
3164 void
3165 advance_state (state_t state)
3166 {
3167   if (targetm.sched.dfa_pre_advance_cycle)
3168     targetm.sched.dfa_pre_advance_cycle ();
3169 
3170   if (targetm.sched.dfa_pre_cycle_insn)
3171     state_transition (state,
3172 		      targetm.sched.dfa_pre_cycle_insn ());
3173 
3174   state_transition (state, NULL);
3175 
3176   if (targetm.sched.dfa_post_cycle_insn)
3177     state_transition (state,
3178 		      targetm.sched.dfa_post_cycle_insn ());
3179 
3180   if (targetm.sched.dfa_post_advance_cycle)
3181     targetm.sched.dfa_post_advance_cycle ();
3182 }
3183 
3184 /* Advance time on one cycle.  */
3185 HAIFA_INLINE static void
3186 advance_one_cycle (void)
3187 {
3188   advance_state (curr_state);
3189   if (sched_verbose >= 4)
3190     fprintf (sched_dump, ";;\tAdvance the current state.\n");
3191 }
3192 
3193 /* Update register pressure after scheduling INSN.  */
3194 static void
3195 update_register_pressure (rtx_insn *insn)
3196 {
3197   struct reg_use_data *use;
3198   struct reg_set_data *set;
3199 
3200   gcc_checking_assert (!DEBUG_INSN_P (insn));
3201 
3202   for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
3203     if (dying_use_p (use))
3204       mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3205 				 use->regno, false);
3206   for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
3207     mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
3208 			       set->regno, true);
3209 }
3210 
3211 /* Set up or update (if UPDATE_P) max register pressure (see its
3212    meaning in sched-int.h::_haifa_insn_data) for all current BB insns
3213    after insn AFTER.  */
3214 static void
3215 setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
3216 {
3217   int i, p;
3218   bool eq_p;
3219   rtx_insn *insn;
3220   static int max_reg_pressure[N_REG_CLASSES];
3221 
3222   save_reg_pressure ();
3223   for (i = 0; i < ira_pressure_classes_num; i++)
3224     max_reg_pressure[ira_pressure_classes[i]]
3225       = curr_reg_pressure[ira_pressure_classes[i]];
3226   for (insn = NEXT_INSN (after);
3227        insn != NULL_RTX && ! BARRIER_P (insn)
3228 	 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
3229        insn = NEXT_INSN (insn))
3230     if (NONDEBUG_INSN_P (insn))
3231       {
3232 	eq_p = true;
3233 	for (i = 0; i < ira_pressure_classes_num; i++)
3234 	  {
3235 	    p = max_reg_pressure[ira_pressure_classes[i]];
3236 	    if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
3237 	      {
3238 		eq_p = false;
3239 		INSN_MAX_REG_PRESSURE (insn)[i]
3240 		  = max_reg_pressure[ira_pressure_classes[i]];
3241 	      }
3242 	  }
3243 	if (update_p && eq_p)
3244 	  break;
3245 	update_register_pressure (insn);
3246 	for (i = 0; i < ira_pressure_classes_num; i++)
3247 	  if (max_reg_pressure[ira_pressure_classes[i]]
3248 	      < curr_reg_pressure[ira_pressure_classes[i]])
3249 	    max_reg_pressure[ira_pressure_classes[i]]
3250 	      = curr_reg_pressure[ira_pressure_classes[i]];
3251       }
3252   restore_reg_pressure ();
3253 }
3254 
3255 /* Update the current register pressure after scheduling INSN.  Update
3256    also max register pressure for unscheduled insns of the current
3257    BB.  */
3258 static void
3259 update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
3260 {
3261   int i;
3262   int before[N_REG_CLASSES];
3263 
3264   for (i = 0; i < ira_pressure_classes_num; i++)
3265     before[i] = curr_reg_pressure[ira_pressure_classes[i]];
3266   update_register_pressure (insn);
3267   for (i = 0; i < ira_pressure_classes_num; i++)
3268     if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
3269       break;
3270   if (i < ira_pressure_classes_num)
3271     setup_insn_max_reg_pressure (insn, true);
3272 }
3273 
3274 /* Set up register pressure at the beginning of basic block BB whose
3275    insns starting after insn AFTER.  Set up also max register pressure
3276    for all insns of the basic block.  */
3277 void
3278 sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
3279 {
3280   gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
3281   initiate_bb_reg_pressure_info (bb);
3282   setup_insn_max_reg_pressure (after, false);
3283 }
3284 
3285 /* If doing predication while scheduling, verify whether INSN, which
3286    has just been scheduled, clobbers the conditions of any
3287    instructions that must be predicated in order to break their
3288    dependencies.  If so, remove them from the queues so that they will
3289    only be scheduled once their control dependency is resolved.  */
3290 
3291 static void
3292 check_clobbered_conditions (rtx insn)
3293 {
3294   HARD_REG_SET t;
3295   int i;
3296 
3297   if ((current_sched_info->flags & DO_PREDICATION) == 0)
3298     return;
3299 
3300   find_all_hard_reg_sets (insn, &t, true);
3301 
3302  restart:
3303   for (i = 0; i < ready.n_ready; i++)
3304     {
3305       rtx_insn *x = ready_element (&ready, i);
3306       if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3307 	{
3308 	  ready_remove_insn (x);
3309 	  goto restart;
3310 	}
3311     }
3312   for (i = 0; i <= max_insn_queue_index; i++)
3313     {
3314       rtx_insn_list *link;
3315       int q = NEXT_Q_AFTER (q_ptr, i);
3316 
3317     restart_queue:
3318       for (link = insn_queue[q]; link; link = link->next ())
3319 	{
3320 	  rtx_insn *x = link->insn ();
3321 	  if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
3322 	    {
3323 	      queue_remove (x);
3324 	      goto restart_queue;
3325 	    }
3326 	}
3327     }
3328 }
3329 
3330 /* Return (in order):
3331 
3332    - positive if INSN adversely affects the pressure on one
3333      register class
3334 
3335    - negative if INSN reduces the pressure on one register class
3336 
3337    - 0 if INSN doesn't affect the pressure on any register class.  */
3338 
3339 static int
3340 model_classify_pressure (struct model_insn_info *insn)
3341 {
3342   struct reg_pressure_data *reg_pressure;
3343   int death[N_REG_CLASSES];
3344   int pci, cl, sum;
3345 
3346   calculate_reg_deaths (insn->insn, death);
3347   reg_pressure = INSN_REG_PRESSURE (insn->insn);
3348   sum = 0;
3349   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3350     {
3351       cl = ira_pressure_classes[pci];
3352       if (death[cl] < reg_pressure[pci].set_increase)
3353 	return 1;
3354       sum += reg_pressure[pci].set_increase - death[cl];
3355     }
3356   return sum;
3357 }
3358 
3359 /* Return true if INSN1 should come before INSN2 in the model schedule.  */
3360 
3361 static int
3362 model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
3363 {
3364   unsigned int height1, height2;
3365   unsigned int priority1, priority2;
3366 
3367   /* Prefer instructions with a higher model priority.  */
3368   if (insn1->model_priority != insn2->model_priority)
3369     return insn1->model_priority > insn2->model_priority;
3370 
3371   /* Combine the length of the longest path of satisfied true dependencies
3372      that leads to each instruction (depth) with the length of the longest
3373      path of any dependencies that leads from the instruction (alap).
3374      Prefer instructions with the greatest combined length.  If the combined
3375      lengths are equal, prefer instructions with the greatest depth.
3376 
3377      The idea is that, if we have a set S of "equal" instructions that each
3378      have ALAP value X, and we pick one such instruction I, any true-dependent
3379      successors of I that have ALAP value X - 1 should be preferred over S.
3380      This encourages the schedule to be "narrow" rather than "wide".
3381      However, if I is a low-priority instruction that we decided to
3382      schedule because of its model_classify_pressure, and if there
3383      is a set of higher-priority instructions T, the aforementioned
3384      successors of I should not have the edge over T.  */
3385   height1 = insn1->depth + insn1->alap;
3386   height2 = insn2->depth + insn2->alap;
3387   if (height1 != height2)
3388     return height1 > height2;
3389   if (insn1->depth != insn2->depth)
3390     return insn1->depth > insn2->depth;
3391 
3392   /* We have no real preference between INSN1 an INSN2 as far as attempts
3393      to reduce pressure go.  Prefer instructions with higher priorities.  */
3394   priority1 = INSN_PRIORITY (insn1->insn);
3395   priority2 = INSN_PRIORITY (insn2->insn);
3396   if (priority1 != priority2)
3397     return priority1 > priority2;
3398 
3399   /* Use the original rtl sequence as a tie-breaker.  */
3400   return insn1 < insn2;
3401 }
3402 
3403 /* Add INSN to the model worklist immediately after PREV.  Add it to the
3404    beginning of the list if PREV is null.  */
3405 
3406 static void
3407 model_add_to_worklist_at (struct model_insn_info *insn,
3408 			  struct model_insn_info *prev)
3409 {
3410   gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
3411   QUEUE_INDEX (insn->insn) = QUEUE_READY;
3412 
3413   insn->prev = prev;
3414   if (prev)
3415     {
3416       insn->next = prev->next;
3417       prev->next = insn;
3418     }
3419   else
3420     {
3421       insn->next = model_worklist;
3422       model_worklist = insn;
3423     }
3424   if (insn->next)
3425     insn->next->prev = insn;
3426 }
3427 
3428 /* Remove INSN from the model worklist.  */
3429 
3430 static void
3431 model_remove_from_worklist (struct model_insn_info *insn)
3432 {
3433   gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
3434   QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;
3435 
3436   if (insn->prev)
3437     insn->prev->next = insn->next;
3438   else
3439     model_worklist = insn->next;
3440   if (insn->next)
3441     insn->next->prev = insn->prev;
3442 }
3443 
3444 /* Add INSN to the model worklist.  Start looking for a suitable position
3445    between neighbors PREV and NEXT, testing at most MAX_SCHED_READY_INSNS
3446    insns either side.  A null PREV indicates the beginning of the list and
3447    a null NEXT indicates the end.  */
3448 
3449 static void
3450 model_add_to_worklist (struct model_insn_info *insn,
3451 		       struct model_insn_info *prev,
3452 		       struct model_insn_info *next)
3453 {
3454   int count;
3455 
3456   count = MAX_SCHED_READY_INSNS;
3457   if (count > 0 && prev && model_order_p (insn, prev))
3458     do
3459       {
3460 	count--;
3461 	prev = prev->prev;
3462       }
3463     while (count > 0 && prev && model_order_p (insn, prev));
3464   else
3465     while (count > 0 && next && model_order_p (next, insn))
3466       {
3467 	count--;
3468 	prev = next;
3469 	next = next->next;
3470       }
3471   model_add_to_worklist_at (insn, prev);
3472 }
3473 
3474 /* INSN may now have a higher priority (in the model_order_p sense)
3475    than before.  Move it up the worklist if necessary.  */
3476 
3477 static void
3478 model_promote_insn (struct model_insn_info *insn)
3479 {
3480   struct model_insn_info *prev;
3481   int count;
3482 
3483   prev = insn->prev;
3484   count = MAX_SCHED_READY_INSNS;
3485   while (count > 0 && prev && model_order_p (insn, prev))
3486     {
3487       count--;
3488       prev = prev->prev;
3489     }
3490   if (prev != insn->prev)
3491     {
3492       model_remove_from_worklist (insn);
3493       model_add_to_worklist_at (insn, prev);
3494     }
3495 }
3496 
3497 /* Add INSN to the end of the model schedule.  */
3498 
3499 static void
3500 model_add_to_schedule (rtx_insn *insn)
3501 {
3502   unsigned int point;
3503 
3504   gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
3505   QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
3506 
3507   point = model_schedule.length ();
3508   model_schedule.quick_push (insn);
3509   INSN_MODEL_INDEX (insn) = point + 1;
3510 }
3511 
3512 /* Analyze the instructions that are to be scheduled, setting up
3513    MODEL_INSN_INFO (...) and model_num_insns accordingly.  Add ready
3514    instructions to model_worklist.  */
3515 
3516 static void
3517 model_analyze_insns (void)
3518 {
3519   rtx_insn *start, *end, *iter;
3520   sd_iterator_def sd_it;
3521   dep_t dep;
3522   struct model_insn_info *insn, *con;
3523 
3524   model_num_insns = 0;
3525   start = PREV_INSN (current_sched_info->next_tail);
3526   end = current_sched_info->prev_head;
3527   for (iter = start; iter != end; iter = PREV_INSN (iter))
3528     if (NONDEBUG_INSN_P (iter))
3529       {
3530 	insn = MODEL_INSN_INFO (iter);
3531 	insn->insn = iter;
3532 	FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
3533 	  {
3534 	    con = MODEL_INSN_INFO (DEP_CON (dep));
3535 	    if (con->insn && insn->alap < con->alap + 1)
3536 	      insn->alap = con->alap + 1;
3537 	  }
3538 
3539 	insn->old_queue = QUEUE_INDEX (iter);
3540 	QUEUE_INDEX (iter) = QUEUE_NOWHERE;
3541 
3542 	insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
3543 	if (insn->unscheduled_preds == 0)
3544 	  model_add_to_worklist (insn, NULL, model_worklist);
3545 
3546 	model_num_insns++;
3547       }
3548 }
3549 
3550 /* The global state describes the register pressure at the start of the
3551    model schedule.  Initialize GROUP accordingly.  */
3552 
3553 static void
3554 model_init_pressure_group (struct model_pressure_group *group)
3555 {
3556   int pci, cl;
3557 
3558   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3559     {
3560       cl = ira_pressure_classes[pci];
3561       group->limits[pci].pressure = curr_reg_pressure[cl];
3562       group->limits[pci].point = 0;
3563     }
3564   /* Use index model_num_insns to record the state after the last
3565      instruction in the model schedule.  */
3566   group->model = XNEWVEC (struct model_pressure_data,
3567 			  (model_num_insns + 1) * ira_pressure_classes_num);
3568 }
3569 
3570 /* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
3571    Update the maximum pressure for the whole schedule.  */
3572 
3573 static void
3574 model_record_pressure (struct model_pressure_group *group,
3575 		       int point, int pci, int pressure)
3576 {
3577   MODEL_REF_PRESSURE (group, point, pci) = pressure;
3578   if (group->limits[pci].pressure < pressure)
3579     {
3580       group->limits[pci].pressure = pressure;
3581       group->limits[pci].point = point;
3582     }
3583 }
3584 
3585 /* INSN has just been added to the end of the model schedule.  Record its
3586    register-pressure information.  */
3587 
3588 static void
3589 model_record_pressures (struct model_insn_info *insn)
3590 {
3591   struct reg_pressure_data *reg_pressure;
3592   int point, pci, cl, delta;
3593   int death[N_REG_CLASSES];
3594 
3595   point = model_index (insn->insn);
3596   if (sched_verbose >= 2)
3597     {
3598       if (point == 0)
3599 	{
3600 	  fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
3601 	  fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
3602 	}
3603       fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
3604 	       point, INSN_UID (insn->insn), insn->model_priority,
3605 	       insn->depth + insn->alap, insn->depth,
3606 	       INSN_PRIORITY (insn->insn),
3607 	       str_pattern_slim (PATTERN (insn->insn)));
3608     }
3609   calculate_reg_deaths (insn->insn, death);
3610   reg_pressure = INSN_REG_PRESSURE (insn->insn);
3611   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3612     {
3613       cl = ira_pressure_classes[pci];
3614       delta = reg_pressure[pci].set_increase - death[cl];
3615       if (sched_verbose >= 2)
3616 	fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
3617 		 curr_reg_pressure[cl], delta);
3618       model_record_pressure (&model_before_pressure, point, pci,
3619 			     curr_reg_pressure[cl]);
3620     }
3621   if (sched_verbose >= 2)
3622     fprintf (sched_dump, "\n");
3623 }
3624 
3625 /* All instructions have been added to the model schedule.  Record the
3626    final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs.  */
3627 
3628 static void
3629 model_record_final_pressures (struct model_pressure_group *group)
3630 {
3631   int point, pci, max_pressure, ref_pressure, cl;
3632 
3633   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3634     {
3635       /* Record the final pressure for this class.  */
3636       cl = ira_pressure_classes[pci];
3637       point = model_num_insns;
3638       ref_pressure = curr_reg_pressure[cl];
3639       model_record_pressure (group, point, pci, ref_pressure);
3640 
3641       /* Record the original maximum pressure.  */
3642       group->limits[pci].orig_pressure = group->limits[pci].pressure;
3643 
3644       /* Update the MODEL_MAX_PRESSURE for every point of the schedule.  */
3645       max_pressure = ref_pressure;
3646       MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3647       while (point > 0)
3648 	{
3649 	  point--;
3650 	  ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
3651 	  max_pressure = MAX (max_pressure, ref_pressure);
3652 	  MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
3653 	}
3654     }
3655 }
3656 
3657 /* Update all successors of INSN, given that INSN has just been scheduled.  */
3658 
3659 static void
3660 model_add_successors_to_worklist (struct model_insn_info *insn)
3661 {
3662   sd_iterator_def sd_it;
3663   struct model_insn_info *con;
3664   dep_t dep;
3665 
3666   FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
3667     {
3668       con = MODEL_INSN_INFO (DEP_CON (dep));
3669       /* Ignore debug instructions, and instructions from other blocks.  */
3670       if (con->insn)
3671 	{
3672 	  con->unscheduled_preds--;
3673 
3674 	  /* Update the depth field of each true-dependent successor.
3675 	     Increasing the depth gives them a higher priority than
3676 	     before.  */
3677 	  if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
3678 	    {
3679 	      con->depth = insn->depth + 1;
3680 	      if (QUEUE_INDEX (con->insn) == QUEUE_READY)
3681 		model_promote_insn (con);
3682 	    }
3683 
3684 	  /* If this is a true dependency, or if there are no remaining
3685 	     dependencies for CON (meaning that CON only had non-true
3686 	     dependencies), make sure that CON is on the worklist.
3687 	     We don't bother otherwise because it would tend to fill the
3688 	     worklist with a lot of low-priority instructions that are not
3689 	     yet ready to issue.  */
3690 	  if ((con->depth > 0 || con->unscheduled_preds == 0)
3691 	      && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
3692 	    model_add_to_worklist (con, insn, insn->next);
3693 	}
3694     }
3695 }
3696 
3697 /* Give INSN a higher priority than any current instruction, then give
3698    unscheduled predecessors of INSN a higher priority still.  If any of
3699    those predecessors are not on the model worklist, do the same for its
3700    predecessors, and so on.  */
3701 
3702 static void
3703 model_promote_predecessors (struct model_insn_info *insn)
3704 {
3705   struct model_insn_info *pro, *first;
3706   sd_iterator_def sd_it;
3707   dep_t dep;
3708 
3709   if (sched_verbose >= 7)
3710     fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
3711 	     INSN_UID (insn->insn), model_next_priority);
3712   insn->model_priority = model_next_priority++;
3713   model_remove_from_worklist (insn);
3714   model_add_to_worklist_at (insn, NULL);
3715 
3716   first = NULL;
3717   for (;;)
3718     {
3719       FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
3720 	{
3721 	  pro = MODEL_INSN_INFO (DEP_PRO (dep));
3722 	  /* The first test is to ignore debug instructions, and instructions
3723 	     from other blocks.  */
3724 	  if (pro->insn
3725 	      && pro->model_priority != model_next_priority
3726 	      && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
3727 	    {
3728 	      pro->model_priority = model_next_priority;
3729 	      if (sched_verbose >= 7)
3730 		fprintf (sched_dump, " %d", INSN_UID (pro->insn));
3731 	      if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
3732 		{
3733 		  /* PRO is already in the worklist, but it now has
3734 		     a higher priority than before.  Move it at the
3735 		     appropriate place.  */
3736 		  model_remove_from_worklist (pro);
3737 		  model_add_to_worklist (pro, NULL, model_worklist);
3738 		}
3739 	      else
3740 		{
3741 		  /* PRO isn't in the worklist.  Recursively process
3742 		     its predecessors until we find one that is.  */
3743 		  pro->next = first;
3744 		  first = pro;
3745 		}
3746 	    }
3747 	}
3748       if (!first)
3749 	break;
3750       insn = first;
3751       first = insn->next;
3752     }
3753   if (sched_verbose >= 7)
3754     fprintf (sched_dump, " = %d\n", model_next_priority);
3755   model_next_priority++;
3756 }
3757 
3758 /* Pick one instruction from model_worklist and process it.  */
3759 
3760 static void
3761 model_choose_insn (void)
3762 {
3763   struct model_insn_info *insn, *fallback;
3764   int count;
3765 
3766   if (sched_verbose >= 7)
3767     {
3768       fprintf (sched_dump, ";;\t+--- worklist:\n");
3769       insn = model_worklist;
3770       count = MAX_SCHED_READY_INSNS;
3771       while (count > 0 && insn)
3772 	{
3773 	  fprintf (sched_dump, ";;\t+---   %d [%d, %d, %d, %d]\n",
3774 		   INSN_UID (insn->insn), insn->model_priority,
3775 		   insn->depth + insn->alap, insn->depth,
3776 		   INSN_PRIORITY (insn->insn));
3777 	  count--;
3778 	  insn = insn->next;
3779 	}
3780     }
3781 
3782   /* Look for a ready instruction whose model_classify_priority is zero
3783      or negative, picking the highest-priority one.  Adding such an
3784      instruction to the schedule now should do no harm, and may actually
3785      do some good.
3786 
3787      Failing that, see whether there is an instruction with the highest
3788      extant model_priority that is not yet ready, but which would reduce
3789      pressure if it became ready.  This is designed to catch cases like:
3790 
3791        (set (mem (reg R1)) (reg R2))
3792 
3793      where the instruction is the last remaining use of R1 and where the
3794      value of R2 is not yet available (or vice versa).  The death of R1
3795      means that this instruction already reduces pressure.  It is of
3796      course possible that the computation of R2 involves other registers
3797      that are hard to kill, but such cases are rare enough for this
3798      heuristic to be a win in general.
3799 
3800      Failing that, just pick the highest-priority instruction in the
3801      worklist.  */
3802   count = MAX_SCHED_READY_INSNS;
3803   insn = model_worklist;
3804   fallback = 0;
3805   for (;;)
3806     {
3807       if (count == 0 || !insn)
3808 	{
3809 	  insn = fallback ? fallback : model_worklist;
3810 	  break;
3811 	}
3812       if (insn->unscheduled_preds)
3813 	{
3814 	  if (model_worklist->model_priority == insn->model_priority
3815 	      && !fallback
3816 	      && model_classify_pressure (insn) < 0)
3817 	    fallback = insn;
3818 	}
3819       else
3820 	{
3821 	  if (model_classify_pressure (insn) <= 0)
3822 	    break;
3823 	}
3824       count--;
3825       insn = insn->next;
3826     }
3827 
3828   if (sched_verbose >= 7 && insn != model_worklist)
3829     {
3830       if (insn->unscheduled_preds)
3831 	fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
3832 		 INSN_UID (insn->insn));
3833       else
3834 	fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
3835 		 INSN_UID (insn->insn));
3836     }
3837   if (insn->unscheduled_preds)
3838     /* INSN isn't yet ready to issue.  Give all its predecessors the
3839        highest priority.  */
3840     model_promote_predecessors (insn);
3841   else
3842     {
3843       /* INSN is ready.  Add it to the end of model_schedule and
3844 	 process its successors.  */
3845       model_add_successors_to_worklist (insn);
3846       model_remove_from_worklist (insn);
3847       model_add_to_schedule (insn->insn);
3848       model_record_pressures (insn);
3849       update_register_pressure (insn->insn);
3850     }
3851 }
3852 
3853 /* Restore all QUEUE_INDEXs to the values that they had before
3854    model_start_schedule was called.  */
3855 
3856 static void
3857 model_reset_queue_indices (void)
3858 {
3859   unsigned int i;
3860   rtx_insn *insn;
3861 
3862   FOR_EACH_VEC_ELT (model_schedule, i, insn)
3863     QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
3864 }
3865 
3866 /* We have calculated the model schedule and spill costs.  Print a summary
3867    to sched_dump.  */
3868 
3869 static void
3870 model_dump_pressure_summary (void)
3871 {
3872   int pci, cl;
3873 
3874   fprintf (sched_dump, ";; Pressure summary:");
3875   for (pci = 0; pci < ira_pressure_classes_num; pci++)
3876     {
3877       cl = ira_pressure_classes[pci];
3878       fprintf (sched_dump, " %s:%d", reg_class_names[cl],
3879 	       model_before_pressure.limits[pci].pressure);
3880     }
3881   fprintf (sched_dump, "\n\n");
3882 }
3883 
3884 /* Initialize the SCHED_PRESSURE_MODEL information for the current
3885    scheduling region.  */
3886 
3887 static void
3888 model_start_schedule (basic_block bb)
3889 {
3890   model_next_priority = 1;
3891   model_schedule.create (sched_max_luid);
3892   model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);
3893 
3894   gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
3895   initiate_reg_pressure_info (df_get_live_in (bb));
3896 
3897   model_analyze_insns ();
3898   model_init_pressure_group (&model_before_pressure);
3899   while (model_worklist)
3900     model_choose_insn ();
3901   gcc_assert (model_num_insns == (int) model_schedule.length ());
3902   if (sched_verbose >= 2)
3903     fprintf (sched_dump, "\n");
3904 
3905   model_record_final_pressures (&model_before_pressure);
3906   model_reset_queue_indices ();
3907 
3908   XDELETEVEC (model_insns);
3909 
3910   model_curr_point = 0;
3911   initiate_reg_pressure_info (df_get_live_in (bb));
3912   if (sched_verbose >= 1)
3913     model_dump_pressure_summary ();
3914 }
3915 
3916 /* Free the information associated with GROUP.  */
3917 
3918 static void
3919 model_finalize_pressure_group (struct model_pressure_group *group)
3920 {
3921   XDELETEVEC (group->model);
3922 }
3923 
3924 /* Free the information created by model_start_schedule.  */
3925 
3926 static void
3927 model_end_schedule (void)
3928 {
3929   model_finalize_pressure_group (&model_before_pressure);
3930   model_schedule.release ();
3931 }
3932 
3933 /* Prepare reg pressure scheduling for basic block BB.  */
3934 static void
3935 sched_pressure_start_bb (basic_block bb)
3936 {
3937   /* Set the number of available registers for each class taking into account
3938      relative probability of current basic block versus function prologue and
3939      epilogue.
3940      * If the basic block executes much more often than the prologue/epilogue
3941      (e.g., inside a hot loop), then cost of spill in the prologue is close to
3942      nil, so the effective number of available registers is
3943      (ira_class_hard_regs_num[cl] - 0).
3944      * If the basic block executes as often as the prologue/epilogue,
3945      then spill in the block is as costly as in the prologue, so the effective
3946      number of available registers is
3947      (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).
3948      Note that all-else-equal, we prefer to spill in the prologue, since that
3949      allows "extra" registers for other basic blocks of the function.
3950      * If the basic block is on the cold path of the function and executes
3951      rarely, then we should always prefer to spill in the block, rather than
3952      in the prologue/epilogue.  The effective number of available register is
3953      (ira_class_hard_regs_num[cl] - call_used_regs_num[cl]).  */
3954   {
3955     int i;
3956     int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
3957     int bb_freq = bb->frequency;
3958 
3959     if (bb_freq == 0)
3960       {
3961 	if (entry_freq == 0)
3962 	  entry_freq = bb_freq = 1;
3963       }
3964     if (bb_freq < entry_freq)
3965       bb_freq = entry_freq;
3966 
3967     for (i = 0; i < ira_pressure_classes_num; ++i)
3968       {
3969 	enum reg_class cl = ira_pressure_classes[i];
3970 	sched_class_regs_num[cl] = ira_class_hard_regs_num[cl];
3971 	sched_class_regs_num[cl]
3972 	  -= (call_used_regs_num[cl] * entry_freq) / bb_freq;
3973       }
3974   }
3975 
3976   if (sched_pressure == SCHED_PRESSURE_MODEL)
3977     model_start_schedule (bb);
3978 }
3979 
3980 /* A structure that holds local state for the loop in schedule_block.  */
3981 struct sched_block_state
3982 {
3983   /* True if no real insns have been scheduled in the current cycle.  */
3984   bool first_cycle_insn_p;
3985   /* True if a shadow insn has been scheduled in the current cycle, which
3986      means that no more normal insns can be issued.  */
3987   bool shadows_only_p;
3988   /* True if we're winding down a modulo schedule, which means that we only
3989      issue insns with INSN_EXACT_TICK set.  */
3990   bool modulo_epilogue;
3991   /* Initialized with the machine's issue rate every cycle, and updated
3992      by calls to the variable_issue hook.  */
3993   int can_issue_more;
3994 };
3995 
3996 /* INSN is the "currently executing insn".  Launch each insn which was
3997    waiting on INSN.  READY is the ready list which contains the insns
3998    that are ready to fire.  CLOCK is the current cycle.  The function
3999    returns necessary cycle advance after issuing the insn (it is not
4000    zero for insns in a schedule group).  */
4001 
4002 static int
4003 schedule_insn (rtx_insn *insn)
4004 {
4005   sd_iterator_def sd_it;
4006   dep_t dep;
4007   int i;
4008   int advance = 0;
4009 
4010   if (sched_verbose >= 1)
4011     {
4012       struct reg_pressure_data *pressure_info;
4013       fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
4014 	       clock_var, (*current_sched_info->print_insn) (insn, 1),
4015 	       str_pattern_slim (PATTERN (insn)));
4016 
4017       if (recog_memoized (insn) < 0)
4018 	fprintf (sched_dump, "nothing");
4019       else
4020 	print_reservation (sched_dump, insn);
4021       pressure_info = INSN_REG_PRESSURE (insn);
4022       if (pressure_info != NULL)
4023 	{
4024 	  fputc (':', sched_dump);
4025 	  for (i = 0; i < ira_pressure_classes_num; i++)
4026 	    fprintf (sched_dump, "%s%s%+d(%d)",
4027 		     scheduled_insns.length () > 1
4028 		     && INSN_LUID (insn)
4029 		     < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
4030 		     reg_class_names[ira_pressure_classes[i]],
4031 		     pressure_info[i].set_increase, pressure_info[i].change);
4032 	}
4033       if (sched_pressure == SCHED_PRESSURE_MODEL
4034 	  && model_curr_point < model_num_insns
4035 	  && model_index (insn) == model_curr_point)
4036 	fprintf (sched_dump, ":model %d", model_curr_point);
4037       fputc ('\n', sched_dump);
4038     }
4039 
4040   if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
4041     update_reg_and_insn_max_reg_pressure (insn);
4042 
4043   /* Scheduling instruction should have all its dependencies resolved and
4044      should have been removed from the ready list.  */
4045   gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));
4046 
4047   /* Reset debug insns invalidated by moving this insn.  */
4048   if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
4049     for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
4050 	 sd_iterator_cond (&sd_it, &dep);)
4051       {
4052 	rtx_insn *dbg = DEP_PRO (dep);
4053 	struct reg_use_data *use, *next;
4054 
4055 	if (DEP_STATUS (dep) & DEP_CANCELLED)
4056 	  {
4057 	    sd_iterator_next (&sd_it);
4058 	    continue;
4059 	  }
4060 
4061 	gcc_assert (DEBUG_INSN_P (dbg));
4062 
4063 	if (sched_verbose >= 6)
4064 	  fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
4065 		   INSN_UID (dbg));
4066 
4067 	/* ??? Rather than resetting the debug insn, we might be able
4068 	   to emit a debug temp before the just-scheduled insn, but
4069 	   this would involve checking that the expression at the
4070 	   point of the debug insn is equivalent to the expression
4071 	   before the just-scheduled insn.  They might not be: the
4072 	   expression in the debug insn may depend on other insns not
4073 	   yet scheduled that set MEMs, REGs or even other debug
4074 	   insns.  It's not clear that attempting to preserve debug
4075 	   information in these cases is worth the effort, given how
4076 	   uncommon these resets are and the likelihood that the debug
4077 	   temps introduced won't survive the schedule change.  */
4078 	INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
4079 	df_insn_rescan (dbg);
4080 
4081 	/* Unknown location doesn't use any registers.  */
4082 	for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
4083 	  {
4084 	    struct reg_use_data *prev = use;
4085 
4086 	    /* Remove use from the cyclic next_regno_use chain first.  */
4087 	    while (prev->next_regno_use != use)
4088 	      prev = prev->next_regno_use;
4089 	    prev->next_regno_use = use->next_regno_use;
4090 	    next = use->next_insn_use;
4091 	    free (use);
4092 	  }
4093 	INSN_REG_USE_LIST (dbg) = NULL;
4094 
4095 	/* We delete rather than resolve these deps, otherwise we
4096 	   crash in sched_free_deps(), because forward deps are
4097 	   expected to be released before backward deps.  */
4098 	sd_delete_dep (sd_it);
4099       }
4100 
4101   gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
4102   QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
4103 
4104   if (sched_pressure == SCHED_PRESSURE_MODEL
4105       && model_curr_point < model_num_insns
4106       && NONDEBUG_INSN_P (insn))
4107     {
4108       if (model_index (insn) == model_curr_point)
4109 	do
4110 	  model_curr_point++;
4111 	while (model_curr_point < model_num_insns
4112 	       && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
4113 		   == QUEUE_SCHEDULED));
4114       else
4115 	model_recompute (insn);
4116       model_update_limit_points ();
4117       update_register_pressure (insn);
4118       if (sched_verbose >= 2)
4119 	print_curr_reg_pressure ();
4120     }
4121 
4122   gcc_assert (INSN_TICK (insn) >= MIN_TICK);
4123   if (INSN_TICK (insn) > clock_var)
4124     /* INSN has been prematurely moved from the queue to the ready list.
4125        This is possible only if following flags are set.  */
4126     gcc_assert (flag_sched_stalled_insns || sched_fusion);
4127 
4128   /* ??? Probably, if INSN is scheduled prematurely, we should leave
4129      INSN_TICK untouched.  This is a machine-dependent issue, actually.  */
4130   INSN_TICK (insn) = clock_var;
4131 
4132   check_clobbered_conditions (insn);
4133 
4134   /* Update dependent instructions.  First, see if by scheduling this insn
4135      now we broke a dependence in a way that requires us to change another
4136      insn.  */
4137   for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4138        sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
4139     {
4140       struct dep_replacement *desc = DEP_REPLACE (dep);
4141       rtx_insn *pro = DEP_PRO (dep);
4142       if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
4143 	  && desc != NULL && desc->insn == pro)
4144 	apply_replacement (dep, false);
4145     }
4146 
4147   /* Go through and resolve forward dependencies.  */
4148   for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4149        sd_iterator_cond (&sd_it, &dep);)
4150     {
4151       rtx_insn *next = DEP_CON (dep);
4152       bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;
4153 
4154       /* Resolve the dependence between INSN and NEXT.
4155 	 sd_resolve_dep () moves current dep to another list thus
4156 	 advancing the iterator.  */
4157       sd_resolve_dep (sd_it);
4158 
4159       if (cancelled)
4160 	{
4161 	  if (must_restore_pattern_p (next, dep))
4162 	    restore_pattern (dep, false);
4163 	  continue;
4164 	}
4165 
4166       /* Don't bother trying to mark next as ready if insn is a debug
4167 	 insn.  If insn is the last hard dependency, it will have
4168 	 already been discounted.  */
4169       if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
4170 	continue;
4171 
4172       if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4173 	{
4174 	  int effective_cost;
4175 
4176 	  effective_cost = try_ready (next);
4177 
4178 	  if (effective_cost >= 0
4179 	      && SCHED_GROUP_P (next)
4180 	      && advance < effective_cost)
4181 	    advance = effective_cost;
4182 	}
4183       else
4184 	/* Check always has only one forward dependence (to the first insn in
4185 	   the recovery block), therefore, this will be executed only once.  */
4186 	{
4187 	  gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4188 	  fix_recovery_deps (RECOVERY_BLOCK (insn));
4189 	}
4190     }
4191 
4192   /* Annotate the instruction with issue information -- TImode
4193      indicates that the instruction is expected not to be able
4194      to issue on the same cycle as the previous insn.  A machine
4195      may use this information to decide how the instruction should
4196      be aligned.  */
4197   if (issue_rate > 1
4198       && GET_CODE (PATTERN (insn)) != USE
4199       && GET_CODE (PATTERN (insn)) != CLOBBER
4200       && !DEBUG_INSN_P (insn))
4201     {
4202       if (reload_completed)
4203 	PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
4204       last_clock_var = clock_var;
4205     }
4206 
4207   if (nonscheduled_insns_begin != NULL_RTX)
4208     /* Indicate to debug counters that INSN is scheduled.  */
4209     nonscheduled_insns_begin = insn;
4210 
4211   return advance;
4212 }
4213 
4214 /* Functions for handling of notes.  */
4215 
4216 /* Add note list that ends on FROM_END to the end of TO_ENDP.  */
4217 void
4218 concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
4219 {
4220   rtx_insn *from_start;
4221 
4222   /* It's easy when have nothing to concat.  */
4223   if (from_end == NULL)
4224     return;
4225 
4226   /* It's also easy when destination is empty.  */
4227   if (*to_endp == NULL)
4228     {
4229       *to_endp = from_end;
4230       return;
4231     }
4232 
4233   from_start = from_end;
4234   while (PREV_INSN (from_start) != NULL)
4235     from_start = PREV_INSN (from_start);
4236 
4237   SET_PREV_INSN (from_start) = *to_endp;
4238   SET_NEXT_INSN (*to_endp) = from_start;
4239   *to_endp = from_end;
4240 }
4241 
4242 /* Delete notes between HEAD and TAIL and put them in the chain
4243    of notes ended by NOTE_LIST.  */
4244 void
4245 remove_notes (rtx_insn *head, rtx_insn *tail)
4246 {
4247   rtx_insn *next_tail, *insn, *next;
4248 
4249   note_list = 0;
4250   if (head == tail && !INSN_P (head))
4251     return;
4252 
4253   next_tail = NEXT_INSN (tail);
4254   for (insn = head; insn != next_tail; insn = next)
4255     {
4256       next = NEXT_INSN (insn);
4257       if (!NOTE_P (insn))
4258 	continue;
4259 
4260       switch (NOTE_KIND (insn))
4261 	{
4262 	case NOTE_INSN_BASIC_BLOCK:
4263 	  continue;
4264 
4265 	case NOTE_INSN_EPILOGUE_BEG:
4266 	  if (insn != tail)
4267 	    {
4268 	      remove_insn (insn);
4269 	      add_reg_note (next, REG_SAVE_NOTE,
4270 			    GEN_INT (NOTE_INSN_EPILOGUE_BEG));
4271 	      break;
4272 	    }
4273 	  /* FALLTHRU */
4274 
4275 	default:
4276 	  remove_insn (insn);
4277 
4278 	  /* Add the note to list that ends at NOTE_LIST.  */
4279 	  SET_PREV_INSN (insn) = note_list;
4280 	  SET_NEXT_INSN (insn) = NULL_RTX;
4281 	  if (note_list)
4282 	    SET_NEXT_INSN (note_list) = insn;
4283 	  note_list = insn;
4284 	  break;
4285 	}
4286 
4287       gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
4288     }
4289 }
4290 
4291 /* A structure to record enough data to allow us to backtrack the scheduler to
4292    a previous state.  */
4293 struct haifa_saved_data
4294 {
4295   /* Next entry on the list.  */
4296   struct haifa_saved_data *next;
4297 
4298   /* Backtracking is associated with scheduling insns that have delay slots.
4299      DELAY_PAIR points to the structure that contains the insns involved, and
4300      the number of cycles between them.  */
4301   struct delay_pair *delay_pair;
4302 
4303   /* Data used by the frontend (e.g. sched-ebb or sched-rgn).  */
4304   void *fe_saved_data;
4305   /* Data used by the backend.  */
4306   void *be_saved_data;
4307 
4308   /* Copies of global state.  */
4309   int clock_var, last_clock_var;
4310   struct ready_list ready;
4311   state_t curr_state;
4312 
4313   rtx_insn *last_scheduled_insn;
4314   rtx last_nondebug_scheduled_insn;
4315   rtx_insn *nonscheduled_insns_begin;
4316   int cycle_issued_insns;
4317 
4318   /* Copies of state used in the inner loop of schedule_block.  */
4319   struct sched_block_state sched_block;
4320 
4321   /* We don't need to save q_ptr, as its value is arbitrary and we can set it
4322      to 0 when restoring.  */
4323   int q_size;
4324   rtx_insn_list **insn_queue;
4325 
4326   /* Describe pattern replacements that occurred since this backtrack point
4327      was queued.  */
4328   vec<dep_t> replacement_deps;
4329   vec<int> replace_apply;
4330 
4331   /* A copy of the next-cycle replacement vectors at the time of the backtrack
4332      point.  */
4333   vec<dep_t> next_cycle_deps;
4334   vec<int> next_cycle_apply;
4335 };
4336 
4337 /* A record, in reverse order, of all scheduled insns which have delay slots
4338    and may require backtracking.  */
4339 static struct haifa_saved_data *backtrack_queue;
4340 
4341 /* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
4342    to SET_P.  */
4343 static void
4344 mark_backtrack_feeds (rtx insn, int set_p)
4345 {
4346   sd_iterator_def sd_it;
4347   dep_t dep;
4348   FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
4349     {
4350       FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
4351     }
4352 }
4353 
4354 /* Save the current scheduler state so that we can backtrack to it
4355    later if necessary.  PAIR gives the insns that make it necessary to
4356    save this point.  SCHED_BLOCK is the local state of schedule_block
4357    that need to be saved.  */
4358 static void
4359 save_backtrack_point (struct delay_pair *pair,
4360 		      struct sched_block_state sched_block)
4361 {
4362   int i;
4363   struct haifa_saved_data *save = XNEW (struct haifa_saved_data);
4364 
4365   save->curr_state = xmalloc (dfa_state_size);
4366   memcpy (save->curr_state, curr_state, dfa_state_size);
4367 
4368   save->ready.first = ready.first;
4369   save->ready.n_ready = ready.n_ready;
4370   save->ready.n_debug = ready.n_debug;
4371   save->ready.veclen = ready.veclen;
4372   save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
4373   memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));
4374 
4375   save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
4376   save->q_size = q_size;
4377   for (i = 0; i <= max_insn_queue_index; i++)
4378     {
4379       int q = NEXT_Q_AFTER (q_ptr, i);
4380       save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
4381     }
4382 
4383   save->clock_var = clock_var;
4384   save->last_clock_var = last_clock_var;
4385   save->cycle_issued_insns = cycle_issued_insns;
4386   save->last_scheduled_insn = last_scheduled_insn;
4387   save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
4388   save->nonscheduled_insns_begin = nonscheduled_insns_begin;
4389 
4390   save->sched_block = sched_block;
4391 
4392   save->replacement_deps.create (0);
4393   save->replace_apply.create (0);
4394   save->next_cycle_deps = next_cycle_replace_deps.copy ();
4395   save->next_cycle_apply = next_cycle_apply.copy ();
4396 
4397   if (current_sched_info->save_state)
4398     save->fe_saved_data = (*current_sched_info->save_state) ();
4399 
4400   if (targetm.sched.alloc_sched_context)
4401     {
4402       save->be_saved_data = targetm.sched.alloc_sched_context ();
4403       targetm.sched.init_sched_context (save->be_saved_data, false);
4404     }
4405   else
4406     save->be_saved_data = NULL;
4407 
4408   save->delay_pair = pair;
4409 
4410   save->next = backtrack_queue;
4411   backtrack_queue = save;
4412 
4413   while (pair)
4414     {
4415       mark_backtrack_feeds (pair->i2, 1);
4416       INSN_TICK (pair->i2) = INVALID_TICK;
4417       INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
4418       SHADOW_P (pair->i2) = pair->stages == 0;
4419       pair = pair->next_same_i1;
4420     }
4421 }
4422 
4423 /* Walk the ready list and all queues. If any insns have unresolved backwards
4424    dependencies, these must be cancelled deps, broken by predication.  Set or
4425    clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS.  */
4426 
4427 static void
4428 toggle_cancelled_flags (bool set)
4429 {
4430   int i;
4431   sd_iterator_def sd_it;
4432   dep_t dep;
4433 
4434   if (ready.n_ready > 0)
4435     {
4436       rtx_insn **first = ready_lastpos (&ready);
4437       for (i = 0; i < ready.n_ready; i++)
4438 	FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
4439 	  if (!DEBUG_INSN_P (DEP_PRO (dep)))
4440 	    {
4441 	      if (set)
4442 		DEP_STATUS (dep) |= DEP_CANCELLED;
4443 	      else
4444 		DEP_STATUS (dep) &= ~DEP_CANCELLED;
4445 	    }
4446     }
4447   for (i = 0; i <= max_insn_queue_index; i++)
4448     {
4449       int q = NEXT_Q_AFTER (q_ptr, i);
4450       rtx_insn_list *link;
4451       for (link = insn_queue[q]; link; link = link->next ())
4452 	{
4453 	  rtx_insn *insn = link->insn ();
4454 	  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4455 	    if (!DEBUG_INSN_P (DEP_PRO (dep)))
4456 	      {
4457 		if (set)
4458 		  DEP_STATUS (dep) |= DEP_CANCELLED;
4459 		else
4460 		  DEP_STATUS (dep) &= ~DEP_CANCELLED;
4461 	      }
4462 	}
4463     }
4464 }
4465 
4466 /* Undo the replacements that have occurred after backtrack point SAVE
4467    was placed.  */
4468 static void
4469 undo_replacements_for_backtrack (struct haifa_saved_data *save)
4470 {
4471   while (!save->replacement_deps.is_empty ())
4472     {
4473       dep_t dep = save->replacement_deps.pop ();
4474       int apply_p = save->replace_apply.pop ();
4475 
4476       if (apply_p)
4477 	restore_pattern (dep, true);
4478       else
4479 	apply_replacement (dep, true);
4480     }
4481   save->replacement_deps.release ();
4482   save->replace_apply.release ();
4483 }
4484 
4485 /* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
4486    Restore their dependencies to an unresolved state, and mark them as
4487    queued nowhere.  */
4488 
4489 static void
4490 unschedule_insns_until (rtx insn)
4491 {
4492   auto_vec<rtx_insn *> recompute_vec;
4493 
4494   /* Make two passes over the insns to be unscheduled.  First, we clear out
4495      dependencies and other trivial bookkeeping.  */
4496   for (;;)
4497     {
4498       rtx_insn *last;
4499       sd_iterator_def sd_it;
4500       dep_t dep;
4501 
4502       last = scheduled_insns.pop ();
4503 
4504       /* This will be changed by restore_backtrack_point if the insn is in
4505 	 any queue.  */
4506       QUEUE_INDEX (last) = QUEUE_NOWHERE;
4507       if (last != insn)
4508 	INSN_TICK (last) = INVALID_TICK;
4509 
4510       if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
4511 	modulo_insns_scheduled--;
4512 
4513       for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
4514 	   sd_iterator_cond (&sd_it, &dep);)
4515 	{
4516 	  rtx_insn *con = DEP_CON (dep);
4517 	  sd_unresolve_dep (sd_it);
4518 	  if (!MUST_RECOMPUTE_SPEC_P (con))
4519 	    {
4520 	      MUST_RECOMPUTE_SPEC_P (con) = 1;
4521 	      recompute_vec.safe_push (con);
4522 	    }
4523 	}
4524 
4525       if (last == insn)
4526 	break;
4527     }
4528 
4529   /* A second pass, to update ready and speculation status for insns
4530      depending on the unscheduled ones.  The first pass must have
4531      popped the scheduled_insns vector up to the point where we
4532      restart scheduling, as recompute_todo_spec requires it to be
4533      up-to-date.  */
4534   while (!recompute_vec.is_empty ())
4535     {
4536       rtx_insn *con;
4537 
4538       con = recompute_vec.pop ();
4539       MUST_RECOMPUTE_SPEC_P (con) = 0;
4540       if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
4541 	{
4542 	  TODO_SPEC (con) = HARD_DEP;
4543 	  INSN_TICK (con) = INVALID_TICK;
4544 	  if (PREDICATED_PAT (con) != NULL_RTX)
4545 	    haifa_change_pattern (con, ORIG_PAT (con));
4546 	}
4547       else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
4548 	TODO_SPEC (con) = recompute_todo_spec (con, true);
4549     }
4550 }
4551 
4552 /* Restore scheduler state from the topmost entry on the backtracking queue.
4553    PSCHED_BLOCK_P points to the local data of schedule_block that we must
4554    overwrite with the saved data.
4555    The caller must already have called unschedule_insns_until.  */
4556 
4557 static void
4558 restore_last_backtrack_point (struct sched_block_state *psched_block)
4559 {
4560   int i;
4561   struct haifa_saved_data *save = backtrack_queue;
4562 
4563   backtrack_queue = save->next;
4564 
4565   if (current_sched_info->restore_state)
4566     (*current_sched_info->restore_state) (save->fe_saved_data);
4567 
4568   if (targetm.sched.alloc_sched_context)
4569     {
4570       targetm.sched.set_sched_context (save->be_saved_data);
4571       targetm.sched.free_sched_context (save->be_saved_data);
4572     }
4573 
4574   /* Do this first since it clobbers INSN_TICK of the involved
4575      instructions.  */
4576   undo_replacements_for_backtrack (save);
4577 
4578   /* Clear the QUEUE_INDEX of everything in the ready list or one
4579      of the queues.  */
4580   if (ready.n_ready > 0)
4581     {
4582       rtx_insn **first = ready_lastpos (&ready);
4583       for (i = 0; i < ready.n_ready; i++)
4584 	{
4585 	  rtx_insn *insn = first[i];
4586 	  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
4587 	  INSN_TICK (insn) = INVALID_TICK;
4588 	}
4589     }
4590   for (i = 0; i <= max_insn_queue_index; i++)
4591     {
4592       int q = NEXT_Q_AFTER (q_ptr, i);
4593 
4594       for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4595 	{
4596 	  rtx_insn *x = link->insn ();
4597 	  QUEUE_INDEX (x) = QUEUE_NOWHERE;
4598 	  INSN_TICK (x) = INVALID_TICK;
4599 	}
4600       free_INSN_LIST_list (&insn_queue[q]);
4601     }
4602 
4603   free (ready.vec);
4604   ready = save->ready;
4605 
4606   if (ready.n_ready > 0)
4607     {
4608       rtx_insn **first = ready_lastpos (&ready);
4609       for (i = 0; i < ready.n_ready; i++)
4610 	{
4611 	  rtx_insn *insn = first[i];
4612 	  QUEUE_INDEX (insn) = QUEUE_READY;
4613 	  TODO_SPEC (insn) = recompute_todo_spec (insn, true);
4614 	  INSN_TICK (insn) = save->clock_var;
4615 	}
4616     }
4617 
4618   q_ptr = 0;
4619   q_size = save->q_size;
4620   for (i = 0; i <= max_insn_queue_index; i++)
4621     {
4622       int q = NEXT_Q_AFTER (q_ptr, i);
4623 
4624       insn_queue[q] = save->insn_queue[q];
4625 
4626       for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
4627 	{
4628 	  rtx_insn *x = link->insn ();
4629 	  QUEUE_INDEX (x) = i;
4630 	  TODO_SPEC (x) = recompute_todo_spec (x, true);
4631 	  INSN_TICK (x) = save->clock_var + i;
4632 	}
4633     }
4634   free (save->insn_queue);
4635 
4636   toggle_cancelled_flags (true);
4637 
4638   clock_var = save->clock_var;
4639   last_clock_var = save->last_clock_var;
4640   cycle_issued_insns = save->cycle_issued_insns;
4641   last_scheduled_insn = save->last_scheduled_insn;
4642   last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
4643   nonscheduled_insns_begin = save->nonscheduled_insns_begin;
4644 
4645   *psched_block = save->sched_block;
4646 
4647   memcpy (curr_state, save->curr_state, dfa_state_size);
4648   free (save->curr_state);
4649 
4650   mark_backtrack_feeds (save->delay_pair->i2, 0);
4651 
4652   gcc_assert (next_cycle_replace_deps.is_empty ());
4653   next_cycle_replace_deps = save->next_cycle_deps.copy ();
4654   next_cycle_apply = save->next_cycle_apply.copy ();
4655 
4656   free (save);
4657 
4658   for (save = backtrack_queue; save; save = save->next)
4659     {
4660       mark_backtrack_feeds (save->delay_pair->i2, 1);
4661     }
4662 }
4663 
4664 /* Discard all data associated with the topmost entry in the backtrack
4665    queue.  If RESET_TICK is false, we just want to free the data.  If true,
4666    we are doing this because we discovered a reason to backtrack.  In the
4667    latter case, also reset the INSN_TICK for the shadow insn.  */
4668 static void
4669 free_topmost_backtrack_point (bool reset_tick)
4670 {
4671   struct haifa_saved_data *save = backtrack_queue;
4672   int i;
4673 
4674   backtrack_queue = save->next;
4675 
4676   if (reset_tick)
4677     {
4678       struct delay_pair *pair = save->delay_pair;
4679       while (pair)
4680 	{
4681 	  INSN_TICK (pair->i2) = INVALID_TICK;
4682 	  INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
4683 	  pair = pair->next_same_i1;
4684 	}
4685       undo_replacements_for_backtrack (save);
4686     }
4687   else
4688     {
4689       save->replacement_deps.release ();
4690       save->replace_apply.release ();
4691     }
4692 
4693   if (targetm.sched.free_sched_context)
4694     targetm.sched.free_sched_context (save->be_saved_data);
4695   if (current_sched_info->restore_state)
4696     free (save->fe_saved_data);
4697   for (i = 0; i <= max_insn_queue_index; i++)
4698     free_INSN_LIST_list (&save->insn_queue[i]);
4699   free (save->insn_queue);
4700   free (save->curr_state);
4701   free (save->ready.vec);
4702   free (save);
4703 }
4704 
4705 /* Free the entire backtrack queue.  */
4706 static void
4707 free_backtrack_queue (void)
4708 {
4709   while (backtrack_queue)
4710     free_topmost_backtrack_point (false);
4711 }
4712 
4713 /* Apply a replacement described by DESC.  If IMMEDIATELY is false, we
4714    may have to postpone the replacement until the start of the next cycle,
4715    at which point we will be called again with IMMEDIATELY true.  This is
4716    only done for machines which have instruction packets with explicit
4717    parallelism however.  */
4718 static void
4719 apply_replacement (dep_t dep, bool immediately)
4720 {
4721   struct dep_replacement *desc = DEP_REPLACE (dep);
4722   if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4723     {
4724       next_cycle_replace_deps.safe_push (dep);
4725       next_cycle_apply.safe_push (1);
4726     }
4727   else
4728     {
4729       bool success;
4730 
4731       if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
4732 	return;
4733 
4734       if (sched_verbose >= 5)
4735 	fprintf (sched_dump, "applying replacement for insn %d\n",
4736 		 INSN_UID (desc->insn));
4737 
4738       success = validate_change (desc->insn, desc->loc, desc->newval, 0);
4739       gcc_assert (success);
4740 
4741       update_insn_after_change (desc->insn);
4742       if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
4743 	fix_tick_ready (desc->insn);
4744 
4745       if (backtrack_queue != NULL)
4746 	{
4747 	  backtrack_queue->replacement_deps.safe_push (dep);
4748 	  backtrack_queue->replace_apply.safe_push (1);
4749 	}
4750     }
4751 }
4752 
4753 /* We have determined that a pattern involved in DEP must be restored.
4754    If IMMEDIATELY is false, we may have to postpone the replacement
4755    until the start of the next cycle, at which point we will be called
4756    again with IMMEDIATELY true.  */
4757 static void
4758 restore_pattern (dep_t dep, bool immediately)
4759 {
4760   rtx_insn *next = DEP_CON (dep);
4761   int tick = INSN_TICK (next);
4762 
4763   /* If we already scheduled the insn, the modified version is
4764      correct.  */
4765   if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
4766     return;
4767 
4768   if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
4769     {
4770       next_cycle_replace_deps.safe_push (dep);
4771       next_cycle_apply.safe_push (0);
4772       return;
4773     }
4774 
4775 
4776   if (DEP_TYPE (dep) == REG_DEP_CONTROL)
4777     {
4778       if (sched_verbose >= 5)
4779 	fprintf (sched_dump, "restoring pattern for insn %d\n",
4780 		 INSN_UID (next));
4781       haifa_change_pattern (next, ORIG_PAT (next));
4782     }
4783   else
4784     {
4785       struct dep_replacement *desc = DEP_REPLACE (dep);
4786       bool success;
4787 
4788       if (sched_verbose >= 5)
4789 	fprintf (sched_dump, "restoring pattern for insn %d\n",
4790 		 INSN_UID (desc->insn));
4791       tick = INSN_TICK (desc->insn);
4792 
4793       success = validate_change (desc->insn, desc->loc, desc->orig, 0);
4794       gcc_assert (success);
4795       update_insn_after_change (desc->insn);
4796       if (backtrack_queue != NULL)
4797 	{
4798 	  backtrack_queue->replacement_deps.safe_push (dep);
4799 	  backtrack_queue->replace_apply.safe_push (0);
4800 	}
4801     }
4802   INSN_TICK (next) = tick;
4803   if (TODO_SPEC (next) == DEP_POSTPONED)
4804     return;
4805 
4806   if (sd_lists_empty_p (next, SD_LIST_BACK))
4807     TODO_SPEC (next) = 0;
4808   else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
4809     TODO_SPEC (next) = HARD_DEP;
4810 }
4811 
4812 /* Perform pattern replacements that were queued up until the next
4813    cycle.  */
4814 static void
4815 perform_replacements_new_cycle (void)
4816 {
4817   int i;
4818   dep_t dep;
4819   FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
4820     {
4821       int apply_p = next_cycle_apply[i];
4822       if (apply_p)
4823 	apply_replacement (dep, true);
4824       else
4825 	restore_pattern (dep, true);
4826     }
4827   next_cycle_replace_deps.truncate (0);
4828   next_cycle_apply.truncate (0);
4829 }
4830 
4831 /* Compute INSN_TICK_ESTIMATE for INSN.  PROCESSED is a bitmap of
4832    instructions we've previously encountered, a set bit prevents
4833    recursion.  BUDGET is a limit on how far ahead we look, it is
4834    reduced on recursive calls.  Return true if we produced a good
4835    estimate, or false if we exceeded the budget.  */
4836 static bool
4837 estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
4838 {
4839   sd_iterator_def sd_it;
4840   dep_t dep;
4841   int earliest = INSN_TICK (insn);
4842 
4843   FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4844     {
4845       rtx_insn *pro = DEP_PRO (dep);
4846       int t;
4847 
4848       if (DEP_STATUS (dep) & DEP_CANCELLED)
4849 	continue;
4850 
4851       if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
4852 	gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
4853       else
4854 	{
4855 	  int cost = dep_cost (dep);
4856 	  if (cost >= budget)
4857 	    return false;
4858 	  if (!bitmap_bit_p (processed, INSN_LUID (pro)))
4859 	    {
4860 	      if (!estimate_insn_tick (processed, pro, budget - cost))
4861 		return false;
4862 	    }
4863 	  gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
4864 	  t = INSN_TICK_ESTIMATE (pro) + cost;
4865 	  if (earliest == INVALID_TICK || t > earliest)
4866 	    earliest = t;
4867 	}
4868     }
4869   bitmap_set_bit (processed, INSN_LUID (insn));
4870   INSN_TICK_ESTIMATE (insn) = earliest;
4871   return true;
4872 }
4873 
4874 /* Examine the pair of insns in P, and estimate (optimistically, assuming
4875    infinite resources) the cycle in which the delayed shadow can be issued.
4876    Return the number of cycles that must pass before the real insn can be
4877    issued in order to meet this constraint.  */
4878 static int
4879 estimate_shadow_tick (struct delay_pair *p)
4880 {
4881   bitmap_head processed;
4882   int t;
4883   bool cutoff;
4884   bitmap_initialize (&processed, 0);
4885 
4886   cutoff = !estimate_insn_tick (&processed, p->i2,
4887 				max_insn_queue_index + pair_delay (p));
4888   bitmap_clear (&processed);
4889   if (cutoff)
4890     return max_insn_queue_index;
4891   t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
4892   if (t > 0)
4893     return t;
4894   return 0;
4895 }
4896 
4897 /* If INSN has no unresolved backwards dependencies, add it to the schedule and
4898    recursively resolve all its forward dependencies.  */
4899 static void
4900 resolve_dependencies (rtx_insn *insn)
4901 {
4902   sd_iterator_def sd_it;
4903   dep_t dep;
4904 
4905   /* Don't use sd_lists_empty_p; it ignores debug insns.  */
4906   if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
4907       || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
4908     return;
4909 
4910   if (sched_verbose >= 4)
4911     fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));
4912 
4913   if (QUEUE_INDEX (insn) >= 0)
4914     queue_remove (insn);
4915 
4916   scheduled_insns.safe_push (insn);
4917 
4918   /* Update dependent instructions.  */
4919   for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4920        sd_iterator_cond (&sd_it, &dep);)
4921     {
4922       rtx_insn *next = DEP_CON (dep);
4923 
4924       if (sched_verbose >= 4)
4925 	fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
4926 		 INSN_UID (next));
4927 
4928       /* Resolve the dependence between INSN and NEXT.
4929 	 sd_resolve_dep () moves current dep to another list thus
4930 	 advancing the iterator.  */
4931       sd_resolve_dep (sd_it);
4932 
4933       if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
4934 	{
4935 	  resolve_dependencies (next);
4936 	}
4937       else
4938 	/* Check always has only one forward dependence (to the first insn in
4939 	   the recovery block), therefore, this will be executed only once.  */
4940 	{
4941 	  gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
4942 	}
4943     }
4944 }
4945 
4946 
4947 /* Return the head and tail pointers of ebb starting at BEG and ending
4948    at END.  */
4949 void
4950 get_ebb_head_tail (basic_block beg, basic_block end,
4951 		   rtx_insn **headp, rtx_insn **tailp)
4952 {
4953   rtx_insn *beg_head = BB_HEAD (beg);
4954   rtx_insn * beg_tail = BB_END (beg);
4955   rtx_insn * end_head = BB_HEAD (end);
4956   rtx_insn * end_tail = BB_END (end);
4957 
4958   /* Don't include any notes or labels at the beginning of the BEG
4959      basic block, or notes at the end of the END basic blocks.  */
4960 
4961   if (LABEL_P (beg_head))
4962     beg_head = NEXT_INSN (beg_head);
4963 
4964   while (beg_head != beg_tail)
4965     if (NOTE_P (beg_head))
4966       beg_head = NEXT_INSN (beg_head);
4967     else if (DEBUG_INSN_P (beg_head))
4968       {
4969 	rtx_insn * note, *next;
4970 
4971 	for (note = NEXT_INSN (beg_head);
4972 	     note != beg_tail;
4973 	     note = next)
4974 	  {
4975 	    next = NEXT_INSN (note);
4976 	    if (NOTE_P (note))
4977 	      {
4978 		if (sched_verbose >= 9)
4979 		  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
4980 
4981 		reorder_insns_nobb (note, note, PREV_INSN (beg_head));
4982 
4983 		if (BLOCK_FOR_INSN (note) != beg)
4984 		  df_insn_change_bb (note, beg);
4985 	      }
4986 	    else if (!DEBUG_INSN_P (note))
4987 	      break;
4988 	  }
4989 
4990 	break;
4991       }
4992     else
4993       break;
4994 
4995   *headp = beg_head;
4996 
4997   if (beg == end)
4998     end_head = beg_head;
4999   else if (LABEL_P (end_head))
5000     end_head = NEXT_INSN (end_head);
5001 
5002   while (end_head != end_tail)
5003     if (NOTE_P (end_tail))
5004       end_tail = PREV_INSN (end_tail);
5005     else if (DEBUG_INSN_P (end_tail))
5006       {
5007 	rtx_insn * note, *prev;
5008 
5009 	for (note = PREV_INSN (end_tail);
5010 	     note != end_head;
5011 	     note = prev)
5012 	  {
5013 	    prev = PREV_INSN (note);
5014 	    if (NOTE_P (note))
5015 	      {
5016 		if (sched_verbose >= 9)
5017 		  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));
5018 
5019 		reorder_insns_nobb (note, note, end_tail);
5020 
5021 		if (end_tail == BB_END (end))
5022 		  BB_END (end) = note;
5023 
5024 		if (BLOCK_FOR_INSN (note) != end)
5025 		  df_insn_change_bb (note, end);
5026 	      }
5027 	    else if (!DEBUG_INSN_P (note))
5028 	      break;
5029 	  }
5030 
5031 	break;
5032       }
5033     else
5034       break;
5035 
5036   *tailp = end_tail;
5037 }
5038 
5039 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */
5040 
5041 int
5042 no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
5043 {
5044   while (head != NEXT_INSN (tail))
5045     {
5046       if (!NOTE_P (head) && !LABEL_P (head))
5047 	return 0;
5048       head = NEXT_INSN (head);
5049     }
5050   return 1;
5051 }
5052 
5053 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
5054    previously found among the insns.  Insert them just before HEAD.  */
5055 rtx_insn *
5056 restore_other_notes (rtx_insn *head, basic_block head_bb)
5057 {
5058   if (note_list != 0)
5059     {
5060       rtx_insn *note_head = note_list;
5061 
5062       if (head)
5063 	head_bb = BLOCK_FOR_INSN (head);
5064       else
5065 	head = NEXT_INSN (bb_note (head_bb));
5066 
5067       while (PREV_INSN (note_head))
5068 	{
5069 	  set_block_for_insn (note_head, head_bb);
5070 	  note_head = PREV_INSN (note_head);
5071 	}
5072       /* In the above cycle we've missed this note.  */
5073       set_block_for_insn (note_head, head_bb);
5074 
5075       SET_PREV_INSN (note_head) = PREV_INSN (head);
5076       SET_NEXT_INSN (PREV_INSN (head)) = note_head;
5077       SET_PREV_INSN (head) = note_list;
5078       SET_NEXT_INSN (note_list) = head;
5079 
5080       if (BLOCK_FOR_INSN (head) != head_bb)
5081 	BB_END (head_bb) = note_list;
5082 
5083       head = note_head;
5084     }
5085 
5086   return head;
5087 }
5088 
5089 /* When we know we are going to discard the schedule due to a failed attempt
5090    at modulo scheduling, undo all replacements.  */
5091 static void
5092 undo_all_replacements (void)
5093 {
5094   rtx_insn *insn;
5095   int i;
5096 
5097   FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
5098     {
5099       sd_iterator_def sd_it;
5100       dep_t dep;
5101 
5102       /* See if we must undo a replacement.  */
5103       for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
5104 	   sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
5105 	{
5106 	  struct dep_replacement *desc = DEP_REPLACE (dep);
5107 	  if (desc != NULL)
5108 	    validate_change (desc->insn, desc->loc, desc->orig, 0);
5109 	}
5110     }
5111 }
5112 
5113 /* Return first non-scheduled insn in the current scheduling block.
5114    This is mostly used for debug-counter purposes.  */
5115 static rtx_insn *
5116 first_nonscheduled_insn (void)
5117 {
5118   rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
5119 		    ? nonscheduled_insns_begin
5120 		    : current_sched_info->prev_head);
5121 
5122   do
5123     {
5124       insn = next_nonnote_nondebug_insn (insn);
5125     }
5126   while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);
5127 
5128   return insn;
5129 }
5130 
5131 /* Move insns that became ready to fire from queue to ready list.  */
5132 
5133 static void
5134 queue_to_ready (struct ready_list *ready)
5135 {
5136   rtx_insn *insn;
5137   rtx_insn_list *link;
5138   rtx skip_insn;
5139 
5140   q_ptr = NEXT_Q (q_ptr);
5141 
5142   if (dbg_cnt (sched_insn) == false)
5143     /* If debug counter is activated do not requeue the first
5144        nonscheduled insn.  */
5145     skip_insn = first_nonscheduled_insn ();
5146   else
5147     skip_insn = NULL_RTX;
5148 
5149   /* Add all pending insns that can be scheduled without stalls to the
5150      ready list.  */
5151   for (link = insn_queue[q_ptr]; link; link = link->next ())
5152     {
5153       insn = link->insn ();
5154       q_size -= 1;
5155 
5156       if (sched_verbose >= 2)
5157 	fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5158 		 (*current_sched_info->print_insn) (insn, 0));
5159 
5160       /* If the ready list is full, delay the insn for 1 cycle.
5161 	 See the comment in schedule_block for the rationale.  */
5162       if (!reload_completed
5163 	  && (ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
5164 	      || (sched_pressure == SCHED_PRESSURE_MODEL
5165 		  /* Limit pressure recalculations to MAX_SCHED_READY_INSNS
5166 		     instructions too.  */
5167 		  && model_index (insn) > (model_curr_point
5168 					   + MAX_SCHED_READY_INSNS)))
5169 	  && !(sched_pressure == SCHED_PRESSURE_MODEL
5170 	       && model_curr_point < model_num_insns
5171 	       /* Always allow the next model instruction to issue.  */
5172 	       && model_index (insn) == model_curr_point)
5173 	  && !SCHED_GROUP_P (insn)
5174 	  && insn != skip_insn)
5175 	{
5176 	  if (sched_verbose >= 2)
5177 	    fprintf (sched_dump, "keeping in queue, ready full\n");
5178 	  queue_insn (insn, 1, "ready full");
5179 	}
5180       else
5181 	{
5182 	  ready_add (ready, insn, false);
5183 	  if (sched_verbose >= 2)
5184 	    fprintf (sched_dump, "moving to ready without stalls\n");
5185         }
5186     }
5187   free_INSN_LIST_list (&insn_queue[q_ptr]);
5188 
5189   /* If there are no ready insns, stall until one is ready and add all
5190      of the pending insns at that point to the ready list.  */
5191   if (ready->n_ready == 0)
5192     {
5193       int stalls;
5194 
5195       for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
5196 	{
5197 	  if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5198 	    {
5199 	      for (; link; link = link->next ())
5200 		{
5201 		  insn = link->insn ();
5202 		  q_size -= 1;
5203 
5204 		  if (sched_verbose >= 2)
5205 		    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
5206 			     (*current_sched_info->print_insn) (insn, 0));
5207 
5208 		  ready_add (ready, insn, false);
5209 		  if (sched_verbose >= 2)
5210 		    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
5211 		}
5212 	      free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
5213 
5214 	      advance_one_cycle ();
5215 
5216 	      break;
5217 	    }
5218 
5219 	  advance_one_cycle ();
5220 	}
5221 
5222       q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5223       clock_var += stalls;
5224       if (sched_verbose >= 2)
5225 	fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
5226 		 stalls, clock_var);
5227     }
5228 }
5229 
5230 /* Used by early_queue_to_ready.  Determines whether it is "ok" to
5231    prematurely move INSN from the queue to the ready list.  Currently,
5232    if a target defines the hook 'is_costly_dependence', this function
5233    uses the hook to check whether there exist any dependences which are
5234    considered costly by the target, between INSN and other insns that
5235    have already been scheduled.  Dependences are checked up to Y cycles
5236    back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
5237    controlling this value.
5238    (Other considerations could be taken into account instead (or in
5239    addition) depending on user flags and target hooks.  */
5240 
5241 static bool
5242 ok_for_early_queue_removal (rtx insn)
5243 {
5244   if (targetm.sched.is_costly_dependence)
5245     {
5246       rtx prev_insn;
5247       int n_cycles;
5248       int i = scheduled_insns.length ();
5249       for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
5250 	{
5251 	  while (i-- > 0)
5252 	    {
5253 	      int cost;
5254 
5255 	      prev_insn = scheduled_insns[i];
5256 
5257 	      if (!NOTE_P (prev_insn))
5258 		{
5259 		  dep_t dep;
5260 
5261 		  dep = sd_find_dep_between (prev_insn, insn, true);
5262 
5263 		  if (dep != NULL)
5264 		    {
5265 		      cost = dep_cost (dep);
5266 
5267 		      if (targetm.sched.is_costly_dependence (dep, cost,
5268 				flag_sched_stalled_insns_dep - n_cycles))
5269 			return false;
5270 		    }
5271 		}
5272 
5273 	      if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
5274 		break;
5275 	    }
5276 
5277 	  if (i == 0)
5278 	    break;
5279 	}
5280     }
5281 
5282   return true;
5283 }
5284 
5285 
5286 /* Remove insns from the queue, before they become "ready" with respect
5287    to FU latency considerations.  */
5288 
5289 static int
5290 early_queue_to_ready (state_t state, struct ready_list *ready)
5291 {
5292   rtx_insn *insn;
5293   rtx_insn_list *link;
5294   rtx_insn_list *next_link;
5295   rtx_insn_list *prev_link;
5296   bool move_to_ready;
5297   int cost;
5298   state_t temp_state = alloca (dfa_state_size);
5299   int stalls;
5300   int insns_removed = 0;
5301 
5302   /*
5303      Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
5304      function:
5305 
5306      X == 0: There is no limit on how many queued insns can be removed
5307              prematurely.  (flag_sched_stalled_insns = -1).
5308 
5309      X >= 1: Only X queued insns can be removed prematurely in each
5310 	     invocation.  (flag_sched_stalled_insns = X).
5311 
5312      Otherwise: Early queue removal is disabled.
5313          (flag_sched_stalled_insns = 0)
5314   */
5315 
5316   if (! flag_sched_stalled_insns)
5317     return 0;
5318 
5319   for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
5320     {
5321       if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5322 	{
5323 	  if (sched_verbose > 6)
5324 	    fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
5325 
5326 	  prev_link = 0;
5327 	  while (link)
5328 	    {
5329 	      next_link = link->next ();
5330 	      insn = link->insn ();
5331 	      if (insn && sched_verbose > 6)
5332 		print_rtl_single (sched_dump, insn);
5333 
5334 	      memcpy (temp_state, state, dfa_state_size);
5335 	      if (recog_memoized (insn) < 0)
5336 		/* non-negative to indicate that it's not ready
5337 		   to avoid infinite Q->R->Q->R... */
5338 		cost = 0;
5339 	      else
5340 		cost = state_transition (temp_state, insn);
5341 
5342 	      if (sched_verbose >= 6)
5343 		fprintf (sched_dump, "transition cost = %d\n", cost);
5344 
5345 	      move_to_ready = false;
5346 	      if (cost < 0)
5347 		{
5348 		  move_to_ready = ok_for_early_queue_removal (insn);
5349 		  if (move_to_ready == true)
5350 		    {
5351 		      /* move from Q to R */
5352 		      q_size -= 1;
5353 		      ready_add (ready, insn, false);
5354 
5355 		      if (prev_link)
5356 			XEXP (prev_link, 1) = next_link;
5357 		      else
5358 			insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
5359 
5360 		      free_INSN_LIST_node (link);
5361 
5362 		      if (sched_verbose >= 2)
5363 			fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
5364 				 (*current_sched_info->print_insn) (insn, 0));
5365 
5366 		      insns_removed++;
5367 		      if (insns_removed == flag_sched_stalled_insns)
5368 			/* Remove no more than flag_sched_stalled_insns insns
5369 			   from Q at a time.  */
5370 			return insns_removed;
5371 		    }
5372 		}
5373 
5374 	      if (move_to_ready == false)
5375 		prev_link = link;
5376 
5377 	      link = next_link;
5378 	    } /* while link */
5379 	} /* if link */
5380 
5381     } /* for stalls.. */
5382 
5383   return insns_removed;
5384 }
5385 
5386 
5387 /* Print the ready list for debugging purposes.
5388    If READY_TRY is non-zero then only print insns that max_issue
5389    will consider.  */
5390 static void
5391 debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
5392 {
5393   rtx_insn **p;
5394   int i;
5395 
5396   if (ready->n_ready == 0)
5397     {
5398       fprintf (sched_dump, "\n");
5399       return;
5400     }
5401 
5402   p = ready_lastpos (ready);
5403   for (i = 0; i < ready->n_ready; i++)
5404     {
5405       if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
5406 	continue;
5407 
5408       fprintf (sched_dump, "  %s:%d",
5409 	       (*current_sched_info->print_insn) (p[i], 0),
5410 	       INSN_LUID (p[i]));
5411       if (sched_pressure != SCHED_PRESSURE_NONE)
5412 	fprintf (sched_dump, "(cost=%d",
5413 		 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
5414       fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
5415       if (INSN_TICK (p[i]) > clock_var)
5416 	fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
5417       if (sched_pressure == SCHED_PRESSURE_MODEL)
5418 	fprintf (sched_dump, ":idx=%d",
5419 		 model_index (p[i]));
5420       if (sched_pressure != SCHED_PRESSURE_NONE)
5421 	fprintf (sched_dump, ")");
5422     }
5423   fprintf (sched_dump, "\n");
5424 }
5425 
5426 /* Print the ready list.  Callable from debugger.  */
5427 static void
5428 debug_ready_list (struct ready_list *ready)
5429 {
5430   debug_ready_list_1 (ready, NULL);
5431 }
5432 
5433 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
5434    NOTEs.  This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
5435    replaces the epilogue note in the correct basic block.  */
5436 void
5437 reemit_notes (rtx_insn *insn)
5438 {
5439   rtx note;
5440   rtx_insn *last = insn;
5441 
5442   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
5443     {
5444       if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
5445 	{
5446 	  enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
5447 
5448 	  last = emit_note_before (note_type, last);
5449 	  remove_note (insn, note);
5450 	}
5451     }
5452 }
5453 
5454 /* Move INSN.  Reemit notes if needed.  Update CFG, if needed.  */
5455 static void
5456 move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
5457 {
5458   if (PREV_INSN (insn) != last)
5459     {
5460       basic_block bb;
5461       rtx_insn *note;
5462       int jump_p = 0;
5463 
5464       bb = BLOCK_FOR_INSN (insn);
5465 
5466       /* BB_HEAD is either LABEL or NOTE.  */
5467       gcc_assert (BB_HEAD (bb) != insn);
5468 
5469       if (BB_END (bb) == insn)
5470 	/* If this is last instruction in BB, move end marker one
5471 	   instruction up.  */
5472 	{
5473 	  /* Jumps are always placed at the end of basic block.  */
5474 	  jump_p = control_flow_insn_p (insn);
5475 
5476 	  gcc_assert (!jump_p
5477 		      || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
5478 			  && IS_SPECULATION_BRANCHY_CHECK_P (insn))
5479 		      || (common_sched_info->sched_pass_id
5480 			  == SCHED_EBB_PASS));
5481 
5482 	  gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
5483 
5484 	  BB_END (bb) = PREV_INSN (insn);
5485 	}
5486 
5487       gcc_assert (BB_END (bb) != last);
5488 
5489       if (jump_p)
5490 	/* We move the block note along with jump.  */
5491 	{
5492 	  gcc_assert (nt);
5493 
5494 	  note = NEXT_INSN (insn);
5495 	  while (NOTE_NOT_BB_P (note) && note != nt)
5496 	    note = NEXT_INSN (note);
5497 
5498 	  if (note != nt
5499 	      && (LABEL_P (note)
5500 		  || BARRIER_P (note)))
5501 	    note = NEXT_INSN (note);
5502 
5503 	  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5504 	}
5505       else
5506 	note = insn;
5507 
5508       SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
5509       SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
5510 
5511       SET_NEXT_INSN (note) = NEXT_INSN (last);
5512       SET_PREV_INSN (NEXT_INSN (last)) = note;
5513 
5514       SET_NEXT_INSN (last) = insn;
5515       SET_PREV_INSN (insn) = last;
5516 
5517       bb = BLOCK_FOR_INSN (last);
5518 
5519       if (jump_p)
5520 	{
5521 	  fix_jump_move (insn);
5522 
5523 	  if (BLOCK_FOR_INSN (insn) != bb)
5524 	    move_block_after_check (insn);
5525 
5526 	  gcc_assert (BB_END (bb) == last);
5527 	}
5528 
5529       df_insn_change_bb (insn, bb);
5530 
5531       /* Update BB_END, if needed.  */
5532       if (BB_END (bb) == last)
5533 	BB_END (bb) = insn;
5534     }
5535 
5536   SCHED_GROUP_P (insn) = 0;
5537 }
5538 
5539 /* Return true if scheduling INSN will finish current clock cycle.  */
5540 static bool
5541 insn_finishes_cycle_p (rtx_insn *insn)
5542 {
5543   if (SCHED_GROUP_P (insn))
5544     /* After issuing INSN, rest of the sched_group will be forced to issue
5545        in order.  Don't make any plans for the rest of cycle.  */
5546     return true;
5547 
5548   /* Finishing the block will, apparently, finish the cycle.  */
5549   if (current_sched_info->insn_finishes_block_p
5550       && current_sched_info->insn_finishes_block_p (insn))
5551     return true;
5552 
5553   return false;
5554 }
5555 
5556 /* Functions to model cache auto-prefetcher.
5557 
5558    Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
5559    memory prefetches if it sees instructions with consequitive memory accesses
5560    in the instruction stream.  Details of such hardware units are not published,
5561    so we can only guess what exactly is going on there.
5562    In the scheduler, we model abstract auto-prefetcher.  If there are memory
5563    insns in the ready list (or the queue) that have same memory base, but
5564    different offsets, then we delay the insns with larger offsets until insns
5565    with smaller offsets get scheduled.  If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
5566    is "1", then we look at the ready list; if it is N>1, then we also look
5567    through N-1 queue entries.
5568    If the param is N>=0, then rank_for_schedule will consider auto-prefetching
5569    among its heuristics.
5570    Param value of "-1" disables modelling of the auto-prefetcher.  */
5571 
5572 /* Initialize autoprefetcher model data for INSN.  */
5573 static void
5574 autopref_multipass_init (const rtx_insn *insn, int write)
5575 {
5576   autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];
5577 
5578   gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
5579   data->base = NULL_RTX;
5580   data->offset = 0;
5581   /* Set insn entry initialized, but not relevant for auto-prefetcher.  */
5582   data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
5583 
5584   rtx set = single_set (insn);
5585   if (set == NULL_RTX)
5586     return;
5587 
5588   rtx mem = write ? SET_DEST (set) : SET_SRC (set);
5589   if (!MEM_P (mem))
5590     return;
5591 
5592   struct address_info info;
5593   decompose_mem_address (&info, mem);
5594 
5595   /* TODO: Currently only (base+const) addressing is supported.  */
5596   if (info.base == NULL || !REG_P (*info.base)
5597       || (info.disp != NULL && !CONST_INT_P (*info.disp)))
5598     return;
5599 
5600   /* This insn is relevant for auto-prefetcher.  */
5601   data->base = *info.base;
5602   data->offset = info.disp ? INTVAL (*info.disp) : 0;
5603   data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
5604 }
5605 
5606 /* Helper function for rank_for_schedule sorting.  */
5607 static int
5608 autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
5609 {
5610   for (int write = 0; write < 2; ++write)
5611     {
5612       autopref_multipass_data_t data1
5613 	= &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5614       autopref_multipass_data_t data2
5615 	= &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5616 
5617       if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5618 	autopref_multipass_init (insn1, write);
5619       if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5620 	continue;
5621 
5622       if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5623 	autopref_multipass_init (insn2, write);
5624       if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5625 	continue;
5626 
5627       if (!rtx_equal_p (data1->base, data2->base))
5628 	continue;
5629 
5630       return data1->offset - data2->offset;
5631     }
5632 
5633   return 0;
5634 }
5635 
5636 /* True if header of debug dump was printed.  */
5637 static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;
5638 
5639 /* Helper for autopref_multipass_dfa_lookahead_guard.
5640    Return "1" if INSN1 should be delayed in favor of INSN2.  */
5641 static int
5642 autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
5643 					  const rtx_insn *insn2, int write)
5644 {
5645   autopref_multipass_data_t data1
5646     = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5647   autopref_multipass_data_t data2
5648     = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];
5649 
5650   if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5651     autopref_multipass_init (insn2, write);
5652   if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5653     return 0;
5654 
5655   if (rtx_equal_p (data1->base, data2->base)
5656       && data1->offset > data2->offset)
5657     {
5658       if (sched_verbose >= 2)
5659 	{
5660           if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5661 	    {
5662 	      fprintf (sched_dump,
5663 		       ";;\t\tnot trying in max_issue due to autoprefetch "
5664 		       "model: ");
5665 	      autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5666 	    }
5667 
5668 	  fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
5669 	}
5670 
5671       return 1;
5672     }
5673 
5674   return 0;
5675 }
5676 
5677 /* General note:
5678 
5679    We could have also hooked autoprefetcher model into
5680    first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
5681    to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
5682    (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
5683    unblocked).  We don't bother about this yet because target of interest
5684    (ARM Cortex-A15) can issue only 1 memory operation per cycle.  */
5685 
5686 /* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
5687    Return "1" if INSN1 should not be considered in max_issue due to
5688    auto-prefetcher considerations.  */
5689 int
5690 autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
5691 {
5692   int r = 0;
5693 
5694   /* Exit early if the param forbids this or if we're not entering here through
5695      normal haifa scheduling.  This can happen if selective scheduling is
5696      explicitly enabled.  */
5697   if (!insn_queue || PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) <= 0)
5698     return 0;
5699 
5700   if (sched_verbose >= 2 && ready_index == 0)
5701     autopref_multipass_dfa_lookahead_guard_started_dump_p = false;
5702 
5703   for (int write = 0; write < 2; ++write)
5704     {
5705       autopref_multipass_data_t data1
5706 	= &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
5707 
5708       if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
5709 	autopref_multipass_init (insn1, write);
5710       if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
5711 	continue;
5712 
5713       if (ready_index == 0
5714 	  && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
5715 	/* We allow only a single delay on priviledged instructions.
5716 	   Doing otherwise would cause infinite loop.  */
5717 	{
5718 	  if (sched_verbose >= 2)
5719 	    {
5720 	      if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
5721 		{
5722 		  fprintf (sched_dump,
5723 			   ";;\t\tnot trying in max_issue due to autoprefetch "
5724 			   "model: ");
5725 		  autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
5726 		}
5727 
5728 	      fprintf (sched_dump, " *%d*", INSN_UID (insn1));
5729 	    }
5730 	  continue;
5731 	}
5732 
5733       for (int i2 = 0; i2 < ready.n_ready; ++i2)
5734 	{
5735 	  rtx_insn *insn2 = get_ready_element (i2);
5736 	  if (insn1 == insn2)
5737 	    continue;
5738 	  r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
5739 	  if (r)
5740 	    {
5741 	      if (ready_index == 0)
5742 		{
5743 		  r = -1;
5744 		  data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5745 		}
5746 	      goto finish;
5747 	    }
5748 	}
5749 
5750       if (PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) == 1)
5751 	continue;
5752 
5753       /* Everything from the current queue slot should have been moved to
5754 	 the ready list.  */
5755       gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);
5756 
5757       int n_stalls = PARAM_VALUE (PARAM_SCHED_AUTOPREF_QUEUE_DEPTH) - 1;
5758       if (n_stalls > max_insn_queue_index)
5759 	n_stalls = max_insn_queue_index;
5760 
5761       for (int stalls = 1; stalls <= n_stalls; ++stalls)
5762 	{
5763 	  for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
5764 	       link != NULL_RTX;
5765 	       link = link->next ())
5766 	    {
5767 	      rtx_insn *insn2 = link->insn ();
5768 	      r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
5769 							    write);
5770 	      if (r)
5771 		{
5772 		  /* Queue INSN1 until INSN2 can issue.  */
5773 		  r = -stalls;
5774 		  if (ready_index == 0)
5775 		    data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
5776 		  goto finish;
5777 		}
5778 	    }
5779 	}
5780     }
5781 
5782     finish:
5783   if (sched_verbose >= 2
5784       && autopref_multipass_dfa_lookahead_guard_started_dump_p
5785       && (ready_index == ready.n_ready - 1 || r < 0))
5786     /* This does not /always/ trigger.  We don't output EOL if the last
5787        insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
5788        called.  We can live with this.  */
5789     fprintf (sched_dump, "\n");
5790 
5791   return r;
5792 }
5793 
5794 /* Define type for target data used in multipass scheduling.  */
5795 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
5796 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
5797 #endif
5798 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;
5799 
5800 /* The following structure describe an entry of the stack of choices.  */
5801 struct choice_entry
5802 {
5803   /* Ordinal number of the issued insn in the ready queue.  */
5804   int index;
5805   /* The number of the rest insns whose issues we should try.  */
5806   int rest;
5807   /* The number of issued essential insns.  */
5808   int n;
5809   /* State after issuing the insn.  */
5810   state_t state;
5811   /* Target-specific data.  */
5812   first_cycle_multipass_data_t target_data;
5813 };
5814 
5815 /* The following array is used to implement a stack of choices used in
5816    function max_issue.  */
5817 static struct choice_entry *choice_stack;
5818 
5819 /* This holds the value of the target dfa_lookahead hook.  */
5820 int dfa_lookahead;
5821 
5822 /* The following variable value is maximal number of tries of issuing
5823    insns for the first cycle multipass insn scheduling.  We define
5824    this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
5825    need this constraint if all real insns (with non-negative codes)
5826    had reservations because in this case the algorithm complexity is
5827    O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
5828    might be incomplete and such insn might occur.  For such
5829    descriptions, the complexity of algorithm (without the constraint)
5830    could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
5831 static int max_lookahead_tries;
5832 
5833 /* The following function returns maximal (or close to maximal) number
5834    of insns which can be issued on the same cycle and one of which
5835    insns is insns with the best rank (the first insn in READY).  To
5836    make this function tries different samples of ready insns.  READY
5837    is current queue `ready'.  Global array READY_TRY reflects what
5838    insns are already issued in this try.  The function stops immediately,
5839    if it reached the such a solution, that all instruction can be issued.
5840    INDEX will contain index of the best insn in READY.  The following
5841    function is used only for first cycle multipass scheduling.
5842 
5843    PRIVILEGED_N >= 0
5844 
5845    This function expects recognized insns only.  All USEs,
5846    CLOBBERs, etc must be filtered elsewhere.  */
5847 int
5848 max_issue (struct ready_list *ready, int privileged_n, state_t state,
5849 	   bool first_cycle_insn_p, int *index)
5850 {
5851   int n, i, all, n_ready, best, delay, tries_num;
5852   int more_issue;
5853   struct choice_entry *top;
5854   rtx_insn *insn;
5855 
5856   if (sched_fusion)
5857     return 0;
5858 
5859   n_ready = ready->n_ready;
5860   gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
5861 	      && privileged_n <= n_ready);
5862 
5863   /* Init MAX_LOOKAHEAD_TRIES.  */
5864   if (max_lookahead_tries == 0)
5865     {
5866       max_lookahead_tries = 100;
5867       for (i = 0; i < issue_rate; i++)
5868 	max_lookahead_tries *= dfa_lookahead;
5869     }
5870 
5871   /* Init max_points.  */
5872   more_issue = issue_rate - cycle_issued_insns;
5873   gcc_assert (more_issue >= 0);
5874 
5875   /* The number of the issued insns in the best solution.  */
5876   best = 0;
5877 
5878   top = choice_stack;
5879 
5880   /* Set initial state of the search.  */
5881   memcpy (top->state, state, dfa_state_size);
5882   top->rest = dfa_lookahead;
5883   top->n = 0;
5884   if (targetm.sched.first_cycle_multipass_begin)
5885     targetm.sched.first_cycle_multipass_begin (&top->target_data,
5886 					       ready_try, n_ready,
5887 					       first_cycle_insn_p);
5888 
5889   /* Count the number of the insns to search among.  */
5890   for (all = i = 0; i < n_ready; i++)
5891     if (!ready_try [i])
5892       all++;
5893 
5894   if (sched_verbose >= 2)
5895     {
5896       fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
5897       debug_ready_list_1 (ready, ready_try);
5898     }
5899 
5900   /* I is the index of the insn to try next.  */
5901   i = 0;
5902   tries_num = 0;
5903   for (;;)
5904     {
5905       if (/* If we've reached a dead end or searched enough of what we have
5906 	     been asked...  */
5907 	  top->rest == 0
5908 	  /* or have nothing else to try...  */
5909 	  || i >= n_ready
5910 	  /* or should not issue more.  */
5911 	  || top->n >= more_issue)
5912 	{
5913 	  /* ??? (... || i == n_ready).  */
5914 	  gcc_assert (i <= n_ready);
5915 
5916 	  /* We should not issue more than issue_rate instructions.  */
5917 	  gcc_assert (top->n <= more_issue);
5918 
5919 	  if (top == choice_stack)
5920 	    break;
5921 
5922 	  if (best < top - choice_stack)
5923 	    {
5924 	      if (privileged_n)
5925 		{
5926 		  n = privileged_n;
5927 		  /* Try to find issued privileged insn.  */
5928 		  while (n && !ready_try[--n])
5929 		    ;
5930 		}
5931 
5932 	      if (/* If all insns are equally good...  */
5933 		  privileged_n == 0
5934 		  /* Or a privileged insn will be issued.  */
5935 		  || ready_try[n])
5936 		/* Then we have a solution.  */
5937 		{
5938 		  best = top - choice_stack;
5939 		  /* This is the index of the insn issued first in this
5940 		     solution.  */
5941 		  *index = choice_stack [1].index;
5942 		  if (top->n == more_issue || best == all)
5943 		    break;
5944 		}
5945 	    }
5946 
5947 	  /* Set ready-list index to point to the last insn
5948 	     ('i++' below will advance it to the next insn).  */
5949 	  i = top->index;
5950 
5951 	  /* Backtrack.  */
5952 	  ready_try [i] = 0;
5953 
5954 	  if (targetm.sched.first_cycle_multipass_backtrack)
5955 	    targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
5956 							   ready_try, n_ready);
5957 
5958 	  top--;
5959 	  memcpy (state, top->state, dfa_state_size);
5960 	}
5961       else if (!ready_try [i])
5962 	{
5963 	  tries_num++;
5964 	  if (tries_num > max_lookahead_tries)
5965 	    break;
5966 	  insn = ready_element (ready, i);
5967 	  delay = state_transition (state, insn);
5968 	  if (delay < 0)
5969 	    {
5970 	      if (state_dead_lock_p (state)
5971 		  || insn_finishes_cycle_p (insn))
5972 		/* We won't issue any more instructions in the next
5973 		   choice_state.  */
5974 		top->rest = 0;
5975 	      else
5976 		top->rest--;
5977 
5978 	      n = top->n;
5979 	      if (memcmp (top->state, state, dfa_state_size) != 0)
5980 		n++;
5981 
5982 	      /* Advance to the next choice_entry.  */
5983 	      top++;
5984 	      /* Initialize it.  */
5985 	      top->rest = dfa_lookahead;
5986 	      top->index = i;
5987 	      top->n = n;
5988 	      memcpy (top->state, state, dfa_state_size);
5989 	      ready_try [i] = 1;
5990 
5991 	      if (targetm.sched.first_cycle_multipass_issue)
5992 		targetm.sched.first_cycle_multipass_issue (&top->target_data,
5993 							   ready_try, n_ready,
5994 							   insn,
5995 							   &((top - 1)
5996 							     ->target_data));
5997 
5998 	      i = -1;
5999 	    }
6000 	}
6001 
6002       /* Increase ready-list index.  */
6003       i++;
6004     }
6005 
6006   if (targetm.sched.first_cycle_multipass_end)
6007     targetm.sched.first_cycle_multipass_end (best != 0
6008 					     ? &choice_stack[1].target_data
6009 					     : NULL);
6010 
6011   /* Restore the original state of the DFA.  */
6012   memcpy (state, choice_stack->state, dfa_state_size);
6013 
6014   return best;
6015 }
6016 
6017 /* The following function chooses insn from READY and modifies
6018    READY.  The following function is used only for first
6019    cycle multipass scheduling.
6020    Return:
6021    -1 if cycle should be advanced,
6022    0 if INSN_PTR is set to point to the desirable insn,
6023    1 if choose_ready () should be restarted without advancing the cycle.  */
6024 static int
6025 choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
6026 	      rtx_insn **insn_ptr)
6027 {
6028   if (dbg_cnt (sched_insn) == false)
6029     {
6030       if (nonscheduled_insns_begin == NULL_RTX)
6031 	nonscheduled_insns_begin = current_sched_info->prev_head;
6032 
6033       rtx_insn *insn = first_nonscheduled_insn ();
6034 
6035       if (QUEUE_INDEX (insn) == QUEUE_READY)
6036 	/* INSN is in the ready_list.  */
6037 	{
6038 	  ready_remove_insn (insn);
6039 	  *insn_ptr = insn;
6040 	  return 0;
6041 	}
6042 
6043       /* INSN is in the queue.  Advance cycle to move it to the ready list.  */
6044       gcc_assert (QUEUE_INDEX (insn) >= 0);
6045       return -1;
6046     }
6047 
6048   if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
6049       || DEBUG_INSN_P (ready_element (ready, 0)))
6050     {
6051       if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6052 	*insn_ptr = ready_remove_first_dispatch (ready);
6053       else
6054 	*insn_ptr = ready_remove_first (ready);
6055 
6056       return 0;
6057     }
6058   else
6059     {
6060       /* Try to choose the best insn.  */
6061       int index = 0, i;
6062       rtx_insn *insn;
6063 
6064       insn = ready_element (ready, 0);
6065       if (INSN_CODE (insn) < 0)
6066 	{
6067 	  *insn_ptr = ready_remove_first (ready);
6068 	  return 0;
6069 	}
6070 
6071       /* Filter the search space.  */
6072       for (i = 0; i < ready->n_ready; i++)
6073 	{
6074 	  ready_try[i] = 0;
6075 
6076 	  insn = ready_element (ready, i);
6077 
6078 	  /* If this insn is recognizable we should have already
6079 	     recognized it earlier.
6080 	     ??? Not very clear where this is supposed to be done.
6081 	     See dep_cost_1.  */
6082 	  gcc_checking_assert (INSN_CODE (insn) >= 0
6083 			       || recog_memoized (insn) < 0);
6084 	  if (INSN_CODE (insn) < 0)
6085 	    {
6086 	      /* Non-recognized insns at position 0 are handled above.  */
6087 	      gcc_assert (i > 0);
6088 	      ready_try[i] = 1;
6089 	      continue;
6090 	    }
6091 
6092 	  if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
6093 	    {
6094 	      ready_try[i]
6095 		= (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
6096 		    (insn, i));
6097 
6098 	      if (ready_try[i] < 0)
6099 		/* Queue instruction for several cycles.
6100 		   We need to restart choose_ready as we have changed
6101 		   the ready list.  */
6102 		{
6103 		  change_queue_index (insn, -ready_try[i]);
6104 		  return 1;
6105 		}
6106 
6107 	      /* Make sure that we didn't end up with 0'th insn filtered out.
6108 		 Don't be tempted to make life easier for backends and just
6109 		 requeue 0'th insn if (ready_try[0] == 0) and restart
6110 		 choose_ready.  Backends should be very considerate about
6111 		 requeueing instructions -- especially the highest priority
6112 		 one at position 0.  */
6113 	      gcc_assert (ready_try[i] == 0 || i > 0);
6114 	      if (ready_try[i])
6115 		continue;
6116 	    }
6117 
6118 	  gcc_assert (ready_try[i] == 0);
6119 	  /* INSN made it through the scrutiny of filters!  */
6120 	}
6121 
6122       if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
6123 	{
6124 	  *insn_ptr = ready_remove_first (ready);
6125 	  if (sched_verbose >= 4)
6126 	    fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
6127                      (*current_sched_info->print_insn) (*insn_ptr, 0));
6128 	  return 0;
6129 	}
6130       else
6131 	{
6132 	  if (sched_verbose >= 4)
6133 	    fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
6134 		     (*current_sched_info->print_insn)
6135 		     (ready_element (ready, index), 0));
6136 
6137 	  *insn_ptr = ready_remove (ready, index);
6138 	  return 0;
6139 	}
6140     }
6141 }
6142 
6143 /* This function is called when we have successfully scheduled a
6144    block.  It uses the schedule stored in the scheduled_insns vector
6145    to rearrange the RTL.  PREV_HEAD is used as the anchor to which we
6146    append the scheduled insns; TAIL is the insn after the scheduled
6147    block.  TARGET_BB is the argument passed to schedule_block.  */
6148 
6149 static void
6150 commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
6151 {
6152   unsigned int i;
6153   rtx_insn *insn;
6154 
6155   last_scheduled_insn = prev_head;
6156   for (i = 0;
6157        scheduled_insns.iterate (i, &insn);
6158        i++)
6159     {
6160       if (control_flow_insn_p (last_scheduled_insn)
6161 	  || current_sched_info->advance_target_bb (*target_bb, insn))
6162 	{
6163 	  *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);
6164 
6165 	  if (sched_verbose)
6166 	    {
6167 	      rtx_insn *x;
6168 
6169 	      x = next_real_insn (last_scheduled_insn);
6170 	      gcc_assert (x);
6171 	      dump_new_block_header (1, *target_bb, x, tail);
6172 	    }
6173 
6174 	  last_scheduled_insn = bb_note (*target_bb);
6175 	}
6176 
6177       if (current_sched_info->begin_move_insn)
6178 	(*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
6179       move_insn (insn, last_scheduled_insn,
6180 		 current_sched_info->next_tail);
6181       if (!DEBUG_INSN_P (insn))
6182 	reemit_notes (insn);
6183       last_scheduled_insn = insn;
6184     }
6185 
6186   scheduled_insns.truncate (0);
6187 }
6188 
6189 /* Examine all insns on the ready list and queue those which can't be
6190    issued in this cycle.  TEMP_STATE is temporary scheduler state we
6191    can use as scratch space.  If FIRST_CYCLE_INSN_P is true, no insns
6192    have been issued for the current cycle, which means it is valid to
6193    issue an asm statement.
6194 
6195    If SHADOWS_ONLY_P is true, we eliminate all real insns and only
6196    leave those for which SHADOW_P is true.  If MODULO_EPILOGUE is true,
6197    we only leave insns which have an INSN_EXACT_TICK.  */
6198 
6199 static void
6200 prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
6201 		  bool shadows_only_p, bool modulo_epilogue_p)
6202 {
6203   int i, pass;
6204   bool sched_group_found = false;
6205   int min_cost_group = 1;
6206 
6207   if (sched_fusion)
6208     return;
6209 
6210   for (i = 0; i < ready.n_ready; i++)
6211     {
6212       rtx_insn *insn = ready_element (&ready, i);
6213       if (SCHED_GROUP_P (insn))
6214 	{
6215 	  sched_group_found = true;
6216 	  break;
6217 	}
6218     }
6219 
6220   /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
6221      such an insn first and note its cost, then schedule all other insns
6222      for one cycle later.  */
6223   for (pass = sched_group_found ? 0 : 1; pass < 2; )
6224     {
6225       int n = ready.n_ready;
6226       for (i = 0; i < n; i++)
6227 	{
6228 	  rtx_insn *insn = ready_element (&ready, i);
6229 	  int cost = 0;
6230 	  const char *reason = "resource conflict";
6231 
6232 	  if (DEBUG_INSN_P (insn))
6233 	    continue;
6234 
6235 	  if (sched_group_found && !SCHED_GROUP_P (insn))
6236 	    {
6237 	      if (pass == 0)
6238 		continue;
6239 	      cost = min_cost_group;
6240 	      reason = "not in sched group";
6241 	    }
6242 	  else if (modulo_epilogue_p
6243 		   && INSN_EXACT_TICK (insn) == INVALID_TICK)
6244 	    {
6245 	      cost = max_insn_queue_index;
6246 	      reason = "not an epilogue insn";
6247 	    }
6248 	  else if (shadows_only_p && !SHADOW_P (insn))
6249 	    {
6250 	      cost = 1;
6251 	      reason = "not a shadow";
6252 	    }
6253 	  else if (recog_memoized (insn) < 0)
6254 	    {
6255 	      if (!first_cycle_insn_p
6256 		  && (GET_CODE (PATTERN (insn)) == ASM_INPUT
6257 		      || asm_noperands (PATTERN (insn)) >= 0))
6258 		cost = 1;
6259 	      reason = "asm";
6260 	    }
6261 	  else if (sched_pressure != SCHED_PRESSURE_NONE)
6262 	    {
6263 	      if (sched_pressure == SCHED_PRESSURE_MODEL
6264 		  && INSN_TICK (insn) <= clock_var)
6265 		{
6266 		  memcpy (temp_state, curr_state, dfa_state_size);
6267 		  if (state_transition (temp_state, insn) >= 0)
6268 		    INSN_TICK (insn) = clock_var + 1;
6269 		}
6270 	      cost = 0;
6271 	    }
6272 	  else
6273 	    {
6274 	      int delay_cost = 0;
6275 
6276 	      if (delay_htab)
6277 		{
6278 		  struct delay_pair *delay_entry;
6279 		  delay_entry
6280 		    = delay_htab->find_with_hash (insn,
6281 						  htab_hash_pointer (insn));
6282 		  while (delay_entry && delay_cost == 0)
6283 		    {
6284 		      delay_cost = estimate_shadow_tick (delay_entry);
6285 		      if (delay_cost > max_insn_queue_index)
6286 			delay_cost = max_insn_queue_index;
6287 		      delay_entry = delay_entry->next_same_i1;
6288 		    }
6289 		}
6290 
6291 	      memcpy (temp_state, curr_state, dfa_state_size);
6292 	      cost = state_transition (temp_state, insn);
6293 	      if (cost < 0)
6294 		cost = 0;
6295 	      else if (cost == 0)
6296 		cost = 1;
6297 	      if (cost < delay_cost)
6298 		{
6299 		  cost = delay_cost;
6300 		  reason = "shadow tick";
6301 		}
6302 	    }
6303 	  if (cost >= 1)
6304 	    {
6305 	      if (SCHED_GROUP_P (insn) && cost > min_cost_group)
6306 		min_cost_group = cost;
6307 	      ready_remove (&ready, i);
6308 	      /* Normally we'd want to queue INSN for COST cycles.  However,
6309 		 if SCHED_GROUP_P is set, then we must ensure that nothing
6310 		 else comes between INSN and its predecessor.  If there is
6311 		 some other insn ready to fire on the next cycle, then that
6312 		 invariant would be broken.
6313 
6314 		 So when SCHED_GROUP_P is set, just queue this insn for a
6315 		 single cycle.  */
6316 	      queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
6317 	      if (i + 1 < n)
6318 		break;
6319 	    }
6320 	}
6321       if (i == n)
6322 	pass++;
6323     }
6324 }
6325 
6326 /* Called when we detect that the schedule is impossible.  We examine the
6327    backtrack queue to find the earliest insn that caused this condition.  */
6328 
6329 static struct haifa_saved_data *
6330 verify_shadows (void)
6331 {
6332   struct haifa_saved_data *save, *earliest_fail = NULL;
6333   for (save = backtrack_queue; save; save = save->next)
6334     {
6335       int t;
6336       struct delay_pair *pair = save->delay_pair;
6337       rtx_insn *i1 = pair->i1;
6338 
6339       for (; pair; pair = pair->next_same_i1)
6340 	{
6341 	  rtx_insn *i2 = pair->i2;
6342 
6343 	  if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
6344 	    continue;
6345 
6346 	  t = INSN_TICK (i1) + pair_delay (pair);
6347 	  if (t < clock_var)
6348 	    {
6349 	      if (sched_verbose >= 2)
6350 		fprintf (sched_dump,
6351 			 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
6352 			 ", not ready\n",
6353 			 INSN_UID (pair->i1), INSN_UID (pair->i2),
6354 			 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6355 	      earliest_fail = save;
6356 	      break;
6357 	    }
6358 	  if (QUEUE_INDEX (i2) >= 0)
6359 	    {
6360 	      int queued_for = INSN_TICK (i2);
6361 
6362 	      if (t < queued_for)
6363 		{
6364 		  if (sched_verbose >= 2)
6365 		    fprintf (sched_dump,
6366 			     ";;\t\tfailed delay requirements for %d/%d"
6367 			     " (%d->%d), queued too late\n",
6368 			     INSN_UID (pair->i1), INSN_UID (pair->i2),
6369 			     INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
6370 		  earliest_fail = save;
6371 		  break;
6372 		}
6373 	    }
6374 	}
6375     }
6376 
6377   return earliest_fail;
6378 }
6379 
6380 /* Print instructions together with useful scheduling information between
6381    HEAD and TAIL (inclusive).  */
6382 static void
6383 dump_insn_stream (rtx_insn *head, rtx_insn *tail)
6384 {
6385   fprintf (sched_dump, ";;\t| insn | prio |\n");
6386 
6387   rtx_insn *next_tail = NEXT_INSN (tail);
6388   for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6389     {
6390       int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
6391       const char *pattern = (NOTE_P (insn)
6392 			     ? "note"
6393 			     : str_pattern_slim (PATTERN (insn)));
6394 
6395       fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
6396 	       INSN_UID (insn), priority, pattern);
6397 
6398       if (sched_verbose >= 4)
6399 	{
6400 	  if (NOTE_P (insn) || recog_memoized (insn) < 0)
6401 	    fprintf (sched_dump, "nothing");
6402 	  else
6403 	    print_reservation (sched_dump, insn);
6404 	}
6405       fprintf (sched_dump, "\n");
6406     }
6407 }
6408 
6409 /* Use forward list scheduling to rearrange insns of block pointed to by
6410    TARGET_BB, possibly bringing insns from subsequent blocks in the same
6411    region.  */
6412 
6413 bool
6414 schedule_block (basic_block *target_bb, state_t init_state)
6415 {
6416   int i;
6417   bool success = modulo_ii == 0;
6418   struct sched_block_state ls;
6419   state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
6420   int sort_p, advance, start_clock_var;
6421 
6422   /* Head/tail info for this block.  */
6423   rtx_insn *prev_head = current_sched_info->prev_head;
6424   rtx_insn *next_tail = current_sched_info->next_tail;
6425   rtx_insn *head = NEXT_INSN (prev_head);
6426   rtx_insn *tail = PREV_INSN (next_tail);
6427 
6428   if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
6429       && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
6430     find_modifiable_mems (head, tail);
6431 
6432   /* We used to have code to avoid getting parameters moved from hard
6433      argument registers into pseudos.
6434 
6435      However, it was removed when it proved to be of marginal benefit
6436      and caused problems because schedule_block and compute_forward_dependences
6437      had different notions of what the "head" insn was.  */
6438 
6439   gcc_assert (head != tail || INSN_P (head));
6440 
6441   haifa_recovery_bb_recently_added_p = false;
6442 
6443   backtrack_queue = NULL;
6444 
6445   /* Debug info.  */
6446   if (sched_verbose)
6447     {
6448       dump_new_block_header (0, *target_bb, head, tail);
6449 
6450       if (sched_verbose >= 2)
6451 	{
6452 	  dump_insn_stream (head, tail);
6453 	  memset (&rank_for_schedule_stats, 0,
6454 		  sizeof (rank_for_schedule_stats));
6455 	}
6456     }
6457 
6458   if (init_state == NULL)
6459     state_reset (curr_state);
6460   else
6461     memcpy (curr_state, init_state, dfa_state_size);
6462 
6463   /* Clear the ready list.  */
6464   ready.first = ready.veclen - 1;
6465   ready.n_ready = 0;
6466   ready.n_debug = 0;
6467 
6468   /* It is used for first cycle multipass scheduling.  */
6469   temp_state = alloca (dfa_state_size);
6470 
6471   if (targetm.sched.init)
6472     targetm.sched.init (sched_dump, sched_verbose, ready.veclen);
6473 
6474   /* We start inserting insns after PREV_HEAD.  */
6475   last_scheduled_insn = prev_head;
6476   last_nondebug_scheduled_insn = NULL_RTX;
6477   nonscheduled_insns_begin = NULL;
6478 
6479   gcc_assert ((NOTE_P (last_scheduled_insn)
6480 	       || DEBUG_INSN_P (last_scheduled_insn))
6481 	      && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
6482 
6483   /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
6484      queue.  */
6485   q_ptr = 0;
6486   q_size = 0;
6487 
6488   insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
6489   memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
6490 
6491   /* Start just before the beginning of time.  */
6492   clock_var = -1;
6493 
6494   /* We need queue and ready lists and clock_var be initialized
6495      in try_ready () (which is called through init_ready_list ()).  */
6496   (*current_sched_info->init_ready_list) ();
6497 
6498   if (sched_pressure)
6499     sched_pressure_start_bb (*target_bb);
6500 
6501   /* The algorithm is O(n^2) in the number of ready insns at any given
6502      time in the worst case.  Before reload we are more likely to have
6503      big lists so truncate them to a reasonable size.  */
6504   if (!reload_completed
6505       && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
6506     {
6507       ready_sort_debug (&ready);
6508       ready_sort_real (&ready);
6509 
6510       /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
6511          If there are debug insns, we know they're first.  */
6512       for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
6513 	if (!SCHED_GROUP_P (ready_element (&ready, i)))
6514 	  break;
6515 
6516       if (sched_verbose >= 2)
6517 	{
6518 	  fprintf (sched_dump,
6519 		   ";;\t\tReady list on entry: %d insns:  ", ready.n_ready);
6520 	  debug_ready_list (&ready);
6521 	  fprintf (sched_dump,
6522 		   ";;\t\t before reload => truncated to %d insns\n", i);
6523 	}
6524 
6525       /* Delay all insns past it for 1 cycle.  If debug counter is
6526 	 activated make an exception for the insn right after
6527 	 nonscheduled_insns_begin.  */
6528       {
6529 	rtx_insn *skip_insn;
6530 
6531 	if (dbg_cnt (sched_insn) == false)
6532 	  skip_insn = first_nonscheduled_insn ();
6533 	else
6534 	  skip_insn = NULL;
6535 
6536 	while (i < ready.n_ready)
6537 	  {
6538 	    rtx_insn *insn;
6539 
6540 	    insn = ready_remove (&ready, i);
6541 
6542 	    if (insn != skip_insn)
6543 	      queue_insn (insn, 1, "list truncated");
6544 	  }
6545 	if (skip_insn)
6546 	  ready_add (&ready, skip_insn, true);
6547       }
6548     }
6549 
6550   /* Now we can restore basic block notes and maintain precise cfg.  */
6551   restore_bb_notes (*target_bb);
6552 
6553   last_clock_var = -1;
6554 
6555   advance = 0;
6556 
6557   gcc_assert (scheduled_insns.length () == 0);
6558   sort_p = TRUE;
6559   must_backtrack = false;
6560   modulo_insns_scheduled = 0;
6561 
6562   ls.modulo_epilogue = false;
6563   ls.first_cycle_insn_p = true;
6564 
6565   /* Loop until all the insns in BB are scheduled.  */
6566   while ((*current_sched_info->schedule_more_p) ())
6567     {
6568       perform_replacements_new_cycle ();
6569       do
6570 	{
6571 	  start_clock_var = clock_var;
6572 
6573 	  clock_var++;
6574 
6575 	  advance_one_cycle ();
6576 
6577 	  /* Add to the ready list all pending insns that can be issued now.
6578 	     If there are no ready insns, increment clock until one
6579 	     is ready and add all pending insns at that point to the ready
6580 	     list.  */
6581 	  queue_to_ready (&ready);
6582 
6583 	  gcc_assert (ready.n_ready);
6584 
6585 	  if (sched_verbose >= 2)
6586 	    {
6587 	      fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
6588 	      debug_ready_list (&ready);
6589 	    }
6590 	  advance -= clock_var - start_clock_var;
6591 	}
6592       while (advance > 0);
6593 
6594       if (ls.modulo_epilogue)
6595 	{
6596 	  int stage = clock_var / modulo_ii;
6597 	  if (stage > modulo_last_stage * 2 + 2)
6598 	    {
6599 	      if (sched_verbose >= 2)
6600 		fprintf (sched_dump,
6601 			 ";;\t\tmodulo scheduled succeeded at II %d\n",
6602 			 modulo_ii);
6603 	      success = true;
6604 	      goto end_schedule;
6605 	    }
6606 	}
6607       else if (modulo_ii > 0)
6608 	{
6609 	  int stage = clock_var / modulo_ii;
6610 	  if (stage > modulo_max_stages)
6611 	    {
6612 	      if (sched_verbose >= 2)
6613 		fprintf (sched_dump,
6614 			 ";;\t\tfailing schedule due to excessive stages\n");
6615 	      goto end_schedule;
6616 	    }
6617 	  if (modulo_n_insns == modulo_insns_scheduled
6618 	      && stage > modulo_last_stage)
6619 	    {
6620 	      if (sched_verbose >= 2)
6621 		fprintf (sched_dump,
6622 			 ";;\t\tfound kernel after %d stages, II %d\n",
6623 			 stage, modulo_ii);
6624 	      ls.modulo_epilogue = true;
6625 	    }
6626 	}
6627 
6628       prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
6629       if (ready.n_ready == 0)
6630 	continue;
6631       if (must_backtrack)
6632 	goto do_backtrack;
6633 
6634       ls.shadows_only_p = false;
6635       cycle_issued_insns = 0;
6636       ls.can_issue_more = issue_rate;
6637       for (;;)
6638 	{
6639 	  rtx_insn *insn;
6640 	  int cost;
6641 	  bool asm_p;
6642 
6643 	  if (sort_p && ready.n_ready > 0)
6644 	    {
6645 	      /* Sort the ready list based on priority.  This must be
6646 		 done every iteration through the loop, as schedule_insn
6647 		 may have readied additional insns that will not be
6648 		 sorted correctly.  */
6649 	      ready_sort (&ready);
6650 
6651 	      if (sched_verbose >= 2)
6652 		{
6653 		  fprintf (sched_dump,
6654 			   ";;\t\tReady list after ready_sort:    ");
6655 		  debug_ready_list (&ready);
6656 		}
6657 	    }
6658 
6659 	  /* We don't want md sched reorder to even see debug isns, so put
6660 	     them out right away.  */
6661 	  if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
6662 	      && (*current_sched_info->schedule_more_p) ())
6663 	    {
6664 	      while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
6665 		{
6666 		  rtx_insn *insn = ready_remove_first (&ready);
6667 		  gcc_assert (DEBUG_INSN_P (insn));
6668 		  (*current_sched_info->begin_schedule_ready) (insn);
6669 		  scheduled_insns.safe_push (insn);
6670 		  last_scheduled_insn = insn;
6671 		  advance = schedule_insn (insn);
6672 		  gcc_assert (advance == 0);
6673 		  if (ready.n_ready > 0)
6674 		    ready_sort (&ready);
6675 		}
6676 	    }
6677 
6678 	  if (ls.first_cycle_insn_p && !ready.n_ready)
6679 	    break;
6680 
6681 	resume_after_backtrack:
6682 	  /* Allow the target to reorder the list, typically for
6683 	     better instruction bundling.  */
6684 	  if (sort_p
6685 	      && (ready.n_ready == 0
6686 		  || !SCHED_GROUP_P (ready_element (&ready, 0))))
6687 	    {
6688 	      if (ls.first_cycle_insn_p && targetm.sched.reorder)
6689 		ls.can_issue_more
6690 		  = targetm.sched.reorder (sched_dump, sched_verbose,
6691 					   ready_lastpos (&ready),
6692 					   &ready.n_ready, clock_var);
6693 	      else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
6694 		ls.can_issue_more
6695 		  = targetm.sched.reorder2 (sched_dump, sched_verbose,
6696 					    ready.n_ready
6697 					    ? ready_lastpos (&ready) : NULL,
6698 					    &ready.n_ready, clock_var);
6699 	    }
6700 
6701 	restart_choose_ready:
6702 	  if (sched_verbose >= 2)
6703 	    {
6704 	      fprintf (sched_dump, ";;\tReady list (t = %3d):  ",
6705 		       clock_var);
6706 	      debug_ready_list (&ready);
6707 	      if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
6708 		print_curr_reg_pressure ();
6709 	    }
6710 
6711 	  if (ready.n_ready == 0
6712 	      && ls.can_issue_more
6713 	      && reload_completed)
6714 	    {
6715 	      /* Allow scheduling insns directly from the queue in case
6716 		 there's nothing better to do (ready list is empty) but
6717 		 there are still vacant dispatch slots in the current cycle.  */
6718 	      if (sched_verbose >= 6)
6719 		fprintf (sched_dump,";;\t\tSecond chance\n");
6720 	      memcpy (temp_state, curr_state, dfa_state_size);
6721 	      if (early_queue_to_ready (temp_state, &ready))
6722 		ready_sort (&ready);
6723 	    }
6724 
6725 	  if (ready.n_ready == 0
6726 	      || !ls.can_issue_more
6727 	      || state_dead_lock_p (curr_state)
6728 	      || !(*current_sched_info->schedule_more_p) ())
6729 	    break;
6730 
6731 	  /* Select and remove the insn from the ready list.  */
6732 	  if (sort_p)
6733 	    {
6734 	      int res;
6735 
6736 	      insn = NULL;
6737 	      res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);
6738 
6739 	      if (res < 0)
6740 		/* Finish cycle.  */
6741 		break;
6742 	      if (res > 0)
6743 		goto restart_choose_ready;
6744 
6745 	      gcc_assert (insn != NULL_RTX);
6746 	    }
6747 	  else
6748 	    insn = ready_remove_first (&ready);
6749 
6750 	  if (sched_pressure != SCHED_PRESSURE_NONE
6751 	      && INSN_TICK (insn) > clock_var)
6752 	    {
6753 	      ready_add (&ready, insn, true);
6754 	      advance = 1;
6755 	      break;
6756 	    }
6757 
6758 	  if (targetm.sched.dfa_new_cycle
6759 	      && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
6760 					      insn, last_clock_var,
6761 					      clock_var, &sort_p))
6762 	    /* SORT_P is used by the target to override sorting
6763 	       of the ready list.  This is needed when the target
6764 	       has modified its internal structures expecting that
6765 	       the insn will be issued next.  As we need the insn
6766 	       to have the highest priority (so it will be returned by
6767 	       the ready_remove_first call above), we invoke
6768 	       ready_add (&ready, insn, true).
6769 	       But, still, there is one issue: INSN can be later
6770 	       discarded by scheduler's front end through
6771 	       current_sched_info->can_schedule_ready_p, hence, won't
6772 	       be issued next.  */
6773 	    {
6774 	      ready_add (&ready, insn, true);
6775               break;
6776 	    }
6777 
6778 	  sort_p = TRUE;
6779 
6780 	  if (current_sched_info->can_schedule_ready_p
6781 	      && ! (*current_sched_info->can_schedule_ready_p) (insn))
6782 	    /* We normally get here only if we don't want to move
6783 	       insn from the split block.  */
6784 	    {
6785 	      TODO_SPEC (insn) = DEP_POSTPONED;
6786 	      goto restart_choose_ready;
6787 	    }
6788 
6789 	  if (delay_htab)
6790 	    {
6791 	      /* If this insn is the first part of a delay-slot pair, record a
6792 		 backtrack point.  */
6793 	      struct delay_pair *delay_entry;
6794 	      delay_entry
6795 		= delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
6796 	      if (delay_entry)
6797 		{
6798 		  save_backtrack_point (delay_entry, ls);
6799 		  if (sched_verbose >= 2)
6800 		    fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
6801 		}
6802 	    }
6803 
6804 	  /* DECISION is made.  */
6805 
6806 	  if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
6807 	    {
6808 	      modulo_insns_scheduled++;
6809 	      modulo_last_stage = clock_var / modulo_ii;
6810 	    }
6811           if (TODO_SPEC (insn) & SPECULATIVE)
6812             generate_recovery_code (insn);
6813 
6814 	  if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
6815 	    targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);
6816 
6817 	  /* Update counters, etc in the scheduler's front end.  */
6818 	  (*current_sched_info->begin_schedule_ready) (insn);
6819 	  scheduled_insns.safe_push (insn);
6820 	  gcc_assert (NONDEBUG_INSN_P (insn));
6821 	  last_nondebug_scheduled_insn = last_scheduled_insn = insn;
6822 
6823 	  if (recog_memoized (insn) >= 0)
6824 	    {
6825 	      memcpy (temp_state, curr_state, dfa_state_size);
6826 	      cost = state_transition (curr_state, insn);
6827 	      if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
6828 		gcc_assert (cost < 0);
6829 	      if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
6830 		cycle_issued_insns++;
6831 	      asm_p = false;
6832 	    }
6833 	  else
6834 	    asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
6835 		     || asm_noperands (PATTERN (insn)) >= 0);
6836 
6837 	  if (targetm.sched.variable_issue)
6838 	    ls.can_issue_more =
6839 	      targetm.sched.variable_issue (sched_dump, sched_verbose,
6840 					    insn, ls.can_issue_more);
6841 	  /* A naked CLOBBER or USE generates no instruction, so do
6842 	     not count them against the issue rate.  */
6843 	  else if (GET_CODE (PATTERN (insn)) != USE
6844 		   && GET_CODE (PATTERN (insn)) != CLOBBER)
6845 	    ls.can_issue_more--;
6846 	  advance = schedule_insn (insn);
6847 
6848 	  if (SHADOW_P (insn))
6849 	    ls.shadows_only_p = true;
6850 
6851 	  /* After issuing an asm insn we should start a new cycle.  */
6852 	  if (advance == 0 && asm_p)
6853 	    advance = 1;
6854 
6855 	  if (must_backtrack)
6856 	    break;
6857 
6858 	  if (advance != 0)
6859 	    break;
6860 
6861 	  ls.first_cycle_insn_p = false;
6862 	  if (ready.n_ready > 0)
6863 	    prune_ready_list (temp_state, false, ls.shadows_only_p,
6864 			      ls.modulo_epilogue);
6865 	}
6866 
6867     do_backtrack:
6868       if (!must_backtrack)
6869 	for (i = 0; i < ready.n_ready; i++)
6870 	  {
6871 	    rtx_insn *insn = ready_element (&ready, i);
6872 	    if (INSN_EXACT_TICK (insn) == clock_var)
6873 	      {
6874 		must_backtrack = true;
6875 		clock_var++;
6876 		break;
6877 	      }
6878 	  }
6879       if (must_backtrack && modulo_ii > 0)
6880 	{
6881 	  if (modulo_backtracks_left == 0)
6882 	    goto end_schedule;
6883 	  modulo_backtracks_left--;
6884 	}
6885       while (must_backtrack)
6886 	{
6887 	  struct haifa_saved_data *failed;
6888 	  rtx_insn *failed_insn;
6889 
6890 	  must_backtrack = false;
6891 	  failed = verify_shadows ();
6892 	  gcc_assert (failed);
6893 
6894 	  failed_insn = failed->delay_pair->i1;
6895 	  /* Clear these queues.  */
6896 	  perform_replacements_new_cycle ();
6897 	  toggle_cancelled_flags (false);
6898 	  unschedule_insns_until (failed_insn);
6899 	  while (failed != backtrack_queue)
6900 	    free_topmost_backtrack_point (true);
6901 	  restore_last_backtrack_point (&ls);
6902 	  if (sched_verbose >= 2)
6903 	    fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
6904 	  /* Delay by at least a cycle.  This could cause additional
6905 	     backtracking.  */
6906 	  queue_insn (failed_insn, 1, "backtracked");
6907 	  advance = 0;
6908 	  if (must_backtrack)
6909 	    continue;
6910 	  if (ready.n_ready > 0)
6911 	    goto resume_after_backtrack;
6912 	  else
6913 	    {
6914 	      if (clock_var == 0 && ls.first_cycle_insn_p)
6915 		goto end_schedule;
6916 	      advance = 1;
6917 	      break;
6918 	    }
6919 	}
6920       ls.first_cycle_insn_p = true;
6921     }
6922   if (ls.modulo_epilogue)
6923     success = true;
6924  end_schedule:
6925   if (!ls.first_cycle_insn_p || advance)
6926     advance_one_cycle ();
6927   perform_replacements_new_cycle ();
6928   if (modulo_ii > 0)
6929     {
6930       /* Once again, debug insn suckiness: they can be on the ready list
6931 	 even if they have unresolved dependencies.  To make our view
6932 	 of the world consistent, remove such "ready" insns.  */
6933     restart_debug_insn_loop:
6934       for (i = ready.n_ready - 1; i >= 0; i--)
6935 	{
6936 	  rtx_insn *x;
6937 
6938 	  x = ready_element (&ready, i);
6939 	  if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
6940 	      || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
6941 	    {
6942 	      ready_remove (&ready, i);
6943 	      goto restart_debug_insn_loop;
6944 	    }
6945 	}
6946       for (i = ready.n_ready - 1; i >= 0; i--)
6947 	{
6948 	  rtx_insn *x;
6949 
6950 	  x = ready_element (&ready, i);
6951 	  resolve_dependencies (x);
6952 	}
6953       for (i = 0; i <= max_insn_queue_index; i++)
6954 	{
6955 	  rtx_insn_list *link;
6956 	  while ((link = insn_queue[i]) != NULL)
6957 	    {
6958 	      rtx_insn *x = link->insn ();
6959 	      insn_queue[i] = link->next ();
6960 	      QUEUE_INDEX (x) = QUEUE_NOWHERE;
6961 	      free_INSN_LIST_node (link);
6962 	      resolve_dependencies (x);
6963 	    }
6964 	}
6965     }
6966 
6967   if (!success)
6968     undo_all_replacements ();
6969 
6970   /* Debug info.  */
6971   if (sched_verbose)
6972     {
6973       fprintf (sched_dump, ";;\tReady list (final):  ");
6974       debug_ready_list (&ready);
6975     }
6976 
6977   if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
6978     /* Sanity check -- queue must be empty now.  Meaningless if region has
6979        multiple bbs.  */
6980     gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
6981   else if (modulo_ii == 0)
6982     {
6983       /* We must maintain QUEUE_INDEX between blocks in region.  */
6984       for (i = ready.n_ready - 1; i >= 0; i--)
6985 	{
6986 	  rtx_insn *x;
6987 
6988 	  x = ready_element (&ready, i);
6989 	  QUEUE_INDEX (x) = QUEUE_NOWHERE;
6990 	  TODO_SPEC (x) = HARD_DEP;
6991 	}
6992 
6993       if (q_size)
6994 	for (i = 0; i <= max_insn_queue_index; i++)
6995 	  {
6996 	    rtx_insn_list *link;
6997 	    for (link = insn_queue[i]; link; link = link->next ())
6998 	      {
6999 		rtx_insn *x;
7000 
7001 		x = link->insn ();
7002 		QUEUE_INDEX (x) = QUEUE_NOWHERE;
7003 		TODO_SPEC (x) = HARD_DEP;
7004 	      }
7005 	    free_INSN_LIST_list (&insn_queue[i]);
7006 	  }
7007     }
7008 
7009   if (sched_pressure == SCHED_PRESSURE_MODEL)
7010     model_end_schedule ();
7011 
7012   if (success)
7013     {
7014       commit_schedule (prev_head, tail, target_bb);
7015       if (sched_verbose)
7016 	fprintf (sched_dump, ";;   total time = %d\n", clock_var);
7017     }
7018   else
7019     last_scheduled_insn = tail;
7020 
7021   scheduled_insns.truncate (0);
7022 
7023   if (!current_sched_info->queue_must_finish_empty
7024       || haifa_recovery_bb_recently_added_p)
7025     {
7026       /* INSN_TICK (minimum clock tick at which the insn becomes
7027          ready) may be not correct for the insn in the subsequent
7028          blocks of the region.  We should use a correct value of
7029          `clock_var' or modify INSN_TICK.  It is better to keep
7030          clock_var value equal to 0 at the start of a basic block.
7031          Therefore we modify INSN_TICK here.  */
7032       fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
7033     }
7034 
7035   if (targetm.sched.finish)
7036     {
7037       targetm.sched.finish (sched_dump, sched_verbose);
7038       /* Target might have added some instructions to the scheduled block
7039 	 in its md_finish () hook.  These new insns don't have any data
7040 	 initialized and to identify them we extend h_i_d so that they'll
7041 	 get zero luids.  */
7042       sched_extend_luids ();
7043     }
7044 
7045   /* Update head/tail boundaries.  */
7046   head = NEXT_INSN (prev_head);
7047   tail = last_scheduled_insn;
7048 
7049   if (sched_verbose)
7050     {
7051       fprintf (sched_dump, ";;   new head = %d\n;;   new tail = %d\n",
7052 	       INSN_UID (head), INSN_UID (tail));
7053 
7054       if (sched_verbose >= 2)
7055 	{
7056 	  dump_insn_stream (head, tail);
7057 	  print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
7058 					 NULL);
7059 	}
7060 
7061       fprintf (sched_dump, "\n");
7062     }
7063 
7064   head = restore_other_notes (head, NULL);
7065 
7066   current_sched_info->head = head;
7067   current_sched_info->tail = tail;
7068 
7069   free_backtrack_queue ();
7070 
7071   return success;
7072 }
7073 
7074 /* Set_priorities: compute priority of each insn in the block.  */
7075 
7076 int
7077 set_priorities (rtx_insn *head, rtx_insn *tail)
7078 {
7079   rtx_insn *insn;
7080   int n_insn;
7081   int sched_max_insns_priority =
7082 	current_sched_info->sched_max_insns_priority;
7083   rtx_insn *prev_head;
7084 
7085   if (head == tail && ! INSN_P (head))
7086     gcc_unreachable ();
7087 
7088   n_insn = 0;
7089 
7090   prev_head = PREV_INSN (head);
7091   for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7092     {
7093       if (!INSN_P (insn))
7094 	continue;
7095 
7096       n_insn++;
7097       (void) priority (insn);
7098 
7099       gcc_assert (INSN_PRIORITY_KNOWN (insn));
7100 
7101       sched_max_insns_priority = MAX (sched_max_insns_priority,
7102 				      INSN_PRIORITY (insn));
7103     }
7104 
7105   current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
7106 
7107   return n_insn;
7108 }
7109 
7110 /* Set dump and sched_verbose for the desired debugging output.  If no
7111    dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
7112    For -fsched-verbose=N, N>=10, print everything to stderr.  */
7113 void
7114 setup_sched_dump (void)
7115 {
7116   sched_verbose = sched_verbose_param;
7117   if (sched_verbose_param == 0 && dump_file)
7118     sched_verbose = 1;
7119   sched_dump = ((sched_verbose_param >= 10 || !dump_file)
7120 		? stderr : dump_file);
7121 }
7122 
7123 /* Allocate data for register pressure sensitive scheduling.  */
7124 static void
7125 alloc_global_sched_pressure_data (void)
7126 {
7127   if (sched_pressure != SCHED_PRESSURE_NONE)
7128     {
7129       int i, max_regno = max_reg_num ();
7130 
7131       if (sched_dump != NULL)
7132 	/* We need info about pseudos for rtl dumps about pseudo
7133 	   classes and costs.  */
7134 	regstat_init_n_sets_and_refs ();
7135       ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
7136       sched_regno_pressure_class
7137 	= (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
7138       for (i = 0; i < max_regno; i++)
7139 	sched_regno_pressure_class[i]
7140 	  = (i < FIRST_PSEUDO_REGISTER
7141 	     ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
7142 	     : ira_pressure_class_translate[reg_allocno_class (i)]);
7143       curr_reg_live = BITMAP_ALLOC (NULL);
7144       if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7145 	{
7146 	  saved_reg_live = BITMAP_ALLOC (NULL);
7147 	  region_ref_regs = BITMAP_ALLOC (NULL);
7148 	}
7149 
7150       /* Calculate number of CALL_USED_REGS in register classes that
7151 	 we calculate register pressure for.  */
7152       for (int c = 0; c < ira_pressure_classes_num; ++c)
7153 	{
7154 	  enum reg_class cl = ira_pressure_classes[c];
7155 
7156 	  call_used_regs_num[cl] = 0;
7157 
7158 	  for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
7159 	    if (call_used_regs[ira_class_hard_regs[cl][i]])
7160 	      ++call_used_regs_num[cl];
7161 	}
7162     }
7163 }
7164 
7165 /*  Free data for register pressure sensitive scheduling.  Also called
7166     from schedule_region when stopping sched-pressure early.  */
7167 void
7168 free_global_sched_pressure_data (void)
7169 {
7170   if (sched_pressure != SCHED_PRESSURE_NONE)
7171     {
7172       if (regstat_n_sets_and_refs != NULL)
7173 	regstat_free_n_sets_and_refs ();
7174       if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
7175 	{
7176 	  BITMAP_FREE (region_ref_regs);
7177 	  BITMAP_FREE (saved_reg_live);
7178 	}
7179       BITMAP_FREE (curr_reg_live);
7180       free (sched_regno_pressure_class);
7181     }
7182 }
7183 
7184 /* Initialize some global state for the scheduler.  This function works
7185    with the common data shared between all the schedulers.  It is called
7186    from the scheduler specific initialization routine.  */
7187 
7188 void
7189 sched_init (void)
7190 {
7191   /* Disable speculative loads in their presence if cc0 defined.  */
7192 #ifdef HAVE_cc0
7193   flag_schedule_speculative_load = 0;
7194 #endif
7195 
7196   if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
7197     targetm.sched.dispatch_do (NULL, DISPATCH_INIT);
7198 
7199   if (live_range_shrinkage_p)
7200     sched_pressure = SCHED_PRESSURE_WEIGHTED;
7201   else if (flag_sched_pressure
7202 	   && !reload_completed
7203 	   && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
7204     sched_pressure = ((enum sched_pressure_algorithm)
7205 		      PARAM_VALUE (PARAM_SCHED_PRESSURE_ALGORITHM));
7206   else
7207     sched_pressure = SCHED_PRESSURE_NONE;
7208 
7209   if (sched_pressure != SCHED_PRESSURE_NONE)
7210     ira_setup_eliminable_regset ();
7211 
7212   /* Initialize SPEC_INFO.  */
7213   if (targetm.sched.set_sched_flags)
7214     {
7215       spec_info = &spec_info_var;
7216       targetm.sched.set_sched_flags (spec_info);
7217 
7218       if (spec_info->mask != 0)
7219         {
7220           spec_info->data_weakness_cutoff =
7221             (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
7222           spec_info->control_weakness_cutoff =
7223             (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
7224              * REG_BR_PROB_BASE) / 100;
7225         }
7226       else
7227 	/* So we won't read anything accidentally.  */
7228 	spec_info = NULL;
7229 
7230     }
7231   else
7232     /* So we won't read anything accidentally.  */
7233     spec_info = 0;
7234 
7235   /* Initialize issue_rate.  */
7236   if (targetm.sched.issue_rate)
7237     issue_rate = targetm.sched.issue_rate ();
7238   else
7239     issue_rate = 1;
7240 
7241   if (targetm.sched.first_cycle_multipass_dfa_lookahead
7242       /* Don't use max_issue with reg_pressure scheduling.  Multipass
7243 	 scheduling and reg_pressure scheduling undo each other's decisions.  */
7244       && sched_pressure == SCHED_PRESSURE_NONE)
7245     dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
7246   else
7247     dfa_lookahead = 0;
7248 
7249   /* Set to "0" so that we recalculate.  */
7250   max_lookahead_tries = 0;
7251 
7252   if (targetm.sched.init_dfa_pre_cycle_insn)
7253     targetm.sched.init_dfa_pre_cycle_insn ();
7254 
7255   if (targetm.sched.init_dfa_post_cycle_insn)
7256     targetm.sched.init_dfa_post_cycle_insn ();
7257 
7258   dfa_start ();
7259   dfa_state_size = state_size ();
7260 
7261   init_alias_analysis ();
7262 
7263   if (!sched_no_dce)
7264     df_set_flags (DF_LR_RUN_DCE);
7265   df_note_add_problem ();
7266 
7267   /* More problems needed for interloop dep calculation in SMS.  */
7268   if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
7269     {
7270       df_rd_add_problem ();
7271       df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
7272     }
7273 
7274   df_analyze ();
7275 
7276   /* Do not run DCE after reload, as this can kill nops inserted
7277      by bundling.  */
7278   if (reload_completed)
7279     df_clear_flags (DF_LR_RUN_DCE);
7280 
7281   regstat_compute_calls_crossed ();
7282 
7283   if (targetm.sched.init_global)
7284     targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);
7285 
7286   alloc_global_sched_pressure_data ();
7287 
7288   curr_state = xmalloc (dfa_state_size);
7289 }
7290 
7291 static void haifa_init_only_bb (basic_block, basic_block);
7292 
7293 /* Initialize data structures specific to the Haifa scheduler.  */
7294 void
7295 haifa_sched_init (void)
7296 {
7297   setup_sched_dump ();
7298   sched_init ();
7299 
7300   scheduled_insns.create (0);
7301 
7302   if (spec_info != NULL)
7303     {
7304       sched_deps_info->use_deps_list = 1;
7305       sched_deps_info->generate_spec_deps = 1;
7306     }
7307 
7308   /* Initialize luids, dependency caches, target and h_i_d for the
7309      whole function.  */
7310   {
7311     bb_vec_t bbs;
7312     bbs.create (n_basic_blocks_for_fn (cfun));
7313     basic_block bb;
7314 
7315     sched_init_bbs ();
7316 
7317     FOR_EACH_BB_FN (bb, cfun)
7318       bbs.quick_push (bb);
7319     sched_init_luids (bbs);
7320     sched_deps_init (true);
7321     sched_extend_target ();
7322     haifa_init_h_i_d (bbs);
7323 
7324     bbs.release ();
7325   }
7326 
7327   sched_init_only_bb = haifa_init_only_bb;
7328   sched_split_block = sched_split_block_1;
7329   sched_create_empty_bb = sched_create_empty_bb_1;
7330   haifa_recovery_bb_ever_added_p = false;
7331 
7332   nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
7333   before_recovery = 0;
7334   after_recovery = 0;
7335 
7336   modulo_ii = 0;
7337 }
7338 
7339 /* Finish work with the data specific to the Haifa scheduler.  */
7340 void
7341 haifa_sched_finish (void)
7342 {
7343   sched_create_empty_bb = NULL;
7344   sched_split_block = NULL;
7345   sched_init_only_bb = NULL;
7346 
7347   if (spec_info && spec_info->dump)
7348     {
7349       char c = reload_completed ? 'a' : 'b';
7350 
7351       fprintf (spec_info->dump,
7352 	       ";; %s:\n", current_function_name ());
7353 
7354       fprintf (spec_info->dump,
7355                ";; Procedure %cr-begin-data-spec motions == %d\n",
7356                c, nr_begin_data);
7357       fprintf (spec_info->dump,
7358                ";; Procedure %cr-be-in-data-spec motions == %d\n",
7359                c, nr_be_in_data);
7360       fprintf (spec_info->dump,
7361                ";; Procedure %cr-begin-control-spec motions == %d\n",
7362                c, nr_begin_control);
7363       fprintf (spec_info->dump,
7364                ";; Procedure %cr-be-in-control-spec motions == %d\n",
7365                c, nr_be_in_control);
7366     }
7367 
7368   scheduled_insns.release ();
7369 
7370   /* Finalize h_i_d, dependency caches, and luids for the whole
7371      function.  Target will be finalized in md_global_finish ().  */
7372   sched_deps_finish ();
7373   sched_finish_luids ();
7374   current_sched_info = NULL;
7375   insn_queue = NULL;
7376   sched_finish ();
7377 }
7378 
7379 /* Free global data used during insn scheduling.  This function works with
7380    the common data shared between the schedulers.  */
7381 
7382 void
7383 sched_finish (void)
7384 {
7385   haifa_finish_h_i_d ();
7386   free_global_sched_pressure_data ();
7387   free (curr_state);
7388 
7389   if (targetm.sched.finish_global)
7390     targetm.sched.finish_global (sched_dump, sched_verbose);
7391 
7392   end_alias_analysis ();
7393 
7394   regstat_free_calls_crossed ();
7395 
7396   dfa_finish ();
7397 }
7398 
7399 /* Free all delay_pair structures that were recorded.  */
7400 void
7401 free_delay_pairs (void)
7402 {
7403   if (delay_htab)
7404     {
7405       delay_htab->empty ();
7406       delay_htab_i2->empty ();
7407     }
7408 }
7409 
7410 /* Fix INSN_TICKs of the instructions in the current block as well as
7411    INSN_TICKs of their dependents.
7412    HEAD and TAIL are the begin and the end of the current scheduled block.  */
7413 static void
7414 fix_inter_tick (rtx_insn *head, rtx_insn *tail)
7415 {
7416   /* Set of instructions with corrected INSN_TICK.  */
7417   bitmap_head processed;
7418   /* ??? It is doubtful if we should assume that cycle advance happens on
7419      basic block boundaries.  Basically insns that are unconditionally ready
7420      on the start of the block are more preferable then those which have
7421      a one cycle dependency over insn from the previous block.  */
7422   int next_clock = clock_var + 1;
7423 
7424   bitmap_initialize (&processed, 0);
7425 
7426   /* Iterates over scheduled instructions and fix their INSN_TICKs and
7427      INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
7428      across different blocks.  */
7429   for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
7430     {
7431       if (INSN_P (head))
7432 	{
7433 	  int tick;
7434 	  sd_iterator_def sd_it;
7435 	  dep_t dep;
7436 
7437 	  tick = INSN_TICK (head);
7438 	  gcc_assert (tick >= MIN_TICK);
7439 
7440 	  /* Fix INSN_TICK of instruction from just scheduled block.  */
7441 	  if (bitmap_set_bit (&processed, INSN_LUID (head)))
7442 	    {
7443 	      tick -= next_clock;
7444 
7445 	      if (tick < MIN_TICK)
7446 		tick = MIN_TICK;
7447 
7448 	      INSN_TICK (head) = tick;
7449 	    }
7450 
7451 	  if (DEBUG_INSN_P (head))
7452 	    continue;
7453 
7454 	  FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
7455 	    {
7456 	      rtx_insn *next;
7457 
7458 	      next = DEP_CON (dep);
7459 	      tick = INSN_TICK (next);
7460 
7461 	      if (tick != INVALID_TICK
7462 		  /* If NEXT has its INSN_TICK calculated, fix it.
7463 		     If not - it will be properly calculated from
7464 		     scratch later in fix_tick_ready.  */
7465 		  && bitmap_set_bit (&processed, INSN_LUID (next)))
7466 		{
7467 		  tick -= next_clock;
7468 
7469 		  if (tick < MIN_TICK)
7470 		    tick = MIN_TICK;
7471 
7472 		  if (tick > INTER_TICK (next))
7473 		    INTER_TICK (next) = tick;
7474 		  else
7475 		    tick = INTER_TICK (next);
7476 
7477 		  INSN_TICK (next) = tick;
7478 		}
7479 	    }
7480 	}
7481     }
7482   bitmap_clear (&processed);
7483 }
7484 
7485 /* Check if NEXT is ready to be added to the ready or queue list.
7486    If "yes", add it to the proper list.
7487    Returns:
7488       -1 - is not ready yet,
7489        0 - added to the ready list,
7490    0 < N - queued for N cycles.  */
7491 int
7492 try_ready (rtx_insn *next)
7493 {
7494   ds_t old_ts, new_ts;
7495 
7496   old_ts = TODO_SPEC (next);
7497 
7498   gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
7499 	      && (old_ts == HARD_DEP
7500 		  || old_ts == DEP_POSTPONED
7501 		  || (old_ts & SPECULATIVE)
7502 		  || old_ts == DEP_CONTROL));
7503 
7504   new_ts = recompute_todo_spec (next, false);
7505 
7506   if (new_ts & (HARD_DEP | DEP_POSTPONED))
7507     gcc_assert (new_ts == old_ts
7508 		&& QUEUE_INDEX (next) == QUEUE_NOWHERE);
7509   else if (current_sched_info->new_ready)
7510     new_ts = current_sched_info->new_ready (next, new_ts);
7511 
7512   /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
7513      have its original pattern or changed (speculative) one.  This is due
7514      to changing ebb in region scheduling.
7515      * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
7516      has speculative pattern.
7517 
7518      We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
7519      control-speculative NEXT could have been discarded by sched-rgn.c
7520      (the same case as when discarded by can_schedule_ready_p ()).  */
7521 
7522   if ((new_ts & SPECULATIVE)
7523       /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
7524 	 need to change anything.  */
7525       && new_ts != old_ts)
7526     {
7527       int res;
7528       rtx new_pat;
7529 
7530       gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));
7531 
7532       res = haifa_speculate_insn (next, new_ts, &new_pat);
7533 
7534       switch (res)
7535 	{
7536 	case -1:
7537 	  /* It would be nice to change DEP_STATUS of all dependences,
7538 	     which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
7539 	     so we won't reanalyze anything.  */
7540 	  new_ts = HARD_DEP;
7541 	  break;
7542 
7543 	case 0:
7544 	  /* We follow the rule, that every speculative insn
7545 	     has non-null ORIG_PAT.  */
7546 	  if (!ORIG_PAT (next))
7547 	    ORIG_PAT (next) = PATTERN (next);
7548 	  break;
7549 
7550 	case 1:
7551 	  if (!ORIG_PAT (next))
7552 	    /* If we gonna to overwrite the original pattern of insn,
7553 	       save it.  */
7554 	    ORIG_PAT (next) = PATTERN (next);
7555 
7556 	  res = haifa_change_pattern (next, new_pat);
7557 	  gcc_assert (res);
7558 	  break;
7559 
7560 	default:
7561 	  gcc_unreachable ();
7562 	}
7563     }
7564 
7565   /* We need to restore pattern only if (new_ts == 0), because otherwise it is
7566      either correct (new_ts & SPECULATIVE),
7567      or we simply don't care (new_ts & HARD_DEP).  */
7568 
7569   gcc_assert (!ORIG_PAT (next)
7570 	      || !IS_SPECULATION_BRANCHY_CHECK_P (next));
7571 
7572   TODO_SPEC (next) = new_ts;
7573 
7574   if (new_ts & (HARD_DEP | DEP_POSTPONED))
7575     {
7576       /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
7577 	 control-speculative NEXT could have been discarded by sched-rgn.c
7578 	 (the same case as when discarded by can_schedule_ready_p ()).  */
7579       /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
7580 
7581       change_queue_index (next, QUEUE_NOWHERE);
7582 
7583       return -1;
7584     }
7585   else if (!(new_ts & BEGIN_SPEC)
7586 	   && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
7587 	   && !IS_SPECULATION_CHECK_P (next))
7588     /* We should change pattern of every previously speculative
7589        instruction - and we determine if NEXT was speculative by using
7590        ORIG_PAT field.  Except one case - speculation checks have ORIG_PAT
7591        pat too, so skip them.  */
7592     {
7593       bool success = haifa_change_pattern (next, ORIG_PAT (next));
7594       gcc_assert (success);
7595       ORIG_PAT (next) = 0;
7596     }
7597 
7598   if (sched_verbose >= 2)
7599     {
7600       fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
7601                (*current_sched_info->print_insn) (next, 0));
7602 
7603       if (spec_info && spec_info->dump)
7604         {
7605           if (new_ts & BEGIN_DATA)
7606             fprintf (spec_info->dump, "; data-spec;");
7607           if (new_ts & BEGIN_CONTROL)
7608             fprintf (spec_info->dump, "; control-spec;");
7609           if (new_ts & BE_IN_CONTROL)
7610             fprintf (spec_info->dump, "; in-control-spec;");
7611         }
7612       if (TODO_SPEC (next) & DEP_CONTROL)
7613 	fprintf (sched_dump, " predicated");
7614       fprintf (sched_dump, "\n");
7615     }
7616 
7617   adjust_priority (next);
7618 
7619   return fix_tick_ready (next);
7620 }
7621 
7622 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list.  */
7623 static int
7624 fix_tick_ready (rtx_insn *next)
7625 {
7626   int tick, delay;
7627 
7628   if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
7629     {
7630       int full_p;
7631       sd_iterator_def sd_it;
7632       dep_t dep;
7633 
7634       tick = INSN_TICK (next);
7635       /* if tick is not equal to INVALID_TICK, then update
7636 	 INSN_TICK of NEXT with the most recent resolved dependence
7637 	 cost.  Otherwise, recalculate from scratch.  */
7638       full_p = (tick == INVALID_TICK);
7639 
7640       FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
7641         {
7642           rtx_insn *pro = DEP_PRO (dep);
7643           int tick1;
7644 
7645 	  gcc_assert (INSN_TICK (pro) >= MIN_TICK);
7646 
7647           tick1 = INSN_TICK (pro) + dep_cost (dep);
7648           if (tick1 > tick)
7649             tick = tick1;
7650 
7651 	  if (!full_p)
7652 	    break;
7653         }
7654     }
7655   else
7656     tick = -1;
7657 
7658   INSN_TICK (next) = tick;
7659 
7660   delay = tick - clock_var;
7661   if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
7662     delay = QUEUE_READY;
7663 
7664   change_queue_index (next, delay);
7665 
7666   return delay;
7667 }
7668 
7669 /* Move NEXT to the proper queue list with (DELAY >= 1),
7670    or add it to the ready list (DELAY == QUEUE_READY),
7671    or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE).  */
7672 static void
7673 change_queue_index (rtx_insn *next, int delay)
7674 {
7675   int i = QUEUE_INDEX (next);
7676 
7677   gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
7678 	      && delay != 0);
7679   gcc_assert (i != QUEUE_SCHEDULED);
7680 
7681   if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
7682       || (delay < 0 && delay == i))
7683     /* We have nothing to do.  */
7684     return;
7685 
7686   /* Remove NEXT from wherever it is now.  */
7687   if (i == QUEUE_READY)
7688     ready_remove_insn (next);
7689   else if (i >= 0)
7690     queue_remove (next);
7691 
7692   /* Add it to the proper place.  */
7693   if (delay == QUEUE_READY)
7694     ready_add (readyp, next, false);
7695   else if (delay >= 1)
7696     queue_insn (next, delay, "change queue index");
7697 
7698   if (sched_verbose >= 2)
7699     {
7700       fprintf (sched_dump, ";;\t\ttick updated: insn %s",
7701 	       (*current_sched_info->print_insn) (next, 0));
7702 
7703       if (delay == QUEUE_READY)
7704 	fprintf (sched_dump, " into ready\n");
7705       else if (delay >= 1)
7706 	fprintf (sched_dump, " into queue with cost=%d\n", delay);
7707       else
7708 	fprintf (sched_dump, " removed from ready or queue lists\n");
7709     }
7710 }
7711 
7712 static int sched_ready_n_insns = -1;
7713 
7714 /* Initialize per region data structures.  */
7715 void
7716 sched_extend_ready_list (int new_sched_ready_n_insns)
7717 {
7718   int i;
7719 
7720   if (sched_ready_n_insns == -1)
7721     /* At the first call we need to initialize one more choice_stack
7722        entry.  */
7723     {
7724       i = 0;
7725       sched_ready_n_insns = 0;
7726       scheduled_insns.reserve (new_sched_ready_n_insns);
7727     }
7728   else
7729     i = sched_ready_n_insns + 1;
7730 
7731   ready.veclen = new_sched_ready_n_insns + issue_rate;
7732   ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);
7733 
7734   gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
7735 
7736   ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
7737 					 sched_ready_n_insns,
7738 					 sizeof (*ready_try));
7739 
7740   /* We allocate +1 element to save initial state in the choice_stack[0]
7741      entry.  */
7742   choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
7743 			     new_sched_ready_n_insns + 1);
7744 
7745   for (; i <= new_sched_ready_n_insns; i++)
7746     {
7747       choice_stack[i].state = xmalloc (dfa_state_size);
7748 
7749       if (targetm.sched.first_cycle_multipass_init)
7750 	targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
7751 						    .target_data));
7752     }
7753 
7754   sched_ready_n_insns = new_sched_ready_n_insns;
7755 }
7756 
7757 /* Free per region data structures.  */
7758 void
7759 sched_finish_ready_list (void)
7760 {
7761   int i;
7762 
7763   free (ready.vec);
7764   ready.vec = NULL;
7765   ready.veclen = 0;
7766 
7767   free (ready_try);
7768   ready_try = NULL;
7769 
7770   for (i = 0; i <= sched_ready_n_insns; i++)
7771     {
7772       if (targetm.sched.first_cycle_multipass_fini)
7773 	targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
7774 						    .target_data));
7775 
7776       free (choice_stack [i].state);
7777     }
7778   free (choice_stack);
7779   choice_stack = NULL;
7780 
7781   sched_ready_n_insns = -1;
7782 }
7783 
7784 static int
7785 haifa_luid_for_non_insn (rtx x)
7786 {
7787   gcc_assert (NOTE_P (x) || LABEL_P (x));
7788 
7789   return 0;
7790 }
7791 
7792 /* Generates recovery code for INSN.  */
7793 static void
7794 generate_recovery_code (rtx_insn *insn)
7795 {
7796   if (TODO_SPEC (insn) & BEGIN_SPEC)
7797     begin_speculative_block (insn);
7798 
7799   /* Here we have insn with no dependencies to
7800      instructions other then CHECK_SPEC ones.  */
7801 
7802   if (TODO_SPEC (insn) & BE_IN_SPEC)
7803     add_to_speculative_block (insn);
7804 }
7805 
7806 /* Helper function.
7807    Tries to add speculative dependencies of type FS between instructions
7808    in deps_list L and TWIN.  */
7809 static void
7810 process_insn_forw_deps_be_in_spec (rtx insn, rtx_insn *twin, ds_t fs)
7811 {
7812   sd_iterator_def sd_it;
7813   dep_t dep;
7814 
7815   FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
7816     {
7817       ds_t ds;
7818       rtx_insn *consumer;
7819 
7820       consumer = DEP_CON (dep);
7821 
7822       ds = DEP_STATUS (dep);
7823 
7824       if (/* If we want to create speculative dep.  */
7825 	  fs
7826 	  /* And we can do that because this is a true dep.  */
7827 	  && (ds & DEP_TYPES) == DEP_TRUE)
7828 	{
7829 	  gcc_assert (!(ds & BE_IN_SPEC));
7830 
7831 	  if (/* If this dep can be overcome with 'begin speculation'.  */
7832 	      ds & BEGIN_SPEC)
7833 	    /* Then we have a choice: keep the dep 'begin speculative'
7834 	       or transform it into 'be in speculative'.  */
7835 	    {
7836 	      if (/* In try_ready we assert that if insn once became ready
7837 		     it can be removed from the ready (or queue) list only
7838 		     due to backend decision.  Hence we can't let the
7839 		     probability of the speculative dep to decrease.  */
7840 		  ds_weak (ds) <= ds_weak (fs))
7841 		{
7842 		  ds_t new_ds;
7843 
7844 		  new_ds = (ds & ~BEGIN_SPEC) | fs;
7845 
7846 		  if (/* consumer can 'be in speculative'.  */
7847 		      sched_insn_is_legitimate_for_speculation_p (consumer,
7848 								  new_ds))
7849 		    /* Transform it to be in speculative.  */
7850 		    ds = new_ds;
7851 		}
7852 	    }
7853 	  else
7854 	    /* Mark the dep as 'be in speculative'.  */
7855 	    ds |= fs;
7856 	}
7857 
7858       {
7859 	dep_def _new_dep, *new_dep = &_new_dep;
7860 
7861 	init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
7862 	sd_add_dep (new_dep, false);
7863       }
7864     }
7865 }
7866 
7867 /* Generates recovery code for BEGIN speculative INSN.  */
7868 static void
7869 begin_speculative_block (rtx_insn *insn)
7870 {
7871   if (TODO_SPEC (insn) & BEGIN_DATA)
7872     nr_begin_data++;
7873   if (TODO_SPEC (insn) & BEGIN_CONTROL)
7874     nr_begin_control++;
7875 
7876   create_check_block_twin (insn, false);
7877 
7878   TODO_SPEC (insn) &= ~BEGIN_SPEC;
7879 }
7880 
7881 static void haifa_init_insn (rtx_insn *);
7882 
7883 /* Generates recovery code for BE_IN speculative INSN.  */
7884 static void
7885 add_to_speculative_block (rtx_insn *insn)
7886 {
7887   ds_t ts;
7888   sd_iterator_def sd_it;
7889   dep_t dep;
7890   rtx_insn_list *twins = NULL;
7891   rtx_vec_t priorities_roots;
7892 
7893   ts = TODO_SPEC (insn);
7894   gcc_assert (!(ts & ~BE_IN_SPEC));
7895 
7896   if (ts & BE_IN_DATA)
7897     nr_be_in_data++;
7898   if (ts & BE_IN_CONTROL)
7899     nr_be_in_control++;
7900 
7901   TODO_SPEC (insn) &= ~BE_IN_SPEC;
7902   gcc_assert (!TODO_SPEC (insn));
7903 
7904   DONE_SPEC (insn) |= ts;
7905 
7906   /* First we convert all simple checks to branchy.  */
7907   for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7908        sd_iterator_cond (&sd_it, &dep);)
7909     {
7910       rtx_insn *check = DEP_PRO (dep);
7911 
7912       if (IS_SPECULATION_SIMPLE_CHECK_P (check))
7913 	{
7914 	  create_check_block_twin (check, true);
7915 
7916 	  /* Restart search.  */
7917 	  sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7918 	}
7919       else
7920 	/* Continue search.  */
7921 	sd_iterator_next (&sd_it);
7922     }
7923 
7924   priorities_roots.create (0);
7925   clear_priorities (insn, &priorities_roots);
7926 
7927   while (1)
7928     {
7929       rtx_insn *check, *twin;
7930       basic_block rec;
7931 
7932       /* Get the first backward dependency of INSN.  */
7933       sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7934       if (!sd_iterator_cond (&sd_it, &dep))
7935 	/* INSN has no backward dependencies left.  */
7936 	break;
7937 
7938       gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
7939 		  && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
7940 		  && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
7941 
7942       check = DEP_PRO (dep);
7943 
7944       gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
7945 		  && QUEUE_INDEX (check) == QUEUE_NOWHERE);
7946 
7947       rec = BLOCK_FOR_INSN (check);
7948 
7949       twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
7950       haifa_init_insn (twin);
7951 
7952       sd_copy_back_deps (twin, insn, true);
7953 
7954       if (sched_verbose && spec_info->dump)
7955         /* INSN_BB (insn) isn't determined for twin insns yet.
7956            So we can't use current_sched_info->print_insn.  */
7957         fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
7958                  INSN_UID (twin), rec->index);
7959 
7960       twins = alloc_INSN_LIST (twin, twins);
7961 
7962       /* Add dependences between TWIN and all appropriate
7963 	 instructions from REC.  */
7964       FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
7965 	{
7966 	  rtx_insn *pro = DEP_PRO (dep);
7967 
7968 	  gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
7969 
7970 	  /* INSN might have dependencies from the instructions from
7971 	     several recovery blocks.  At this iteration we process those
7972 	     producers that reside in REC.  */
7973 	  if (BLOCK_FOR_INSN (pro) == rec)
7974 	    {
7975 	      dep_def _new_dep, *new_dep = &_new_dep;
7976 
7977 	      init_dep (new_dep, pro, twin, REG_DEP_TRUE);
7978 	      sd_add_dep (new_dep, false);
7979 	    }
7980 	}
7981 
7982       process_insn_forw_deps_be_in_spec (insn, twin, ts);
7983 
7984       /* Remove all dependencies between INSN and insns in REC.  */
7985       for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
7986 	   sd_iterator_cond (&sd_it, &dep);)
7987 	{
7988 	  rtx_insn *pro = DEP_PRO (dep);
7989 
7990 	  if (BLOCK_FOR_INSN (pro) == rec)
7991 	    sd_delete_dep (sd_it);
7992 	  else
7993 	    sd_iterator_next (&sd_it);
7994 	}
7995     }
7996 
7997   /* We couldn't have added the dependencies between INSN and TWINS earlier
7998      because that would make TWINS appear in the INSN_BACK_DEPS (INSN).  */
7999   while (twins)
8000     {
8001       rtx_insn *twin;
8002       rtx_insn_list *next_node;
8003 
8004       twin = twins->insn ();
8005 
8006       {
8007 	dep_def _new_dep, *new_dep = &_new_dep;
8008 
8009 	init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8010 	sd_add_dep (new_dep, false);
8011       }
8012 
8013       next_node = twins->next ();
8014       free_INSN_LIST_node (twins);
8015       twins = next_node;
8016     }
8017 
8018   calc_priorities (priorities_roots);
8019   priorities_roots.release ();
8020 }
8021 
8022 /* Extends and fills with zeros (only the new part) array pointed to by P.  */
8023 void *
8024 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
8025 {
8026   gcc_assert (new_nmemb >= old_nmemb);
8027   p = XRESIZEVAR (void, p, new_nmemb * size);
8028   memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
8029   return p;
8030 }
8031 
8032 /* Helper function.
8033    Find fallthru edge from PRED.  */
8034 edge
8035 find_fallthru_edge_from (basic_block pred)
8036 {
8037   edge e;
8038   basic_block succ;
8039 
8040   succ = pred->next_bb;
8041   gcc_assert (succ->prev_bb == pred);
8042 
8043   if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
8044     {
8045       e = find_fallthru_edge (pred->succs);
8046 
8047       if (e)
8048 	{
8049 	  gcc_assert (e->dest == succ);
8050 	  return e;
8051 	}
8052     }
8053   else
8054     {
8055       e = find_fallthru_edge (succ->preds);
8056 
8057       if (e)
8058 	{
8059 	  gcc_assert (e->src == pred);
8060 	  return e;
8061 	}
8062     }
8063 
8064   return NULL;
8065 }
8066 
8067 /* Extend per basic block data structures.  */
8068 static void
8069 sched_extend_bb (void)
8070 {
8071   /* The following is done to keep current_sched_info->next_tail non null.  */
8072   rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
8073   rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
8074   if (NEXT_INSN (end) == 0
8075       || (!NOTE_P (insn)
8076 	  && !LABEL_P (insn)
8077 	  /* Don't emit a NOTE if it would end up before a BARRIER.  */
8078 	  && !BARRIER_P (NEXT_INSN (end))))
8079     {
8080       rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
8081       /* Make note appear outside BB.  */
8082       set_block_for_insn (note, NULL);
8083       BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
8084     }
8085 }
8086 
8087 /* Init per basic block data structures.  */
8088 void
8089 sched_init_bbs (void)
8090 {
8091   sched_extend_bb ();
8092 }
8093 
8094 /* Initialize BEFORE_RECOVERY variable.  */
8095 static void
8096 init_before_recovery (basic_block *before_recovery_ptr)
8097 {
8098   basic_block last;
8099   edge e;
8100 
8101   last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8102   e = find_fallthru_edge_from (last);
8103 
8104   if (e)
8105     {
8106       /* We create two basic blocks:
8107          1. Single instruction block is inserted right after E->SRC
8108          and has jump to
8109          2. Empty block right before EXIT_BLOCK.
8110          Between these two blocks recovery blocks will be emitted.  */
8111 
8112       basic_block single, empty;
8113       rtx_insn *x;
8114       rtx label;
8115 
8116       /* If the fallthrough edge to exit we've found is from the block we've
8117 	 created before, don't do anything more.  */
8118       if (last == after_recovery)
8119 	return;
8120 
8121       adding_bb_to_current_region_p = false;
8122 
8123       single = sched_create_empty_bb (last);
8124       empty = sched_create_empty_bb (single);
8125 
8126       /* Add new blocks to the root loop.  */
8127       if (current_loops != NULL)
8128 	{
8129 	  add_bb_to_loop (single, (*current_loops->larray)[0]);
8130 	  add_bb_to_loop (empty, (*current_loops->larray)[0]);
8131 	}
8132 
8133       single->count = last->count;
8134       empty->count = last->count;
8135       single->frequency = last->frequency;
8136       empty->frequency = last->frequency;
8137       BB_COPY_PARTITION (single, last);
8138       BB_COPY_PARTITION (empty, last);
8139 
8140       redirect_edge_succ (e, single);
8141       make_single_succ_edge (single, empty, 0);
8142       make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
8143 			     EDGE_FALLTHRU);
8144 
8145       label = block_label (empty);
8146       x = emit_jump_insn_after (gen_jump (label), BB_END (single));
8147       JUMP_LABEL (x) = label;
8148       LABEL_NUSES (label)++;
8149       haifa_init_insn (x);
8150 
8151       emit_barrier_after (x);
8152 
8153       sched_init_only_bb (empty, NULL);
8154       sched_init_only_bb (single, NULL);
8155       sched_extend_bb ();
8156 
8157       adding_bb_to_current_region_p = true;
8158       before_recovery = single;
8159       after_recovery = empty;
8160 
8161       if (before_recovery_ptr)
8162         *before_recovery_ptr = before_recovery;
8163 
8164       if (sched_verbose >= 2 && spec_info->dump)
8165         fprintf (spec_info->dump,
8166 		 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
8167                  last->index, single->index, empty->index);
8168     }
8169   else
8170     before_recovery = last;
8171 }
8172 
8173 /* Returns new recovery block.  */
8174 basic_block
8175 sched_create_recovery_block (basic_block *before_recovery_ptr)
8176 {
8177   rtx label;
8178   rtx_insn *barrier;
8179   basic_block rec;
8180 
8181   haifa_recovery_bb_recently_added_p = true;
8182   haifa_recovery_bb_ever_added_p = true;
8183 
8184   init_before_recovery (before_recovery_ptr);
8185 
8186   barrier = get_last_bb_insn (before_recovery);
8187   gcc_assert (BARRIER_P (barrier));
8188 
8189   label = emit_label_after (gen_label_rtx (), barrier);
8190 
8191   rec = create_basic_block (label, label, before_recovery);
8192 
8193   /* A recovery block always ends with an unconditional jump.  */
8194   emit_barrier_after (BB_END (rec));
8195 
8196   if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
8197     BB_SET_PARTITION (rec, BB_COLD_PARTITION);
8198 
8199   if (sched_verbose && spec_info->dump)
8200     fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
8201              rec->index);
8202 
8203   return rec;
8204 }
8205 
8206 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
8207    and emit necessary jumps.  */
8208 void
8209 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
8210 			     basic_block second_bb)
8211 {
8212   rtx label;
8213   rtx jump;
8214   int edge_flags;
8215 
8216   /* This is fixing of incoming edge.  */
8217   /* ??? Which other flags should be specified?  */
8218   if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
8219     /* Partition type is the same, if it is "unpartitioned".  */
8220     edge_flags = EDGE_CROSSING;
8221   else
8222     edge_flags = 0;
8223 
8224   make_edge (first_bb, rec, edge_flags);
8225   label = block_label (second_bb);
8226   jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
8227   JUMP_LABEL (jump) = label;
8228   LABEL_NUSES (label)++;
8229 
8230   if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
8231     /* Partition type is the same, if it is "unpartitioned".  */
8232     {
8233       /* Rewritten from cfgrtl.c.  */
8234       if (flag_reorder_blocks_and_partition
8235 	  && targetm_common.have_named_sections)
8236 	{
8237 	  /* We don't need the same note for the check because
8238 	     any_condjump_p (check) == true.  */
8239 	  CROSSING_JUMP_P (jump) = 1;
8240 	}
8241       edge_flags = EDGE_CROSSING;
8242     }
8243   else
8244     edge_flags = 0;
8245 
8246   make_single_succ_edge (rec, second_bb, edge_flags);
8247   if (dom_info_available_p (CDI_DOMINATORS))
8248     set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
8249 }
8250 
8251 /* This function creates recovery code for INSN.  If MUTATE_P is nonzero,
8252    INSN is a simple check, that should be converted to branchy one.  */
8253 static void
8254 create_check_block_twin (rtx_insn *insn, bool mutate_p)
8255 {
8256   basic_block rec;
8257   rtx_insn *label, *check, *twin;
8258   rtx check_pat;
8259   ds_t fs;
8260   sd_iterator_def sd_it;
8261   dep_t dep;
8262   dep_def _new_dep, *new_dep = &_new_dep;
8263   ds_t todo_spec;
8264 
8265   gcc_assert (ORIG_PAT (insn) != NULL_RTX);
8266 
8267   if (!mutate_p)
8268     todo_spec = TODO_SPEC (insn);
8269   else
8270     {
8271       gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
8272 		  && (TODO_SPEC (insn) & SPECULATIVE) == 0);
8273 
8274       todo_spec = CHECK_SPEC (insn);
8275     }
8276 
8277   todo_spec &= SPECULATIVE;
8278 
8279   /* Create recovery block.  */
8280   if (mutate_p || targetm.sched.needs_block_p (todo_spec))
8281     {
8282       rec = sched_create_recovery_block (NULL);
8283       label = BB_HEAD (rec);
8284     }
8285   else
8286     {
8287       rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
8288       label = NULL;
8289     }
8290 
8291   /* Emit CHECK.  */
8292   check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);
8293 
8294   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8295     {
8296       /* To have mem_reg alive at the beginning of second_bb,
8297 	 we emit check BEFORE insn, so insn after splitting
8298 	 insn will be at the beginning of second_bb, which will
8299 	 provide us with the correct life information.  */
8300       check = emit_jump_insn_before (check_pat, insn);
8301       JUMP_LABEL (check) = label;
8302       LABEL_NUSES (label)++;
8303     }
8304   else
8305     check = emit_insn_before (check_pat, insn);
8306 
8307   /* Extend data structures.  */
8308   haifa_init_insn (check);
8309 
8310   /* CHECK is being added to current region.  Extend ready list.  */
8311   gcc_assert (sched_ready_n_insns != -1);
8312   sched_extend_ready_list (sched_ready_n_insns + 1);
8313 
8314   if (current_sched_info->add_remove_insn)
8315     current_sched_info->add_remove_insn (insn, 0);
8316 
8317   RECOVERY_BLOCK (check) = rec;
8318 
8319   if (sched_verbose && spec_info->dump)
8320     fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
8321              (*current_sched_info->print_insn) (check, 0));
8322 
8323   gcc_assert (ORIG_PAT (insn));
8324 
8325   /* Initialize TWIN (twin is a duplicate of original instruction
8326      in the recovery block).  */
8327   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8328     {
8329       sd_iterator_def sd_it;
8330       dep_t dep;
8331 
8332       FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
8333 	if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
8334 	  {
8335 	    struct _dep _dep2, *dep2 = &_dep2;
8336 
8337 	    init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
8338 
8339 	    sd_add_dep (dep2, true);
8340 	  }
8341 
8342       twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
8343       haifa_init_insn (twin);
8344 
8345       if (sched_verbose && spec_info->dump)
8346 	/* INSN_BB (insn) isn't determined for twin insns yet.
8347 	   So we can't use current_sched_info->print_insn.  */
8348 	fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
8349 		 INSN_UID (twin), rec->index);
8350     }
8351   else
8352     {
8353       ORIG_PAT (check) = ORIG_PAT (insn);
8354       HAS_INTERNAL_DEP (check) = 1;
8355       twin = check;
8356       /* ??? We probably should change all OUTPUT dependencies to
8357 	 (TRUE | OUTPUT).  */
8358     }
8359 
8360   /* Copy all resolved back dependencies of INSN to TWIN.  This will
8361      provide correct value for INSN_TICK (TWIN).  */
8362   sd_copy_back_deps (twin, insn, true);
8363 
8364   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8365     /* In case of branchy check, fix CFG.  */
8366     {
8367       basic_block first_bb, second_bb;
8368       rtx_insn *jump;
8369 
8370       first_bb = BLOCK_FOR_INSN (check);
8371       second_bb = sched_split_block (first_bb, check);
8372 
8373       sched_create_recovery_edges (first_bb, rec, second_bb);
8374 
8375       sched_init_only_bb (second_bb, first_bb);
8376       sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));
8377 
8378       jump = BB_END (rec);
8379       haifa_init_insn (jump);
8380     }
8381 
8382   /* Move backward dependences from INSN to CHECK and
8383      move forward dependences from INSN to TWIN.  */
8384 
8385   /* First, create dependencies between INSN's producers and CHECK & TWIN.  */
8386   FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8387     {
8388       rtx_insn *pro = DEP_PRO (dep);
8389       ds_t ds;
8390 
8391       /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
8392 	 check --TRUE--> producer  ??? or ANTI ???
8393 	 twin  --TRUE--> producer
8394 	 twin  --ANTI--> check
8395 
8396 	 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
8397 	 check --ANTI--> producer
8398 	 twin  --ANTI--> producer
8399 	 twin  --ANTI--> check
8400 
8401 	 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
8402 	 check ~~TRUE~~> producer
8403 	 twin  ~~TRUE~~> producer
8404 	 twin  --ANTI--> check  */
8405 
8406       ds = DEP_STATUS (dep);
8407 
8408       if (ds & BEGIN_SPEC)
8409 	{
8410 	  gcc_assert (!mutate_p);
8411 	  ds &= ~BEGIN_SPEC;
8412 	}
8413 
8414       init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
8415       sd_add_dep (new_dep, false);
8416 
8417       if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8418 	{
8419 	  DEP_CON (new_dep) = twin;
8420 	  sd_add_dep (new_dep, false);
8421 	}
8422     }
8423 
8424   /* Second, remove backward dependencies of INSN.  */
8425   for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
8426        sd_iterator_cond (&sd_it, &dep);)
8427     {
8428       if ((DEP_STATUS (dep) & BEGIN_SPEC)
8429 	  || mutate_p)
8430 	/* We can delete this dep because we overcome it with
8431 	   BEGIN_SPECULATION.  */
8432 	sd_delete_dep (sd_it);
8433       else
8434 	sd_iterator_next (&sd_it);
8435     }
8436 
8437   /* Future Speculations.  Determine what BE_IN speculations will be like.  */
8438   fs = 0;
8439 
8440   /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
8441      here.  */
8442 
8443   gcc_assert (!DONE_SPEC (insn));
8444 
8445   if (!mutate_p)
8446     {
8447       ds_t ts = TODO_SPEC (insn);
8448 
8449       DONE_SPEC (insn) = ts & BEGIN_SPEC;
8450       CHECK_SPEC (check) = ts & BEGIN_SPEC;
8451 
8452       /* Luckiness of future speculations solely depends upon initial
8453 	 BEGIN speculation.  */
8454       if (ts & BEGIN_DATA)
8455 	fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
8456       if (ts & BEGIN_CONTROL)
8457 	fs = set_dep_weak (fs, BE_IN_CONTROL,
8458 			   get_dep_weak (ts, BEGIN_CONTROL));
8459     }
8460   else
8461     CHECK_SPEC (check) = CHECK_SPEC (insn);
8462 
8463   /* Future speculations: call the helper.  */
8464   process_insn_forw_deps_be_in_spec (insn, twin, fs);
8465 
8466   if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
8467     {
8468       /* Which types of dependencies should we use here is,
8469 	 generally, machine-dependent question...  But, for now,
8470 	 it is not.  */
8471 
8472       if (!mutate_p)
8473 	{
8474 	  init_dep (new_dep, insn, check, REG_DEP_TRUE);
8475 	  sd_add_dep (new_dep, false);
8476 
8477 	  init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
8478 	  sd_add_dep (new_dep, false);
8479 	}
8480       else
8481 	{
8482 	  if (spec_info->dump)
8483 	    fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
8484 		     (*current_sched_info->print_insn) (insn, 0));
8485 
8486 	  /* Remove all dependencies of the INSN.  */
8487 	  {
8488 	    sd_it = sd_iterator_start (insn, (SD_LIST_FORW
8489 					      | SD_LIST_BACK
8490 					      | SD_LIST_RES_BACK));
8491 	    while (sd_iterator_cond (&sd_it, &dep))
8492 	      sd_delete_dep (sd_it);
8493 	  }
8494 
8495 	  /* If former check (INSN) already was moved to the ready (or queue)
8496 	     list, add new check (CHECK) there too.  */
8497 	  if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
8498 	    try_ready (check);
8499 
8500 	  /* Remove old check from instruction stream and free its
8501 	     data.  */
8502 	  sched_remove_insn (insn);
8503 	}
8504 
8505       init_dep (new_dep, check, twin, REG_DEP_ANTI);
8506       sd_add_dep (new_dep, false);
8507     }
8508   else
8509     {
8510       init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
8511       sd_add_dep (new_dep, false);
8512     }
8513 
8514   if (!mutate_p)
8515     /* Fix priorities.  If MUTATE_P is nonzero, this is not necessary,
8516        because it'll be done later in add_to_speculative_block.  */
8517     {
8518       rtx_vec_t priorities_roots = rtx_vec_t ();
8519 
8520       clear_priorities (twin, &priorities_roots);
8521       calc_priorities (priorities_roots);
8522       priorities_roots.release ();
8523     }
8524 }
8525 
8526 /* Removes dependency between instructions in the recovery block REC
8527    and usual region instructions.  It keeps inner dependences so it
8528    won't be necessary to recompute them.  */
8529 static void
8530 fix_recovery_deps (basic_block rec)
8531 {
8532   rtx_insn *note, *insn, *jump;
8533   rtx_insn_list *ready_list = 0;
8534   bitmap_head in_ready;
8535   rtx_insn_list *link;
8536 
8537   bitmap_initialize (&in_ready, 0);
8538 
8539   /* NOTE - a basic block note.  */
8540   note = NEXT_INSN (BB_HEAD (rec));
8541   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8542   insn = BB_END (rec);
8543   gcc_assert (JUMP_P (insn));
8544   insn = PREV_INSN (insn);
8545 
8546   do
8547     {
8548       sd_iterator_def sd_it;
8549       dep_t dep;
8550 
8551       for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
8552 	   sd_iterator_cond (&sd_it, &dep);)
8553 	{
8554 	  rtx_insn *consumer = DEP_CON (dep);
8555 
8556 	  if (BLOCK_FOR_INSN (consumer) != rec)
8557 	    {
8558 	      sd_delete_dep (sd_it);
8559 
8560 	      if (bitmap_set_bit (&in_ready, INSN_LUID (consumer)))
8561 		ready_list = alloc_INSN_LIST (consumer, ready_list);
8562 	    }
8563 	  else
8564 	    {
8565 	      gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
8566 
8567 	      sd_iterator_next (&sd_it);
8568 	    }
8569 	}
8570 
8571       insn = PREV_INSN (insn);
8572     }
8573   while (insn != note);
8574 
8575   bitmap_clear (&in_ready);
8576 
8577   /* Try to add instructions to the ready or queue list.  */
8578   for (link = ready_list; link; link = link->next ())
8579     try_ready (link->insn ());
8580   free_INSN_LIST_list (&ready_list);
8581 
8582   /* Fixing jump's dependences.  */
8583   insn = BB_HEAD (rec);
8584   jump = BB_END (rec);
8585 
8586   gcc_assert (LABEL_P (insn));
8587   insn = NEXT_INSN (insn);
8588 
8589   gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
8590   add_jump_dependencies (insn, jump);
8591 }
8592 
8593 /* Change pattern of INSN to NEW_PAT.  Invalidate cached haifa
8594    instruction data.  */
8595 static bool
8596 haifa_change_pattern (rtx_insn *insn, rtx new_pat)
8597 {
8598   int t;
8599 
8600   t = validate_change (insn, &PATTERN (insn), new_pat, 0);
8601   if (!t)
8602     return false;
8603 
8604   update_insn_after_change (insn);
8605   return true;
8606 }
8607 
8608 /* -1 - can't speculate,
8609    0 - for speculation with REQUEST mode it is OK to use
8610    current instruction pattern,
8611    1 - need to change pattern for *NEW_PAT to be speculative.  */
8612 int
8613 sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8614 {
8615   gcc_assert (current_sched_info->flags & DO_SPECULATION
8616               && (request & SPECULATIVE)
8617 	      && sched_insn_is_legitimate_for_speculation_p (insn, request));
8618 
8619   if ((request & spec_info->mask) != request)
8620     return -1;
8621 
8622   if (request & BE_IN_SPEC
8623       && !(request & BEGIN_SPEC))
8624     return 0;
8625 
8626   return targetm.sched.speculate_insn (insn, request, new_pat);
8627 }
8628 
8629 static int
8630 haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
8631 {
8632   gcc_assert (sched_deps_info->generate_spec_deps
8633 	      && !IS_SPECULATION_CHECK_P (insn));
8634 
8635   if (HAS_INTERNAL_DEP (insn)
8636       || SCHED_GROUP_P (insn))
8637     return -1;
8638 
8639   return sched_speculate_insn (insn, request, new_pat);
8640 }
8641 
8642 /* Print some information about block BB, which starts with HEAD and
8643    ends with TAIL, before scheduling it.
8644    I is zero, if scheduler is about to start with the fresh ebb.  */
8645 static void
8646 dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
8647 {
8648   if (!i)
8649     fprintf (sched_dump,
8650 	     ";;   ======================================================\n");
8651   else
8652     fprintf (sched_dump,
8653 	     ";;   =====================ADVANCING TO=====================\n");
8654   fprintf (sched_dump,
8655 	   ";;   -- basic block %d from %d to %d -- %s reload\n",
8656 	   bb->index, INSN_UID (head), INSN_UID (tail),
8657 	   (reload_completed ? "after" : "before"));
8658   fprintf (sched_dump,
8659 	   ";;   ======================================================\n");
8660   fprintf (sched_dump, "\n");
8661 }
8662 
8663 /* Unlink basic block notes and labels and saves them, so they
8664    can be easily restored.  We unlink basic block notes in EBB to
8665    provide back-compatibility with the previous code, as target backends
8666    assume, that there'll be only instructions between
8667    current_sched_info->{head and tail}.  We restore these notes as soon
8668    as we can.
8669    FIRST (LAST) is the first (last) basic block in the ebb.
8670    NB: In usual case (FIRST == LAST) nothing is really done.  */
8671 void
8672 unlink_bb_notes (basic_block first, basic_block last)
8673 {
8674   /* We DON'T unlink basic block notes of the first block in the ebb.  */
8675   if (first == last)
8676     return;
8677 
8678   bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));
8679 
8680   /* Make a sentinel.  */
8681   if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
8682     bb_header[last->next_bb->index] = 0;
8683 
8684   first = first->next_bb;
8685   do
8686     {
8687       rtx_insn *prev, *label, *note, *next;
8688 
8689       label = BB_HEAD (last);
8690       if (LABEL_P (label))
8691 	note = NEXT_INSN (label);
8692       else
8693 	note = label;
8694       gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8695 
8696       prev = PREV_INSN (label);
8697       next = NEXT_INSN (note);
8698       gcc_assert (prev && next);
8699 
8700       SET_NEXT_INSN (prev) = next;
8701       SET_PREV_INSN (next) = prev;
8702 
8703       bb_header[last->index] = label;
8704 
8705       if (last == first)
8706 	break;
8707 
8708       last = last->prev_bb;
8709     }
8710   while (1);
8711 }
8712 
8713 /* Restore basic block notes.
8714    FIRST is the first basic block in the ebb.  */
8715 static void
8716 restore_bb_notes (basic_block first)
8717 {
8718   if (!bb_header)
8719     return;
8720 
8721   /* We DON'T unlink basic block notes of the first block in the ebb.  */
8722   first = first->next_bb;
8723   /* Remember: FIRST is actually a second basic block in the ebb.  */
8724 
8725   while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
8726 	 && bb_header[first->index])
8727     {
8728       rtx_insn *prev, *label, *note, *next;
8729 
8730       label = bb_header[first->index];
8731       prev = PREV_INSN (label);
8732       next = NEXT_INSN (prev);
8733 
8734       if (LABEL_P (label))
8735 	note = NEXT_INSN (label);
8736       else
8737 	note = label;
8738       gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
8739 
8740       bb_header[first->index] = 0;
8741 
8742       SET_NEXT_INSN (prev) = label;
8743       SET_NEXT_INSN (note) = next;
8744       SET_PREV_INSN (next) = note;
8745 
8746       first = first->next_bb;
8747     }
8748 
8749   free (bb_header);
8750   bb_header = 0;
8751 }
8752 
8753 /* Helper function.
8754    Fix CFG after both in- and inter-block movement of
8755    control_flow_insn_p JUMP.  */
8756 static void
8757 fix_jump_move (rtx_insn *jump)
8758 {
8759   basic_block bb, jump_bb, jump_bb_next;
8760 
8761   bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8762   jump_bb = BLOCK_FOR_INSN (jump);
8763   jump_bb_next = jump_bb->next_bb;
8764 
8765   gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
8766 	      || IS_SPECULATION_BRANCHY_CHECK_P (jump));
8767 
8768   if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
8769     /* if jump_bb_next is not empty.  */
8770     BB_END (jump_bb) = BB_END (jump_bb_next);
8771 
8772   if (BB_END (bb) != PREV_INSN (jump))
8773     /* Then there are instruction after jump that should be placed
8774        to jump_bb_next.  */
8775     BB_END (jump_bb_next) = BB_END (bb);
8776   else
8777     /* Otherwise jump_bb_next is empty.  */
8778     BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
8779 
8780   /* To make assertion in move_insn happy.  */
8781   BB_END (bb) = PREV_INSN (jump);
8782 
8783   update_bb_for_insn (jump_bb_next);
8784 }
8785 
8786 /* Fix CFG after interblock movement of control_flow_insn_p JUMP.  */
8787 static void
8788 move_block_after_check (rtx_insn *jump)
8789 {
8790   basic_block bb, jump_bb, jump_bb_next;
8791   vec<edge, va_gc> *t;
8792 
8793   bb = BLOCK_FOR_INSN (PREV_INSN (jump));
8794   jump_bb = BLOCK_FOR_INSN (jump);
8795   jump_bb_next = jump_bb->next_bb;
8796 
8797   update_bb_for_insn (jump_bb);
8798 
8799   gcc_assert (IS_SPECULATION_CHECK_P (jump)
8800 	      || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
8801 
8802   unlink_block (jump_bb_next);
8803   link_block (jump_bb_next, bb);
8804 
8805   t = bb->succs;
8806   bb->succs = 0;
8807   move_succs (&(jump_bb->succs), bb);
8808   move_succs (&(jump_bb_next->succs), jump_bb);
8809   move_succs (&t, jump_bb_next);
8810 
8811   df_mark_solutions_dirty ();
8812 
8813   common_sched_info->fix_recovery_cfg
8814     (bb->index, jump_bb->index, jump_bb_next->index);
8815 }
8816 
8817 /* Helper function for move_block_after_check.
8818    This functions attaches edge vector pointed to by SUCCSP to
8819    block TO.  */
8820 static void
8821 move_succs (vec<edge, va_gc> **succsp, basic_block to)
8822 {
8823   edge e;
8824   edge_iterator ei;
8825 
8826   gcc_assert (to->succs == 0);
8827 
8828   to->succs = *succsp;
8829 
8830   FOR_EACH_EDGE (e, ei, to->succs)
8831     e->src = to;
8832 
8833   *succsp = 0;
8834 }
8835 
8836 /* Remove INSN from the instruction stream.
8837    INSN should have any dependencies.  */
8838 static void
8839 sched_remove_insn (rtx_insn *insn)
8840 {
8841   sd_finish_insn (insn);
8842 
8843   change_queue_index (insn, QUEUE_NOWHERE);
8844   current_sched_info->add_remove_insn (insn, 1);
8845   delete_insn (insn);
8846 }
8847 
8848 /* Clear priorities of all instructions, that are forward dependent on INSN.
8849    Store in vector pointed to by ROOTS_PTR insns on which priority () should
8850    be invoked to initialize all cleared priorities.  */
8851 static void
8852 clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
8853 {
8854   sd_iterator_def sd_it;
8855   dep_t dep;
8856   bool insn_is_root_p = true;
8857 
8858   gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
8859 
8860   FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
8861     {
8862       rtx_insn *pro = DEP_PRO (dep);
8863 
8864       if (INSN_PRIORITY_STATUS (pro) >= 0
8865 	  && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
8866 	{
8867 	  /* If DEP doesn't contribute to priority then INSN itself should
8868 	     be added to priority roots.  */
8869 	  if (contributes_to_priority_p (dep))
8870 	    insn_is_root_p = false;
8871 
8872 	  INSN_PRIORITY_STATUS (pro) = -1;
8873 	  clear_priorities (pro, roots_ptr);
8874 	}
8875     }
8876 
8877   if (insn_is_root_p)
8878     roots_ptr->safe_push (insn);
8879 }
8880 
8881 /* Recompute priorities of instructions, whose priorities might have been
8882    changed.  ROOTS is a vector of instructions whose priority computation will
8883    trigger initialization of all cleared priorities.  */
8884 static void
8885 calc_priorities (rtx_vec_t roots)
8886 {
8887   int i;
8888   rtx_insn *insn;
8889 
8890   FOR_EACH_VEC_ELT (roots, i, insn)
8891     priority (insn);
8892 }
8893 
8894 
8895 /* Add dependences between JUMP and other instructions in the recovery
8896    block.  INSN is the first insn the recovery block.  */
8897 static void
8898 add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
8899 {
8900   do
8901     {
8902       insn = NEXT_INSN (insn);
8903       if (insn == jump)
8904 	break;
8905 
8906       if (dep_list_size (insn, SD_LIST_FORW) == 0)
8907 	{
8908 	  dep_def _new_dep, *new_dep = &_new_dep;
8909 
8910 	  init_dep (new_dep, insn, jump, REG_DEP_ANTI);
8911 	  sd_add_dep (new_dep, false);
8912 	}
8913     }
8914   while (1);
8915 
8916   gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
8917 }
8918 
8919 /* Extend data structures for logical insn UID.  */
8920 void
8921 sched_extend_luids (void)
8922 {
8923   int new_luids_max_uid = get_max_uid () + 1;
8924 
8925   sched_luids.safe_grow_cleared (new_luids_max_uid);
8926 }
8927 
8928 /* Initialize LUID for INSN.  */
8929 void
8930 sched_init_insn_luid (rtx_insn *insn)
8931 {
8932   int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
8933   int luid;
8934 
8935   if (i >= 0)
8936     {
8937       luid = sched_max_luid;
8938       sched_max_luid += i;
8939     }
8940   else
8941     luid = -1;
8942 
8943   SET_INSN_LUID (insn, luid);
8944 }
8945 
8946 /* Initialize luids for BBS.
8947    The hook common_sched_info->luid_for_non_insn () is used to determine
8948    if notes, labels, etc. need luids.  */
8949 void
8950 sched_init_luids (bb_vec_t bbs)
8951 {
8952   int i;
8953   basic_block bb;
8954 
8955   sched_extend_luids ();
8956   FOR_EACH_VEC_ELT (bbs, i, bb)
8957     {
8958       rtx_insn *insn;
8959 
8960       FOR_BB_INSNS (bb, insn)
8961 	sched_init_insn_luid (insn);
8962     }
8963 }
8964 
8965 /* Free LUIDs.  */
8966 void
8967 sched_finish_luids (void)
8968 {
8969   sched_luids.release ();
8970   sched_max_luid = 1;
8971 }
8972 
8973 /* Return logical uid of INSN.  Helpful while debugging.  */
8974 int
8975 insn_luid (rtx_insn *insn)
8976 {
8977   return INSN_LUID (insn);
8978 }
8979 
8980 /* Extend per insn data in the target.  */
8981 void
8982 sched_extend_target (void)
8983 {
8984   if (targetm.sched.h_i_d_extended)
8985     targetm.sched.h_i_d_extended ();
8986 }
8987 
8988 /* Extend global scheduler structures (those, that live across calls to
8989    schedule_block) to include information about just emitted INSN.  */
8990 static void
8991 extend_h_i_d (void)
8992 {
8993   int reserve = (get_max_uid () + 1 - h_i_d.length ());
8994   if (reserve > 0
8995       && ! h_i_d.space (reserve))
8996     {
8997       h_i_d.safe_grow_cleared (3 * get_max_uid () / 2);
8998       sched_extend_target ();
8999     }
9000 }
9001 
9002 /* Initialize h_i_d entry of the INSN with default values.
9003    Values, that are not explicitly initialized here, hold zero.  */
9004 static void
9005 init_h_i_d (rtx_insn *insn)
9006 {
9007   if (INSN_LUID (insn) > 0)
9008     {
9009       INSN_COST (insn) = -1;
9010       QUEUE_INDEX (insn) = QUEUE_NOWHERE;
9011       INSN_TICK (insn) = INVALID_TICK;
9012       INSN_EXACT_TICK (insn) = INVALID_TICK;
9013       INTER_TICK (insn) = INVALID_TICK;
9014       TODO_SPEC (insn) = HARD_DEP;
9015       INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
9016 	= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9017       INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
9018 	= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
9019     }
9020 }
9021 
9022 /* Initialize haifa_insn_data for BBS.  */
9023 void
9024 haifa_init_h_i_d (bb_vec_t bbs)
9025 {
9026   int i;
9027   basic_block bb;
9028 
9029   extend_h_i_d ();
9030   FOR_EACH_VEC_ELT (bbs, i, bb)
9031     {
9032       rtx_insn *insn;
9033 
9034       FOR_BB_INSNS (bb, insn)
9035 	init_h_i_d (insn);
9036     }
9037 }
9038 
9039 /* Finalize haifa_insn_data.  */
9040 void
9041 haifa_finish_h_i_d (void)
9042 {
9043   int i;
9044   haifa_insn_data_t data;
9045   struct reg_use_data *use, *next;
9046 
9047   FOR_EACH_VEC_ELT (h_i_d, i, data)
9048     {
9049       free (data->max_reg_pressure);
9050       free (data->reg_pressure);
9051       for (use = data->reg_use_list; use != NULL; use = next)
9052 	{
9053 	  next = use->next_insn_use;
9054 	  free (use);
9055 	}
9056     }
9057   h_i_d.release ();
9058 }
9059 
9060 /* Init data for the new insn INSN.  */
9061 static void
9062 haifa_init_insn (rtx_insn *insn)
9063 {
9064   gcc_assert (insn != NULL);
9065 
9066   sched_extend_luids ();
9067   sched_init_insn_luid (insn);
9068   sched_extend_target ();
9069   sched_deps_init (false);
9070   extend_h_i_d ();
9071   init_h_i_d (insn);
9072 
9073   if (adding_bb_to_current_region_p)
9074     {
9075       sd_init_insn (insn);
9076 
9077       /* Extend dependency caches by one element.  */
9078       extend_dependency_caches (1, false);
9079     }
9080   if (sched_pressure != SCHED_PRESSURE_NONE)
9081     init_insn_reg_pressure_info (insn);
9082 }
9083 
9084 /* Init data for the new basic block BB which comes after AFTER.  */
9085 static void
9086 haifa_init_only_bb (basic_block bb, basic_block after)
9087 {
9088   gcc_assert (bb != NULL);
9089 
9090   sched_init_bbs ();
9091 
9092   if (common_sched_info->add_block)
9093     /* This changes only data structures of the front-end.  */
9094     common_sched_info->add_block (bb, after);
9095 }
9096 
9097 /* A generic version of sched_split_block ().  */
9098 basic_block
9099 sched_split_block_1 (basic_block first_bb, rtx after)
9100 {
9101   edge e;
9102 
9103   e = split_block (first_bb, after);
9104   gcc_assert (e->src == first_bb);
9105 
9106   /* sched_split_block emits note if *check == BB_END.  Probably it
9107      is better to rip that note off.  */
9108 
9109   return e->dest;
9110 }
9111 
9112 /* A generic version of sched_create_empty_bb ().  */
9113 basic_block
9114 sched_create_empty_bb_1 (basic_block after)
9115 {
9116   return create_empty_bb (after);
9117 }
9118 
9119 /* Insert PAT as an INSN into the schedule and update the necessary data
9120    structures to account for it. */
9121 rtx_insn *
9122 sched_emit_insn (rtx pat)
9123 {
9124   rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
9125   haifa_init_insn (insn);
9126 
9127   if (current_sched_info->add_remove_insn)
9128     current_sched_info->add_remove_insn (insn, 0);
9129 
9130   (*current_sched_info->begin_schedule_ready) (insn);
9131   scheduled_insns.safe_push (insn);
9132 
9133   last_scheduled_insn = insn;
9134   return insn;
9135 }
9136 
9137 /* This function returns a candidate satisfying dispatch constraints from
9138    the ready list.  */
9139 
9140 static rtx_insn *
9141 ready_remove_first_dispatch (struct ready_list *ready)
9142 {
9143   int i;
9144   rtx_insn *insn = ready_element (ready, 0);
9145 
9146   if (ready->n_ready == 1
9147       || !INSN_P (insn)
9148       || INSN_CODE (insn) < 0
9149       || !active_insn_p (insn)
9150       || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9151     return ready_remove_first (ready);
9152 
9153   for (i = 1; i < ready->n_ready; i++)
9154     {
9155       insn = ready_element (ready, i);
9156 
9157       if (!INSN_P (insn)
9158 	  || INSN_CODE (insn) < 0
9159 	  || !active_insn_p (insn))
9160 	continue;
9161 
9162       if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
9163 	{
9164 	  /* Return ith element of ready.  */
9165 	  insn = ready_remove (ready, i);
9166 	  return insn;
9167 	}
9168     }
9169 
9170   if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
9171     return ready_remove_first (ready);
9172 
9173   for (i = 1; i < ready->n_ready; i++)
9174     {
9175       insn = ready_element (ready, i);
9176 
9177       if (!INSN_P (insn)
9178 	  || INSN_CODE (insn) < 0
9179 	  || !active_insn_p (insn))
9180 	continue;
9181 
9182       /* Return i-th element of ready.  */
9183       if (targetm.sched.dispatch (insn, IS_CMP))
9184 	return ready_remove (ready, i);
9185     }
9186 
9187   return ready_remove_first (ready);
9188 }
9189 
9190 /* Get number of ready insn in the ready list.  */
9191 
9192 int
9193 number_in_ready (void)
9194 {
9195   return ready.n_ready;
9196 }
9197 
9198 /* Get number of ready's in the ready list.  */
9199 
9200 rtx_insn *
9201 get_ready_element (int i)
9202 {
9203   return ready_element (&ready, i);
9204 }
9205 
9206 #endif /* INSN_SCHEDULING */
9207