1 /* Gimple IR support functions. 2 3 Copyright (C) 2007-2013 Free Software Foundation, Inc. 4 Contributed by Aldy Hernandez <aldyh@redhat.com> 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 3, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with GCC; see the file COPYING3. If not see 20 <http://www.gnu.org/licenses/>. */ 21 22 #include "config.h" 23 #include "system.h" 24 #include "coretypes.h" 25 #include "tm.h" 26 #include "target.h" 27 #include "tree.h" 28 #include "ggc.h" 29 #include "hard-reg-set.h" 30 #include "basic-block.h" 31 #include "gimple.h" 32 #include "diagnostic.h" 33 #include "tree-flow.h" 34 #include "value-prof.h" 35 #include "flags.h" 36 #include "alias.h" 37 #include "demangle.h" 38 #include "langhooks.h" 39 40 /* Global canonical type table. */ 41 static GTY((if_marked ("ggc_marked_p"), param_is (union tree_node))) 42 htab_t gimple_canonical_types; 43 static GTY((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map))) 44 htab_t canonical_type_hash_cache; 45 46 /* All the tuples have their operand vector (if present) at the very bottom 47 of the structure. Therefore, the offset required to find the 48 operands vector the size of the structure minus the size of the 1 49 element tree array at the end (see gimple_ops). */ 50 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \ 51 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0), 52 EXPORTED_CONST size_t gimple_ops_offset_[] = { 53 #include "gsstruct.def" 54 }; 55 #undef DEFGSSTRUCT 56 57 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT), 58 static const size_t gsstruct_code_size[] = { 59 #include "gsstruct.def" 60 }; 61 #undef DEFGSSTRUCT 62 63 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME, 64 const char *const gimple_code_name[] = { 65 #include "gimple.def" 66 }; 67 #undef DEFGSCODE 68 69 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE, 70 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = { 71 #include "gimple.def" 72 }; 73 #undef DEFGSCODE 74 75 /* Gimple stats. */ 76 77 int gimple_alloc_counts[(int) gimple_alloc_kind_all]; 78 int gimple_alloc_sizes[(int) gimple_alloc_kind_all]; 79 80 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */ 81 static const char * const gimple_alloc_kind_names[] = { 82 "assignments", 83 "phi nodes", 84 "conditionals", 85 "everything else" 86 }; 87 88 /* Private API manipulation functions shared only with some 89 other files. */ 90 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *); 91 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *); 92 93 /* Gimple tuple constructors. 94 Note: Any constructor taking a ``gimple_seq'' as a parameter, can 95 be passed a NULL to start with an empty sequence. */ 96 97 /* Set the code for statement G to CODE. */ 98 99 static inline void 100 gimple_set_code (gimple g, enum gimple_code code) 101 { 102 g->gsbase.code = code; 103 } 104 105 /* Return the number of bytes needed to hold a GIMPLE statement with 106 code CODE. */ 107 108 static inline size_t 109 gimple_size (enum gimple_code code) 110 { 111 return gsstruct_code_size[gss_for_code (code)]; 112 } 113 114 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS 115 operands. */ 116 117 gimple 118 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL) 119 { 120 size_t size; 121 gimple stmt; 122 123 size = gimple_size (code); 124 if (num_ops > 0) 125 size += sizeof (tree) * (num_ops - 1); 126 127 if (GATHER_STATISTICS) 128 { 129 enum gimple_alloc_kind kind = gimple_alloc_kind (code); 130 gimple_alloc_counts[(int) kind]++; 131 gimple_alloc_sizes[(int) kind] += size; 132 } 133 134 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT); 135 gimple_set_code (stmt, code); 136 gimple_set_num_ops (stmt, num_ops); 137 138 /* Do not call gimple_set_modified here as it has other side 139 effects and this tuple is still not completely built. */ 140 stmt->gsbase.modified = 1; 141 gimple_init_singleton (stmt); 142 143 return stmt; 144 } 145 146 /* Set SUBCODE to be the code of the expression computed by statement G. */ 147 148 static inline void 149 gimple_set_subcode (gimple g, unsigned subcode) 150 { 151 /* We only have 16 bits for the RHS code. Assert that we are not 152 overflowing it. */ 153 gcc_assert (subcode < (1 << 16)); 154 g->gsbase.subcode = subcode; 155 } 156 157 158 159 /* Build a tuple with operands. CODE is the statement to build (which 160 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code 161 for the new tuple. NUM_OPS is the number of operands to allocate. */ 162 163 #define gimple_build_with_ops(c, s, n) \ 164 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO) 165 166 static gimple 167 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode, 168 unsigned num_ops MEM_STAT_DECL) 169 { 170 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT); 171 gimple_set_subcode (s, subcode); 172 173 return s; 174 } 175 176 177 /* Build a GIMPLE_RETURN statement returning RETVAL. */ 178 179 gimple 180 gimple_build_return (tree retval) 181 { 182 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1); 183 if (retval) 184 gimple_return_set_retval (s, retval); 185 return s; 186 } 187 188 /* Reset alias information on call S. */ 189 190 void 191 gimple_call_reset_alias_info (gimple s) 192 { 193 if (gimple_call_flags (s) & ECF_CONST) 194 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution)); 195 else 196 pt_solution_reset (gimple_call_use_set (s)); 197 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS)) 198 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution)); 199 else 200 pt_solution_reset (gimple_call_clobber_set (s)); 201 } 202 203 /* Helper for gimple_build_call, gimple_build_call_valist, 204 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic 205 components of a GIMPLE_CALL statement to function FN with NARGS 206 arguments. */ 207 208 static inline gimple 209 gimple_build_call_1 (tree fn, unsigned nargs) 210 { 211 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3); 212 if (TREE_CODE (fn) == FUNCTION_DECL) 213 fn = build_fold_addr_expr (fn); 214 gimple_set_op (s, 1, fn); 215 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn))); 216 gimple_call_reset_alias_info (s); 217 return s; 218 } 219 220 221 /* Build a GIMPLE_CALL statement to function FN with the arguments 222 specified in vector ARGS. */ 223 224 gimple 225 gimple_build_call_vec (tree fn, vec<tree> args) 226 { 227 unsigned i; 228 unsigned nargs = args.length (); 229 gimple call = gimple_build_call_1 (fn, nargs); 230 231 for (i = 0; i < nargs; i++) 232 gimple_call_set_arg (call, i, args[i]); 233 234 return call; 235 } 236 237 238 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of 239 arguments. The ... are the arguments. */ 240 241 gimple 242 gimple_build_call (tree fn, unsigned nargs, ...) 243 { 244 va_list ap; 245 gimple call; 246 unsigned i; 247 248 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn)); 249 250 call = gimple_build_call_1 (fn, nargs); 251 252 va_start (ap, nargs); 253 for (i = 0; i < nargs; i++) 254 gimple_call_set_arg (call, i, va_arg (ap, tree)); 255 va_end (ap); 256 257 return call; 258 } 259 260 261 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of 262 arguments. AP contains the arguments. */ 263 264 gimple 265 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap) 266 { 267 gimple call; 268 unsigned i; 269 270 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn)); 271 272 call = gimple_build_call_1 (fn, nargs); 273 274 for (i = 0; i < nargs; i++) 275 gimple_call_set_arg (call, i, va_arg (ap, tree)); 276 277 return call; 278 } 279 280 281 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec. 282 Build the basic components of a GIMPLE_CALL statement to internal 283 function FN with NARGS arguments. */ 284 285 static inline gimple 286 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs) 287 { 288 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3); 289 s->gsbase.subcode |= GF_CALL_INTERNAL; 290 gimple_call_set_internal_fn (s, fn); 291 gimple_call_reset_alias_info (s); 292 return s; 293 } 294 295 296 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is 297 the number of arguments. The ... are the arguments. */ 298 299 gimple 300 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...) 301 { 302 va_list ap; 303 gimple call; 304 unsigned i; 305 306 call = gimple_build_call_internal_1 (fn, nargs); 307 va_start (ap, nargs); 308 for (i = 0; i < nargs; i++) 309 gimple_call_set_arg (call, i, va_arg (ap, tree)); 310 va_end (ap); 311 312 return call; 313 } 314 315 316 /* Build a GIMPLE_CALL statement to internal function FN with the arguments 317 specified in vector ARGS. */ 318 319 gimple 320 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args) 321 { 322 unsigned i, nargs; 323 gimple call; 324 325 nargs = args.length (); 326 call = gimple_build_call_internal_1 (fn, nargs); 327 for (i = 0; i < nargs; i++) 328 gimple_call_set_arg (call, i, args[i]); 329 330 return call; 331 } 332 333 334 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is 335 assumed to be in GIMPLE form already. Minimal checking is done of 336 this fact. */ 337 338 gimple 339 gimple_build_call_from_tree (tree t) 340 { 341 unsigned i, nargs; 342 gimple call; 343 tree fndecl = get_callee_fndecl (t); 344 345 gcc_assert (TREE_CODE (t) == CALL_EXPR); 346 347 nargs = call_expr_nargs (t); 348 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs); 349 350 for (i = 0; i < nargs; i++) 351 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i)); 352 353 gimple_set_block (call, TREE_BLOCK (t)); 354 355 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */ 356 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t)); 357 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t)); 358 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t)); 359 if (fndecl 360 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 361 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA 362 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN)) 363 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t)); 364 else 365 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t)); 366 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t)); 367 gimple_call_set_nothrow (call, TREE_NOTHROW (t)); 368 gimple_set_no_warning (call, TREE_NO_WARNING (t)); 369 370 return call; 371 } 372 373 374 /* Extract the operands and code for expression EXPR into *SUBCODE_P, 375 *OP1_P, *OP2_P and *OP3_P respectively. */ 376 377 void 378 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p, 379 tree *op2_p, tree *op3_p) 380 { 381 enum gimple_rhs_class grhs_class; 382 383 *subcode_p = TREE_CODE (expr); 384 grhs_class = get_gimple_rhs_class (*subcode_p); 385 386 if (grhs_class == GIMPLE_TERNARY_RHS) 387 { 388 *op1_p = TREE_OPERAND (expr, 0); 389 *op2_p = TREE_OPERAND (expr, 1); 390 *op3_p = TREE_OPERAND (expr, 2); 391 } 392 else if (grhs_class == GIMPLE_BINARY_RHS) 393 { 394 *op1_p = TREE_OPERAND (expr, 0); 395 *op2_p = TREE_OPERAND (expr, 1); 396 *op3_p = NULL_TREE; 397 } 398 else if (grhs_class == GIMPLE_UNARY_RHS) 399 { 400 *op1_p = TREE_OPERAND (expr, 0); 401 *op2_p = NULL_TREE; 402 *op3_p = NULL_TREE; 403 } 404 else if (grhs_class == GIMPLE_SINGLE_RHS) 405 { 406 *op1_p = expr; 407 *op2_p = NULL_TREE; 408 *op3_p = NULL_TREE; 409 } 410 else 411 gcc_unreachable (); 412 } 413 414 415 /* Build a GIMPLE_ASSIGN statement. 416 417 LHS of the assignment. 418 RHS of the assignment which can be unary or binary. */ 419 420 gimple 421 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL) 422 { 423 enum tree_code subcode; 424 tree op1, op2, op3; 425 426 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3); 427 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, op3 428 PASS_MEM_STAT); 429 } 430 431 432 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands 433 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class 434 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */ 435 436 gimple 437 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1, 438 tree op2, tree op3 MEM_STAT_DECL) 439 { 440 unsigned num_ops; 441 gimple p; 442 443 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the 444 code). */ 445 num_ops = get_gimple_rhs_num_ops (subcode) + 1; 446 447 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops 448 PASS_MEM_STAT); 449 gimple_assign_set_lhs (p, lhs); 450 gimple_assign_set_rhs1 (p, op1); 451 if (op2) 452 { 453 gcc_assert (num_ops > 2); 454 gimple_assign_set_rhs2 (p, op2); 455 } 456 457 if (op3) 458 { 459 gcc_assert (num_ops > 3); 460 gimple_assign_set_rhs3 (p, op3); 461 } 462 463 return p; 464 } 465 466 gimple 467 gimple_build_assign_with_ops (enum tree_code subcode, tree lhs, tree op1, 468 tree op2 MEM_STAT_DECL) 469 { 470 return gimple_build_assign_with_ops (subcode, lhs, op1, op2, NULL_TREE 471 PASS_MEM_STAT); 472 } 473 474 475 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P. 476 477 DST/SRC are the destination and source respectively. You can pass 478 ungimplified trees in DST or SRC, in which case they will be 479 converted to a gimple operand if necessary. 480 481 This function returns the newly created GIMPLE_ASSIGN tuple. */ 482 483 gimple 484 gimplify_assign (tree dst, tree src, gimple_seq *seq_p) 485 { 486 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src); 487 gimplify_and_add (t, seq_p); 488 ggc_free (t); 489 return gimple_seq_last_stmt (*seq_p); 490 } 491 492 493 /* Build a GIMPLE_COND statement. 494 495 PRED is the condition used to compare LHS and the RHS. 496 T_LABEL is the label to jump to if the condition is true. 497 F_LABEL is the label to jump to otherwise. */ 498 499 gimple 500 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs, 501 tree t_label, tree f_label) 502 { 503 gimple p; 504 505 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison); 506 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4); 507 gimple_cond_set_lhs (p, lhs); 508 gimple_cond_set_rhs (p, rhs); 509 gimple_cond_set_true_label (p, t_label); 510 gimple_cond_set_false_label (p, f_label); 511 return p; 512 } 513 514 515 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */ 516 517 void 518 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p, 519 tree *lhs_p, tree *rhs_p) 520 { 521 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison 522 || TREE_CODE (cond) == TRUTH_NOT_EXPR 523 || is_gimple_min_invariant (cond) 524 || SSA_VAR_P (cond)); 525 526 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p); 527 528 /* Canonicalize conditionals of the form 'if (!VAL)'. */ 529 if (*code_p == TRUTH_NOT_EXPR) 530 { 531 *code_p = EQ_EXPR; 532 gcc_assert (*lhs_p && *rhs_p == NULL_TREE); 533 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p)); 534 } 535 /* Canonicalize conditionals of the form 'if (VAL)' */ 536 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison) 537 { 538 *code_p = NE_EXPR; 539 gcc_assert (*lhs_p && *rhs_p == NULL_TREE); 540 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p)); 541 } 542 } 543 544 545 /* Build a GIMPLE_COND statement from the conditional expression tree 546 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */ 547 548 gimple 549 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label) 550 { 551 enum tree_code code; 552 tree lhs, rhs; 553 554 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); 555 return gimple_build_cond (code, lhs, rhs, t_label, f_label); 556 } 557 558 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable 559 boolean expression tree COND. */ 560 561 void 562 gimple_cond_set_condition_from_tree (gimple stmt, tree cond) 563 { 564 enum tree_code code; 565 tree lhs, rhs; 566 567 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs); 568 gimple_cond_set_condition (stmt, code, lhs, rhs); 569 } 570 571 /* Build a GIMPLE_LABEL statement for LABEL. */ 572 573 gimple 574 gimple_build_label (tree label) 575 { 576 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1); 577 gimple_label_set_label (p, label); 578 return p; 579 } 580 581 /* Build a GIMPLE_GOTO statement to label DEST. */ 582 583 gimple 584 gimple_build_goto (tree dest) 585 { 586 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1); 587 gimple_goto_set_dest (p, dest); 588 return p; 589 } 590 591 592 /* Build a GIMPLE_NOP statement. */ 593 594 gimple 595 gimple_build_nop (void) 596 { 597 return gimple_alloc (GIMPLE_NOP, 0); 598 } 599 600 601 /* Build a GIMPLE_BIND statement. 602 VARS are the variables in BODY. 603 BLOCK is the containing block. */ 604 605 gimple 606 gimple_build_bind (tree vars, gimple_seq body, tree block) 607 { 608 gimple p = gimple_alloc (GIMPLE_BIND, 0); 609 gimple_bind_set_vars (p, vars); 610 if (body) 611 gimple_bind_set_body (p, body); 612 if (block) 613 gimple_bind_set_block (p, block); 614 return p; 615 } 616 617 /* Helper function to set the simple fields of a asm stmt. 618 619 STRING is a pointer to a string that is the asm blocks assembly code. 620 NINPUT is the number of register inputs. 621 NOUTPUT is the number of register outputs. 622 NCLOBBERS is the number of clobbered registers. 623 */ 624 625 static inline gimple 626 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs, 627 unsigned nclobbers, unsigned nlabels) 628 { 629 gimple p; 630 int size = strlen (string); 631 632 /* ASMs with labels cannot have outputs. This should have been 633 enforced by the front end. */ 634 gcc_assert (nlabels == 0 || noutputs == 0); 635 636 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK, 637 ninputs + noutputs + nclobbers + nlabels); 638 639 p->gimple_asm.ni = ninputs; 640 p->gimple_asm.no = noutputs; 641 p->gimple_asm.nc = nclobbers; 642 p->gimple_asm.nl = nlabels; 643 p->gimple_asm.string = ggc_alloc_string (string, size); 644 645 if (GATHER_STATISTICS) 646 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size; 647 648 return p; 649 } 650 651 /* Build a GIMPLE_ASM statement. 652 653 STRING is the assembly code. 654 NINPUT is the number of register inputs. 655 NOUTPUT is the number of register outputs. 656 NCLOBBERS is the number of clobbered registers. 657 INPUTS is a vector of the input register parameters. 658 OUTPUTS is a vector of the output register parameters. 659 CLOBBERS is a vector of the clobbered register parameters. 660 LABELS is a vector of destination labels. */ 661 662 gimple 663 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs, 664 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers, 665 vec<tree, va_gc> *labels) 666 { 667 gimple p; 668 unsigned i; 669 670 p = gimple_build_asm_1 (string, 671 vec_safe_length (inputs), 672 vec_safe_length (outputs), 673 vec_safe_length (clobbers), 674 vec_safe_length (labels)); 675 676 for (i = 0; i < vec_safe_length (inputs); i++) 677 gimple_asm_set_input_op (p, i, (*inputs)[i]); 678 679 for (i = 0; i < vec_safe_length (outputs); i++) 680 gimple_asm_set_output_op (p, i, (*outputs)[i]); 681 682 for (i = 0; i < vec_safe_length (clobbers); i++) 683 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]); 684 685 for (i = 0; i < vec_safe_length (labels); i++) 686 gimple_asm_set_label_op (p, i, (*labels)[i]); 687 688 return p; 689 } 690 691 /* Build a GIMPLE_CATCH statement. 692 693 TYPES are the catch types. 694 HANDLER is the exception handler. */ 695 696 gimple 697 gimple_build_catch (tree types, gimple_seq handler) 698 { 699 gimple p = gimple_alloc (GIMPLE_CATCH, 0); 700 gimple_catch_set_types (p, types); 701 if (handler) 702 gimple_catch_set_handler (p, handler); 703 704 return p; 705 } 706 707 /* Build a GIMPLE_EH_FILTER statement. 708 709 TYPES are the filter's types. 710 FAILURE is the filter's failure action. */ 711 712 gimple 713 gimple_build_eh_filter (tree types, gimple_seq failure) 714 { 715 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0); 716 gimple_eh_filter_set_types (p, types); 717 if (failure) 718 gimple_eh_filter_set_failure (p, failure); 719 720 return p; 721 } 722 723 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */ 724 725 gimple 726 gimple_build_eh_must_not_throw (tree decl) 727 { 728 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0); 729 730 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL); 731 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN); 732 gimple_eh_must_not_throw_set_fndecl (p, decl); 733 734 return p; 735 } 736 737 /* Build a GIMPLE_EH_ELSE statement. */ 738 739 gimple 740 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body) 741 { 742 gimple p = gimple_alloc (GIMPLE_EH_ELSE, 0); 743 gimple_eh_else_set_n_body (p, n_body); 744 gimple_eh_else_set_e_body (p, e_body); 745 return p; 746 } 747 748 /* Build a GIMPLE_TRY statement. 749 750 EVAL is the expression to evaluate. 751 CLEANUP is the cleanup expression. 752 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on 753 whether this is a try/catch or a try/finally respectively. */ 754 755 gimple 756 gimple_build_try (gimple_seq eval, gimple_seq cleanup, 757 enum gimple_try_flags kind) 758 { 759 gimple p; 760 761 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY); 762 p = gimple_alloc (GIMPLE_TRY, 0); 763 gimple_set_subcode (p, kind); 764 if (eval) 765 gimple_try_set_eval (p, eval); 766 if (cleanup) 767 gimple_try_set_cleanup (p, cleanup); 768 769 return p; 770 } 771 772 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement. 773 774 CLEANUP is the cleanup expression. */ 775 776 gimple 777 gimple_build_wce (gimple_seq cleanup) 778 { 779 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0); 780 if (cleanup) 781 gimple_wce_set_cleanup (p, cleanup); 782 783 return p; 784 } 785 786 787 /* Build a GIMPLE_RESX statement. */ 788 789 gimple 790 gimple_build_resx (int region) 791 { 792 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0); 793 p->gimple_eh_ctrl.region = region; 794 return p; 795 } 796 797 798 /* The helper for constructing a gimple switch statement. 799 INDEX is the switch's index. 800 NLABELS is the number of labels in the switch excluding the default. 801 DEFAULT_LABEL is the default label for the switch statement. */ 802 803 gimple 804 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label) 805 { 806 /* nlabels + 1 default label + 1 index. */ 807 gcc_checking_assert (default_label); 808 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK, 809 1 + 1 + nlabels); 810 gimple_switch_set_index (p, index); 811 gimple_switch_set_default_label (p, default_label); 812 return p; 813 } 814 815 /* Build a GIMPLE_SWITCH statement. 816 817 INDEX is the switch's index. 818 DEFAULT_LABEL is the default label 819 ARGS is a vector of labels excluding the default. */ 820 821 gimple 822 gimple_build_switch (tree index, tree default_label, vec<tree> args) 823 { 824 unsigned i, nlabels = args.length (); 825 826 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label); 827 828 /* Copy the labels from the vector to the switch statement. */ 829 for (i = 0; i < nlabels; i++) 830 gimple_switch_set_label (p, i + 1, args[i]); 831 832 return p; 833 } 834 835 /* Build a GIMPLE_EH_DISPATCH statement. */ 836 837 gimple 838 gimple_build_eh_dispatch (int region) 839 { 840 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0); 841 p->gimple_eh_ctrl.region = region; 842 return p; 843 } 844 845 /* Build a new GIMPLE_DEBUG_BIND statement. 846 847 VAR is bound to VALUE; block and location are taken from STMT. */ 848 849 gimple 850 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL) 851 { 852 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG, 853 (unsigned)GIMPLE_DEBUG_BIND, 2 854 PASS_MEM_STAT); 855 856 gimple_debug_bind_set_var (p, var); 857 gimple_debug_bind_set_value (p, value); 858 if (stmt) 859 gimple_set_location (p, gimple_location (stmt)); 860 861 return p; 862 } 863 864 865 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement. 866 867 VAR is bound to VALUE; block and location are taken from STMT. */ 868 869 gimple 870 gimple_build_debug_source_bind_stat (tree var, tree value, 871 gimple stmt MEM_STAT_DECL) 872 { 873 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG, 874 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2 875 PASS_MEM_STAT); 876 877 gimple_debug_source_bind_set_var (p, var); 878 gimple_debug_source_bind_set_value (p, value); 879 if (stmt) 880 gimple_set_location (p, gimple_location (stmt)); 881 882 return p; 883 } 884 885 886 /* Build a GIMPLE_OMP_CRITICAL statement. 887 888 BODY is the sequence of statements for which only one thread can execute. 889 NAME is optional identifier for this critical block. */ 890 891 gimple 892 gimple_build_omp_critical (gimple_seq body, tree name) 893 { 894 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0); 895 gimple_omp_critical_set_name (p, name); 896 if (body) 897 gimple_omp_set_body (p, body); 898 899 return p; 900 } 901 902 /* Build a GIMPLE_OMP_FOR statement. 903 904 BODY is sequence of statements inside the for loop. 905 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate, 906 lastprivate, reductions, ordered, schedule, and nowait. 907 COLLAPSE is the collapse count. 908 PRE_BODY is the sequence of statements that are loop invariant. */ 909 910 gimple 911 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse, 912 gimple_seq pre_body) 913 { 914 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0); 915 if (body) 916 gimple_omp_set_body (p, body); 917 gimple_omp_for_set_clauses (p, clauses); 918 p->gimple_omp_for.collapse = collapse; 919 p->gimple_omp_for.iter 920 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse); 921 if (pre_body) 922 gimple_omp_for_set_pre_body (p, pre_body); 923 924 return p; 925 } 926 927 928 /* Build a GIMPLE_OMP_PARALLEL statement. 929 930 BODY is sequence of statements which are executed in parallel. 931 CLAUSES, are the OMP parallel construct's clauses. 932 CHILD_FN is the function created for the parallel threads to execute. 933 DATA_ARG are the shared data argument(s). */ 934 935 gimple 936 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, 937 tree data_arg) 938 { 939 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0); 940 if (body) 941 gimple_omp_set_body (p, body); 942 gimple_omp_parallel_set_clauses (p, clauses); 943 gimple_omp_parallel_set_child_fn (p, child_fn); 944 gimple_omp_parallel_set_data_arg (p, data_arg); 945 946 return p; 947 } 948 949 950 /* Build a GIMPLE_OMP_TASK statement. 951 952 BODY is sequence of statements which are executed by the explicit task. 953 CLAUSES, are the OMP parallel construct's clauses. 954 CHILD_FN is the function created for the parallel threads to execute. 955 DATA_ARG are the shared data argument(s). 956 COPY_FN is the optional function for firstprivate initialization. 957 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */ 958 959 gimple 960 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn, 961 tree data_arg, tree copy_fn, tree arg_size, 962 tree arg_align) 963 { 964 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0); 965 if (body) 966 gimple_omp_set_body (p, body); 967 gimple_omp_task_set_clauses (p, clauses); 968 gimple_omp_task_set_child_fn (p, child_fn); 969 gimple_omp_task_set_data_arg (p, data_arg); 970 gimple_omp_task_set_copy_fn (p, copy_fn); 971 gimple_omp_task_set_arg_size (p, arg_size); 972 gimple_omp_task_set_arg_align (p, arg_align); 973 974 return p; 975 } 976 977 978 /* Build a GIMPLE_OMP_SECTION statement for a sections statement. 979 980 BODY is the sequence of statements in the section. */ 981 982 gimple 983 gimple_build_omp_section (gimple_seq body) 984 { 985 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0); 986 if (body) 987 gimple_omp_set_body (p, body); 988 989 return p; 990 } 991 992 993 /* Build a GIMPLE_OMP_MASTER statement. 994 995 BODY is the sequence of statements to be executed by just the master. */ 996 997 gimple 998 gimple_build_omp_master (gimple_seq body) 999 { 1000 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0); 1001 if (body) 1002 gimple_omp_set_body (p, body); 1003 1004 return p; 1005 } 1006 1007 1008 /* Build a GIMPLE_OMP_CONTINUE statement. 1009 1010 CONTROL_DEF is the definition of the control variable. 1011 CONTROL_USE is the use of the control variable. */ 1012 1013 gimple 1014 gimple_build_omp_continue (tree control_def, tree control_use) 1015 { 1016 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0); 1017 gimple_omp_continue_set_control_def (p, control_def); 1018 gimple_omp_continue_set_control_use (p, control_use); 1019 return p; 1020 } 1021 1022 /* Build a GIMPLE_OMP_ORDERED statement. 1023 1024 BODY is the sequence of statements inside a loop that will executed in 1025 sequence. */ 1026 1027 gimple 1028 gimple_build_omp_ordered (gimple_seq body) 1029 { 1030 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0); 1031 if (body) 1032 gimple_omp_set_body (p, body); 1033 1034 return p; 1035 } 1036 1037 1038 /* Build a GIMPLE_OMP_RETURN statement. 1039 WAIT_P is true if this is a non-waiting return. */ 1040 1041 gimple 1042 gimple_build_omp_return (bool wait_p) 1043 { 1044 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0); 1045 if (wait_p) 1046 gimple_omp_return_set_nowait (p); 1047 1048 return p; 1049 } 1050 1051 1052 /* Build a GIMPLE_OMP_SECTIONS statement. 1053 1054 BODY is a sequence of section statements. 1055 CLAUSES are any of the OMP sections contsruct's clauses: private, 1056 firstprivate, lastprivate, reduction, and nowait. */ 1057 1058 gimple 1059 gimple_build_omp_sections (gimple_seq body, tree clauses) 1060 { 1061 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0); 1062 if (body) 1063 gimple_omp_set_body (p, body); 1064 gimple_omp_sections_set_clauses (p, clauses); 1065 1066 return p; 1067 } 1068 1069 1070 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */ 1071 1072 gimple 1073 gimple_build_omp_sections_switch (void) 1074 { 1075 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0); 1076 } 1077 1078 1079 /* Build a GIMPLE_OMP_SINGLE statement. 1080 1081 BODY is the sequence of statements that will be executed once. 1082 CLAUSES are any of the OMP single construct's clauses: private, firstprivate, 1083 copyprivate, nowait. */ 1084 1085 gimple 1086 gimple_build_omp_single (gimple_seq body, tree clauses) 1087 { 1088 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0); 1089 if (body) 1090 gimple_omp_set_body (p, body); 1091 gimple_omp_single_set_clauses (p, clauses); 1092 1093 return p; 1094 } 1095 1096 1097 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */ 1098 1099 gimple 1100 gimple_build_omp_atomic_load (tree lhs, tree rhs) 1101 { 1102 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0); 1103 gimple_omp_atomic_load_set_lhs (p, lhs); 1104 gimple_omp_atomic_load_set_rhs (p, rhs); 1105 return p; 1106 } 1107 1108 /* Build a GIMPLE_OMP_ATOMIC_STORE statement. 1109 1110 VAL is the value we are storing. */ 1111 1112 gimple 1113 gimple_build_omp_atomic_store (tree val) 1114 { 1115 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0); 1116 gimple_omp_atomic_store_set_val (p, val); 1117 return p; 1118 } 1119 1120 /* Build a GIMPLE_TRANSACTION statement. */ 1121 1122 gimple 1123 gimple_build_transaction (gimple_seq body, tree label) 1124 { 1125 gimple p = gimple_alloc (GIMPLE_TRANSACTION, 0); 1126 gimple_transaction_set_body (p, body); 1127 gimple_transaction_set_label (p, label); 1128 return p; 1129 } 1130 1131 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from 1132 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */ 1133 1134 gimple 1135 gimple_build_predict (enum br_predictor predictor, enum prediction outcome) 1136 { 1137 gimple p = gimple_alloc (GIMPLE_PREDICT, 0); 1138 /* Ensure all the predictors fit into the lower bits of the subcode. */ 1139 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN); 1140 gimple_predict_set_predictor (p, predictor); 1141 gimple_predict_set_outcome (p, outcome); 1142 return p; 1143 } 1144 1145 #if defined ENABLE_GIMPLE_CHECKING 1146 /* Complain of a gimple type mismatch and die. */ 1147 1148 void 1149 gimple_check_failed (const_gimple gs, const char *file, int line, 1150 const char *function, enum gimple_code code, 1151 enum tree_code subcode) 1152 { 1153 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d", 1154 gimple_code_name[code], 1155 tree_code_name[subcode], 1156 gimple_code_name[gimple_code (gs)], 1157 gs->gsbase.subcode > 0 1158 ? tree_code_name[gs->gsbase.subcode] 1159 : "", 1160 function, trim_filename (file), line); 1161 } 1162 #endif /* ENABLE_GIMPLE_CHECKING */ 1163 1164 1165 /* Link gimple statement GS to the end of the sequence *SEQ_P. If 1166 *SEQ_P is NULL, a new sequence is allocated. */ 1167 1168 void 1169 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs) 1170 { 1171 gimple_stmt_iterator si; 1172 if (gs == NULL) 1173 return; 1174 1175 si = gsi_last (*seq_p); 1176 gsi_insert_after (&si, gs, GSI_NEW_STMT); 1177 } 1178 1179 1180 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is 1181 NULL, a new sequence is allocated. */ 1182 1183 void 1184 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src) 1185 { 1186 gimple_stmt_iterator si; 1187 if (src == NULL) 1188 return; 1189 1190 si = gsi_last (*dst_p); 1191 gsi_insert_seq_after (&si, src, GSI_NEW_STMT); 1192 } 1193 1194 1195 /* Helper function of empty_body_p. Return true if STMT is an empty 1196 statement. */ 1197 1198 static bool 1199 empty_stmt_p (gimple stmt) 1200 { 1201 if (gimple_code (stmt) == GIMPLE_NOP) 1202 return true; 1203 if (gimple_code (stmt) == GIMPLE_BIND) 1204 return empty_body_p (gimple_bind_body (stmt)); 1205 return false; 1206 } 1207 1208 1209 /* Return true if BODY contains nothing but empty statements. */ 1210 1211 bool 1212 empty_body_p (gimple_seq body) 1213 { 1214 gimple_stmt_iterator i; 1215 1216 if (gimple_seq_empty_p (body)) 1217 return true; 1218 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i)) 1219 if (!empty_stmt_p (gsi_stmt (i)) 1220 && !is_gimple_debug (gsi_stmt (i))) 1221 return false; 1222 1223 return true; 1224 } 1225 1226 1227 /* Perform a deep copy of sequence SRC and return the result. */ 1228 1229 gimple_seq 1230 gimple_seq_copy (gimple_seq src) 1231 { 1232 gimple_stmt_iterator gsi; 1233 gimple_seq new_seq = NULL; 1234 gimple stmt; 1235 1236 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi)) 1237 { 1238 stmt = gimple_copy (gsi_stmt (gsi)); 1239 gimple_seq_add_stmt (&new_seq, stmt); 1240 } 1241 1242 return new_seq; 1243 } 1244 1245 1246 /* Walk all the statements in the sequence *PSEQ calling walk_gimple_stmt 1247 on each one. WI is as in walk_gimple_stmt. 1248 1249 If walk_gimple_stmt returns non-NULL, the walk is stopped, and the 1250 value is stored in WI->CALLBACK_RESULT. Also, the statement that 1251 produced the value is returned if this statement has not been 1252 removed by a callback (wi->removed_stmt). If the statement has 1253 been removed, NULL is returned. 1254 1255 Otherwise, all the statements are walked and NULL returned. */ 1256 1257 gimple 1258 walk_gimple_seq_mod (gimple_seq *pseq, walk_stmt_fn callback_stmt, 1259 walk_tree_fn callback_op, struct walk_stmt_info *wi) 1260 { 1261 gimple_stmt_iterator gsi; 1262 1263 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi); ) 1264 { 1265 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi); 1266 if (ret) 1267 { 1268 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist 1269 to hold it. */ 1270 gcc_assert (wi); 1271 wi->callback_result = ret; 1272 1273 return wi->removed_stmt ? NULL : gsi_stmt (gsi); 1274 } 1275 1276 if (!wi->removed_stmt) 1277 gsi_next (&gsi); 1278 } 1279 1280 if (wi) 1281 wi->callback_result = NULL_TREE; 1282 1283 return NULL; 1284 } 1285 1286 1287 /* Like walk_gimple_seq_mod, but ensure that the head of SEQ isn't 1288 changed by the callbacks. */ 1289 1290 gimple 1291 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt, 1292 walk_tree_fn callback_op, struct walk_stmt_info *wi) 1293 { 1294 gimple_seq seq2 = seq; 1295 gimple ret = walk_gimple_seq_mod (&seq2, callback_stmt, callback_op, wi); 1296 gcc_assert (seq2 == seq); 1297 return ret; 1298 } 1299 1300 1301 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */ 1302 1303 static tree 1304 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op, 1305 struct walk_stmt_info *wi) 1306 { 1307 tree ret, op; 1308 unsigned noutputs; 1309 const char **oconstraints; 1310 unsigned i, n; 1311 const char *constraint; 1312 bool allows_mem, allows_reg, is_inout; 1313 1314 noutputs = gimple_asm_noutputs (stmt); 1315 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *)); 1316 1317 if (wi) 1318 wi->is_lhs = true; 1319 1320 for (i = 0; i < noutputs; i++) 1321 { 1322 op = gimple_asm_output_op (stmt, i); 1323 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); 1324 oconstraints[i] = constraint; 1325 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg, 1326 &is_inout); 1327 if (wi) 1328 wi->val_only = (allows_reg || !allows_mem); 1329 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); 1330 if (ret) 1331 return ret; 1332 } 1333 1334 n = gimple_asm_ninputs (stmt); 1335 for (i = 0; i < n; i++) 1336 { 1337 op = gimple_asm_input_op (stmt, i); 1338 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op))); 1339 parse_input_constraint (&constraint, 0, 0, noutputs, 0, 1340 oconstraints, &allows_mem, &allows_reg); 1341 if (wi) 1342 { 1343 wi->val_only = (allows_reg || !allows_mem); 1344 /* Although input "m" is not really a LHS, we need a lvalue. */ 1345 wi->is_lhs = !wi->val_only; 1346 } 1347 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); 1348 if (ret) 1349 return ret; 1350 } 1351 1352 if (wi) 1353 { 1354 wi->is_lhs = false; 1355 wi->val_only = true; 1356 } 1357 1358 n = gimple_asm_nlabels (stmt); 1359 for (i = 0; i < n; i++) 1360 { 1361 op = gimple_asm_label_op (stmt, i); 1362 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL); 1363 if (ret) 1364 return ret; 1365 } 1366 1367 return NULL_TREE; 1368 } 1369 1370 1371 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in 1372 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT. 1373 1374 CALLBACK_OP is called on each operand of STMT via walk_tree. 1375 Additional parameters to walk_tree must be stored in WI. For each operand 1376 OP, walk_tree is called as: 1377 1378 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET) 1379 1380 If CALLBACK_OP returns non-NULL for an operand, the remaining 1381 operands are not scanned. 1382 1383 The return value is that returned by the last call to walk_tree, or 1384 NULL_TREE if no CALLBACK_OP is specified. */ 1385 1386 tree 1387 walk_gimple_op (gimple stmt, walk_tree_fn callback_op, 1388 struct walk_stmt_info *wi) 1389 { 1390 struct pointer_set_t *pset = (wi) ? wi->pset : NULL; 1391 unsigned i; 1392 tree ret = NULL_TREE; 1393 1394 switch (gimple_code (stmt)) 1395 { 1396 case GIMPLE_ASSIGN: 1397 /* Walk the RHS operands. If the LHS is of a non-renamable type or 1398 is a register variable, we may use a COMPONENT_REF on the RHS. */ 1399 if (wi) 1400 { 1401 tree lhs = gimple_assign_lhs (stmt); 1402 wi->val_only 1403 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs)) 1404 || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS; 1405 } 1406 1407 for (i = 1; i < gimple_num_ops (stmt); i++) 1408 { 1409 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, 1410 pset); 1411 if (ret) 1412 return ret; 1413 } 1414 1415 /* Walk the LHS. If the RHS is appropriate for a memory, we 1416 may use a COMPONENT_REF on the LHS. */ 1417 if (wi) 1418 { 1419 /* If the RHS is of a non-renamable type or is a register variable, 1420 we may use a COMPONENT_REF on the LHS. */ 1421 tree rhs1 = gimple_assign_rhs1 (stmt); 1422 wi->val_only 1423 = (is_gimple_reg_type (TREE_TYPE (rhs1)) && !is_gimple_reg (rhs1)) 1424 || gimple_assign_rhs_class (stmt) != GIMPLE_SINGLE_RHS; 1425 wi->is_lhs = true; 1426 } 1427 1428 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset); 1429 if (ret) 1430 return ret; 1431 1432 if (wi) 1433 { 1434 wi->val_only = true; 1435 wi->is_lhs = false; 1436 } 1437 break; 1438 1439 case GIMPLE_CALL: 1440 if (wi) 1441 { 1442 wi->is_lhs = false; 1443 wi->val_only = true; 1444 } 1445 1446 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset); 1447 if (ret) 1448 return ret; 1449 1450 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset); 1451 if (ret) 1452 return ret; 1453 1454 for (i = 0; i < gimple_call_num_args (stmt); i++) 1455 { 1456 if (wi) 1457 wi->val_only 1458 = is_gimple_reg_type (TREE_TYPE (gimple_call_arg (stmt, i))); 1459 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi, 1460 pset); 1461 if (ret) 1462 return ret; 1463 } 1464 1465 if (gimple_call_lhs (stmt)) 1466 { 1467 if (wi) 1468 { 1469 wi->is_lhs = true; 1470 wi->val_only 1471 = is_gimple_reg_type (TREE_TYPE (gimple_call_lhs (stmt))); 1472 } 1473 1474 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset); 1475 if (ret) 1476 return ret; 1477 } 1478 1479 if (wi) 1480 { 1481 wi->is_lhs = false; 1482 wi->val_only = true; 1483 } 1484 break; 1485 1486 case GIMPLE_CATCH: 1487 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi, 1488 pset); 1489 if (ret) 1490 return ret; 1491 break; 1492 1493 case GIMPLE_EH_FILTER: 1494 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi, 1495 pset); 1496 if (ret) 1497 return ret; 1498 break; 1499 1500 case GIMPLE_ASM: 1501 ret = walk_gimple_asm (stmt, callback_op, wi); 1502 if (ret) 1503 return ret; 1504 break; 1505 1506 case GIMPLE_OMP_CONTINUE: 1507 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt), 1508 callback_op, wi, pset); 1509 if (ret) 1510 return ret; 1511 1512 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt), 1513 callback_op, wi, pset); 1514 if (ret) 1515 return ret; 1516 break; 1517 1518 case GIMPLE_OMP_CRITICAL: 1519 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi, 1520 pset); 1521 if (ret) 1522 return ret; 1523 break; 1524 1525 case GIMPLE_OMP_FOR: 1526 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi, 1527 pset); 1528 if (ret) 1529 return ret; 1530 for (i = 0; i < gimple_omp_for_collapse (stmt); i++) 1531 { 1532 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op, 1533 wi, pset); 1534 if (ret) 1535 return ret; 1536 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op, 1537 wi, pset); 1538 if (ret) 1539 return ret; 1540 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op, 1541 wi, pset); 1542 if (ret) 1543 return ret; 1544 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op, 1545 wi, pset); 1546 } 1547 if (ret) 1548 return ret; 1549 break; 1550 1551 case GIMPLE_OMP_PARALLEL: 1552 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op, 1553 wi, pset); 1554 if (ret) 1555 return ret; 1556 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op, 1557 wi, pset); 1558 if (ret) 1559 return ret; 1560 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op, 1561 wi, pset); 1562 if (ret) 1563 return ret; 1564 break; 1565 1566 case GIMPLE_OMP_TASK: 1567 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op, 1568 wi, pset); 1569 if (ret) 1570 return ret; 1571 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op, 1572 wi, pset); 1573 if (ret) 1574 return ret; 1575 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op, 1576 wi, pset); 1577 if (ret) 1578 return ret; 1579 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op, 1580 wi, pset); 1581 if (ret) 1582 return ret; 1583 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op, 1584 wi, pset); 1585 if (ret) 1586 return ret; 1587 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op, 1588 wi, pset); 1589 if (ret) 1590 return ret; 1591 break; 1592 1593 case GIMPLE_OMP_SECTIONS: 1594 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op, 1595 wi, pset); 1596 if (ret) 1597 return ret; 1598 1599 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op, 1600 wi, pset); 1601 if (ret) 1602 return ret; 1603 1604 break; 1605 1606 case GIMPLE_OMP_SINGLE: 1607 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi, 1608 pset); 1609 if (ret) 1610 return ret; 1611 break; 1612 1613 case GIMPLE_OMP_ATOMIC_LOAD: 1614 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi, 1615 pset); 1616 if (ret) 1617 return ret; 1618 1619 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi, 1620 pset); 1621 if (ret) 1622 return ret; 1623 break; 1624 1625 case GIMPLE_OMP_ATOMIC_STORE: 1626 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op, 1627 wi, pset); 1628 if (ret) 1629 return ret; 1630 break; 1631 1632 case GIMPLE_TRANSACTION: 1633 ret = walk_tree (gimple_transaction_label_ptr (stmt), callback_op, 1634 wi, pset); 1635 if (ret) 1636 return ret; 1637 break; 1638 1639 /* Tuples that do not have operands. */ 1640 case GIMPLE_NOP: 1641 case GIMPLE_RESX: 1642 case GIMPLE_OMP_RETURN: 1643 case GIMPLE_PREDICT: 1644 break; 1645 1646 default: 1647 { 1648 enum gimple_statement_structure_enum gss; 1649 gss = gimple_statement_structure (stmt); 1650 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS) 1651 for (i = 0; i < gimple_num_ops (stmt); i++) 1652 { 1653 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset); 1654 if (ret) 1655 return ret; 1656 } 1657 } 1658 break; 1659 } 1660 1661 return NULL_TREE; 1662 } 1663 1664 1665 /* Walk the current statement in GSI (optionally using traversal state 1666 stored in WI). If WI is NULL, no state is kept during traversal. 1667 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates 1668 that it has handled all the operands of the statement, its return 1669 value is returned. Otherwise, the return value from CALLBACK_STMT 1670 is discarded and its operands are scanned. 1671 1672 If CALLBACK_STMT is NULL or it didn't handle the operands, 1673 CALLBACK_OP is called on each operand of the statement via 1674 walk_gimple_op. If walk_gimple_op returns non-NULL for any 1675 operand, the remaining operands are not scanned. In this case, the 1676 return value from CALLBACK_OP is returned. 1677 1678 In any other case, NULL_TREE is returned. */ 1679 1680 tree 1681 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, 1682 walk_tree_fn callback_op, struct walk_stmt_info *wi) 1683 { 1684 gimple ret; 1685 tree tree_ret; 1686 gimple stmt = gsi_stmt (*gsi); 1687 1688 if (wi) 1689 { 1690 wi->gsi = *gsi; 1691 wi->removed_stmt = false; 1692 1693 if (wi->want_locations && gimple_has_location (stmt)) 1694 input_location = gimple_location (stmt); 1695 } 1696 1697 ret = NULL; 1698 1699 /* Invoke the statement callback. Return if the callback handled 1700 all of STMT operands by itself. */ 1701 if (callback_stmt) 1702 { 1703 bool handled_ops = false; 1704 tree_ret = callback_stmt (gsi, &handled_ops, wi); 1705 if (handled_ops) 1706 return tree_ret; 1707 1708 /* If CALLBACK_STMT did not handle operands, it should not have 1709 a value to return. */ 1710 gcc_assert (tree_ret == NULL); 1711 1712 if (wi && wi->removed_stmt) 1713 return NULL; 1714 1715 /* Re-read stmt in case the callback changed it. */ 1716 stmt = gsi_stmt (*gsi); 1717 } 1718 1719 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */ 1720 if (callback_op) 1721 { 1722 tree_ret = walk_gimple_op (stmt, callback_op, wi); 1723 if (tree_ret) 1724 return tree_ret; 1725 } 1726 1727 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */ 1728 switch (gimple_code (stmt)) 1729 { 1730 case GIMPLE_BIND: 1731 ret = walk_gimple_seq_mod (gimple_bind_body_ptr (stmt), callback_stmt, 1732 callback_op, wi); 1733 if (ret) 1734 return wi->callback_result; 1735 break; 1736 1737 case GIMPLE_CATCH: 1738 ret = walk_gimple_seq_mod (gimple_catch_handler_ptr (stmt), callback_stmt, 1739 callback_op, wi); 1740 if (ret) 1741 return wi->callback_result; 1742 break; 1743 1744 case GIMPLE_EH_FILTER: 1745 ret = walk_gimple_seq_mod (gimple_eh_filter_failure_ptr (stmt), callback_stmt, 1746 callback_op, wi); 1747 if (ret) 1748 return wi->callback_result; 1749 break; 1750 1751 case GIMPLE_EH_ELSE: 1752 ret = walk_gimple_seq_mod (gimple_eh_else_n_body_ptr (stmt), 1753 callback_stmt, callback_op, wi); 1754 if (ret) 1755 return wi->callback_result; 1756 ret = walk_gimple_seq_mod (gimple_eh_else_e_body_ptr (stmt), 1757 callback_stmt, callback_op, wi); 1758 if (ret) 1759 return wi->callback_result; 1760 break; 1761 1762 case GIMPLE_TRY: 1763 ret = walk_gimple_seq_mod (gimple_try_eval_ptr (stmt), callback_stmt, callback_op, 1764 wi); 1765 if (ret) 1766 return wi->callback_result; 1767 1768 ret = walk_gimple_seq_mod (gimple_try_cleanup_ptr (stmt), callback_stmt, 1769 callback_op, wi); 1770 if (ret) 1771 return wi->callback_result; 1772 break; 1773 1774 case GIMPLE_OMP_FOR: 1775 ret = walk_gimple_seq_mod (gimple_omp_for_pre_body_ptr (stmt), callback_stmt, 1776 callback_op, wi); 1777 if (ret) 1778 return wi->callback_result; 1779 1780 /* FALL THROUGH. */ 1781 case GIMPLE_OMP_CRITICAL: 1782 case GIMPLE_OMP_MASTER: 1783 case GIMPLE_OMP_ORDERED: 1784 case GIMPLE_OMP_SECTION: 1785 case GIMPLE_OMP_PARALLEL: 1786 case GIMPLE_OMP_TASK: 1787 case GIMPLE_OMP_SECTIONS: 1788 case GIMPLE_OMP_SINGLE: 1789 ret = walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), callback_stmt, 1790 callback_op, wi); 1791 if (ret) 1792 return wi->callback_result; 1793 break; 1794 1795 case GIMPLE_WITH_CLEANUP_EXPR: 1796 ret = walk_gimple_seq_mod (gimple_wce_cleanup_ptr (stmt), callback_stmt, 1797 callback_op, wi); 1798 if (ret) 1799 return wi->callback_result; 1800 break; 1801 1802 case GIMPLE_TRANSACTION: 1803 ret = walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt), 1804 callback_stmt, callback_op, wi); 1805 if (ret) 1806 return wi->callback_result; 1807 break; 1808 1809 default: 1810 gcc_assert (!gimple_has_substatements (stmt)); 1811 break; 1812 } 1813 1814 return NULL; 1815 } 1816 1817 1818 /* Set sequence SEQ to be the GIMPLE body for function FN. */ 1819 1820 void 1821 gimple_set_body (tree fndecl, gimple_seq seq) 1822 { 1823 struct function *fn = DECL_STRUCT_FUNCTION (fndecl); 1824 if (fn == NULL) 1825 { 1826 /* If FNDECL still does not have a function structure associated 1827 with it, then it does not make sense for it to receive a 1828 GIMPLE body. */ 1829 gcc_assert (seq == NULL); 1830 } 1831 else 1832 fn->gimple_body = seq; 1833 } 1834 1835 1836 /* Return the body of GIMPLE statements for function FN. After the 1837 CFG pass, the function body doesn't exist anymore because it has 1838 been split up into basic blocks. In this case, it returns 1839 NULL. */ 1840 1841 gimple_seq 1842 gimple_body (tree fndecl) 1843 { 1844 struct function *fn = DECL_STRUCT_FUNCTION (fndecl); 1845 return fn ? fn->gimple_body : NULL; 1846 } 1847 1848 /* Return true when FNDECL has Gimple body either in unlowered 1849 or CFG form. */ 1850 bool 1851 gimple_has_body_p (tree fndecl) 1852 { 1853 struct function *fn = DECL_STRUCT_FUNCTION (fndecl); 1854 return (gimple_body (fndecl) || (fn && fn->cfg)); 1855 } 1856 1857 /* Return true if calls C1 and C2 are known to go to the same function. */ 1858 1859 bool 1860 gimple_call_same_target_p (const_gimple c1, const_gimple c2) 1861 { 1862 if (gimple_call_internal_p (c1)) 1863 return (gimple_call_internal_p (c2) 1864 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)); 1865 else 1866 return (gimple_call_fn (c1) == gimple_call_fn (c2) 1867 || (gimple_call_fndecl (c1) 1868 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2))); 1869 } 1870 1871 /* Detect flags from a GIMPLE_CALL. This is just like 1872 call_expr_flags, but for gimple tuples. */ 1873 1874 int 1875 gimple_call_flags (const_gimple stmt) 1876 { 1877 int flags; 1878 tree decl = gimple_call_fndecl (stmt); 1879 1880 if (decl) 1881 flags = flags_from_decl_or_type (decl); 1882 else if (gimple_call_internal_p (stmt)) 1883 flags = internal_fn_flags (gimple_call_internal_fn (stmt)); 1884 else 1885 flags = flags_from_decl_or_type (gimple_call_fntype (stmt)); 1886 1887 if (stmt->gsbase.subcode & GF_CALL_NOTHROW) 1888 flags |= ECF_NOTHROW; 1889 1890 return flags; 1891 } 1892 1893 /* Return the "fn spec" string for call STMT. */ 1894 1895 static tree 1896 gimple_call_fnspec (const_gimple stmt) 1897 { 1898 tree type, attr; 1899 1900 type = gimple_call_fntype (stmt); 1901 if (!type) 1902 return NULL_TREE; 1903 1904 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type)); 1905 if (!attr) 1906 return NULL_TREE; 1907 1908 return TREE_VALUE (TREE_VALUE (attr)); 1909 } 1910 1911 /* Detects argument flags for argument number ARG on call STMT. */ 1912 1913 int 1914 gimple_call_arg_flags (const_gimple stmt, unsigned arg) 1915 { 1916 tree attr = gimple_call_fnspec (stmt); 1917 1918 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr)) 1919 return 0; 1920 1921 switch (TREE_STRING_POINTER (attr)[1 + arg]) 1922 { 1923 case 'x': 1924 case 'X': 1925 return EAF_UNUSED; 1926 1927 case 'R': 1928 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE; 1929 1930 case 'r': 1931 return EAF_NOCLOBBER | EAF_NOESCAPE; 1932 1933 case 'W': 1934 return EAF_DIRECT | EAF_NOESCAPE; 1935 1936 case 'w': 1937 return EAF_NOESCAPE; 1938 1939 case '.': 1940 default: 1941 return 0; 1942 } 1943 } 1944 1945 /* Detects return flags for the call STMT. */ 1946 1947 int 1948 gimple_call_return_flags (const_gimple stmt) 1949 { 1950 tree attr; 1951 1952 if (gimple_call_flags (stmt) & ECF_MALLOC) 1953 return ERF_NOALIAS; 1954 1955 attr = gimple_call_fnspec (stmt); 1956 if (!attr || TREE_STRING_LENGTH (attr) < 1) 1957 return 0; 1958 1959 switch (TREE_STRING_POINTER (attr)[0]) 1960 { 1961 case '1': 1962 case '2': 1963 case '3': 1964 case '4': 1965 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1'); 1966 1967 case 'm': 1968 return ERF_NOALIAS; 1969 1970 case '.': 1971 default: 1972 return 0; 1973 } 1974 } 1975 1976 1977 /* Return true if GS is a copy assignment. */ 1978 1979 bool 1980 gimple_assign_copy_p (gimple gs) 1981 { 1982 return (gimple_assign_single_p (gs) 1983 && is_gimple_val (gimple_op (gs, 1))); 1984 } 1985 1986 1987 /* Return true if GS is a SSA_NAME copy assignment. */ 1988 1989 bool 1990 gimple_assign_ssa_name_copy_p (gimple gs) 1991 { 1992 return (gimple_assign_single_p (gs) 1993 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME 1994 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME); 1995 } 1996 1997 1998 /* Return true if GS is an assignment with a unary RHS, but the 1999 operator has no effect on the assigned value. The logic is adapted 2000 from STRIP_NOPS. This predicate is intended to be used in tuplifying 2001 instances in which STRIP_NOPS was previously applied to the RHS of 2002 an assignment. 2003 2004 NOTE: In the use cases that led to the creation of this function 2005 and of gimple_assign_single_p, it is typical to test for either 2006 condition and to proceed in the same manner. In each case, the 2007 assigned value is represented by the single RHS operand of the 2008 assignment. I suspect there may be cases where gimple_assign_copy_p, 2009 gimple_assign_single_p, or equivalent logic is used where a similar 2010 treatment of unary NOPs is appropriate. */ 2011 2012 bool 2013 gimple_assign_unary_nop_p (gimple gs) 2014 { 2015 return (is_gimple_assign (gs) 2016 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)) 2017 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR) 2018 && gimple_assign_rhs1 (gs) != error_mark_node 2019 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs))) 2020 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs))))); 2021 } 2022 2023 /* Set BB to be the basic block holding G. */ 2024 2025 void 2026 gimple_set_bb (gimple stmt, basic_block bb) 2027 { 2028 stmt->gsbase.bb = bb; 2029 2030 /* If the statement is a label, add the label to block-to-labels map 2031 so that we can speed up edge creation for GIMPLE_GOTOs. */ 2032 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL) 2033 { 2034 tree t; 2035 int uid; 2036 2037 t = gimple_label_label (stmt); 2038 uid = LABEL_DECL_UID (t); 2039 if (uid == -1) 2040 { 2041 unsigned old_len = vec_safe_length (label_to_block_map); 2042 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++; 2043 if (old_len <= (unsigned) uid) 2044 { 2045 unsigned new_len = 3 * uid / 2 + 1; 2046 2047 vec_safe_grow_cleared (label_to_block_map, new_len); 2048 } 2049 } 2050 2051 (*label_to_block_map)[uid] = bb; 2052 } 2053 } 2054 2055 2056 /* Modify the RHS of the assignment pointed-to by GSI using the 2057 operands in the expression tree EXPR. 2058 2059 NOTE: The statement pointed-to by GSI may be reallocated if it 2060 did not have enough operand slots. 2061 2062 This function is useful to convert an existing tree expression into 2063 the flat representation used for the RHS of a GIMPLE assignment. 2064 It will reallocate memory as needed to expand or shrink the number 2065 of operand slots needed to represent EXPR. 2066 2067 NOTE: If you find yourself building a tree and then calling this 2068 function, you are most certainly doing it the slow way. It is much 2069 better to build a new assignment or to use the function 2070 gimple_assign_set_rhs_with_ops, which does not require an 2071 expression tree to be built. */ 2072 2073 void 2074 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr) 2075 { 2076 enum tree_code subcode; 2077 tree op1, op2, op3; 2078 2079 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3); 2080 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3); 2081 } 2082 2083 2084 /* Set the RHS of assignment statement pointed-to by GSI to CODE with 2085 operands OP1, OP2 and OP3. 2086 2087 NOTE: The statement pointed-to by GSI may be reallocated if it 2088 did not have enough operand slots. */ 2089 2090 void 2091 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code, 2092 tree op1, tree op2, tree op3) 2093 { 2094 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code); 2095 gimple stmt = gsi_stmt (*gsi); 2096 2097 /* If the new CODE needs more operands, allocate a new statement. */ 2098 if (gimple_num_ops (stmt) < new_rhs_ops + 1) 2099 { 2100 tree lhs = gimple_assign_lhs (stmt); 2101 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1); 2102 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt))); 2103 gimple_init_singleton (new_stmt); 2104 gsi_replace (gsi, new_stmt, true); 2105 stmt = new_stmt; 2106 2107 /* The LHS needs to be reset as this also changes the SSA name 2108 on the LHS. */ 2109 gimple_assign_set_lhs (stmt, lhs); 2110 } 2111 2112 gimple_set_num_ops (stmt, new_rhs_ops + 1); 2113 gimple_set_subcode (stmt, code); 2114 gimple_assign_set_rhs1 (stmt, op1); 2115 if (new_rhs_ops > 1) 2116 gimple_assign_set_rhs2 (stmt, op2); 2117 if (new_rhs_ops > 2) 2118 gimple_assign_set_rhs3 (stmt, op3); 2119 } 2120 2121 2122 /* Return the LHS of a statement that performs an assignment, 2123 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE 2124 for a call to a function that returns no value, or for a 2125 statement other than an assignment or a call. */ 2126 2127 tree 2128 gimple_get_lhs (const_gimple stmt) 2129 { 2130 enum gimple_code code = gimple_code (stmt); 2131 2132 if (code == GIMPLE_ASSIGN) 2133 return gimple_assign_lhs (stmt); 2134 else if (code == GIMPLE_CALL) 2135 return gimple_call_lhs (stmt); 2136 else 2137 return NULL_TREE; 2138 } 2139 2140 2141 /* Set the LHS of a statement that performs an assignment, 2142 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */ 2143 2144 void 2145 gimple_set_lhs (gimple stmt, tree lhs) 2146 { 2147 enum gimple_code code = gimple_code (stmt); 2148 2149 if (code == GIMPLE_ASSIGN) 2150 gimple_assign_set_lhs (stmt, lhs); 2151 else if (code == GIMPLE_CALL) 2152 gimple_call_set_lhs (stmt, lhs); 2153 else 2154 gcc_unreachable(); 2155 } 2156 2157 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a 2158 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an 2159 expression with a different value. 2160 2161 This will update any annotations (say debug bind stmts) referring 2162 to the original LHS, so that they use the RHS instead. This is 2163 done even if NLHS and LHS are the same, for it is understood that 2164 the RHS will be modified afterwards, and NLHS will not be assigned 2165 an equivalent value. 2166 2167 Adjusting any non-annotation uses of the LHS, if needed, is a 2168 responsibility of the caller. 2169 2170 The effect of this call should be pretty much the same as that of 2171 inserting a copy of STMT before STMT, and then removing the 2172 original stmt, at which time gsi_remove() would have update 2173 annotations, but using this function saves all the inserting, 2174 copying and removing. */ 2175 2176 void 2177 gimple_replace_lhs (gimple stmt, tree nlhs) 2178 { 2179 if (MAY_HAVE_DEBUG_STMTS) 2180 { 2181 tree lhs = gimple_get_lhs (stmt); 2182 2183 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt); 2184 2185 insert_debug_temp_for_var_def (NULL, lhs); 2186 } 2187 2188 gimple_set_lhs (stmt, nlhs); 2189 } 2190 2191 /* Return a deep copy of statement STMT. All the operands from STMT 2192 are reallocated and copied using unshare_expr. The DEF, USE, VDEF 2193 and VUSE operand arrays are set to empty in the new copy. The new 2194 copy isn't part of any sequence. */ 2195 2196 gimple 2197 gimple_copy (gimple stmt) 2198 { 2199 enum gimple_code code = gimple_code (stmt); 2200 unsigned num_ops = gimple_num_ops (stmt); 2201 gimple copy = gimple_alloc (code, num_ops); 2202 unsigned i; 2203 2204 /* Shallow copy all the fields from STMT. */ 2205 memcpy (copy, stmt, gimple_size (code)); 2206 gimple_init_singleton (copy); 2207 2208 /* If STMT has sub-statements, deep-copy them as well. */ 2209 if (gimple_has_substatements (stmt)) 2210 { 2211 gimple_seq new_seq; 2212 tree t; 2213 2214 switch (gimple_code (stmt)) 2215 { 2216 case GIMPLE_BIND: 2217 new_seq = gimple_seq_copy (gimple_bind_body (stmt)); 2218 gimple_bind_set_body (copy, new_seq); 2219 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt))); 2220 gimple_bind_set_block (copy, gimple_bind_block (stmt)); 2221 break; 2222 2223 case GIMPLE_CATCH: 2224 new_seq = gimple_seq_copy (gimple_catch_handler (stmt)); 2225 gimple_catch_set_handler (copy, new_seq); 2226 t = unshare_expr (gimple_catch_types (stmt)); 2227 gimple_catch_set_types (copy, t); 2228 break; 2229 2230 case GIMPLE_EH_FILTER: 2231 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt)); 2232 gimple_eh_filter_set_failure (copy, new_seq); 2233 t = unshare_expr (gimple_eh_filter_types (stmt)); 2234 gimple_eh_filter_set_types (copy, t); 2235 break; 2236 2237 case GIMPLE_EH_ELSE: 2238 new_seq = gimple_seq_copy (gimple_eh_else_n_body (stmt)); 2239 gimple_eh_else_set_n_body (copy, new_seq); 2240 new_seq = gimple_seq_copy (gimple_eh_else_e_body (stmt)); 2241 gimple_eh_else_set_e_body (copy, new_seq); 2242 break; 2243 2244 case GIMPLE_TRY: 2245 new_seq = gimple_seq_copy (gimple_try_eval (stmt)); 2246 gimple_try_set_eval (copy, new_seq); 2247 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt)); 2248 gimple_try_set_cleanup (copy, new_seq); 2249 break; 2250 2251 case GIMPLE_OMP_FOR: 2252 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt)); 2253 gimple_omp_for_set_pre_body (copy, new_seq); 2254 t = unshare_expr (gimple_omp_for_clauses (stmt)); 2255 gimple_omp_for_set_clauses (copy, t); 2256 copy->gimple_omp_for.iter 2257 = ggc_alloc_vec_gimple_omp_for_iter 2258 (gimple_omp_for_collapse (stmt)); 2259 for (i = 0; i < gimple_omp_for_collapse (stmt); i++) 2260 { 2261 gimple_omp_for_set_cond (copy, i, 2262 gimple_omp_for_cond (stmt, i)); 2263 gimple_omp_for_set_index (copy, i, 2264 gimple_omp_for_index (stmt, i)); 2265 t = unshare_expr (gimple_omp_for_initial (stmt, i)); 2266 gimple_omp_for_set_initial (copy, i, t); 2267 t = unshare_expr (gimple_omp_for_final (stmt, i)); 2268 gimple_omp_for_set_final (copy, i, t); 2269 t = unshare_expr (gimple_omp_for_incr (stmt, i)); 2270 gimple_omp_for_set_incr (copy, i, t); 2271 } 2272 goto copy_omp_body; 2273 2274 case GIMPLE_OMP_PARALLEL: 2275 t = unshare_expr (gimple_omp_parallel_clauses (stmt)); 2276 gimple_omp_parallel_set_clauses (copy, t); 2277 t = unshare_expr (gimple_omp_parallel_child_fn (stmt)); 2278 gimple_omp_parallel_set_child_fn (copy, t); 2279 t = unshare_expr (gimple_omp_parallel_data_arg (stmt)); 2280 gimple_omp_parallel_set_data_arg (copy, t); 2281 goto copy_omp_body; 2282 2283 case GIMPLE_OMP_TASK: 2284 t = unshare_expr (gimple_omp_task_clauses (stmt)); 2285 gimple_omp_task_set_clauses (copy, t); 2286 t = unshare_expr (gimple_omp_task_child_fn (stmt)); 2287 gimple_omp_task_set_child_fn (copy, t); 2288 t = unshare_expr (gimple_omp_task_data_arg (stmt)); 2289 gimple_omp_task_set_data_arg (copy, t); 2290 t = unshare_expr (gimple_omp_task_copy_fn (stmt)); 2291 gimple_omp_task_set_copy_fn (copy, t); 2292 t = unshare_expr (gimple_omp_task_arg_size (stmt)); 2293 gimple_omp_task_set_arg_size (copy, t); 2294 t = unshare_expr (gimple_omp_task_arg_align (stmt)); 2295 gimple_omp_task_set_arg_align (copy, t); 2296 goto copy_omp_body; 2297 2298 case GIMPLE_OMP_CRITICAL: 2299 t = unshare_expr (gimple_omp_critical_name (stmt)); 2300 gimple_omp_critical_set_name (copy, t); 2301 goto copy_omp_body; 2302 2303 case GIMPLE_OMP_SECTIONS: 2304 t = unshare_expr (gimple_omp_sections_clauses (stmt)); 2305 gimple_omp_sections_set_clauses (copy, t); 2306 t = unshare_expr (gimple_omp_sections_control (stmt)); 2307 gimple_omp_sections_set_control (copy, t); 2308 /* FALLTHRU */ 2309 2310 case GIMPLE_OMP_SINGLE: 2311 case GIMPLE_OMP_SECTION: 2312 case GIMPLE_OMP_MASTER: 2313 case GIMPLE_OMP_ORDERED: 2314 copy_omp_body: 2315 new_seq = gimple_seq_copy (gimple_omp_body (stmt)); 2316 gimple_omp_set_body (copy, new_seq); 2317 break; 2318 2319 case GIMPLE_TRANSACTION: 2320 new_seq = gimple_seq_copy (gimple_transaction_body (stmt)); 2321 gimple_transaction_set_body (copy, new_seq); 2322 break; 2323 2324 case GIMPLE_WITH_CLEANUP_EXPR: 2325 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt)); 2326 gimple_wce_set_cleanup (copy, new_seq); 2327 break; 2328 2329 default: 2330 gcc_unreachable (); 2331 } 2332 } 2333 2334 /* Make copy of operands. */ 2335 for (i = 0; i < num_ops; i++) 2336 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i))); 2337 2338 if (gimple_has_mem_ops (stmt)) 2339 { 2340 gimple_set_vdef (copy, gimple_vdef (stmt)); 2341 gimple_set_vuse (copy, gimple_vuse (stmt)); 2342 } 2343 2344 /* Clear out SSA operand vectors on COPY. */ 2345 if (gimple_has_ops (stmt)) 2346 { 2347 gimple_set_use_ops (copy, NULL); 2348 2349 /* SSA operands need to be updated. */ 2350 gimple_set_modified (copy, true); 2351 } 2352 2353 return copy; 2354 } 2355 2356 2357 /* Return true if statement S has side-effects. We consider a 2358 statement to have side effects if: 2359 2360 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST. 2361 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */ 2362 2363 bool 2364 gimple_has_side_effects (const_gimple s) 2365 { 2366 if (is_gimple_debug (s)) 2367 return false; 2368 2369 /* We don't have to scan the arguments to check for 2370 volatile arguments, though, at present, we still 2371 do a scan to check for TREE_SIDE_EFFECTS. */ 2372 if (gimple_has_volatile_ops (s)) 2373 return true; 2374 2375 if (gimple_code (s) == GIMPLE_ASM 2376 && gimple_asm_volatile_p (s)) 2377 return true; 2378 2379 if (is_gimple_call (s)) 2380 { 2381 int flags = gimple_call_flags (s); 2382 2383 /* An infinite loop is considered a side effect. */ 2384 if (!(flags & (ECF_CONST | ECF_PURE)) 2385 || (flags & ECF_LOOPING_CONST_OR_PURE)) 2386 return true; 2387 2388 return false; 2389 } 2390 2391 return false; 2392 } 2393 2394 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p. 2395 Return true if S can trap. When INCLUDE_MEM is true, check whether 2396 the memory operations could trap. When INCLUDE_STORES is true and 2397 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */ 2398 2399 bool 2400 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores) 2401 { 2402 tree t, div = NULL_TREE; 2403 enum tree_code op; 2404 2405 if (include_mem) 2406 { 2407 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0; 2408 2409 for (i = start; i < gimple_num_ops (s); i++) 2410 if (tree_could_trap_p (gimple_op (s, i))) 2411 return true; 2412 } 2413 2414 switch (gimple_code (s)) 2415 { 2416 case GIMPLE_ASM: 2417 return gimple_asm_volatile_p (s); 2418 2419 case GIMPLE_CALL: 2420 t = gimple_call_fndecl (s); 2421 /* Assume that calls to weak functions may trap. */ 2422 if (!t || !DECL_P (t) || DECL_WEAK (t)) 2423 return true; 2424 return false; 2425 2426 case GIMPLE_ASSIGN: 2427 t = gimple_expr_type (s); 2428 op = gimple_assign_rhs_code (s); 2429 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS) 2430 div = gimple_assign_rhs2 (s); 2431 return (operation_could_trap_p (op, FLOAT_TYPE_P (t), 2432 (INTEGRAL_TYPE_P (t) 2433 && TYPE_OVERFLOW_TRAPS (t)), 2434 div)); 2435 2436 default: 2437 break; 2438 } 2439 2440 return false; 2441 } 2442 2443 /* Return true if statement S can trap. */ 2444 2445 bool 2446 gimple_could_trap_p (gimple s) 2447 { 2448 return gimple_could_trap_p_1 (s, true, true); 2449 } 2450 2451 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */ 2452 2453 bool 2454 gimple_assign_rhs_could_trap_p (gimple s) 2455 { 2456 gcc_assert (is_gimple_assign (s)); 2457 return gimple_could_trap_p_1 (s, true, false); 2458 } 2459 2460 2461 /* Print debugging information for gimple stmts generated. */ 2462 2463 void 2464 dump_gimple_statistics (void) 2465 { 2466 int i, total_tuples = 0, total_bytes = 0; 2467 2468 if (! GATHER_STATISTICS) 2469 { 2470 fprintf (stderr, "No gimple statistics\n"); 2471 return; 2472 } 2473 2474 fprintf (stderr, "\nGIMPLE statements\n"); 2475 fprintf (stderr, "Kind Stmts Bytes\n"); 2476 fprintf (stderr, "---------------------------------------\n"); 2477 for (i = 0; i < (int) gimple_alloc_kind_all; ++i) 2478 { 2479 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i], 2480 gimple_alloc_counts[i], gimple_alloc_sizes[i]); 2481 total_tuples += gimple_alloc_counts[i]; 2482 total_bytes += gimple_alloc_sizes[i]; 2483 } 2484 fprintf (stderr, "---------------------------------------\n"); 2485 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes); 2486 fprintf (stderr, "---------------------------------------\n"); 2487 } 2488 2489 2490 /* Return the number of operands needed on the RHS of a GIMPLE 2491 assignment for an expression with tree code CODE. */ 2492 2493 unsigned 2494 get_gimple_rhs_num_ops (enum tree_code code) 2495 { 2496 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code); 2497 2498 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS) 2499 return 1; 2500 else if (rhs_class == GIMPLE_BINARY_RHS) 2501 return 2; 2502 else if (rhs_class == GIMPLE_TERNARY_RHS) 2503 return 3; 2504 else 2505 gcc_unreachable (); 2506 } 2507 2508 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \ 2509 (unsigned char) \ 2510 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \ 2511 : ((TYPE) == tcc_binary \ 2512 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \ 2513 : ((TYPE) == tcc_constant \ 2514 || (TYPE) == tcc_declaration \ 2515 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \ 2516 : ((SYM) == TRUTH_AND_EXPR \ 2517 || (SYM) == TRUTH_OR_EXPR \ 2518 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \ 2519 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \ 2520 : ((SYM) == COND_EXPR \ 2521 || (SYM) == WIDEN_MULT_PLUS_EXPR \ 2522 || (SYM) == WIDEN_MULT_MINUS_EXPR \ 2523 || (SYM) == DOT_PROD_EXPR \ 2524 || (SYM) == REALIGN_LOAD_EXPR \ 2525 || (SYM) == VEC_COND_EXPR \ 2526 || (SYM) == VEC_PERM_EXPR \ 2527 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \ 2528 : ((SYM) == CONSTRUCTOR \ 2529 || (SYM) == OBJ_TYPE_REF \ 2530 || (SYM) == ASSERT_EXPR \ 2531 || (SYM) == ADDR_EXPR \ 2532 || (SYM) == WITH_SIZE_EXPR \ 2533 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \ 2534 : GIMPLE_INVALID_RHS), 2535 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS, 2536 2537 const unsigned char gimple_rhs_class_table[] = { 2538 #include "all-tree.def" 2539 }; 2540 2541 #undef DEFTREECODE 2542 #undef END_OF_BASE_TREE_CODES 2543 2544 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */ 2545 2546 /* Validation of GIMPLE expressions. */ 2547 2548 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */ 2549 2550 bool 2551 is_gimple_lvalue (tree t) 2552 { 2553 return (is_gimple_addressable (t) 2554 || TREE_CODE (t) == WITH_SIZE_EXPR 2555 /* These are complex lvalues, but don't have addresses, so they 2556 go here. */ 2557 || TREE_CODE (t) == BIT_FIELD_REF); 2558 } 2559 2560 /* Return true if T is a GIMPLE condition. */ 2561 2562 bool 2563 is_gimple_condexpr (tree t) 2564 { 2565 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t) 2566 && !tree_could_throw_p (t) 2567 && is_gimple_val (TREE_OPERAND (t, 0)) 2568 && is_gimple_val (TREE_OPERAND (t, 1)))); 2569 } 2570 2571 /* Return true if T is something whose address can be taken. */ 2572 2573 bool 2574 is_gimple_addressable (tree t) 2575 { 2576 return (is_gimple_id (t) || handled_component_p (t) 2577 || TREE_CODE (t) == MEM_REF); 2578 } 2579 2580 /* Return true if T is a valid gimple constant. */ 2581 2582 bool 2583 is_gimple_constant (const_tree t) 2584 { 2585 switch (TREE_CODE (t)) 2586 { 2587 case INTEGER_CST: 2588 case REAL_CST: 2589 case FIXED_CST: 2590 case STRING_CST: 2591 case COMPLEX_CST: 2592 case VECTOR_CST: 2593 return true; 2594 2595 /* Vector constant constructors are gimple invariant. */ 2596 case CONSTRUCTOR: 2597 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) 2598 return TREE_CONSTANT (t); 2599 else 2600 return false; 2601 2602 default: 2603 return false; 2604 } 2605 } 2606 2607 /* Return true if T is a gimple address. */ 2608 2609 bool 2610 is_gimple_address (const_tree t) 2611 { 2612 tree op; 2613 2614 if (TREE_CODE (t) != ADDR_EXPR) 2615 return false; 2616 2617 op = TREE_OPERAND (t, 0); 2618 while (handled_component_p (op)) 2619 { 2620 if ((TREE_CODE (op) == ARRAY_REF 2621 || TREE_CODE (op) == ARRAY_RANGE_REF) 2622 && !is_gimple_val (TREE_OPERAND (op, 1))) 2623 return false; 2624 2625 op = TREE_OPERAND (op, 0); 2626 } 2627 2628 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF) 2629 return true; 2630 2631 switch (TREE_CODE (op)) 2632 { 2633 case PARM_DECL: 2634 case RESULT_DECL: 2635 case LABEL_DECL: 2636 case FUNCTION_DECL: 2637 case VAR_DECL: 2638 case CONST_DECL: 2639 return true; 2640 2641 default: 2642 return false; 2643 } 2644 } 2645 2646 /* Return true if T is a gimple invariant address. */ 2647 2648 bool 2649 is_gimple_invariant_address (const_tree t) 2650 { 2651 const_tree op; 2652 2653 if (TREE_CODE (t) != ADDR_EXPR) 2654 return false; 2655 2656 op = strip_invariant_refs (TREE_OPERAND (t, 0)); 2657 if (!op) 2658 return false; 2659 2660 if (TREE_CODE (op) == MEM_REF) 2661 { 2662 const_tree op0 = TREE_OPERAND (op, 0); 2663 return (TREE_CODE (op0) == ADDR_EXPR 2664 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)) 2665 || decl_address_invariant_p (TREE_OPERAND (op0, 0)))); 2666 } 2667 2668 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op); 2669 } 2670 2671 /* Return true if T is a gimple invariant address at IPA level 2672 (so addresses of variables on stack are not allowed). */ 2673 2674 bool 2675 is_gimple_ip_invariant_address (const_tree t) 2676 { 2677 const_tree op; 2678 2679 if (TREE_CODE (t) != ADDR_EXPR) 2680 return false; 2681 2682 op = strip_invariant_refs (TREE_OPERAND (t, 0)); 2683 if (!op) 2684 return false; 2685 2686 if (TREE_CODE (op) == MEM_REF) 2687 { 2688 const_tree op0 = TREE_OPERAND (op, 0); 2689 return (TREE_CODE (op0) == ADDR_EXPR 2690 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)) 2691 || decl_address_ip_invariant_p (TREE_OPERAND (op0, 0)))); 2692 } 2693 2694 return CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op); 2695 } 2696 2697 /* Return true if T is a GIMPLE minimal invariant. It's a restricted 2698 form of function invariant. */ 2699 2700 bool 2701 is_gimple_min_invariant (const_tree t) 2702 { 2703 if (TREE_CODE (t) == ADDR_EXPR) 2704 return is_gimple_invariant_address (t); 2705 2706 return is_gimple_constant (t); 2707 } 2708 2709 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted 2710 form of gimple minimal invariant. */ 2711 2712 bool 2713 is_gimple_ip_invariant (const_tree t) 2714 { 2715 if (TREE_CODE (t) == ADDR_EXPR) 2716 return is_gimple_ip_invariant_address (t); 2717 2718 return is_gimple_constant (t); 2719 } 2720 2721 /* Return true if T is a variable. */ 2722 2723 bool 2724 is_gimple_variable (tree t) 2725 { 2726 return (TREE_CODE (t) == VAR_DECL 2727 || TREE_CODE (t) == PARM_DECL 2728 || TREE_CODE (t) == RESULT_DECL 2729 || TREE_CODE (t) == SSA_NAME); 2730 } 2731 2732 /* Return true if T is a GIMPLE identifier (something with an address). */ 2733 2734 bool 2735 is_gimple_id (tree t) 2736 { 2737 return (is_gimple_variable (t) 2738 || TREE_CODE (t) == FUNCTION_DECL 2739 || TREE_CODE (t) == LABEL_DECL 2740 || TREE_CODE (t) == CONST_DECL 2741 /* Allow string constants, since they are addressable. */ 2742 || TREE_CODE (t) == STRING_CST); 2743 } 2744 2745 /* Return true if T is a non-aggregate register variable. */ 2746 2747 bool 2748 is_gimple_reg (tree t) 2749 { 2750 if (virtual_operand_p (t)) 2751 return false; 2752 2753 if (TREE_CODE (t) == SSA_NAME) 2754 return true; 2755 2756 if (!is_gimple_variable (t)) 2757 return false; 2758 2759 if (!is_gimple_reg_type (TREE_TYPE (t))) 2760 return false; 2761 2762 /* A volatile decl is not acceptable because we can't reuse it as 2763 needed. We need to copy it into a temp first. */ 2764 if (TREE_THIS_VOLATILE (t)) 2765 return false; 2766 2767 /* We define "registers" as things that can be renamed as needed, 2768 which with our infrastructure does not apply to memory. */ 2769 if (needs_to_live_in_memory (t)) 2770 return false; 2771 2772 /* Hard register variables are an interesting case. For those that 2773 are call-clobbered, we don't know where all the calls are, since 2774 we don't (want to) take into account which operations will turn 2775 into libcalls at the rtl level. For those that are call-saved, 2776 we don't currently model the fact that calls may in fact change 2777 global hard registers, nor do we examine ASM_CLOBBERS at the tree 2778 level, and so miss variable changes that might imply. All around, 2779 it seems safest to not do too much optimization with these at the 2780 tree level at all. We'll have to rely on the rtl optimizers to 2781 clean this up, as there we've got all the appropriate bits exposed. */ 2782 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) 2783 return false; 2784 2785 /* Complex and vector values must have been put into SSA-like form. 2786 That is, no assignments to the individual components. */ 2787 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE 2788 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE) 2789 return DECL_GIMPLE_REG_P (t); 2790 2791 return true; 2792 } 2793 2794 2795 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */ 2796 2797 bool 2798 is_gimple_val (tree t) 2799 { 2800 /* Make loads from volatiles and memory vars explicit. */ 2801 if (is_gimple_variable (t) 2802 && is_gimple_reg_type (TREE_TYPE (t)) 2803 && !is_gimple_reg (t)) 2804 return false; 2805 2806 return (is_gimple_variable (t) || is_gimple_min_invariant (t)); 2807 } 2808 2809 /* Similarly, but accept hard registers as inputs to asm statements. */ 2810 2811 bool 2812 is_gimple_asm_val (tree t) 2813 { 2814 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t)) 2815 return true; 2816 2817 return is_gimple_val (t); 2818 } 2819 2820 /* Return true if T is a GIMPLE minimal lvalue. */ 2821 2822 bool 2823 is_gimple_min_lval (tree t) 2824 { 2825 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t)))) 2826 return false; 2827 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF); 2828 } 2829 2830 /* Return true if T is a valid function operand of a CALL_EXPR. */ 2831 2832 bool 2833 is_gimple_call_addr (tree t) 2834 { 2835 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t)); 2836 } 2837 2838 /* Return true if T is a valid address operand of a MEM_REF. */ 2839 2840 bool 2841 is_gimple_mem_ref_addr (tree t) 2842 { 2843 return (is_gimple_reg (t) 2844 || TREE_CODE (t) == INTEGER_CST 2845 || (TREE_CODE (t) == ADDR_EXPR 2846 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0)) 2847 || decl_address_invariant_p (TREE_OPERAND (t, 0))))); 2848 } 2849 2850 2851 /* Given a memory reference expression T, return its base address. 2852 The base address of a memory reference expression is the main 2853 object being referenced. For instance, the base address for 2854 'array[i].fld[j]' is 'array'. You can think of this as stripping 2855 away the offset part from a memory address. 2856 2857 This function calls handled_component_p to strip away all the inner 2858 parts of the memory reference until it reaches the base object. */ 2859 2860 tree 2861 get_base_address (tree t) 2862 { 2863 while (handled_component_p (t)) 2864 t = TREE_OPERAND (t, 0); 2865 2866 if ((TREE_CODE (t) == MEM_REF 2867 || TREE_CODE (t) == TARGET_MEM_REF) 2868 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR) 2869 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0); 2870 2871 /* ??? Either the alias oracle or all callers need to properly deal 2872 with WITH_SIZE_EXPRs before we can look through those. */ 2873 if (TREE_CODE (t) == WITH_SIZE_EXPR) 2874 return NULL_TREE; 2875 2876 return t; 2877 } 2878 2879 void 2880 recalculate_side_effects (tree t) 2881 { 2882 enum tree_code code = TREE_CODE (t); 2883 int len = TREE_OPERAND_LENGTH (t); 2884 int i; 2885 2886 switch (TREE_CODE_CLASS (code)) 2887 { 2888 case tcc_expression: 2889 switch (code) 2890 { 2891 case INIT_EXPR: 2892 case MODIFY_EXPR: 2893 case VA_ARG_EXPR: 2894 case PREDECREMENT_EXPR: 2895 case PREINCREMENT_EXPR: 2896 case POSTDECREMENT_EXPR: 2897 case POSTINCREMENT_EXPR: 2898 /* All of these have side-effects, no matter what their 2899 operands are. */ 2900 return; 2901 2902 default: 2903 break; 2904 } 2905 /* Fall through. */ 2906 2907 case tcc_comparison: /* a comparison expression */ 2908 case tcc_unary: /* a unary arithmetic expression */ 2909 case tcc_binary: /* a binary arithmetic expression */ 2910 case tcc_reference: /* a reference */ 2911 case tcc_vl_exp: /* a function call */ 2912 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t); 2913 for (i = 0; i < len; ++i) 2914 { 2915 tree op = TREE_OPERAND (t, i); 2916 if (op && TREE_SIDE_EFFECTS (op)) 2917 TREE_SIDE_EFFECTS (t) = 1; 2918 } 2919 break; 2920 2921 case tcc_constant: 2922 /* No side-effects. */ 2923 return; 2924 2925 default: 2926 gcc_unreachable (); 2927 } 2928 } 2929 2930 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns 2931 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if 2932 we failed to create one. */ 2933 2934 tree 2935 canonicalize_cond_expr_cond (tree t) 2936 { 2937 /* Strip conversions around boolean operations. */ 2938 if (CONVERT_EXPR_P (t) 2939 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))) 2940 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) 2941 == BOOLEAN_TYPE)) 2942 t = TREE_OPERAND (t, 0); 2943 2944 /* For !x use x == 0. */ 2945 if (TREE_CODE (t) == TRUTH_NOT_EXPR) 2946 { 2947 tree top0 = TREE_OPERAND (t, 0); 2948 t = build2 (EQ_EXPR, TREE_TYPE (t), 2949 top0, build_int_cst (TREE_TYPE (top0), 0)); 2950 } 2951 /* For cmp ? 1 : 0 use cmp. */ 2952 else if (TREE_CODE (t) == COND_EXPR 2953 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0)) 2954 && integer_onep (TREE_OPERAND (t, 1)) 2955 && integer_zerop (TREE_OPERAND (t, 2))) 2956 { 2957 tree top0 = TREE_OPERAND (t, 0); 2958 t = build2 (TREE_CODE (top0), TREE_TYPE (t), 2959 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1)); 2960 } 2961 2962 if (is_gimple_condexpr (t)) 2963 return t; 2964 2965 return NULL_TREE; 2966 } 2967 2968 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in 2969 the positions marked by the set ARGS_TO_SKIP. */ 2970 2971 gimple 2972 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) 2973 { 2974 int i; 2975 int nargs = gimple_call_num_args (stmt); 2976 vec<tree> vargs; 2977 vargs.create (nargs); 2978 gimple new_stmt; 2979 2980 for (i = 0; i < nargs; i++) 2981 if (!bitmap_bit_p (args_to_skip, i)) 2982 vargs.quick_push (gimple_call_arg (stmt, i)); 2983 2984 if (gimple_call_internal_p (stmt)) 2985 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt), 2986 vargs); 2987 else 2988 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs); 2989 vargs.release (); 2990 if (gimple_call_lhs (stmt)) 2991 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt)); 2992 2993 gimple_set_vuse (new_stmt, gimple_vuse (stmt)); 2994 gimple_set_vdef (new_stmt, gimple_vdef (stmt)); 2995 2996 if (gimple_has_location (stmt)) 2997 gimple_set_location (new_stmt, gimple_location (stmt)); 2998 gimple_call_copy_flags (new_stmt, stmt); 2999 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt)); 3000 3001 gimple_set_modified (new_stmt, true); 3002 3003 return new_stmt; 3004 } 3005 3006 3007 3008 /* Return true if the field decls F1 and F2 are at the same offset. 3009 3010 This is intended to be used on GIMPLE types only. */ 3011 3012 bool 3013 gimple_compare_field_offset (tree f1, tree f2) 3014 { 3015 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2)) 3016 { 3017 tree offset1 = DECL_FIELD_OFFSET (f1); 3018 tree offset2 = DECL_FIELD_OFFSET (f2); 3019 return ((offset1 == offset2 3020 /* Once gimplification is done, self-referential offsets are 3021 instantiated as operand #2 of the COMPONENT_REF built for 3022 each access and reset. Therefore, they are not relevant 3023 anymore and fields are interchangeable provided that they 3024 represent the same access. */ 3025 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR 3026 && TREE_CODE (offset2) == PLACEHOLDER_EXPR 3027 && (DECL_SIZE (f1) == DECL_SIZE (f2) 3028 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR 3029 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR) 3030 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0)) 3031 && DECL_ALIGN (f1) == DECL_ALIGN (f2)) 3032 || operand_equal_p (offset1, offset2, 0)) 3033 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1), 3034 DECL_FIELD_BIT_OFFSET (f2))); 3035 } 3036 3037 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN 3038 should be, so handle differing ones specially by decomposing 3039 the offset into a byte and bit offset manually. */ 3040 if (host_integerp (DECL_FIELD_OFFSET (f1), 0) 3041 && host_integerp (DECL_FIELD_OFFSET (f2), 0)) 3042 { 3043 unsigned HOST_WIDE_INT byte_offset1, byte_offset2; 3044 unsigned HOST_WIDE_INT bit_offset1, bit_offset2; 3045 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1)); 3046 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1)) 3047 + bit_offset1 / BITS_PER_UNIT); 3048 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2)); 3049 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2)) 3050 + bit_offset2 / BITS_PER_UNIT); 3051 if (byte_offset1 != byte_offset2) 3052 return false; 3053 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT; 3054 } 3055 3056 return false; 3057 } 3058 3059 /* Returning a hash value for gimple type TYPE combined with VAL. 3060 3061 The hash value returned is equal for types considered compatible 3062 by gimple_canonical_types_compatible_p. */ 3063 3064 static hashval_t 3065 iterative_hash_canonical_type (tree type, hashval_t val) 3066 { 3067 hashval_t v; 3068 void **slot; 3069 struct tree_int_map *mp, m; 3070 3071 m.base.from = type; 3072 if ((slot = htab_find_slot (canonical_type_hash_cache, &m, INSERT)) 3073 && *slot) 3074 return iterative_hash_hashval_t (((struct tree_int_map *) *slot)->to, val); 3075 3076 /* Combine a few common features of types so that types are grouped into 3077 smaller sets; when searching for existing matching types to merge, 3078 only existing types having the same features as the new type will be 3079 checked. */ 3080 v = iterative_hash_hashval_t (TREE_CODE (type), 0); 3081 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v); 3082 v = iterative_hash_hashval_t (TYPE_ALIGN (type), v); 3083 v = iterative_hash_hashval_t (TYPE_MODE (type), v); 3084 3085 /* Incorporate common features of numerical types. */ 3086 if (INTEGRAL_TYPE_P (type) 3087 || SCALAR_FLOAT_TYPE_P (type) 3088 || FIXED_POINT_TYPE_P (type) 3089 || TREE_CODE (type) == VECTOR_TYPE 3090 || TREE_CODE (type) == COMPLEX_TYPE 3091 || TREE_CODE (type) == OFFSET_TYPE 3092 || POINTER_TYPE_P (type)) 3093 { 3094 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v); 3095 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v); 3096 } 3097 3098 /* For pointer and reference types, fold in information about the type 3099 pointed to but do not recurse to the pointed-to type. */ 3100 if (POINTER_TYPE_P (type)) 3101 { 3102 v = iterative_hash_hashval_t (TYPE_REF_CAN_ALIAS_ALL (type), v); 3103 v = iterative_hash_hashval_t (TYPE_ADDR_SPACE (TREE_TYPE (type)), v); 3104 v = iterative_hash_hashval_t (TYPE_RESTRICT (type), v); 3105 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v); 3106 } 3107 3108 /* For integer types hash only the string flag. */ 3109 if (TREE_CODE (type) == INTEGER_TYPE) 3110 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v); 3111 3112 /* For array types hash the domain bounds and the string flag. */ 3113 if (TREE_CODE (type) == ARRAY_TYPE && TYPE_DOMAIN (type)) 3114 { 3115 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v); 3116 /* OMP lowering can introduce error_mark_node in place of 3117 random local decls in types. */ 3118 if (TYPE_MIN_VALUE (TYPE_DOMAIN (type)) != error_mark_node) 3119 v = iterative_hash_expr (TYPE_MIN_VALUE (TYPE_DOMAIN (type)), v); 3120 if (TYPE_MAX_VALUE (TYPE_DOMAIN (type)) != error_mark_node) 3121 v = iterative_hash_expr (TYPE_MAX_VALUE (TYPE_DOMAIN (type)), v); 3122 } 3123 3124 /* Recurse for aggregates with a single element type. */ 3125 if (TREE_CODE (type) == ARRAY_TYPE 3126 || TREE_CODE (type) == COMPLEX_TYPE 3127 || TREE_CODE (type) == VECTOR_TYPE) 3128 v = iterative_hash_canonical_type (TREE_TYPE (type), v); 3129 3130 /* Incorporate function return and argument types. */ 3131 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE) 3132 { 3133 unsigned na; 3134 tree p; 3135 3136 /* For method types also incorporate their parent class. */ 3137 if (TREE_CODE (type) == METHOD_TYPE) 3138 v = iterative_hash_canonical_type (TYPE_METHOD_BASETYPE (type), v); 3139 3140 v = iterative_hash_canonical_type (TREE_TYPE (type), v); 3141 3142 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p)) 3143 { 3144 v = iterative_hash_canonical_type (TREE_VALUE (p), v); 3145 na++; 3146 } 3147 3148 v = iterative_hash_hashval_t (na, v); 3149 } 3150 3151 if (RECORD_OR_UNION_TYPE_P (type)) 3152 { 3153 unsigned nf; 3154 tree f; 3155 3156 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f)) 3157 if (TREE_CODE (f) == FIELD_DECL) 3158 { 3159 v = iterative_hash_canonical_type (TREE_TYPE (f), v); 3160 nf++; 3161 } 3162 3163 v = iterative_hash_hashval_t (nf, v); 3164 } 3165 3166 /* Cache the just computed hash value. */ 3167 mp = ggc_alloc_cleared_tree_int_map (); 3168 mp->base.from = type; 3169 mp->to = v; 3170 *slot = (void *) mp; 3171 3172 return iterative_hash_hashval_t (v, val); 3173 } 3174 3175 static hashval_t 3176 gimple_canonical_type_hash (const void *p) 3177 { 3178 if (canonical_type_hash_cache == NULL) 3179 canonical_type_hash_cache = htab_create_ggc (512, tree_int_map_hash, 3180 tree_int_map_eq, NULL); 3181 3182 return iterative_hash_canonical_type (CONST_CAST_TREE ((const_tree) p), 0); 3183 } 3184 3185 3186 3187 3188 /* The TYPE_CANONICAL merging machinery. It should closely resemble 3189 the middle-end types_compatible_p function. It needs to avoid 3190 claiming types are different for types that should be treated 3191 the same with respect to TBAA. Canonical types are also used 3192 for IL consistency checks via the useless_type_conversion_p 3193 predicate which does not handle all type kinds itself but falls 3194 back to pointer-comparison of TYPE_CANONICAL for aggregates 3195 for example. */ 3196 3197 /* Return true iff T1 and T2 are structurally identical for what 3198 TBAA is concerned. */ 3199 3200 static bool 3201 gimple_canonical_types_compatible_p (tree t1, tree t2) 3202 { 3203 /* Before starting to set up the SCC machinery handle simple cases. */ 3204 3205 /* Check first for the obvious case of pointer identity. */ 3206 if (t1 == t2) 3207 return true; 3208 3209 /* Check that we have two types to compare. */ 3210 if (t1 == NULL_TREE || t2 == NULL_TREE) 3211 return false; 3212 3213 /* If the types have been previously registered and found equal 3214 they still are. */ 3215 if (TYPE_CANONICAL (t1) 3216 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2)) 3217 return true; 3218 3219 /* Can't be the same type if the types don't have the same code. */ 3220 if (TREE_CODE (t1) != TREE_CODE (t2)) 3221 return false; 3222 3223 if (TREE_ADDRESSABLE (t1) != TREE_ADDRESSABLE (t2)) 3224 return false; 3225 3226 /* Qualifiers do not matter for canonical type comparison purposes. */ 3227 3228 /* Void types and nullptr types are always the same. */ 3229 if (TREE_CODE (t1) == VOID_TYPE 3230 || TREE_CODE (t1) == NULLPTR_TYPE) 3231 return true; 3232 3233 /* Can't be the same type if they have different alignment, or mode. */ 3234 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2) 3235 || TYPE_MODE (t1) != TYPE_MODE (t2)) 3236 return false; 3237 3238 /* Non-aggregate types can be handled cheaply. */ 3239 if (INTEGRAL_TYPE_P (t1) 3240 || SCALAR_FLOAT_TYPE_P (t1) 3241 || FIXED_POINT_TYPE_P (t1) 3242 || TREE_CODE (t1) == VECTOR_TYPE 3243 || TREE_CODE (t1) == COMPLEX_TYPE 3244 || TREE_CODE (t1) == OFFSET_TYPE 3245 || POINTER_TYPE_P (t1)) 3246 { 3247 /* Can't be the same type if they have different sign or precision. */ 3248 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2) 3249 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)) 3250 return false; 3251 3252 if (TREE_CODE (t1) == INTEGER_TYPE 3253 && TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)) 3254 return false; 3255 3256 /* For canonical type comparisons we do not want to build SCCs 3257 so we cannot compare pointed-to types. But we can, for now, 3258 require the same pointed-to type kind and match what 3259 useless_type_conversion_p would do. */ 3260 if (POINTER_TYPE_P (t1)) 3261 { 3262 /* If the two pointers have different ref-all attributes, 3263 they can't be the same type. */ 3264 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2)) 3265 return false; 3266 3267 if (TYPE_ADDR_SPACE (TREE_TYPE (t1)) 3268 != TYPE_ADDR_SPACE (TREE_TYPE (t2))) 3269 return false; 3270 3271 if (TYPE_RESTRICT (t1) != TYPE_RESTRICT (t2)) 3272 return false; 3273 3274 if (TREE_CODE (TREE_TYPE (t1)) != TREE_CODE (TREE_TYPE (t2))) 3275 return false; 3276 } 3277 3278 /* Tail-recurse to components. */ 3279 if (TREE_CODE (t1) == VECTOR_TYPE 3280 || TREE_CODE (t1) == COMPLEX_TYPE) 3281 return gimple_canonical_types_compatible_p (TREE_TYPE (t1), 3282 TREE_TYPE (t2)); 3283 3284 return true; 3285 } 3286 3287 /* Do type-specific comparisons. */ 3288 switch (TREE_CODE (t1)) 3289 { 3290 case ARRAY_TYPE: 3291 /* Array types are the same if the element types are the same and 3292 the number of elements are the same. */ 3293 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2)) 3294 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2) 3295 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2)) 3296 return false; 3297 else 3298 { 3299 tree i1 = TYPE_DOMAIN (t1); 3300 tree i2 = TYPE_DOMAIN (t2); 3301 3302 /* For an incomplete external array, the type domain can be 3303 NULL_TREE. Check this condition also. */ 3304 if (i1 == NULL_TREE && i2 == NULL_TREE) 3305 return true; 3306 else if (i1 == NULL_TREE || i2 == NULL_TREE) 3307 return false; 3308 else 3309 { 3310 tree min1 = TYPE_MIN_VALUE (i1); 3311 tree min2 = TYPE_MIN_VALUE (i2); 3312 tree max1 = TYPE_MAX_VALUE (i1); 3313 tree max2 = TYPE_MAX_VALUE (i2); 3314 3315 /* The minimum/maximum values have to be the same. */ 3316 if ((min1 == min2 3317 || (min1 && min2 3318 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR 3319 && TREE_CODE (min2) == PLACEHOLDER_EXPR) 3320 || operand_equal_p (min1, min2, 0)))) 3321 && (max1 == max2 3322 || (max1 && max2 3323 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR 3324 && TREE_CODE (max2) == PLACEHOLDER_EXPR) 3325 || operand_equal_p (max1, max2, 0))))) 3326 return true; 3327 else 3328 return false; 3329 } 3330 } 3331 3332 case METHOD_TYPE: 3333 case FUNCTION_TYPE: 3334 /* Function types are the same if the return type and arguments types 3335 are the same. */ 3336 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2))) 3337 return false; 3338 3339 if (!comp_type_attributes (t1, t2)) 3340 return false; 3341 3342 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2)) 3343 return true; 3344 else 3345 { 3346 tree parms1, parms2; 3347 3348 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2); 3349 parms1 && parms2; 3350 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2)) 3351 { 3352 if (!gimple_canonical_types_compatible_p 3353 (TREE_VALUE (parms1), TREE_VALUE (parms2))) 3354 return false; 3355 } 3356 3357 if (parms1 || parms2) 3358 return false; 3359 3360 return true; 3361 } 3362 3363 case RECORD_TYPE: 3364 case UNION_TYPE: 3365 case QUAL_UNION_TYPE: 3366 { 3367 tree f1, f2; 3368 3369 /* For aggregate types, all the fields must be the same. */ 3370 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2); 3371 f1 || f2; 3372 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2)) 3373 { 3374 /* Skip non-fields. */ 3375 while (f1 && TREE_CODE (f1) != FIELD_DECL) 3376 f1 = TREE_CHAIN (f1); 3377 while (f2 && TREE_CODE (f2) != FIELD_DECL) 3378 f2 = TREE_CHAIN (f2); 3379 if (!f1 || !f2) 3380 break; 3381 /* The fields must have the same name, offset and type. */ 3382 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2) 3383 || !gimple_compare_field_offset (f1, f2) 3384 || !gimple_canonical_types_compatible_p 3385 (TREE_TYPE (f1), TREE_TYPE (f2))) 3386 return false; 3387 } 3388 3389 /* If one aggregate has more fields than the other, they 3390 are not the same. */ 3391 if (f1 || f2) 3392 return false; 3393 3394 return true; 3395 } 3396 3397 default: 3398 gcc_unreachable (); 3399 } 3400 } 3401 3402 3403 /* Returns nonzero if P1 and P2 are equal. */ 3404 3405 static int 3406 gimple_canonical_type_eq (const void *p1, const void *p2) 3407 { 3408 const_tree t1 = (const_tree) p1; 3409 const_tree t2 = (const_tree) p2; 3410 return gimple_canonical_types_compatible_p (CONST_CAST_TREE (t1), 3411 CONST_CAST_TREE (t2)); 3412 } 3413 3414 /* Register type T in the global type table gimple_types. 3415 If another type T', compatible with T, already existed in 3416 gimple_types then return T', otherwise return T. This is used by 3417 LTO to merge identical types read from different TUs. 3418 3419 ??? This merging does not exactly match how the tree.c middle-end 3420 functions will assign TYPE_CANONICAL when new types are created 3421 during optimization (which at least happens for pointer and array 3422 types). */ 3423 3424 tree 3425 gimple_register_canonical_type (tree t) 3426 { 3427 void **slot; 3428 3429 gcc_assert (TYPE_P (t)); 3430 3431 if (TYPE_CANONICAL (t)) 3432 return TYPE_CANONICAL (t); 3433 3434 if (gimple_canonical_types == NULL) 3435 gimple_canonical_types = htab_create_ggc (16381, gimple_canonical_type_hash, 3436 gimple_canonical_type_eq, 0); 3437 3438 slot = htab_find_slot (gimple_canonical_types, t, INSERT); 3439 if (*slot 3440 && *(tree *)slot != t) 3441 { 3442 tree new_type = (tree) *((tree *) slot); 3443 3444 TYPE_CANONICAL (t) = new_type; 3445 t = new_type; 3446 } 3447 else 3448 { 3449 TYPE_CANONICAL (t) = t; 3450 *slot = (void *) t; 3451 } 3452 3453 return t; 3454 } 3455 3456 3457 /* Show statistics on references to the global type table gimple_types. */ 3458 3459 void 3460 print_gimple_types_stats (const char *pfx) 3461 { 3462 if (gimple_canonical_types) 3463 fprintf (stderr, "[%s] GIMPLE canonical type table: size %ld, " 3464 "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx, 3465 (long) htab_size (gimple_canonical_types), 3466 (long) htab_elements (gimple_canonical_types), 3467 (long) gimple_canonical_types->searches, 3468 (long) gimple_canonical_types->collisions, 3469 htab_collisions (gimple_canonical_types)); 3470 else 3471 fprintf (stderr, "[%s] GIMPLE canonical type table is empty\n", pfx); 3472 if (canonical_type_hash_cache) 3473 fprintf (stderr, "[%s] GIMPLE canonical type hash table: size %ld, " 3474 "%ld elements, %ld searches, %ld collisions (ratio: %f)\n", pfx, 3475 (long) htab_size (canonical_type_hash_cache), 3476 (long) htab_elements (canonical_type_hash_cache), 3477 (long) canonical_type_hash_cache->searches, 3478 (long) canonical_type_hash_cache->collisions, 3479 htab_collisions (canonical_type_hash_cache)); 3480 else 3481 fprintf (stderr, "[%s] GIMPLE canonical type hash table is empty\n", pfx); 3482 } 3483 3484 /* Free the gimple type hashtables used for LTO type merging. */ 3485 3486 void 3487 free_gimple_type_tables (void) 3488 { 3489 if (gimple_canonical_types) 3490 { 3491 htab_delete (gimple_canonical_types); 3492 gimple_canonical_types = NULL; 3493 } 3494 if (canonical_type_hash_cache) 3495 { 3496 htab_delete (canonical_type_hash_cache); 3497 canonical_type_hash_cache = NULL; 3498 } 3499 } 3500 3501 3502 /* Return a type the same as TYPE except unsigned or 3503 signed according to UNSIGNEDP. */ 3504 3505 static tree 3506 gimple_signed_or_unsigned_type (bool unsignedp, tree type) 3507 { 3508 tree type1; 3509 3510 type1 = TYPE_MAIN_VARIANT (type); 3511 if (type1 == signed_char_type_node 3512 || type1 == char_type_node 3513 || type1 == unsigned_char_type_node) 3514 return unsignedp ? unsigned_char_type_node : signed_char_type_node; 3515 if (type1 == integer_type_node || type1 == unsigned_type_node) 3516 return unsignedp ? unsigned_type_node : integer_type_node; 3517 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node) 3518 return unsignedp ? short_unsigned_type_node : short_integer_type_node; 3519 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node) 3520 return unsignedp ? long_unsigned_type_node : long_integer_type_node; 3521 if (type1 == long_long_integer_type_node 3522 || type1 == long_long_unsigned_type_node) 3523 return unsignedp 3524 ? long_long_unsigned_type_node 3525 : long_long_integer_type_node; 3526 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node)) 3527 return unsignedp 3528 ? int128_unsigned_type_node 3529 : int128_integer_type_node; 3530 #if HOST_BITS_PER_WIDE_INT >= 64 3531 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node) 3532 return unsignedp ? unsigned_intTI_type_node : intTI_type_node; 3533 #endif 3534 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node) 3535 return unsignedp ? unsigned_intDI_type_node : intDI_type_node; 3536 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node) 3537 return unsignedp ? unsigned_intSI_type_node : intSI_type_node; 3538 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node) 3539 return unsignedp ? unsigned_intHI_type_node : intHI_type_node; 3540 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node) 3541 return unsignedp ? unsigned_intQI_type_node : intQI_type_node; 3542 3543 #define GIMPLE_FIXED_TYPES(NAME) \ 3544 if (type1 == short_ ## NAME ## _type_node \ 3545 || type1 == unsigned_short_ ## NAME ## _type_node) \ 3546 return unsignedp ? unsigned_short_ ## NAME ## _type_node \ 3547 : short_ ## NAME ## _type_node; \ 3548 if (type1 == NAME ## _type_node \ 3549 || type1 == unsigned_ ## NAME ## _type_node) \ 3550 return unsignedp ? unsigned_ ## NAME ## _type_node \ 3551 : NAME ## _type_node; \ 3552 if (type1 == long_ ## NAME ## _type_node \ 3553 || type1 == unsigned_long_ ## NAME ## _type_node) \ 3554 return unsignedp ? unsigned_long_ ## NAME ## _type_node \ 3555 : long_ ## NAME ## _type_node; \ 3556 if (type1 == long_long_ ## NAME ## _type_node \ 3557 || type1 == unsigned_long_long_ ## NAME ## _type_node) \ 3558 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \ 3559 : long_long_ ## NAME ## _type_node; 3560 3561 #define GIMPLE_FIXED_MODE_TYPES(NAME) \ 3562 if (type1 == NAME ## _type_node \ 3563 || type1 == u ## NAME ## _type_node) \ 3564 return unsignedp ? u ## NAME ## _type_node \ 3565 : NAME ## _type_node; 3566 3567 #define GIMPLE_FIXED_TYPES_SAT(NAME) \ 3568 if (type1 == sat_ ## short_ ## NAME ## _type_node \ 3569 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \ 3570 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \ 3571 : sat_ ## short_ ## NAME ## _type_node; \ 3572 if (type1 == sat_ ## NAME ## _type_node \ 3573 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \ 3574 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \ 3575 : sat_ ## NAME ## _type_node; \ 3576 if (type1 == sat_ ## long_ ## NAME ## _type_node \ 3577 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \ 3578 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \ 3579 : sat_ ## long_ ## NAME ## _type_node; \ 3580 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \ 3581 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \ 3582 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \ 3583 : sat_ ## long_long_ ## NAME ## _type_node; 3584 3585 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \ 3586 if (type1 == sat_ ## NAME ## _type_node \ 3587 || type1 == sat_ ## u ## NAME ## _type_node) \ 3588 return unsignedp ? sat_ ## u ## NAME ## _type_node \ 3589 : sat_ ## NAME ## _type_node; 3590 3591 GIMPLE_FIXED_TYPES (fract); 3592 GIMPLE_FIXED_TYPES_SAT (fract); 3593 GIMPLE_FIXED_TYPES (accum); 3594 GIMPLE_FIXED_TYPES_SAT (accum); 3595 3596 GIMPLE_FIXED_MODE_TYPES (qq); 3597 GIMPLE_FIXED_MODE_TYPES (hq); 3598 GIMPLE_FIXED_MODE_TYPES (sq); 3599 GIMPLE_FIXED_MODE_TYPES (dq); 3600 GIMPLE_FIXED_MODE_TYPES (tq); 3601 GIMPLE_FIXED_MODE_TYPES_SAT (qq); 3602 GIMPLE_FIXED_MODE_TYPES_SAT (hq); 3603 GIMPLE_FIXED_MODE_TYPES_SAT (sq); 3604 GIMPLE_FIXED_MODE_TYPES_SAT (dq); 3605 GIMPLE_FIXED_MODE_TYPES_SAT (tq); 3606 GIMPLE_FIXED_MODE_TYPES (ha); 3607 GIMPLE_FIXED_MODE_TYPES (sa); 3608 GIMPLE_FIXED_MODE_TYPES (da); 3609 GIMPLE_FIXED_MODE_TYPES (ta); 3610 GIMPLE_FIXED_MODE_TYPES_SAT (ha); 3611 GIMPLE_FIXED_MODE_TYPES_SAT (sa); 3612 GIMPLE_FIXED_MODE_TYPES_SAT (da); 3613 GIMPLE_FIXED_MODE_TYPES_SAT (ta); 3614 3615 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not 3616 the precision; they have precision set to match their range, but 3617 may use a wider mode to match an ABI. If we change modes, we may 3618 wind up with bad conversions. For INTEGER_TYPEs in C, must check 3619 the precision as well, so as to yield correct results for 3620 bit-field types. C++ does not have these separate bit-field 3621 types, and producing a signed or unsigned variant of an 3622 ENUMERAL_TYPE may cause other problems as well. */ 3623 if (!INTEGRAL_TYPE_P (type) 3624 || TYPE_UNSIGNED (type) == unsignedp) 3625 return type; 3626 3627 #define TYPE_OK(node) \ 3628 (TYPE_MODE (type) == TYPE_MODE (node) \ 3629 && TYPE_PRECISION (type) == TYPE_PRECISION (node)) 3630 if (TYPE_OK (signed_char_type_node)) 3631 return unsignedp ? unsigned_char_type_node : signed_char_type_node; 3632 if (TYPE_OK (integer_type_node)) 3633 return unsignedp ? unsigned_type_node : integer_type_node; 3634 if (TYPE_OK (short_integer_type_node)) 3635 return unsignedp ? short_unsigned_type_node : short_integer_type_node; 3636 if (TYPE_OK (long_integer_type_node)) 3637 return unsignedp ? long_unsigned_type_node : long_integer_type_node; 3638 if (TYPE_OK (long_long_integer_type_node)) 3639 return (unsignedp 3640 ? long_long_unsigned_type_node 3641 : long_long_integer_type_node); 3642 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node)) 3643 return (unsignedp 3644 ? int128_unsigned_type_node 3645 : int128_integer_type_node); 3646 3647 #if HOST_BITS_PER_WIDE_INT >= 64 3648 if (TYPE_OK (intTI_type_node)) 3649 return unsignedp ? unsigned_intTI_type_node : intTI_type_node; 3650 #endif 3651 if (TYPE_OK (intDI_type_node)) 3652 return unsignedp ? unsigned_intDI_type_node : intDI_type_node; 3653 if (TYPE_OK (intSI_type_node)) 3654 return unsignedp ? unsigned_intSI_type_node : intSI_type_node; 3655 if (TYPE_OK (intHI_type_node)) 3656 return unsignedp ? unsigned_intHI_type_node : intHI_type_node; 3657 if (TYPE_OK (intQI_type_node)) 3658 return unsignedp ? unsigned_intQI_type_node : intQI_type_node; 3659 3660 #undef GIMPLE_FIXED_TYPES 3661 #undef GIMPLE_FIXED_MODE_TYPES 3662 #undef GIMPLE_FIXED_TYPES_SAT 3663 #undef GIMPLE_FIXED_MODE_TYPES_SAT 3664 #undef TYPE_OK 3665 3666 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp); 3667 } 3668 3669 3670 /* Return an unsigned type the same as TYPE in other respects. */ 3671 3672 tree 3673 gimple_unsigned_type (tree type) 3674 { 3675 return gimple_signed_or_unsigned_type (true, type); 3676 } 3677 3678 3679 /* Return a signed type the same as TYPE in other respects. */ 3680 3681 tree 3682 gimple_signed_type (tree type) 3683 { 3684 return gimple_signed_or_unsigned_type (false, type); 3685 } 3686 3687 3688 /* Return the typed-based alias set for T, which may be an expression 3689 or a type. Return -1 if we don't do anything special. */ 3690 3691 alias_set_type 3692 gimple_get_alias_set (tree t) 3693 { 3694 tree u; 3695 3696 /* Permit type-punning when accessing a union, provided the access 3697 is directly through the union. For example, this code does not 3698 permit taking the address of a union member and then storing 3699 through it. Even the type-punning allowed here is a GCC 3700 extension, albeit a common and useful one; the C standard says 3701 that such accesses have implementation-defined behavior. */ 3702 for (u = t; 3703 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF; 3704 u = TREE_OPERAND (u, 0)) 3705 if (TREE_CODE (u) == COMPONENT_REF 3706 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE) 3707 return 0; 3708 3709 /* That's all the expressions we handle specially. */ 3710 if (!TYPE_P (t)) 3711 return -1; 3712 3713 /* For convenience, follow the C standard when dealing with 3714 character types. Any object may be accessed via an lvalue that 3715 has character type. */ 3716 if (t == char_type_node 3717 || t == signed_char_type_node 3718 || t == unsigned_char_type_node) 3719 return 0; 3720 3721 /* Allow aliasing between signed and unsigned variants of the same 3722 type. We treat the signed variant as canonical. */ 3723 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t)) 3724 { 3725 tree t1 = gimple_signed_type (t); 3726 3727 /* t1 == t can happen for boolean nodes which are always unsigned. */ 3728 if (t1 != t) 3729 return get_alias_set (t1); 3730 } 3731 3732 return -1; 3733 } 3734 3735 3736 /* Data structure used to count the number of dereferences to PTR 3737 inside an expression. */ 3738 struct count_ptr_d 3739 { 3740 tree ptr; 3741 unsigned num_stores; 3742 unsigned num_loads; 3743 }; 3744 3745 /* Helper for count_uses_and_derefs. Called by walk_tree to look for 3746 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */ 3747 3748 static tree 3749 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data) 3750 { 3751 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data; 3752 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info; 3753 3754 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld, 3755 pointer 'ptr' is *not* dereferenced, it is simply used to compute 3756 the address of 'fld' as 'ptr + offsetof(fld)'. */ 3757 if (TREE_CODE (*tp) == ADDR_EXPR) 3758 { 3759 *walk_subtrees = 0; 3760 return NULL_TREE; 3761 } 3762 3763 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr) 3764 { 3765 if (wi_p->is_lhs) 3766 count_p->num_stores++; 3767 else 3768 count_p->num_loads++; 3769 } 3770 3771 return NULL_TREE; 3772 } 3773 3774 /* Count the number of direct and indirect uses for pointer PTR in 3775 statement STMT. The number of direct uses is stored in 3776 *NUM_USES_P. Indirect references are counted separately depending 3777 on whether they are store or load operations. The counts are 3778 stored in *NUM_STORES_P and *NUM_LOADS_P. */ 3779 3780 void 3781 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p, 3782 unsigned *num_loads_p, unsigned *num_stores_p) 3783 { 3784 ssa_op_iter i; 3785 tree use; 3786 3787 *num_uses_p = 0; 3788 *num_loads_p = 0; 3789 *num_stores_p = 0; 3790 3791 /* Find out the total number of uses of PTR in STMT. */ 3792 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE) 3793 if (use == ptr) 3794 (*num_uses_p)++; 3795 3796 /* Now count the number of indirect references to PTR. This is 3797 truly awful, but we don't have much choice. There are no parent 3798 pointers inside INDIRECT_REFs, so an expression like 3799 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to 3800 find all the indirect and direct uses of x_1 inside. The only 3801 shortcut we can take is the fact that GIMPLE only allows 3802 INDIRECT_REFs inside the expressions below. */ 3803 if (is_gimple_assign (stmt) 3804 || gimple_code (stmt) == GIMPLE_RETURN 3805 || gimple_code (stmt) == GIMPLE_ASM 3806 || is_gimple_call (stmt)) 3807 { 3808 struct walk_stmt_info wi; 3809 struct count_ptr_d count; 3810 3811 count.ptr = ptr; 3812 count.num_stores = 0; 3813 count.num_loads = 0; 3814 3815 memset (&wi, 0, sizeof (wi)); 3816 wi.info = &count; 3817 walk_gimple_op (stmt, count_ptr_derefs, &wi); 3818 3819 *num_stores_p = count.num_stores; 3820 *num_loads_p = count.num_loads; 3821 } 3822 3823 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p); 3824 } 3825 3826 /* From a tree operand OP return the base of a load or store operation 3827 or NULL_TREE if OP is not a load or a store. */ 3828 3829 static tree 3830 get_base_loadstore (tree op) 3831 { 3832 while (handled_component_p (op)) 3833 op = TREE_OPERAND (op, 0); 3834 if (DECL_P (op) 3835 || INDIRECT_REF_P (op) 3836 || TREE_CODE (op) == MEM_REF 3837 || TREE_CODE (op) == TARGET_MEM_REF) 3838 return op; 3839 return NULL_TREE; 3840 } 3841 3842 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and 3843 VISIT_ADDR if non-NULL on loads, store and address-taken operands 3844 passing the STMT, the base of the operand, the operand itself containing 3845 the base and DATA to it. The base will be either a decl, an indirect 3846 reference (including TARGET_MEM_REF) or the argument of an address 3847 expression. 3848 Returns the results of these callbacks or'ed. */ 3849 3850 bool 3851 walk_stmt_load_store_addr_ops (gimple stmt, void *data, 3852 walk_stmt_load_store_addr_fn visit_load, 3853 walk_stmt_load_store_addr_fn visit_store, 3854 walk_stmt_load_store_addr_fn visit_addr) 3855 { 3856 bool ret = false; 3857 unsigned i; 3858 if (gimple_assign_single_p (stmt)) 3859 { 3860 tree lhs, rhs, arg; 3861 if (visit_store) 3862 { 3863 arg = gimple_assign_lhs (stmt); 3864 lhs = get_base_loadstore (arg); 3865 if (lhs) 3866 ret |= visit_store (stmt, lhs, arg, data); 3867 } 3868 arg = gimple_assign_rhs1 (stmt); 3869 rhs = arg; 3870 while (handled_component_p (rhs)) 3871 rhs = TREE_OPERAND (rhs, 0); 3872 if (visit_addr) 3873 { 3874 if (TREE_CODE (rhs) == ADDR_EXPR) 3875 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), arg, data); 3876 else if (TREE_CODE (rhs) == TARGET_MEM_REF 3877 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR) 3878 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), arg, 3879 data); 3880 else if (TREE_CODE (rhs) == OBJ_TYPE_REF 3881 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR) 3882 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs), 3883 0), arg, data); 3884 else if (TREE_CODE (rhs) == CONSTRUCTOR) 3885 { 3886 unsigned int ix; 3887 tree val; 3888 3889 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), ix, val) 3890 if (TREE_CODE (val) == ADDR_EXPR) 3891 ret |= visit_addr (stmt, TREE_OPERAND (val, 0), arg, data); 3892 else if (TREE_CODE (val) == OBJ_TYPE_REF 3893 && TREE_CODE (OBJ_TYPE_REF_OBJECT (val)) == ADDR_EXPR) 3894 ret |= visit_addr (stmt, 3895 TREE_OPERAND (OBJ_TYPE_REF_OBJECT (val), 3896 0), arg, data); 3897 } 3898 lhs = gimple_assign_lhs (stmt); 3899 if (TREE_CODE (lhs) == TARGET_MEM_REF 3900 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR) 3901 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), lhs, data); 3902 } 3903 if (visit_load) 3904 { 3905 rhs = get_base_loadstore (rhs); 3906 if (rhs) 3907 ret |= visit_load (stmt, rhs, arg, data); 3908 } 3909 } 3910 else if (visit_addr 3911 && (is_gimple_assign (stmt) 3912 || gimple_code (stmt) == GIMPLE_COND)) 3913 { 3914 for (i = 0; i < gimple_num_ops (stmt); ++i) 3915 { 3916 tree op = gimple_op (stmt, i); 3917 if (op == NULL_TREE) 3918 ; 3919 else if (TREE_CODE (op) == ADDR_EXPR) 3920 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); 3921 /* COND_EXPR and VCOND_EXPR rhs1 argument is a comparison 3922 tree with two operands. */ 3923 else if (i == 1 && COMPARISON_CLASS_P (op)) 3924 { 3925 if (TREE_CODE (TREE_OPERAND (op, 0)) == ADDR_EXPR) 3926 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 0), 3927 0), op, data); 3928 if (TREE_CODE (TREE_OPERAND (op, 1)) == ADDR_EXPR) 3929 ret |= visit_addr (stmt, TREE_OPERAND (TREE_OPERAND (op, 1), 3930 0), op, data); 3931 } 3932 } 3933 } 3934 else if (is_gimple_call (stmt)) 3935 { 3936 if (visit_store) 3937 { 3938 tree arg = gimple_call_lhs (stmt); 3939 if (arg) 3940 { 3941 tree lhs = get_base_loadstore (arg); 3942 if (lhs) 3943 ret |= visit_store (stmt, lhs, arg, data); 3944 } 3945 } 3946 if (visit_load || visit_addr) 3947 for (i = 0; i < gimple_call_num_args (stmt); ++i) 3948 { 3949 tree arg = gimple_call_arg (stmt, i); 3950 if (visit_addr 3951 && TREE_CODE (arg) == ADDR_EXPR) 3952 ret |= visit_addr (stmt, TREE_OPERAND (arg, 0), arg, data); 3953 else if (visit_load) 3954 { 3955 tree rhs = get_base_loadstore (arg); 3956 if (rhs) 3957 ret |= visit_load (stmt, rhs, arg, data); 3958 } 3959 } 3960 if (visit_addr 3961 && gimple_call_chain (stmt) 3962 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR) 3963 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0), 3964 gimple_call_chain (stmt), data); 3965 if (visit_addr 3966 && gimple_call_return_slot_opt_p (stmt) 3967 && gimple_call_lhs (stmt) != NULL_TREE 3968 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt)))) 3969 ret |= visit_addr (stmt, gimple_call_lhs (stmt), 3970 gimple_call_lhs (stmt), data); 3971 } 3972 else if (gimple_code (stmt) == GIMPLE_ASM) 3973 { 3974 unsigned noutputs; 3975 const char *constraint; 3976 const char **oconstraints; 3977 bool allows_mem, allows_reg, is_inout; 3978 noutputs = gimple_asm_noutputs (stmt); 3979 oconstraints = XALLOCAVEC (const char *, noutputs); 3980 if (visit_store || visit_addr) 3981 for (i = 0; i < gimple_asm_noutputs (stmt); ++i) 3982 { 3983 tree link = gimple_asm_output_op (stmt, i); 3984 tree op = get_base_loadstore (TREE_VALUE (link)); 3985 if (op && visit_store) 3986 ret |= visit_store (stmt, op, TREE_VALUE (link), data); 3987 if (visit_addr) 3988 { 3989 constraint = TREE_STRING_POINTER 3990 (TREE_VALUE (TREE_PURPOSE (link))); 3991 oconstraints[i] = constraint; 3992 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, 3993 &allows_reg, &is_inout); 3994 if (op && !allows_reg && allows_mem) 3995 ret |= visit_addr (stmt, op, TREE_VALUE (link), data); 3996 } 3997 } 3998 if (visit_load || visit_addr) 3999 for (i = 0; i < gimple_asm_ninputs (stmt); ++i) 4000 { 4001 tree link = gimple_asm_input_op (stmt, i); 4002 tree op = TREE_VALUE (link); 4003 if (visit_addr 4004 && TREE_CODE (op) == ADDR_EXPR) 4005 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); 4006 else if (visit_load || visit_addr) 4007 { 4008 op = get_base_loadstore (op); 4009 if (op) 4010 { 4011 if (visit_load) 4012 ret |= visit_load (stmt, op, TREE_VALUE (link), data); 4013 if (visit_addr) 4014 { 4015 constraint = TREE_STRING_POINTER 4016 (TREE_VALUE (TREE_PURPOSE (link))); 4017 parse_input_constraint (&constraint, 0, 0, noutputs, 4018 0, oconstraints, 4019 &allows_mem, &allows_reg); 4020 if (!allows_reg && allows_mem) 4021 ret |= visit_addr (stmt, op, TREE_VALUE (link), 4022 data); 4023 } 4024 } 4025 } 4026 } 4027 } 4028 else if (gimple_code (stmt) == GIMPLE_RETURN) 4029 { 4030 tree op = gimple_return_retval (stmt); 4031 if (op) 4032 { 4033 if (visit_addr 4034 && TREE_CODE (op) == ADDR_EXPR) 4035 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); 4036 else if (visit_load) 4037 { 4038 tree base = get_base_loadstore (op); 4039 if (base) 4040 ret |= visit_load (stmt, base, op, data); 4041 } 4042 } 4043 } 4044 else if (visit_addr 4045 && gimple_code (stmt) == GIMPLE_PHI) 4046 { 4047 for (i = 0; i < gimple_phi_num_args (stmt); ++i) 4048 { 4049 tree op = PHI_ARG_DEF (stmt, i); 4050 if (TREE_CODE (op) == ADDR_EXPR) 4051 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); 4052 } 4053 } 4054 else if (visit_addr 4055 && gimple_code (stmt) == GIMPLE_GOTO) 4056 { 4057 tree op = gimple_goto_dest (stmt); 4058 if (TREE_CODE (op) == ADDR_EXPR) 4059 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), op, data); 4060 } 4061 4062 return ret; 4063 } 4064 4065 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP 4066 should make a faster clone for this case. */ 4067 4068 bool 4069 walk_stmt_load_store_ops (gimple stmt, void *data, 4070 walk_stmt_load_store_addr_fn visit_load, 4071 walk_stmt_load_store_addr_fn visit_store) 4072 { 4073 return walk_stmt_load_store_addr_ops (stmt, data, 4074 visit_load, visit_store, NULL); 4075 } 4076 4077 /* Helper for gimple_ior_addresses_taken_1. */ 4078 4079 static bool 4080 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data) 4081 { 4082 bitmap addresses_taken = (bitmap)data; 4083 addr = get_base_address (addr); 4084 if (addr 4085 && DECL_P (addr)) 4086 { 4087 bitmap_set_bit (addresses_taken, DECL_UID (addr)); 4088 return true; 4089 } 4090 return false; 4091 } 4092 4093 /* Set the bit for the uid of all decls that have their address taken 4094 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there 4095 were any in this stmt. */ 4096 4097 bool 4098 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt) 4099 { 4100 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL, 4101 gimple_ior_addresses_taken_1); 4102 } 4103 4104 4105 /* Return a printable name for symbol DECL. */ 4106 4107 const char * 4108 gimple_decl_printable_name (tree decl, int verbosity) 4109 { 4110 if (!DECL_NAME (decl)) 4111 return NULL; 4112 4113 if (DECL_ASSEMBLER_NAME_SET_P (decl)) 4114 { 4115 const char *str, *mangled_str; 4116 int dmgl_opts = DMGL_NO_OPTS; 4117 4118 if (verbosity >= 2) 4119 { 4120 dmgl_opts = DMGL_VERBOSE 4121 | DMGL_ANSI 4122 | DMGL_GNU_V3 4123 | DMGL_RET_POSTFIX; 4124 if (TREE_CODE (decl) == FUNCTION_DECL) 4125 dmgl_opts |= DMGL_PARAMS; 4126 } 4127 4128 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)); 4129 str = cplus_demangle_v3 (mangled_str, dmgl_opts); 4130 return (str) ? str : mangled_str; 4131 } 4132 4133 return IDENTIFIER_POINTER (DECL_NAME (decl)); 4134 } 4135 4136 /* Return TRUE iff stmt is a call to a built-in function. */ 4137 4138 bool 4139 is_gimple_builtin_call (gimple stmt) 4140 { 4141 tree callee; 4142 4143 if (is_gimple_call (stmt) 4144 && (callee = gimple_call_fndecl (stmt)) 4145 && is_builtin_fn (callee) 4146 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL) 4147 return true; 4148 4149 return false; 4150 } 4151 4152 /* Return true when STMTs arguments match those of FNDECL. */ 4153 4154 static bool 4155 validate_call (gimple stmt, tree fndecl) 4156 { 4157 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); 4158 unsigned nargs = gimple_call_num_args (stmt); 4159 for (unsigned i = 0; i < nargs; ++i) 4160 { 4161 /* Variadic args follow. */ 4162 if (!targs) 4163 return true; 4164 tree arg = gimple_call_arg (stmt, i); 4165 if (INTEGRAL_TYPE_P (TREE_TYPE (arg)) 4166 && INTEGRAL_TYPE_P (TREE_VALUE (targs))) 4167 ; 4168 else if (POINTER_TYPE_P (TREE_TYPE (arg)) 4169 && POINTER_TYPE_P (TREE_VALUE (targs))) 4170 ; 4171 else if (TREE_CODE (TREE_TYPE (arg)) 4172 != TREE_CODE (TREE_VALUE (targs))) 4173 return false; 4174 targs = TREE_CHAIN (targs); 4175 } 4176 if (targs && !VOID_TYPE_P (TREE_VALUE (targs))) 4177 return false; 4178 return true; 4179 } 4180 4181 /* Return true when STMT is builtins call to CLASS. */ 4182 4183 bool 4184 gimple_call_builtin_p (gimple stmt, enum built_in_class klass) 4185 { 4186 tree fndecl; 4187 if (is_gimple_call (stmt) 4188 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE 4189 && DECL_BUILT_IN_CLASS (fndecl) == klass) 4190 return validate_call (stmt, fndecl); 4191 return false; 4192 } 4193 4194 /* Return true when STMT is builtins call to CODE of CLASS. */ 4195 4196 bool 4197 gimple_call_builtin_p (gimple stmt, enum built_in_function code) 4198 { 4199 tree fndecl; 4200 if (is_gimple_call (stmt) 4201 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE 4202 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 4203 && DECL_FUNCTION_CODE (fndecl) == code) 4204 return validate_call (stmt, fndecl); 4205 return false; 4206 } 4207 4208 /* Return true if STMT clobbers memory. STMT is required to be a 4209 GIMPLE_ASM. */ 4210 4211 bool 4212 gimple_asm_clobbers_memory_p (const_gimple stmt) 4213 { 4214 unsigned i; 4215 4216 for (i = 0; i < gimple_asm_nclobbers (stmt); i++) 4217 { 4218 tree op = gimple_asm_clobber_op (stmt, i); 4219 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0) 4220 return true; 4221 } 4222 4223 return false; 4224 } 4225 #include "gt-gimple.h" 4226