xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/gimple.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Gimple IR support functions.
2 
3    Copyright (C) 2007-2017 Free Software Foundation, Inc.
4    Contributed by Aldy Hernandez <aldyh@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "asan.h"
45 
46 
47 /* All the tuples have their operand vector (if present) at the very bottom
48    of the structure.  Therefore, the offset required to find the
49    operands vector the size of the structure minus the size of the 1
50    element tree array at the end (see gimple_ops).  */
51 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
52 	(HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
53 EXPORTED_CONST size_t gimple_ops_offset_[] = {
54 #include "gsstruct.def"
55 };
56 #undef DEFGSSTRUCT
57 
58 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
59 static const size_t gsstruct_code_size[] = {
60 #include "gsstruct.def"
61 };
62 #undef DEFGSSTRUCT
63 
64 #define DEFGSCODE(SYM, NAME, GSSCODE)	NAME,
65 const char *const gimple_code_name[] = {
66 #include "gimple.def"
67 };
68 #undef DEFGSCODE
69 
70 #define DEFGSCODE(SYM, NAME, GSSCODE)	GSSCODE,
71 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
72 #include "gimple.def"
73 };
74 #undef DEFGSCODE
75 
76 /* Gimple stats.  */
77 
78 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
79 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
80 
81 /* Keep in sync with gimple.h:enum gimple_alloc_kind.  */
82 static const char * const gimple_alloc_kind_names[] = {
83     "assignments",
84     "phi nodes",
85     "conditionals",
86     "everything else"
87 };
88 
89 /* Static gimple tuple members.  */
90 const enum gimple_code gassign::code_;
91 const enum gimple_code gcall::code_;
92 const enum gimple_code gcond::code_;
93 
94 
95 /* Gimple tuple constructors.
96    Note: Any constructor taking a ``gimple_seq'' as a parameter, can
97    be passed a NULL to start with an empty sequence.  */
98 
99 /* Set the code for statement G to CODE.  */
100 
101 static inline void
102 gimple_set_code (gimple *g, enum gimple_code code)
103 {
104   g->code = code;
105 }
106 
107 /* Return the number of bytes needed to hold a GIMPLE statement with
108    code CODE.  */
109 
110 static inline size_t
111 gimple_size (enum gimple_code code)
112 {
113   return gsstruct_code_size[gss_for_code (code)];
114 }
115 
116 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
117    operands.  */
118 
119 gimple *
120 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
121 {
122   size_t size;
123   gimple *stmt;
124 
125   size = gimple_size (code);
126   if (num_ops > 0)
127     size += sizeof (tree) * (num_ops - 1);
128 
129   if (GATHER_STATISTICS)
130     {
131       enum gimple_alloc_kind kind = gimple_alloc_kind (code);
132       gimple_alloc_counts[(int) kind]++;
133       gimple_alloc_sizes[(int) kind] += size;
134     }
135 
136   stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
137   gimple_set_code (stmt, code);
138   gimple_set_num_ops (stmt, num_ops);
139 
140   /* Do not call gimple_set_modified here as it has other side
141      effects and this tuple is still not completely built.  */
142   stmt->modified = 1;
143   gimple_init_singleton (stmt);
144 
145   return stmt;
146 }
147 
148 /* Set SUBCODE to be the code of the expression computed by statement G.  */
149 
150 static inline void
151 gimple_set_subcode (gimple *g, unsigned subcode)
152 {
153   /* We only have 16 bits for the RHS code.  Assert that we are not
154      overflowing it.  */
155   gcc_assert (subcode < (1 << 16));
156   g->subcode = subcode;
157 }
158 
159 
160 
161 /* Build a tuple with operands.  CODE is the statement to build (which
162    must be one of the GIMPLE_WITH_OPS tuples).  SUBCODE is the subcode
163    for the new tuple.  NUM_OPS is the number of operands to allocate.  */
164 
165 #define gimple_build_with_ops(c, s, n) \
166   gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
167 
168 static gimple *
169 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
170 		            unsigned num_ops MEM_STAT_DECL)
171 {
172   gimple *s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
173   gimple_set_subcode (s, subcode);
174 
175   return s;
176 }
177 
178 
179 /* Build a GIMPLE_RETURN statement returning RETVAL.  */
180 
181 greturn *
182 gimple_build_return (tree retval)
183 {
184   greturn *s
185     = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
186 					       2));
187   if (retval)
188     gimple_return_set_retval (s, retval);
189   return s;
190 }
191 
192 /* Reset alias information on call S.  */
193 
194 void
195 gimple_call_reset_alias_info (gcall *s)
196 {
197   if (gimple_call_flags (s) & ECF_CONST)
198     memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
199   else
200     pt_solution_reset (gimple_call_use_set (s));
201   if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
202     memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
203   else
204     pt_solution_reset (gimple_call_clobber_set (s));
205 }
206 
207 /* Helper for gimple_build_call, gimple_build_call_valist,
208    gimple_build_call_vec and gimple_build_call_from_tree.  Build the basic
209    components of a GIMPLE_CALL statement to function FN with NARGS
210    arguments.  */
211 
212 static inline gcall *
213 gimple_build_call_1 (tree fn, unsigned nargs)
214 {
215   gcall *s
216     = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
217 					     nargs + 3));
218   if (TREE_CODE (fn) == FUNCTION_DECL)
219     fn = build_fold_addr_expr (fn);
220   gimple_set_op (s, 1, fn);
221   gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
222   gimple_call_reset_alias_info (s);
223   return s;
224 }
225 
226 
227 /* Build a GIMPLE_CALL statement to function FN with the arguments
228    specified in vector ARGS.  */
229 
230 gcall *
231 gimple_build_call_vec (tree fn, vec<tree> args)
232 {
233   unsigned i;
234   unsigned nargs = args.length ();
235   gcall *call = gimple_build_call_1 (fn, nargs);
236 
237   for (i = 0; i < nargs; i++)
238     gimple_call_set_arg (call, i, args[i]);
239 
240   return call;
241 }
242 
243 
244 /* Build a GIMPLE_CALL statement to function FN.  NARGS is the number of
245    arguments.  The ... are the arguments.  */
246 
247 gcall *
248 gimple_build_call (tree fn, unsigned nargs, ...)
249 {
250   va_list ap;
251   gcall *call;
252   unsigned i;
253 
254   gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
255 
256   call = gimple_build_call_1 (fn, nargs);
257 
258   va_start (ap, nargs);
259   for (i = 0; i < nargs; i++)
260     gimple_call_set_arg (call, i, va_arg (ap, tree));
261   va_end (ap);
262 
263   return call;
264 }
265 
266 
267 /* Build a GIMPLE_CALL statement to function FN.  NARGS is the number of
268    arguments.  AP contains the arguments.  */
269 
270 gcall *
271 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
272 {
273   gcall *call;
274   unsigned i;
275 
276   gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
277 
278   call = gimple_build_call_1 (fn, nargs);
279 
280   for (i = 0; i < nargs; i++)
281     gimple_call_set_arg (call, i, va_arg (ap, tree));
282 
283   return call;
284 }
285 
286 
287 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
288    Build the basic components of a GIMPLE_CALL statement to internal
289    function FN with NARGS arguments.  */
290 
291 static inline gcall *
292 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
293 {
294   gcall *s
295     = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
296 					     nargs + 3));
297   s->subcode |= GF_CALL_INTERNAL;
298   gimple_call_set_internal_fn (s, fn);
299   gimple_call_reset_alias_info (s);
300   return s;
301 }
302 
303 
304 /* Build a GIMPLE_CALL statement to internal function FN.  NARGS is
305    the number of arguments.  The ... are the arguments.  */
306 
307 gcall *
308 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
309 {
310   va_list ap;
311   gcall *call;
312   unsigned i;
313 
314   call = gimple_build_call_internal_1 (fn, nargs);
315   va_start (ap, nargs);
316   for (i = 0; i < nargs; i++)
317     gimple_call_set_arg (call, i, va_arg (ap, tree));
318   va_end (ap);
319 
320   return call;
321 }
322 
323 
324 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
325    specified in vector ARGS.  */
326 
327 gcall *
328 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
329 {
330   unsigned i, nargs;
331   gcall *call;
332 
333   nargs = args.length ();
334   call = gimple_build_call_internal_1 (fn, nargs);
335   for (i = 0; i < nargs; i++)
336     gimple_call_set_arg (call, i, args[i]);
337 
338   return call;
339 }
340 
341 
342 /* Build a GIMPLE_CALL statement from CALL_EXPR T.  Note that T is
343    assumed to be in GIMPLE form already.  Minimal checking is done of
344    this fact.  */
345 
346 gcall *
347 gimple_build_call_from_tree (tree t)
348 {
349   unsigned i, nargs;
350   gcall *call;
351   tree fndecl = get_callee_fndecl (t);
352 
353   gcc_assert (TREE_CODE (t) == CALL_EXPR);
354 
355   nargs = call_expr_nargs (t);
356   call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
357 
358   for (i = 0; i < nargs; i++)
359     gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
360 
361   gimple_set_block (call, TREE_BLOCK (t));
362 
363   /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL.  */
364   gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
365   gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
366   gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
367   gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
368   if (fndecl
369       && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
370       && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
371 	  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
372     gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
373   else
374     gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
375   gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
376   gimple_call_set_nothrow (call, TREE_NOTHROW (t));
377   gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
378   gimple_set_no_warning (call, TREE_NO_WARNING (t));
379   gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
380 
381   return call;
382 }
383 
384 
385 /* Build a GIMPLE_ASSIGN statement.
386 
387    LHS of the assignment.
388    RHS of the assignment which can be unary or binary.  */
389 
390 gassign *
391 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
392 {
393   enum tree_code subcode;
394   tree op1, op2, op3;
395 
396   extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
397   return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
398 }
399 
400 
401 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
402    OP1, OP2 and OP3.  */
403 
404 static inline gassign *
405 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
406 		       tree op2, tree op3 MEM_STAT_DECL)
407 {
408   unsigned num_ops;
409   gassign *p;
410 
411   /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
412      code).  */
413   num_ops = get_gimple_rhs_num_ops (subcode) + 1;
414 
415   p = as_a <gassign *> (
416         gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
417 				    PASS_MEM_STAT));
418   gimple_assign_set_lhs (p, lhs);
419   gimple_assign_set_rhs1 (p, op1);
420   if (op2)
421     {
422       gcc_assert (num_ops > 2);
423       gimple_assign_set_rhs2 (p, op2);
424     }
425 
426   if (op3)
427     {
428       gcc_assert (num_ops > 3);
429       gimple_assign_set_rhs3 (p, op3);
430     }
431 
432   return p;
433 }
434 
435 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
436    OP1, OP2 and OP3.  */
437 
438 gassign *
439 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
440 		     tree op2, tree op3 MEM_STAT_DECL)
441 {
442   return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
443 }
444 
445 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
446    OP1 and OP2.  */
447 
448 gassign *
449 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
450 		     tree op2 MEM_STAT_DECL)
451 {
452   return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
453 				PASS_MEM_STAT);
454 }
455 
456 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1.  */
457 
458 gassign *
459 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
460 {
461   return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
462 				PASS_MEM_STAT);
463 }
464 
465 
466 /* Build a GIMPLE_COND statement.
467 
468    PRED is the condition used to compare LHS and the RHS.
469    T_LABEL is the label to jump to if the condition is true.
470    F_LABEL is the label to jump to otherwise.  */
471 
472 gcond *
473 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
474 		   tree t_label, tree f_label)
475 {
476   gcond *p;
477 
478   gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
479   p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
480   gimple_cond_set_lhs (p, lhs);
481   gimple_cond_set_rhs (p, rhs);
482   gimple_cond_set_true_label (p, t_label);
483   gimple_cond_set_false_label (p, f_label);
484   return p;
485 }
486 
487 /* Build a GIMPLE_COND statement from the conditional expression tree
488    COND.  T_LABEL and F_LABEL are as in gimple_build_cond.  */
489 
490 gcond *
491 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
492 {
493   enum tree_code code;
494   tree lhs, rhs;
495 
496   gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
497   return gimple_build_cond (code, lhs, rhs, t_label, f_label);
498 }
499 
500 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
501    boolean expression tree COND.  */
502 
503 void
504 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
505 {
506   enum tree_code code;
507   tree lhs, rhs;
508 
509   gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
510   gimple_cond_set_condition (stmt, code, lhs, rhs);
511 }
512 
513 /* Build a GIMPLE_LABEL statement for LABEL.  */
514 
515 glabel *
516 gimple_build_label (tree label)
517 {
518   glabel *p
519     = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
520   gimple_label_set_label (p, label);
521   return p;
522 }
523 
524 /* Build a GIMPLE_GOTO statement to label DEST.  */
525 
526 ggoto *
527 gimple_build_goto (tree dest)
528 {
529   ggoto *p
530     = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
531   gimple_goto_set_dest (p, dest);
532   return p;
533 }
534 
535 
536 /* Build a GIMPLE_NOP statement.  */
537 
538 gimple *
539 gimple_build_nop (void)
540 {
541   return gimple_alloc (GIMPLE_NOP, 0);
542 }
543 
544 
545 /* Build a GIMPLE_BIND statement.
546    VARS are the variables in BODY.
547    BLOCK is the containing block.  */
548 
549 gbind *
550 gimple_build_bind (tree vars, gimple_seq body, tree block)
551 {
552   gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
553   gimple_bind_set_vars (p, vars);
554   if (body)
555     gimple_bind_set_body (p, body);
556   if (block)
557     gimple_bind_set_block (p, block);
558   return p;
559 }
560 
561 /* Helper function to set the simple fields of a asm stmt.
562 
563    STRING is a pointer to a string that is the asm blocks assembly code.
564    NINPUT is the number of register inputs.
565    NOUTPUT is the number of register outputs.
566    NCLOBBERS is the number of clobbered registers.
567    */
568 
569 static inline gasm *
570 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
571                     unsigned nclobbers, unsigned nlabels)
572 {
573   gasm *p;
574   int size = strlen (string);
575 
576   /* ASMs with labels cannot have outputs.  This should have been
577      enforced by the front end.  */
578   gcc_assert (nlabels == 0 || noutputs == 0);
579 
580   p = as_a <gasm *> (
581         gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
582 			       ninputs + noutputs + nclobbers + nlabels));
583 
584   p->ni = ninputs;
585   p->no = noutputs;
586   p->nc = nclobbers;
587   p->nl = nlabels;
588   p->string = ggc_alloc_string (string, size);
589 
590   if (GATHER_STATISTICS)
591     gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
592 
593   return p;
594 }
595 
596 /* Build a GIMPLE_ASM statement.
597 
598    STRING is the assembly code.
599    NINPUT is the number of register inputs.
600    NOUTPUT is the number of register outputs.
601    NCLOBBERS is the number of clobbered registers.
602    INPUTS is a vector of the input register parameters.
603    OUTPUTS is a vector of the output register parameters.
604    CLOBBERS is a vector of the clobbered register parameters.
605    LABELS is a vector of destination labels.  */
606 
607 gasm *
608 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
609                       vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
610 		      vec<tree, va_gc> *labels)
611 {
612   gasm *p;
613   unsigned i;
614 
615   p = gimple_build_asm_1 (string,
616                           vec_safe_length (inputs),
617                           vec_safe_length (outputs),
618                           vec_safe_length (clobbers),
619 			  vec_safe_length (labels));
620 
621   for (i = 0; i < vec_safe_length (inputs); i++)
622     gimple_asm_set_input_op (p, i, (*inputs)[i]);
623 
624   for (i = 0; i < vec_safe_length (outputs); i++)
625     gimple_asm_set_output_op (p, i, (*outputs)[i]);
626 
627   for (i = 0; i < vec_safe_length (clobbers); i++)
628     gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
629 
630   for (i = 0; i < vec_safe_length (labels); i++)
631     gimple_asm_set_label_op (p, i, (*labels)[i]);
632 
633   return p;
634 }
635 
636 /* Build a GIMPLE_CATCH statement.
637 
638   TYPES are the catch types.
639   HANDLER is the exception handler.  */
640 
641 gcatch *
642 gimple_build_catch (tree types, gimple_seq handler)
643 {
644   gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
645   gimple_catch_set_types (p, types);
646   if (handler)
647     gimple_catch_set_handler (p, handler);
648 
649   return p;
650 }
651 
652 /* Build a GIMPLE_EH_FILTER statement.
653 
654    TYPES are the filter's types.
655    FAILURE is the filter's failure action.  */
656 
657 geh_filter *
658 gimple_build_eh_filter (tree types, gimple_seq failure)
659 {
660   geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
661   gimple_eh_filter_set_types (p, types);
662   if (failure)
663     gimple_eh_filter_set_failure (p, failure);
664 
665   return p;
666 }
667 
668 /* Build a GIMPLE_EH_MUST_NOT_THROW statement.  */
669 
670 geh_mnt *
671 gimple_build_eh_must_not_throw (tree decl)
672 {
673   geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
674 
675   gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
676   gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
677   gimple_eh_must_not_throw_set_fndecl (p, decl);
678 
679   return p;
680 }
681 
682 /* Build a GIMPLE_EH_ELSE statement.  */
683 
684 geh_else *
685 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
686 {
687   geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
688   gimple_eh_else_set_n_body (p, n_body);
689   gimple_eh_else_set_e_body (p, e_body);
690   return p;
691 }
692 
693 /* Build a GIMPLE_TRY statement.
694 
695    EVAL is the expression to evaluate.
696    CLEANUP is the cleanup expression.
697    KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
698    whether this is a try/catch or a try/finally respectively.  */
699 
700 gtry *
701 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
702     		  enum gimple_try_flags kind)
703 {
704   gtry *p;
705 
706   gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
707   p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
708   gimple_set_subcode (p, kind);
709   if (eval)
710     gimple_try_set_eval (p, eval);
711   if (cleanup)
712     gimple_try_set_cleanup (p, cleanup);
713 
714   return p;
715 }
716 
717 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
718 
719    CLEANUP is the cleanup expression.  */
720 
721 gimple *
722 gimple_build_wce (gimple_seq cleanup)
723 {
724   gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
725   if (cleanup)
726     gimple_wce_set_cleanup (p, cleanup);
727 
728   return p;
729 }
730 
731 
732 /* Build a GIMPLE_RESX statement.  */
733 
734 gresx *
735 gimple_build_resx (int region)
736 {
737   gresx *p
738     = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
739   p->region = region;
740   return p;
741 }
742 
743 
744 /* The helper for constructing a gimple switch statement.
745    INDEX is the switch's index.
746    NLABELS is the number of labels in the switch excluding the default.
747    DEFAULT_LABEL is the default label for the switch statement.  */
748 
749 gswitch *
750 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
751 {
752   /* nlabels + 1 default label + 1 index.  */
753   gcc_checking_assert (default_label);
754   gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
755 							ERROR_MARK,
756 							1 + 1 + nlabels));
757   gimple_switch_set_index (p, index);
758   gimple_switch_set_default_label (p, default_label);
759   return p;
760 }
761 
762 /* Build a GIMPLE_SWITCH statement.
763 
764    INDEX is the switch's index.
765    DEFAULT_LABEL is the default label
766    ARGS is a vector of labels excluding the default.  */
767 
768 gswitch *
769 gimple_build_switch (tree index, tree default_label, vec<tree> args)
770 {
771   unsigned i, nlabels = args.length ();
772 
773   gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
774 
775   /* Copy the labels from the vector to the switch statement.  */
776   for (i = 0; i < nlabels; i++)
777     gimple_switch_set_label (p, i + 1, args[i]);
778 
779   return p;
780 }
781 
782 /* Build a GIMPLE_EH_DISPATCH statement.  */
783 
784 geh_dispatch *
785 gimple_build_eh_dispatch (int region)
786 {
787   geh_dispatch *p
788     = as_a <geh_dispatch *> (
789 	gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
790   p->region = region;
791   return p;
792 }
793 
794 /* Build a new GIMPLE_DEBUG_BIND statement.
795 
796    VAR is bound to VALUE; block and location are taken from STMT.  */
797 
798 gdebug *
799 gimple_build_debug_bind_stat (tree var, tree value, gimple *stmt MEM_STAT_DECL)
800 {
801   gdebug *p
802     = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
803 						   (unsigned)GIMPLE_DEBUG_BIND, 2
804 						   PASS_MEM_STAT));
805   gimple_debug_bind_set_var (p, var);
806   gimple_debug_bind_set_value (p, value);
807   if (stmt)
808     gimple_set_location (p, gimple_location (stmt));
809 
810   return p;
811 }
812 
813 
814 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
815 
816    VAR is bound to VALUE; block and location are taken from STMT.  */
817 
818 gdebug *
819 gimple_build_debug_source_bind_stat (tree var, tree value,
820 				     gimple *stmt MEM_STAT_DECL)
821 {
822   gdebug *p
823     = as_a <gdebug *> (
824         gimple_build_with_ops_stat (GIMPLE_DEBUG,
825 				    (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
826 				    PASS_MEM_STAT));
827 
828   gimple_debug_source_bind_set_var (p, var);
829   gimple_debug_source_bind_set_value (p, value);
830   if (stmt)
831     gimple_set_location (p, gimple_location (stmt));
832 
833   return p;
834 }
835 
836 
837 /* Build a GIMPLE_OMP_CRITICAL statement.
838 
839    BODY is the sequence of statements for which only one thread can execute.
840    NAME is optional identifier for this critical block.
841    CLAUSES are clauses for this critical block.  */
842 
843 gomp_critical *
844 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
845 {
846   gomp_critical *p
847     = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
848   gimple_omp_critical_set_name (p, name);
849   gimple_omp_critical_set_clauses (p, clauses);
850   if (body)
851     gimple_omp_set_body (p, body);
852 
853   return p;
854 }
855 
856 /* Build a GIMPLE_OMP_FOR statement.
857 
858    BODY is sequence of statements inside the for loop.
859    KIND is the `for' variant.
860    CLAUSES, are any of the construct's clauses.
861    COLLAPSE is the collapse count.
862    PRE_BODY is the sequence of statements that are loop invariant.  */
863 
864 gomp_for *
865 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
866 		      gimple_seq pre_body)
867 {
868   gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
869   if (body)
870     gimple_omp_set_body (p, body);
871   gimple_omp_for_set_clauses (p, clauses);
872   gimple_omp_for_set_kind (p, kind);
873   p->collapse = collapse;
874   p->iter =  ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
875 
876   if (pre_body)
877     gimple_omp_for_set_pre_body (p, pre_body);
878 
879   return p;
880 }
881 
882 
883 /* Build a GIMPLE_OMP_PARALLEL statement.
884 
885    BODY is sequence of statements which are executed in parallel.
886    CLAUSES, are the OMP parallel construct's clauses.
887    CHILD_FN is the function created for the parallel threads to execute.
888    DATA_ARG are the shared data argument(s).  */
889 
890 gomp_parallel *
891 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
892 			   tree data_arg)
893 {
894   gomp_parallel *p
895     = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
896   if (body)
897     gimple_omp_set_body (p, body);
898   gimple_omp_parallel_set_clauses (p, clauses);
899   gimple_omp_parallel_set_child_fn (p, child_fn);
900   gimple_omp_parallel_set_data_arg (p, data_arg);
901 
902   return p;
903 }
904 
905 
906 /* Build a GIMPLE_OMP_TASK statement.
907 
908    BODY is sequence of statements which are executed by the explicit task.
909    CLAUSES, are the OMP parallel construct's clauses.
910    CHILD_FN is the function created for the parallel threads to execute.
911    DATA_ARG are the shared data argument(s).
912    COPY_FN is the optional function for firstprivate initialization.
913    ARG_SIZE and ARG_ALIGN are size and alignment of the data block.  */
914 
915 gomp_task *
916 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
917 		       tree data_arg, tree copy_fn, tree arg_size,
918 		       tree arg_align)
919 {
920   gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
921   if (body)
922     gimple_omp_set_body (p, body);
923   gimple_omp_task_set_clauses (p, clauses);
924   gimple_omp_task_set_child_fn (p, child_fn);
925   gimple_omp_task_set_data_arg (p, data_arg);
926   gimple_omp_task_set_copy_fn (p, copy_fn);
927   gimple_omp_task_set_arg_size (p, arg_size);
928   gimple_omp_task_set_arg_align (p, arg_align);
929 
930   return p;
931 }
932 
933 
934 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
935 
936    BODY is the sequence of statements in the section.  */
937 
938 gimple *
939 gimple_build_omp_section (gimple_seq body)
940 {
941   gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
942   if (body)
943     gimple_omp_set_body (p, body);
944 
945   return p;
946 }
947 
948 
949 /* Build a GIMPLE_OMP_MASTER statement.
950 
951    BODY is the sequence of statements to be executed by just the master.  */
952 
953 gimple *
954 gimple_build_omp_master (gimple_seq body)
955 {
956   gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
957   if (body)
958     gimple_omp_set_body (p, body);
959 
960   return p;
961 }
962 
963 /* Build a GIMPLE_OMP_GRID_BODY statement.
964 
965    BODY is the sequence of statements to be executed by the kernel.  */
966 
967 gimple *
968 gimple_build_omp_grid_body (gimple_seq body)
969 {
970   gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
971   if (body)
972     gimple_omp_set_body (p, body);
973 
974   return p;
975 }
976 
977 /* Build a GIMPLE_OMP_TASKGROUP statement.
978 
979    BODY is the sequence of statements to be executed by the taskgroup
980    construct.  */
981 
982 gimple *
983 gimple_build_omp_taskgroup (gimple_seq body)
984 {
985   gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
986   if (body)
987     gimple_omp_set_body (p, body);
988 
989   return p;
990 }
991 
992 
993 /* Build a GIMPLE_OMP_CONTINUE statement.
994 
995    CONTROL_DEF is the definition of the control variable.
996    CONTROL_USE is the use of the control variable.  */
997 
998 gomp_continue *
999 gimple_build_omp_continue (tree control_def, tree control_use)
1000 {
1001   gomp_continue *p
1002     = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1003   gimple_omp_continue_set_control_def (p, control_def);
1004   gimple_omp_continue_set_control_use (p, control_use);
1005   return p;
1006 }
1007 
1008 /* Build a GIMPLE_OMP_ORDERED statement.
1009 
1010    BODY is the sequence of statements inside a loop that will executed in
1011    sequence.
1012    CLAUSES are clauses for this statement.  */
1013 
1014 gomp_ordered *
1015 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1016 {
1017   gomp_ordered *p
1018     = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1019   gimple_omp_ordered_set_clauses (p, clauses);
1020   if (body)
1021     gimple_omp_set_body (p, body);
1022 
1023   return p;
1024 }
1025 
1026 
1027 /* Build a GIMPLE_OMP_RETURN statement.
1028    WAIT_P is true if this is a non-waiting return.  */
1029 
1030 gimple *
1031 gimple_build_omp_return (bool wait_p)
1032 {
1033   gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1034   if (wait_p)
1035     gimple_omp_return_set_nowait (p);
1036 
1037   return p;
1038 }
1039 
1040 
1041 /* Build a GIMPLE_OMP_SECTIONS statement.
1042 
1043    BODY is a sequence of section statements.
1044    CLAUSES are any of the OMP sections contsruct's clauses: private,
1045    firstprivate, lastprivate, reduction, and nowait.  */
1046 
1047 gomp_sections *
1048 gimple_build_omp_sections (gimple_seq body, tree clauses)
1049 {
1050   gomp_sections *p
1051     = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1052   if (body)
1053     gimple_omp_set_body (p, body);
1054   gimple_omp_sections_set_clauses (p, clauses);
1055 
1056   return p;
1057 }
1058 
1059 
1060 /* Build a GIMPLE_OMP_SECTIONS_SWITCH.  */
1061 
1062 gimple *
1063 gimple_build_omp_sections_switch (void)
1064 {
1065   return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1066 }
1067 
1068 
1069 /* Build a GIMPLE_OMP_SINGLE statement.
1070 
1071    BODY is the sequence of statements that will be executed once.
1072    CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1073    copyprivate, nowait.  */
1074 
1075 gomp_single *
1076 gimple_build_omp_single (gimple_seq body, tree clauses)
1077 {
1078   gomp_single *p
1079     = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1080   if (body)
1081     gimple_omp_set_body (p, body);
1082   gimple_omp_single_set_clauses (p, clauses);
1083 
1084   return p;
1085 }
1086 
1087 
1088 /* Build a GIMPLE_OMP_TARGET statement.
1089 
1090    BODY is the sequence of statements that will be executed.
1091    KIND is the kind of the region.
1092    CLAUSES are any of the construct's clauses.  */
1093 
1094 gomp_target *
1095 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1096 {
1097   gomp_target *p
1098     = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1099   if (body)
1100     gimple_omp_set_body (p, body);
1101   gimple_omp_target_set_clauses (p, clauses);
1102   gimple_omp_target_set_kind (p, kind);
1103 
1104   return p;
1105 }
1106 
1107 
1108 /* Build a GIMPLE_OMP_TEAMS statement.
1109 
1110    BODY is the sequence of statements that will be executed.
1111    CLAUSES are any of the OMP teams construct's clauses.  */
1112 
1113 gomp_teams *
1114 gimple_build_omp_teams (gimple_seq body, tree clauses)
1115 {
1116   gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1117   if (body)
1118     gimple_omp_set_body (p, body);
1119   gimple_omp_teams_set_clauses (p, clauses);
1120 
1121   return p;
1122 }
1123 
1124 
1125 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement.  */
1126 
1127 gomp_atomic_load *
1128 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1129 {
1130   gomp_atomic_load *p
1131     = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1132   gimple_omp_atomic_load_set_lhs (p, lhs);
1133   gimple_omp_atomic_load_set_rhs (p, rhs);
1134   return p;
1135 }
1136 
1137 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1138 
1139    VAL is the value we are storing.  */
1140 
1141 gomp_atomic_store *
1142 gimple_build_omp_atomic_store (tree val)
1143 {
1144   gomp_atomic_store *p
1145     = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1146   gimple_omp_atomic_store_set_val (p, val);
1147   return p;
1148 }
1149 
1150 /* Build a GIMPLE_TRANSACTION statement.  */
1151 
1152 gtransaction *
1153 gimple_build_transaction (gimple_seq body)
1154 {
1155   gtransaction *p
1156     = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1157   gimple_transaction_set_body (p, body);
1158   gimple_transaction_set_label_norm (p, 0);
1159   gimple_transaction_set_label_uninst (p, 0);
1160   gimple_transaction_set_label_over (p, 0);
1161   return p;
1162 }
1163 
1164 #if defined ENABLE_GIMPLE_CHECKING
1165 /* Complain of a gimple type mismatch and die.  */
1166 
1167 void
1168 gimple_check_failed (const gimple *gs, const char *file, int line,
1169 		     const char *function, enum gimple_code code,
1170 		     enum tree_code subcode)
1171 {
1172   internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1173       		  gimple_code_name[code],
1174 		  get_tree_code_name (subcode),
1175 		  gimple_code_name[gimple_code (gs)],
1176 		  gs->subcode > 0
1177 		    ? get_tree_code_name ((enum tree_code) gs->subcode)
1178 		    : "",
1179 		  function, trim_filename (file), line);
1180 }
1181 #endif /* ENABLE_GIMPLE_CHECKING */
1182 
1183 
1184 /* Link gimple statement GS to the end of the sequence *SEQ_P.  If
1185    *SEQ_P is NULL, a new sequence is allocated.  */
1186 
1187 void
1188 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1189 {
1190   gimple_stmt_iterator si;
1191   if (gs == NULL)
1192     return;
1193 
1194   si = gsi_last (*seq_p);
1195   gsi_insert_after (&si, gs, GSI_NEW_STMT);
1196 }
1197 
1198 /* Link gimple statement GS to the end of the sequence *SEQ_P.  If
1199    *SEQ_P is NULL, a new sequence is allocated.  This function is
1200    similar to gimple_seq_add_stmt, but does not scan the operands.
1201    During gimplification, we need to manipulate statement sequences
1202    before the def/use vectors have been constructed.  */
1203 
1204 void
1205 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1206 {
1207   gimple_stmt_iterator si;
1208 
1209   if (gs == NULL)
1210     return;
1211 
1212   si = gsi_last (*seq_p);
1213   gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1214 }
1215 
1216 /* Append sequence SRC to the end of sequence *DST_P.  If *DST_P is
1217    NULL, a new sequence is allocated.  */
1218 
1219 void
1220 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1221 {
1222   gimple_stmt_iterator si;
1223   if (src == NULL)
1224     return;
1225 
1226   si = gsi_last (*dst_p);
1227   gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1228 }
1229 
1230 /* Append sequence SRC to the end of sequence *DST_P.  If *DST_P is
1231    NULL, a new sequence is allocated.  This function is
1232    similar to gimple_seq_add_seq, but does not scan the operands.  */
1233 
1234 void
1235 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1236 {
1237   gimple_stmt_iterator si;
1238   if (src == NULL)
1239     return;
1240 
1241   si = gsi_last (*dst_p);
1242   gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1243 }
1244 
1245 /* Determine whether to assign a location to the statement GS.  */
1246 
1247 static bool
1248 should_carry_location_p (gimple *gs)
1249 {
1250   /* Don't emit a line note for a label.  We particularly don't want to
1251      emit one for the break label, since it doesn't actually correspond
1252      to the beginning of the loop/switch.  */
1253   if (gimple_code (gs) == GIMPLE_LABEL)
1254     return false;
1255 
1256   return true;
1257 }
1258 
1259 /* Set the location for gimple statement GS to LOCATION.  */
1260 
1261 static void
1262 annotate_one_with_location (gimple *gs, location_t location)
1263 {
1264   if (!gimple_has_location (gs)
1265       && !gimple_do_not_emit_location_p (gs)
1266       && should_carry_location_p (gs))
1267     gimple_set_location (gs, location);
1268 }
1269 
1270 /* Set LOCATION for all the statements after iterator GSI in sequence
1271    SEQ.  If GSI is pointing to the end of the sequence, start with the
1272    first statement in SEQ.  */
1273 
1274 void
1275 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1276 				  location_t location)
1277 {
1278   if (gsi_end_p (gsi))
1279     gsi = gsi_start (seq);
1280   else
1281     gsi_next (&gsi);
1282 
1283   for (; !gsi_end_p (gsi); gsi_next (&gsi))
1284     annotate_one_with_location (gsi_stmt (gsi), location);
1285 }
1286 
1287 /* Set the location for all the statements in a sequence STMT_P to LOCATION.  */
1288 
1289 void
1290 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1291 {
1292   gimple_stmt_iterator i;
1293 
1294   if (gimple_seq_empty_p (stmt_p))
1295     return;
1296 
1297   for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1298     {
1299       gimple *gs = gsi_stmt (i);
1300       annotate_one_with_location (gs, location);
1301     }
1302 }
1303 
1304 /* Helper function of empty_body_p.  Return true if STMT is an empty
1305    statement.  */
1306 
1307 static bool
1308 empty_stmt_p (gimple *stmt)
1309 {
1310   if (gimple_code (stmt) == GIMPLE_NOP)
1311     return true;
1312   if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1313     return empty_body_p (gimple_bind_body (bind_stmt));
1314   return false;
1315 }
1316 
1317 
1318 /* Return true if BODY contains nothing but empty statements.  */
1319 
1320 bool
1321 empty_body_p (gimple_seq body)
1322 {
1323   gimple_stmt_iterator i;
1324 
1325   if (gimple_seq_empty_p (body))
1326     return true;
1327   for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1328     if (!empty_stmt_p (gsi_stmt (i))
1329 	&& !is_gimple_debug (gsi_stmt (i)))
1330       return false;
1331 
1332   return true;
1333 }
1334 
1335 
1336 /* Perform a deep copy of sequence SRC and return the result.  */
1337 
1338 gimple_seq
1339 gimple_seq_copy (gimple_seq src)
1340 {
1341   gimple_stmt_iterator gsi;
1342   gimple_seq new_seq = NULL;
1343   gimple *stmt;
1344 
1345   for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1346     {
1347       stmt = gimple_copy (gsi_stmt (gsi));
1348       gimple_seq_add_stmt (&new_seq, stmt);
1349     }
1350 
1351   return new_seq;
1352 }
1353 
1354 
1355 
1356 /* Return true if calls C1 and C2 are known to go to the same function.  */
1357 
1358 bool
1359 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1360 {
1361   if (gimple_call_internal_p (c1))
1362     return (gimple_call_internal_p (c2)
1363 	    && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1364 	    && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1365 		|| c1 == c2));
1366   else
1367     return (gimple_call_fn (c1) == gimple_call_fn (c2)
1368 	    || (gimple_call_fndecl (c1)
1369 		&& gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1370 }
1371 
1372 /* Detect flags from a GIMPLE_CALL.  This is just like
1373    call_expr_flags, but for gimple tuples.  */
1374 
1375 int
1376 gimple_call_flags (const gimple *stmt)
1377 {
1378   int flags;
1379   tree decl = gimple_call_fndecl (stmt);
1380 
1381   if (decl)
1382     flags = flags_from_decl_or_type (decl);
1383   else if (gimple_call_internal_p (stmt))
1384     flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1385   else
1386     flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1387 
1388   if (stmt->subcode & GF_CALL_NOTHROW)
1389     flags |= ECF_NOTHROW;
1390 
1391   if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1392     flags |= ECF_BY_DESCRIPTOR;
1393 
1394   return flags;
1395 }
1396 
1397 /* Return the "fn spec" string for call STMT.  */
1398 
1399 static const_tree
1400 gimple_call_fnspec (const gcall *stmt)
1401 {
1402   tree type, attr;
1403 
1404   if (gimple_call_internal_p (stmt))
1405     return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1406 
1407   type = gimple_call_fntype (stmt);
1408   if (!type)
1409     return NULL_TREE;
1410 
1411   attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1412   if (!attr)
1413     return NULL_TREE;
1414 
1415   return TREE_VALUE (TREE_VALUE (attr));
1416 }
1417 
1418 /* Detects argument flags for argument number ARG on call STMT.  */
1419 
1420 int
1421 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1422 {
1423   const_tree attr = gimple_call_fnspec (stmt);
1424 
1425   if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1426     return 0;
1427 
1428   switch (TREE_STRING_POINTER (attr)[1 + arg])
1429     {
1430     case 'x':
1431     case 'X':
1432       return EAF_UNUSED;
1433 
1434     case 'R':
1435       return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1436 
1437     case 'r':
1438       return EAF_NOCLOBBER | EAF_NOESCAPE;
1439 
1440     case 'W':
1441       return EAF_DIRECT | EAF_NOESCAPE;
1442 
1443     case 'w':
1444       return EAF_NOESCAPE;
1445 
1446     case '.':
1447     default:
1448       return 0;
1449     }
1450 }
1451 
1452 /* Detects return flags for the call STMT.  */
1453 
1454 int
1455 gimple_call_return_flags (const gcall *stmt)
1456 {
1457   const_tree attr;
1458 
1459   if (gimple_call_flags (stmt) & ECF_MALLOC)
1460     return ERF_NOALIAS;
1461 
1462   attr = gimple_call_fnspec (stmt);
1463   if (!attr || TREE_STRING_LENGTH (attr) < 1)
1464     return 0;
1465 
1466   switch (TREE_STRING_POINTER (attr)[0])
1467     {
1468     case '1':
1469     case '2':
1470     case '3':
1471     case '4':
1472       return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1473 
1474     case 'm':
1475       return ERF_NOALIAS;
1476 
1477     case '.':
1478     default:
1479       return 0;
1480     }
1481 }
1482 
1483 
1484 /* Return true if GS is a copy assignment.  */
1485 
1486 bool
1487 gimple_assign_copy_p (gimple *gs)
1488 {
1489   return (gimple_assign_single_p (gs)
1490 	  && is_gimple_val (gimple_op (gs, 1)));
1491 }
1492 
1493 
1494 /* Return true if GS is a SSA_NAME copy assignment.  */
1495 
1496 bool
1497 gimple_assign_ssa_name_copy_p (gimple *gs)
1498 {
1499   return (gimple_assign_single_p (gs)
1500 	  && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1501 	  && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1502 }
1503 
1504 
1505 /* Return true if GS is an assignment with a unary RHS, but the
1506    operator has no effect on the assigned value.  The logic is adapted
1507    from STRIP_NOPS.  This predicate is intended to be used in tuplifying
1508    instances in which STRIP_NOPS was previously applied to the RHS of
1509    an assignment.
1510 
1511    NOTE: In the use cases that led to the creation of this function
1512    and of gimple_assign_single_p, it is typical to test for either
1513    condition and to proceed in the same manner.  In each case, the
1514    assigned value is represented by the single RHS operand of the
1515    assignment.  I suspect there may be cases where gimple_assign_copy_p,
1516    gimple_assign_single_p, or equivalent logic is used where a similar
1517    treatment of unary NOPs is appropriate.  */
1518 
1519 bool
1520 gimple_assign_unary_nop_p (gimple *gs)
1521 {
1522   return (is_gimple_assign (gs)
1523           && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1524               || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1525           && gimple_assign_rhs1 (gs) != error_mark_node
1526           && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1527               == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1528 }
1529 
1530 /* Set BB to be the basic block holding G.  */
1531 
1532 void
1533 gimple_set_bb (gimple *stmt, basic_block bb)
1534 {
1535   stmt->bb = bb;
1536 
1537   if (gimple_code (stmt) != GIMPLE_LABEL)
1538     return;
1539 
1540   /* If the statement is a label, add the label to block-to-labels map
1541      so that we can speed up edge creation for GIMPLE_GOTOs.  */
1542   if (cfun->cfg)
1543     {
1544       tree t;
1545       int uid;
1546 
1547       t = gimple_label_label (as_a <glabel *> (stmt));
1548       uid = LABEL_DECL_UID (t);
1549       if (uid == -1)
1550 	{
1551 	  unsigned old_len =
1552 	    vec_safe_length (label_to_block_map_for_fn (cfun));
1553 	  LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1554 	  if (old_len <= (unsigned) uid)
1555 	    {
1556 	      unsigned new_len = 3 * uid / 2 + 1;
1557 
1558 	      vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1559 				     new_len);
1560 	    }
1561 	}
1562 
1563       (*label_to_block_map_for_fn (cfun))[uid] = bb;
1564     }
1565 }
1566 
1567 
1568 /* Modify the RHS of the assignment pointed-to by GSI using the
1569    operands in the expression tree EXPR.
1570 
1571    NOTE: The statement pointed-to by GSI may be reallocated if it
1572    did not have enough operand slots.
1573 
1574    This function is useful to convert an existing tree expression into
1575    the flat representation used for the RHS of a GIMPLE assignment.
1576    It will reallocate memory as needed to expand or shrink the number
1577    of operand slots needed to represent EXPR.
1578 
1579    NOTE: If you find yourself building a tree and then calling this
1580    function, you are most certainly doing it the slow way.  It is much
1581    better to build a new assignment or to use the function
1582    gimple_assign_set_rhs_with_ops, which does not require an
1583    expression tree to be built.  */
1584 
1585 void
1586 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1587 {
1588   enum tree_code subcode;
1589   tree op1, op2, op3;
1590 
1591   extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1592   gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1593 }
1594 
1595 
1596 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1597    operands OP1, OP2 and OP3.
1598 
1599    NOTE: The statement pointed-to by GSI may be reallocated if it
1600    did not have enough operand slots.  */
1601 
1602 void
1603 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1604 				tree op1, tree op2, tree op3)
1605 {
1606   unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1607   gimple *stmt = gsi_stmt (*gsi);
1608 
1609   /* If the new CODE needs more operands, allocate a new statement.  */
1610   if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1611     {
1612       tree lhs = gimple_assign_lhs (stmt);
1613       gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1614       memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1615       gimple_init_singleton (new_stmt);
1616       gsi_replace (gsi, new_stmt, false);
1617       stmt = new_stmt;
1618 
1619       /* The LHS needs to be reset as this also changes the SSA name
1620 	 on the LHS.  */
1621       gimple_assign_set_lhs (stmt, lhs);
1622     }
1623 
1624   gimple_set_num_ops (stmt, new_rhs_ops + 1);
1625   gimple_set_subcode (stmt, code);
1626   gimple_assign_set_rhs1 (stmt, op1);
1627   if (new_rhs_ops > 1)
1628     gimple_assign_set_rhs2 (stmt, op2);
1629   if (new_rhs_ops > 2)
1630     gimple_assign_set_rhs3 (stmt, op3);
1631 }
1632 
1633 
1634 /* Return the LHS of a statement that performs an assignment,
1635    either a GIMPLE_ASSIGN or a GIMPLE_CALL.  Returns NULL_TREE
1636    for a call to a function that returns no value, or for a
1637    statement other than an assignment or a call.  */
1638 
1639 tree
1640 gimple_get_lhs (const gimple *stmt)
1641 {
1642   enum gimple_code code = gimple_code (stmt);
1643 
1644   if (code == GIMPLE_ASSIGN)
1645     return gimple_assign_lhs (stmt);
1646   else if (code == GIMPLE_CALL)
1647     return gimple_call_lhs (stmt);
1648   else
1649     return NULL_TREE;
1650 }
1651 
1652 
1653 /* Set the LHS of a statement that performs an assignment,
1654    either a GIMPLE_ASSIGN or a GIMPLE_CALL.  */
1655 
1656 void
1657 gimple_set_lhs (gimple *stmt, tree lhs)
1658 {
1659   enum gimple_code code = gimple_code (stmt);
1660 
1661   if (code == GIMPLE_ASSIGN)
1662     gimple_assign_set_lhs (stmt, lhs);
1663   else if (code == GIMPLE_CALL)
1664     gimple_call_set_lhs (stmt, lhs);
1665   else
1666     gcc_unreachable ();
1667 }
1668 
1669 
1670 /* Return a deep copy of statement STMT.  All the operands from STMT
1671    are reallocated and copied using unshare_expr.  The DEF, USE, VDEF
1672    and VUSE operand arrays are set to empty in the new copy.  The new
1673    copy isn't part of any sequence.  */
1674 
1675 gimple *
1676 gimple_copy (gimple *stmt)
1677 {
1678   enum gimple_code code = gimple_code (stmt);
1679   unsigned num_ops = gimple_num_ops (stmt);
1680   gimple *copy = gimple_alloc (code, num_ops);
1681   unsigned i;
1682 
1683   /* Shallow copy all the fields from STMT.  */
1684   memcpy (copy, stmt, gimple_size (code));
1685   gimple_init_singleton (copy);
1686 
1687   /* If STMT has sub-statements, deep-copy them as well.  */
1688   if (gimple_has_substatements (stmt))
1689     {
1690       gimple_seq new_seq;
1691       tree t;
1692 
1693       switch (gimple_code (stmt))
1694 	{
1695 	case GIMPLE_BIND:
1696 	  {
1697 	    gbind *bind_stmt = as_a <gbind *> (stmt);
1698 	    gbind *bind_copy = as_a <gbind *> (copy);
1699 	    new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1700 	    gimple_bind_set_body (bind_copy, new_seq);
1701 	    gimple_bind_set_vars (bind_copy,
1702 				  unshare_expr (gimple_bind_vars (bind_stmt)));
1703 	    gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1704 	  }
1705 	  break;
1706 
1707 	case GIMPLE_CATCH:
1708 	  {
1709 	    gcatch *catch_stmt = as_a <gcatch *> (stmt);
1710 	    gcatch *catch_copy = as_a <gcatch *> (copy);
1711 	    new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1712 	    gimple_catch_set_handler (catch_copy, new_seq);
1713 	    t = unshare_expr (gimple_catch_types (catch_stmt));
1714 	    gimple_catch_set_types (catch_copy, t);
1715 	  }
1716 	  break;
1717 
1718 	case GIMPLE_EH_FILTER:
1719 	  {
1720 	    geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1721 	    geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1722 	    new_seq
1723 	      = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1724 	    gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1725 	    t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1726 	    gimple_eh_filter_set_types (eh_filter_copy, t);
1727 	  }
1728 	  break;
1729 
1730 	case GIMPLE_EH_ELSE:
1731 	  {
1732 	    geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1733 	    geh_else *eh_else_copy = as_a <geh_else *> (copy);
1734 	    new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1735 	    gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1736 	    new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1737 	    gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1738 	  }
1739 	  break;
1740 
1741 	case GIMPLE_TRY:
1742 	  {
1743 	    gtry *try_stmt = as_a <gtry *> (stmt);
1744 	    gtry *try_copy = as_a <gtry *> (copy);
1745 	    new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1746 	    gimple_try_set_eval (try_copy, new_seq);
1747 	    new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1748 	    gimple_try_set_cleanup (try_copy, new_seq);
1749 	  }
1750 	  break;
1751 
1752 	case GIMPLE_OMP_FOR:
1753 	  new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1754 	  gimple_omp_for_set_pre_body (copy, new_seq);
1755 	  t = unshare_expr (gimple_omp_for_clauses (stmt));
1756 	  gimple_omp_for_set_clauses (copy, t);
1757 	  {
1758 	    gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1759 	    omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1760 	      ( gimple_omp_for_collapse (stmt));
1761           }
1762 	  for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1763 	    {
1764 	      gimple_omp_for_set_cond (copy, i,
1765 				       gimple_omp_for_cond (stmt, i));
1766 	      gimple_omp_for_set_index (copy, i,
1767 					gimple_omp_for_index (stmt, i));
1768 	      t = unshare_expr (gimple_omp_for_initial (stmt, i));
1769 	      gimple_omp_for_set_initial (copy, i, t);
1770 	      t = unshare_expr (gimple_omp_for_final (stmt, i));
1771 	      gimple_omp_for_set_final (copy, i, t);
1772 	      t = unshare_expr (gimple_omp_for_incr (stmt, i));
1773 	      gimple_omp_for_set_incr (copy, i, t);
1774 	    }
1775 	  goto copy_omp_body;
1776 
1777 	case GIMPLE_OMP_PARALLEL:
1778 	  {
1779 	    gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1780 	    gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1781 	    t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1782 	    gimple_omp_parallel_set_clauses (omp_par_copy, t);
1783 	    t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1784 	    gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1785 	    t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1786 	    gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1787 	  }
1788 	  goto copy_omp_body;
1789 
1790 	case GIMPLE_OMP_TASK:
1791 	  t = unshare_expr (gimple_omp_task_clauses (stmt));
1792 	  gimple_omp_task_set_clauses (copy, t);
1793 	  t = unshare_expr (gimple_omp_task_child_fn (stmt));
1794 	  gimple_omp_task_set_child_fn (copy, t);
1795 	  t = unshare_expr (gimple_omp_task_data_arg (stmt));
1796 	  gimple_omp_task_set_data_arg (copy, t);
1797 	  t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1798 	  gimple_omp_task_set_copy_fn (copy, t);
1799 	  t = unshare_expr (gimple_omp_task_arg_size (stmt));
1800 	  gimple_omp_task_set_arg_size (copy, t);
1801 	  t = unshare_expr (gimple_omp_task_arg_align (stmt));
1802 	  gimple_omp_task_set_arg_align (copy, t);
1803 	  goto copy_omp_body;
1804 
1805 	case GIMPLE_OMP_CRITICAL:
1806 	  t = unshare_expr (gimple_omp_critical_name
1807 				(as_a <gomp_critical *> (stmt)));
1808 	  gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1809 	  t = unshare_expr (gimple_omp_critical_clauses
1810 				(as_a <gomp_critical *> (stmt)));
1811 	  gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1812 	  goto copy_omp_body;
1813 
1814 	case GIMPLE_OMP_ORDERED:
1815 	  t = unshare_expr (gimple_omp_ordered_clauses
1816 				(as_a <gomp_ordered *> (stmt)));
1817 	  gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1818 	  goto copy_omp_body;
1819 
1820 	case GIMPLE_OMP_SECTIONS:
1821 	  t = unshare_expr (gimple_omp_sections_clauses (stmt));
1822 	  gimple_omp_sections_set_clauses (copy, t);
1823 	  t = unshare_expr (gimple_omp_sections_control (stmt));
1824 	  gimple_omp_sections_set_control (copy, t);
1825 	  /* FALLTHRU  */
1826 
1827 	case GIMPLE_OMP_SINGLE:
1828 	case GIMPLE_OMP_TARGET:
1829 	case GIMPLE_OMP_TEAMS:
1830 	case GIMPLE_OMP_SECTION:
1831 	case GIMPLE_OMP_MASTER:
1832 	case GIMPLE_OMP_TASKGROUP:
1833 	case GIMPLE_OMP_GRID_BODY:
1834 	copy_omp_body:
1835 	  new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1836 	  gimple_omp_set_body (copy, new_seq);
1837 	  break;
1838 
1839 	case GIMPLE_TRANSACTION:
1840 	  new_seq = gimple_seq_copy (gimple_transaction_body (
1841 				       as_a <gtransaction *> (stmt)));
1842 	  gimple_transaction_set_body (as_a <gtransaction *> (copy),
1843 				       new_seq);
1844 	  break;
1845 
1846 	case GIMPLE_WITH_CLEANUP_EXPR:
1847 	  new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1848 	  gimple_wce_set_cleanup (copy, new_seq);
1849 	  break;
1850 
1851 	default:
1852 	  gcc_unreachable ();
1853 	}
1854     }
1855 
1856   /* Make copy of operands.  */
1857   for (i = 0; i < num_ops; i++)
1858     gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1859 
1860   if (gimple_has_mem_ops (stmt))
1861     {
1862       gimple_set_vdef (copy, gimple_vdef (stmt));
1863       gimple_set_vuse (copy, gimple_vuse (stmt));
1864     }
1865 
1866   /* Clear out SSA operand vectors on COPY.  */
1867   if (gimple_has_ops (stmt))
1868     {
1869       gimple_set_use_ops (copy, NULL);
1870 
1871       /* SSA operands need to be updated.  */
1872       gimple_set_modified (copy, true);
1873     }
1874 
1875   return copy;
1876 }
1877 
1878 
1879 /* Return true if statement S has side-effects.  We consider a
1880    statement to have side effects if:
1881 
1882    - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1883    - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS.  */
1884 
1885 bool
1886 gimple_has_side_effects (const gimple *s)
1887 {
1888   if (is_gimple_debug (s))
1889     return false;
1890 
1891   /* We don't have to scan the arguments to check for
1892      volatile arguments, though, at present, we still
1893      do a scan to check for TREE_SIDE_EFFECTS.  */
1894   if (gimple_has_volatile_ops (s))
1895     return true;
1896 
1897   if (gimple_code (s) == GIMPLE_ASM
1898       && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1899     return true;
1900 
1901   if (is_gimple_call (s))
1902     {
1903       int flags = gimple_call_flags (s);
1904 
1905       /* An infinite loop is considered a side effect.  */
1906       if (!(flags & (ECF_CONST | ECF_PURE))
1907 	  || (flags & ECF_LOOPING_CONST_OR_PURE))
1908 	return true;
1909 
1910       return false;
1911     }
1912 
1913   return false;
1914 }
1915 
1916 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1917    Return true if S can trap.  When INCLUDE_MEM is true, check whether
1918    the memory operations could trap.  When INCLUDE_STORES is true and
1919    S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked.  */
1920 
1921 bool
1922 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1923 {
1924   tree t, div = NULL_TREE;
1925   enum tree_code op;
1926 
1927   if (include_mem)
1928     {
1929       unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1930 
1931       for (i = start; i < gimple_num_ops (s); i++)
1932 	if (tree_could_trap_p (gimple_op (s, i)))
1933 	  return true;
1934     }
1935 
1936   switch (gimple_code (s))
1937     {
1938     case GIMPLE_ASM:
1939       return gimple_asm_volatile_p (as_a <gasm *> (s));
1940 
1941     case GIMPLE_CALL:
1942       t = gimple_call_fndecl (s);
1943       /* Assume that calls to weak functions may trap.  */
1944       if (!t || !DECL_P (t) || DECL_WEAK (t))
1945 	return true;
1946       return false;
1947 
1948     case GIMPLE_ASSIGN:
1949       t = gimple_expr_type (s);
1950       op = gimple_assign_rhs_code (s);
1951       if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1952 	div = gimple_assign_rhs2 (s);
1953       return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1954 				      (INTEGRAL_TYPE_P (t)
1955 				       && TYPE_OVERFLOW_TRAPS (t)),
1956 				      div));
1957 
1958     case GIMPLE_COND:
1959       t = TREE_TYPE (gimple_cond_lhs (s));
1960       return operation_could_trap_p (gimple_cond_code (s),
1961 				     FLOAT_TYPE_P (t), false, NULL_TREE);
1962 
1963     default:
1964       break;
1965     }
1966 
1967   return false;
1968 }
1969 
1970 /* Return true if statement S can trap.  */
1971 
1972 bool
1973 gimple_could_trap_p (gimple *s)
1974 {
1975   return gimple_could_trap_p_1 (s, true, true);
1976 }
1977 
1978 /* Return true if RHS of a GIMPLE_ASSIGN S can trap.  */
1979 
1980 bool
1981 gimple_assign_rhs_could_trap_p (gimple *s)
1982 {
1983   gcc_assert (is_gimple_assign (s));
1984   return gimple_could_trap_p_1 (s, true, false);
1985 }
1986 
1987 
1988 /* Print debugging information for gimple stmts generated.  */
1989 
1990 void
1991 dump_gimple_statistics (void)
1992 {
1993   int i, total_tuples = 0, total_bytes = 0;
1994 
1995   if (! GATHER_STATISTICS)
1996     {
1997       fprintf (stderr, "No gimple statistics\n");
1998       return;
1999     }
2000 
2001   fprintf (stderr, "\nGIMPLE statements\n");
2002   fprintf (stderr, "Kind                   Stmts      Bytes\n");
2003   fprintf (stderr, "---------------------------------------\n");
2004   for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2005     {
2006       fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2007 	  gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2008       total_tuples += gimple_alloc_counts[i];
2009       total_bytes += gimple_alloc_sizes[i];
2010     }
2011   fprintf (stderr, "---------------------------------------\n");
2012   fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2013   fprintf (stderr, "---------------------------------------\n");
2014 }
2015 
2016 
2017 /* Return the number of operands needed on the RHS of a GIMPLE
2018    assignment for an expression with tree code CODE.  */
2019 
2020 unsigned
2021 get_gimple_rhs_num_ops (enum tree_code code)
2022 {
2023   enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2024 
2025   if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2026     return 1;
2027   else if (rhs_class == GIMPLE_BINARY_RHS)
2028     return 2;
2029   else if (rhs_class == GIMPLE_TERNARY_RHS)
2030     return 3;
2031   else
2032     gcc_unreachable ();
2033 }
2034 
2035 #define DEFTREECODE(SYM, STRING, TYPE, NARGS)   			    \
2036   (unsigned char)							    \
2037   ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS				    \
2038    : ((TYPE) == tcc_binary						    \
2039       || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS   		    \
2040    : ((TYPE) == tcc_constant						    \
2041       || (TYPE) == tcc_declaration					    \
2042       || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS			    \
2043    : ((SYM) == TRUTH_AND_EXPR						    \
2044       || (SYM) == TRUTH_OR_EXPR						    \
2045       || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS			    \
2046    : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS				    \
2047    : ((SYM) == COND_EXPR						    \
2048       || (SYM) == WIDEN_MULT_PLUS_EXPR					    \
2049       || (SYM) == WIDEN_MULT_MINUS_EXPR					    \
2050       || (SYM) == DOT_PROD_EXPR						    \
2051       || (SYM) == SAD_EXPR						    \
2052       || (SYM) == REALIGN_LOAD_EXPR					    \
2053       || (SYM) == VEC_COND_EXPR						    \
2054       || (SYM) == VEC_PERM_EXPR                                             \
2055       || (SYM) == BIT_INSERT_EXPR					    \
2056       || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS			    \
2057    : ((SYM) == CONSTRUCTOR						    \
2058       || (SYM) == OBJ_TYPE_REF						    \
2059       || (SYM) == ASSERT_EXPR						    \
2060       || (SYM) == ADDR_EXPR						    \
2061       || (SYM) == WITH_SIZE_EXPR					    \
2062       || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS				    \
2063    : GIMPLE_INVALID_RHS),
2064 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2065 
2066 const unsigned char gimple_rhs_class_table[] = {
2067 #include "all-tree.def"
2068 };
2069 
2070 #undef DEFTREECODE
2071 #undef END_OF_BASE_TREE_CODES
2072 
2073 /* Canonicalize a tree T for use in a COND_EXPR as conditional.  Returns
2074    a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2075    we failed to create one.  */
2076 
2077 tree
2078 canonicalize_cond_expr_cond (tree t)
2079 {
2080   /* Strip conversions around boolean operations.  */
2081   if (CONVERT_EXPR_P (t)
2082       && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2083           || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2084 	     == BOOLEAN_TYPE))
2085     t = TREE_OPERAND (t, 0);
2086 
2087   /* For !x use x == 0.  */
2088   if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2089     {
2090       tree top0 = TREE_OPERAND (t, 0);
2091       t = build2 (EQ_EXPR, TREE_TYPE (t),
2092 		  top0, build_int_cst (TREE_TYPE (top0), 0));
2093     }
2094   /* For cmp ? 1 : 0 use cmp.  */
2095   else if (TREE_CODE (t) == COND_EXPR
2096 	   && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2097 	   && integer_onep (TREE_OPERAND (t, 1))
2098 	   && integer_zerop (TREE_OPERAND (t, 2)))
2099     {
2100       tree top0 = TREE_OPERAND (t, 0);
2101       t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2102 		  TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2103     }
2104   /* For x ^ y use x != y.  */
2105   else if (TREE_CODE (t) == BIT_XOR_EXPR)
2106     t = build2 (NE_EXPR, TREE_TYPE (t),
2107 		TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2108 
2109   if (is_gimple_condexpr (t))
2110     return t;
2111 
2112   return NULL_TREE;
2113 }
2114 
2115 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2116    the positions marked by the set ARGS_TO_SKIP.  */
2117 
2118 gcall *
2119 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2120 {
2121   int i;
2122   int nargs = gimple_call_num_args (stmt);
2123   auto_vec<tree> vargs (nargs);
2124   gcall *new_stmt;
2125 
2126   for (i = 0; i < nargs; i++)
2127     if (!bitmap_bit_p (args_to_skip, i))
2128       vargs.quick_push (gimple_call_arg (stmt, i));
2129 
2130   if (gimple_call_internal_p (stmt))
2131     new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2132 					       vargs);
2133   else
2134     new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2135 
2136   if (gimple_call_lhs (stmt))
2137     gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2138 
2139   gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2140   gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2141 
2142   if (gimple_has_location (stmt))
2143     gimple_set_location (new_stmt, gimple_location (stmt));
2144   gimple_call_copy_flags (new_stmt, stmt);
2145   gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2146 
2147   gimple_set_modified (new_stmt, true);
2148 
2149   return new_stmt;
2150 }
2151 
2152 
2153 
2154 /* Return true if the field decls F1 and F2 are at the same offset.
2155 
2156    This is intended to be used on GIMPLE types only.  */
2157 
2158 bool
2159 gimple_compare_field_offset (tree f1, tree f2)
2160 {
2161   if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2162     {
2163       tree offset1 = DECL_FIELD_OFFSET (f1);
2164       tree offset2 = DECL_FIELD_OFFSET (f2);
2165       return ((offset1 == offset2
2166 	       /* Once gimplification is done, self-referential offsets are
2167 		  instantiated as operand #2 of the COMPONENT_REF built for
2168 		  each access and reset.  Therefore, they are not relevant
2169 		  anymore and fields are interchangeable provided that they
2170 		  represent the same access.  */
2171 	       || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2172 		   && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2173 		   && (DECL_SIZE (f1) == DECL_SIZE (f2)
2174 		       || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2175 			   && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2176 		       || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2177 		   && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2178 	       || operand_equal_p (offset1, offset2, 0))
2179 	      && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2180 				     DECL_FIELD_BIT_OFFSET (f2)));
2181     }
2182 
2183   /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2184      should be, so handle differing ones specially by decomposing
2185      the offset into a byte and bit offset manually.  */
2186   if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2187       && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2188     {
2189       unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2190       unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2191       bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2192       byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2193 		      + bit_offset1 / BITS_PER_UNIT);
2194       bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2195       byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2196 		      + bit_offset2 / BITS_PER_UNIT);
2197       if (byte_offset1 != byte_offset2)
2198 	return false;
2199       return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2200     }
2201 
2202   return false;
2203 }
2204 
2205 
2206 /* Return a type the same as TYPE except unsigned or
2207    signed according to UNSIGNEDP.  */
2208 
2209 static tree
2210 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2211 {
2212   tree type1;
2213   int i;
2214 
2215   type1 = TYPE_MAIN_VARIANT (type);
2216   if (type1 == signed_char_type_node
2217       || type1 == char_type_node
2218       || type1 == unsigned_char_type_node)
2219     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2220   if (type1 == integer_type_node || type1 == unsigned_type_node)
2221     return unsignedp ? unsigned_type_node : integer_type_node;
2222   if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2223     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2224   if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2225     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2226   if (type1 == long_long_integer_type_node
2227       || type1 == long_long_unsigned_type_node)
2228     return unsignedp
2229            ? long_long_unsigned_type_node
2230 	   : long_long_integer_type_node;
2231 
2232   for (i = 0; i < NUM_INT_N_ENTS; i ++)
2233     if (int_n_enabled_p[i]
2234 	&& (type1 == int_n_trees[i].unsigned_type
2235 	    || type1 == int_n_trees[i].signed_type))
2236 	return unsignedp
2237 	  ? int_n_trees[i].unsigned_type
2238 	  : int_n_trees[i].signed_type;
2239 
2240 #if HOST_BITS_PER_WIDE_INT >= 64
2241   if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2242     return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2243 #endif
2244   if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2245     return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2246   if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2247     return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2248   if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2249     return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2250   if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2251     return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2252 
2253 #define GIMPLE_FIXED_TYPES(NAME)	    \
2254   if (type1 == short_ ## NAME ## _type_node \
2255       || type1 == unsigned_short_ ## NAME ## _type_node) \
2256     return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2257 		     : short_ ## NAME ## _type_node; \
2258   if (type1 == NAME ## _type_node \
2259       || type1 == unsigned_ ## NAME ## _type_node) \
2260     return unsignedp ? unsigned_ ## NAME ## _type_node \
2261 		     : NAME ## _type_node; \
2262   if (type1 == long_ ## NAME ## _type_node \
2263       || type1 == unsigned_long_ ## NAME ## _type_node) \
2264     return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2265 		     : long_ ## NAME ## _type_node; \
2266   if (type1 == long_long_ ## NAME ## _type_node \
2267       || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2268     return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2269 		     : long_long_ ## NAME ## _type_node;
2270 
2271 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2272   if (type1 == NAME ## _type_node \
2273       || type1 == u ## NAME ## _type_node) \
2274     return unsignedp ? u ## NAME ## _type_node \
2275 		     : NAME ## _type_node;
2276 
2277 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2278   if (type1 == sat_ ## short_ ## NAME ## _type_node \
2279       || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2280     return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2281 		     : sat_ ## short_ ## NAME ## _type_node; \
2282   if (type1 == sat_ ## NAME ## _type_node \
2283       || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2284     return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2285 		     : sat_ ## NAME ## _type_node; \
2286   if (type1 == sat_ ## long_ ## NAME ## _type_node \
2287       || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2288     return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2289 		     : sat_ ## long_ ## NAME ## _type_node; \
2290   if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2291       || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2292     return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2293 		     : sat_ ## long_long_ ## NAME ## _type_node;
2294 
2295 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME)	\
2296   if (type1 == sat_ ## NAME ## _type_node \
2297       || type1 == sat_ ## u ## NAME ## _type_node) \
2298     return unsignedp ? sat_ ## u ## NAME ## _type_node \
2299 		     : sat_ ## NAME ## _type_node;
2300 
2301   GIMPLE_FIXED_TYPES (fract);
2302   GIMPLE_FIXED_TYPES_SAT (fract);
2303   GIMPLE_FIXED_TYPES (accum);
2304   GIMPLE_FIXED_TYPES_SAT (accum);
2305 
2306   GIMPLE_FIXED_MODE_TYPES (qq);
2307   GIMPLE_FIXED_MODE_TYPES (hq);
2308   GIMPLE_FIXED_MODE_TYPES (sq);
2309   GIMPLE_FIXED_MODE_TYPES (dq);
2310   GIMPLE_FIXED_MODE_TYPES (tq);
2311   GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2312   GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2313   GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2314   GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2315   GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2316   GIMPLE_FIXED_MODE_TYPES (ha);
2317   GIMPLE_FIXED_MODE_TYPES (sa);
2318   GIMPLE_FIXED_MODE_TYPES (da);
2319   GIMPLE_FIXED_MODE_TYPES (ta);
2320   GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2321   GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2322   GIMPLE_FIXED_MODE_TYPES_SAT (da);
2323   GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2324 
2325   /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2326      the precision; they have precision set to match their range, but
2327      may use a wider mode to match an ABI.  If we change modes, we may
2328      wind up with bad conversions.  For INTEGER_TYPEs in C, must check
2329      the precision as well, so as to yield correct results for
2330      bit-field types.  C++ does not have these separate bit-field
2331      types, and producing a signed or unsigned variant of an
2332      ENUMERAL_TYPE may cause other problems as well.  */
2333   if (!INTEGRAL_TYPE_P (type)
2334       || TYPE_UNSIGNED (type) == unsignedp)
2335     return type;
2336 
2337 #define TYPE_OK(node)							    \
2338   (TYPE_MODE (type) == TYPE_MODE (node)					    \
2339    && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2340   if (TYPE_OK (signed_char_type_node))
2341     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2342   if (TYPE_OK (integer_type_node))
2343     return unsignedp ? unsigned_type_node : integer_type_node;
2344   if (TYPE_OK (short_integer_type_node))
2345     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2346   if (TYPE_OK (long_integer_type_node))
2347     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2348   if (TYPE_OK (long_long_integer_type_node))
2349     return (unsignedp
2350 	    ? long_long_unsigned_type_node
2351 	    : long_long_integer_type_node);
2352 
2353   for (i = 0; i < NUM_INT_N_ENTS; i ++)
2354     if (int_n_enabled_p[i]
2355 	&& TYPE_MODE (type) == int_n_data[i].m
2356 	&& TYPE_PRECISION (type) == int_n_data[i].bitsize)
2357 	return unsignedp
2358 	  ? int_n_trees[i].unsigned_type
2359 	  : int_n_trees[i].signed_type;
2360 
2361 #if HOST_BITS_PER_WIDE_INT >= 64
2362   if (TYPE_OK (intTI_type_node))
2363     return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2364 #endif
2365   if (TYPE_OK (intDI_type_node))
2366     return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2367   if (TYPE_OK (intSI_type_node))
2368     return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2369   if (TYPE_OK (intHI_type_node))
2370     return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2371   if (TYPE_OK (intQI_type_node))
2372     return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2373 
2374 #undef GIMPLE_FIXED_TYPES
2375 #undef GIMPLE_FIXED_MODE_TYPES
2376 #undef GIMPLE_FIXED_TYPES_SAT
2377 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2378 #undef TYPE_OK
2379 
2380   return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2381 }
2382 
2383 
2384 /* Return an unsigned type the same as TYPE in other respects.  */
2385 
2386 tree
2387 gimple_unsigned_type (tree type)
2388 {
2389   return gimple_signed_or_unsigned_type (true, type);
2390 }
2391 
2392 
2393 /* Return a signed type the same as TYPE in other respects.  */
2394 
2395 tree
2396 gimple_signed_type (tree type)
2397 {
2398   return gimple_signed_or_unsigned_type (false, type);
2399 }
2400 
2401 
2402 /* Return the typed-based alias set for T, which may be an expression
2403    or a type.  Return -1 if we don't do anything special.  */
2404 
2405 alias_set_type
2406 gimple_get_alias_set (tree t)
2407 {
2408   /* That's all the expressions we handle specially.  */
2409   if (!TYPE_P (t))
2410     return -1;
2411 
2412   /* For convenience, follow the C standard when dealing with
2413      character types.  Any object may be accessed via an lvalue that
2414      has character type.  */
2415   if (t == char_type_node
2416       || t == signed_char_type_node
2417       || t == unsigned_char_type_node)
2418     return 0;
2419 
2420   /* Allow aliasing between signed and unsigned variants of the same
2421      type.  We treat the signed variant as canonical.  */
2422   if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2423     {
2424       tree t1 = gimple_signed_type (t);
2425 
2426       /* t1 == t can happen for boolean nodes which are always unsigned.  */
2427       if (t1 != t)
2428 	return get_alias_set (t1);
2429     }
2430 
2431   return -1;
2432 }
2433 
2434 
2435 /* Helper for gimple_ior_addresses_taken_1.  */
2436 
2437 static bool
2438 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2439 {
2440   bitmap addresses_taken = (bitmap)data;
2441   addr = get_base_address (addr);
2442   if (addr
2443       && DECL_P (addr))
2444     {
2445       bitmap_set_bit (addresses_taken, DECL_UID (addr));
2446       return true;
2447     }
2448   return false;
2449 }
2450 
2451 /* Set the bit for the uid of all decls that have their address taken
2452    in STMT in the ADDRESSES_TAKEN bitmap.  Returns true if there
2453    were any in this stmt.  */
2454 
2455 bool
2456 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2457 {
2458   return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2459 					gimple_ior_addresses_taken_1);
2460 }
2461 
2462 
2463 /* Return true when STMTs arguments and return value match those of FNDECL,
2464    a decl of a builtin function.  */
2465 
2466 bool
2467 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2468 {
2469   gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2470 
2471   tree ret = gimple_call_lhs (stmt);
2472   if (ret
2473       && !useless_type_conversion_p (TREE_TYPE (ret),
2474 				     TREE_TYPE (TREE_TYPE (fndecl))))
2475     return false;
2476 
2477   tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2478   unsigned nargs = gimple_call_num_args (stmt);
2479   for (unsigned i = 0; i < nargs; ++i)
2480     {
2481       /* Variadic args follow.  */
2482       if (!targs)
2483 	return true;
2484       tree arg = gimple_call_arg (stmt, i);
2485       tree type = TREE_VALUE (targs);
2486       if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2487 	  /* char/short integral arguments are promoted to int
2488 	     by several frontends if targetm.calls.promote_prototypes
2489 	     is true.  Allow such promotion too.  */
2490 	  && !(INTEGRAL_TYPE_P (type)
2491 	       && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2492 	       && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2493 	       && useless_type_conversion_p (integer_type_node,
2494 					     TREE_TYPE (arg))))
2495 	return false;
2496       targs = TREE_CHAIN (targs);
2497     }
2498   if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2499     return false;
2500   return true;
2501 }
2502 
2503 /* Return true when STMT is builtins call.  */
2504 
2505 bool
2506 gimple_call_builtin_p (const gimple *stmt)
2507 {
2508   tree fndecl;
2509   if (is_gimple_call (stmt)
2510       && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2511       && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2512     return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2513   return false;
2514 }
2515 
2516 /* Return true when STMT is builtins call to CLASS.  */
2517 
2518 bool
2519 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2520 {
2521   tree fndecl;
2522   if (is_gimple_call (stmt)
2523       && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2524       && DECL_BUILT_IN_CLASS (fndecl) == klass)
2525     return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2526   return false;
2527 }
2528 
2529 /* Return true when STMT is builtins call to CODE of CLASS.  */
2530 
2531 bool
2532 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2533 {
2534   tree fndecl;
2535   if (is_gimple_call (stmt)
2536       && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2537       && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2538       && DECL_FUNCTION_CODE (fndecl) == code)
2539     return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2540   return false;
2541 }
2542 
2543 /* If CALL is a call to a combined_fn (i.e. an internal function or
2544    a normal built-in function), return its code, otherwise return
2545    CFN_LAST.  */
2546 
2547 combined_fn
2548 gimple_call_combined_fn (const gimple *stmt)
2549 {
2550   if (const gcall *call = dyn_cast <const gcall *> (stmt))
2551     {
2552       if (gimple_call_internal_p (call))
2553 	return as_combined_fn (gimple_call_internal_fn (call));
2554 
2555       tree fndecl = gimple_call_fndecl (stmt);
2556       if (fndecl
2557 	  && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2558 	  && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2559 	return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2560     }
2561   return CFN_LAST;
2562 }
2563 
2564 /* Return true if STMT clobbers memory.  STMT is required to be a
2565    GIMPLE_ASM.  */
2566 
2567 bool
2568 gimple_asm_clobbers_memory_p (const gasm *stmt)
2569 {
2570   unsigned i;
2571 
2572   for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2573     {
2574       tree op = gimple_asm_clobber_op (stmt, i);
2575       if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2576 	return true;
2577     }
2578 
2579   /* Non-empty basic ASM implicitly clobbers memory.  */
2580   if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2581     return true;
2582 
2583   return false;
2584 }
2585 
2586 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
2587 
2588 void
2589 dump_decl_set (FILE *file, bitmap set)
2590 {
2591   if (set)
2592     {
2593       bitmap_iterator bi;
2594       unsigned i;
2595 
2596       fprintf (file, "{ ");
2597 
2598       EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2599 	{
2600 	  fprintf (file, "D.%u", i);
2601 	  fprintf (file, " ");
2602 	}
2603 
2604       fprintf (file, "}");
2605     }
2606   else
2607     fprintf (file, "NIL");
2608 }
2609 
2610 /* Return true when CALL is a call stmt that definitely doesn't
2611    free any memory or makes it unavailable otherwise.  */
2612 bool
2613 nonfreeing_call_p (gimple *call)
2614 {
2615   if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2616       && gimple_call_flags (call) & ECF_LEAF)
2617     switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2618       {
2619 	/* Just in case these become ECF_LEAF in the future.  */
2620 	case BUILT_IN_FREE:
2621 	case BUILT_IN_TM_FREE:
2622 	case BUILT_IN_REALLOC:
2623 	case BUILT_IN_STACK_RESTORE:
2624 	  return false;
2625 	default:
2626 	  return true;
2627       }
2628   else if (gimple_call_internal_p (call))
2629     switch (gimple_call_internal_fn (call))
2630       {
2631       case IFN_ABNORMAL_DISPATCHER:
2632         return true;
2633       case IFN_ASAN_MARK:
2634 	return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2635       default:
2636 	if (gimple_call_flags (call) & ECF_LEAF)
2637 	  return true;
2638 	return false;
2639       }
2640 
2641   tree fndecl = gimple_call_fndecl (call);
2642   if (!fndecl)
2643     return false;
2644   struct cgraph_node *n = cgraph_node::get (fndecl);
2645   if (!n)
2646     return false;
2647   enum availability availability;
2648   n = n->function_symbol (&availability);
2649   if (!n || availability <= AVAIL_INTERPOSABLE)
2650     return false;
2651   return n->nonfreeing_fn;
2652 }
2653 
2654 /* Return true when CALL is a call stmt that definitely need not
2655    be considered to be a memory barrier.  */
2656 bool
2657 nonbarrier_call_p (gimple *call)
2658 {
2659   if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2660     return true;
2661   /* Should extend this to have a nonbarrier_fn flag, just as above in
2662      the nonfreeing case.  */
2663   return false;
2664 }
2665 
2666 /* Callback for walk_stmt_load_store_ops.
2667 
2668    Return TRUE if OP will dereference the tree stored in DATA, FALSE
2669    otherwise.
2670 
2671    This routine only makes a superficial check for a dereference.  Thus
2672    it must only be used if it is safe to return a false negative.  */
2673 static bool
2674 check_loadstore (gimple *, tree op, tree, void *data)
2675 {
2676   if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2677     {
2678       /* Some address spaces may legitimately dereference zero.  */
2679       addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2680       if (targetm.addr_space.zero_address_valid (as))
2681 	return false;
2682 
2683       return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2684     }
2685   return false;
2686 }
2687 
2688 
2689 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2690    either by using a pointer dereference or attributes.  */
2691 bool
2692 infer_nonnull_range (gimple *stmt, tree op)
2693 {
2694   return infer_nonnull_range_by_dereference (stmt, op)
2695     || infer_nonnull_range_by_attribute (stmt, op);
2696 }
2697 
2698 /* Return true if OP can be inferred to be non-NULL after STMT
2699    executes by using a pointer dereference.  */
2700 bool
2701 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2702 {
2703   /* We can only assume that a pointer dereference will yield
2704      non-NULL if -fdelete-null-pointer-checks is enabled.  */
2705   if (!flag_delete_null_pointer_checks
2706       || !POINTER_TYPE_P (TREE_TYPE (op))
2707       || gimple_code (stmt) == GIMPLE_ASM)
2708     return false;
2709 
2710   if (walk_stmt_load_store_ops (stmt, (void *)op,
2711 				check_loadstore, check_loadstore))
2712     return true;
2713 
2714   return false;
2715 }
2716 
2717 /* Return true if OP can be inferred to be a non-NULL after STMT
2718    executes by using attributes.  */
2719 bool
2720 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2721 {
2722   /* We can only assume that a pointer dereference will yield
2723      non-NULL if -fdelete-null-pointer-checks is enabled.  */
2724   if (!flag_delete_null_pointer_checks
2725       || !POINTER_TYPE_P (TREE_TYPE (op))
2726       || gimple_code (stmt) == GIMPLE_ASM)
2727     return false;
2728 
2729   if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2730     {
2731       tree fntype = gimple_call_fntype (stmt);
2732       tree attrs = TYPE_ATTRIBUTES (fntype);
2733       for (; attrs; attrs = TREE_CHAIN (attrs))
2734 	{
2735 	  attrs = lookup_attribute ("nonnull", attrs);
2736 
2737 	  /* If "nonnull" wasn't specified, we know nothing about
2738 	     the argument.  */
2739 	  if (attrs == NULL_TREE)
2740 	    return false;
2741 
2742 	  /* If "nonnull" applies to all the arguments, then ARG
2743 	     is non-null if it's in the argument list.  */
2744 	  if (TREE_VALUE (attrs) == NULL_TREE)
2745 	    {
2746 	      for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2747 		{
2748 		  if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2749 		      && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2750 		    return true;
2751 		}
2752 	      return false;
2753 	    }
2754 
2755 	  /* Now see if op appears in the nonnull list.  */
2756 	  for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2757 	    {
2758 	      unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2759 	      if (idx < gimple_call_num_args (stmt))
2760 		{
2761 		  tree arg = gimple_call_arg (stmt, idx);
2762 		  if (operand_equal_p (op, arg, 0))
2763 		    return true;
2764 		}
2765 	    }
2766 	}
2767     }
2768 
2769   /* If this function is marked as returning non-null, then we can
2770      infer OP is non-null if it is used in the return statement.  */
2771   if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2772     if (gimple_return_retval (return_stmt)
2773 	&& operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2774 	&& lookup_attribute ("returns_nonnull",
2775 			     TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2776       return true;
2777 
2778   return false;
2779 }
2780 
2781 /* Compare two case labels.  Because the front end should already have
2782    made sure that case ranges do not overlap, it is enough to only compare
2783    the CASE_LOW values of each case label.  */
2784 
2785 static int
2786 compare_case_labels (const void *p1, const void *p2)
2787 {
2788   const_tree const case1 = *(const_tree const*)p1;
2789   const_tree const case2 = *(const_tree const*)p2;
2790 
2791   /* The 'default' case label always goes first.  */
2792   if (!CASE_LOW (case1))
2793     return -1;
2794   else if (!CASE_LOW (case2))
2795     return 1;
2796   else
2797     return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2798 }
2799 
2800 /* Sort the case labels in LABEL_VEC in place in ascending order.  */
2801 
2802 void
2803 sort_case_labels (vec<tree> label_vec)
2804 {
2805   label_vec.qsort (compare_case_labels);
2806 }
2807 
2808 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2809 
2810    LABELS is a vector that contains all case labels to look at.
2811 
2812    INDEX_TYPE is the type of the switch index expression.  Case labels
2813    in LABELS are discarded if their values are not in the value range
2814    covered by INDEX_TYPE.  The remaining case label values are folded
2815    to INDEX_TYPE.
2816 
2817    If a default case exists in LABELS, it is removed from LABELS and
2818    returned in DEFAULT_CASEP.  If no default case exists, but the
2819    case labels already cover the whole range of INDEX_TYPE, a default
2820    case is returned pointing to one of the existing case labels.
2821    Otherwise DEFAULT_CASEP is set to NULL_TREE.
2822 
2823    DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2824    apply and no action is taken regardless of whether a default case is
2825    found or not.  */
2826 
2827 void
2828 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2829 				      tree index_type,
2830 				      tree *default_casep)
2831 {
2832   tree min_value, max_value;
2833   tree default_case = NULL_TREE;
2834   size_t i, len;
2835 
2836   i = 0;
2837   min_value = TYPE_MIN_VALUE (index_type);
2838   max_value = TYPE_MAX_VALUE (index_type);
2839   while (i < labels.length ())
2840     {
2841       tree elt = labels[i];
2842       tree low = CASE_LOW (elt);
2843       tree high = CASE_HIGH (elt);
2844       bool remove_element = FALSE;
2845 
2846       if (low)
2847 	{
2848 	  gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2849 	  gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2850 
2851 	  /* This is a non-default case label, i.e. it has a value.
2852 
2853 	     See if the case label is reachable within the range of
2854 	     the index type.  Remove out-of-range case values.  Turn
2855 	     case ranges into a canonical form (high > low strictly)
2856 	     and convert the case label values to the index type.
2857 
2858 	     NB: The type of gimple_switch_index() may be the promoted
2859 	     type, but the case labels retain the original type.  */
2860 
2861 	  if (high)
2862 	    {
2863 	      /* This is a case range.  Discard empty ranges.
2864 		 If the bounds or the range are equal, turn this
2865 		 into a simple (one-value) case.  */
2866 	      int cmp = tree_int_cst_compare (high, low);
2867 	      if (cmp < 0)
2868 		remove_element = TRUE;
2869 	      else if (cmp == 0)
2870 		high = NULL_TREE;
2871 	    }
2872 
2873 	  if (! high)
2874 	    {
2875 	      /* If the simple case value is unreachable, ignore it.  */
2876 	      if ((TREE_CODE (min_value) == INTEGER_CST
2877 		   && tree_int_cst_compare (low, min_value) < 0)
2878 		  || (TREE_CODE (max_value) == INTEGER_CST
2879 		      && tree_int_cst_compare (low, max_value) > 0))
2880 		remove_element = TRUE;
2881 	      else
2882 		low = fold_convert (index_type, low);
2883 	    }
2884 	  else
2885 	    {
2886 	      /* If the entire case range is unreachable, ignore it.  */
2887 	      if ((TREE_CODE (min_value) == INTEGER_CST
2888 		   && tree_int_cst_compare (high, min_value) < 0)
2889 		  || (TREE_CODE (max_value) == INTEGER_CST
2890 		      && tree_int_cst_compare (low, max_value) > 0))
2891 		remove_element = TRUE;
2892 	      else
2893 		{
2894 		  /* If the lower bound is less than the index type's
2895 		     minimum value, truncate the range bounds.  */
2896 		  if (TREE_CODE (min_value) == INTEGER_CST
2897 		      && tree_int_cst_compare (low, min_value) < 0)
2898 		    low = min_value;
2899 		  low = fold_convert (index_type, low);
2900 
2901 		  /* If the upper bound is greater than the index type's
2902 		     maximum value, truncate the range bounds.  */
2903 		  if (TREE_CODE (max_value) == INTEGER_CST
2904 		      && tree_int_cst_compare (high, max_value) > 0)
2905 		    high = max_value;
2906 		  high = fold_convert (index_type, high);
2907 
2908 		  /* We may have folded a case range to a one-value case.  */
2909 		  if (tree_int_cst_equal (low, high))
2910 		    high = NULL_TREE;
2911 		}
2912 	    }
2913 
2914 	  CASE_LOW (elt) = low;
2915 	  CASE_HIGH (elt) = high;
2916 	}
2917       else
2918 	{
2919 	  gcc_assert (!default_case);
2920 	  default_case = elt;
2921 	  /* The default case must be passed separately to the
2922 	     gimple_build_switch routine.  But if DEFAULT_CASEP
2923 	     is NULL, we do not remove the default case (it would
2924 	     be completely lost).  */
2925 	  if (default_casep)
2926 	    remove_element = TRUE;
2927 	}
2928 
2929       if (remove_element)
2930 	labels.ordered_remove (i);
2931       else
2932 	i++;
2933     }
2934   len = i;
2935 
2936   if (!labels.is_empty ())
2937     sort_case_labels (labels);
2938 
2939   if (default_casep && !default_case)
2940     {
2941       /* If the switch has no default label, add one, so that we jump
2942 	 around the switch body.  If the labels already cover the whole
2943 	 range of the switch index_type, add the default label pointing
2944 	 to one of the existing labels.  */
2945       if (len
2946 	  && TYPE_MIN_VALUE (index_type)
2947 	  && TYPE_MAX_VALUE (index_type)
2948 	  && tree_int_cst_equal (CASE_LOW (labels[0]),
2949 				 TYPE_MIN_VALUE (index_type)))
2950 	{
2951 	  tree low, high = CASE_HIGH (labels[len - 1]);
2952 	  if (!high)
2953 	    high = CASE_LOW (labels[len - 1]);
2954 	  if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2955 	    {
2956 	      tree widest_label = labels[0];
2957 	      for (i = 1; i < len; i++)
2958 		{
2959 		  high = CASE_LOW (labels[i]);
2960 		  low = CASE_HIGH (labels[i - 1]);
2961 		  if (!low)
2962 		    low = CASE_LOW (labels[i - 1]);
2963 
2964 		  if (CASE_HIGH (labels[i]) != NULL_TREE
2965 		      && (CASE_HIGH (widest_label) == NULL_TREE
2966 			  || wi::gtu_p (wi::sub (CASE_HIGH (labels[i]),
2967 						 CASE_LOW (labels[i])),
2968 					wi::sub (CASE_HIGH (widest_label),
2969 						 CASE_LOW (widest_label)))))
2970 		    widest_label = labels[i];
2971 
2972 		  if (wi::add (low, 1) != high)
2973 		    break;
2974 		}
2975 	      if (i == len)
2976 		{
2977 		  /* Designate the label with the widest range to be the
2978 		     default label.  */
2979 		  tree label = CASE_LABEL (widest_label);
2980 		  default_case = build_case_label (NULL_TREE, NULL_TREE,
2981 						   label);
2982 		}
2983 	    }
2984 	}
2985     }
2986 
2987   if (default_casep)
2988     *default_casep = default_case;
2989 }
2990 
2991 /* Set the location of all statements in SEQ to LOC.  */
2992 
2993 void
2994 gimple_seq_set_location (gimple_seq seq, location_t loc)
2995 {
2996   for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2997     gimple_set_location (gsi_stmt (i), loc);
2998 }
2999 
3000 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements.  */
3001 
3002 void
3003 gimple_seq_discard (gimple_seq seq)
3004 {
3005   gimple_stmt_iterator gsi;
3006 
3007   for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3008     {
3009       gimple *stmt = gsi_stmt (gsi);
3010       gsi_remove (&gsi, true);
3011       release_defs (stmt);
3012       ggc_free (stmt);
3013     }
3014 }
3015 
3016 /* See if STMT now calls function that takes no parameters and if so, drop
3017    call arguments.  This is used when devirtualization machinery redirects
3018    to __builtin_unreachable or __cxa_pure_virtual.  */
3019 
3020 void
3021 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3022 {
3023   tree decl = gimple_call_fndecl (stmt);
3024   if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3025       && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3026       && gimple_call_num_args (stmt))
3027     {
3028       gimple_set_num_ops (stmt, 3);
3029       update_stmt_fn (fn, stmt);
3030     }
3031 }
3032 
3033 /* Return false if STMT will likely expand to real function call.  */
3034 
3035 bool
3036 gimple_inexpensive_call_p (gcall *stmt)
3037 {
3038   if (gimple_call_internal_p (stmt))
3039     return true;
3040   tree decl = gimple_call_fndecl (stmt);
3041   if (decl && is_inexpensive_builtin (decl))
3042     return true;
3043   return false;
3044 }
3045 
3046 #if CHECKING_P
3047 
3048 namespace selftest {
3049 
3050 /* Selftests for core gimple structures.  */
3051 
3052 /* Verify that STMT is pretty-printed as EXPECTED.
3053    Helper function for selftests.  */
3054 
3055 static void
3056 verify_gimple_pp (const char *expected, gimple *stmt)
3057 {
3058   pretty_printer pp;
3059   pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, 0 /* flags */);
3060   ASSERT_STREQ (expected, pp_formatted_text (&pp));
3061 }
3062 
3063 /* Build a GIMPLE_ASSIGN equivalent to
3064      tmp = 5;
3065    and verify various properties of it.  */
3066 
3067 static void
3068 test_assign_single ()
3069 {
3070   tree type = integer_type_node;
3071   tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3072 			 get_identifier ("tmp"),
3073 			 type);
3074   tree rhs = build_int_cst (type, 5);
3075   gassign *stmt = gimple_build_assign (lhs, rhs);
3076   verify_gimple_pp ("tmp = 5;", stmt);
3077 
3078   ASSERT_TRUE (is_gimple_assign (stmt));
3079   ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3080   ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3081   ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3082   ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3083   ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3084   ASSERT_TRUE (gimple_assign_single_p (stmt));
3085   ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3086 }
3087 
3088 /* Build a GIMPLE_ASSIGN equivalent to
3089      tmp = a * b;
3090    and verify various properties of it.  */
3091 
3092 static void
3093 test_assign_binop ()
3094 {
3095   tree type = integer_type_node;
3096   tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3097 			 get_identifier ("tmp"),
3098 			 type);
3099   tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3100 		       get_identifier ("a"),
3101 		       type);
3102   tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3103 		       get_identifier ("b"),
3104 		       type);
3105   gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3106   verify_gimple_pp ("tmp = a * b;", stmt);
3107 
3108   ASSERT_TRUE (is_gimple_assign (stmt));
3109   ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3110   ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3111   ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3112   ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3113   ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3114   ASSERT_FALSE (gimple_assign_single_p (stmt));
3115   ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3116 }
3117 
3118 /* Build a GIMPLE_NOP and verify various properties of it.  */
3119 
3120 static void
3121 test_nop_stmt ()
3122 {
3123   gimple *stmt = gimple_build_nop ();
3124   verify_gimple_pp ("GIMPLE_NOP", stmt);
3125   ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3126   ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3127   ASSERT_FALSE (gimple_assign_single_p (stmt));
3128 }
3129 
3130 /* Build a GIMPLE_RETURN equivalent to
3131      return 7;
3132    and verify various properties of it.  */
3133 
3134 static void
3135 test_return_stmt ()
3136 {
3137   tree type = integer_type_node;
3138   tree val = build_int_cst (type, 7);
3139   greturn *stmt = gimple_build_return (val);
3140   verify_gimple_pp ("return 7;", stmt);
3141 
3142   ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3143   ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3144   ASSERT_EQ (val, gimple_return_retval (stmt));
3145   ASSERT_FALSE (gimple_assign_single_p (stmt));
3146 }
3147 
3148 /* Build a GIMPLE_RETURN equivalent to
3149      return;
3150    and verify various properties of it.  */
3151 
3152 static void
3153 test_return_without_value ()
3154 {
3155   greturn *stmt = gimple_build_return (NULL);
3156   verify_gimple_pp ("return;", stmt);
3157 
3158   ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3159   ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3160   ASSERT_EQ (NULL, gimple_return_retval (stmt));
3161   ASSERT_FALSE (gimple_assign_single_p (stmt));
3162 }
3163 
3164 /* Run all of the selftests within this file.  */
3165 
3166 void
3167 gimple_c_tests ()
3168 {
3169   test_assign_single ();
3170   test_assign_binop ();
3171   test_nop_stmt ();
3172   test_return_stmt ();
3173   test_return_without_value ();
3174 }
3175 
3176 } // namespace selftest
3177 
3178 
3179 #endif /* CHECKING_P */
3180