xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/gimple.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Gimple IR support functions.
2 
3    Copyright (C) 2007-2015 Free Software Foundation, Inc.
4    Contributed by Aldy Hernandez <aldyh@redhat.com>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "calls.h"
39 #include "stmt.h"
40 #include "stor-layout.h"
41 #include "hard-reg-set.h"
42 #include "predict.h"
43 #include "input.h"
44 #include "function.h"
45 #include "dominance.h"
46 #include "cfg.h"
47 #include "basic-block.h"
48 #include "tree-ssa-alias.h"
49 #include "internal-fn.h"
50 #include "tree-eh.h"
51 #include "gimple-expr.h"
52 #include "is-a.h"
53 #include "gimple.h"
54 #include "gimple-iterator.h"
55 #include "gimple-walk.h"
56 #include "gimple.h"
57 #include "gimplify.h"
58 #include "diagnostic.h"
59 #include "value-prof.h"
60 #include "flags.h"
61 #include "alias.h"
62 #include "demangle.h"
63 #include "langhooks.h"
64 #include "bitmap.h"
65 #include "stringpool.h"
66 #include "tree-ssanames.h"
67 #include "ipa-ref.h"
68 #include "lto-streamer.h"
69 #include "cgraph.h"
70 #include "gimple-ssa.h"
71 
72 
73 /* All the tuples have their operand vector (if present) at the very bottom
74    of the structure.  Therefore, the offset required to find the
75    operands vector the size of the structure minus the size of the 1
76    element tree array at the end (see gimple_ops).  */
77 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
78 	(HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
79 EXPORTED_CONST size_t gimple_ops_offset_[] = {
80 #include "gsstruct.def"
81 };
82 #undef DEFGSSTRUCT
83 
84 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
85 static const size_t gsstruct_code_size[] = {
86 #include "gsstruct.def"
87 };
88 #undef DEFGSSTRUCT
89 
90 #define DEFGSCODE(SYM, NAME, GSSCODE)	NAME,
91 const char *const gimple_code_name[] = {
92 #include "gimple.def"
93 };
94 #undef DEFGSCODE
95 
96 #define DEFGSCODE(SYM, NAME, GSSCODE)	GSSCODE,
97 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
98 #include "gimple.def"
99 };
100 #undef DEFGSCODE
101 
102 /* Gimple stats.  */
103 
104 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
105 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
106 
107 /* Keep in sync with gimple.h:enum gimple_alloc_kind.  */
108 static const char * const gimple_alloc_kind_names[] = {
109     "assignments",
110     "phi nodes",
111     "conditionals",
112     "everything else"
113 };
114 
115 /* Gimple tuple constructors.
116    Note: Any constructor taking a ``gimple_seq'' as a parameter, can
117    be passed a NULL to start with an empty sequence.  */
118 
119 /* Set the code for statement G to CODE.  */
120 
121 static inline void
122 gimple_set_code (gimple g, enum gimple_code code)
123 {
124   g->code = code;
125 }
126 
127 /* Return the number of bytes needed to hold a GIMPLE statement with
128    code CODE.  */
129 
130 static inline size_t
131 gimple_size (enum gimple_code code)
132 {
133   return gsstruct_code_size[gss_for_code (code)];
134 }
135 
136 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
137    operands.  */
138 
139 gimple
140 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
141 {
142   size_t size;
143   gimple stmt;
144 
145   size = gimple_size (code);
146   if (num_ops > 0)
147     size += sizeof (tree) * (num_ops - 1);
148 
149   if (GATHER_STATISTICS)
150     {
151       enum gimple_alloc_kind kind = gimple_alloc_kind (code);
152       gimple_alloc_counts[(int) kind]++;
153       gimple_alloc_sizes[(int) kind] += size;
154     }
155 
156   stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
157   gimple_set_code (stmt, code);
158   gimple_set_num_ops (stmt, num_ops);
159 
160   /* Do not call gimple_set_modified here as it has other side
161      effects and this tuple is still not completely built.  */
162   stmt->modified = 1;
163   gimple_init_singleton (stmt);
164 
165   return stmt;
166 }
167 
168 /* Set SUBCODE to be the code of the expression computed by statement G.  */
169 
170 static inline void
171 gimple_set_subcode (gimple g, unsigned subcode)
172 {
173   /* We only have 16 bits for the RHS code.  Assert that we are not
174      overflowing it.  */
175   gcc_assert (subcode < (1 << 16));
176   g->subcode = subcode;
177 }
178 
179 
180 
181 /* Build a tuple with operands.  CODE is the statement to build (which
182    must be one of the GIMPLE_WITH_OPS tuples).  SUBCODE is the subcode
183    for the new tuple.  NUM_OPS is the number of operands to allocate.  */
184 
185 #define gimple_build_with_ops(c, s, n) \
186   gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
187 
188 static gimple
189 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
190 		            unsigned num_ops MEM_STAT_DECL)
191 {
192   gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
193   gimple_set_subcode (s, subcode);
194 
195   return s;
196 }
197 
198 
199 /* Build a GIMPLE_RETURN statement returning RETVAL.  */
200 
201 greturn *
202 gimple_build_return (tree retval)
203 {
204   greturn *s
205     = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
206 					       2));
207   if (retval)
208     gimple_return_set_retval (s, retval);
209   return s;
210 }
211 
212 /* Reset alias information on call S.  */
213 
214 void
215 gimple_call_reset_alias_info (gcall *s)
216 {
217   if (gimple_call_flags (s) & ECF_CONST)
218     memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
219   else
220     pt_solution_reset (gimple_call_use_set (s));
221   if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
222     memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
223   else
224     pt_solution_reset (gimple_call_clobber_set (s));
225 }
226 
227 /* Helper for gimple_build_call, gimple_build_call_valist,
228    gimple_build_call_vec and gimple_build_call_from_tree.  Build the basic
229    components of a GIMPLE_CALL statement to function FN with NARGS
230    arguments.  */
231 
232 static inline gcall *
233 gimple_build_call_1 (tree fn, unsigned nargs)
234 {
235   gcall *s
236     = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
237 					     nargs + 3));
238   if (TREE_CODE (fn) == FUNCTION_DECL)
239     fn = build_fold_addr_expr (fn);
240   gimple_set_op (s, 1, fn);
241   gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
242   gimple_call_reset_alias_info (s);
243   return s;
244 }
245 
246 
247 /* Build a GIMPLE_CALL statement to function FN with the arguments
248    specified in vector ARGS.  */
249 
250 gcall *
251 gimple_build_call_vec (tree fn, vec<tree> args)
252 {
253   unsigned i;
254   unsigned nargs = args.length ();
255   gcall *call = gimple_build_call_1 (fn, nargs);
256 
257   for (i = 0; i < nargs; i++)
258     gimple_call_set_arg (call, i, args[i]);
259 
260   return call;
261 }
262 
263 
264 /* Build a GIMPLE_CALL statement to function FN.  NARGS is the number of
265    arguments.  The ... are the arguments.  */
266 
267 gcall *
268 gimple_build_call (tree fn, unsigned nargs, ...)
269 {
270   va_list ap;
271   gcall *call;
272   unsigned i;
273 
274   gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
275 
276   call = gimple_build_call_1 (fn, nargs);
277 
278   va_start (ap, nargs);
279   for (i = 0; i < nargs; i++)
280     gimple_call_set_arg (call, i, va_arg (ap, tree));
281   va_end (ap);
282 
283   return call;
284 }
285 
286 
287 /* Build a GIMPLE_CALL statement to function FN.  NARGS is the number of
288    arguments.  AP contains the arguments.  */
289 
290 gcall *
291 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
292 {
293   gcall *call;
294   unsigned i;
295 
296   gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
297 
298   call = gimple_build_call_1 (fn, nargs);
299 
300   for (i = 0; i < nargs; i++)
301     gimple_call_set_arg (call, i, va_arg (ap, tree));
302 
303   return call;
304 }
305 
306 
307 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
308    Build the basic components of a GIMPLE_CALL statement to internal
309    function FN with NARGS arguments.  */
310 
311 static inline gcall *
312 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
313 {
314   gcall *s
315     = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
316 					     nargs + 3));
317   s->subcode |= GF_CALL_INTERNAL;
318   gimple_call_set_internal_fn (s, fn);
319   gimple_call_reset_alias_info (s);
320   return s;
321 }
322 
323 
324 /* Build a GIMPLE_CALL statement to internal function FN.  NARGS is
325    the number of arguments.  The ... are the arguments.  */
326 
327 gcall *
328 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
329 {
330   va_list ap;
331   gcall *call;
332   unsigned i;
333 
334   call = gimple_build_call_internal_1 (fn, nargs);
335   va_start (ap, nargs);
336   for (i = 0; i < nargs; i++)
337     gimple_call_set_arg (call, i, va_arg (ap, tree));
338   va_end (ap);
339 
340   return call;
341 }
342 
343 
344 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
345    specified in vector ARGS.  */
346 
347 gcall *
348 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
349 {
350   unsigned i, nargs;
351   gcall *call;
352 
353   nargs = args.length ();
354   call = gimple_build_call_internal_1 (fn, nargs);
355   for (i = 0; i < nargs; i++)
356     gimple_call_set_arg (call, i, args[i]);
357 
358   return call;
359 }
360 
361 
362 /* Build a GIMPLE_CALL statement from CALL_EXPR T.  Note that T is
363    assumed to be in GIMPLE form already.  Minimal checking is done of
364    this fact.  */
365 
366 gcall *
367 gimple_build_call_from_tree (tree t)
368 {
369   unsigned i, nargs;
370   gcall *call;
371   tree fndecl = get_callee_fndecl (t);
372 
373   gcc_assert (TREE_CODE (t) == CALL_EXPR);
374 
375   nargs = call_expr_nargs (t);
376   call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
377 
378   for (i = 0; i < nargs; i++)
379     gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
380 
381   gimple_set_block (call, TREE_BLOCK (t));
382 
383   /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL.  */
384   gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
385   gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
386   gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
387   if (fndecl
388       && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
389       && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
390 	  || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
391     gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
392   else
393     gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
394   gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
395   gimple_call_set_nothrow (call, TREE_NOTHROW (t));
396   gimple_set_no_warning (call, TREE_NO_WARNING (t));
397   gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
398 
399   return call;
400 }
401 
402 
403 /* Build a GIMPLE_ASSIGN statement.
404 
405    LHS of the assignment.
406    RHS of the assignment which can be unary or binary.  */
407 
408 gassign *
409 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
410 {
411   enum tree_code subcode;
412   tree op1, op2, op3;
413 
414   extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
415   return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
416 }
417 
418 
419 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
420    OP1, OP2 and OP3.  */
421 
422 static inline gassign *
423 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
424 		       tree op2, tree op3 MEM_STAT_DECL)
425 {
426   unsigned num_ops;
427   gassign *p;
428 
429   /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
430      code).  */
431   num_ops = get_gimple_rhs_num_ops (subcode) + 1;
432 
433   p = as_a <gassign *> (
434         gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
435 				    PASS_MEM_STAT));
436   gimple_assign_set_lhs (p, lhs);
437   gimple_assign_set_rhs1 (p, op1);
438   if (op2)
439     {
440       gcc_assert (num_ops > 2);
441       gimple_assign_set_rhs2 (p, op2);
442     }
443 
444   if (op3)
445     {
446       gcc_assert (num_ops > 3);
447       gimple_assign_set_rhs3 (p, op3);
448     }
449 
450   return p;
451 }
452 
453 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
454    OP1, OP2 and OP3.  */
455 
456 gassign *
457 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
458 		     tree op2, tree op3 MEM_STAT_DECL)
459 {
460   return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
461 }
462 
463 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
464    OP1 and OP2.  */
465 
466 gassign *
467 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
468 		     tree op2 MEM_STAT_DECL)
469 {
470   return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
471 				PASS_MEM_STAT);
472 }
473 
474 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1.  */
475 
476 gassign *
477 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
478 {
479   return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
480 				PASS_MEM_STAT);
481 }
482 
483 
484 /* Build a GIMPLE_COND statement.
485 
486    PRED is the condition used to compare LHS and the RHS.
487    T_LABEL is the label to jump to if the condition is true.
488    F_LABEL is the label to jump to otherwise.  */
489 
490 gcond *
491 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
492 		   tree t_label, tree f_label)
493 {
494   gcond *p;
495 
496   gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
497   p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
498   gimple_cond_set_lhs (p, lhs);
499   gimple_cond_set_rhs (p, rhs);
500   gimple_cond_set_true_label (p, t_label);
501   gimple_cond_set_false_label (p, f_label);
502   return p;
503 }
504 
505 /* Build a GIMPLE_COND statement from the conditional expression tree
506    COND.  T_LABEL and F_LABEL are as in gimple_build_cond.  */
507 
508 gcond *
509 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
510 {
511   enum tree_code code;
512   tree lhs, rhs;
513 
514   gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
515   return gimple_build_cond (code, lhs, rhs, t_label, f_label);
516 }
517 
518 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
519    boolean expression tree COND.  */
520 
521 void
522 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
523 {
524   enum tree_code code;
525   tree lhs, rhs;
526 
527   gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
528   gimple_cond_set_condition (stmt, code, lhs, rhs);
529 }
530 
531 /* Build a GIMPLE_LABEL statement for LABEL.  */
532 
533 glabel *
534 gimple_build_label (tree label)
535 {
536   glabel *p
537     = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
538   gimple_label_set_label (p, label);
539   return p;
540 }
541 
542 /* Build a GIMPLE_GOTO statement to label DEST.  */
543 
544 ggoto *
545 gimple_build_goto (tree dest)
546 {
547   ggoto *p
548     = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
549   gimple_goto_set_dest (p, dest);
550   return p;
551 }
552 
553 
554 /* Build a GIMPLE_NOP statement.  */
555 
556 gimple
557 gimple_build_nop (void)
558 {
559   return gimple_alloc (GIMPLE_NOP, 0);
560 }
561 
562 
563 /* Build a GIMPLE_BIND statement.
564    VARS are the variables in BODY.
565    BLOCK is the containing block.  */
566 
567 gbind *
568 gimple_build_bind (tree vars, gimple_seq body, tree block)
569 {
570   gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
571   gimple_bind_set_vars (p, vars);
572   if (body)
573     gimple_bind_set_body (p, body);
574   if (block)
575     gimple_bind_set_block (p, block);
576   return p;
577 }
578 
579 /* Helper function to set the simple fields of a asm stmt.
580 
581    STRING is a pointer to a string that is the asm blocks assembly code.
582    NINPUT is the number of register inputs.
583    NOUTPUT is the number of register outputs.
584    NCLOBBERS is the number of clobbered registers.
585    */
586 
587 static inline gasm *
588 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
589                     unsigned nclobbers, unsigned nlabels)
590 {
591   gasm *p;
592   int size = strlen (string);
593 
594   /* ASMs with labels cannot have outputs.  This should have been
595      enforced by the front end.  */
596   gcc_assert (nlabels == 0 || noutputs == 0);
597 
598   p = as_a <gasm *> (
599         gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
600 			       ninputs + noutputs + nclobbers + nlabels));
601 
602   p->ni = ninputs;
603   p->no = noutputs;
604   p->nc = nclobbers;
605   p->nl = nlabels;
606   p->string = ggc_alloc_string (string, size);
607 
608   if (GATHER_STATISTICS)
609     gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
610 
611   return p;
612 }
613 
614 /* Build a GIMPLE_ASM statement.
615 
616    STRING is the assembly code.
617    NINPUT is the number of register inputs.
618    NOUTPUT is the number of register outputs.
619    NCLOBBERS is the number of clobbered registers.
620    INPUTS is a vector of the input register parameters.
621    OUTPUTS is a vector of the output register parameters.
622    CLOBBERS is a vector of the clobbered register parameters.
623    LABELS is a vector of destination labels.  */
624 
625 gasm *
626 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
627                       vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
628 		      vec<tree, va_gc> *labels)
629 {
630   gasm *p;
631   unsigned i;
632 
633   p = gimple_build_asm_1 (string,
634                           vec_safe_length (inputs),
635                           vec_safe_length (outputs),
636                           vec_safe_length (clobbers),
637 			  vec_safe_length (labels));
638 
639   for (i = 0; i < vec_safe_length (inputs); i++)
640     gimple_asm_set_input_op (p, i, (*inputs)[i]);
641 
642   for (i = 0; i < vec_safe_length (outputs); i++)
643     gimple_asm_set_output_op (p, i, (*outputs)[i]);
644 
645   for (i = 0; i < vec_safe_length (clobbers); i++)
646     gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
647 
648   for (i = 0; i < vec_safe_length (labels); i++)
649     gimple_asm_set_label_op (p, i, (*labels)[i]);
650 
651   return p;
652 }
653 
654 /* Build a GIMPLE_CATCH statement.
655 
656   TYPES are the catch types.
657   HANDLER is the exception handler.  */
658 
659 gcatch *
660 gimple_build_catch (tree types, gimple_seq handler)
661 {
662   gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
663   gimple_catch_set_types (p, types);
664   if (handler)
665     gimple_catch_set_handler (p, handler);
666 
667   return p;
668 }
669 
670 /* Build a GIMPLE_EH_FILTER statement.
671 
672    TYPES are the filter's types.
673    FAILURE is the filter's failure action.  */
674 
675 geh_filter *
676 gimple_build_eh_filter (tree types, gimple_seq failure)
677 {
678   geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
679   gimple_eh_filter_set_types (p, types);
680   if (failure)
681     gimple_eh_filter_set_failure (p, failure);
682 
683   return p;
684 }
685 
686 /* Build a GIMPLE_EH_MUST_NOT_THROW statement.  */
687 
688 geh_mnt *
689 gimple_build_eh_must_not_throw (tree decl)
690 {
691   geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
692 
693   gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
694   gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
695   gimple_eh_must_not_throw_set_fndecl (p, decl);
696 
697   return p;
698 }
699 
700 /* Build a GIMPLE_EH_ELSE statement.  */
701 
702 geh_else *
703 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
704 {
705   geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
706   gimple_eh_else_set_n_body (p, n_body);
707   gimple_eh_else_set_e_body (p, e_body);
708   return p;
709 }
710 
711 /* Build a GIMPLE_TRY statement.
712 
713    EVAL is the expression to evaluate.
714    CLEANUP is the cleanup expression.
715    KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
716    whether this is a try/catch or a try/finally respectively.  */
717 
718 gtry *
719 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
720     		  enum gimple_try_flags kind)
721 {
722   gtry *p;
723 
724   gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
725   p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
726   gimple_set_subcode (p, kind);
727   if (eval)
728     gimple_try_set_eval (p, eval);
729   if (cleanup)
730     gimple_try_set_cleanup (p, cleanup);
731 
732   return p;
733 }
734 
735 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
736 
737    CLEANUP is the cleanup expression.  */
738 
739 gimple
740 gimple_build_wce (gimple_seq cleanup)
741 {
742   gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
743   if (cleanup)
744     gimple_wce_set_cleanup (p, cleanup);
745 
746   return p;
747 }
748 
749 
750 /* Build a GIMPLE_RESX statement.  */
751 
752 gresx *
753 gimple_build_resx (int region)
754 {
755   gresx *p
756     = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
757   p->region = region;
758   return p;
759 }
760 
761 
762 /* The helper for constructing a gimple switch statement.
763    INDEX is the switch's index.
764    NLABELS is the number of labels in the switch excluding the default.
765    DEFAULT_LABEL is the default label for the switch statement.  */
766 
767 gswitch *
768 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
769 {
770   /* nlabels + 1 default label + 1 index.  */
771   gcc_checking_assert (default_label);
772   gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
773 							ERROR_MARK,
774 							1 + 1 + nlabels));
775   gimple_switch_set_index (p, index);
776   gimple_switch_set_default_label (p, default_label);
777   return p;
778 }
779 
780 /* Build a GIMPLE_SWITCH statement.
781 
782    INDEX is the switch's index.
783    DEFAULT_LABEL is the default label
784    ARGS is a vector of labels excluding the default.  */
785 
786 gswitch *
787 gimple_build_switch (tree index, tree default_label, vec<tree> args)
788 {
789   unsigned i, nlabels = args.length ();
790 
791   gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
792 
793   /* Copy the labels from the vector to the switch statement.  */
794   for (i = 0; i < nlabels; i++)
795     gimple_switch_set_label (p, i + 1, args[i]);
796 
797   return p;
798 }
799 
800 /* Build a GIMPLE_EH_DISPATCH statement.  */
801 
802 geh_dispatch *
803 gimple_build_eh_dispatch (int region)
804 {
805   geh_dispatch *p
806     = as_a <geh_dispatch *> (
807 	gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
808   p->region = region;
809   return p;
810 }
811 
812 /* Build a new GIMPLE_DEBUG_BIND statement.
813 
814    VAR is bound to VALUE; block and location are taken from STMT.  */
815 
816 gdebug *
817 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
818 {
819   gdebug *p
820     = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
821 						   (unsigned)GIMPLE_DEBUG_BIND, 2
822 						   PASS_MEM_STAT));
823   gimple_debug_bind_set_var (p, var);
824   gimple_debug_bind_set_value (p, value);
825   if (stmt)
826     gimple_set_location (p, gimple_location (stmt));
827 
828   return p;
829 }
830 
831 
832 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
833 
834    VAR is bound to VALUE; block and location are taken from STMT.  */
835 
836 gdebug *
837 gimple_build_debug_source_bind_stat (tree var, tree value,
838 				     gimple stmt MEM_STAT_DECL)
839 {
840   gdebug *p
841     = as_a <gdebug *> (
842         gimple_build_with_ops_stat (GIMPLE_DEBUG,
843 				    (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
844 				    PASS_MEM_STAT));
845 
846   gimple_debug_source_bind_set_var (p, var);
847   gimple_debug_source_bind_set_value (p, value);
848   if (stmt)
849     gimple_set_location (p, gimple_location (stmt));
850 
851   return p;
852 }
853 
854 
855 /* Build a GIMPLE_OMP_CRITICAL statement.
856 
857    BODY is the sequence of statements for which only one thread can execute.
858    NAME is optional identifier for this critical block.  */
859 
860 gomp_critical *
861 gimple_build_omp_critical (gimple_seq body, tree name)
862 {
863   gomp_critical *p
864     = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
865   gimple_omp_critical_set_name (p, name);
866   if (body)
867     gimple_omp_set_body (p, body);
868 
869   return p;
870 }
871 
872 /* Build a GIMPLE_OMP_FOR statement.
873 
874    BODY is sequence of statements inside the for loop.
875    KIND is the `for' variant.
876    CLAUSES, are any of the construct's clauses.
877    COLLAPSE is the collapse count.
878    PRE_BODY is the sequence of statements that are loop invariant.  */
879 
880 gomp_for *
881 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
882 		      gimple_seq pre_body)
883 {
884   gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
885   if (body)
886     gimple_omp_set_body (p, body);
887   gimple_omp_for_set_clauses (p, clauses);
888   gimple_omp_for_set_kind (p, kind);
889   p->collapse = collapse;
890   p->iter =  ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
891 
892   if (pre_body)
893     gimple_omp_for_set_pre_body (p, pre_body);
894 
895   return p;
896 }
897 
898 
899 /* Build a GIMPLE_OMP_PARALLEL statement.
900 
901    BODY is sequence of statements which are executed in parallel.
902    CLAUSES, are the OMP parallel construct's clauses.
903    CHILD_FN is the function created for the parallel threads to execute.
904    DATA_ARG are the shared data argument(s).  */
905 
906 gomp_parallel *
907 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
908 			   tree data_arg)
909 {
910   gomp_parallel *p
911     = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
912   if (body)
913     gimple_omp_set_body (p, body);
914   gimple_omp_parallel_set_clauses (p, clauses);
915   gimple_omp_parallel_set_child_fn (p, child_fn);
916   gimple_omp_parallel_set_data_arg (p, data_arg);
917 
918   return p;
919 }
920 
921 
922 /* Build a GIMPLE_OMP_TASK statement.
923 
924    BODY is sequence of statements which are executed by the explicit task.
925    CLAUSES, are the OMP parallel construct's clauses.
926    CHILD_FN is the function created for the parallel threads to execute.
927    DATA_ARG are the shared data argument(s).
928    COPY_FN is the optional function for firstprivate initialization.
929    ARG_SIZE and ARG_ALIGN are size and alignment of the data block.  */
930 
931 gomp_task *
932 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
933 		       tree data_arg, tree copy_fn, tree arg_size,
934 		       tree arg_align)
935 {
936   gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
937   if (body)
938     gimple_omp_set_body (p, body);
939   gimple_omp_task_set_clauses (p, clauses);
940   gimple_omp_task_set_child_fn (p, child_fn);
941   gimple_omp_task_set_data_arg (p, data_arg);
942   gimple_omp_task_set_copy_fn (p, copy_fn);
943   gimple_omp_task_set_arg_size (p, arg_size);
944   gimple_omp_task_set_arg_align (p, arg_align);
945 
946   return p;
947 }
948 
949 
950 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
951 
952    BODY is the sequence of statements in the section.  */
953 
954 gimple
955 gimple_build_omp_section (gimple_seq body)
956 {
957   gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
958   if (body)
959     gimple_omp_set_body (p, body);
960 
961   return p;
962 }
963 
964 
965 /* Build a GIMPLE_OMP_MASTER statement.
966 
967    BODY is the sequence of statements to be executed by just the master.  */
968 
969 gimple
970 gimple_build_omp_master (gimple_seq body)
971 {
972   gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
973   if (body)
974     gimple_omp_set_body (p, body);
975 
976   return p;
977 }
978 
979 
980 /* Build a GIMPLE_OMP_TASKGROUP statement.
981 
982    BODY is the sequence of statements to be executed by the taskgroup
983    construct.  */
984 
985 gimple
986 gimple_build_omp_taskgroup (gimple_seq body)
987 {
988   gimple p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
989   if (body)
990     gimple_omp_set_body (p, body);
991 
992   return p;
993 }
994 
995 
996 /* Build a GIMPLE_OMP_CONTINUE statement.
997 
998    CONTROL_DEF is the definition of the control variable.
999    CONTROL_USE is the use of the control variable.  */
1000 
1001 gomp_continue *
1002 gimple_build_omp_continue (tree control_def, tree control_use)
1003 {
1004   gomp_continue *p
1005     = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1006   gimple_omp_continue_set_control_def (p, control_def);
1007   gimple_omp_continue_set_control_use (p, control_use);
1008   return p;
1009 }
1010 
1011 /* Build a GIMPLE_OMP_ORDERED statement.
1012 
1013    BODY is the sequence of statements inside a loop that will executed in
1014    sequence.  */
1015 
1016 gimple
1017 gimple_build_omp_ordered (gimple_seq body)
1018 {
1019   gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
1020   if (body)
1021     gimple_omp_set_body (p, body);
1022 
1023   return p;
1024 }
1025 
1026 
1027 /* Build a GIMPLE_OMP_RETURN statement.
1028    WAIT_P is true if this is a non-waiting return.  */
1029 
1030 gimple
1031 gimple_build_omp_return (bool wait_p)
1032 {
1033   gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1034   if (wait_p)
1035     gimple_omp_return_set_nowait (p);
1036 
1037   return p;
1038 }
1039 
1040 
1041 /* Build a GIMPLE_OMP_SECTIONS statement.
1042 
1043    BODY is a sequence of section statements.
1044    CLAUSES are any of the OMP sections contsruct's clauses: private,
1045    firstprivate, lastprivate, reduction, and nowait.  */
1046 
1047 gomp_sections *
1048 gimple_build_omp_sections (gimple_seq body, tree clauses)
1049 {
1050   gomp_sections *p
1051     = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1052   if (body)
1053     gimple_omp_set_body (p, body);
1054   gimple_omp_sections_set_clauses (p, clauses);
1055 
1056   return p;
1057 }
1058 
1059 
1060 /* Build a GIMPLE_OMP_SECTIONS_SWITCH.  */
1061 
1062 gimple
1063 gimple_build_omp_sections_switch (void)
1064 {
1065   return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1066 }
1067 
1068 
1069 /* Build a GIMPLE_OMP_SINGLE statement.
1070 
1071    BODY is the sequence of statements that will be executed once.
1072    CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1073    copyprivate, nowait.  */
1074 
1075 gomp_single *
1076 gimple_build_omp_single (gimple_seq body, tree clauses)
1077 {
1078   gomp_single *p
1079     = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1080   if (body)
1081     gimple_omp_set_body (p, body);
1082   gimple_omp_single_set_clauses (p, clauses);
1083 
1084   return p;
1085 }
1086 
1087 
1088 /* Build a GIMPLE_OMP_TARGET statement.
1089 
1090    BODY is the sequence of statements that will be executed.
1091    KIND is the kind of the region.
1092    CLAUSES are any of the construct's clauses.  */
1093 
1094 gomp_target *
1095 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1096 {
1097   gomp_target *p
1098     = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1099   if (body)
1100     gimple_omp_set_body (p, body);
1101   gimple_omp_target_set_clauses (p, clauses);
1102   gimple_omp_target_set_kind (p, kind);
1103 
1104   return p;
1105 }
1106 
1107 
1108 /* Build a GIMPLE_OMP_TEAMS statement.
1109 
1110    BODY is the sequence of statements that will be executed.
1111    CLAUSES are any of the OMP teams construct's clauses.  */
1112 
1113 gomp_teams *
1114 gimple_build_omp_teams (gimple_seq body, tree clauses)
1115 {
1116   gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1117   if (body)
1118     gimple_omp_set_body (p, body);
1119   gimple_omp_teams_set_clauses (p, clauses);
1120 
1121   return p;
1122 }
1123 
1124 
1125 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement.  */
1126 
1127 gomp_atomic_load *
1128 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1129 {
1130   gomp_atomic_load *p
1131     = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1132   gimple_omp_atomic_load_set_lhs (p, lhs);
1133   gimple_omp_atomic_load_set_rhs (p, rhs);
1134   return p;
1135 }
1136 
1137 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1138 
1139    VAL is the value we are storing.  */
1140 
1141 gomp_atomic_store *
1142 gimple_build_omp_atomic_store (tree val)
1143 {
1144   gomp_atomic_store *p
1145     = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1146   gimple_omp_atomic_store_set_val (p, val);
1147   return p;
1148 }
1149 
1150 /* Build a GIMPLE_TRANSACTION statement.  */
1151 
1152 gtransaction *
1153 gimple_build_transaction (gimple_seq body, tree label)
1154 {
1155   gtransaction *p
1156     = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1157   gimple_transaction_set_body (p, body);
1158   gimple_transaction_set_label (p, label);
1159   return p;
1160 }
1161 
1162 /* Build a GIMPLE_PREDICT statement.  PREDICT is one of the predictors from
1163    predict.def, OUTCOME is NOT_TAKEN or TAKEN.  */
1164 
1165 gimple
1166 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1167 {
1168   gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1169   /* Ensure all the predictors fit into the lower bits of the subcode.  */
1170   gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1171   gimple_predict_set_predictor (p, predictor);
1172   gimple_predict_set_outcome (p, outcome);
1173   return p;
1174 }
1175 
1176 #if defined ENABLE_GIMPLE_CHECKING
1177 /* Complain of a gimple type mismatch and die.  */
1178 
1179 void
1180 gimple_check_failed (const_gimple gs, const char *file, int line,
1181 		     const char *function, enum gimple_code code,
1182 		     enum tree_code subcode)
1183 {
1184   internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1185       		  gimple_code_name[code],
1186 		  get_tree_code_name (subcode),
1187 		  gimple_code_name[gimple_code (gs)],
1188 		  gs->subcode > 0
1189 		    ? get_tree_code_name ((enum tree_code) gs->subcode)
1190 		    : "",
1191 		  function, trim_filename (file), line);
1192 }
1193 #endif /* ENABLE_GIMPLE_CHECKING */
1194 
1195 
1196 /* Link gimple statement GS to the end of the sequence *SEQ_P.  If
1197    *SEQ_P is NULL, a new sequence is allocated.  */
1198 
1199 void
1200 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1201 {
1202   gimple_stmt_iterator si;
1203   if (gs == NULL)
1204     return;
1205 
1206   si = gsi_last (*seq_p);
1207   gsi_insert_after (&si, gs, GSI_NEW_STMT);
1208 }
1209 
1210 /* Link gimple statement GS to the end of the sequence *SEQ_P.  If
1211    *SEQ_P is NULL, a new sequence is allocated.  This function is
1212    similar to gimple_seq_add_stmt, but does not scan the operands.
1213    During gimplification, we need to manipulate statement sequences
1214    before the def/use vectors have been constructed.  */
1215 
1216 void
1217 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple gs)
1218 {
1219   gimple_stmt_iterator si;
1220 
1221   if (gs == NULL)
1222     return;
1223 
1224   si = gsi_last (*seq_p);
1225   gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1226 }
1227 
1228 /* Append sequence SRC to the end of sequence *DST_P.  If *DST_P is
1229    NULL, a new sequence is allocated.  */
1230 
1231 void
1232 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1233 {
1234   gimple_stmt_iterator si;
1235   if (src == NULL)
1236     return;
1237 
1238   si = gsi_last (*dst_p);
1239   gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1240 }
1241 
1242 /* Append sequence SRC to the end of sequence *DST_P.  If *DST_P is
1243    NULL, a new sequence is allocated.  This function is
1244    similar to gimple_seq_add_seq, but does not scan the operands.  */
1245 
1246 void
1247 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1248 {
1249   gimple_stmt_iterator si;
1250   if (src == NULL)
1251     return;
1252 
1253   si = gsi_last (*dst_p);
1254   gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1255 }
1256 
1257 /* Determine whether to assign a location to the statement GS.  */
1258 
1259 static bool
1260 should_carry_location_p (gimple gs)
1261 {
1262   /* Don't emit a line note for a label.  We particularly don't want to
1263      emit one for the break label, since it doesn't actually correspond
1264      to the beginning of the loop/switch.  */
1265   if (gimple_code (gs) == GIMPLE_LABEL)
1266     return false;
1267 
1268   return true;
1269 }
1270 
1271 /* Set the location for gimple statement GS to LOCATION.  */
1272 
1273 static void
1274 annotate_one_with_location (gimple gs, location_t location)
1275 {
1276   if (!gimple_has_location (gs)
1277       && !gimple_do_not_emit_location_p (gs)
1278       && should_carry_location_p (gs))
1279     gimple_set_location (gs, location);
1280 }
1281 
1282 /* Set LOCATION for all the statements after iterator GSI in sequence
1283    SEQ.  If GSI is pointing to the end of the sequence, start with the
1284    first statement in SEQ.  */
1285 
1286 void
1287 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1288 				  location_t location)
1289 {
1290   if (gsi_end_p (gsi))
1291     gsi = gsi_start (seq);
1292   else
1293     gsi_next (&gsi);
1294 
1295   for (; !gsi_end_p (gsi); gsi_next (&gsi))
1296     annotate_one_with_location (gsi_stmt (gsi), location);
1297 }
1298 
1299 /* Set the location for all the statements in a sequence STMT_P to LOCATION.  */
1300 
1301 void
1302 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1303 {
1304   gimple_stmt_iterator i;
1305 
1306   if (gimple_seq_empty_p (stmt_p))
1307     return;
1308 
1309   for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1310     {
1311       gimple gs = gsi_stmt (i);
1312       annotate_one_with_location (gs, location);
1313     }
1314 }
1315 
1316 /* Helper function of empty_body_p.  Return true if STMT is an empty
1317    statement.  */
1318 
1319 static bool
1320 empty_stmt_p (gimple stmt)
1321 {
1322   if (gimple_code (stmt) == GIMPLE_NOP)
1323     return true;
1324   if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1325     return empty_body_p (gimple_bind_body (bind_stmt));
1326   return false;
1327 }
1328 
1329 
1330 /* Return true if BODY contains nothing but empty statements.  */
1331 
1332 bool
1333 empty_body_p (gimple_seq body)
1334 {
1335   gimple_stmt_iterator i;
1336 
1337   if (gimple_seq_empty_p (body))
1338     return true;
1339   for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1340     if (!empty_stmt_p (gsi_stmt (i))
1341 	&& !is_gimple_debug (gsi_stmt (i)))
1342       return false;
1343 
1344   return true;
1345 }
1346 
1347 
1348 /* Perform a deep copy of sequence SRC and return the result.  */
1349 
1350 gimple_seq
1351 gimple_seq_copy (gimple_seq src)
1352 {
1353   gimple_stmt_iterator gsi;
1354   gimple_seq new_seq = NULL;
1355   gimple stmt;
1356 
1357   for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1358     {
1359       stmt = gimple_copy (gsi_stmt (gsi));
1360       gimple_seq_add_stmt (&new_seq, stmt);
1361     }
1362 
1363   return new_seq;
1364 }
1365 
1366 
1367 
1368 /* Return true if calls C1 and C2 are known to go to the same function.  */
1369 
1370 bool
1371 gimple_call_same_target_p (const_gimple c1, const_gimple c2)
1372 {
1373   if (gimple_call_internal_p (c1))
1374     return (gimple_call_internal_p (c2)
1375 	    && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2));
1376   else
1377     return (gimple_call_fn (c1) == gimple_call_fn (c2)
1378 	    || (gimple_call_fndecl (c1)
1379 		&& gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1380 }
1381 
1382 /* Detect flags from a GIMPLE_CALL.  This is just like
1383    call_expr_flags, but for gimple tuples.  */
1384 
1385 int
1386 gimple_call_flags (const_gimple stmt)
1387 {
1388   int flags;
1389   tree decl = gimple_call_fndecl (stmt);
1390 
1391   if (decl)
1392     flags = flags_from_decl_or_type (decl);
1393   else if (gimple_call_internal_p (stmt))
1394     flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1395   else
1396     flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1397 
1398   if (stmt->subcode & GF_CALL_NOTHROW)
1399     flags |= ECF_NOTHROW;
1400 
1401   return flags;
1402 }
1403 
1404 /* Return the "fn spec" string for call STMT.  */
1405 
1406 static const_tree
1407 gimple_call_fnspec (const gcall *stmt)
1408 {
1409   tree type, attr;
1410 
1411   if (gimple_call_internal_p (stmt))
1412     return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1413 
1414   type = gimple_call_fntype (stmt);
1415   if (!type)
1416     return NULL_TREE;
1417 
1418   attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1419   if (!attr)
1420     return NULL_TREE;
1421 
1422   return TREE_VALUE (TREE_VALUE (attr));
1423 }
1424 
1425 /* Detects argument flags for argument number ARG on call STMT.  */
1426 
1427 int
1428 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1429 {
1430   const_tree attr = gimple_call_fnspec (stmt);
1431 
1432   if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1433     return 0;
1434 
1435   switch (TREE_STRING_POINTER (attr)[1 + arg])
1436     {
1437     case 'x':
1438     case 'X':
1439       return EAF_UNUSED;
1440 
1441     case 'R':
1442       return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1443 
1444     case 'r':
1445       return EAF_NOCLOBBER | EAF_NOESCAPE;
1446 
1447     case 'W':
1448       return EAF_DIRECT | EAF_NOESCAPE;
1449 
1450     case 'w':
1451       return EAF_NOESCAPE;
1452 
1453     case '.':
1454     default:
1455       return 0;
1456     }
1457 }
1458 
1459 /* Detects return flags for the call STMT.  */
1460 
1461 int
1462 gimple_call_return_flags (const gcall *stmt)
1463 {
1464   const_tree attr;
1465 
1466   if (gimple_call_flags (stmt) & ECF_MALLOC)
1467     return ERF_NOALIAS;
1468 
1469   attr = gimple_call_fnspec (stmt);
1470   if (!attr || TREE_STRING_LENGTH (attr) < 1)
1471     return 0;
1472 
1473   switch (TREE_STRING_POINTER (attr)[0])
1474     {
1475     case '1':
1476     case '2':
1477     case '3':
1478     case '4':
1479       return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1480 
1481     case 'm':
1482       return ERF_NOALIAS;
1483 
1484     case '.':
1485     default:
1486       return 0;
1487     }
1488 }
1489 
1490 
1491 /* Return true if GS is a copy assignment.  */
1492 
1493 bool
1494 gimple_assign_copy_p (gimple gs)
1495 {
1496   return (gimple_assign_single_p (gs)
1497 	  && is_gimple_val (gimple_op (gs, 1)));
1498 }
1499 
1500 
1501 /* Return true if GS is a SSA_NAME copy assignment.  */
1502 
1503 bool
1504 gimple_assign_ssa_name_copy_p (gimple gs)
1505 {
1506   return (gimple_assign_single_p (gs)
1507 	  && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1508 	  && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1509 }
1510 
1511 
1512 /* Return true if GS is an assignment with a unary RHS, but the
1513    operator has no effect on the assigned value.  The logic is adapted
1514    from STRIP_NOPS.  This predicate is intended to be used in tuplifying
1515    instances in which STRIP_NOPS was previously applied to the RHS of
1516    an assignment.
1517 
1518    NOTE: In the use cases that led to the creation of this function
1519    and of gimple_assign_single_p, it is typical to test for either
1520    condition and to proceed in the same manner.  In each case, the
1521    assigned value is represented by the single RHS operand of the
1522    assignment.  I suspect there may be cases where gimple_assign_copy_p,
1523    gimple_assign_single_p, or equivalent logic is used where a similar
1524    treatment of unary NOPs is appropriate.  */
1525 
1526 bool
1527 gimple_assign_unary_nop_p (gimple gs)
1528 {
1529   return (is_gimple_assign (gs)
1530           && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1531               || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1532           && gimple_assign_rhs1 (gs) != error_mark_node
1533           && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1534               == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1535 }
1536 
1537 /* Set BB to be the basic block holding G.  */
1538 
1539 void
1540 gimple_set_bb (gimple stmt, basic_block bb)
1541 {
1542   stmt->bb = bb;
1543 
1544   if (gimple_code (stmt) != GIMPLE_LABEL)
1545     return;
1546 
1547   /* If the statement is a label, add the label to block-to-labels map
1548      so that we can speed up edge creation for GIMPLE_GOTOs.  */
1549   if (cfun->cfg)
1550     {
1551       tree t;
1552       int uid;
1553 
1554       t = gimple_label_label (as_a <glabel *> (stmt));
1555       uid = LABEL_DECL_UID (t);
1556       if (uid == -1)
1557 	{
1558 	  unsigned old_len =
1559 	    vec_safe_length (label_to_block_map_for_fn (cfun));
1560 	  LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1561 	  if (old_len <= (unsigned) uid)
1562 	    {
1563 	      unsigned new_len = 3 * uid / 2 + 1;
1564 
1565 	      vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1566 				     new_len);
1567 	    }
1568 	}
1569 
1570       (*label_to_block_map_for_fn (cfun))[uid] = bb;
1571     }
1572 }
1573 
1574 
1575 /* Modify the RHS of the assignment pointed-to by GSI using the
1576    operands in the expression tree EXPR.
1577 
1578    NOTE: The statement pointed-to by GSI may be reallocated if it
1579    did not have enough operand slots.
1580 
1581    This function is useful to convert an existing tree expression into
1582    the flat representation used for the RHS of a GIMPLE assignment.
1583    It will reallocate memory as needed to expand or shrink the number
1584    of operand slots needed to represent EXPR.
1585 
1586    NOTE: If you find yourself building a tree and then calling this
1587    function, you are most certainly doing it the slow way.  It is much
1588    better to build a new assignment or to use the function
1589    gimple_assign_set_rhs_with_ops, which does not require an
1590    expression tree to be built.  */
1591 
1592 void
1593 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1594 {
1595   enum tree_code subcode;
1596   tree op1, op2, op3;
1597 
1598   extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1599   gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1600 }
1601 
1602 
1603 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1604    operands OP1, OP2 and OP3.
1605 
1606    NOTE: The statement pointed-to by GSI may be reallocated if it
1607    did not have enough operand slots.  */
1608 
1609 void
1610 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1611 				tree op1, tree op2, tree op3)
1612 {
1613   unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1614   gimple stmt = gsi_stmt (*gsi);
1615 
1616   /* If the new CODE needs more operands, allocate a new statement.  */
1617   if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1618     {
1619       tree lhs = gimple_assign_lhs (stmt);
1620       gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1621       memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1622       gimple_init_singleton (new_stmt);
1623       gsi_replace (gsi, new_stmt, true);
1624       stmt = new_stmt;
1625 
1626       /* The LHS needs to be reset as this also changes the SSA name
1627 	 on the LHS.  */
1628       gimple_assign_set_lhs (stmt, lhs);
1629     }
1630 
1631   gimple_set_num_ops (stmt, new_rhs_ops + 1);
1632   gimple_set_subcode (stmt, code);
1633   gimple_assign_set_rhs1 (stmt, op1);
1634   if (new_rhs_ops > 1)
1635     gimple_assign_set_rhs2 (stmt, op2);
1636   if (new_rhs_ops > 2)
1637     gimple_assign_set_rhs3 (stmt, op3);
1638 }
1639 
1640 
1641 /* Return the LHS of a statement that performs an assignment,
1642    either a GIMPLE_ASSIGN or a GIMPLE_CALL.  Returns NULL_TREE
1643    for a call to a function that returns no value, or for a
1644    statement other than an assignment or a call.  */
1645 
1646 tree
1647 gimple_get_lhs (const_gimple stmt)
1648 {
1649   enum gimple_code code = gimple_code (stmt);
1650 
1651   if (code == GIMPLE_ASSIGN)
1652     return gimple_assign_lhs (stmt);
1653   else if (code == GIMPLE_CALL)
1654     return gimple_call_lhs (stmt);
1655   else
1656     return NULL_TREE;
1657 }
1658 
1659 
1660 /* Set the LHS of a statement that performs an assignment,
1661    either a GIMPLE_ASSIGN or a GIMPLE_CALL.  */
1662 
1663 void
1664 gimple_set_lhs (gimple stmt, tree lhs)
1665 {
1666   enum gimple_code code = gimple_code (stmt);
1667 
1668   if (code == GIMPLE_ASSIGN)
1669     gimple_assign_set_lhs (stmt, lhs);
1670   else if (code == GIMPLE_CALL)
1671     gimple_call_set_lhs (stmt, lhs);
1672   else
1673     gcc_unreachable ();
1674 }
1675 
1676 
1677 /* Return a deep copy of statement STMT.  All the operands from STMT
1678    are reallocated and copied using unshare_expr.  The DEF, USE, VDEF
1679    and VUSE operand arrays are set to empty in the new copy.  The new
1680    copy isn't part of any sequence.  */
1681 
1682 gimple
1683 gimple_copy (gimple stmt)
1684 {
1685   enum gimple_code code = gimple_code (stmt);
1686   unsigned num_ops = gimple_num_ops (stmt);
1687   gimple copy = gimple_alloc (code, num_ops);
1688   unsigned i;
1689 
1690   /* Shallow copy all the fields from STMT.  */
1691   memcpy (copy, stmt, gimple_size (code));
1692   gimple_init_singleton (copy);
1693 
1694   /* If STMT has sub-statements, deep-copy them as well.  */
1695   if (gimple_has_substatements (stmt))
1696     {
1697       gimple_seq new_seq;
1698       tree t;
1699 
1700       switch (gimple_code (stmt))
1701 	{
1702 	case GIMPLE_BIND:
1703 	  {
1704 	    gbind *bind_stmt = as_a <gbind *> (stmt);
1705 	    gbind *bind_copy = as_a <gbind *> (copy);
1706 	    new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1707 	    gimple_bind_set_body (bind_copy, new_seq);
1708 	    gimple_bind_set_vars (bind_copy,
1709 				  unshare_expr (gimple_bind_vars (bind_stmt)));
1710 	    gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1711 	  }
1712 	  break;
1713 
1714 	case GIMPLE_CATCH:
1715 	  {
1716 	    gcatch *catch_stmt = as_a <gcatch *> (stmt);
1717 	    gcatch *catch_copy = as_a <gcatch *> (copy);
1718 	    new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1719 	    gimple_catch_set_handler (catch_copy, new_seq);
1720 	    t = unshare_expr (gimple_catch_types (catch_stmt));
1721 	    gimple_catch_set_types (catch_copy, t);
1722 	  }
1723 	  break;
1724 
1725 	case GIMPLE_EH_FILTER:
1726 	  {
1727 	    geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1728 	    geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1729 	    new_seq
1730 	      = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1731 	    gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1732 	    t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1733 	    gimple_eh_filter_set_types (eh_filter_copy, t);
1734 	  }
1735 	  break;
1736 
1737 	case GIMPLE_EH_ELSE:
1738 	  {
1739 	    geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1740 	    geh_else *eh_else_copy = as_a <geh_else *> (copy);
1741 	    new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1742 	    gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1743 	    new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1744 	    gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1745 	  }
1746 	  break;
1747 
1748 	case GIMPLE_TRY:
1749 	  {
1750 	    gtry *try_stmt = as_a <gtry *> (stmt);
1751 	    gtry *try_copy = as_a <gtry *> (copy);
1752 	    new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1753 	    gimple_try_set_eval (try_copy, new_seq);
1754 	    new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1755 	    gimple_try_set_cleanup (try_copy, new_seq);
1756 	  }
1757 	  break;
1758 
1759 	case GIMPLE_OMP_FOR:
1760 	  new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1761 	  gimple_omp_for_set_pre_body (copy, new_seq);
1762 	  t = unshare_expr (gimple_omp_for_clauses (stmt));
1763 	  gimple_omp_for_set_clauses (copy, t);
1764 	  {
1765 	    gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1766 	    omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1767 	      ( gimple_omp_for_collapse (stmt));
1768           }
1769 	  for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1770 	    {
1771 	      gimple_omp_for_set_cond (copy, i,
1772 				       gimple_omp_for_cond (stmt, i));
1773 	      gimple_omp_for_set_index (copy, i,
1774 					gimple_omp_for_index (stmt, i));
1775 	      t = unshare_expr (gimple_omp_for_initial (stmt, i));
1776 	      gimple_omp_for_set_initial (copy, i, t);
1777 	      t = unshare_expr (gimple_omp_for_final (stmt, i));
1778 	      gimple_omp_for_set_final (copy, i, t);
1779 	      t = unshare_expr (gimple_omp_for_incr (stmt, i));
1780 	      gimple_omp_for_set_incr (copy, i, t);
1781 	    }
1782 	  goto copy_omp_body;
1783 
1784 	case GIMPLE_OMP_PARALLEL:
1785 	  {
1786 	    gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1787 	    gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1788 	    t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1789 	    gimple_omp_parallel_set_clauses (omp_par_copy, t);
1790 	    t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1791 	    gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1792 	    t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1793 	    gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1794 	  }
1795 	  goto copy_omp_body;
1796 
1797 	case GIMPLE_OMP_TASK:
1798 	  t = unshare_expr (gimple_omp_task_clauses (stmt));
1799 	  gimple_omp_task_set_clauses (copy, t);
1800 	  t = unshare_expr (gimple_omp_task_child_fn (stmt));
1801 	  gimple_omp_task_set_child_fn (copy, t);
1802 	  t = unshare_expr (gimple_omp_task_data_arg (stmt));
1803 	  gimple_omp_task_set_data_arg (copy, t);
1804 	  t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1805 	  gimple_omp_task_set_copy_fn (copy, t);
1806 	  t = unshare_expr (gimple_omp_task_arg_size (stmt));
1807 	  gimple_omp_task_set_arg_size (copy, t);
1808 	  t = unshare_expr (gimple_omp_task_arg_align (stmt));
1809 	  gimple_omp_task_set_arg_align (copy, t);
1810 	  goto copy_omp_body;
1811 
1812 	case GIMPLE_OMP_CRITICAL:
1813 	  t = unshare_expr (gimple_omp_critical_name (
1814 			      as_a <gomp_critical *> (stmt)));
1815 	  gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1816 	  goto copy_omp_body;
1817 
1818 	case GIMPLE_OMP_SECTIONS:
1819 	  t = unshare_expr (gimple_omp_sections_clauses (stmt));
1820 	  gimple_omp_sections_set_clauses (copy, t);
1821 	  t = unshare_expr (gimple_omp_sections_control (stmt));
1822 	  gimple_omp_sections_set_control (copy, t);
1823 	  /* FALLTHRU  */
1824 
1825 	case GIMPLE_OMP_SINGLE:
1826 	case GIMPLE_OMP_TARGET:
1827 	case GIMPLE_OMP_TEAMS:
1828 	case GIMPLE_OMP_SECTION:
1829 	case GIMPLE_OMP_MASTER:
1830 	case GIMPLE_OMP_TASKGROUP:
1831 	case GIMPLE_OMP_ORDERED:
1832 	copy_omp_body:
1833 	  new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1834 	  gimple_omp_set_body (copy, new_seq);
1835 	  break;
1836 
1837 	case GIMPLE_TRANSACTION:
1838 	  new_seq = gimple_seq_copy (gimple_transaction_body (
1839 				       as_a <gtransaction *> (stmt)));
1840 	  gimple_transaction_set_body (as_a <gtransaction *> (copy),
1841 				       new_seq);
1842 	  break;
1843 
1844 	case GIMPLE_WITH_CLEANUP_EXPR:
1845 	  new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1846 	  gimple_wce_set_cleanup (copy, new_seq);
1847 	  break;
1848 
1849 	default:
1850 	  gcc_unreachable ();
1851 	}
1852     }
1853 
1854   /* Make copy of operands.  */
1855   for (i = 0; i < num_ops; i++)
1856     gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1857 
1858   if (gimple_has_mem_ops (stmt))
1859     {
1860       gimple_set_vdef (copy, gimple_vdef (stmt));
1861       gimple_set_vuse (copy, gimple_vuse (stmt));
1862     }
1863 
1864   /* Clear out SSA operand vectors on COPY.  */
1865   if (gimple_has_ops (stmt))
1866     {
1867       gimple_set_use_ops (copy, NULL);
1868 
1869       /* SSA operands need to be updated.  */
1870       gimple_set_modified (copy, true);
1871     }
1872 
1873   return copy;
1874 }
1875 
1876 
1877 /* Return true if statement S has side-effects.  We consider a
1878    statement to have side effects if:
1879 
1880    - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1881    - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS.  */
1882 
1883 bool
1884 gimple_has_side_effects (const_gimple s)
1885 {
1886   if (is_gimple_debug (s))
1887     return false;
1888 
1889   /* We don't have to scan the arguments to check for
1890      volatile arguments, though, at present, we still
1891      do a scan to check for TREE_SIDE_EFFECTS.  */
1892   if (gimple_has_volatile_ops (s))
1893     return true;
1894 
1895   if (gimple_code (s) == GIMPLE_ASM
1896       && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1897     return true;
1898 
1899   if (is_gimple_call (s))
1900     {
1901       int flags = gimple_call_flags (s);
1902 
1903       /* An infinite loop is considered a side effect.  */
1904       if (!(flags & (ECF_CONST | ECF_PURE))
1905 	  || (flags & ECF_LOOPING_CONST_OR_PURE))
1906 	return true;
1907 
1908       return false;
1909     }
1910 
1911   return false;
1912 }
1913 
1914 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1915    Return true if S can trap.  When INCLUDE_MEM is true, check whether
1916    the memory operations could trap.  When INCLUDE_STORES is true and
1917    S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked.  */
1918 
1919 bool
1920 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
1921 {
1922   tree t, div = NULL_TREE;
1923   enum tree_code op;
1924 
1925   if (include_mem)
1926     {
1927       unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1928 
1929       for (i = start; i < gimple_num_ops (s); i++)
1930 	if (tree_could_trap_p (gimple_op (s, i)))
1931 	  return true;
1932     }
1933 
1934   switch (gimple_code (s))
1935     {
1936     case GIMPLE_ASM:
1937       return gimple_asm_volatile_p (as_a <gasm *> (s));
1938 
1939     case GIMPLE_CALL:
1940       t = gimple_call_fndecl (s);
1941       /* Assume that calls to weak functions may trap.  */
1942       if (!t || !DECL_P (t) || DECL_WEAK (t))
1943 	return true;
1944       return false;
1945 
1946     case GIMPLE_ASSIGN:
1947       t = gimple_expr_type (s);
1948       op = gimple_assign_rhs_code (s);
1949       if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1950 	div = gimple_assign_rhs2 (s);
1951       return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1952 				      (INTEGRAL_TYPE_P (t)
1953 				       && TYPE_OVERFLOW_TRAPS (t)),
1954 				      div));
1955 
1956     case GIMPLE_COND:
1957       t = TREE_TYPE (gimple_cond_lhs (s));
1958       return operation_could_trap_p (gimple_cond_code (s),
1959 				     FLOAT_TYPE_P (t), false, NULL_TREE);
1960 
1961     default:
1962       break;
1963     }
1964 
1965   return false;
1966 }
1967 
1968 /* Return true if statement S can trap.  */
1969 
1970 bool
1971 gimple_could_trap_p (gimple s)
1972 {
1973   return gimple_could_trap_p_1 (s, true, true);
1974 }
1975 
1976 /* Return true if RHS of a GIMPLE_ASSIGN S can trap.  */
1977 
1978 bool
1979 gimple_assign_rhs_could_trap_p (gimple s)
1980 {
1981   gcc_assert (is_gimple_assign (s));
1982   return gimple_could_trap_p_1 (s, true, false);
1983 }
1984 
1985 
1986 /* Print debugging information for gimple stmts generated.  */
1987 
1988 void
1989 dump_gimple_statistics (void)
1990 {
1991   int i, total_tuples = 0, total_bytes = 0;
1992 
1993   if (! GATHER_STATISTICS)
1994     {
1995       fprintf (stderr, "No gimple statistics\n");
1996       return;
1997     }
1998 
1999   fprintf (stderr, "\nGIMPLE statements\n");
2000   fprintf (stderr, "Kind                   Stmts      Bytes\n");
2001   fprintf (stderr, "---------------------------------------\n");
2002   for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2003     {
2004       fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2005 	  gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2006       total_tuples += gimple_alloc_counts[i];
2007       total_bytes += gimple_alloc_sizes[i];
2008     }
2009   fprintf (stderr, "---------------------------------------\n");
2010   fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2011   fprintf (stderr, "---------------------------------------\n");
2012 }
2013 
2014 
2015 /* Return the number of operands needed on the RHS of a GIMPLE
2016    assignment for an expression with tree code CODE.  */
2017 
2018 unsigned
2019 get_gimple_rhs_num_ops (enum tree_code code)
2020 {
2021   enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2022 
2023   if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2024     return 1;
2025   else if (rhs_class == GIMPLE_BINARY_RHS)
2026     return 2;
2027   else if (rhs_class == GIMPLE_TERNARY_RHS)
2028     return 3;
2029   else
2030     gcc_unreachable ();
2031 }
2032 
2033 #define DEFTREECODE(SYM, STRING, TYPE, NARGS)   			    \
2034   (unsigned char)							    \
2035   ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS				    \
2036    : ((TYPE) == tcc_binary						    \
2037       || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS   		    \
2038    : ((TYPE) == tcc_constant						    \
2039       || (TYPE) == tcc_declaration					    \
2040       || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS			    \
2041    : ((SYM) == TRUTH_AND_EXPR						    \
2042       || (SYM) == TRUTH_OR_EXPR						    \
2043       || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS			    \
2044    : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS				    \
2045    : ((SYM) == COND_EXPR						    \
2046       || (SYM) == WIDEN_MULT_PLUS_EXPR					    \
2047       || (SYM) == WIDEN_MULT_MINUS_EXPR					    \
2048       || (SYM) == DOT_PROD_EXPR						    \
2049       || (SYM) == SAD_EXPR						    \
2050       || (SYM) == REALIGN_LOAD_EXPR					    \
2051       || (SYM) == VEC_COND_EXPR						    \
2052       || (SYM) == VEC_PERM_EXPR                                             \
2053       || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS			    \
2054    : ((SYM) == CONSTRUCTOR						    \
2055       || (SYM) == OBJ_TYPE_REF						    \
2056       || (SYM) == ASSERT_EXPR						    \
2057       || (SYM) == ADDR_EXPR						    \
2058       || (SYM) == WITH_SIZE_EXPR					    \
2059       || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS				    \
2060    : GIMPLE_INVALID_RHS),
2061 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2062 
2063 const unsigned char gimple_rhs_class_table[] = {
2064 #include "all-tree.def"
2065 };
2066 
2067 #undef DEFTREECODE
2068 #undef END_OF_BASE_TREE_CODES
2069 
2070 /* Canonicalize a tree T for use in a COND_EXPR as conditional.  Returns
2071    a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2072    we failed to create one.  */
2073 
2074 tree
2075 canonicalize_cond_expr_cond (tree t)
2076 {
2077   /* Strip conversions around boolean operations.  */
2078   if (CONVERT_EXPR_P (t)
2079       && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2080           || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2081 	     == BOOLEAN_TYPE))
2082     t = TREE_OPERAND (t, 0);
2083 
2084   /* For !x use x == 0.  */
2085   if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2086     {
2087       tree top0 = TREE_OPERAND (t, 0);
2088       t = build2 (EQ_EXPR, TREE_TYPE (t),
2089 		  top0, build_int_cst (TREE_TYPE (top0), 0));
2090     }
2091   /* For cmp ? 1 : 0 use cmp.  */
2092   else if (TREE_CODE (t) == COND_EXPR
2093 	   && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2094 	   && integer_onep (TREE_OPERAND (t, 1))
2095 	   && integer_zerop (TREE_OPERAND (t, 2)))
2096     {
2097       tree top0 = TREE_OPERAND (t, 0);
2098       t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2099 		  TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2100     }
2101   /* For x ^ y use x != y.  */
2102   else if (TREE_CODE (t) == BIT_XOR_EXPR)
2103     t = build2 (NE_EXPR, TREE_TYPE (t),
2104 		TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2105 
2106   if (is_gimple_condexpr (t))
2107     return t;
2108 
2109   return NULL_TREE;
2110 }
2111 
2112 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2113    the positions marked by the set ARGS_TO_SKIP.  */
2114 
2115 gcall *
2116 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2117 {
2118   int i;
2119   int nargs = gimple_call_num_args (stmt);
2120   auto_vec<tree> vargs (nargs);
2121   gcall *new_stmt;
2122 
2123   for (i = 0; i < nargs; i++)
2124     if (!bitmap_bit_p (args_to_skip, i))
2125       vargs.quick_push (gimple_call_arg (stmt, i));
2126 
2127   if (gimple_call_internal_p (stmt))
2128     new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2129 					       vargs);
2130   else
2131     new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2132 
2133   if (gimple_call_lhs (stmt))
2134     gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2135 
2136   gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2137   gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2138 
2139   if (gimple_has_location (stmt))
2140     gimple_set_location (new_stmt, gimple_location (stmt));
2141   gimple_call_copy_flags (new_stmt, stmt);
2142   gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2143 
2144   gimple_set_modified (new_stmt, true);
2145 
2146   return new_stmt;
2147 }
2148 
2149 
2150 
2151 /* Return true if the field decls F1 and F2 are at the same offset.
2152 
2153    This is intended to be used on GIMPLE types only.  */
2154 
2155 bool
2156 gimple_compare_field_offset (tree f1, tree f2)
2157 {
2158   if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2159     {
2160       tree offset1 = DECL_FIELD_OFFSET (f1);
2161       tree offset2 = DECL_FIELD_OFFSET (f2);
2162       return ((offset1 == offset2
2163 	       /* Once gimplification is done, self-referential offsets are
2164 		  instantiated as operand #2 of the COMPONENT_REF built for
2165 		  each access and reset.  Therefore, they are not relevant
2166 		  anymore and fields are interchangeable provided that they
2167 		  represent the same access.  */
2168 	       || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2169 		   && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2170 		   && (DECL_SIZE (f1) == DECL_SIZE (f2)
2171 		       || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2172 			   && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2173 		       || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2174 		   && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2175 	       || operand_equal_p (offset1, offset2, 0))
2176 	      && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2177 				     DECL_FIELD_BIT_OFFSET (f2)));
2178     }
2179 
2180   /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2181      should be, so handle differing ones specially by decomposing
2182      the offset into a byte and bit offset manually.  */
2183   if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2184       && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2185     {
2186       unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2187       unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2188       bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2189       byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2190 		      + bit_offset1 / BITS_PER_UNIT);
2191       bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2192       byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2193 		      + bit_offset2 / BITS_PER_UNIT);
2194       if (byte_offset1 != byte_offset2)
2195 	return false;
2196       return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2197     }
2198 
2199   return false;
2200 }
2201 
2202 
2203 /* Return a type the same as TYPE except unsigned or
2204    signed according to UNSIGNEDP.  */
2205 
2206 static tree
2207 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2208 {
2209   tree type1;
2210   int i;
2211 
2212   type1 = TYPE_MAIN_VARIANT (type);
2213   if (type1 == signed_char_type_node
2214       || type1 == char_type_node
2215       || type1 == unsigned_char_type_node)
2216     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2217   if (type1 == integer_type_node || type1 == unsigned_type_node)
2218     return unsignedp ? unsigned_type_node : integer_type_node;
2219   if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2220     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2221   if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2222     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2223   if (type1 == long_long_integer_type_node
2224       || type1 == long_long_unsigned_type_node)
2225     return unsignedp
2226            ? long_long_unsigned_type_node
2227 	   : long_long_integer_type_node;
2228 
2229   for (i = 0; i < NUM_INT_N_ENTS; i ++)
2230     if (int_n_enabled_p[i]
2231 	&& (type1 == int_n_trees[i].unsigned_type
2232 	    || type1 == int_n_trees[i].signed_type))
2233 	return unsignedp
2234 	  ? int_n_trees[i].unsigned_type
2235 	  : int_n_trees[i].signed_type;
2236 
2237 #if HOST_BITS_PER_WIDE_INT >= 64
2238   if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2239     return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2240 #endif
2241   if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2242     return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2243   if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2244     return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2245   if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2246     return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2247   if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2248     return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2249 
2250 #define GIMPLE_FIXED_TYPES(NAME)	    \
2251   if (type1 == short_ ## NAME ## _type_node \
2252       || type1 == unsigned_short_ ## NAME ## _type_node) \
2253     return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2254 		     : short_ ## NAME ## _type_node; \
2255   if (type1 == NAME ## _type_node \
2256       || type1 == unsigned_ ## NAME ## _type_node) \
2257     return unsignedp ? unsigned_ ## NAME ## _type_node \
2258 		     : NAME ## _type_node; \
2259   if (type1 == long_ ## NAME ## _type_node \
2260       || type1 == unsigned_long_ ## NAME ## _type_node) \
2261     return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2262 		     : long_ ## NAME ## _type_node; \
2263   if (type1 == long_long_ ## NAME ## _type_node \
2264       || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2265     return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2266 		     : long_long_ ## NAME ## _type_node;
2267 
2268 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2269   if (type1 == NAME ## _type_node \
2270       || type1 == u ## NAME ## _type_node) \
2271     return unsignedp ? u ## NAME ## _type_node \
2272 		     : NAME ## _type_node;
2273 
2274 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2275   if (type1 == sat_ ## short_ ## NAME ## _type_node \
2276       || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2277     return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2278 		     : sat_ ## short_ ## NAME ## _type_node; \
2279   if (type1 == sat_ ## NAME ## _type_node \
2280       || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2281     return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2282 		     : sat_ ## NAME ## _type_node; \
2283   if (type1 == sat_ ## long_ ## NAME ## _type_node \
2284       || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2285     return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2286 		     : sat_ ## long_ ## NAME ## _type_node; \
2287   if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2288       || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2289     return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2290 		     : sat_ ## long_long_ ## NAME ## _type_node;
2291 
2292 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME)	\
2293   if (type1 == sat_ ## NAME ## _type_node \
2294       || type1 == sat_ ## u ## NAME ## _type_node) \
2295     return unsignedp ? sat_ ## u ## NAME ## _type_node \
2296 		     : sat_ ## NAME ## _type_node;
2297 
2298   GIMPLE_FIXED_TYPES (fract);
2299   GIMPLE_FIXED_TYPES_SAT (fract);
2300   GIMPLE_FIXED_TYPES (accum);
2301   GIMPLE_FIXED_TYPES_SAT (accum);
2302 
2303   GIMPLE_FIXED_MODE_TYPES (qq);
2304   GIMPLE_FIXED_MODE_TYPES (hq);
2305   GIMPLE_FIXED_MODE_TYPES (sq);
2306   GIMPLE_FIXED_MODE_TYPES (dq);
2307   GIMPLE_FIXED_MODE_TYPES (tq);
2308   GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2309   GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2310   GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2311   GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2312   GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2313   GIMPLE_FIXED_MODE_TYPES (ha);
2314   GIMPLE_FIXED_MODE_TYPES (sa);
2315   GIMPLE_FIXED_MODE_TYPES (da);
2316   GIMPLE_FIXED_MODE_TYPES (ta);
2317   GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2318   GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2319   GIMPLE_FIXED_MODE_TYPES_SAT (da);
2320   GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2321 
2322   /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2323      the precision; they have precision set to match their range, but
2324      may use a wider mode to match an ABI.  If we change modes, we may
2325      wind up with bad conversions.  For INTEGER_TYPEs in C, must check
2326      the precision as well, so as to yield correct results for
2327      bit-field types.  C++ does not have these separate bit-field
2328      types, and producing a signed or unsigned variant of an
2329      ENUMERAL_TYPE may cause other problems as well.  */
2330   if (!INTEGRAL_TYPE_P (type)
2331       || TYPE_UNSIGNED (type) == unsignedp)
2332     return type;
2333 
2334 #define TYPE_OK(node)							    \
2335   (TYPE_MODE (type) == TYPE_MODE (node)					    \
2336    && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2337   if (TYPE_OK (signed_char_type_node))
2338     return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2339   if (TYPE_OK (integer_type_node))
2340     return unsignedp ? unsigned_type_node : integer_type_node;
2341   if (TYPE_OK (short_integer_type_node))
2342     return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2343   if (TYPE_OK (long_integer_type_node))
2344     return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2345   if (TYPE_OK (long_long_integer_type_node))
2346     return (unsignedp
2347 	    ? long_long_unsigned_type_node
2348 	    : long_long_integer_type_node);
2349 
2350   for (i = 0; i < NUM_INT_N_ENTS; i ++)
2351     if (int_n_enabled_p[i]
2352 	&& TYPE_MODE (type) == int_n_data[i].m
2353 	&& TYPE_PRECISION (type) == int_n_data[i].bitsize)
2354 	return unsignedp
2355 	  ? int_n_trees[i].unsigned_type
2356 	  : int_n_trees[i].signed_type;
2357 
2358 #if HOST_BITS_PER_WIDE_INT >= 64
2359   if (TYPE_OK (intTI_type_node))
2360     return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2361 #endif
2362   if (TYPE_OK (intDI_type_node))
2363     return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2364   if (TYPE_OK (intSI_type_node))
2365     return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2366   if (TYPE_OK (intHI_type_node))
2367     return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2368   if (TYPE_OK (intQI_type_node))
2369     return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2370 
2371 #undef GIMPLE_FIXED_TYPES
2372 #undef GIMPLE_FIXED_MODE_TYPES
2373 #undef GIMPLE_FIXED_TYPES_SAT
2374 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2375 #undef TYPE_OK
2376 
2377   return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2378 }
2379 
2380 
2381 /* Return an unsigned type the same as TYPE in other respects.  */
2382 
2383 tree
2384 gimple_unsigned_type (tree type)
2385 {
2386   return gimple_signed_or_unsigned_type (true, type);
2387 }
2388 
2389 
2390 /* Return a signed type the same as TYPE in other respects.  */
2391 
2392 tree
2393 gimple_signed_type (tree type)
2394 {
2395   return gimple_signed_or_unsigned_type (false, type);
2396 }
2397 
2398 
2399 /* Return the typed-based alias set for T, which may be an expression
2400    or a type.  Return -1 if we don't do anything special.  */
2401 
2402 alias_set_type
2403 gimple_get_alias_set (tree t)
2404 {
2405   tree u;
2406 
2407   /* Permit type-punning when accessing a union, provided the access
2408      is directly through the union.  For example, this code does not
2409      permit taking the address of a union member and then storing
2410      through it.  Even the type-punning allowed here is a GCC
2411      extension, albeit a common and useful one; the C standard says
2412      that such accesses have implementation-defined behavior.  */
2413   for (u = t;
2414        TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2415        u = TREE_OPERAND (u, 0))
2416     if (TREE_CODE (u) == COMPONENT_REF
2417 	&& TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2418       return 0;
2419 
2420   /* That's all the expressions we handle specially.  */
2421   if (!TYPE_P (t))
2422     return -1;
2423 
2424   /* For convenience, follow the C standard when dealing with
2425      character types.  Any object may be accessed via an lvalue that
2426      has character type.  */
2427   if (t == char_type_node
2428       || t == signed_char_type_node
2429       || t == unsigned_char_type_node)
2430     return 0;
2431 
2432   /* Allow aliasing between signed and unsigned variants of the same
2433      type.  We treat the signed variant as canonical.  */
2434   if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2435     {
2436       tree t1 = gimple_signed_type (t);
2437 
2438       /* t1 == t can happen for boolean nodes which are always unsigned.  */
2439       if (t1 != t)
2440 	return get_alias_set (t1);
2441     }
2442 
2443   return -1;
2444 }
2445 
2446 
2447 /* Helper for gimple_ior_addresses_taken_1.  */
2448 
2449 static bool
2450 gimple_ior_addresses_taken_1 (gimple, tree addr, tree, void *data)
2451 {
2452   bitmap addresses_taken = (bitmap)data;
2453   addr = get_base_address (addr);
2454   if (addr
2455       && DECL_P (addr))
2456     {
2457       bitmap_set_bit (addresses_taken, DECL_UID (addr));
2458       return true;
2459     }
2460   return false;
2461 }
2462 
2463 /* Set the bit for the uid of all decls that have their address taken
2464    in STMT in the ADDRESSES_TAKEN bitmap.  Returns true if there
2465    were any in this stmt.  */
2466 
2467 bool
2468 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
2469 {
2470   return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2471 					gimple_ior_addresses_taken_1);
2472 }
2473 
2474 
2475 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2476    processing.  */
2477 
2478 static bool
2479 validate_type (tree type1, tree type2)
2480 {
2481   if (INTEGRAL_TYPE_P (type1)
2482       && INTEGRAL_TYPE_P (type2))
2483     ;
2484   else if (POINTER_TYPE_P (type1)
2485 	   && POINTER_TYPE_P (type2))
2486     ;
2487   else if (TREE_CODE (type1)
2488 	   != TREE_CODE (type2))
2489     return false;
2490   return true;
2491 }
2492 
2493 /* Return true when STMTs arguments and return value match those of FNDECL,
2494    a decl of a builtin function.  */
2495 
2496 bool
2497 gimple_builtin_call_types_compatible_p (const_gimple stmt, tree fndecl)
2498 {
2499   gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2500 
2501   tree ret = gimple_call_lhs (stmt);
2502   if (ret
2503       && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2504     return false;
2505 
2506   tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2507   unsigned nargs = gimple_call_num_args (stmt);
2508   for (unsigned i = 0; i < nargs; ++i)
2509     {
2510       /* Variadic args follow.  */
2511       if (!targs)
2512 	return true;
2513       tree arg = gimple_call_arg (stmt, i);
2514       if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2515 	return false;
2516       targs = TREE_CHAIN (targs);
2517     }
2518   if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2519     return false;
2520   return true;
2521 }
2522 
2523 /* Return true when STMT is builtins call.  */
2524 
2525 bool
2526 gimple_call_builtin_p (const_gimple stmt)
2527 {
2528   tree fndecl;
2529   if (is_gimple_call (stmt)
2530       && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2531       && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2532     return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2533   return false;
2534 }
2535 
2536 /* Return true when STMT is builtins call to CLASS.  */
2537 
2538 bool
2539 gimple_call_builtin_p (const_gimple stmt, enum built_in_class klass)
2540 {
2541   tree fndecl;
2542   if (is_gimple_call (stmt)
2543       && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2544       && DECL_BUILT_IN_CLASS (fndecl) == klass)
2545     return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2546   return false;
2547 }
2548 
2549 /* Return true when STMT is builtins call to CODE of CLASS.  */
2550 
2551 bool
2552 gimple_call_builtin_p (const_gimple stmt, enum built_in_function code)
2553 {
2554   tree fndecl;
2555   if (is_gimple_call (stmt)
2556       && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2557       && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2558       && DECL_FUNCTION_CODE (fndecl) == code)
2559     return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2560   return false;
2561 }
2562 
2563 /* Return true if STMT clobbers memory.  STMT is required to be a
2564    GIMPLE_ASM.  */
2565 
2566 bool
2567 gimple_asm_clobbers_memory_p (const gasm *stmt)
2568 {
2569   unsigned i;
2570 
2571   for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2572     {
2573       tree op = gimple_asm_clobber_op (stmt, i);
2574       if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2575 	return true;
2576     }
2577 
2578   return false;
2579 }
2580 
2581 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE.  */
2582 
2583 void
2584 dump_decl_set (FILE *file, bitmap set)
2585 {
2586   if (set)
2587     {
2588       bitmap_iterator bi;
2589       unsigned i;
2590 
2591       fprintf (file, "{ ");
2592 
2593       EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2594 	{
2595 	  fprintf (file, "D.%u", i);
2596 	  fprintf (file, " ");
2597 	}
2598 
2599       fprintf (file, "}");
2600     }
2601   else
2602     fprintf (file, "NIL");
2603 }
2604 
2605 /* Return true when CALL is a call stmt that definitely doesn't
2606    free any memory or makes it unavailable otherwise.  */
2607 bool
2608 nonfreeing_call_p (gimple call)
2609 {
2610   if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2611       && gimple_call_flags (call) & ECF_LEAF)
2612     switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2613       {
2614 	/* Just in case these become ECF_LEAF in the future.  */
2615 	case BUILT_IN_FREE:
2616 	case BUILT_IN_TM_FREE:
2617 	case BUILT_IN_REALLOC:
2618 	case BUILT_IN_STACK_RESTORE:
2619 	  return false;
2620 	default:
2621 	  return true;
2622       }
2623   else if (gimple_call_internal_p (call))
2624     switch (gimple_call_internal_fn (call))
2625       {
2626       case IFN_ABNORMAL_DISPATCHER:
2627         return true;
2628       default:
2629 	if (gimple_call_flags (call) & ECF_LEAF)
2630 	  return true;
2631 	return false;
2632       }
2633 
2634   tree fndecl = gimple_call_fndecl (call);
2635   if (!fndecl)
2636     return false;
2637   struct cgraph_node *n = cgraph_node::get (fndecl);
2638   if (!n)
2639     return false;
2640   enum availability availability;
2641   n = n->function_symbol (&availability);
2642   if (!n || availability <= AVAIL_INTERPOSABLE)
2643     return false;
2644   return n->nonfreeing_fn;
2645 }
2646 
2647 /* Callback for walk_stmt_load_store_ops.
2648 
2649    Return TRUE if OP will dereference the tree stored in DATA, FALSE
2650    otherwise.
2651 
2652    This routine only makes a superficial check for a dereference.  Thus
2653    it must only be used if it is safe to return a false negative.  */
2654 static bool
2655 check_loadstore (gimple, tree op, tree, void *data)
2656 {
2657   if ((TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2658       && operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0))
2659     return true;
2660   return false;
2661 }
2662 
2663 /* If OP can be inferred to be non-NULL after STMT executes, return true.
2664 
2665    DEREFERENCE is TRUE if we can use a pointer dereference to infer a
2666    non-NULL range, FALSE otherwise.
2667 
2668    ATTRIBUTE is TRUE if we can use attributes to infer a non-NULL range
2669    for function arguments and return values.  FALSE otherwise.  */
2670 
2671 bool
2672 infer_nonnull_range (gimple stmt, tree op, bool dereference, bool attribute)
2673 {
2674   /* We can only assume that a pointer dereference will yield
2675      non-NULL if -fdelete-null-pointer-checks is enabled.  */
2676   if (!flag_delete_null_pointer_checks
2677       || !POINTER_TYPE_P (TREE_TYPE (op))
2678       || gimple_code (stmt) == GIMPLE_ASM)
2679     return false;
2680 
2681   if (dereference
2682       && walk_stmt_load_store_ops (stmt, (void *)op,
2683 				   check_loadstore, check_loadstore))
2684     return true;
2685 
2686   if (attribute
2687       && is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2688     {
2689       tree fntype = gimple_call_fntype (stmt);
2690       tree attrs = TYPE_ATTRIBUTES (fntype);
2691       for (; attrs; attrs = TREE_CHAIN (attrs))
2692 	{
2693 	  attrs = lookup_attribute ("nonnull", attrs);
2694 
2695 	  /* If "nonnull" wasn't specified, we know nothing about
2696 	     the argument.  */
2697 	  if (attrs == NULL_TREE)
2698 	    return false;
2699 
2700 	  /* If "nonnull" applies to all the arguments, then ARG
2701 	     is non-null if it's in the argument list.  */
2702 	  if (TREE_VALUE (attrs) == NULL_TREE)
2703 	    {
2704 	      for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2705 		{
2706 		  if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2707 		      && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2708 		    return true;
2709 		}
2710 	      return false;
2711 	    }
2712 
2713 	  /* Now see if op appears in the nonnull list.  */
2714 	  for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2715 	    {
2716 	      int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2717 	      tree arg = gimple_call_arg (stmt, idx);
2718 	      if (operand_equal_p (op, arg, 0))
2719 		return true;
2720 	    }
2721 	}
2722     }
2723 
2724   /* If this function is marked as returning non-null, then we can
2725      infer OP is non-null if it is used in the return statement.  */
2726   if (attribute)
2727     if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2728       if (gimple_return_retval (return_stmt)
2729 	  && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2730 	  && lookup_attribute ("returns_nonnull",
2731 			       TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2732 	return true;
2733 
2734   return false;
2735 }
2736 
2737 /* Compare two case labels.  Because the front end should already have
2738    made sure that case ranges do not overlap, it is enough to only compare
2739    the CASE_LOW values of each case label.  */
2740 
2741 static int
2742 compare_case_labels (const void *p1, const void *p2)
2743 {
2744   const_tree const case1 = *(const_tree const*)p1;
2745   const_tree const case2 = *(const_tree const*)p2;
2746 
2747   /* The 'default' case label always goes first.  */
2748   if (!CASE_LOW (case1))
2749     return -1;
2750   else if (!CASE_LOW (case2))
2751     return 1;
2752   else
2753     return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2754 }
2755 
2756 /* Sort the case labels in LABEL_VEC in place in ascending order.  */
2757 
2758 void
2759 sort_case_labels (vec<tree> label_vec)
2760 {
2761   label_vec.qsort (compare_case_labels);
2762 }
2763 
2764 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2765 
2766    LABELS is a vector that contains all case labels to look at.
2767 
2768    INDEX_TYPE is the type of the switch index expression.  Case labels
2769    in LABELS are discarded if their values are not in the value range
2770    covered by INDEX_TYPE.  The remaining case label values are folded
2771    to INDEX_TYPE.
2772 
2773    If a default case exists in LABELS, it is removed from LABELS and
2774    returned in DEFAULT_CASEP.  If no default case exists, but the
2775    case labels already cover the whole range of INDEX_TYPE, a default
2776    case is returned pointing to one of the existing case labels.
2777    Otherwise DEFAULT_CASEP is set to NULL_TREE.
2778 
2779    DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2780    apply and no action is taken regardless of whether a default case is
2781    found or not.  */
2782 
2783 void
2784 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2785 				      tree index_type,
2786 				      tree *default_casep)
2787 {
2788   tree min_value, max_value;
2789   tree default_case = NULL_TREE;
2790   size_t i, len;
2791 
2792   i = 0;
2793   min_value = TYPE_MIN_VALUE (index_type);
2794   max_value = TYPE_MAX_VALUE (index_type);
2795   while (i < labels.length ())
2796     {
2797       tree elt = labels[i];
2798       tree low = CASE_LOW (elt);
2799       tree high = CASE_HIGH (elt);
2800       bool remove_element = FALSE;
2801 
2802       if (low)
2803 	{
2804 	  gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2805 	  gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2806 
2807 	  /* This is a non-default case label, i.e. it has a value.
2808 
2809 	     See if the case label is reachable within the range of
2810 	     the index type.  Remove out-of-range case values.  Turn
2811 	     case ranges into a canonical form (high > low strictly)
2812 	     and convert the case label values to the index type.
2813 
2814 	     NB: The type of gimple_switch_index() may be the promoted
2815 	     type, but the case labels retain the original type.  */
2816 
2817 	  if (high)
2818 	    {
2819 	      /* This is a case range.  Discard empty ranges.
2820 		 If the bounds or the range are equal, turn this
2821 		 into a simple (one-value) case.  */
2822 	      int cmp = tree_int_cst_compare (high, low);
2823 	      if (cmp < 0)
2824 		remove_element = TRUE;
2825 	      else if (cmp == 0)
2826 		high = NULL_TREE;
2827 	    }
2828 
2829 	  if (! high)
2830 	    {
2831 	      /* If the simple case value is unreachable, ignore it.  */
2832 	      if ((TREE_CODE (min_value) == INTEGER_CST
2833 		   && tree_int_cst_compare (low, min_value) < 0)
2834 		  || (TREE_CODE (max_value) == INTEGER_CST
2835 		      && tree_int_cst_compare (low, max_value) > 0))
2836 		remove_element = TRUE;
2837 	      else
2838 		low = fold_convert (index_type, low);
2839 	    }
2840 	  else
2841 	    {
2842 	      /* If the entire case range is unreachable, ignore it.  */
2843 	      if ((TREE_CODE (min_value) == INTEGER_CST
2844 		   && tree_int_cst_compare (high, min_value) < 0)
2845 		  || (TREE_CODE (max_value) == INTEGER_CST
2846 		      && tree_int_cst_compare (low, max_value) > 0))
2847 		remove_element = TRUE;
2848 	      else
2849 		{
2850 		  /* If the lower bound is less than the index type's
2851 		     minimum value, truncate the range bounds.  */
2852 		  if (TREE_CODE (min_value) == INTEGER_CST
2853 		      && tree_int_cst_compare (low, min_value) < 0)
2854 		    low = min_value;
2855 		  low = fold_convert (index_type, low);
2856 
2857 		  /* If the upper bound is greater than the index type's
2858 		     maximum value, truncate the range bounds.  */
2859 		  if (TREE_CODE (max_value) == INTEGER_CST
2860 		      && tree_int_cst_compare (high, max_value) > 0)
2861 		    high = max_value;
2862 		  high = fold_convert (index_type, high);
2863 
2864 		  /* We may have folded a case range to a one-value case.  */
2865 		  if (tree_int_cst_equal (low, high))
2866 		    high = NULL_TREE;
2867 		}
2868 	    }
2869 
2870 	  CASE_LOW (elt) = low;
2871 	  CASE_HIGH (elt) = high;
2872 	}
2873       else
2874 	{
2875 	  gcc_assert (!default_case);
2876 	  default_case = elt;
2877 	  /* The default case must be passed separately to the
2878 	     gimple_build_switch routine.  But if DEFAULT_CASEP
2879 	     is NULL, we do not remove the default case (it would
2880 	     be completely lost).  */
2881 	  if (default_casep)
2882 	    remove_element = TRUE;
2883 	}
2884 
2885       if (remove_element)
2886 	labels.ordered_remove (i);
2887       else
2888 	i++;
2889     }
2890   len = i;
2891 
2892   if (!labels.is_empty ())
2893     sort_case_labels (labels);
2894 
2895   if (default_casep && !default_case)
2896     {
2897       /* If the switch has no default label, add one, so that we jump
2898 	 around the switch body.  If the labels already cover the whole
2899 	 range of the switch index_type, add the default label pointing
2900 	 to one of the existing labels.  */
2901       if (len
2902 	  && TYPE_MIN_VALUE (index_type)
2903 	  && TYPE_MAX_VALUE (index_type)
2904 	  && tree_int_cst_equal (CASE_LOW (labels[0]),
2905 				 TYPE_MIN_VALUE (index_type)))
2906 	{
2907 	  tree low, high = CASE_HIGH (labels[len - 1]);
2908 	  if (!high)
2909 	    high = CASE_LOW (labels[len - 1]);
2910 	  if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2911 	    {
2912 	      for (i = 1; i < len; i++)
2913 		{
2914 		  high = CASE_LOW (labels[i]);
2915 		  low = CASE_HIGH (labels[i - 1]);
2916 		  if (!low)
2917 		    low = CASE_LOW (labels[i - 1]);
2918 		  if (wi::add (low, 1) != high)
2919 		    break;
2920 		}
2921 	      if (i == len)
2922 		{
2923 		  tree label = CASE_LABEL (labels[0]);
2924 		  default_case = build_case_label (NULL_TREE, NULL_TREE,
2925 						   label);
2926 		}
2927 	    }
2928 	}
2929     }
2930 
2931   if (default_casep)
2932     *default_casep = default_case;
2933 }
2934 
2935 /* Set the location of all statements in SEQ to LOC.  */
2936 
2937 void
2938 gimple_seq_set_location (gimple_seq seq, location_t loc)
2939 {
2940   for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2941     gimple_set_location (gsi_stmt (i), loc);
2942 }
2943 
2944 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements.  */
2945 
2946 void
2947 gimple_seq_discard (gimple_seq seq)
2948 {
2949   gimple_stmt_iterator gsi;
2950 
2951   for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2952     {
2953       gimple stmt = gsi_stmt (gsi);
2954       gsi_remove (&gsi, true);
2955       release_defs (stmt);
2956       ggc_free (stmt);
2957     }
2958 }
2959 
2960 /* See if STMT now calls function that takes no parameters and if so, drop
2961    call arguments.  This is used when devirtualization machinery redirects
2962    to __builtiln_unreacahble or __cxa_pure_virutal.  */
2963 
2964 void
2965 maybe_remove_unused_call_args (struct function *fn, gimple stmt)
2966 {
2967   tree decl = gimple_call_fndecl (stmt);
2968   if (TYPE_ARG_TYPES (TREE_TYPE (decl))
2969       && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
2970       && gimple_call_num_args (stmt))
2971     {
2972       gimple_set_num_ops (stmt, 3);
2973       update_stmt_fn (fn, stmt);
2974     }
2975 }
2976