xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/gimple-ssa-warn-alloca.c (revision 5dd36a3bc8bf2a9dec29ceb6349550414570c447)
1 /* Warn on problematic uses of alloca and variable length arrays.
2    Copyright (C) 2016-2017 Free Software Foundation, Inc.
3    Contributed by Aldy Hernandez <aldyh@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "fold-const.h"
32 #include "gimple-iterator.h"
33 #include "tree-ssa.h"
34 #include "params.h"
35 #include "tree-cfg.h"
36 #include "calls.h"
37 #include "cfgloop.h"
38 #include "intl.h"
39 
40 const pass_data pass_data_walloca = {
41   GIMPLE_PASS,
42   "walloca",
43   OPTGROUP_NONE,
44   TV_NONE,
45   PROP_cfg, // properties_required
46   0,	    // properties_provided
47   0,	    // properties_destroyed
48   0,	    // properties_start
49   0,	    // properties_finish
50 };
51 
52 class pass_walloca : public gimple_opt_pass
53 {
54 public:
55   pass_walloca (gcc::context *ctxt)
56     : gimple_opt_pass(pass_data_walloca, ctxt), first_time_p (false)
57   {}
58   opt_pass *clone () { return new pass_walloca (m_ctxt); }
59   void set_pass_param (unsigned int n, bool param)
60     {
61       gcc_assert (n == 0);
62       first_time_p = param;
63     }
64   virtual bool gate (function *);
65   virtual unsigned int execute (function *);
66 
67  private:
68   // Set to TRUE the first time we run this pass on a function.
69   bool first_time_p;
70 };
71 
72 bool
73 pass_walloca::gate (function *fun ATTRIBUTE_UNUSED)
74 {
75   // The first time this pass is called, it is called before
76   // optimizations have been run and range information is unavailable,
77   // so we can only perform strict alloca checking.
78   if (first_time_p)
79     return warn_alloca != 0;
80 
81   return ((unsigned HOST_WIDE_INT) warn_alloca_limit > 0
82 	  || (unsigned HOST_WIDE_INT) warn_vla_limit > 0);
83 }
84 
85 // Possible problematic uses of alloca.
86 enum alloca_type {
87   // Alloca argument is within known bounds that are appropriate.
88   ALLOCA_OK,
89 
90   // Alloca argument is KNOWN to have a value that is too large.
91   ALLOCA_BOUND_DEFINITELY_LARGE,
92 
93   // Alloca argument may be too large.
94   ALLOCA_BOUND_MAYBE_LARGE,
95 
96   // Alloca argument is bounded but of an indeterminate size.
97   ALLOCA_BOUND_UNKNOWN,
98 
99   // Alloca argument was casted from a signed integer.
100   ALLOCA_CAST_FROM_SIGNED,
101 
102   // Alloca appears in a loop.
103   ALLOCA_IN_LOOP,
104 
105   // Alloca argument is 0.
106   ALLOCA_ARG_IS_ZERO,
107 
108   // Alloca call is unbounded.  That is, there is no controlling
109   // predicate for its argument.
110   ALLOCA_UNBOUNDED
111 };
112 
113 // Type of an alloca call with its corresponding limit, if applicable.
114 struct alloca_type_and_limit {
115   enum alloca_type type;
116   // For ALLOCA_BOUND_MAYBE_LARGE and ALLOCA_BOUND_DEFINITELY_LARGE
117   // types, this field indicates the assumed limit if known or
118   // integer_zero_node if unknown.  For any other alloca types, this
119   // field is undefined.
120   wide_int limit;
121   alloca_type_and_limit ();
122   alloca_type_and_limit (enum alloca_type type,
123 			 wide_int i) : type(type), limit(i) { }
124   alloca_type_and_limit (enum alloca_type type) : type(type) { }
125 };
126 
127 // NOTE: When we get better range info, this entire function becomes
128 // irrelevant, as it should be possible to get range info for an SSA
129 // name at any point in the program.
130 //
131 // We have a few heuristics up our sleeve to determine if a call to
132 // alloca() is within bounds.  Try them out and return the type of
133 // alloca call with its assumed limit (if applicable).
134 //
135 // Given a known argument (ARG) to alloca() and an EDGE (E)
136 // calculating said argument, verify that the last statement in the BB
137 // in E->SRC is a gate comparing ARG to an acceptable bound for
138 // alloca().  See examples below.
139 //
140 // If set, ARG_CASTED is the possible unsigned argument to which ARG
141 // was casted to.  This is to handle cases where the controlling
142 // predicate is looking at a casted value, not the argument itself.
143 //    arg_casted = (size_t) arg;
144 //    if (arg_casted < N)
145 //      goto bb3;
146 //    else
147 //      goto bb5;
148 //
149 // MAX_SIZE is WARN_ALLOCA= adjusted for VLAs.  It is the maximum size
150 // in bytes we allow for arg.
151 
152 static struct alloca_type_and_limit
153 alloca_call_type_by_arg (tree arg, tree arg_casted, edge e, unsigned max_size)
154 {
155   basic_block bb = e->src;
156   gimple_stmt_iterator gsi = gsi_last_bb (bb);
157   gimple *last = gsi_stmt (gsi);
158   if (!last || gimple_code (last) != GIMPLE_COND)
159     return alloca_type_and_limit (ALLOCA_UNBOUNDED);
160 
161   enum tree_code cond_code = gimple_cond_code (last);
162   if (e->flags & EDGE_TRUE_VALUE)
163     ;
164   else if (e->flags & EDGE_FALSE_VALUE)
165     cond_code = invert_tree_comparison (cond_code, false);
166   else
167     return alloca_type_and_limit (ALLOCA_UNBOUNDED);
168 
169   // Check for:
170   //   if (ARG .COND. N)
171   //     goto <bb 3>;
172   //   else
173   //     goto <bb 4>;
174   //   <bb 3>:
175   //   alloca(ARG);
176   if ((cond_code == LE_EXPR
177        || cond_code == LT_EXPR
178        || cond_code == GT_EXPR
179        || cond_code == GE_EXPR)
180       && (gimple_cond_lhs (last) == arg
181 	  || gimple_cond_lhs (last) == arg_casted))
182     {
183       if (TREE_CODE (gimple_cond_rhs (last)) == INTEGER_CST)
184 	{
185 	  tree rhs = gimple_cond_rhs (last);
186 	  int tst = wi::cmpu (wi::to_widest (rhs), max_size);
187 	  if ((cond_code == LT_EXPR && tst == -1)
188 	      || (cond_code == LE_EXPR && (tst == -1 || tst == 0)))
189 	    return alloca_type_and_limit (ALLOCA_OK);
190 	  else
191 	    {
192 	      // Let's not get too specific as to how large the limit
193 	      // may be.  Someone's clearly an idiot when things
194 	      // degrade into "if (N > Y) alloca(N)".
195 	      if (cond_code == GT_EXPR || cond_code == GE_EXPR)
196 		rhs = integer_zero_node;
197 	      return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, rhs);
198 	    }
199 	}
200       else
201 	return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN);
202     }
203 
204   // Similarly, but check for a comparison with an unknown LIMIT.
205   //   if (LIMIT .COND. ARG)
206   //     alloca(arg);
207   //
208   //   Where LIMIT has a bound of unknown range.
209   //
210   // Note: All conditions of the form (ARG .COND. XXXX) where covered
211   // by the previous check above, so we only need to look for (LIMIT
212   // .COND. ARG) here.
213   tree limit = gimple_cond_lhs (last);
214   if ((gimple_cond_rhs (last) == arg
215        || gimple_cond_rhs (last) == arg_casted)
216       && TREE_CODE (limit) == SSA_NAME)
217     {
218       wide_int min, max;
219       value_range_type range_type = get_range_info (limit, &min, &max);
220 
221       if (range_type == VR_UNDEFINED || range_type == VR_VARYING)
222 	return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN);
223 
224       // ?? It looks like the above `if' is unnecessary, as we never
225       // get any VR_RANGE or VR_ANTI_RANGE here.  If we had a range
226       // for LIMIT, I suppose we would have taken care of it in
227       // alloca_call_type(), or handled above where we handle (ARG .COND. N).
228       //
229       // If this ever triggers, we should probably figure out why and
230       // handle it, though it is likely to be just an ALLOCA_UNBOUNDED.
231       return alloca_type_and_limit (ALLOCA_UNBOUNDED);
232     }
233 
234   return alloca_type_and_limit (ALLOCA_UNBOUNDED);
235 }
236 
237 // Return TRUE if SSA's definition is a cast from a signed type.
238 // If so, set *INVALID_CASTED_TYPE to the signed type.
239 
240 static bool
241 cast_from_signed_p (tree ssa, tree *invalid_casted_type)
242 {
243   gimple *def = SSA_NAME_DEF_STMT (ssa);
244   if (def
245       && !gimple_nop_p (def)
246       && gimple_assign_cast_p (def)
247       && !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def))))
248     {
249       *invalid_casted_type = TREE_TYPE (gimple_assign_rhs1 (def));
250       return true;
251     }
252   return false;
253 }
254 
255 // Return TRUE if X has a maximum range of MAX, basically covering the
256 // entire domain, in which case it's no range at all.
257 
258 static bool
259 is_max (tree x, wide_int max)
260 {
261   return wi::max_value (TREE_TYPE (x)) == max;
262 }
263 
264 // Analyze the alloca call in STMT and return the alloca type with its
265 // corresponding limit (if applicable).  IS_VLA is set if the alloca
266 // call is really a BUILT_IN_ALLOCA_WITH_ALIGN, signifying a VLA.
267 //
268 // If the alloca call may be too large because of a cast from a signed
269 // type to an unsigned type, set *INVALID_CASTED_TYPE to the
270 // problematic signed type.
271 
272 static struct alloca_type_and_limit
273 alloca_call_type (gimple *stmt, bool is_vla, tree *invalid_casted_type)
274 {
275   gcc_assert (gimple_alloca_call_p (stmt));
276   bool tentative_cast_from_signed = false;
277   tree len = gimple_call_arg (stmt, 0);
278   tree len_casted = NULL;
279   wide_int min, max;
280   struct alloca_type_and_limit ret = alloca_type_and_limit (ALLOCA_UNBOUNDED);
281 
282   gcc_assert (!is_vla || (unsigned HOST_WIDE_INT) warn_vla_limit > 0);
283   gcc_assert (is_vla || (unsigned HOST_WIDE_INT) warn_alloca_limit > 0);
284 
285   // Adjust warn_alloca_max_size for VLAs, by taking the underlying
286   // type into account.
287   unsigned HOST_WIDE_INT max_size;
288   if (is_vla)
289     max_size = (unsigned HOST_WIDE_INT) warn_vla_limit;
290   else
291     max_size = (unsigned HOST_WIDE_INT) warn_alloca_limit;
292 
293   // Check for the obviously bounded case.
294   if (TREE_CODE (len) == INTEGER_CST)
295     {
296       if (tree_to_uhwi (len) > max_size)
297 	return alloca_type_and_limit (ALLOCA_BOUND_DEFINITELY_LARGE, len);
298       if (integer_zerop (len))
299 	return alloca_type_and_limit (ALLOCA_ARG_IS_ZERO);
300       ret = alloca_type_and_limit (ALLOCA_OK);
301     }
302   // Check the range info if available.
303   else if (TREE_CODE (len) == SSA_NAME)
304     {
305       value_range_type range_type = get_range_info (len, &min, &max);
306       if (range_type == VR_RANGE)
307 	{
308 	  if (wi::leu_p (max, max_size))
309 	    ret = alloca_type_and_limit (ALLOCA_OK);
310 	  else
311 	    {
312 	      // A cast may have created a range we don't care
313 	      // about.  For instance, a cast from 16-bit to
314 	      // 32-bit creates a range of 0..65535, even if there
315 	      // is not really a determinable range in the
316 	      // underlying code.  In this case, look through the
317 	      // cast at the original argument, and fall through
318 	      // to look at other alternatives.
319 	      //
320 	      // We only look at through the cast when its from
321 	      // unsigned to unsigned, otherwise we may risk
322 	      // looking at SIGNED_INT < N, which is clearly not
323 	      // what we want.  In this case, we'd be interested
324 	      // in a VR_RANGE of [0..N].
325 	      //
326 	      // Note: None of this is perfect, and should all go
327 	      // away with better range information.  But it gets
328 	      // most of the cases.
329 	      gimple *def = SSA_NAME_DEF_STMT (len);
330 	      if (gimple_assign_cast_p (def))
331 		{
332 		  tree rhs1 = gimple_assign_rhs1 (def);
333 		  tree rhs1type = TREE_TYPE (rhs1);
334 
335 		  // Bail if the argument type is not valid.
336 		  if (!INTEGRAL_TYPE_P (rhs1type))
337 		    return alloca_type_and_limit (ALLOCA_OK);
338 
339 		  if (TYPE_UNSIGNED (rhs1type))
340 		    {
341 		      len_casted = rhs1;
342 		      range_type = get_range_info (len_casted, &min, &max);
343 		    }
344 		}
345 	      // An unknown range or a range of the entire domain is
346 	      // really no range at all.
347 	      if (range_type == VR_VARYING
348 		  || (!len_casted && is_max (len, max))
349 		  || (len_casted && is_max (len_casted, max)))
350 		{
351 		  // Fall through.
352 		}
353 	      else if (range_type == VR_ANTI_RANGE)
354 		return alloca_type_and_limit (ALLOCA_UNBOUNDED);
355 	      else if (range_type != VR_VARYING)
356 		return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, max);
357 	    }
358 	}
359       else if (range_type == VR_ANTI_RANGE)
360 	{
361 	  // There may be some wrapping around going on.  Catch it
362 	  // with this heuristic.  Hopefully, this VR_ANTI_RANGE
363 	  // nonsense will go away, and we won't have to catch the
364 	  // sign conversion problems with this crap.
365 	  //
366 	  // This is here to catch things like:
367 	  // void foo(signed int n) {
368 	  //   if (n < 100)
369 	  //     alloca(n);
370 	  //   ...
371 	  // }
372 	  if (cast_from_signed_p (len, invalid_casted_type))
373 	    {
374 	      // Unfortunately this also triggers:
375 	      //
376 	      // __SIZE_TYPE__ n = (__SIZE_TYPE__)blah;
377 	      // if (n < 100)
378 	      //   alloca(n);
379 	      //
380 	      // ...which is clearly bounded.  So, double check that
381 	      // the paths leading up to the size definitely don't
382 	      // have a bound.
383 	      tentative_cast_from_signed = true;
384 	    }
385 	}
386       // No easily determined range and try other things.
387     }
388 
389   // If we couldn't find anything, try a few heuristics for things we
390   // can easily determine.  Check these misc cases but only accept
391   // them if all predecessors have a known bound.
392   basic_block bb = gimple_bb (stmt);
393   if (ret.type == ALLOCA_UNBOUNDED)
394     {
395       ret.type = ALLOCA_OK;
396       for (unsigned ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
397 	{
398 	  gcc_assert (!len_casted || TYPE_UNSIGNED (TREE_TYPE (len_casted)));
399 	  ret = alloca_call_type_by_arg (len, len_casted,
400 					 EDGE_PRED (bb, ix), max_size);
401 	  if (ret.type != ALLOCA_OK)
402 	    break;
403 	}
404     }
405 
406   if (tentative_cast_from_signed && ret.type != ALLOCA_OK)
407     return alloca_type_and_limit (ALLOCA_CAST_FROM_SIGNED);
408   return ret;
409 }
410 
411 // Return TRUE if the alloca call in STMT is in a loop, otherwise
412 // return FALSE. As an exception, ignore alloca calls for VLAs that
413 // occur in a loop since those will be cleaned up when they go out of
414 // scope.
415 
416 static bool
417 in_loop_p (bool is_vla, gimple *stmt)
418 {
419   basic_block bb = gimple_bb (stmt);
420   if (bb->loop_father
421       && bb->loop_father->header != ENTRY_BLOCK_PTR_FOR_FN (cfun))
422     {
423       // Do not warn on VLAs occurring in a loop, since VLAs are
424       // guaranteed to be cleaned up when they go out of scope.
425       // That is, there is a corresponding __builtin_stack_restore
426       // at the end of the scope in which the VLA occurs.
427       tree fndecl = gimple_call_fn (stmt);
428       while (TREE_CODE (fndecl) == ADDR_EXPR)
429 	fndecl = TREE_OPERAND (fndecl, 0);
430       if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
431 	  && is_vla
432 	  && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN)
433 	return false;
434 
435       return true;
436     }
437   return false;
438 }
439 
440 unsigned int
441 pass_walloca::execute (function *fun)
442 {
443   basic_block bb;
444   FOR_EACH_BB_FN (bb, fun)
445     {
446       for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
447 	   gsi_next (&si))
448 	{
449 	  gimple *stmt = gsi_stmt (si);
450 	  location_t loc = gimple_location (stmt);
451 
452 	  if (!gimple_alloca_call_p (stmt))
453 	    continue;
454 	  gcc_assert (gimple_call_num_args (stmt) >= 1);
455 
456 	  bool is_vla = gimple_alloca_call_p (stmt)
457 	    && gimple_call_alloca_for_var_p (as_a <gcall *> (stmt));
458 
459 	  // Strict mode whining for VLAs is handled by the front-end,
460 	  // so we can safely ignore this case.  Also, ignore VLAs if
461 	  // the user doesn't care about them.
462 	  if (is_vla
463 	      && (warn_vla > 0 || !warn_vla_limit))
464 	    continue;
465 
466 	  if (!is_vla && (warn_alloca || !warn_alloca_limit))
467 	    {
468 	      if (warn_alloca)
469 		warning_at (loc, OPT_Walloca, G_("use of %<alloca%>"));
470 	      continue;
471 	    }
472 
473 	  tree invalid_casted_type = NULL;
474 	  struct alloca_type_and_limit t
475 	    = alloca_call_type (stmt, is_vla, &invalid_casted_type);
476 
477 	  // Even if we think the alloca call is OK, make sure it's
478 	  // not in a loop.
479 	  if (t.type == ALLOCA_OK && in_loop_p (is_vla, stmt))
480 	    t = alloca_type_and_limit (ALLOCA_IN_LOOP);
481 
482 	  enum opt_code wcode
483 	    = is_vla ? OPT_Wvla_larger_than_ : OPT_Walloca_larger_than_;
484 	  char buff[WIDE_INT_MAX_PRECISION / 4 + 4];
485 	  switch (t.type)
486 	    {
487 	    case ALLOCA_OK:
488 	      break;
489 	    case ALLOCA_BOUND_MAYBE_LARGE:
490 	      if (warning_at (loc, wcode,
491 			      is_vla ? G_("argument to variable-length array "
492 					  "may be too large")
493 			      : G_("argument to %<alloca%> may be too large"))
494 		  && t.limit != integer_zero_node)
495 		{
496 		  print_decu (t.limit, buff);
497 		  inform (loc, G_("limit is %u bytes, but argument "
498 				  "may be as large as %s"),
499 			  is_vla ? warn_vla_limit : warn_alloca_limit, buff);
500 		}
501 	      break;
502 	    case ALLOCA_BOUND_DEFINITELY_LARGE:
503 	      if (warning_at (loc, wcode,
504 			      is_vla ? G_("argument to variable-length array "
505 					  "is too large")
506 			      : G_("argument to %<alloca%> is too large"))
507 		  && t.limit != integer_zero_node)
508 		{
509 		  print_decu (t.limit, buff);
510 		  inform (loc, G_("limit is %u bytes, but argument is %s"),
511 			  is_vla ? warn_vla_limit : warn_alloca_limit, buff);
512 		}
513 	      break;
514 	    case ALLOCA_BOUND_UNKNOWN:
515 	      warning_at (loc, wcode,
516 			  is_vla ? G_("variable-length array bound is unknown")
517 			  : G_("%<alloca%> bound is unknown"));
518 	      break;
519 	    case ALLOCA_UNBOUNDED:
520 	      warning_at (loc, wcode,
521 			  is_vla ? G_("unbounded use of variable-length array")
522 			  : G_("unbounded use of %<alloca%>"));
523 	      break;
524 	    case ALLOCA_IN_LOOP:
525 	      gcc_assert (!is_vla);
526 	      warning_at (loc, wcode, G_("use of %<alloca%> within a loop"));
527 	      break;
528 	    case ALLOCA_CAST_FROM_SIGNED:
529 	      gcc_assert (invalid_casted_type != NULL_TREE);
530 	      warning_at (loc, wcode,
531 			  is_vla ? G_("argument to variable-length array "
532 				      "may be too large due to "
533 				      "conversion from %qT to %qT")
534 			  : G_("argument to %<alloca%> may be too large "
535 			       "due to conversion from %qT to %qT"),
536 			  invalid_casted_type, size_type_node);
537 	      break;
538 	    case ALLOCA_ARG_IS_ZERO:
539 	      warning_at (loc, wcode,
540 			  is_vla ? G_("argument to variable-length array "
541 				      "is zero")
542 			  : G_("argument to %<alloca%> is zero"));
543 	      break;
544 	    default:
545 	      gcc_unreachable ();
546 	    }
547 	}
548     }
549   return 0;
550 }
551 
552 gimple_opt_pass *
553 make_pass_walloca (gcc::context *ctxt)
554 {
555   return new pass_walloca (ctxt);
556 }
557