1 /* GIMPLE store merging pass. 2 Copyright (C) 2016-2017 Free Software Foundation, Inc. 3 Contributed by ARM Ltd. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it 8 under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3, or (at your option) 10 any later version. 11 12 GCC is distributed in the hope that it will be useful, but 13 WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* The purpose of this pass is to combine multiple memory stores of 22 constant values to consecutive memory locations into fewer wider stores. 23 For example, if we have a sequence peforming four byte stores to 24 consecutive memory locations: 25 [p ] := imm1; 26 [p + 1B] := imm2; 27 [p + 2B] := imm3; 28 [p + 3B] := imm4; 29 we can transform this into a single 4-byte store if the target supports it: 30 [p] := imm1:imm2:imm3:imm4 //concatenated immediates according to endianness. 31 32 The algorithm is applied to each basic block in three phases: 33 34 1) Scan through the basic block recording constant assignments to 35 destinations that can be expressed as a store to memory of a certain size 36 at a certain bit offset. Record store chains to different bases in a 37 hash_map (m_stores) and make sure to terminate such chains when appropriate 38 (for example when when the stored values get used subsequently). 39 These stores can be a result of structure element initializers, array stores 40 etc. A store_immediate_info object is recorded for every such store. 41 Record as many such assignments to a single base as possible until a 42 statement that interferes with the store sequence is encountered. 43 44 2) Analyze the chain of stores recorded in phase 1) (i.e. the vector of 45 store_immediate_info objects) and coalesce contiguous stores into 46 merged_store_group objects. 47 48 For example, given the stores: 49 [p ] := 0; 50 [p + 1B] := 1; 51 [p + 3B] := 0; 52 [p + 4B] := 1; 53 [p + 5B] := 0; 54 [p + 6B] := 0; 55 This phase would produce two merged_store_group objects, one recording the 56 two bytes stored in the memory region [p : p + 1] and another 57 recording the four bytes stored in the memory region [p + 3 : p + 6]. 58 59 3) The merged_store_group objects produced in phase 2) are processed 60 to generate the sequence of wider stores that set the contiguous memory 61 regions to the sequence of bytes that correspond to it. This may emit 62 multiple stores per store group to handle contiguous stores that are not 63 of a size that is a power of 2. For example it can try to emit a 40-bit 64 store as a 32-bit store followed by an 8-bit store. 65 We try to emit as wide stores as we can while respecting STRICT_ALIGNMENT or 66 SLOW_UNALIGNED_ACCESS rules. 67 68 Note on endianness and example: 69 Consider 2 contiguous 16-bit stores followed by 2 contiguous 8-bit stores: 70 [p ] := 0x1234; 71 [p + 2B] := 0x5678; 72 [p + 4B] := 0xab; 73 [p + 5B] := 0xcd; 74 75 The memory layout for little-endian (LE) and big-endian (BE) must be: 76 p |LE|BE| 77 --------- 78 0 |34|12| 79 1 |12|34| 80 2 |78|56| 81 3 |56|78| 82 4 |ab|ab| 83 5 |cd|cd| 84 85 To merge these into a single 48-bit merged value 'val' in phase 2) 86 on little-endian we insert stores to higher (consecutive) bitpositions 87 into the most significant bits of the merged value. 88 The final merged value would be: 0xcdab56781234 89 90 For big-endian we insert stores to higher bitpositions into the least 91 significant bits of the merged value. 92 The final merged value would be: 0x12345678abcd 93 94 Then, in phase 3), we want to emit this 48-bit value as a 32-bit store 95 followed by a 16-bit store. Again, we must consider endianness when 96 breaking down the 48-bit value 'val' computed above. 97 For little endian we emit: 98 [p] (32-bit) := 0x56781234; // val & 0x0000ffffffff; 99 [p + 4B] (16-bit) := 0xcdab; // (val & 0xffff00000000) >> 32; 100 101 Whereas for big-endian we emit: 102 [p] (32-bit) := 0x12345678; // (val & 0xffffffff0000) >> 16; 103 [p + 4B] (16-bit) := 0xabcd; // val & 0x00000000ffff; */ 104 105 #include "config.h" 106 #include "system.h" 107 #include "coretypes.h" 108 #include "backend.h" 109 #include "tree.h" 110 #include "gimple.h" 111 #include "builtins.h" 112 #include "fold-const.h" 113 #include "tree-pass.h" 114 #include "ssa.h" 115 #include "gimple-pretty-print.h" 116 #include "alias.h" 117 #include "fold-const.h" 118 #include "params.h" 119 #include "print-tree.h" 120 #include "tree-hash-traits.h" 121 #include "gimple-iterator.h" 122 #include "gimplify.h" 123 #include "stor-layout.h" 124 #include "timevar.h" 125 #include "tree-cfg.h" 126 #include "tree-eh.h" 127 #include "target.h" 128 #include "gimplify-me.h" 129 #include "selftest.h" 130 131 /* The maximum size (in bits) of the stores this pass should generate. */ 132 #define MAX_STORE_BITSIZE (BITS_PER_WORD) 133 #define MAX_STORE_BYTES (MAX_STORE_BITSIZE / BITS_PER_UNIT) 134 135 namespace { 136 137 /* Struct recording the information about a single store of an immediate 138 to memory. These are created in the first phase and coalesced into 139 merged_store_group objects in the second phase. */ 140 141 struct store_immediate_info 142 { 143 unsigned HOST_WIDE_INT bitsize; 144 unsigned HOST_WIDE_INT bitpos; 145 gimple *stmt; 146 unsigned int order; 147 store_immediate_info (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, 148 gimple *, unsigned int); 149 }; 150 151 store_immediate_info::store_immediate_info (unsigned HOST_WIDE_INT bs, 152 unsigned HOST_WIDE_INT bp, 153 gimple *st, 154 unsigned int ord) 155 : bitsize (bs), bitpos (bp), stmt (st), order (ord) 156 { 157 } 158 159 /* Struct representing a group of stores to contiguous memory locations. 160 These are produced by the second phase (coalescing) and consumed in the 161 third phase that outputs the widened stores. */ 162 163 struct merged_store_group 164 { 165 unsigned HOST_WIDE_INT start; 166 unsigned HOST_WIDE_INT width; 167 /* The size of the allocated memory for val. */ 168 unsigned HOST_WIDE_INT buf_size; 169 170 unsigned int align; 171 unsigned int first_order; 172 unsigned int last_order; 173 174 auto_vec<struct store_immediate_info *> stores; 175 /* We record the first and last original statements in the sequence because 176 we'll need their vuse/vdef and replacement position. It's easier to keep 177 track of them separately as 'stores' is reordered by apply_stores. */ 178 gimple *last_stmt; 179 gimple *first_stmt; 180 unsigned char *val; 181 182 merged_store_group (store_immediate_info *); 183 ~merged_store_group (); 184 void merge_into (store_immediate_info *); 185 void merge_overlapping (store_immediate_info *); 186 bool apply_stores (); 187 }; 188 189 /* Debug helper. Dump LEN elements of byte array PTR to FD in hex. */ 190 191 static void 192 dump_char_array (FILE *fd, unsigned char *ptr, unsigned int len) 193 { 194 if (!fd) 195 return; 196 197 for (unsigned int i = 0; i < len; i++) 198 fprintf (fd, "%x ", ptr[i]); 199 fprintf (fd, "\n"); 200 } 201 202 /* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the 203 bits between adjacent elements. AMNT should be within 204 [0, BITS_PER_UNIT). 205 Example, AMNT = 2: 206 00011111|11100000 << 2 = 01111111|10000000 207 PTR[1] | PTR[0] PTR[1] | PTR[0]. */ 208 209 static void 210 shift_bytes_in_array (unsigned char *ptr, unsigned int sz, unsigned int amnt) 211 { 212 if (amnt == 0) 213 return; 214 215 unsigned char carry_over = 0U; 216 unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt); 217 unsigned char clear_mask = (~0U) << amnt; 218 219 for (unsigned int i = 0; i < sz; i++) 220 { 221 unsigned prev_carry_over = carry_over; 222 carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt); 223 224 ptr[i] <<= amnt; 225 if (i != 0) 226 { 227 ptr[i] &= clear_mask; 228 ptr[i] |= prev_carry_over; 229 } 230 } 231 } 232 233 /* Like shift_bytes_in_array but for big-endian. 234 Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the 235 bits between adjacent elements. AMNT should be within 236 [0, BITS_PER_UNIT). 237 Example, AMNT = 2: 238 00011111|11100000 >> 2 = 00000111|11111000 239 PTR[0] | PTR[1] PTR[0] | PTR[1]. */ 240 241 static void 242 shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz, 243 unsigned int amnt) 244 { 245 if (amnt == 0) 246 return; 247 248 unsigned char carry_over = 0U; 249 unsigned char carry_mask = ~(~0U << amnt); 250 251 for (unsigned int i = 0; i < sz; i++) 252 { 253 unsigned prev_carry_over = carry_over; 254 carry_over = ptr[i] & carry_mask; 255 256 carry_over <<= (unsigned char) BITS_PER_UNIT - amnt; 257 ptr[i] >>= amnt; 258 ptr[i] |= prev_carry_over; 259 } 260 } 261 262 /* Clear out LEN bits starting from bit START in the byte array 263 PTR. This clears the bits to the *right* from START. 264 START must be within [0, BITS_PER_UNIT) and counts starting from 265 the least significant bit. */ 266 267 static void 268 clear_bit_region_be (unsigned char *ptr, unsigned int start, 269 unsigned int len) 270 { 271 if (len == 0) 272 return; 273 /* Clear len bits to the right of start. */ 274 else if (len <= start + 1) 275 { 276 unsigned char mask = (~(~0U << len)); 277 mask = mask << (start + 1U - len); 278 ptr[0] &= ~mask; 279 } 280 else if (start != BITS_PER_UNIT - 1) 281 { 282 clear_bit_region_be (ptr, start, (start % BITS_PER_UNIT) + 1); 283 clear_bit_region_be (ptr + 1, BITS_PER_UNIT - 1, 284 len - (start % BITS_PER_UNIT) - 1); 285 } 286 else if (start == BITS_PER_UNIT - 1 287 && len > BITS_PER_UNIT) 288 { 289 unsigned int nbytes = len / BITS_PER_UNIT; 290 for (unsigned int i = 0; i < nbytes; i++) 291 ptr[i] = 0U; 292 if (len % BITS_PER_UNIT != 0) 293 clear_bit_region_be (ptr + nbytes, BITS_PER_UNIT - 1, 294 len % BITS_PER_UNIT); 295 } 296 else 297 gcc_unreachable (); 298 } 299 300 /* In the byte array PTR clear the bit region starting at bit 301 START and is LEN bits wide. 302 For regions spanning multiple bytes do this recursively until we reach 303 zero LEN or a region contained within a single byte. */ 304 305 static void 306 clear_bit_region (unsigned char *ptr, unsigned int start, 307 unsigned int len) 308 { 309 /* Degenerate base case. */ 310 if (len == 0) 311 return; 312 else if (start >= BITS_PER_UNIT) 313 clear_bit_region (ptr + 1, start - BITS_PER_UNIT, len); 314 /* Second base case. */ 315 else if ((start + len) <= BITS_PER_UNIT) 316 { 317 unsigned char mask = (~0U) << (unsigned char) (BITS_PER_UNIT - len); 318 mask >>= BITS_PER_UNIT - (start + len); 319 320 ptr[0] &= ~mask; 321 322 return; 323 } 324 /* Clear most significant bits in a byte and proceed with the next byte. */ 325 else if (start != 0) 326 { 327 clear_bit_region (ptr, start, BITS_PER_UNIT - start); 328 clear_bit_region (ptr + 1, 0, len - (BITS_PER_UNIT - start)); 329 } 330 /* Whole bytes need to be cleared. */ 331 else if (start == 0 && len > BITS_PER_UNIT) 332 { 333 unsigned int nbytes = len / BITS_PER_UNIT; 334 /* We could recurse on each byte but do the loop here to avoid 335 recursing too deep. */ 336 memset (ptr, '\0', nbytes); 337 /* Clear the remaining sub-byte region if there is one. */ 338 if (len % BITS_PER_UNIT != 0) 339 clear_bit_region (ptr + nbytes, 0, len % BITS_PER_UNIT); 340 } 341 else 342 gcc_unreachable (); 343 } 344 345 /* Write BITLEN bits of EXPR to the byte array PTR at 346 bit position BITPOS. PTR should contain TOTAL_BYTES elements. 347 Return true if the operation succeeded. */ 348 349 static bool 350 encode_tree_to_bitpos (tree expr, unsigned char *ptr, int bitlen, int bitpos, 351 unsigned int total_bytes) 352 { 353 unsigned int first_byte = bitpos / BITS_PER_UNIT; 354 tree tmp_int = expr; 355 bool sub_byte_op_p = ((bitlen % BITS_PER_UNIT) 356 || (bitpos % BITS_PER_UNIT) 357 || mode_for_size (bitlen, MODE_INT, 0) == BLKmode); 358 359 if (!sub_byte_op_p) 360 return (native_encode_expr (tmp_int, ptr + first_byte, total_bytes, 0) 361 != 0); 362 363 /* LITTLE-ENDIAN 364 We are writing a non byte-sized quantity or at a position that is not 365 at a byte boundary. 366 |--------|--------|--------| ptr + first_byte 367 ^ ^ 368 xxx xxxxxxxx xxx< bp> 369 |______EXPR____| 370 371 First native_encode_expr EXPR into a temporary buffer and shift each 372 byte in the buffer by 'bp' (carrying the bits over as necessary). 373 |00000000|00xxxxxx|xxxxxxxx| << bp = |000xxxxx|xxxxxxxx|xxx00000| 374 <------bitlen---->< bp> 375 Then we clear the destination bits: 376 |---00000|00000000|000-----| ptr + first_byte 377 <-------bitlen--->< bp> 378 379 Finally we ORR the bytes of the shifted EXPR into the cleared region: 380 |---xxxxx||xxxxxxxx||xxx-----| ptr + first_byte. 381 382 BIG-ENDIAN 383 We are writing a non byte-sized quantity or at a position that is not 384 at a byte boundary. 385 ptr + first_byte |--------|--------|--------| 386 ^ ^ 387 <bp >xxx xxxxxxxx xxx 388 |_____EXPR_____| 389 390 First native_encode_expr EXPR into a temporary buffer and shift each 391 byte in the buffer to the right by (carrying the bits over as necessary). 392 We shift by as much as needed to align the most significant bit of EXPR 393 with bitpos: 394 |00xxxxxx|xxxxxxxx| >> 3 = |00000xxx|xxxxxxxx|xxxxx000| 395 <---bitlen----> <bp ><-----bitlen-----> 396 Then we clear the destination bits: 397 ptr + first_byte |-----000||00000000||00000---| 398 <bp ><-------bitlen-----> 399 400 Finally we ORR the bytes of the shifted EXPR into the cleared region: 401 ptr + first_byte |---xxxxx||xxxxxxxx||xxx-----|. 402 The awkwardness comes from the fact that bitpos is counted from the 403 most significant bit of a byte. */ 404 405 /* Allocate an extra byte so that we have space to shift into. */ 406 unsigned int byte_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (expr))) + 1; 407 unsigned char *tmpbuf = XALLOCAVEC (unsigned char, byte_size); 408 memset (tmpbuf, '\0', byte_size); 409 /* The store detection code should only have allowed constants that are 410 accepted by native_encode_expr. */ 411 if (native_encode_expr (expr, tmpbuf, byte_size - 1, 0) == 0) 412 gcc_unreachable (); 413 414 /* The native_encode_expr machinery uses TYPE_MODE to determine how many 415 bytes to write. This means it can write more than 416 ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT bytes (for example 417 write 8 bytes for a bitlen of 40). Skip the bytes that are not within 418 bitlen and zero out the bits that are not relevant as well (that may 419 contain a sign bit due to sign-extension). */ 420 unsigned int padding 421 = byte_size - ROUND_UP (bitlen, BITS_PER_UNIT) / BITS_PER_UNIT - 1; 422 /* On big-endian the padding is at the 'front' so just skip the initial 423 bytes. */ 424 if (BYTES_BIG_ENDIAN) 425 tmpbuf += padding; 426 427 byte_size -= padding; 428 429 if (bitlen % BITS_PER_UNIT != 0) 430 { 431 if (BYTES_BIG_ENDIAN) 432 clear_bit_region_be (tmpbuf, BITS_PER_UNIT - 1, 433 BITS_PER_UNIT - (bitlen % BITS_PER_UNIT)); 434 else 435 clear_bit_region (tmpbuf, bitlen, 436 byte_size * BITS_PER_UNIT - bitlen); 437 } 438 /* Left shifting relies on the last byte being clear if bitlen is 439 a multiple of BITS_PER_UNIT, which might not be clear if 440 there are padding bytes. */ 441 else if (!BYTES_BIG_ENDIAN) 442 tmpbuf[byte_size - 1] = '\0'; 443 444 /* Clear the bit region in PTR where the bits from TMPBUF will be 445 inserted into. */ 446 if (BYTES_BIG_ENDIAN) 447 clear_bit_region_be (ptr + first_byte, 448 BITS_PER_UNIT - 1 - (bitpos % BITS_PER_UNIT), bitlen); 449 else 450 clear_bit_region (ptr + first_byte, bitpos % BITS_PER_UNIT, bitlen); 451 452 int shift_amnt; 453 int bitlen_mod = bitlen % BITS_PER_UNIT; 454 int bitpos_mod = bitpos % BITS_PER_UNIT; 455 456 bool skip_byte = false; 457 if (BYTES_BIG_ENDIAN) 458 { 459 /* BITPOS and BITLEN are exactly aligned and no shifting 460 is necessary. */ 461 if (bitpos_mod + bitlen_mod == BITS_PER_UNIT 462 || (bitpos_mod == 0 && bitlen_mod == 0)) 463 shift_amnt = 0; 464 /* |. . . . . . . .| 465 <bp > <blen >. 466 We always shift right for BYTES_BIG_ENDIAN so shift the beginning 467 of the value until it aligns with 'bp' in the next byte over. */ 468 else if (bitpos_mod + bitlen_mod < BITS_PER_UNIT) 469 { 470 shift_amnt = bitlen_mod + bitpos_mod; 471 skip_byte = bitlen_mod != 0; 472 } 473 /* |. . . . . . . .| 474 <----bp---> 475 <---blen---->. 476 Shift the value right within the same byte so it aligns with 'bp'. */ 477 else 478 shift_amnt = bitlen_mod + bitpos_mod - BITS_PER_UNIT; 479 } 480 else 481 shift_amnt = bitpos % BITS_PER_UNIT; 482 483 /* Create the shifted version of EXPR. */ 484 if (!BYTES_BIG_ENDIAN) 485 { 486 shift_bytes_in_array (tmpbuf, byte_size, shift_amnt); 487 if (shift_amnt == 0) 488 byte_size--; 489 } 490 else 491 { 492 gcc_assert (BYTES_BIG_ENDIAN); 493 shift_bytes_in_array_right (tmpbuf, byte_size, shift_amnt); 494 /* If shifting right forced us to move into the next byte skip the now 495 empty byte. */ 496 if (skip_byte) 497 { 498 tmpbuf++; 499 byte_size--; 500 } 501 } 502 503 /* Insert the bits from TMPBUF. */ 504 for (unsigned int i = 0; i < byte_size; i++) 505 ptr[first_byte + i] |= tmpbuf[i]; 506 507 return true; 508 } 509 510 /* Sorting function for store_immediate_info objects. 511 Sorts them by bitposition. */ 512 513 static int 514 sort_by_bitpos (const void *x, const void *y) 515 { 516 store_immediate_info *const *tmp = (store_immediate_info * const *) x; 517 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y; 518 519 if ((*tmp)->bitpos <= (*tmp2)->bitpos) 520 return -1; 521 else if ((*tmp)->bitpos > (*tmp2)->bitpos) 522 return 1; 523 524 gcc_unreachable (); 525 } 526 527 /* Sorting function for store_immediate_info objects. 528 Sorts them by the order field. */ 529 530 static int 531 sort_by_order (const void *x, const void *y) 532 { 533 store_immediate_info *const *tmp = (store_immediate_info * const *) x; 534 store_immediate_info *const *tmp2 = (store_immediate_info * const *) y; 535 536 if ((*tmp)->order < (*tmp2)->order) 537 return -1; 538 else if ((*tmp)->order > (*tmp2)->order) 539 return 1; 540 541 gcc_unreachable (); 542 } 543 544 /* Initialize a merged_store_group object from a store_immediate_info 545 object. */ 546 547 merged_store_group::merged_store_group (store_immediate_info *info) 548 { 549 start = info->bitpos; 550 width = info->bitsize; 551 /* VAL has memory allocated for it in apply_stores once the group 552 width has been finalized. */ 553 val = NULL; 554 align = get_object_alignment (gimple_assign_lhs (info->stmt)); 555 stores.create (1); 556 stores.safe_push (info); 557 last_stmt = info->stmt; 558 last_order = info->order; 559 first_stmt = last_stmt; 560 first_order = last_order; 561 buf_size = 0; 562 } 563 564 merged_store_group::~merged_store_group () 565 { 566 if (val) 567 XDELETEVEC (val); 568 } 569 570 /* Merge a store recorded by INFO into this merged store. 571 The store is not overlapping with the existing recorded 572 stores. */ 573 574 void 575 merged_store_group::merge_into (store_immediate_info *info) 576 { 577 unsigned HOST_WIDE_INT wid = info->bitsize; 578 /* Make sure we're inserting in the position we think we're inserting. */ 579 gcc_assert (info->bitpos == start + width); 580 581 width += wid; 582 gimple *stmt = info->stmt; 583 stores.safe_push (info); 584 if (info->order > last_order) 585 { 586 last_order = info->order; 587 last_stmt = stmt; 588 } 589 else if (info->order < first_order) 590 { 591 first_order = info->order; 592 first_stmt = stmt; 593 } 594 } 595 596 /* Merge a store described by INFO into this merged store. 597 INFO overlaps in some way with the current store (i.e. it's not contiguous 598 which is handled by merged_store_group::merge_into). */ 599 600 void 601 merged_store_group::merge_overlapping (store_immediate_info *info) 602 { 603 gimple *stmt = info->stmt; 604 stores.safe_push (info); 605 606 /* If the store extends the size of the group, extend the width. */ 607 if ((info->bitpos + info->bitsize) > (start + width)) 608 width += info->bitpos + info->bitsize - (start + width); 609 610 if (info->order > last_order) 611 { 612 last_order = info->order; 613 last_stmt = stmt; 614 } 615 else if (info->order < first_order) 616 { 617 first_order = info->order; 618 first_stmt = stmt; 619 } 620 } 621 622 /* Go through all the recorded stores in this group in program order and 623 apply their values to the VAL byte array to create the final merged 624 value. Return true if the operation succeeded. */ 625 626 bool 627 merged_store_group::apply_stores () 628 { 629 /* The total width of the stores must add up to a whole number of bytes 630 and start at a byte boundary. We don't support emitting bitfield 631 references for now. Also, make sure we have more than one store 632 in the group, otherwise we cannot merge anything. */ 633 if (width % BITS_PER_UNIT != 0 634 || start % BITS_PER_UNIT != 0 635 || stores.length () == 1) 636 return false; 637 638 stores.qsort (sort_by_order); 639 struct store_immediate_info *info; 640 unsigned int i; 641 /* Create a buffer of a size that is 2 times the number of bytes we're 642 storing. That way native_encode_expr can write power-of-2-sized 643 chunks without overrunning. */ 644 buf_size = 2 * (ROUND_UP (width, BITS_PER_UNIT) / BITS_PER_UNIT); 645 val = XCNEWVEC (unsigned char, buf_size); 646 647 FOR_EACH_VEC_ELT (stores, i, info) 648 { 649 unsigned int pos_in_buffer = info->bitpos - start; 650 bool ret = encode_tree_to_bitpos (gimple_assign_rhs1 (info->stmt), 651 val, info->bitsize, 652 pos_in_buffer, buf_size); 653 if (dump_file && (dump_flags & TDF_DETAILS)) 654 { 655 if (ret) 656 { 657 fprintf (dump_file, "After writing "); 658 print_generic_expr (dump_file, 659 gimple_assign_rhs1 (info->stmt), 0); 660 fprintf (dump_file, " of size " HOST_WIDE_INT_PRINT_DEC 661 " at position %d the merged region contains:\n", 662 info->bitsize, pos_in_buffer); 663 dump_char_array (dump_file, val, buf_size); 664 } 665 else 666 fprintf (dump_file, "Failed to merge stores\n"); 667 } 668 if (!ret) 669 return false; 670 } 671 return true; 672 } 673 674 /* Structure describing the store chain. */ 675 676 struct imm_store_chain_info 677 { 678 /* Doubly-linked list that imposes an order on chain processing. 679 PNXP (prev's next pointer) points to the head of a list, or to 680 the next field in the previous chain in the list. 681 See pass_store_merging::m_stores_head for more rationale. */ 682 imm_store_chain_info *next, **pnxp; 683 tree base_addr; 684 auto_vec<struct store_immediate_info *> m_store_info; 685 auto_vec<merged_store_group *> m_merged_store_groups; 686 687 imm_store_chain_info (imm_store_chain_info *&inspt, tree b_a) 688 : next (inspt), pnxp (&inspt), base_addr (b_a) 689 { 690 inspt = this; 691 if (next) 692 { 693 gcc_checking_assert (pnxp == next->pnxp); 694 next->pnxp = &next; 695 } 696 } 697 ~imm_store_chain_info () 698 { 699 *pnxp = next; 700 if (next) 701 { 702 gcc_checking_assert (&next == next->pnxp); 703 next->pnxp = pnxp; 704 } 705 } 706 bool terminate_and_process_chain (); 707 bool coalesce_immediate_stores (); 708 bool output_merged_store (merged_store_group *); 709 bool output_merged_stores (); 710 }; 711 712 const pass_data pass_data_tree_store_merging = { 713 GIMPLE_PASS, /* type */ 714 "store-merging", /* name */ 715 OPTGROUP_NONE, /* optinfo_flags */ 716 TV_GIMPLE_STORE_MERGING, /* tv_id */ 717 PROP_ssa, /* properties_required */ 718 0, /* properties_provided */ 719 0, /* properties_destroyed */ 720 0, /* todo_flags_start */ 721 TODO_update_ssa, /* todo_flags_finish */ 722 }; 723 724 class pass_store_merging : public gimple_opt_pass 725 { 726 public: 727 pass_store_merging (gcc::context *ctxt) 728 : gimple_opt_pass (pass_data_tree_store_merging, ctxt), m_stores_head () 729 { 730 } 731 732 /* Pass not supported for PDP-endianness. */ 733 virtual bool 734 gate (function *) 735 { 736 return flag_store_merging && (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN); 737 } 738 739 virtual unsigned int execute (function *); 740 741 private: 742 hash_map<tree_operand_hash, struct imm_store_chain_info *> m_stores; 743 744 /* Form a doubly-linked stack of the elements of m_stores, so that 745 we can iterate over them in a predictable way. Using this order 746 avoids extraneous differences in the compiler output just because 747 of tree pointer variations (e.g. different chains end up in 748 different positions of m_stores, so they are handled in different 749 orders, so they allocate or release SSA names in different 750 orders, and when they get reused, subsequent passes end up 751 getting different SSA names, which may ultimately change 752 decisions when going out of SSA). */ 753 imm_store_chain_info *m_stores_head; 754 755 bool terminate_and_process_all_chains (); 756 bool terminate_all_aliasing_chains (imm_store_chain_info **, 757 bool, gimple *); 758 bool terminate_and_release_chain (imm_store_chain_info *); 759 }; // class pass_store_merging 760 761 /* Terminate and process all recorded chains. Return true if any changes 762 were made. */ 763 764 bool 765 pass_store_merging::terminate_and_process_all_chains () 766 { 767 bool ret = false; 768 while (m_stores_head) 769 ret |= terminate_and_release_chain (m_stores_head); 770 gcc_assert (m_stores.elements () == 0); 771 gcc_assert (m_stores_head == NULL); 772 773 return ret; 774 } 775 776 /* Terminate all chains that are affected by the assignment to DEST, appearing 777 in statement STMT and ultimately points to the object BASE. Return true if 778 at least one aliasing chain was terminated. BASE and DEST are allowed to 779 be NULL_TREE. In that case the aliasing checks are performed on the whole 780 statement rather than a particular operand in it. VAR_OFFSET_P signifies 781 whether STMT represents a store to BASE offset by a variable amount. 782 If that is the case we have to terminate any chain anchored at BASE. */ 783 784 bool 785 pass_store_merging::terminate_all_aliasing_chains (imm_store_chain_info 786 **chain_info, 787 bool var_offset_p, 788 gimple *stmt) 789 { 790 bool ret = false; 791 792 /* If the statement doesn't touch memory it can't alias. */ 793 if (!gimple_vuse (stmt)) 794 return false; 795 796 /* Check if the assignment destination (BASE) is part of a store chain. 797 This is to catch non-constant stores to destinations that may be part 798 of a chain. */ 799 if (chain_info) 800 { 801 /* We have a chain at BASE and we're writing to [BASE + <variable>]. 802 This can interfere with any of the stores so terminate 803 the chain. */ 804 if (var_offset_p) 805 { 806 terminate_and_release_chain (*chain_info); 807 ret = true; 808 } 809 /* Otherwise go through every store in the chain to see if it 810 aliases with any of them. */ 811 else 812 { 813 struct store_immediate_info *info; 814 unsigned int i; 815 tree store_lhs 816 = gimple_store_p (stmt) ? gimple_get_lhs (stmt) : NULL_TREE; 817 FOR_EACH_VEC_ELT ((*chain_info)->m_store_info, i, info) 818 { 819 tree lhs = gimple_assign_lhs (info->stmt); 820 if (ref_maybe_used_by_stmt_p (stmt, lhs) 821 || stmt_may_clobber_ref_p (stmt, lhs) 822 || (store_lhs && refs_output_dependent_p (store_lhs, lhs))) 823 { 824 if (dump_file && (dump_flags & TDF_DETAILS)) 825 { 826 fprintf (dump_file, 827 "stmt causes chain termination:\n"); 828 print_gimple_stmt (dump_file, stmt, 0, 0); 829 } 830 terminate_and_release_chain (*chain_info); 831 ret = true; 832 break; 833 } 834 } 835 } 836 } 837 838 /* Check for aliasing with all other store chains. */ 839 for (imm_store_chain_info *next = m_stores_head, *cur = next; cur; cur = next) 840 { 841 next = cur->next; 842 843 /* We already checked all the stores in chain_info and terminated the 844 chain if necessary. Skip it here. */ 845 if (chain_info && (*chain_info) == cur) 846 continue; 847 848 /* We can't use the base object here as that does not reliably exist. 849 Build a ao_ref from the base object address (if we know the 850 minimum and maximum offset and the maximum size we could improve 851 things here). */ 852 ao_ref chain_ref; 853 ao_ref_init_from_ptr_and_size (&chain_ref, cur->base_addr, NULL_TREE); 854 if (ref_maybe_used_by_stmt_p (stmt, &chain_ref) 855 || stmt_may_clobber_ref_p_1 (stmt, &chain_ref)) 856 { 857 terminate_and_release_chain (cur); 858 ret = true; 859 } 860 } 861 862 return ret; 863 } 864 865 /* Helper function. Terminate the recorded chain storing to base object 866 BASE. Return true if the merging and output was successful. The m_stores 867 entry is removed after the processing in any case. */ 868 869 bool 870 pass_store_merging::terminate_and_release_chain (imm_store_chain_info *chain_info) 871 { 872 bool ret = chain_info->terminate_and_process_chain (); 873 m_stores.remove (chain_info->base_addr); 874 delete chain_info; 875 return ret; 876 } 877 878 /* Go through the candidate stores recorded in m_store_info and merge them 879 into merged_store_group objects recorded into m_merged_store_groups 880 representing the widened stores. Return true if coalescing was successful 881 and the number of widened stores is fewer than the original number 882 of stores. */ 883 884 bool 885 imm_store_chain_info::coalesce_immediate_stores () 886 { 887 /* Anything less can't be processed. */ 888 if (m_store_info.length () < 2) 889 return false; 890 891 if (dump_file && (dump_flags & TDF_DETAILS)) 892 fprintf (dump_file, "Attempting to coalesce %u stores in chain.\n", 893 m_store_info.length ()); 894 895 store_immediate_info *info; 896 unsigned int i; 897 898 /* Order the stores by the bitposition they write to. */ 899 m_store_info.qsort (sort_by_bitpos); 900 901 info = m_store_info[0]; 902 merged_store_group *merged_store = new merged_store_group (info); 903 904 FOR_EACH_VEC_ELT (m_store_info, i, info) 905 { 906 if (dump_file && (dump_flags & TDF_DETAILS)) 907 { 908 fprintf (dump_file, "Store %u:\nbitsize:" HOST_WIDE_INT_PRINT_DEC 909 " bitpos:" HOST_WIDE_INT_PRINT_DEC " val:\n", 910 i, info->bitsize, info->bitpos); 911 print_generic_expr (dump_file, gimple_assign_rhs1 (info->stmt), 0); 912 fprintf (dump_file, "\n------------\n"); 913 } 914 915 if (i == 0) 916 continue; 917 918 /* |---store 1---| 919 |---store 2---| 920 Overlapping stores. */ 921 unsigned HOST_WIDE_INT start = info->bitpos; 922 if (IN_RANGE (start, merged_store->start, 923 merged_store->start + merged_store->width - 1)) 924 { 925 merged_store->merge_overlapping (info); 926 continue; 927 } 928 929 /* |---store 1---| <gap> |---store 2---|. 930 Gap between stores. Start a new group. */ 931 if (start != merged_store->start + merged_store->width) 932 { 933 /* Try to apply all the stores recorded for the group to determine 934 the bitpattern they write and discard it if that fails. 935 This will also reject single-store groups. */ 936 if (!merged_store->apply_stores ()) 937 delete merged_store; 938 else 939 m_merged_store_groups.safe_push (merged_store); 940 941 merged_store = new merged_store_group (info); 942 943 continue; 944 } 945 946 /* |---store 1---||---store 2---| 947 This store is consecutive to the previous one. 948 Merge it into the current store group. */ 949 merged_store->merge_into (info); 950 } 951 952 /* Record or discard the last store group. */ 953 if (!merged_store->apply_stores ()) 954 delete merged_store; 955 else 956 m_merged_store_groups.safe_push (merged_store); 957 958 gcc_assert (m_merged_store_groups.length () <= m_store_info.length ()); 959 bool success 960 = !m_merged_store_groups.is_empty () 961 && m_merged_store_groups.length () < m_store_info.length (); 962 963 if (success && dump_file) 964 fprintf (dump_file, "Coalescing successful!\n" 965 "Merged into %u stores\n", 966 m_merged_store_groups.length ()); 967 968 return success; 969 } 970 971 /* Return the type to use for the merged stores described by STMTS. 972 This is needed to get the alias sets right. */ 973 974 static tree 975 get_alias_type_for_stmts (auto_vec<gimple *> &stmts) 976 { 977 gimple *stmt; 978 unsigned int i; 979 tree lhs = gimple_assign_lhs (stmts[0]); 980 tree type = reference_alias_ptr_type (lhs); 981 982 FOR_EACH_VEC_ELT (stmts, i, stmt) 983 { 984 if (i == 0) 985 continue; 986 987 lhs = gimple_assign_lhs (stmt); 988 tree type1 = reference_alias_ptr_type (lhs); 989 if (!alias_ptr_types_compatible_p (type, type1)) 990 return ptr_type_node; 991 } 992 return type; 993 } 994 995 /* Return the location_t information we can find among the statements 996 in STMTS. */ 997 998 static location_t 999 get_location_for_stmts (auto_vec<gimple *> &stmts) 1000 { 1001 gimple *stmt; 1002 unsigned int i; 1003 1004 FOR_EACH_VEC_ELT (stmts, i, stmt) 1005 if (gimple_has_location (stmt)) 1006 return gimple_location (stmt); 1007 1008 return UNKNOWN_LOCATION; 1009 } 1010 1011 /* Used to decribe a store resulting from splitting a wide store in smaller 1012 regularly-sized stores in split_group. */ 1013 1014 struct split_store 1015 { 1016 unsigned HOST_WIDE_INT bytepos; 1017 unsigned HOST_WIDE_INT size; 1018 unsigned HOST_WIDE_INT align; 1019 auto_vec<gimple *> orig_stmts; 1020 split_store (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT, 1021 unsigned HOST_WIDE_INT); 1022 }; 1023 1024 /* Simple constructor. */ 1025 1026 split_store::split_store (unsigned HOST_WIDE_INT bp, 1027 unsigned HOST_WIDE_INT sz, 1028 unsigned HOST_WIDE_INT al) 1029 : bytepos (bp), size (sz), align (al) 1030 { 1031 orig_stmts.create (0); 1032 } 1033 1034 /* Record all statements corresponding to stores in GROUP that write to 1035 the region starting at BITPOS and is of size BITSIZE. Record such 1036 statements in STMTS. The stores in GROUP must be sorted by 1037 bitposition. */ 1038 1039 static void 1040 find_constituent_stmts (struct merged_store_group *group, 1041 auto_vec<gimple *> &stmts, 1042 unsigned HOST_WIDE_INT bitpos, 1043 unsigned HOST_WIDE_INT bitsize) 1044 { 1045 struct store_immediate_info *info; 1046 unsigned int i; 1047 unsigned HOST_WIDE_INT end = bitpos + bitsize; 1048 FOR_EACH_VEC_ELT (group->stores, i, info) 1049 { 1050 unsigned HOST_WIDE_INT stmt_start = info->bitpos; 1051 unsigned HOST_WIDE_INT stmt_end = stmt_start + info->bitsize; 1052 if (stmt_end < bitpos) 1053 continue; 1054 /* The stores in GROUP are ordered by bitposition so if we're past 1055 the region for this group return early. */ 1056 if (stmt_start > end) 1057 return; 1058 1059 if (IN_RANGE (stmt_start, bitpos, bitpos + bitsize) 1060 || IN_RANGE (stmt_end, bitpos, end) 1061 /* The statement writes a region that completely encloses the region 1062 that this group writes. Unlikely to occur but let's 1063 handle it. */ 1064 || IN_RANGE (bitpos, stmt_start, stmt_end)) 1065 stmts.safe_push (info->stmt); 1066 } 1067 } 1068 1069 /* Split a merged store described by GROUP by populating the SPLIT_STORES 1070 vector with split_store structs describing the byte offset (from the base), 1071 the bit size and alignment of each store as well as the original statements 1072 involved in each such split group. 1073 This is to separate the splitting strategy from the statement 1074 building/emission/linking done in output_merged_store. 1075 At the moment just start with the widest possible size and keep emitting 1076 the widest we can until we have emitted all the bytes, halving the size 1077 when appropriate. */ 1078 1079 static bool 1080 split_group (merged_store_group *group, 1081 auto_vec<struct split_store *> &split_stores) 1082 { 1083 unsigned HOST_WIDE_INT pos = group->start; 1084 unsigned HOST_WIDE_INT size = group->width; 1085 unsigned HOST_WIDE_INT bytepos = pos / BITS_PER_UNIT; 1086 unsigned HOST_WIDE_INT align = group->align; 1087 1088 /* We don't handle partial bitfields for now. We shouldn't have 1089 reached this far. */ 1090 gcc_assert ((size % BITS_PER_UNIT == 0) && (pos % BITS_PER_UNIT == 0)); 1091 1092 bool allow_unaligned 1093 = !STRICT_ALIGNMENT && PARAM_VALUE (PARAM_STORE_MERGING_ALLOW_UNALIGNED); 1094 1095 unsigned int try_size = MAX_STORE_BITSIZE; 1096 while (try_size > size 1097 || (!allow_unaligned 1098 && try_size > align)) 1099 { 1100 try_size /= 2; 1101 if (try_size < BITS_PER_UNIT) 1102 return false; 1103 } 1104 1105 unsigned HOST_WIDE_INT try_pos = bytepos; 1106 group->stores.qsort (sort_by_bitpos); 1107 1108 while (size > 0) 1109 { 1110 struct split_store *store = new split_store (try_pos, try_size, align); 1111 unsigned HOST_WIDE_INT try_bitpos = try_pos * BITS_PER_UNIT; 1112 find_constituent_stmts (group, store->orig_stmts, try_bitpos, try_size); 1113 split_stores.safe_push (store); 1114 1115 try_pos += try_size / BITS_PER_UNIT; 1116 1117 size -= try_size; 1118 align = try_size; 1119 while (size < try_size) 1120 try_size /= 2; 1121 } 1122 return true; 1123 } 1124 1125 /* Given a merged store group GROUP output the widened version of it. 1126 The store chain is against the base object BASE. 1127 Try store sizes of at most MAX_STORE_BITSIZE bits wide and don't output 1128 unaligned stores for STRICT_ALIGNMENT targets or if it's too expensive. 1129 Make sure that the number of statements output is less than the number of 1130 original statements. If a better sequence is possible emit it and 1131 return true. */ 1132 1133 bool 1134 imm_store_chain_info::output_merged_store (merged_store_group *group) 1135 { 1136 unsigned HOST_WIDE_INT start_byte_pos = group->start / BITS_PER_UNIT; 1137 1138 unsigned int orig_num_stmts = group->stores.length (); 1139 if (orig_num_stmts < 2) 1140 return false; 1141 1142 auto_vec<struct split_store *> split_stores; 1143 split_stores.create (0); 1144 if (!split_group (group, split_stores)) 1145 return false; 1146 1147 gimple_stmt_iterator last_gsi = gsi_for_stmt (group->last_stmt); 1148 gimple_seq seq = NULL; 1149 unsigned int num_stmts = 0; 1150 tree last_vdef, new_vuse; 1151 last_vdef = gimple_vdef (group->last_stmt); 1152 new_vuse = gimple_vuse (group->last_stmt); 1153 1154 gimple *stmt = NULL; 1155 /* The new SSA names created. Keep track of them so that we can free them 1156 if we decide to not use the new sequence. */ 1157 auto_vec<tree> new_ssa_names; 1158 split_store *split_store; 1159 unsigned int i; 1160 bool fail = false; 1161 1162 tree addr = force_gimple_operand_1 (unshare_expr (base_addr), &seq, 1163 is_gimple_mem_ref_addr, NULL_TREE); 1164 FOR_EACH_VEC_ELT (split_stores, i, split_store) 1165 { 1166 unsigned HOST_WIDE_INT try_size = split_store->size; 1167 unsigned HOST_WIDE_INT try_pos = split_store->bytepos; 1168 unsigned HOST_WIDE_INT align = split_store->align; 1169 tree offset_type = get_alias_type_for_stmts (split_store->orig_stmts); 1170 location_t loc = get_location_for_stmts (split_store->orig_stmts); 1171 1172 tree int_type = build_nonstandard_integer_type (try_size, UNSIGNED); 1173 int_type = build_aligned_type (int_type, align); 1174 tree dest = fold_build2 (MEM_REF, int_type, addr, 1175 build_int_cst (offset_type, try_pos)); 1176 1177 tree src = native_interpret_expr (int_type, 1178 group->val + try_pos - start_byte_pos, 1179 group->buf_size); 1180 1181 stmt = gimple_build_assign (dest, src); 1182 gimple_set_location (stmt, loc); 1183 gimple_set_vuse (stmt, new_vuse); 1184 gimple_seq_add_stmt_without_update (&seq, stmt); 1185 1186 /* We didn't manage to reduce the number of statements. Bail out. */ 1187 if (++num_stmts == orig_num_stmts) 1188 { 1189 if (dump_file && (dump_flags & TDF_DETAILS)) 1190 { 1191 fprintf (dump_file, "Exceeded original number of stmts (%u)." 1192 " Not profitable to emit new sequence.\n", 1193 orig_num_stmts); 1194 } 1195 unsigned int ssa_count; 1196 tree ssa_name; 1197 /* Don't forget to cleanup the temporary SSA names. */ 1198 FOR_EACH_VEC_ELT (new_ssa_names, ssa_count, ssa_name) 1199 release_ssa_name (ssa_name); 1200 1201 fail = true; 1202 break; 1203 } 1204 1205 tree new_vdef; 1206 if (i < split_stores.length () - 1) 1207 { 1208 new_vdef = make_ssa_name (gimple_vop (cfun), stmt); 1209 new_ssa_names.safe_push (new_vdef); 1210 } 1211 else 1212 new_vdef = last_vdef; 1213 1214 gimple_set_vdef (stmt, new_vdef); 1215 SSA_NAME_DEF_STMT (new_vdef) = stmt; 1216 new_vuse = new_vdef; 1217 } 1218 1219 FOR_EACH_VEC_ELT (split_stores, i, split_store) 1220 delete split_store; 1221 1222 if (fail) 1223 return false; 1224 1225 gcc_assert (seq); 1226 if (dump_file) 1227 { 1228 fprintf (dump_file, 1229 "New sequence of %u stmts to replace old one of %u stmts\n", 1230 num_stmts, orig_num_stmts); 1231 if (dump_flags & TDF_DETAILS) 1232 print_gimple_seq (dump_file, seq, 0, TDF_VOPS | TDF_MEMSYMS); 1233 } 1234 gsi_insert_seq_after (&last_gsi, seq, GSI_SAME_STMT); 1235 1236 return true; 1237 } 1238 1239 /* Process the merged_store_group objects created in the coalescing phase. 1240 The stores are all against the base object BASE. 1241 Try to output the widened stores and delete the original statements if 1242 successful. Return true iff any changes were made. */ 1243 1244 bool 1245 imm_store_chain_info::output_merged_stores () 1246 { 1247 unsigned int i; 1248 merged_store_group *merged_store; 1249 bool ret = false; 1250 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_store) 1251 { 1252 if (output_merged_store (merged_store)) 1253 { 1254 unsigned int j; 1255 store_immediate_info *store; 1256 FOR_EACH_VEC_ELT (merged_store->stores, j, store) 1257 { 1258 gimple *stmt = store->stmt; 1259 gimple_stmt_iterator gsi = gsi_for_stmt (stmt); 1260 gsi_remove (&gsi, true); 1261 if (stmt != merged_store->last_stmt) 1262 { 1263 unlink_stmt_vdef (stmt); 1264 release_defs (stmt); 1265 } 1266 } 1267 ret = true; 1268 } 1269 } 1270 if (ret && dump_file) 1271 fprintf (dump_file, "Merging successful!\n"); 1272 1273 return ret; 1274 } 1275 1276 /* Coalesce the store_immediate_info objects recorded against the base object 1277 BASE in the first phase and output them. 1278 Delete the allocated structures. 1279 Return true if any changes were made. */ 1280 1281 bool 1282 imm_store_chain_info::terminate_and_process_chain () 1283 { 1284 /* Process store chain. */ 1285 bool ret = false; 1286 if (m_store_info.length () > 1) 1287 { 1288 ret = coalesce_immediate_stores (); 1289 if (ret) 1290 ret = output_merged_stores (); 1291 } 1292 1293 /* Delete all the entries we allocated ourselves. */ 1294 store_immediate_info *info; 1295 unsigned int i; 1296 FOR_EACH_VEC_ELT (m_store_info, i, info) 1297 delete info; 1298 1299 merged_store_group *merged_info; 1300 FOR_EACH_VEC_ELT (m_merged_store_groups, i, merged_info) 1301 delete merged_info; 1302 1303 return ret; 1304 } 1305 1306 /* Return true iff LHS is a destination potentially interesting for 1307 store merging. In practice these are the codes that get_inner_reference 1308 can process. */ 1309 1310 static bool 1311 lhs_valid_for_store_merging_p (tree lhs) 1312 { 1313 tree_code code = TREE_CODE (lhs); 1314 1315 if (code == ARRAY_REF || code == ARRAY_RANGE_REF || code == MEM_REF 1316 || code == COMPONENT_REF || code == BIT_FIELD_REF) 1317 return true; 1318 1319 return false; 1320 } 1321 1322 /* Return true if the tree RHS is a constant we want to consider 1323 during store merging. In practice accept all codes that 1324 native_encode_expr accepts. */ 1325 1326 static bool 1327 rhs_valid_for_store_merging_p (tree rhs) 1328 { 1329 tree type = TREE_TYPE (rhs); 1330 if (TREE_CODE_CLASS (TREE_CODE (rhs)) != tcc_constant 1331 || !can_native_encode_type_p (type)) 1332 return false; 1333 1334 return true; 1335 } 1336 1337 /* Entry point for the pass. Go over each basic block recording chains of 1338 immediate stores. Upon encountering a terminating statement (as defined 1339 by stmt_terminates_chain_p) process the recorded stores and emit the widened 1340 variants. */ 1341 1342 unsigned int 1343 pass_store_merging::execute (function *fun) 1344 { 1345 basic_block bb; 1346 hash_set<gimple *> orig_stmts; 1347 1348 FOR_EACH_BB_FN (bb, fun) 1349 { 1350 gimple_stmt_iterator gsi; 1351 unsigned HOST_WIDE_INT num_statements = 0; 1352 /* Record the original statements so that we can keep track of 1353 statements emitted in this pass and not re-process new 1354 statements. */ 1355 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1356 { 1357 if (is_gimple_debug (gsi_stmt (gsi))) 1358 continue; 1359 1360 if (++num_statements > 2) 1361 break; 1362 } 1363 1364 if (num_statements < 2) 1365 continue; 1366 1367 if (dump_file && (dump_flags & TDF_DETAILS)) 1368 fprintf (dump_file, "Processing basic block <%d>:\n", bb->index); 1369 1370 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1371 { 1372 gimple *stmt = gsi_stmt (gsi); 1373 1374 if (is_gimple_debug (stmt)) 1375 continue; 1376 1377 if (gimple_has_volatile_ops (stmt)) 1378 { 1379 /* Terminate all chains. */ 1380 if (dump_file && (dump_flags & TDF_DETAILS)) 1381 fprintf (dump_file, "Volatile access terminates " 1382 "all chains\n"); 1383 terminate_and_process_all_chains (); 1384 continue; 1385 } 1386 1387 if (gimple_assign_single_p (stmt) && gimple_vdef (stmt) 1388 && !stmt_can_throw_internal (stmt) 1389 && lhs_valid_for_store_merging_p (gimple_assign_lhs (stmt))) 1390 { 1391 tree lhs = gimple_assign_lhs (stmt); 1392 tree rhs = gimple_assign_rhs1 (stmt); 1393 1394 HOST_WIDE_INT bitsize, bitpos; 1395 machine_mode mode; 1396 int unsignedp = 0, reversep = 0, volatilep = 0; 1397 tree offset, base_addr; 1398 base_addr 1399 = get_inner_reference (lhs, &bitsize, &bitpos, &offset, &mode, 1400 &unsignedp, &reversep, &volatilep); 1401 /* As a future enhancement we could handle stores with the same 1402 base and offset. */ 1403 bool invalid = reversep 1404 || ((bitsize > MAX_BITSIZE_MODE_ANY_INT) 1405 && (TREE_CODE (rhs) != INTEGER_CST)) 1406 || !rhs_valid_for_store_merging_p (rhs); 1407 1408 /* We do not want to rewrite TARGET_MEM_REFs. */ 1409 if (TREE_CODE (base_addr) == TARGET_MEM_REF) 1410 invalid = true; 1411 /* In some cases get_inner_reference may return a 1412 MEM_REF [ptr + byteoffset]. For the purposes of this pass 1413 canonicalize the base_addr to MEM_REF [ptr] and take 1414 byteoffset into account in the bitpos. This occurs in 1415 PR 23684 and this way we can catch more chains. */ 1416 else if (TREE_CODE (base_addr) == MEM_REF) 1417 { 1418 offset_int bit_off, byte_off = mem_ref_offset (base_addr); 1419 bit_off = byte_off << LOG2_BITS_PER_UNIT; 1420 bit_off += bitpos; 1421 if (!wi::neg_p (bit_off) && wi::fits_shwi_p (bit_off)) 1422 bitpos = bit_off.to_shwi (); 1423 else 1424 invalid = true; 1425 base_addr = TREE_OPERAND (base_addr, 0); 1426 } 1427 /* get_inner_reference returns the base object, get at its 1428 address now. */ 1429 else 1430 { 1431 if (bitpos < 0) 1432 invalid = true; 1433 base_addr = build_fold_addr_expr (base_addr); 1434 } 1435 1436 if (! invalid 1437 && offset != NULL_TREE) 1438 { 1439 /* If the access is variable offset then a base 1440 decl has to be address-taken to be able to 1441 emit pointer-based stores to it. 1442 ??? We might be able to get away with 1443 re-using the original base up to the first 1444 variable part and then wrapping that inside 1445 a BIT_FIELD_REF. */ 1446 tree base = get_base_address (base_addr); 1447 if (! base 1448 || (DECL_P (base) 1449 && ! TREE_ADDRESSABLE (base))) 1450 invalid = true; 1451 else 1452 base_addr = build2 (POINTER_PLUS_EXPR, 1453 TREE_TYPE (base_addr), 1454 base_addr, offset); 1455 } 1456 1457 struct imm_store_chain_info **chain_info 1458 = m_stores.get (base_addr); 1459 1460 if (!invalid) 1461 { 1462 store_immediate_info *info; 1463 if (chain_info) 1464 { 1465 info = new store_immediate_info ( 1466 bitsize, bitpos, stmt, 1467 (*chain_info)->m_store_info.length ()); 1468 if (dump_file && (dump_flags & TDF_DETAILS)) 1469 { 1470 fprintf (dump_file, 1471 "Recording immediate store from stmt:\n"); 1472 print_gimple_stmt (dump_file, stmt, 0, 0); 1473 } 1474 (*chain_info)->m_store_info.safe_push (info); 1475 /* If we reach the limit of stores to merge in a chain 1476 terminate and process the chain now. */ 1477 if ((*chain_info)->m_store_info.length () 1478 == (unsigned int) 1479 PARAM_VALUE (PARAM_MAX_STORES_TO_MERGE)) 1480 { 1481 if (dump_file && (dump_flags & TDF_DETAILS)) 1482 fprintf (dump_file, 1483 "Reached maximum number of statements" 1484 " to merge:\n"); 1485 terminate_and_release_chain (*chain_info); 1486 } 1487 continue; 1488 } 1489 1490 /* Store aliases any existing chain? */ 1491 terminate_all_aliasing_chains (chain_info, false, stmt); 1492 /* Start a new chain. */ 1493 struct imm_store_chain_info *new_chain 1494 = new imm_store_chain_info (m_stores_head, base_addr); 1495 info = new store_immediate_info (bitsize, bitpos, 1496 stmt, 0); 1497 new_chain->m_store_info.safe_push (info); 1498 m_stores.put (base_addr, new_chain); 1499 if (dump_file && (dump_flags & TDF_DETAILS)) 1500 { 1501 fprintf (dump_file, 1502 "Starting new chain with statement:\n"); 1503 print_gimple_stmt (dump_file, stmt, 0, 0); 1504 fprintf (dump_file, "The base object is:\n"); 1505 print_generic_expr (dump_file, base_addr, 0); 1506 fprintf (dump_file, "\n"); 1507 } 1508 } 1509 else 1510 terminate_all_aliasing_chains (chain_info, 1511 offset != NULL_TREE, stmt); 1512 1513 continue; 1514 } 1515 1516 terminate_all_aliasing_chains (NULL, false, stmt); 1517 } 1518 terminate_and_process_all_chains (); 1519 } 1520 return 0; 1521 } 1522 1523 } // anon namespace 1524 1525 /* Construct and return a store merging pass object. */ 1526 1527 gimple_opt_pass * 1528 make_pass_store_merging (gcc::context *ctxt) 1529 { 1530 return new pass_store_merging (ctxt); 1531 } 1532 1533 #if CHECKING_P 1534 1535 namespace selftest { 1536 1537 /* Selftests for store merging helpers. */ 1538 1539 /* Assert that all elements of the byte arrays X and Y, both of length N 1540 are equal. */ 1541 1542 static void 1543 verify_array_eq (unsigned char *x, unsigned char *y, unsigned int n) 1544 { 1545 for (unsigned int i = 0; i < n; i++) 1546 { 1547 if (x[i] != y[i]) 1548 { 1549 fprintf (stderr, "Arrays do not match. X:\n"); 1550 dump_char_array (stderr, x, n); 1551 fprintf (stderr, "Y:\n"); 1552 dump_char_array (stderr, y, n); 1553 } 1554 ASSERT_EQ (x[i], y[i]); 1555 } 1556 } 1557 1558 /* Test shift_bytes_in_array and that it carries bits across between 1559 bytes correctly. */ 1560 1561 static void 1562 verify_shift_bytes_in_array (void) 1563 { 1564 /* byte 1 | byte 0 1565 00011111 | 11100000. */ 1566 unsigned char orig[2] = { 0xe0, 0x1f }; 1567 unsigned char in[2]; 1568 memcpy (in, orig, sizeof orig); 1569 1570 unsigned char expected[2] = { 0x80, 0x7f }; 1571 shift_bytes_in_array (in, sizeof (in), 2); 1572 verify_array_eq (in, expected, sizeof (in)); 1573 1574 memcpy (in, orig, sizeof orig); 1575 memcpy (expected, orig, sizeof orig); 1576 /* Check that shifting by zero doesn't change anything. */ 1577 shift_bytes_in_array (in, sizeof (in), 0); 1578 verify_array_eq (in, expected, sizeof (in)); 1579 1580 } 1581 1582 /* Test shift_bytes_in_array_right and that it carries bits across between 1583 bytes correctly. */ 1584 1585 static void 1586 verify_shift_bytes_in_array_right (void) 1587 { 1588 /* byte 1 | byte 0 1589 00011111 | 11100000. */ 1590 unsigned char orig[2] = { 0x1f, 0xe0}; 1591 unsigned char in[2]; 1592 memcpy (in, orig, sizeof orig); 1593 unsigned char expected[2] = { 0x07, 0xf8}; 1594 shift_bytes_in_array_right (in, sizeof (in), 2); 1595 verify_array_eq (in, expected, sizeof (in)); 1596 1597 memcpy (in, orig, sizeof orig); 1598 memcpy (expected, orig, sizeof orig); 1599 /* Check that shifting by zero doesn't change anything. */ 1600 shift_bytes_in_array_right (in, sizeof (in), 0); 1601 verify_array_eq (in, expected, sizeof (in)); 1602 } 1603 1604 /* Test clear_bit_region that it clears exactly the bits asked and 1605 nothing more. */ 1606 1607 static void 1608 verify_clear_bit_region (void) 1609 { 1610 /* Start with all bits set and test clearing various patterns in them. */ 1611 unsigned char orig[3] = { 0xff, 0xff, 0xff}; 1612 unsigned char in[3]; 1613 unsigned char expected[3]; 1614 memcpy (in, orig, sizeof in); 1615 1616 /* Check zeroing out all the bits. */ 1617 clear_bit_region (in, 0, 3 * BITS_PER_UNIT); 1618 expected[0] = expected[1] = expected[2] = 0; 1619 verify_array_eq (in, expected, sizeof in); 1620 1621 memcpy (in, orig, sizeof in); 1622 /* Leave the first and last bits intact. */ 1623 clear_bit_region (in, 1, 3 * BITS_PER_UNIT - 2); 1624 expected[0] = 0x1; 1625 expected[1] = 0; 1626 expected[2] = 0x80; 1627 verify_array_eq (in, expected, sizeof in); 1628 } 1629 1630 /* Test verify_clear_bit_region_be that it clears exactly the bits asked and 1631 nothing more. */ 1632 1633 static void 1634 verify_clear_bit_region_be (void) 1635 { 1636 /* Start with all bits set and test clearing various patterns in them. */ 1637 unsigned char orig[3] = { 0xff, 0xff, 0xff}; 1638 unsigned char in[3]; 1639 unsigned char expected[3]; 1640 memcpy (in, orig, sizeof in); 1641 1642 /* Check zeroing out all the bits. */ 1643 clear_bit_region_be (in, BITS_PER_UNIT - 1, 3 * BITS_PER_UNIT); 1644 expected[0] = expected[1] = expected[2] = 0; 1645 verify_array_eq (in, expected, sizeof in); 1646 1647 memcpy (in, orig, sizeof in); 1648 /* Leave the first and last bits intact. */ 1649 clear_bit_region_be (in, BITS_PER_UNIT - 2, 3 * BITS_PER_UNIT - 2); 1650 expected[0] = 0x80; 1651 expected[1] = 0; 1652 expected[2] = 0x1; 1653 verify_array_eq (in, expected, sizeof in); 1654 } 1655 1656 1657 /* Run all of the selftests within this file. */ 1658 1659 void 1660 store_merging_c_tests (void) 1661 { 1662 verify_shift_bytes_in_array (); 1663 verify_shift_bytes_in_array_right (); 1664 verify_clear_bit_region (); 1665 verify_clear_bit_region_be (); 1666 } 1667 1668 } // namespace selftest 1669 #endif /* CHECKING_P. */ 1670