xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/gimple-iterator.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* Iterator routines for GIMPLE statements.
2    Copyright (C) 2007-2019 Free Software Foundation, Inc.
3    Contributed by Aldy Hernandez  <aldy@quesejoda.com>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "tree-eh.h"
31 #include "gimple-iterator.h"
32 #include "tree-cfg.h"
33 #include "tree-ssa.h"
34 #include "value-prof.h"
35 
36 
37 /* Mark the statement STMT as modified, and update it.  */
38 
39 static inline void
40 update_modified_stmt (gimple *stmt)
41 {
42   if (!ssa_operands_active (cfun))
43     return;
44   update_stmt_if_modified (stmt);
45 }
46 
47 
48 /* Mark the statements in SEQ as modified, and update them.  */
49 
50 void
51 update_modified_stmts (gimple_seq seq)
52 {
53   gimple_stmt_iterator gsi;
54 
55   if (!ssa_operands_active (cfun))
56     return;
57   for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
58     update_stmt_if_modified (gsi_stmt (gsi));
59 }
60 
61 
62 /* Set BB to be the basic block for all the statements in the list
63    starting at FIRST and LAST.  */
64 
65 static void
66 update_bb_for_stmts (gimple_seq_node first, gimple_seq_node last,
67 		     basic_block bb)
68 {
69   gimple_seq_node n;
70 
71   for (n = first; n; n = n->next)
72     {
73       gimple_set_bb (n, bb);
74       if (n == last)
75 	break;
76     }
77 }
78 
79 /* Set the frequencies for the cgraph_edges for each of the calls
80    starting at FIRST for their new position within BB.  */
81 
82 static void
83 update_call_edge_frequencies (gimple_seq_node first, basic_block bb)
84 {
85   struct cgraph_node *cfun_node = NULL;
86   gimple_seq_node n;
87 
88   for (n = first; n ; n = n->next)
89     if (is_gimple_call (n))
90       {
91 	struct cgraph_edge *e;
92 
93 	/* These function calls are expensive enough that we want
94 	   to avoid calling them if we never see any calls.  */
95 	if (cfun_node == NULL)
96 	  cfun_node = cgraph_node::get (current_function_decl);
97 
98 	e = cfun_node->get_edge (n);
99 	if (e != NULL)
100 	  e->count = bb->count;
101       }
102 }
103 
104 /* Insert the sequence delimited by nodes FIRST and LAST before
105    iterator I.  M specifies how to update iterator I after insertion
106    (see enum gsi_iterator_update).
107 
108    This routine assumes that there is a forward and backward path
109    between FIRST and LAST (i.e., they are linked in a doubly-linked
110    list).  Additionally, if FIRST == LAST, this routine will properly
111    insert a single node.  */
112 
113 static void
114 gsi_insert_seq_nodes_before (gimple_stmt_iterator *i,
115 			     gimple_seq_node first,
116 			     gimple_seq_node last,
117 			     enum gsi_iterator_update mode)
118 {
119   basic_block bb;
120   gimple_seq_node cur = i->ptr;
121 
122   gcc_assert (!cur || cur->prev);
123 
124   if ((bb = gsi_bb (*i)) != NULL)
125     update_bb_for_stmts (first, last, bb);
126 
127   /* Link SEQ before CUR in the sequence.  */
128   if (cur)
129     {
130       first->prev = cur->prev;
131       if (first->prev->next)
132 	first->prev->next = first;
133       else
134 	gimple_seq_set_first (i->seq, first);
135       last->next = cur;
136       cur->prev = last;
137     }
138   else
139     {
140       gimple_seq_node itlast = gimple_seq_last (*i->seq);
141 
142       /* If CUR is NULL, we link at the end of the sequence (this case happens
143 	 when gsi_after_labels is called for a basic block that contains only
144 	 labels, so it returns an iterator after the end of the block, and
145 	 we need to insert before it; it might be cleaner to add a flag to the
146 	 iterator saying whether we are at the start or end of the list).  */
147       last->next = NULL;
148       if (itlast)
149 	{
150 	  first->prev = itlast;
151 	  itlast->next = first;
152 	}
153       else
154 	gimple_seq_set_first (i->seq, first);
155       gimple_seq_set_last (i->seq, last);
156     }
157 
158   /* Update the iterator, if requested.  */
159   switch (mode)
160     {
161     case GSI_NEW_STMT:
162     case GSI_CONTINUE_LINKING:
163       i->ptr = first;
164       break;
165     case GSI_SAME_STMT:
166       break;
167     default:
168       gcc_unreachable ();
169     }
170 }
171 
172 
173 /* Inserts the sequence of statements SEQ before the statement pointed
174    by iterator I.  MODE indicates what to do with the iterator after
175    insertion (see enum gsi_iterator_update).
176 
177    This function does not scan for new operands.  It is provided for
178    the use of the gimplifier, which manipulates statements for which
179    def/use information has not yet been constructed.  Most callers
180    should use gsi_insert_seq_before.  */
181 
182 void
183 gsi_insert_seq_before_without_update (gimple_stmt_iterator *i, gimple_seq seq,
184                                       enum gsi_iterator_update mode)
185 {
186   gimple_seq_node first, last;
187 
188   if (seq == NULL)
189     return;
190 
191   /* Don't allow inserting a sequence into itself.  */
192   gcc_assert (seq != *i->seq);
193 
194   first = gimple_seq_first (seq);
195   last = gimple_seq_last (seq);
196 
197   /* Empty sequences need no work.  */
198   if (!first || !last)
199     {
200       gcc_assert (first == last);
201       return;
202     }
203 
204   gsi_insert_seq_nodes_before (i, first, last, mode);
205 }
206 
207 
208 /* Inserts the sequence of statements SEQ before the statement pointed
209    by iterator I.  MODE indicates what to do with the iterator after
210    insertion (see enum gsi_iterator_update). Scan the statements in SEQ
211    for new operands.  */
212 
213 void
214 gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq,
215 		       enum gsi_iterator_update mode)
216 {
217   update_modified_stmts (seq);
218   gsi_insert_seq_before_without_update (i, seq, mode);
219 }
220 
221 
222 /* Insert the sequence delimited by nodes FIRST and LAST after
223    iterator I.  M specifies how to update iterator I after insertion
224    (see enum gsi_iterator_update).
225 
226    This routine assumes that there is a forward and backward path
227    between FIRST and LAST (i.e., they are linked in a doubly-linked
228    list).  Additionally, if FIRST == LAST, this routine will properly
229    insert a single node.  */
230 
231 static void
232 gsi_insert_seq_nodes_after (gimple_stmt_iterator *i,
233 			    gimple_seq_node first,
234 			    gimple_seq_node last,
235 			    enum gsi_iterator_update m)
236 {
237   basic_block bb;
238   gimple_seq_node cur = i->ptr;
239 
240   gcc_assert (!cur || cur->prev);
241 
242   /* If the iterator is inside a basic block, we need to update the
243      basic block information for all the nodes between FIRST and LAST.  */
244   if ((bb = gsi_bb (*i)) != NULL)
245     update_bb_for_stmts (first, last, bb);
246 
247   /* Link SEQ after CUR.  */
248   if (cur)
249     {
250       last->next = cur->next;
251       if (last->next)
252 	{
253 	  last->next->prev = last;
254 	}
255       else
256 	gimple_seq_set_last (i->seq, last);
257       first->prev = cur;
258       cur->next = first;
259     }
260   else
261     {
262       gcc_assert (!gimple_seq_last (*i->seq));
263       last->next = NULL;
264       gimple_seq_set_first (i->seq, first);
265       gimple_seq_set_last (i->seq, last);
266     }
267 
268   /* Update the iterator, if requested.  */
269   switch (m)
270     {
271     case GSI_NEW_STMT:
272       i->ptr = first;
273       break;
274     case GSI_CONTINUE_LINKING:
275       i->ptr = last;
276       break;
277     case GSI_SAME_STMT:
278       gcc_assert (cur);
279       break;
280     default:
281       gcc_unreachable ();
282     }
283 }
284 
285 
286 /* Links sequence SEQ after the statement pointed-to by iterator I.
287    MODE is as in gsi_insert_after.
288 
289    This function does not scan for new operands.  It is provided for
290    the use of the gimplifier, which manipulates statements for which
291    def/use information has not yet been constructed.  Most callers
292    should use gsi_insert_seq_after.  */
293 
294 void
295 gsi_insert_seq_after_without_update (gimple_stmt_iterator *i, gimple_seq seq,
296                                      enum gsi_iterator_update mode)
297 {
298   gimple_seq_node first, last;
299 
300   if (seq == NULL)
301     return;
302 
303   /* Don't allow inserting a sequence into itself.  */
304   gcc_assert (seq != *i->seq);
305 
306   first = gimple_seq_first (seq);
307   last = gimple_seq_last (seq);
308 
309   /* Empty sequences need no work.  */
310   if (!first || !last)
311     {
312       gcc_assert (first == last);
313       return;
314     }
315 
316   gsi_insert_seq_nodes_after (i, first, last, mode);
317 }
318 
319 
320 /* Links sequence SEQ after the statement pointed-to by iterator I.
321    MODE is as in gsi_insert_after.  Scan the statements in SEQ
322    for new operands.  */
323 
324 void
325 gsi_insert_seq_after (gimple_stmt_iterator *i, gimple_seq seq,
326 		      enum gsi_iterator_update mode)
327 {
328   update_modified_stmts (seq);
329   gsi_insert_seq_after_without_update (i, seq, mode);
330 }
331 
332 
333 /* Move all statements in the sequence after I to a new sequence.
334    Return this new sequence.  */
335 
336 gimple_seq
337 gsi_split_seq_after (gimple_stmt_iterator i)
338 {
339   gimple_seq_node cur, next;
340   gimple_seq *pold_seq, new_seq;
341 
342   cur = i.ptr;
343 
344   /* How can we possibly split after the end, or before the beginning?  */
345   gcc_assert (cur && cur->next);
346   next = cur->next;
347 
348   pold_seq = i.seq;
349 
350   gimple_seq_set_first (&new_seq, next);
351   gimple_seq_set_last (&new_seq, gimple_seq_last (*pold_seq));
352   gimple_seq_set_last (pold_seq, cur);
353   cur->next = NULL;
354 
355   return new_seq;
356 }
357 
358 
359 /* Set the statement to which GSI points to STMT.  This only updates
360    the iterator and the gimple sequence, it doesn't do the bookkeeping
361    of gsi_replace.  */
362 
363 void
364 gsi_set_stmt (gimple_stmt_iterator *gsi, gimple *stmt)
365 {
366   gimple *orig_stmt = gsi_stmt (*gsi);
367   gimple *prev, *next;
368 
369   stmt->next = next = orig_stmt->next;
370   stmt->prev = prev = orig_stmt->prev;
371   /* Note how we don't clear next/prev of orig_stmt.  This is so that
372      copies of *GSI our callers might still hold (to orig_stmt)
373      can be advanced as if they too were replaced.  */
374   if (prev->next)
375     prev->next = stmt;
376   else
377     gimple_seq_set_first (gsi->seq, stmt);
378   if (next)
379     next->prev = stmt;
380   else
381     gimple_seq_set_last (gsi->seq, stmt);
382 
383   gsi->ptr = stmt;
384 }
385 
386 
387 /* Move all statements in the sequence before I to a new sequence.
388    Return this new sequence.  I is set to the head of the new list.  */
389 
390 void
391 gsi_split_seq_before (gimple_stmt_iterator *i, gimple_seq *pnew_seq)
392 {
393   gimple_seq_node cur, prev;
394   gimple_seq old_seq;
395 
396   cur = i->ptr;
397 
398   /* How can we possibly split after the end?  */
399   gcc_assert (cur);
400   prev = cur->prev;
401 
402   old_seq = *i->seq;
403   if (!prev->next)
404     *i->seq = NULL;
405   i->seq = pnew_seq;
406 
407   /* Set the limits on NEW_SEQ.  */
408   gimple_seq_set_first (pnew_seq, cur);
409   gimple_seq_set_last (pnew_seq, gimple_seq_last (old_seq));
410 
411   /* Cut OLD_SEQ before I.  */
412   gimple_seq_set_last (&old_seq, prev);
413   if (prev->next)
414     prev->next = NULL;
415 }
416 
417 
418 /* Replace the statement pointed-to by GSI to STMT.  If UPDATE_EH_INFO
419    is true, the exception handling information of the original
420    statement is moved to the new statement.  Assignments must only be
421    replaced with assignments to the same LHS.  Returns whether EH edge
422    cleanup is required.  */
423 
424 bool
425 gsi_replace (gimple_stmt_iterator *gsi, gimple *stmt, bool update_eh_info)
426 {
427   gimple *orig_stmt = gsi_stmt (*gsi);
428   bool require_eh_edge_purge = false;
429 
430   if (stmt == orig_stmt)
431     return false;
432 
433   gcc_assert (!gimple_has_lhs (orig_stmt) || !gimple_has_lhs (stmt)
434 	      || gimple_get_lhs (orig_stmt) == gimple_get_lhs (stmt));
435 
436   gimple_set_location (stmt, gimple_location (orig_stmt));
437   gimple_set_bb (stmt, gsi_bb (*gsi));
438 
439   /* Preserve EH region information from the original statement, if
440      requested by the caller.  */
441   if (update_eh_info)
442     require_eh_edge_purge = maybe_clean_or_replace_eh_stmt (orig_stmt, stmt);
443 
444   gimple_duplicate_stmt_histograms (cfun, stmt, cfun, orig_stmt);
445 
446   /* Free all the data flow information for ORIG_STMT.  */
447   gimple_set_bb (orig_stmt, NULL);
448   gimple_remove_stmt_histograms (cfun, orig_stmt);
449   delink_stmt_imm_use (orig_stmt);
450 
451   gsi_set_stmt (gsi, stmt);
452   gimple_set_modified (stmt, true);
453   update_modified_stmt (stmt);
454   return require_eh_edge_purge;
455 }
456 
457 
458 /* Replace the statement pointed-to by GSI with the sequence SEQ.
459    If UPDATE_EH_INFO is true, the exception handling information of
460    the original statement is moved to the last statement of the new
461    sequence.  If the old statement is an assignment, then so must
462    be the last statement of the new sequence, and they must have the
463    same LHS.  */
464 
465 void
466 gsi_replace_with_seq (gimple_stmt_iterator *gsi, gimple_seq seq,
467 		      bool update_eh_info)
468 {
469   gimple_stmt_iterator seqi;
470   gimple *last;
471   if (gimple_seq_empty_p (seq))
472     {
473       gsi_remove (gsi, true);
474       return;
475     }
476   seqi = gsi_last (seq);
477   last = gsi_stmt (seqi);
478   gsi_remove (&seqi, false);
479   gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
480   gsi_replace (gsi, last, update_eh_info);
481 }
482 
483 
484 /* Insert statement STMT before the statement pointed-to by iterator I.
485    M specifies how to update iterator I after insertion (see enum
486    gsi_iterator_update).
487 
488    This function does not scan for new operands.  It is provided for
489    the use of the gimplifier, which manipulates statements for which
490    def/use information has not yet been constructed.  Most callers
491    should use gsi_insert_before.  */
492 
493 void
494 gsi_insert_before_without_update (gimple_stmt_iterator *i, gimple *stmt,
495                                   enum gsi_iterator_update m)
496 {
497   gsi_insert_seq_nodes_before (i, stmt, stmt, m);
498 }
499 
500 /* Insert statement STMT before the statement pointed-to by iterator I.
501    Update STMT's basic block and scan it for new operands.  M
502    specifies how to update iterator I after insertion (see enum
503    gsi_iterator_update).  */
504 
505 void
506 gsi_insert_before (gimple_stmt_iterator *i, gimple *stmt,
507                    enum gsi_iterator_update m)
508 {
509   update_modified_stmt (stmt);
510   gsi_insert_before_without_update (i, stmt, m);
511 }
512 
513 
514 /* Insert statement STMT after the statement pointed-to by iterator I.
515    M specifies how to update iterator I after insertion (see enum
516    gsi_iterator_update).
517 
518    This function does not scan for new operands.  It is provided for
519    the use of the gimplifier, which manipulates statements for which
520    def/use information has not yet been constructed.  Most callers
521    should use gsi_insert_after.  */
522 
523 void
524 gsi_insert_after_without_update (gimple_stmt_iterator *i, gimple *stmt,
525                                  enum gsi_iterator_update m)
526 {
527   gsi_insert_seq_nodes_after (i, stmt, stmt, m);
528 }
529 
530 
531 /* Insert statement STMT after the statement pointed-to by iterator I.
532    Update STMT's basic block and scan it for new operands.  M
533    specifies how to update iterator I after insertion (see enum
534    gsi_iterator_update).  */
535 
536 void
537 gsi_insert_after (gimple_stmt_iterator *i, gimple *stmt,
538 		  enum gsi_iterator_update m)
539 {
540   update_modified_stmt (stmt);
541   gsi_insert_after_without_update (i, stmt, m);
542 }
543 
544 
545 /* Remove the current stmt from the sequence.  The iterator is updated
546    to point to the next statement.
547 
548    REMOVE_PERMANENTLY is true when the statement is going to be removed
549    from the IL and not reinserted elsewhere.  In that case we remove the
550    statement pointed to by iterator I from the EH tables, and free its
551    operand caches.  Otherwise we do not modify this information.  Returns
552    true whether EH edge cleanup is required.  */
553 
554 bool
555 gsi_remove (gimple_stmt_iterator *i, bool remove_permanently)
556 {
557   gimple_seq_node cur, next, prev;
558   gimple *stmt = gsi_stmt (*i);
559   bool require_eh_edge_purge = false;
560 
561   if (gimple_code (stmt) != GIMPLE_PHI)
562     insert_debug_temps_for_defs (i);
563 
564   /* Free all the data flow information for STMT.  */
565   gimple_set_bb (stmt, NULL);
566   delink_stmt_imm_use (stmt);
567   gimple_set_modified (stmt, true);
568 
569   if (remove_permanently)
570     {
571       if (gimple_debug_nonbind_marker_p (stmt))
572 	/* We don't need this to be exact, but try to keep it at least
573 	   close.  */
574 	cfun->debug_marker_count--;
575       require_eh_edge_purge = remove_stmt_from_eh_lp (stmt);
576       gimple_remove_stmt_histograms (cfun, stmt);
577     }
578 
579   /* Update the iterator and re-wire the links in I->SEQ.  */
580   cur = i->ptr;
581   next = cur->next;
582   prev = cur->prev;
583   /* See gsi_set_stmt for why we don't reset prev/next of STMT.  */
584 
585   if (next)
586     /* Cur is not last.  */
587     next->prev = prev;
588   else if (prev->next)
589     /* Cur is last but not first.  */
590     gimple_seq_set_last (i->seq, prev);
591 
592   if (prev->next)
593     /* Cur is not first.  */
594     prev->next = next;
595   else
596     /* Cur is first.  */
597     *i->seq = next;
598 
599   i->ptr = next;
600 
601   return require_eh_edge_purge;
602 }
603 
604 
605 /* Finds iterator for STMT.  */
606 
607 gimple_stmt_iterator
608 gsi_for_stmt (gimple *stmt)
609 {
610   gimple_stmt_iterator i;
611   basic_block bb = gimple_bb (stmt);
612 
613   if (gimple_code (stmt) == GIMPLE_PHI)
614     i = gsi_start_phis (bb);
615   else
616     i = gsi_start_bb (bb);
617 
618   i.ptr = stmt;
619   return i;
620 }
621 
622 /* Get an iterator for STMT, which is known to belong to SEQ.  This is
623    equivalent to starting at the beginning of SEQ and searching forward
624    until STMT is found.  */
625 
626 gimple_stmt_iterator
627 gsi_for_stmt (gimple *stmt, gimple_seq *seq)
628 {
629   gimple_stmt_iterator i = gsi_start_1 (seq);
630   i.ptr = stmt;
631   return i;
632 }
633 
634 /* Finds iterator for PHI.  */
635 
636 gphi_iterator
637 gsi_for_phi (gphi *phi)
638 {
639   gphi_iterator i;
640   basic_block bb = gimple_bb (phi);
641 
642   i = gsi_start_phis (bb);
643   i.ptr = phi;
644 
645   return i;
646 }
647 
648 /* Move the statement at FROM so it comes right after the statement at TO.  */
649 
650 void
651 gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
652 {
653   gimple *stmt = gsi_stmt (*from);
654   gsi_remove (from, false);
655 
656   /* We must have GSI_NEW_STMT here, as gsi_move_after is sometimes used to
657      move statements to an empty block.  */
658   gsi_insert_after (to, stmt, GSI_NEW_STMT);
659 }
660 
661 
662 /* Move the statement at FROM so it comes right before the statement
663    at TO.  */
664 
665 void
666 gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to)
667 {
668   gimple *stmt = gsi_stmt (*from);
669   gsi_remove (from, false);
670 
671   /* For consistency with gsi_move_after, it might be better to have
672      GSI_NEW_STMT here; however, that breaks several places that expect
673      that TO does not change.  */
674   gsi_insert_before (to, stmt, GSI_SAME_STMT);
675 }
676 
677 
678 /* Move the statement at FROM to the end of basic block BB.  */
679 
680 void
681 gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb)
682 {
683   gimple_stmt_iterator last = gsi_last_bb (bb);
684   gcc_checking_assert (gsi_bb (last) == bb);
685 
686   /* Have to check gsi_end_p because it could be an empty block.  */
687   if (!gsi_end_p (last) && is_ctrl_stmt (gsi_stmt (last)))
688     gsi_move_before (from, &last);
689   else
690     gsi_move_after (from, &last);
691 }
692 
693 
694 /* Add STMT to the pending list of edge E.  No actual insertion is
695    made until a call to gsi_commit_edge_inserts () is made.  */
696 
697 void
698 gsi_insert_on_edge (edge e, gimple *stmt)
699 {
700   gimple_seq_add_stmt (&PENDING_STMT (e), stmt);
701 }
702 
703 /* Add the sequence of statements SEQ to the pending list of edge E.
704    No actual insertion is made until a call to gsi_commit_edge_inserts
705    is made.  */
706 
707 void
708 gsi_insert_seq_on_edge (edge e, gimple_seq seq)
709 {
710   gimple_seq_add_seq (&PENDING_STMT (e), seq);
711 }
712 
713 /* Return a new iterator pointing to the first statement in sequence of
714    statements on edge E.  Such statements need to be subsequently moved into a
715    basic block by calling gsi_commit_edge_inserts.  */
716 
717 gimple_stmt_iterator
718 gsi_start_edge (edge e)
719 {
720   return gsi_start (PENDING_STMT (e));
721 }
722 
723 /* Insert the statement pointed-to by GSI into edge E.  Every attempt
724    is made to place the statement in an existing basic block, but
725    sometimes that isn't possible.  When it isn't possible, the edge is
726    split and the statement is added to the new block.
727 
728    In all cases, the returned *GSI points to the correct location.  The
729    return value is true if insertion should be done after the location,
730    or false if it should be done before the location.  If a new basic block
731    has to be created, it is stored in *NEW_BB.  */
732 
733 static bool
734 gimple_find_edge_insert_loc (edge e, gimple_stmt_iterator *gsi,
735 			     basic_block *new_bb)
736 {
737   basic_block dest, src;
738   gimple *tmp;
739 
740   dest = e->dest;
741 
742   /* If the destination has one predecessor which has no PHI nodes,
743      insert there.  Except for the exit block.
744 
745      The requirement for no PHI nodes could be relaxed.  Basically we
746      would have to examine the PHIs to prove that none of them used
747      the value set by the statement we want to insert on E.  That
748      hardly seems worth the effort.  */
749  restart:
750   if (single_pred_p (dest)
751       && gimple_seq_empty_p (phi_nodes (dest))
752       && dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
753     {
754       *gsi = gsi_start_bb (dest);
755       if (gsi_end_p (*gsi))
756 	return true;
757 
758       /* Make sure we insert after any leading labels.  */
759       tmp = gsi_stmt (*gsi);
760       while (gimple_code (tmp) == GIMPLE_LABEL)
761 	{
762 	  gsi_next (gsi);
763 	  if (gsi_end_p (*gsi))
764 	    break;
765 	  tmp = gsi_stmt (*gsi);
766 	}
767 
768       if (gsi_end_p (*gsi))
769 	{
770 	  *gsi = gsi_last_bb (dest);
771 	  return true;
772 	}
773       else
774 	return false;
775     }
776 
777   /* If the source has one successor, the edge is not abnormal and
778      the last statement does not end a basic block, insert there.
779      Except for the entry block.  */
780   src = e->src;
781   if ((e->flags & EDGE_ABNORMAL) == 0
782       && (single_succ_p (src)
783 	  /* Do not count a fake edge as successor as added to infinite
784 	     loops by connect_infinite_loops_to_exit.  */
785 	  || (EDGE_COUNT (src->succs) == 2
786 	      && (EDGE_SUCC (src, 0)->flags & EDGE_FAKE
787 		  || EDGE_SUCC (src, 1)->flags & EDGE_FAKE)))
788       && src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
789     {
790       *gsi = gsi_last_bb (src);
791       if (gsi_end_p (*gsi))
792 	return true;
793 
794       tmp = gsi_stmt (*gsi);
795       if (is_gimple_debug (tmp))
796 	{
797 	  gimple_stmt_iterator si = *gsi;
798 	  gsi_prev_nondebug (&si);
799 	  if (!gsi_end_p (si))
800 	    tmp = gsi_stmt (si);
801 	  /* If we don't have a BB-ending nondebug stmt, we want to
802 	     insert after the trailing debug stmts.  Otherwise, we may
803 	     insert before the BB-ending nondebug stmt, or split the
804 	     edge.  */
805 	  if (!stmt_ends_bb_p (tmp))
806 	    return true;
807 	  *gsi = si;
808 	}
809       else if (!stmt_ends_bb_p (tmp))
810 	return true;
811 
812       switch (gimple_code (tmp))
813 	{
814 	case GIMPLE_RETURN:
815 	case GIMPLE_RESX:
816 	  return false;
817 	default:
818 	  break;
819         }
820     }
821 
822   /* Otherwise, create a new basic block, and split this edge.  */
823   dest = split_edge (e);
824   if (new_bb)
825     *new_bb = dest;
826   e = single_pred_edge (dest);
827   goto restart;
828 }
829 
830 
831 /* Similar to gsi_insert_on_edge+gsi_commit_edge_inserts.  If a new
832    block has to be created, it is returned.  */
833 
834 basic_block
835 gsi_insert_on_edge_immediate (edge e, gimple *stmt)
836 {
837   gimple_stmt_iterator gsi;
838   basic_block new_bb = NULL;
839   bool ins_after;
840 
841   gcc_assert (!PENDING_STMT (e));
842 
843   ins_after = gimple_find_edge_insert_loc (e, &gsi, &new_bb);
844 
845   update_call_edge_frequencies (stmt, gsi.bb);
846 
847   if (ins_after)
848     gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
849   else
850     gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
851 
852   return new_bb;
853 }
854 
855 /* Insert STMTS on edge E.  If a new block has to be created, it
856    is returned.  */
857 
858 basic_block
859 gsi_insert_seq_on_edge_immediate (edge e, gimple_seq stmts)
860 {
861   gimple_stmt_iterator gsi;
862   basic_block new_bb = NULL;
863   bool ins_after;
864 
865   gcc_assert (!PENDING_STMT (e));
866 
867   ins_after = gimple_find_edge_insert_loc (e, &gsi, &new_bb);
868   update_call_edge_frequencies (gimple_seq_first (stmts), gsi.bb);
869 
870   if (ins_after)
871     gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
872   else
873     gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
874 
875   return new_bb;
876 }
877 
878 /* This routine will commit all pending edge insertions, creating any new
879    basic blocks which are necessary.  */
880 
881 void
882 gsi_commit_edge_inserts (void)
883 {
884   basic_block bb;
885   edge e;
886   edge_iterator ei;
887 
888   gsi_commit_one_edge_insert (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
889 			      NULL);
890 
891   FOR_EACH_BB_FN (bb, cfun)
892     FOR_EACH_EDGE (e, ei, bb->succs)
893       gsi_commit_one_edge_insert (e, NULL);
894 }
895 
896 
897 /* Commit insertions pending at edge E. If a new block is created, set NEW_BB
898    to this block, otherwise set it to NULL.  */
899 
900 void
901 gsi_commit_one_edge_insert (edge e, basic_block *new_bb)
902 {
903   if (new_bb)
904     *new_bb = NULL;
905 
906   if (PENDING_STMT (e))
907     {
908       gimple_stmt_iterator gsi;
909       gimple_seq seq = PENDING_STMT (e);
910       bool ins_after;
911 
912       PENDING_STMT (e) = NULL;
913 
914       ins_after = gimple_find_edge_insert_loc (e, &gsi, new_bb);
915       update_call_edge_frequencies (gimple_seq_first (seq), gsi.bb);
916 
917       if (ins_after)
918 	gsi_insert_seq_after (&gsi, seq, GSI_NEW_STMT);
919       else
920 	gsi_insert_seq_before (&gsi, seq, GSI_NEW_STMT);
921     }
922 }
923 
924 /* Returns iterator at the start of the list of phi nodes of BB.  */
925 
926 gphi_iterator
927 gsi_start_phis (basic_block bb)
928 {
929   gimple_seq *pseq = phi_nodes_ptr (bb);
930 
931   /* Adapted from gsi_start_1. */
932   gphi_iterator i;
933 
934   i.ptr = gimple_seq_first (*pseq);
935   i.seq = pseq;
936   i.bb = i.ptr ? gimple_bb (i.ptr) : NULL;
937 
938   return i;
939 }
940