1 /* "Bag-of-pages" garbage collector for the GNU compiler. 2 Copyright (C) 1999-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "backend.h" 24 #include "alias.h" 25 #include "tree.h" 26 #include "rtl.h" 27 #include "memmodel.h" 28 #include "tm_p.h" 29 #include "diagnostic-core.h" 30 #include "flags.h" 31 #include "ggc-internal.h" 32 #include "timevar.h" 33 #include "params.h" 34 #include "cgraph.h" 35 #include "cfgloop.h" 36 #include "plugin.h" 37 38 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a 39 file open. Prefer either to valloc. */ 40 #ifdef HAVE_MMAP_ANON 41 # undef HAVE_MMAP_DEV_ZERO 42 # define USING_MMAP 43 #endif 44 45 #ifdef HAVE_MMAP_DEV_ZERO 46 # define USING_MMAP 47 #endif 48 49 #ifndef USING_MMAP 50 #define USING_MALLOC_PAGE_GROUPS 51 #endif 52 53 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \ 54 && defined(USING_MMAP) 55 # define USING_MADVISE 56 #endif 57 58 /* Strategy: 59 60 This garbage-collecting allocator allocates objects on one of a set 61 of pages. Each page can allocate objects of a single size only; 62 available sizes are powers of two starting at four bytes. The size 63 of an allocation request is rounded up to the next power of two 64 (`order'), and satisfied from the appropriate page. 65 66 Each page is recorded in a page-entry, which also maintains an 67 in-use bitmap of object positions on the page. This allows the 68 allocation state of a particular object to be flipped without 69 touching the page itself. 70 71 Each page-entry also has a context depth, which is used to track 72 pushing and popping of allocation contexts. Only objects allocated 73 in the current (highest-numbered) context may be collected. 74 75 Page entries are arranged in an array of singly-linked lists. The 76 array is indexed by the allocation size, in bits, of the pages on 77 it; i.e. all pages on a list allocate objects of the same size. 78 Pages are ordered on the list such that all non-full pages precede 79 all full pages, with non-full pages arranged in order of decreasing 80 context depth. 81 82 Empty pages (of all orders) are kept on a single page cache list, 83 and are considered first when new pages are required; they are 84 deallocated at the start of the next collection if they haven't 85 been recycled by then. */ 86 87 /* Define GGC_DEBUG_LEVEL to print debugging information. 88 0: No debugging output. 89 1: GC statistics only. 90 2: Page-entry allocations/deallocations as well. 91 3: Object allocations as well. 92 4: Object marks as well. */ 93 #define GGC_DEBUG_LEVEL (0) 94 95 /* A two-level tree is used to look up the page-entry for a given 96 pointer. Two chunks of the pointer's bits are extracted to index 97 the first and second levels of the tree, as follows: 98 99 HOST_PAGE_SIZE_BITS 100 32 | | 101 msb +----------------+----+------+------+ lsb 102 | | | 103 PAGE_L1_BITS | 104 | | 105 PAGE_L2_BITS 106 107 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry 108 pages are aligned on system page boundaries. The next most 109 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first 110 index values in the lookup table, respectively. 111 112 For 32-bit architectures and the settings below, there are no 113 leftover bits. For architectures with wider pointers, the lookup 114 tree points to a list of pages, which must be scanned to find the 115 correct one. */ 116 117 #define PAGE_L1_BITS (8) 118 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize) 119 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS) 120 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS) 121 122 #define LOOKUP_L1(p) \ 123 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1)) 124 125 #define LOOKUP_L2(p) \ 126 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1)) 127 128 /* The number of objects per allocation page, for objects on a page of 129 the indicated ORDER. */ 130 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER] 131 132 /* The number of objects in P. */ 133 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order)) 134 135 /* The size of an object on a page of the indicated ORDER. */ 136 #define OBJECT_SIZE(ORDER) object_size_table[ORDER] 137 138 /* For speed, we avoid doing a general integer divide to locate the 139 offset in the allocation bitmap, by precalculating numbers M, S 140 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O 141 within the page which is evenly divisible by the object size Z. */ 142 #define DIV_MULT(ORDER) inverse_table[ORDER].mult 143 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift 144 #define OFFSET_TO_BIT(OFFSET, ORDER) \ 145 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER)) 146 147 /* We use this structure to determine the alignment required for 148 allocations. For power-of-two sized allocations, that's not a 149 problem, but it does matter for odd-sized allocations. 150 We do not care about alignment for floating-point types. */ 151 152 struct max_alignment { 153 char c; 154 union { 155 int64_t i; 156 void *p; 157 } u; 158 }; 159 160 /* The biggest alignment required. */ 161 162 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u)) 163 164 165 /* The number of extra orders, not corresponding to power-of-two sized 166 objects. */ 167 168 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table) 169 170 #define RTL_SIZE(NSLOTS) \ 171 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion)) 172 173 #define TREE_EXP_SIZE(OPS) \ 174 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree)) 175 176 /* The Ith entry is the maximum size of an object to be stored in the 177 Ith extra order. Adding a new entry to this array is the *only* 178 thing you need to do to add a new special allocation size. */ 179 180 static const size_t extra_order_size_table[] = { 181 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT. 182 There are a lot of structures with these sizes and explicitly 183 listing them risks orders being dropped because they changed size. */ 184 MAX_ALIGNMENT * 3, 185 MAX_ALIGNMENT * 5, 186 MAX_ALIGNMENT * 6, 187 MAX_ALIGNMENT * 7, 188 MAX_ALIGNMENT * 9, 189 MAX_ALIGNMENT * 10, 190 MAX_ALIGNMENT * 11, 191 MAX_ALIGNMENT * 12, 192 MAX_ALIGNMENT * 13, 193 MAX_ALIGNMENT * 14, 194 MAX_ALIGNMENT * 15, 195 sizeof (struct tree_decl_non_common), 196 sizeof (struct tree_field_decl), 197 sizeof (struct tree_parm_decl), 198 sizeof (struct tree_var_decl), 199 sizeof (struct tree_type_non_common), 200 sizeof (struct function), 201 sizeof (struct basic_block_def), 202 sizeof (struct cgraph_node), 203 sizeof (struct loop), 204 }; 205 206 /* The total number of orders. */ 207 208 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS) 209 210 /* Compute the smallest nonnegative number which when added to X gives 211 a multiple of F. */ 212 213 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f)) 214 215 /* Round X to next multiple of the page size */ 216 217 #define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize) 218 219 /* The Ith entry is the number of objects on a page or order I. */ 220 221 static unsigned objects_per_page_table[NUM_ORDERS]; 222 223 /* The Ith entry is the size of an object on a page of order I. */ 224 225 static size_t object_size_table[NUM_ORDERS]; 226 227 /* The Ith entry is a pair of numbers (mult, shift) such that 228 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32, 229 for all k evenly divisible by OBJECT_SIZE(I). */ 230 231 static struct 232 { 233 size_t mult; 234 unsigned int shift; 235 } 236 inverse_table[NUM_ORDERS]; 237 238 /* A page_entry records the status of an allocation page. This 239 structure is dynamically sized to fit the bitmap in_use_p. */ 240 struct page_entry 241 { 242 /* The next page-entry with objects of the same size, or NULL if 243 this is the last page-entry. */ 244 struct page_entry *next; 245 246 /* The previous page-entry with objects of the same size, or NULL if 247 this is the first page-entry. The PREV pointer exists solely to 248 keep the cost of ggc_free manageable. */ 249 struct page_entry *prev; 250 251 /* The number of bytes allocated. (This will always be a multiple 252 of the host system page size.) */ 253 size_t bytes; 254 255 /* The address at which the memory is allocated. */ 256 char *page; 257 258 #ifdef USING_MALLOC_PAGE_GROUPS 259 /* Back pointer to the page group this page came from. */ 260 struct page_group *group; 261 #endif 262 263 /* This is the index in the by_depth varray where this page table 264 can be found. */ 265 unsigned long index_by_depth; 266 267 /* Context depth of this page. */ 268 unsigned short context_depth; 269 270 /* The number of free objects remaining on this page. */ 271 unsigned short num_free_objects; 272 273 /* A likely candidate for the bit position of a free object for the 274 next allocation from this page. */ 275 unsigned short next_bit_hint; 276 277 /* The lg of size of objects allocated from this page. */ 278 unsigned char order; 279 280 /* Discarded page? */ 281 bool discarded; 282 283 /* A bit vector indicating whether or not objects are in use. The 284 Nth bit is one if the Nth object on this page is allocated. This 285 array is dynamically sized. */ 286 unsigned long in_use_p[1]; 287 }; 288 289 #ifdef USING_MALLOC_PAGE_GROUPS 290 /* A page_group describes a large allocation from malloc, from which 291 we parcel out aligned pages. */ 292 struct page_group 293 { 294 /* A linked list of all extant page groups. */ 295 struct page_group *next; 296 297 /* The address we received from malloc. */ 298 char *allocation; 299 300 /* The size of the block. */ 301 size_t alloc_size; 302 303 /* A bitmask of pages in use. */ 304 unsigned int in_use; 305 }; 306 #endif 307 308 #if HOST_BITS_PER_PTR <= 32 309 310 /* On 32-bit hosts, we use a two level page table, as pictured above. */ 311 typedef page_entry **page_table[PAGE_L1_SIZE]; 312 313 #else 314 315 /* On 64-bit hosts, we use the same two level page tables plus a linked 316 list that disambiguates the top 32-bits. There will almost always be 317 exactly one entry in the list. */ 318 typedef struct page_table_chain 319 { 320 struct page_table_chain *next; 321 size_t high_bits; 322 page_entry **table[PAGE_L1_SIZE]; 323 } *page_table; 324 325 #endif 326 327 class finalizer 328 { 329 public: 330 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {} 331 332 void *addr () const { return m_addr; } 333 334 void call () const { m_function (m_addr); } 335 336 private: 337 void *m_addr; 338 void (*m_function)(void *); 339 }; 340 341 class vec_finalizer 342 { 343 public: 344 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) : 345 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {} 346 347 void call () const 348 { 349 for (size_t i = 0; i < m_n_objects; i++) 350 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size))); 351 } 352 353 void *addr () const { return reinterpret_cast<void *> (m_addr); } 354 355 private: 356 uintptr_t m_addr; 357 void (*m_function)(void *); 358 size_t m_object_size; 359 size_t m_n_objects; 360 }; 361 362 #ifdef ENABLE_GC_ALWAYS_COLLECT 363 /* List of free objects to be verified as actually free on the 364 next collection. */ 365 struct free_object 366 { 367 void *object; 368 struct free_object *next; 369 }; 370 #endif 371 372 /* The rest of the global variables. */ 373 static struct ggc_globals 374 { 375 /* The Nth element in this array is a page with objects of size 2^N. 376 If there are any pages with free objects, they will be at the 377 head of the list. NULL if there are no page-entries for this 378 object size. */ 379 page_entry *pages[NUM_ORDERS]; 380 381 /* The Nth element in this array is the last page with objects of 382 size 2^N. NULL if there are no page-entries for this object 383 size. */ 384 page_entry *page_tails[NUM_ORDERS]; 385 386 /* Lookup table for associating allocation pages with object addresses. */ 387 page_table lookup; 388 389 /* The system's page size. */ 390 size_t pagesize; 391 size_t lg_pagesize; 392 393 /* Bytes currently allocated. */ 394 size_t allocated; 395 396 /* Bytes currently allocated at the end of the last collection. */ 397 size_t allocated_last_gc; 398 399 /* Total amount of memory mapped. */ 400 size_t bytes_mapped; 401 402 /* Bit N set if any allocations have been done at context depth N. */ 403 unsigned long context_depth_allocations; 404 405 /* Bit N set if any collections have been done at context depth N. */ 406 unsigned long context_depth_collections; 407 408 /* The current depth in the context stack. */ 409 unsigned short context_depth; 410 411 /* A file descriptor open to /dev/zero for reading. */ 412 #if defined (HAVE_MMAP_DEV_ZERO) 413 int dev_zero_fd; 414 #endif 415 416 /* A cache of free system pages. */ 417 page_entry *free_pages; 418 419 #ifdef USING_MALLOC_PAGE_GROUPS 420 page_group *page_groups; 421 #endif 422 423 /* The file descriptor for debugging output. */ 424 FILE *debug_file; 425 426 /* Current number of elements in use in depth below. */ 427 unsigned int depth_in_use; 428 429 /* Maximum number of elements that can be used before resizing. */ 430 unsigned int depth_max; 431 432 /* Each element of this array is an index in by_depth where the given 433 depth starts. This structure is indexed by that given depth we 434 are interested in. */ 435 unsigned int *depth; 436 437 /* Current number of elements in use in by_depth below. */ 438 unsigned int by_depth_in_use; 439 440 /* Maximum number of elements that can be used before resizing. */ 441 unsigned int by_depth_max; 442 443 /* Each element of this array is a pointer to a page_entry, all 444 page_entries can be found in here by increasing depth. 445 index_by_depth in the page_entry is the index into this data 446 structure where that page_entry can be found. This is used to 447 speed up finding all page_entries at a particular depth. */ 448 page_entry **by_depth; 449 450 /* Each element is a pointer to the saved in_use_p bits, if any, 451 zero otherwise. We allocate them all together, to enable a 452 better runtime data access pattern. */ 453 unsigned long **save_in_use; 454 455 /* Finalizers for single objects. The first index is collection_depth. */ 456 vec<vec<finalizer> > finalizers; 457 458 /* Finalizers for vectors of objects. */ 459 vec<vec<vec_finalizer> > vec_finalizers; 460 461 #ifdef ENABLE_GC_ALWAYS_COLLECT 462 /* List of free objects to be verified as actually free on the 463 next collection. */ 464 struct free_object *free_object_list; 465 #endif 466 467 struct 468 { 469 /* Total GC-allocated memory. */ 470 unsigned long long total_allocated; 471 /* Total overhead for GC-allocated memory. */ 472 unsigned long long total_overhead; 473 474 /* Total allocations and overhead for sizes less than 32, 64 and 128. 475 These sizes are interesting because they are typical cache line 476 sizes. */ 477 478 unsigned long long total_allocated_under32; 479 unsigned long long total_overhead_under32; 480 481 unsigned long long total_allocated_under64; 482 unsigned long long total_overhead_under64; 483 484 unsigned long long total_allocated_under128; 485 unsigned long long total_overhead_under128; 486 487 /* The allocations for each of the allocation orders. */ 488 unsigned long long total_allocated_per_order[NUM_ORDERS]; 489 490 /* The overhead for each of the allocation orders. */ 491 unsigned long long total_overhead_per_order[NUM_ORDERS]; 492 } stats; 493 } G; 494 495 /* True if a gc is currently taking place. */ 496 497 static bool in_gc = false; 498 499 /* The size in bytes required to maintain a bitmap for the objects 500 on a page-entry. */ 501 #define BITMAP_SIZE(Num_objects) \ 502 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long)) 503 504 /* Allocate pages in chunks of this size, to throttle calls to memory 505 allocation routines. The first page is used, the rest go onto the 506 free list. This cannot be larger than HOST_BITS_PER_INT for the 507 in_use bitmask for page_group. Hosts that need a different value 508 can override this by defining GGC_QUIRE_SIZE explicitly. */ 509 #ifndef GGC_QUIRE_SIZE 510 # ifdef USING_MMAP 511 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */ 512 # else 513 # define GGC_QUIRE_SIZE 16 514 # endif 515 #endif 516 517 /* Initial guess as to how many page table entries we might need. */ 518 #define INITIAL_PTE_COUNT 128 519 520 static int ggc_allocated_p (const void *); 521 static page_entry *lookup_page_table_entry (const void *); 522 static void set_page_table_entry (void *, page_entry *); 523 #ifdef USING_MMAP 524 static char *alloc_anon (char *, size_t, bool check); 525 #endif 526 #ifdef USING_MALLOC_PAGE_GROUPS 527 static size_t page_group_index (char *, char *); 528 static void set_page_group_in_use (page_group *, char *); 529 static void clear_page_group_in_use (page_group *, char *); 530 #endif 531 static struct page_entry * alloc_page (unsigned); 532 static void free_page (struct page_entry *); 533 static void release_pages (void); 534 static void clear_marks (void); 535 static void sweep_pages (void); 536 static void ggc_recalculate_in_use_p (page_entry *); 537 static void compute_inverse (unsigned); 538 static inline void adjust_depth (void); 539 static void move_ptes_to_front (int, int); 540 541 void debug_print_page_list (int); 542 static void push_depth (unsigned int); 543 static void push_by_depth (page_entry *, unsigned long *); 544 545 /* Push an entry onto G.depth. */ 546 547 inline static void 548 push_depth (unsigned int i) 549 { 550 if (G.depth_in_use >= G.depth_max) 551 { 552 G.depth_max *= 2; 553 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max); 554 } 555 G.depth[G.depth_in_use++] = i; 556 } 557 558 /* Push an entry onto G.by_depth and G.save_in_use. */ 559 560 inline static void 561 push_by_depth (page_entry *p, unsigned long *s) 562 { 563 if (G.by_depth_in_use >= G.by_depth_max) 564 { 565 G.by_depth_max *= 2; 566 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max); 567 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use, 568 G.by_depth_max); 569 } 570 G.by_depth[G.by_depth_in_use] = p; 571 G.save_in_use[G.by_depth_in_use++] = s; 572 } 573 574 #if (GCC_VERSION < 3001) 575 #define prefetch(X) ((void) X) 576 #else 577 #define prefetch(X) __builtin_prefetch (X) 578 #endif 579 580 #define save_in_use_p_i(__i) \ 581 (G.save_in_use[__i]) 582 #define save_in_use_p(__p) \ 583 (save_in_use_p_i (__p->index_by_depth)) 584 585 /* Returns nonzero if P was allocated in GC'able memory. */ 586 587 static inline int 588 ggc_allocated_p (const void *p) 589 { 590 page_entry ***base; 591 size_t L1, L2; 592 593 #if HOST_BITS_PER_PTR <= 32 594 base = &G.lookup[0]; 595 #else 596 page_table table = G.lookup; 597 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; 598 while (1) 599 { 600 if (table == NULL) 601 return 0; 602 if (table->high_bits == high_bits) 603 break; 604 table = table->next; 605 } 606 base = &table->table[0]; 607 #endif 608 609 /* Extract the level 1 and 2 indices. */ 610 L1 = LOOKUP_L1 (p); 611 L2 = LOOKUP_L2 (p); 612 613 return base[L1] && base[L1][L2]; 614 } 615 616 /* Traverse the page table and find the entry for a page. 617 Die (probably) if the object wasn't allocated via GC. */ 618 619 static inline page_entry * 620 lookup_page_table_entry (const void *p) 621 { 622 page_entry ***base; 623 size_t L1, L2; 624 625 #if HOST_BITS_PER_PTR <= 32 626 base = &G.lookup[0]; 627 #else 628 page_table table = G.lookup; 629 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; 630 while (table->high_bits != high_bits) 631 table = table->next; 632 base = &table->table[0]; 633 #endif 634 635 /* Extract the level 1 and 2 indices. */ 636 L1 = LOOKUP_L1 (p); 637 L2 = LOOKUP_L2 (p); 638 639 return base[L1][L2]; 640 } 641 642 /* Set the page table entry for a page. */ 643 644 static void 645 set_page_table_entry (void *p, page_entry *entry) 646 { 647 page_entry ***base; 648 size_t L1, L2; 649 650 #if HOST_BITS_PER_PTR <= 32 651 base = &G.lookup[0]; 652 #else 653 page_table table; 654 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; 655 for (table = G.lookup; table; table = table->next) 656 if (table->high_bits == high_bits) 657 goto found; 658 659 /* Not found -- allocate a new table. */ 660 table = XCNEW (struct page_table_chain); 661 table->next = G.lookup; 662 table->high_bits = high_bits; 663 G.lookup = table; 664 found: 665 base = &table->table[0]; 666 #endif 667 668 /* Extract the level 1 and 2 indices. */ 669 L1 = LOOKUP_L1 (p); 670 L2 = LOOKUP_L2 (p); 671 672 if (base[L1] == NULL) 673 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE); 674 675 base[L1][L2] = entry; 676 } 677 678 /* Prints the page-entry for object size ORDER, for debugging. */ 679 680 DEBUG_FUNCTION void 681 debug_print_page_list (int order) 682 { 683 page_entry *p; 684 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order], 685 (void *) G.page_tails[order]); 686 p = G.pages[order]; 687 while (p != NULL) 688 { 689 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth, 690 p->num_free_objects); 691 p = p->next; 692 } 693 printf ("NULL\n"); 694 fflush (stdout); 695 } 696 697 #ifdef USING_MMAP 698 /* Allocate SIZE bytes of anonymous memory, preferably near PREF, 699 (if non-null). The ifdef structure here is intended to cause a 700 compile error unless exactly one of the HAVE_* is defined. */ 701 702 static inline char * 703 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check) 704 { 705 #ifdef HAVE_MMAP_ANON 706 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 707 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 708 #endif 709 #ifdef HAVE_MMAP_DEV_ZERO 710 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 711 MAP_PRIVATE, G.dev_zero_fd, 0); 712 #endif 713 714 if (page == (char *) MAP_FAILED) 715 { 716 if (!check) 717 return NULL; 718 perror ("virtual memory exhausted"); 719 exit (FATAL_EXIT_CODE); 720 } 721 722 /* Remember that we allocated this memory. */ 723 G.bytes_mapped += size; 724 725 /* Pretend we don't have access to the allocated pages. We'll enable 726 access to smaller pieces of the area in ggc_internal_alloc. Discard the 727 handle to avoid handle leak. */ 728 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size)); 729 730 return page; 731 } 732 #endif 733 #ifdef USING_MALLOC_PAGE_GROUPS 734 /* Compute the index for this page into the page group. */ 735 736 static inline size_t 737 page_group_index (char *allocation, char *page) 738 { 739 return (size_t) (page - allocation) >> G.lg_pagesize; 740 } 741 742 /* Set and clear the in_use bit for this page in the page group. */ 743 744 static inline void 745 set_page_group_in_use (page_group *group, char *page) 746 { 747 group->in_use |= 1 << page_group_index (group->allocation, page); 748 } 749 750 static inline void 751 clear_page_group_in_use (page_group *group, char *page) 752 { 753 group->in_use &= ~(1 << page_group_index (group->allocation, page)); 754 } 755 #endif 756 757 /* Allocate a new page for allocating objects of size 2^ORDER, 758 and return an entry for it. The entry is not added to the 759 appropriate page_table list. */ 760 761 static inline struct page_entry * 762 alloc_page (unsigned order) 763 { 764 struct page_entry *entry, *p, **pp; 765 char *page; 766 size_t num_objects; 767 size_t bitmap_size; 768 size_t page_entry_size; 769 size_t entry_size; 770 #ifdef USING_MALLOC_PAGE_GROUPS 771 page_group *group; 772 #endif 773 774 num_objects = OBJECTS_PER_PAGE (order); 775 bitmap_size = BITMAP_SIZE (num_objects + 1); 776 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size; 777 entry_size = num_objects * OBJECT_SIZE (order); 778 if (entry_size < G.pagesize) 779 entry_size = G.pagesize; 780 entry_size = PAGE_ALIGN (entry_size); 781 782 entry = NULL; 783 page = NULL; 784 785 /* Check the list of free pages for one we can use. */ 786 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp) 787 if (p->bytes == entry_size) 788 break; 789 790 if (p != NULL) 791 { 792 if (p->discarded) 793 G.bytes_mapped += p->bytes; 794 p->discarded = false; 795 796 /* Recycle the allocated memory from this page ... */ 797 *pp = p->next; 798 page = p->page; 799 800 #ifdef USING_MALLOC_PAGE_GROUPS 801 group = p->group; 802 #endif 803 804 /* ... and, if possible, the page entry itself. */ 805 if (p->order == order) 806 { 807 entry = p; 808 memset (entry, 0, page_entry_size); 809 } 810 else 811 free (p); 812 } 813 #ifdef USING_MMAP 814 else if (entry_size == G.pagesize) 815 { 816 /* We want just one page. Allocate a bunch of them and put the 817 extras on the freelist. (Can only do this optimization with 818 mmap for backing store.) */ 819 struct page_entry *e, *f = G.free_pages; 820 int i, entries = GGC_QUIRE_SIZE; 821 822 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false); 823 if (page == NULL) 824 { 825 page = alloc_anon (NULL, G.pagesize, true); 826 entries = 1; 827 } 828 829 /* This loop counts down so that the chain will be in ascending 830 memory order. */ 831 for (i = entries - 1; i >= 1; i--) 832 { 833 e = XCNEWVAR (struct page_entry, page_entry_size); 834 e->order = order; 835 e->bytes = G.pagesize; 836 e->page = page + (i << G.lg_pagesize); 837 e->next = f; 838 f = e; 839 } 840 841 G.free_pages = f; 842 } 843 else 844 page = alloc_anon (NULL, entry_size, true); 845 #endif 846 #ifdef USING_MALLOC_PAGE_GROUPS 847 else 848 { 849 /* Allocate a large block of memory and serve out the aligned 850 pages therein. This results in much less memory wastage 851 than the traditional implementation of valloc. */ 852 853 char *allocation, *a, *enda; 854 size_t alloc_size, head_slop, tail_slop; 855 int multiple_pages = (entry_size == G.pagesize); 856 857 if (multiple_pages) 858 alloc_size = GGC_QUIRE_SIZE * G.pagesize; 859 else 860 alloc_size = entry_size + G.pagesize - 1; 861 allocation = XNEWVEC (char, alloc_size); 862 863 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize); 864 head_slop = page - allocation; 865 if (multiple_pages) 866 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1); 867 else 868 tail_slop = alloc_size - entry_size - head_slop; 869 enda = allocation + alloc_size - tail_slop; 870 871 /* We allocated N pages, which are likely not aligned, leaving 872 us with N-1 usable pages. We plan to place the page_group 873 structure somewhere in the slop. */ 874 if (head_slop >= sizeof (page_group)) 875 group = (page_group *)page - 1; 876 else 877 { 878 /* We magically got an aligned allocation. Too bad, we have 879 to waste a page anyway. */ 880 if (tail_slop == 0) 881 { 882 enda -= G.pagesize; 883 tail_slop += G.pagesize; 884 } 885 gcc_assert (tail_slop >= sizeof (page_group)); 886 group = (page_group *)enda; 887 tail_slop -= sizeof (page_group); 888 } 889 890 /* Remember that we allocated this memory. */ 891 group->next = G.page_groups; 892 group->allocation = allocation; 893 group->alloc_size = alloc_size; 894 group->in_use = 0; 895 G.page_groups = group; 896 G.bytes_mapped += alloc_size; 897 898 /* If we allocated multiple pages, put the rest on the free list. */ 899 if (multiple_pages) 900 { 901 struct page_entry *e, *f = G.free_pages; 902 for (a = enda - G.pagesize; a != page; a -= G.pagesize) 903 { 904 e = XCNEWVAR (struct page_entry, page_entry_size); 905 e->order = order; 906 e->bytes = G.pagesize; 907 e->page = a; 908 e->group = group; 909 e->next = f; 910 f = e; 911 } 912 G.free_pages = f; 913 } 914 } 915 #endif 916 917 if (entry == NULL) 918 entry = XCNEWVAR (struct page_entry, page_entry_size); 919 920 entry->bytes = entry_size; 921 entry->page = page; 922 entry->context_depth = G.context_depth; 923 entry->order = order; 924 entry->num_free_objects = num_objects; 925 entry->next_bit_hint = 1; 926 927 G.context_depth_allocations |= (unsigned long)1 << G.context_depth; 928 929 #ifdef USING_MALLOC_PAGE_GROUPS 930 entry->group = group; 931 set_page_group_in_use (group, page); 932 #endif 933 934 /* Set the one-past-the-end in-use bit. This acts as a sentry as we 935 increment the hint. */ 936 entry->in_use_p[num_objects / HOST_BITS_PER_LONG] 937 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG); 938 939 set_page_table_entry (page, entry); 940 941 if (GGC_DEBUG_LEVEL >= 2) 942 fprintf (G.debug_file, 943 "Allocating page at %p, object size=%lu, data %p-%p\n", 944 (void *) entry, (unsigned long) OBJECT_SIZE (order), page, 945 page + entry_size - 1); 946 947 return entry; 948 } 949 950 /* Adjust the size of G.depth so that no index greater than the one 951 used by the top of the G.by_depth is used. */ 952 953 static inline void 954 adjust_depth (void) 955 { 956 page_entry *top; 957 958 if (G.by_depth_in_use) 959 { 960 top = G.by_depth[G.by_depth_in_use-1]; 961 962 /* Peel back indices in depth that index into by_depth, so that 963 as new elements are added to by_depth, we note the indices 964 of those elements, if they are for new context depths. */ 965 while (G.depth_in_use > (size_t)top->context_depth+1) 966 --G.depth_in_use; 967 } 968 } 969 970 /* For a page that is no longer needed, put it on the free page list. */ 971 972 static void 973 free_page (page_entry *entry) 974 { 975 if (GGC_DEBUG_LEVEL >= 2) 976 fprintf (G.debug_file, 977 "Deallocating page at %p, data %p-%p\n", (void *) entry, 978 entry->page, entry->page + entry->bytes - 1); 979 980 /* Mark the page as inaccessible. Discard the handle to avoid handle 981 leak. */ 982 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes)); 983 984 set_page_table_entry (entry->page, NULL); 985 986 #ifdef USING_MALLOC_PAGE_GROUPS 987 clear_page_group_in_use (entry->group, entry->page); 988 #endif 989 990 if (G.by_depth_in_use > 1) 991 { 992 page_entry *top = G.by_depth[G.by_depth_in_use-1]; 993 int i = entry->index_by_depth; 994 995 /* We cannot free a page from a context deeper than the current 996 one. */ 997 gcc_assert (entry->context_depth == top->context_depth); 998 999 /* Put top element into freed slot. */ 1000 G.by_depth[i] = top; 1001 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1]; 1002 top->index_by_depth = i; 1003 } 1004 --G.by_depth_in_use; 1005 1006 adjust_depth (); 1007 1008 entry->next = G.free_pages; 1009 G.free_pages = entry; 1010 } 1011 1012 /* Release the free page cache to the system. */ 1013 1014 static void 1015 release_pages (void) 1016 { 1017 #ifdef USING_MADVISE 1018 page_entry *p, *start_p; 1019 char *start; 1020 size_t len; 1021 size_t mapped_len; 1022 page_entry *next, *prev, *newprev; 1023 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize; 1024 1025 /* First free larger continuous areas to the OS. 1026 This allows other allocators to grab these areas if needed. 1027 This is only done on larger chunks to avoid fragmentation. 1028 This does not always work because the free_pages list is only 1029 approximately sorted. */ 1030 1031 p = G.free_pages; 1032 prev = NULL; 1033 while (p) 1034 { 1035 start = p->page; 1036 start_p = p; 1037 len = 0; 1038 mapped_len = 0; 1039 newprev = prev; 1040 while (p && p->page == start + len) 1041 { 1042 len += p->bytes; 1043 if (!p->discarded) 1044 mapped_len += p->bytes; 1045 newprev = p; 1046 p = p->next; 1047 } 1048 if (len >= free_unit) 1049 { 1050 while (start_p != p) 1051 { 1052 next = start_p->next; 1053 free (start_p); 1054 start_p = next; 1055 } 1056 munmap (start, len); 1057 if (prev) 1058 prev->next = p; 1059 else 1060 G.free_pages = p; 1061 G.bytes_mapped -= mapped_len; 1062 continue; 1063 } 1064 prev = newprev; 1065 } 1066 1067 /* Now give back the fragmented pages to the OS, but keep the address 1068 space to reuse it next time. */ 1069 1070 for (p = G.free_pages; p; ) 1071 { 1072 if (p->discarded) 1073 { 1074 p = p->next; 1075 continue; 1076 } 1077 start = p->page; 1078 len = p->bytes; 1079 start_p = p; 1080 p = p->next; 1081 while (p && p->page == start + len) 1082 { 1083 len += p->bytes; 1084 p = p->next; 1085 } 1086 /* Give the page back to the kernel, but don't free the mapping. 1087 This avoids fragmentation in the virtual memory map of the 1088 process. Next time we can reuse it by just touching it. */ 1089 madvise (start, len, MADV_DONTNEED); 1090 /* Don't count those pages as mapped to not touch the garbage collector 1091 unnecessarily. */ 1092 G.bytes_mapped -= len; 1093 while (start_p != p) 1094 { 1095 start_p->discarded = true; 1096 start_p = start_p->next; 1097 } 1098 } 1099 #endif 1100 #if defined(USING_MMAP) && !defined(USING_MADVISE) 1101 page_entry *p, *next; 1102 char *start; 1103 size_t len; 1104 1105 /* Gather up adjacent pages so they are unmapped together. */ 1106 p = G.free_pages; 1107 1108 while (p) 1109 { 1110 start = p->page; 1111 next = p->next; 1112 len = p->bytes; 1113 free (p); 1114 p = next; 1115 1116 while (p && p->page == start + len) 1117 { 1118 next = p->next; 1119 len += p->bytes; 1120 free (p); 1121 p = next; 1122 } 1123 1124 munmap (start, len); 1125 G.bytes_mapped -= len; 1126 } 1127 1128 G.free_pages = NULL; 1129 #endif 1130 #ifdef USING_MALLOC_PAGE_GROUPS 1131 page_entry **pp, *p; 1132 page_group **gp, *g; 1133 1134 /* Remove all pages from free page groups from the list. */ 1135 pp = &G.free_pages; 1136 while ((p = *pp) != NULL) 1137 if (p->group->in_use == 0) 1138 { 1139 *pp = p->next; 1140 free (p); 1141 } 1142 else 1143 pp = &p->next; 1144 1145 /* Remove all free page groups, and release the storage. */ 1146 gp = &G.page_groups; 1147 while ((g = *gp) != NULL) 1148 if (g->in_use == 0) 1149 { 1150 *gp = g->next; 1151 G.bytes_mapped -= g->alloc_size; 1152 free (g->allocation); 1153 } 1154 else 1155 gp = &g->next; 1156 #endif 1157 } 1158 1159 /* This table provides a fast way to determine ceil(log_2(size)) for 1160 allocation requests. The minimum allocation size is eight bytes. */ 1161 #define NUM_SIZE_LOOKUP 512 1162 static unsigned char size_lookup[NUM_SIZE_LOOKUP] = 1163 { 1164 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 1165 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1166 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1167 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1168 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1169 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1170 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1171 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1172 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1173 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1174 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1175 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1176 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1177 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1178 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1179 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1180 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1181 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1182 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1183 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1184 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1185 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1186 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1187 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1188 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1189 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1190 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1192 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1193 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1194 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1195 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 1196 }; 1197 1198 /* For a given size of memory requested for allocation, return the 1199 actual size that is going to be allocated, as well as the size 1200 order. */ 1201 1202 static void 1203 ggc_round_alloc_size_1 (size_t requested_size, 1204 size_t *size_order, 1205 size_t *alloced_size) 1206 { 1207 size_t order, object_size; 1208 1209 if (requested_size < NUM_SIZE_LOOKUP) 1210 { 1211 order = size_lookup[requested_size]; 1212 object_size = OBJECT_SIZE (order); 1213 } 1214 else 1215 { 1216 order = 10; 1217 while (requested_size > (object_size = OBJECT_SIZE (order))) 1218 order++; 1219 } 1220 1221 if (size_order) 1222 *size_order = order; 1223 if (alloced_size) 1224 *alloced_size = object_size; 1225 } 1226 1227 /* For a given size of memory requested for allocation, return the 1228 actual size that is going to be allocated. */ 1229 1230 size_t 1231 ggc_round_alloc_size (size_t requested_size) 1232 { 1233 size_t size = 0; 1234 1235 ggc_round_alloc_size_1 (requested_size, NULL, &size); 1236 return size; 1237 } 1238 1239 /* Push a finalizer onto the appropriate vec. */ 1240 1241 static void 1242 add_finalizer (void *result, void (*f)(void *), size_t s, size_t n) 1243 { 1244 if (f == NULL) 1245 /* No finalizer. */; 1246 else if (n == 1) 1247 { 1248 finalizer fin (result, f); 1249 G.finalizers[G.context_depth].safe_push (fin); 1250 } 1251 else 1252 { 1253 vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n); 1254 G.vec_finalizers[G.context_depth].safe_push (fin); 1255 } 1256 } 1257 1258 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */ 1259 1260 void * 1261 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n 1262 MEM_STAT_DECL) 1263 { 1264 size_t order, word, bit, object_offset, object_size; 1265 struct page_entry *entry; 1266 void *result; 1267 1268 ggc_round_alloc_size_1 (size, &order, &object_size); 1269 1270 /* If there are non-full pages for this size allocation, they are at 1271 the head of the list. */ 1272 entry = G.pages[order]; 1273 1274 /* If there is no page for this object size, or all pages in this 1275 context are full, allocate a new page. */ 1276 if (entry == NULL || entry->num_free_objects == 0) 1277 { 1278 struct page_entry *new_entry; 1279 new_entry = alloc_page (order); 1280 1281 new_entry->index_by_depth = G.by_depth_in_use; 1282 push_by_depth (new_entry, 0); 1283 1284 /* We can skip context depths, if we do, make sure we go all the 1285 way to the new depth. */ 1286 while (new_entry->context_depth >= G.depth_in_use) 1287 push_depth (G.by_depth_in_use-1); 1288 1289 /* If this is the only entry, it's also the tail. If it is not 1290 the only entry, then we must update the PREV pointer of the 1291 ENTRY (G.pages[order]) to point to our new page entry. */ 1292 if (entry == NULL) 1293 G.page_tails[order] = new_entry; 1294 else 1295 entry->prev = new_entry; 1296 1297 /* Put new pages at the head of the page list. By definition the 1298 entry at the head of the list always has a NULL pointer. */ 1299 new_entry->next = entry; 1300 new_entry->prev = NULL; 1301 entry = new_entry; 1302 G.pages[order] = new_entry; 1303 1304 /* For a new page, we know the word and bit positions (in the 1305 in_use bitmap) of the first available object -- they're zero. */ 1306 new_entry->next_bit_hint = 1; 1307 word = 0; 1308 bit = 0; 1309 object_offset = 0; 1310 } 1311 else 1312 { 1313 /* First try to use the hint left from the previous allocation 1314 to locate a clear bit in the in-use bitmap. We've made sure 1315 that the one-past-the-end bit is always set, so if the hint 1316 has run over, this test will fail. */ 1317 unsigned hint = entry->next_bit_hint; 1318 word = hint / HOST_BITS_PER_LONG; 1319 bit = hint % HOST_BITS_PER_LONG; 1320 1321 /* If the hint didn't work, scan the bitmap from the beginning. */ 1322 if ((entry->in_use_p[word] >> bit) & 1) 1323 { 1324 word = bit = 0; 1325 while (~entry->in_use_p[word] == 0) 1326 ++word; 1327 1328 #if GCC_VERSION >= 3004 1329 bit = __builtin_ctzl (~entry->in_use_p[word]); 1330 #else 1331 while ((entry->in_use_p[word] >> bit) & 1) 1332 ++bit; 1333 #endif 1334 1335 hint = word * HOST_BITS_PER_LONG + bit; 1336 } 1337 1338 /* Next time, try the next bit. */ 1339 entry->next_bit_hint = hint + 1; 1340 1341 object_offset = hint * object_size; 1342 } 1343 1344 /* Set the in-use bit. */ 1345 entry->in_use_p[word] |= ((unsigned long) 1 << bit); 1346 1347 /* Keep a running total of the number of free objects. If this page 1348 fills up, we may have to move it to the end of the list if the 1349 next page isn't full. If the next page is full, all subsequent 1350 pages are full, so there's no need to move it. */ 1351 if (--entry->num_free_objects == 0 1352 && entry->next != NULL 1353 && entry->next->num_free_objects > 0) 1354 { 1355 /* We have a new head for the list. */ 1356 G.pages[order] = entry->next; 1357 1358 /* We are moving ENTRY to the end of the page table list. 1359 The new page at the head of the list will have NULL in 1360 its PREV field and ENTRY will have NULL in its NEXT field. */ 1361 entry->next->prev = NULL; 1362 entry->next = NULL; 1363 1364 /* Append ENTRY to the tail of the list. */ 1365 entry->prev = G.page_tails[order]; 1366 G.page_tails[order]->next = entry; 1367 G.page_tails[order] = entry; 1368 } 1369 1370 /* Calculate the object's address. */ 1371 result = entry->page + object_offset; 1372 if (GATHER_STATISTICS) 1373 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size, 1374 result FINAL_PASS_MEM_STAT); 1375 1376 #ifdef ENABLE_GC_CHECKING 1377 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the 1378 exact same semantics in presence of memory bugs, regardless of 1379 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the 1380 handle to avoid handle leak. */ 1381 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size)); 1382 1383 /* `Poison' the entire allocated object, including any padding at 1384 the end. */ 1385 memset (result, 0xaf, object_size); 1386 1387 /* Make the bytes after the end of the object unaccessible. Discard the 1388 handle to avoid handle leak. */ 1389 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size, 1390 object_size - size)); 1391 #endif 1392 1393 /* Tell Valgrind that the memory is there, but its content isn't 1394 defined. The bytes at the end of the object are still marked 1395 unaccessible. */ 1396 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size)); 1397 1398 /* Keep track of how many bytes are being allocated. This 1399 information is used in deciding when to collect. */ 1400 G.allocated += object_size; 1401 1402 /* For timevar statistics. */ 1403 timevar_ggc_mem_total += object_size; 1404 1405 if (f) 1406 add_finalizer (result, f, s, n); 1407 1408 if (GATHER_STATISTICS) 1409 { 1410 size_t overhead = object_size - size; 1411 1412 G.stats.total_overhead += overhead; 1413 G.stats.total_allocated += object_size; 1414 G.stats.total_overhead_per_order[order] += overhead; 1415 G.stats.total_allocated_per_order[order] += object_size; 1416 1417 if (size <= 32) 1418 { 1419 G.stats.total_overhead_under32 += overhead; 1420 G.stats.total_allocated_under32 += object_size; 1421 } 1422 if (size <= 64) 1423 { 1424 G.stats.total_overhead_under64 += overhead; 1425 G.stats.total_allocated_under64 += object_size; 1426 } 1427 if (size <= 128) 1428 { 1429 G.stats.total_overhead_under128 += overhead; 1430 G.stats.total_allocated_under128 += object_size; 1431 } 1432 } 1433 1434 if (GGC_DEBUG_LEVEL >= 3) 1435 fprintf (G.debug_file, 1436 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n", 1437 (unsigned long) size, (unsigned long) object_size, result, 1438 (void *) entry); 1439 1440 return result; 1441 } 1442 1443 /* Mark function for strings. */ 1444 1445 void 1446 gt_ggc_m_S (const void *p) 1447 { 1448 page_entry *entry; 1449 unsigned bit, word; 1450 unsigned long mask; 1451 unsigned long offset; 1452 1453 if (!p || !ggc_allocated_p (p)) 1454 return; 1455 1456 /* Look up the page on which the object is alloced. . */ 1457 entry = lookup_page_table_entry (p); 1458 gcc_assert (entry); 1459 1460 /* Calculate the index of the object on the page; this is its bit 1461 position in the in_use_p bitmap. Note that because a char* might 1462 point to the middle of an object, we need special code here to 1463 make sure P points to the start of an object. */ 1464 offset = ((const char *) p - entry->page) % object_size_table[entry->order]; 1465 if (offset) 1466 { 1467 /* Here we've seen a char* which does not point to the beginning 1468 of an allocated object. We assume it points to the middle of 1469 a STRING_CST. */ 1470 gcc_assert (offset == offsetof (struct tree_string, str)); 1471 p = ((const char *) p) - offset; 1472 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p)); 1473 return; 1474 } 1475 1476 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1477 word = bit / HOST_BITS_PER_LONG; 1478 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1479 1480 /* If the bit was previously set, skip it. */ 1481 if (entry->in_use_p[word] & mask) 1482 return; 1483 1484 /* Otherwise set it, and decrement the free object count. */ 1485 entry->in_use_p[word] |= mask; 1486 entry->num_free_objects -= 1; 1487 1488 if (GGC_DEBUG_LEVEL >= 4) 1489 fprintf (G.debug_file, "Marking %p\n", p); 1490 1491 return; 1492 } 1493 1494 1495 /* User-callable entry points for marking string X. */ 1496 1497 void 1498 gt_ggc_mx (const char *& x) 1499 { 1500 gt_ggc_m_S (x); 1501 } 1502 1503 void 1504 gt_ggc_mx (unsigned char *& x) 1505 { 1506 gt_ggc_m_S (x); 1507 } 1508 1509 void 1510 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED) 1511 { 1512 } 1513 1514 /* If P is not marked, marks it and return false. Otherwise return true. 1515 P must have been allocated by the GC allocator; it mustn't point to 1516 static objects, stack variables, or memory allocated with malloc. */ 1517 1518 int 1519 ggc_set_mark (const void *p) 1520 { 1521 page_entry *entry; 1522 unsigned bit, word; 1523 unsigned long mask; 1524 1525 /* Look up the page on which the object is alloced. If the object 1526 wasn't allocated by the collector, we'll probably die. */ 1527 entry = lookup_page_table_entry (p); 1528 gcc_assert (entry); 1529 1530 /* Calculate the index of the object on the page; this is its bit 1531 position in the in_use_p bitmap. */ 1532 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1533 word = bit / HOST_BITS_PER_LONG; 1534 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1535 1536 /* If the bit was previously set, skip it. */ 1537 if (entry->in_use_p[word] & mask) 1538 return 1; 1539 1540 /* Otherwise set it, and decrement the free object count. */ 1541 entry->in_use_p[word] |= mask; 1542 entry->num_free_objects -= 1; 1543 1544 if (GGC_DEBUG_LEVEL >= 4) 1545 fprintf (G.debug_file, "Marking %p\n", p); 1546 1547 return 0; 1548 } 1549 1550 /* Return 1 if P has been marked, zero otherwise. 1551 P must have been allocated by the GC allocator; it mustn't point to 1552 static objects, stack variables, or memory allocated with malloc. */ 1553 1554 int 1555 ggc_marked_p (const void *p) 1556 { 1557 page_entry *entry; 1558 unsigned bit, word; 1559 unsigned long mask; 1560 1561 /* Look up the page on which the object is alloced. If the object 1562 wasn't allocated by the collector, we'll probably die. */ 1563 entry = lookup_page_table_entry (p); 1564 gcc_assert (entry); 1565 1566 /* Calculate the index of the object on the page; this is its bit 1567 position in the in_use_p bitmap. */ 1568 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1569 word = bit / HOST_BITS_PER_LONG; 1570 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1571 1572 return (entry->in_use_p[word] & mask) != 0; 1573 } 1574 1575 /* Return the size of the gc-able object P. */ 1576 1577 size_t 1578 ggc_get_size (const void *p) 1579 { 1580 page_entry *pe = lookup_page_table_entry (p); 1581 return OBJECT_SIZE (pe->order); 1582 } 1583 1584 /* Release the memory for object P. */ 1585 1586 void 1587 ggc_free (void *p) 1588 { 1589 if (in_gc) 1590 return; 1591 1592 page_entry *pe = lookup_page_table_entry (p); 1593 size_t order = pe->order; 1594 size_t size = OBJECT_SIZE (order); 1595 1596 if (GATHER_STATISTICS) 1597 ggc_free_overhead (p); 1598 1599 if (GGC_DEBUG_LEVEL >= 3) 1600 fprintf (G.debug_file, 1601 "Freeing object, actual size=%lu, at %p on %p\n", 1602 (unsigned long) size, p, (void *) pe); 1603 1604 #ifdef ENABLE_GC_CHECKING 1605 /* Poison the data, to indicate the data is garbage. */ 1606 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size)); 1607 memset (p, 0xa5, size); 1608 #endif 1609 /* Let valgrind know the object is free. */ 1610 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size)); 1611 1612 #ifdef ENABLE_GC_ALWAYS_COLLECT 1613 /* In the completely-anal-checking mode, we do *not* immediately free 1614 the data, but instead verify that the data is *actually* not 1615 reachable the next time we collect. */ 1616 { 1617 struct free_object *fo = XNEW (struct free_object); 1618 fo->object = p; 1619 fo->next = G.free_object_list; 1620 G.free_object_list = fo; 1621 } 1622 #else 1623 { 1624 unsigned int bit_offset, word, bit; 1625 1626 G.allocated -= size; 1627 1628 /* Mark the object not-in-use. */ 1629 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order); 1630 word = bit_offset / HOST_BITS_PER_LONG; 1631 bit = bit_offset % HOST_BITS_PER_LONG; 1632 pe->in_use_p[word] &= ~(1UL << bit); 1633 1634 if (pe->num_free_objects++ == 0) 1635 { 1636 page_entry *p, *q; 1637 1638 /* If the page is completely full, then it's supposed to 1639 be after all pages that aren't. Since we've freed one 1640 object from a page that was full, we need to move the 1641 page to the head of the list. 1642 1643 PE is the node we want to move. Q is the previous node 1644 and P is the next node in the list. */ 1645 q = pe->prev; 1646 if (q && q->num_free_objects == 0) 1647 { 1648 p = pe->next; 1649 1650 q->next = p; 1651 1652 /* If PE was at the end of the list, then Q becomes the 1653 new end of the list. If PE was not the end of the 1654 list, then we need to update the PREV field for P. */ 1655 if (!p) 1656 G.page_tails[order] = q; 1657 else 1658 p->prev = q; 1659 1660 /* Move PE to the head of the list. */ 1661 pe->next = G.pages[order]; 1662 pe->prev = NULL; 1663 G.pages[order]->prev = pe; 1664 G.pages[order] = pe; 1665 } 1666 1667 /* Reset the hint bit to point to the only free object. */ 1668 pe->next_bit_hint = bit_offset; 1669 } 1670 } 1671 #endif 1672 } 1673 1674 /* Subroutine of init_ggc which computes the pair of numbers used to 1675 perform division by OBJECT_SIZE (order) and fills in inverse_table[]. 1676 1677 This algorithm is taken from Granlund and Montgomery's paper 1678 "Division by Invariant Integers using Multiplication" 1679 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by 1680 constants). */ 1681 1682 static void 1683 compute_inverse (unsigned order) 1684 { 1685 size_t size, inv; 1686 unsigned int e; 1687 1688 size = OBJECT_SIZE (order); 1689 e = 0; 1690 while (size % 2 == 0) 1691 { 1692 e++; 1693 size >>= 1; 1694 } 1695 1696 inv = size; 1697 while (inv * size != 1) 1698 inv = inv * (2 - inv*size); 1699 1700 DIV_MULT (order) = inv; 1701 DIV_SHIFT (order) = e; 1702 } 1703 1704 /* Initialize the ggc-mmap allocator. */ 1705 void 1706 init_ggc (void) 1707 { 1708 static bool init_p = false; 1709 unsigned order; 1710 1711 if (init_p) 1712 return; 1713 init_p = true; 1714 1715 G.pagesize = getpagesize (); 1716 G.lg_pagesize = exact_log2 (G.pagesize); 1717 1718 #ifdef HAVE_MMAP_DEV_ZERO 1719 G.dev_zero_fd = open ("/dev/zero", O_RDONLY); 1720 if (G.dev_zero_fd == -1) 1721 internal_error ("open /dev/zero: %m"); 1722 #endif 1723 1724 #if 0 1725 G.debug_file = fopen ("ggc-mmap.debug", "w"); 1726 #else 1727 G.debug_file = stdout; 1728 #endif 1729 1730 #ifdef USING_MMAP 1731 /* StunOS has an amazing off-by-one error for the first mmap allocation 1732 after fiddling with RLIMIT_STACK. The result, as hard as it is to 1733 believe, is an unaligned page allocation, which would cause us to 1734 hork badly if we tried to use it. */ 1735 { 1736 char *p = alloc_anon (NULL, G.pagesize, true); 1737 struct page_entry *e; 1738 if ((uintptr_t)p & (G.pagesize - 1)) 1739 { 1740 /* How losing. Discard this one and try another. If we still 1741 can't get something useful, give up. */ 1742 1743 p = alloc_anon (NULL, G.pagesize, true); 1744 gcc_assert (!((uintptr_t)p & (G.pagesize - 1))); 1745 } 1746 1747 /* We have a good page, might as well hold onto it... */ 1748 e = XCNEW (struct page_entry); 1749 e->bytes = G.pagesize; 1750 e->page = p; 1751 e->next = G.free_pages; 1752 G.free_pages = e; 1753 } 1754 #endif 1755 1756 /* Initialize the object size table. */ 1757 for (order = 0; order < HOST_BITS_PER_PTR; ++order) 1758 object_size_table[order] = (size_t) 1 << order; 1759 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1760 { 1761 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR]; 1762 1763 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up 1764 so that we're sure of getting aligned memory. */ 1765 s = ROUND_UP (s, MAX_ALIGNMENT); 1766 object_size_table[order] = s; 1767 } 1768 1769 /* Initialize the objects-per-page and inverse tables. */ 1770 for (order = 0; order < NUM_ORDERS; ++order) 1771 { 1772 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order); 1773 if (objects_per_page_table[order] == 0) 1774 objects_per_page_table[order] = 1; 1775 compute_inverse (order); 1776 } 1777 1778 /* Reset the size_lookup array to put appropriately sized objects in 1779 the special orders. All objects bigger than the previous power 1780 of two, but no greater than the special size, should go in the 1781 new order. */ 1782 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1783 { 1784 int o; 1785 int i; 1786 1787 i = OBJECT_SIZE (order); 1788 if (i >= NUM_SIZE_LOOKUP) 1789 continue; 1790 1791 for (o = size_lookup[i]; o == size_lookup [i]; --i) 1792 size_lookup[i] = order; 1793 } 1794 1795 G.depth_in_use = 0; 1796 G.depth_max = 10; 1797 G.depth = XNEWVEC (unsigned int, G.depth_max); 1798 1799 G.by_depth_in_use = 0; 1800 G.by_depth_max = INITIAL_PTE_COUNT; 1801 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max); 1802 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 1803 1804 /* Allocate space for the depth 0 finalizers. */ 1805 G.finalizers.safe_push (vNULL); 1806 G.vec_finalizers.safe_push (vNULL); 1807 gcc_assert (G.finalizers.length() == 1); 1808 } 1809 1810 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P 1811 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */ 1812 1813 static void 1814 ggc_recalculate_in_use_p (page_entry *p) 1815 { 1816 unsigned int i; 1817 size_t num_objects; 1818 1819 /* Because the past-the-end bit in in_use_p is always set, we 1820 pretend there is one additional object. */ 1821 num_objects = OBJECTS_IN_PAGE (p) + 1; 1822 1823 /* Reset the free object count. */ 1824 p->num_free_objects = num_objects; 1825 1826 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */ 1827 for (i = 0; 1828 i < CEIL (BITMAP_SIZE (num_objects), 1829 sizeof (*p->in_use_p)); 1830 ++i) 1831 { 1832 unsigned long j; 1833 1834 /* Something is in use if it is marked, or if it was in use in a 1835 context further down the context stack. */ 1836 p->in_use_p[i] |= save_in_use_p (p)[i]; 1837 1838 /* Decrement the free object count for every object allocated. */ 1839 for (j = p->in_use_p[i]; j; j >>= 1) 1840 p->num_free_objects -= (j & 1); 1841 } 1842 1843 gcc_assert (p->num_free_objects < num_objects); 1844 } 1845 1846 /* Unmark all objects. */ 1847 1848 static void 1849 clear_marks (void) 1850 { 1851 unsigned order; 1852 1853 for (order = 2; order < NUM_ORDERS; order++) 1854 { 1855 page_entry *p; 1856 1857 for (p = G.pages[order]; p != NULL; p = p->next) 1858 { 1859 size_t num_objects = OBJECTS_IN_PAGE (p); 1860 size_t bitmap_size = BITMAP_SIZE (num_objects + 1); 1861 1862 /* The data should be page-aligned. */ 1863 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1))); 1864 1865 /* Pages that aren't in the topmost context are not collected; 1866 nevertheless, we need their in-use bit vectors to store GC 1867 marks. So, back them up first. */ 1868 if (p->context_depth < G.context_depth) 1869 { 1870 if (! save_in_use_p (p)) 1871 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size); 1872 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size); 1873 } 1874 1875 /* Reset reset the number of free objects and clear the 1876 in-use bits. These will be adjusted by mark_obj. */ 1877 p->num_free_objects = num_objects; 1878 memset (p->in_use_p, 0, bitmap_size); 1879 1880 /* Make sure the one-past-the-end bit is always set. */ 1881 p->in_use_p[num_objects / HOST_BITS_PER_LONG] 1882 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG)); 1883 } 1884 } 1885 } 1886 1887 /* Check if any blocks with a registered finalizer have become unmarked. If so 1888 run the finalizer and unregister it because the block is about to be freed. 1889 Note that no garantee is made about what order finalizers will run in so 1890 touching other objects in gc memory is extremely unwise. */ 1891 1892 static void 1893 ggc_handle_finalizers () 1894 { 1895 unsigned dlen = G.finalizers.length(); 1896 for (unsigned d = G.context_depth; d < dlen; ++d) 1897 { 1898 vec<finalizer> &v = G.finalizers[d]; 1899 unsigned length = v.length (); 1900 for (unsigned int i = 0; i < length;) 1901 { 1902 finalizer &f = v[i]; 1903 if (!ggc_marked_p (f.addr ())) 1904 { 1905 f.call (); 1906 v.unordered_remove (i); 1907 length--; 1908 } 1909 else 1910 i++; 1911 } 1912 } 1913 1914 gcc_assert (dlen == G.vec_finalizers.length()); 1915 for (unsigned d = G.context_depth; d < dlen; ++d) 1916 { 1917 vec<vec_finalizer> &vv = G.vec_finalizers[d]; 1918 unsigned length = vv.length (); 1919 for (unsigned int i = 0; i < length;) 1920 { 1921 vec_finalizer &f = vv[i]; 1922 if (!ggc_marked_p (f.addr ())) 1923 { 1924 f.call (); 1925 vv.unordered_remove (i); 1926 length--; 1927 } 1928 else 1929 i++; 1930 } 1931 } 1932 } 1933 1934 /* Free all empty pages. Partially empty pages need no attention 1935 because the `mark' bit doubles as an `unused' bit. */ 1936 1937 static void 1938 sweep_pages (void) 1939 { 1940 unsigned order; 1941 1942 for (order = 2; order < NUM_ORDERS; order++) 1943 { 1944 /* The last page-entry to consider, regardless of entries 1945 placed at the end of the list. */ 1946 page_entry * const last = G.page_tails[order]; 1947 1948 size_t num_objects; 1949 size_t live_objects; 1950 page_entry *p, *previous; 1951 int done; 1952 1953 p = G.pages[order]; 1954 if (p == NULL) 1955 continue; 1956 1957 previous = NULL; 1958 do 1959 { 1960 page_entry *next = p->next; 1961 1962 /* Loop until all entries have been examined. */ 1963 done = (p == last); 1964 1965 num_objects = OBJECTS_IN_PAGE (p); 1966 1967 /* Add all live objects on this page to the count of 1968 allocated memory. */ 1969 live_objects = num_objects - p->num_free_objects; 1970 1971 G.allocated += OBJECT_SIZE (order) * live_objects; 1972 1973 /* Only objects on pages in the topmost context should get 1974 collected. */ 1975 if (p->context_depth < G.context_depth) 1976 ; 1977 1978 /* Remove the page if it's empty. */ 1979 else if (live_objects == 0) 1980 { 1981 /* If P was the first page in the list, then NEXT 1982 becomes the new first page in the list, otherwise 1983 splice P out of the forward pointers. */ 1984 if (! previous) 1985 G.pages[order] = next; 1986 else 1987 previous->next = next; 1988 1989 /* Splice P out of the back pointers too. */ 1990 if (next) 1991 next->prev = previous; 1992 1993 /* Are we removing the last element? */ 1994 if (p == G.page_tails[order]) 1995 G.page_tails[order] = previous; 1996 free_page (p); 1997 p = previous; 1998 } 1999 2000 /* If the page is full, move it to the end. */ 2001 else if (p->num_free_objects == 0) 2002 { 2003 /* Don't move it if it's already at the end. */ 2004 if (p != G.page_tails[order]) 2005 { 2006 /* Move p to the end of the list. */ 2007 p->next = NULL; 2008 p->prev = G.page_tails[order]; 2009 G.page_tails[order]->next = p; 2010 2011 /* Update the tail pointer... */ 2012 G.page_tails[order] = p; 2013 2014 /* ... and the head pointer, if necessary. */ 2015 if (! previous) 2016 G.pages[order] = next; 2017 else 2018 previous->next = next; 2019 2020 /* And update the backpointer in NEXT if necessary. */ 2021 if (next) 2022 next->prev = previous; 2023 2024 p = previous; 2025 } 2026 } 2027 2028 /* If we've fallen through to here, it's a page in the 2029 topmost context that is neither full nor empty. Such a 2030 page must precede pages at lesser context depth in the 2031 list, so move it to the head. */ 2032 else if (p != G.pages[order]) 2033 { 2034 previous->next = p->next; 2035 2036 /* Update the backchain in the next node if it exists. */ 2037 if (p->next) 2038 p->next->prev = previous; 2039 2040 /* Move P to the head of the list. */ 2041 p->next = G.pages[order]; 2042 p->prev = NULL; 2043 G.pages[order]->prev = p; 2044 2045 /* Update the head pointer. */ 2046 G.pages[order] = p; 2047 2048 /* Are we moving the last element? */ 2049 if (G.page_tails[order] == p) 2050 G.page_tails[order] = previous; 2051 p = previous; 2052 } 2053 2054 previous = p; 2055 p = next; 2056 } 2057 while (! done); 2058 2059 /* Now, restore the in_use_p vectors for any pages from contexts 2060 other than the current one. */ 2061 for (p = G.pages[order]; p; p = p->next) 2062 if (p->context_depth != G.context_depth) 2063 ggc_recalculate_in_use_p (p); 2064 } 2065 } 2066 2067 #ifdef ENABLE_GC_CHECKING 2068 /* Clobber all free objects. */ 2069 2070 static void 2071 poison_pages (void) 2072 { 2073 unsigned order; 2074 2075 for (order = 2; order < NUM_ORDERS; order++) 2076 { 2077 size_t size = OBJECT_SIZE (order); 2078 page_entry *p; 2079 2080 for (p = G.pages[order]; p != NULL; p = p->next) 2081 { 2082 size_t num_objects; 2083 size_t i; 2084 2085 if (p->context_depth != G.context_depth) 2086 /* Since we don't do any collection for pages in pushed 2087 contexts, there's no need to do any poisoning. And 2088 besides, the IN_USE_P array isn't valid until we pop 2089 contexts. */ 2090 continue; 2091 2092 num_objects = OBJECTS_IN_PAGE (p); 2093 for (i = 0; i < num_objects; i++) 2094 { 2095 size_t word, bit; 2096 word = i / HOST_BITS_PER_LONG; 2097 bit = i % HOST_BITS_PER_LONG; 2098 if (((p->in_use_p[word] >> bit) & 1) == 0) 2099 { 2100 char *object = p->page + i * size; 2101 2102 /* Keep poison-by-write when we expect to use Valgrind, 2103 so the exact same memory semantics is kept, in case 2104 there are memory errors. We override this request 2105 below. */ 2106 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object, 2107 size)); 2108 memset (object, 0xa5, size); 2109 2110 /* Drop the handle to avoid handle leak. */ 2111 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size)); 2112 } 2113 } 2114 } 2115 } 2116 } 2117 #else 2118 #define poison_pages() 2119 #endif 2120 2121 #ifdef ENABLE_GC_ALWAYS_COLLECT 2122 /* Validate that the reportedly free objects actually are. */ 2123 2124 static void 2125 validate_free_objects (void) 2126 { 2127 struct free_object *f, *next, *still_free = NULL; 2128 2129 for (f = G.free_object_list; f ; f = next) 2130 { 2131 page_entry *pe = lookup_page_table_entry (f->object); 2132 size_t bit, word; 2133 2134 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order); 2135 word = bit / HOST_BITS_PER_LONG; 2136 bit = bit % HOST_BITS_PER_LONG; 2137 next = f->next; 2138 2139 /* Make certain it isn't visible from any root. Notice that we 2140 do this check before sweep_pages merges save_in_use_p. */ 2141 gcc_assert (!(pe->in_use_p[word] & (1UL << bit))); 2142 2143 /* If the object comes from an outer context, then retain the 2144 free_object entry, so that we can verify that the address 2145 isn't live on the stack in some outer context. */ 2146 if (pe->context_depth != G.context_depth) 2147 { 2148 f->next = still_free; 2149 still_free = f; 2150 } 2151 else 2152 free (f); 2153 } 2154 2155 G.free_object_list = still_free; 2156 } 2157 #else 2158 #define validate_free_objects() 2159 #endif 2160 2161 /* Top level mark-and-sweep routine. */ 2162 2163 void 2164 ggc_collect (void) 2165 { 2166 /* Avoid frequent unnecessary work by skipping collection if the 2167 total allocations haven't expanded much since the last 2168 collection. */ 2169 float allocated_last_gc = 2170 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024); 2171 2172 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100; 2173 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect) 2174 return; 2175 2176 timevar_push (TV_GC); 2177 if (!quiet_flag) 2178 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024); 2179 if (GGC_DEBUG_LEVEL >= 2) 2180 fprintf (G.debug_file, "BEGIN COLLECTING\n"); 2181 2182 /* Zero the total allocated bytes. This will be recalculated in the 2183 sweep phase. */ 2184 G.allocated = 0; 2185 2186 /* Release the pages we freed the last time we collected, but didn't 2187 reuse in the interim. */ 2188 release_pages (); 2189 2190 /* Indicate that we've seen collections at this context depth. */ 2191 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1; 2192 2193 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL); 2194 2195 in_gc = true; 2196 clear_marks (); 2197 ggc_mark_roots (); 2198 ggc_handle_finalizers (); 2199 2200 if (GATHER_STATISTICS) 2201 ggc_prune_overhead_list (); 2202 2203 poison_pages (); 2204 validate_free_objects (); 2205 sweep_pages (); 2206 2207 in_gc = false; 2208 G.allocated_last_gc = G.allocated; 2209 2210 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL); 2211 2212 timevar_pop (TV_GC); 2213 2214 if (!quiet_flag) 2215 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024); 2216 if (GGC_DEBUG_LEVEL >= 2) 2217 fprintf (G.debug_file, "END COLLECTING\n"); 2218 } 2219 2220 /* Assume that all GGC memory is reachable and grow the limits for next collection. 2221 With checking, trigger GGC so -Q compilation outputs how much of memory really is 2222 reachable. */ 2223 2224 void 2225 ggc_grow (void) 2226 { 2227 if (!flag_checking) 2228 G.allocated_last_gc = MAX (G.allocated_last_gc, 2229 G.allocated); 2230 else 2231 ggc_collect (); 2232 if (!quiet_flag) 2233 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024); 2234 } 2235 2236 /* Print allocation statistics. */ 2237 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ 2238 ? (x) \ 2239 : ((x) < 1024*1024*10 \ 2240 ? (x) / 1024 \ 2241 : (x) / (1024*1024)))) 2242 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) 2243 2244 void 2245 ggc_print_statistics (void) 2246 { 2247 struct ggc_statistics stats; 2248 unsigned int i; 2249 size_t total_overhead = 0; 2250 2251 /* Clear the statistics. */ 2252 memset (&stats, 0, sizeof (stats)); 2253 2254 /* Make sure collection will really occur. */ 2255 G.allocated_last_gc = 0; 2256 2257 /* Collect and print the statistics common across collectors. */ 2258 ggc_print_common_statistics (stderr, &stats); 2259 2260 /* Release free pages so that we will not count the bytes allocated 2261 there as part of the total allocated memory. */ 2262 release_pages (); 2263 2264 /* Collect some information about the various sizes of 2265 allocation. */ 2266 fprintf (stderr, 2267 "Memory still allocated at the end of the compilation process\n"); 2268 fprintf (stderr, "%-8s %10s %10s %10s\n", 2269 "Size", "Allocated", "Used", "Overhead"); 2270 for (i = 0; i < NUM_ORDERS; ++i) 2271 { 2272 page_entry *p; 2273 size_t allocated; 2274 size_t in_use; 2275 size_t overhead; 2276 2277 /* Skip empty entries. */ 2278 if (!G.pages[i]) 2279 continue; 2280 2281 overhead = allocated = in_use = 0; 2282 2283 /* Figure out the total number of bytes allocated for objects of 2284 this size, and how many of them are actually in use. Also figure 2285 out how much memory the page table is using. */ 2286 for (p = G.pages[i]; p; p = p->next) 2287 { 2288 allocated += p->bytes; 2289 in_use += 2290 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i); 2291 2292 overhead += (sizeof (page_entry) - sizeof (long) 2293 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1)); 2294 } 2295 fprintf (stderr, "%-8lu %10lu%c %10lu%c %10lu%c\n", 2296 (unsigned long) OBJECT_SIZE (i), 2297 SCALE (allocated), STAT_LABEL (allocated), 2298 SCALE (in_use), STAT_LABEL (in_use), 2299 SCALE (overhead), STAT_LABEL (overhead)); 2300 total_overhead += overhead; 2301 } 2302 fprintf (stderr, "%-8s %10lu%c %10lu%c %10lu%c\n", "Total", 2303 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped), 2304 SCALE (G.allocated), STAT_LABEL (G.allocated), 2305 SCALE (total_overhead), STAT_LABEL (total_overhead)); 2306 2307 if (GATHER_STATISTICS) 2308 { 2309 fprintf (stderr, "\nTotal allocations and overheads during " 2310 "the compilation process\n"); 2311 2312 fprintf (stderr, "Total Overhead: %10" 2313 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead); 2314 fprintf (stderr, "Total Allocated: %10" 2315 HOST_LONG_LONG_FORMAT "d\n", 2316 G.stats.total_allocated); 2317 2318 fprintf (stderr, "Total Overhead under 32B: %10" 2319 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under32); 2320 fprintf (stderr, "Total Allocated under 32B: %10" 2321 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under32); 2322 fprintf (stderr, "Total Overhead under 64B: %10" 2323 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under64); 2324 fprintf (stderr, "Total Allocated under 64B: %10" 2325 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under64); 2326 fprintf (stderr, "Total Overhead under 128B: %10" 2327 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_overhead_under128); 2328 fprintf (stderr, "Total Allocated under 128B: %10" 2329 HOST_LONG_LONG_FORMAT "d\n", G.stats.total_allocated_under128); 2330 2331 for (i = 0; i < NUM_ORDERS; i++) 2332 if (G.stats.total_allocated_per_order[i]) 2333 { 2334 fprintf (stderr, "Total Overhead page size %9lu: %10" 2335 HOST_LONG_LONG_FORMAT "d\n", 2336 (unsigned long) OBJECT_SIZE (i), 2337 G.stats.total_overhead_per_order[i]); 2338 fprintf (stderr, "Total Allocated page size %9lu: %10" 2339 HOST_LONG_LONG_FORMAT "d\n", 2340 (unsigned long) OBJECT_SIZE (i), 2341 G.stats.total_allocated_per_order[i]); 2342 } 2343 } 2344 } 2345 2346 struct ggc_pch_ondisk 2347 { 2348 unsigned totals[NUM_ORDERS]; 2349 }; 2350 2351 struct ggc_pch_data 2352 { 2353 struct ggc_pch_ondisk d; 2354 uintptr_t base[NUM_ORDERS]; 2355 size_t written[NUM_ORDERS]; 2356 }; 2357 2358 struct ggc_pch_data * 2359 init_ggc_pch (void) 2360 { 2361 return XCNEW (struct ggc_pch_data); 2362 } 2363 2364 void 2365 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2366 size_t size, bool is_string ATTRIBUTE_UNUSED) 2367 { 2368 unsigned order; 2369 2370 if (size < NUM_SIZE_LOOKUP) 2371 order = size_lookup[size]; 2372 else 2373 { 2374 order = 10; 2375 while (size > OBJECT_SIZE (order)) 2376 order++; 2377 } 2378 2379 d->d.totals[order]++; 2380 } 2381 2382 size_t 2383 ggc_pch_total_size (struct ggc_pch_data *d) 2384 { 2385 size_t a = 0; 2386 unsigned i; 2387 2388 for (i = 0; i < NUM_ORDERS; i++) 2389 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); 2390 return a; 2391 } 2392 2393 void 2394 ggc_pch_this_base (struct ggc_pch_data *d, void *base) 2395 { 2396 uintptr_t a = (uintptr_t) base; 2397 unsigned i; 2398 2399 for (i = 0; i < NUM_ORDERS; i++) 2400 { 2401 d->base[i] = a; 2402 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); 2403 } 2404 } 2405 2406 2407 char * 2408 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2409 size_t size, bool is_string ATTRIBUTE_UNUSED) 2410 { 2411 unsigned order; 2412 char *result; 2413 2414 if (size < NUM_SIZE_LOOKUP) 2415 order = size_lookup[size]; 2416 else 2417 { 2418 order = 10; 2419 while (size > OBJECT_SIZE (order)) 2420 order++; 2421 } 2422 2423 result = (char *) d->base[order]; 2424 d->base[order] += OBJECT_SIZE (order); 2425 return result; 2426 } 2427 2428 void 2429 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED, 2430 FILE *f ATTRIBUTE_UNUSED) 2431 { 2432 /* Nothing to do. */ 2433 } 2434 2435 void 2436 ggc_pch_write_object (struct ggc_pch_data *d, 2437 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED, 2438 size_t size, bool is_string ATTRIBUTE_UNUSED) 2439 { 2440 unsigned order; 2441 static const char emptyBytes[256] = { 0 }; 2442 2443 if (size < NUM_SIZE_LOOKUP) 2444 order = size_lookup[size]; 2445 else 2446 { 2447 order = 10; 2448 while (size > OBJECT_SIZE (order)) 2449 order++; 2450 } 2451 2452 if (fwrite (x, size, 1, f) != 1) 2453 fatal_error (input_location, "can%'t write PCH file: %m"); 2454 2455 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the 2456 object out to OBJECT_SIZE(order). This happens for strings. */ 2457 2458 if (size != OBJECT_SIZE (order)) 2459 { 2460 unsigned padding = OBJECT_SIZE (order) - size; 2461 2462 /* To speed small writes, we use a nulled-out array that's larger 2463 than most padding requests as the source for our null bytes. This 2464 permits us to do the padding with fwrite() rather than fseek(), and 2465 limits the chance the OS may try to flush any outstanding writes. */ 2466 if (padding <= sizeof (emptyBytes)) 2467 { 2468 if (fwrite (emptyBytes, 1, padding, f) != padding) 2469 fatal_error (input_location, "can%'t write PCH file"); 2470 } 2471 else 2472 { 2473 /* Larger than our buffer? Just default to fseek. */ 2474 if (fseek (f, padding, SEEK_CUR) != 0) 2475 fatal_error (input_location, "can%'t write PCH file"); 2476 } 2477 } 2478 2479 d->written[order]++; 2480 if (d->written[order] == d->d.totals[order] 2481 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order), 2482 G.pagesize), 2483 SEEK_CUR) != 0) 2484 fatal_error (input_location, "can%'t write PCH file: %m"); 2485 } 2486 2487 void 2488 ggc_pch_finish (struct ggc_pch_data *d, FILE *f) 2489 { 2490 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1) 2491 fatal_error (input_location, "can%'t write PCH file: %m"); 2492 free (d); 2493 } 2494 2495 /* Move the PCH PTE entries just added to the end of by_depth, to the 2496 front. */ 2497 2498 static void 2499 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables) 2500 { 2501 unsigned i; 2502 2503 /* First, we swap the new entries to the front of the varrays. */ 2504 page_entry **new_by_depth; 2505 unsigned long **new_save_in_use; 2506 2507 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max); 2508 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 2509 2510 memcpy (&new_by_depth[0], 2511 &G.by_depth[count_old_page_tables], 2512 count_new_page_tables * sizeof (void *)); 2513 memcpy (&new_by_depth[count_new_page_tables], 2514 &G.by_depth[0], 2515 count_old_page_tables * sizeof (void *)); 2516 memcpy (&new_save_in_use[0], 2517 &G.save_in_use[count_old_page_tables], 2518 count_new_page_tables * sizeof (void *)); 2519 memcpy (&new_save_in_use[count_new_page_tables], 2520 &G.save_in_use[0], 2521 count_old_page_tables * sizeof (void *)); 2522 2523 free (G.by_depth); 2524 free (G.save_in_use); 2525 2526 G.by_depth = new_by_depth; 2527 G.save_in_use = new_save_in_use; 2528 2529 /* Now update all the index_by_depth fields. */ 2530 for (i = G.by_depth_in_use; i > 0; --i) 2531 { 2532 page_entry *p = G.by_depth[i-1]; 2533 p->index_by_depth = i-1; 2534 } 2535 2536 /* And last, we update the depth pointers in G.depth. The first 2537 entry is already 0, and context 0 entries always start at index 2538 0, so there is nothing to update in the first slot. We need a 2539 second slot, only if we have old ptes, and if we do, they start 2540 at index count_new_page_tables. */ 2541 if (count_old_page_tables) 2542 push_depth (count_new_page_tables); 2543 } 2544 2545 void 2546 ggc_pch_read (FILE *f, void *addr) 2547 { 2548 struct ggc_pch_ondisk d; 2549 unsigned i; 2550 char *offs = (char *) addr; 2551 unsigned long count_old_page_tables; 2552 unsigned long count_new_page_tables; 2553 2554 count_old_page_tables = G.by_depth_in_use; 2555 2556 /* We've just read in a PCH file. So, every object that used to be 2557 allocated is now free. */ 2558 clear_marks (); 2559 #ifdef ENABLE_GC_CHECKING 2560 poison_pages (); 2561 #endif 2562 /* Since we free all the allocated objects, the free list becomes 2563 useless. Validate it now, which will also clear it. */ 2564 validate_free_objects (); 2565 2566 /* No object read from a PCH file should ever be freed. So, set the 2567 context depth to 1, and set the depth of all the currently-allocated 2568 pages to be 1 too. PCH pages will have depth 0. */ 2569 gcc_assert (!G.context_depth); 2570 G.context_depth = 1; 2571 /* Allocate space for the depth 1 finalizers. */ 2572 G.finalizers.safe_push (vNULL); 2573 G.vec_finalizers.safe_push (vNULL); 2574 gcc_assert (G.finalizers.length() == 2); 2575 for (i = 0; i < NUM_ORDERS; i++) 2576 { 2577 page_entry *p; 2578 for (p = G.pages[i]; p != NULL; p = p->next) 2579 p->context_depth = G.context_depth; 2580 } 2581 2582 /* Allocate the appropriate page-table entries for the pages read from 2583 the PCH file. */ 2584 if (fread (&d, sizeof (d), 1, f) != 1) 2585 fatal_error (input_location, "can%'t read PCH file: %m"); 2586 2587 for (i = 0; i < NUM_ORDERS; i++) 2588 { 2589 struct page_entry *entry; 2590 char *pte; 2591 size_t bytes; 2592 size_t num_objs; 2593 size_t j; 2594 2595 if (d.totals[i] == 0) 2596 continue; 2597 2598 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i)); 2599 num_objs = bytes / OBJECT_SIZE (i); 2600 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry) 2601 - sizeof (long) 2602 + BITMAP_SIZE (num_objs + 1))); 2603 entry->bytes = bytes; 2604 entry->page = offs; 2605 entry->context_depth = 0; 2606 offs += bytes; 2607 entry->num_free_objects = 0; 2608 entry->order = i; 2609 2610 for (j = 0; 2611 j + HOST_BITS_PER_LONG <= num_objs + 1; 2612 j += HOST_BITS_PER_LONG) 2613 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1; 2614 for (; j < num_objs + 1; j++) 2615 entry->in_use_p[j / HOST_BITS_PER_LONG] 2616 |= 1L << (j % HOST_BITS_PER_LONG); 2617 2618 for (pte = entry->page; 2619 pte < entry->page + entry->bytes; 2620 pte += G.pagesize) 2621 set_page_table_entry (pte, entry); 2622 2623 if (G.page_tails[i] != NULL) 2624 G.page_tails[i]->next = entry; 2625 else 2626 G.pages[i] = entry; 2627 G.page_tails[i] = entry; 2628 2629 /* We start off by just adding all the new information to the 2630 end of the varrays, later, we will move the new information 2631 to the front of the varrays, as the PCH page tables are at 2632 context 0. */ 2633 push_by_depth (entry, 0); 2634 } 2635 2636 /* Now, we update the various data structures that speed page table 2637 handling. */ 2638 count_new_page_tables = G.by_depth_in_use - count_old_page_tables; 2639 2640 move_ptes_to_front (count_old_page_tables, count_new_page_tables); 2641 2642 /* Update the statistics. */ 2643 G.allocated = G.allocated_last_gc = offs - (char *)addr; 2644 } 2645