xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ggc-page.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2    Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "tree.h"
34 #include "rtl.h"
35 #include "tm_p.h"
36 #include "diagnostic-core.h"
37 #include "flags.h"
38 #include "ggc.h"
39 #include "ggc-internal.h"
40 #include "timevar.h"
41 #include "params.h"
42 #include "hash-map.h"
43 #include "is-a.h"
44 #include "plugin-api.h"
45 #include "vec.h"
46 #include "hashtab.h"
47 #include "hash-set.h"
48 #include "machmode.h"
49 #include "hard-reg-set.h"
50 #include "input.h"
51 #include "function.h"
52 #include "ipa-ref.h"
53 #include "cgraph.h"
54 #include "cfgloop.h"
55 #include "plugin.h"
56 #include "basic-block.h"
57 
58 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
59    file open.  Prefer either to valloc.  */
60 #ifdef HAVE_MMAP_ANON
61 # undef HAVE_MMAP_DEV_ZERO
62 # define USING_MMAP
63 #endif
64 
65 #ifdef HAVE_MMAP_DEV_ZERO
66 # define USING_MMAP
67 #endif
68 
69 #ifndef USING_MMAP
70 #define USING_MALLOC_PAGE_GROUPS
71 #endif
72 
73 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
74     && defined(USING_MMAP)
75 # define USING_MADVISE
76 #endif
77 
78 /* Strategy:
79 
80    This garbage-collecting allocator allocates objects on one of a set
81    of pages.  Each page can allocate objects of a single size only;
82    available sizes are powers of two starting at four bytes.  The size
83    of an allocation request is rounded up to the next power of two
84    (`order'), and satisfied from the appropriate page.
85 
86    Each page is recorded in a page-entry, which also maintains an
87    in-use bitmap of object positions on the page.  This allows the
88    allocation state of a particular object to be flipped without
89    touching the page itself.
90 
91    Each page-entry also has a context depth, which is used to track
92    pushing and popping of allocation contexts.  Only objects allocated
93    in the current (highest-numbered) context may be collected.
94 
95    Page entries are arranged in an array of singly-linked lists.  The
96    array is indexed by the allocation size, in bits, of the pages on
97    it; i.e. all pages on a list allocate objects of the same size.
98    Pages are ordered on the list such that all non-full pages precede
99    all full pages, with non-full pages arranged in order of decreasing
100    context depth.
101 
102    Empty pages (of all orders) are kept on a single page cache list,
103    and are considered first when new pages are required; they are
104    deallocated at the start of the next collection if they haven't
105    been recycled by then.  */
106 
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108      0: No debugging output.
109      1: GC statistics only.
110      2: Page-entry allocations/deallocations as well.
111      3: Object allocations as well.
112      4: Object marks as well.  */
113 #define GGC_DEBUG_LEVEL (0)
114 
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR  HOST_BITS_PER_LONG
117 #endif
118 
119 
120 /* A two-level tree is used to look up the page-entry for a given
121    pointer.  Two chunks of the pointer's bits are extracted to index
122    the first and second levels of the tree, as follows:
123 
124 				   HOST_PAGE_SIZE_BITS
125 			   32		|      |
126        msb +----------------+----+------+------+ lsb
127 			    |    |      |
128 			 PAGE_L1_BITS   |
129 				 |      |
130 			       PAGE_L2_BITS
131 
132    The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133    pages are aligned on system page boundaries.  The next most
134    significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135    index values in the lookup table, respectively.
136 
137    For 32-bit architectures and the settings below, there are no
138    leftover bits.  For architectures with wider pointers, the lookup
139    tree points to a list of pages, which must be scanned to find the
140    correct one.  */
141 
142 #define PAGE_L1_BITS	(8)
143 #define PAGE_L2_BITS	(32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE	((uintptr_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE	((uintptr_t) 1 << PAGE_L2_BITS)
146 
147 #define LOOKUP_L1(p) \
148   (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
149 
150 #define LOOKUP_L2(p) \
151   (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
152 
153 /* The number of objects per allocation page, for objects on a page of
154    the indicated ORDER.  */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
156 
157 /* The number of objects in P.  */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
159 
160 /* The size of an object on a page of the indicated ORDER.  */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
162 
163 /* For speed, we avoid doing a general integer divide to locate the
164    offset in the allocation bitmap, by precalculating numbers M, S
165    such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166    within the page which is evenly divisible by the object size Z.  */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170   (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
171 
172 /* We use this structure to determine the alignment required for
173    allocations.  For power-of-two sized allocations, that's not a
174    problem, but it does matter for odd-sized allocations.
175    We do not care about alignment for floating-point types.  */
176 
177 struct max_alignment {
178   char c;
179   union {
180     int64_t i;
181     void *p;
182   } u;
183 };
184 
185 /* The biggest alignment required.  */
186 
187 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
188 
189 
190 /* The number of extra orders, not corresponding to power-of-two sized
191    objects.  */
192 
193 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
194 
195 #define RTL_SIZE(NSLOTS) \
196   (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
197 
198 #define TREE_EXP_SIZE(OPS) \
199   (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
200 
201 /* The Ith entry is the maximum size of an object to be stored in the
202    Ith extra order.  Adding a new entry to this array is the *only*
203    thing you need to do to add a new special allocation size.  */
204 
205 static const size_t extra_order_size_table[] = {
206   /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
207      There are a lot of structures with these sizes and explicitly
208      listing them risks orders being dropped because they changed size.  */
209   MAX_ALIGNMENT * 3,
210   MAX_ALIGNMENT * 5,
211   MAX_ALIGNMENT * 6,
212   MAX_ALIGNMENT * 7,
213   MAX_ALIGNMENT * 9,
214   MAX_ALIGNMENT * 10,
215   MAX_ALIGNMENT * 11,
216   MAX_ALIGNMENT * 12,
217   MAX_ALIGNMENT * 13,
218   MAX_ALIGNMENT * 14,
219   MAX_ALIGNMENT * 15,
220   sizeof (struct tree_decl_non_common),
221   sizeof (struct tree_field_decl),
222   sizeof (struct tree_parm_decl),
223   sizeof (struct tree_var_decl),
224   sizeof (struct tree_type_non_common),
225   sizeof (struct function),
226   sizeof (struct basic_block_def),
227   sizeof (struct cgraph_node),
228   sizeof (struct loop),
229 };
230 
231 /* The total number of orders.  */
232 
233 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
234 
235 /* Compute the smallest nonnegative number which when added to X gives
236    a multiple of F.  */
237 
238 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
239 
240 /* Compute the smallest multiple of F that is >= X.  */
241 
242 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
243 
244 /* Round X to next multiple of the page size */
245 
246 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
247 
248 /* The Ith entry is the number of objects on a page or order I.  */
249 
250 static unsigned objects_per_page_table[NUM_ORDERS];
251 
252 /* The Ith entry is the size of an object on a page of order I.  */
253 
254 static size_t object_size_table[NUM_ORDERS];
255 
256 /* The Ith entry is a pair of numbers (mult, shift) such that
257    ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
258    for all k evenly divisible by OBJECT_SIZE(I).  */
259 
260 static struct
261 {
262   size_t mult;
263   unsigned int shift;
264 }
265 inverse_table[NUM_ORDERS];
266 
267 /* A page_entry records the status of an allocation page.  This
268    structure is dynamically sized to fit the bitmap in_use_p.  */
269 typedef struct page_entry
270 {
271   /* The next page-entry with objects of the same size, or NULL if
272      this is the last page-entry.  */
273   struct page_entry *next;
274 
275   /* The previous page-entry with objects of the same size, or NULL if
276      this is the first page-entry.   The PREV pointer exists solely to
277      keep the cost of ggc_free manageable.  */
278   struct page_entry *prev;
279 
280   /* The number of bytes allocated.  (This will always be a multiple
281      of the host system page size.)  */
282   size_t bytes;
283 
284   /* The address at which the memory is allocated.  */
285   char *page;
286 
287 #ifdef USING_MALLOC_PAGE_GROUPS
288   /* Back pointer to the page group this page came from.  */
289   struct page_group *group;
290 #endif
291 
292   /* This is the index in the by_depth varray where this page table
293      can be found.  */
294   unsigned long index_by_depth;
295 
296   /* Context depth of this page.  */
297   unsigned short context_depth;
298 
299   /* The number of free objects remaining on this page.  */
300   unsigned short num_free_objects;
301 
302   /* A likely candidate for the bit position of a free object for the
303      next allocation from this page.  */
304   unsigned short next_bit_hint;
305 
306   /* The lg of size of objects allocated from this page.  */
307   unsigned char order;
308 
309   /* Discarded page? */
310   bool discarded;
311 
312   /* A bit vector indicating whether or not objects are in use.  The
313      Nth bit is one if the Nth object on this page is allocated.  This
314      array is dynamically sized.  */
315   unsigned long in_use_p[1];
316 } page_entry;
317 
318 #ifdef USING_MALLOC_PAGE_GROUPS
319 /* A page_group describes a large allocation from malloc, from which
320    we parcel out aligned pages.  */
321 typedef struct page_group
322 {
323   /* A linked list of all extant page groups.  */
324   struct page_group *next;
325 
326   /* The address we received from malloc.  */
327   char *allocation;
328 
329   /* The size of the block.  */
330   size_t alloc_size;
331 
332   /* A bitmask of pages in use.  */
333   unsigned int in_use;
334 } page_group;
335 #endif
336 
337 #if HOST_BITS_PER_PTR <= 32
338 
339 /* On 32-bit hosts, we use a two level page table, as pictured above.  */
340 typedef page_entry **page_table[PAGE_L1_SIZE];
341 
342 #else
343 
344 /* On 64-bit hosts, we use the same two level page tables plus a linked
345    list that disambiguates the top 32-bits.  There will almost always be
346    exactly one entry in the list.  */
347 typedef struct page_table_chain
348 {
349   struct page_table_chain *next;
350   size_t high_bits;
351   page_entry **table[PAGE_L1_SIZE];
352 } *page_table;
353 
354 #endif
355 
356 class finalizer
357 {
358 public:
359   finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
360 
361   void *addr () const { return m_addr; }
362 
363   void call () const { m_function (m_addr); }
364 
365 private:
366   void *m_addr;
367   void (*m_function)(void *);
368 };
369 
370 class vec_finalizer
371 {
372 public:
373   vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
374     m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
375 
376   void call () const
377     {
378       for (size_t i = 0; i < m_n_objects; i++)
379 	m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
380     }
381 
382   void *addr () const { return reinterpret_cast<void *> (m_addr); }
383 
384 private:
385   uintptr_t m_addr;
386   void (*m_function)(void *);
387   size_t m_object_size;
388   size_t m_n_objects;
389   };
390 
391 #ifdef ENABLE_GC_ALWAYS_COLLECT
392 /* List of free objects to be verified as actually free on the
393    next collection.  */
394 struct free_object
395 {
396   void *object;
397   struct free_object *next;
398 };
399 #endif
400 
401 /* The rest of the global variables.  */
402 static struct ggc_globals
403 {
404   /* The Nth element in this array is a page with objects of size 2^N.
405      If there are any pages with free objects, they will be at the
406      head of the list.  NULL if there are no page-entries for this
407      object size.  */
408   page_entry *pages[NUM_ORDERS];
409 
410   /* The Nth element in this array is the last page with objects of
411      size 2^N.  NULL if there are no page-entries for this object
412      size.  */
413   page_entry *page_tails[NUM_ORDERS];
414 
415   /* Lookup table for associating allocation pages with object addresses.  */
416   page_table lookup;
417 
418   /* The system's page size.  */
419   size_t pagesize;
420   size_t lg_pagesize;
421 
422   /* Bytes currently allocated.  */
423   size_t allocated;
424 
425   /* Bytes currently allocated at the end of the last collection.  */
426   size_t allocated_last_gc;
427 
428   /* Total amount of memory mapped.  */
429   size_t bytes_mapped;
430 
431   /* Bit N set if any allocations have been done at context depth N.  */
432   unsigned long context_depth_allocations;
433 
434   /* Bit N set if any collections have been done at context depth N.  */
435   unsigned long context_depth_collections;
436 
437   /* The current depth in the context stack.  */
438   unsigned short context_depth;
439 
440   /* A file descriptor open to /dev/zero for reading.  */
441 #if defined (HAVE_MMAP_DEV_ZERO)
442   int dev_zero_fd;
443 #endif
444 
445   /* A cache of free system pages.  */
446   page_entry *free_pages;
447 
448 #ifdef USING_MALLOC_PAGE_GROUPS
449   page_group *page_groups;
450 #endif
451 
452   /* The file descriptor for debugging output.  */
453   FILE *debug_file;
454 
455   /* Current number of elements in use in depth below.  */
456   unsigned int depth_in_use;
457 
458   /* Maximum number of elements that can be used before resizing.  */
459   unsigned int depth_max;
460 
461   /* Each element of this array is an index in by_depth where the given
462      depth starts.  This structure is indexed by that given depth we
463      are interested in.  */
464   unsigned int *depth;
465 
466   /* Current number of elements in use in by_depth below.  */
467   unsigned int by_depth_in_use;
468 
469   /* Maximum number of elements that can be used before resizing.  */
470   unsigned int by_depth_max;
471 
472   /* Each element of this array is a pointer to a page_entry, all
473      page_entries can be found in here by increasing depth.
474      index_by_depth in the page_entry is the index into this data
475      structure where that page_entry can be found.  This is used to
476      speed up finding all page_entries at a particular depth.  */
477   page_entry **by_depth;
478 
479   /* Each element is a pointer to the saved in_use_p bits, if any,
480      zero otherwise.  We allocate them all together, to enable a
481      better runtime data access pattern.  */
482   unsigned long **save_in_use;
483 
484   /* Finalizers for single objects.  */
485   vec<finalizer> finalizers;
486 
487   /* Finalizers for vectors of objects.  */
488   vec<vec_finalizer> vec_finalizers;
489 
490 #ifdef ENABLE_GC_ALWAYS_COLLECT
491   /* List of free objects to be verified as actually free on the
492      next collection.  */
493   struct free_object *free_object_list;
494 #endif
495 
496   struct
497   {
498     /* Total GC-allocated memory.  */
499     unsigned long long total_allocated;
500     /* Total overhead for GC-allocated memory.  */
501     unsigned long long total_overhead;
502 
503     /* Total allocations and overhead for sizes less than 32, 64 and 128.
504        These sizes are interesting because they are typical cache line
505        sizes.  */
506 
507     unsigned long long total_allocated_under32;
508     unsigned long long total_overhead_under32;
509 
510     unsigned long long total_allocated_under64;
511     unsigned long long total_overhead_under64;
512 
513     unsigned long long total_allocated_under128;
514     unsigned long long total_overhead_under128;
515 
516     /* The allocations for each of the allocation orders.  */
517     unsigned long long total_allocated_per_order[NUM_ORDERS];
518 
519     /* The overhead for each of the allocation orders.  */
520     unsigned long long total_overhead_per_order[NUM_ORDERS];
521   } stats;
522 } G;
523 
524 /* True if a gc is currently taking place.  */
525 
526 static bool in_gc = false;
527 
528 /* The size in bytes required to maintain a bitmap for the objects
529    on a page-entry.  */
530 #define BITMAP_SIZE(Num_objects) \
531   (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
532 
533 /* Allocate pages in chunks of this size, to throttle calls to memory
534    allocation routines.  The first page is used, the rest go onto the
535    free list.  This cannot be larger than HOST_BITS_PER_INT for the
536    in_use bitmask for page_group.  Hosts that need a different value
537    can override this by defining GGC_QUIRE_SIZE explicitly.  */
538 #ifndef GGC_QUIRE_SIZE
539 # ifdef USING_MMAP
540 #  define GGC_QUIRE_SIZE 512	/* 2MB for 4K pages */
541 # else
542 #  define GGC_QUIRE_SIZE 16
543 # endif
544 #endif
545 
546 /* Initial guess as to how many page table entries we might need.  */
547 #define INITIAL_PTE_COUNT 128
548 
549 static int ggc_allocated_p (const void *);
550 static page_entry *lookup_page_table_entry (const void *);
551 static void set_page_table_entry (void *, page_entry *);
552 #ifdef USING_MMAP
553 static char *alloc_anon (char *, size_t, bool check);
554 #endif
555 #ifdef USING_MALLOC_PAGE_GROUPS
556 static size_t page_group_index (char *, char *);
557 static void set_page_group_in_use (page_group *, char *);
558 static void clear_page_group_in_use (page_group *, char *);
559 #endif
560 static struct page_entry * alloc_page (unsigned);
561 static void free_page (struct page_entry *);
562 static void release_pages (void);
563 static void clear_marks (void);
564 static void sweep_pages (void);
565 static void ggc_recalculate_in_use_p (page_entry *);
566 static void compute_inverse (unsigned);
567 static inline void adjust_depth (void);
568 static void move_ptes_to_front (int, int);
569 
570 void debug_print_page_list (int);
571 static void push_depth (unsigned int);
572 static void push_by_depth (page_entry *, unsigned long *);
573 
574 /* Push an entry onto G.depth.  */
575 
576 inline static void
577 push_depth (unsigned int i)
578 {
579   if (G.depth_in_use >= G.depth_max)
580     {
581       G.depth_max *= 2;
582       G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
583     }
584   G.depth[G.depth_in_use++] = i;
585 }
586 
587 /* Push an entry onto G.by_depth and G.save_in_use.  */
588 
589 inline static void
590 push_by_depth (page_entry *p, unsigned long *s)
591 {
592   if (G.by_depth_in_use >= G.by_depth_max)
593     {
594       G.by_depth_max *= 2;
595       G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
596       G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
597 				  G.by_depth_max);
598     }
599   G.by_depth[G.by_depth_in_use] = p;
600   G.save_in_use[G.by_depth_in_use++] = s;
601 }
602 
603 #if (GCC_VERSION < 3001)
604 #define prefetch(X) ((void) X)
605 #else
606 #define prefetch(X) __builtin_prefetch (X)
607 #endif
608 
609 #define save_in_use_p_i(__i) \
610   (G.save_in_use[__i])
611 #define save_in_use_p(__p) \
612   (save_in_use_p_i (__p->index_by_depth))
613 
614 /* Returns nonzero if P was allocated in GC'able memory.  */
615 
616 static inline int
617 ggc_allocated_p (const void *p)
618 {
619   page_entry ***base;
620   size_t L1, L2;
621 
622 #if HOST_BITS_PER_PTR <= 32
623   base = &G.lookup[0];
624 #else
625   page_table table = G.lookup;
626   uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
627   while (1)
628     {
629       if (table == NULL)
630 	return 0;
631       if (table->high_bits == high_bits)
632 	break;
633       table = table->next;
634     }
635   base = &table->table[0];
636 #endif
637 
638   /* Extract the level 1 and 2 indices.  */
639   L1 = LOOKUP_L1 (p);
640   L2 = LOOKUP_L2 (p);
641 
642   return base[L1] && base[L1][L2];
643 }
644 
645 /* Traverse the page table and find the entry for a page.
646    Die (probably) if the object wasn't allocated via GC.  */
647 
648 static inline page_entry *
649 lookup_page_table_entry (const void *p)
650 {
651   page_entry ***base;
652   size_t L1, L2;
653 
654 #if HOST_BITS_PER_PTR <= 32
655   base = &G.lookup[0];
656 #else
657   page_table table = G.lookup;
658   uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
659   while (table->high_bits != high_bits)
660     table = table->next;
661   base = &table->table[0];
662 #endif
663 
664   /* Extract the level 1 and 2 indices.  */
665   L1 = LOOKUP_L1 (p);
666   L2 = LOOKUP_L2 (p);
667 
668   return base[L1][L2];
669 }
670 
671 /* Set the page table entry for a page.  */
672 
673 static void
674 set_page_table_entry (void *p, page_entry *entry)
675 {
676   page_entry ***base;
677   size_t L1, L2;
678 
679 #if HOST_BITS_PER_PTR <= 32
680   base = &G.lookup[0];
681 #else
682   page_table table;
683   uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
684   for (table = G.lookup; table; table = table->next)
685     if (table->high_bits == high_bits)
686       goto found;
687 
688   /* Not found -- allocate a new table.  */
689   table = XCNEW (struct page_table_chain);
690   table->next = G.lookup;
691   table->high_bits = high_bits;
692   G.lookup = table;
693 found:
694   base = &table->table[0];
695 #endif
696 
697   /* Extract the level 1 and 2 indices.  */
698   L1 = LOOKUP_L1 (p);
699   L2 = LOOKUP_L2 (p);
700 
701   if (base[L1] == NULL)
702     base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
703 
704   base[L1][L2] = entry;
705 }
706 
707 /* Prints the page-entry for object size ORDER, for debugging.  */
708 
709 DEBUG_FUNCTION void
710 debug_print_page_list (int order)
711 {
712   page_entry *p;
713   printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
714 	  (void *) G.page_tails[order]);
715   p = G.pages[order];
716   while (p != NULL)
717     {
718       printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
719 	      p->num_free_objects);
720       p = p->next;
721     }
722   printf ("NULL\n");
723   fflush (stdout);
724 }
725 
726 #ifdef USING_MMAP
727 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
728    (if non-null).  The ifdef structure here is intended to cause a
729    compile error unless exactly one of the HAVE_* is defined.  */
730 
731 static inline char *
732 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
733 {
734 #ifdef HAVE_MMAP_ANON
735   char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
736 			      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
737 #endif
738 #ifdef HAVE_MMAP_DEV_ZERO
739   char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
740 			      MAP_PRIVATE, G.dev_zero_fd, 0);
741 #endif
742 
743   if (page == (char *) MAP_FAILED)
744     {
745       if (!check)
746         return NULL;
747       perror ("virtual memory exhausted");
748       exit (FATAL_EXIT_CODE);
749     }
750 
751   /* Remember that we allocated this memory.  */
752   G.bytes_mapped += size;
753 
754   /* Pretend we don't have access to the allocated pages.  We'll enable
755      access to smaller pieces of the area in ggc_internal_alloc.  Discard the
756      handle to avoid handle leak.  */
757   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
758 
759   return page;
760 }
761 #endif
762 #ifdef USING_MALLOC_PAGE_GROUPS
763 /* Compute the index for this page into the page group.  */
764 
765 static inline size_t
766 page_group_index (char *allocation, char *page)
767 {
768   return (size_t) (page - allocation) >> G.lg_pagesize;
769 }
770 
771 /* Set and clear the in_use bit for this page in the page group.  */
772 
773 static inline void
774 set_page_group_in_use (page_group *group, char *page)
775 {
776   group->in_use |= 1 << page_group_index (group->allocation, page);
777 }
778 
779 static inline void
780 clear_page_group_in_use (page_group *group, char *page)
781 {
782   group->in_use &= ~(1 << page_group_index (group->allocation, page));
783 }
784 #endif
785 
786 /* Allocate a new page for allocating objects of size 2^ORDER,
787    and return an entry for it.  The entry is not added to the
788    appropriate page_table list.  */
789 
790 static inline struct page_entry *
791 alloc_page (unsigned order)
792 {
793   struct page_entry *entry, *p, **pp;
794   char *page;
795   size_t num_objects;
796   size_t bitmap_size;
797   size_t page_entry_size;
798   size_t entry_size;
799 #ifdef USING_MALLOC_PAGE_GROUPS
800   page_group *group;
801 #endif
802 
803   num_objects = OBJECTS_PER_PAGE (order);
804   bitmap_size = BITMAP_SIZE (num_objects + 1);
805   page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
806   entry_size = num_objects * OBJECT_SIZE (order);
807   if (entry_size < G.pagesize)
808     entry_size = G.pagesize;
809   entry_size = PAGE_ALIGN (entry_size);
810 
811   entry = NULL;
812   page = NULL;
813 
814   /* Check the list of free pages for one we can use.  */
815   for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
816     if (p->bytes == entry_size)
817       break;
818 
819   if (p != NULL)
820     {
821       if (p->discarded)
822         G.bytes_mapped += p->bytes;
823       p->discarded = false;
824 
825       /* Recycle the allocated memory from this page ...  */
826       *pp = p->next;
827       page = p->page;
828 
829 #ifdef USING_MALLOC_PAGE_GROUPS
830       group = p->group;
831 #endif
832 
833       /* ... and, if possible, the page entry itself.  */
834       if (p->order == order)
835 	{
836 	  entry = p;
837 	  memset (entry, 0, page_entry_size);
838 	}
839       else
840 	free (p);
841     }
842 #ifdef USING_MMAP
843   else if (entry_size == G.pagesize)
844     {
845       /* We want just one page.  Allocate a bunch of them and put the
846 	 extras on the freelist.  (Can only do this optimization with
847 	 mmap for backing store.)  */
848       struct page_entry *e, *f = G.free_pages;
849       int i, entries = GGC_QUIRE_SIZE;
850 
851       page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
852       if (page == NULL)
853      	{
854 	  page = alloc_anon (NULL, G.pagesize, true);
855           entries = 1;
856 	}
857 
858       /* This loop counts down so that the chain will be in ascending
859 	 memory order.  */
860       for (i = entries - 1; i >= 1; i--)
861 	{
862 	  e = XCNEWVAR (struct page_entry, page_entry_size);
863 	  e->order = order;
864 	  e->bytes = G.pagesize;
865 	  e->page = page + (i << G.lg_pagesize);
866 	  e->next = f;
867 	  f = e;
868 	}
869 
870       G.free_pages = f;
871     }
872   else
873     page = alloc_anon (NULL, entry_size, true);
874 #endif
875 #ifdef USING_MALLOC_PAGE_GROUPS
876   else
877     {
878       /* Allocate a large block of memory and serve out the aligned
879 	 pages therein.  This results in much less memory wastage
880 	 than the traditional implementation of valloc.  */
881 
882       char *allocation, *a, *enda;
883       size_t alloc_size, head_slop, tail_slop;
884       int multiple_pages = (entry_size == G.pagesize);
885 
886       if (multiple_pages)
887 	alloc_size = GGC_QUIRE_SIZE * G.pagesize;
888       else
889 	alloc_size = entry_size + G.pagesize - 1;
890       allocation = XNEWVEC (char, alloc_size);
891 
892       page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
893       head_slop = page - allocation;
894       if (multiple_pages)
895 	tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
896       else
897 	tail_slop = alloc_size - entry_size - head_slop;
898       enda = allocation + alloc_size - tail_slop;
899 
900       /* We allocated N pages, which are likely not aligned, leaving
901 	 us with N-1 usable pages.  We plan to place the page_group
902 	 structure somewhere in the slop.  */
903       if (head_slop >= sizeof (page_group))
904 	group = (page_group *)page - 1;
905       else
906 	{
907 	  /* We magically got an aligned allocation.  Too bad, we have
908 	     to waste a page anyway.  */
909 	  if (tail_slop == 0)
910 	    {
911 	      enda -= G.pagesize;
912 	      tail_slop += G.pagesize;
913 	    }
914 	  gcc_assert (tail_slop >= sizeof (page_group));
915 	  group = (page_group *)enda;
916 	  tail_slop -= sizeof (page_group);
917 	}
918 
919       /* Remember that we allocated this memory.  */
920       group->next = G.page_groups;
921       group->allocation = allocation;
922       group->alloc_size = alloc_size;
923       group->in_use = 0;
924       G.page_groups = group;
925       G.bytes_mapped += alloc_size;
926 
927       /* If we allocated multiple pages, put the rest on the free list.  */
928       if (multiple_pages)
929 	{
930 	  struct page_entry *e, *f = G.free_pages;
931 	  for (a = enda - G.pagesize; a != page; a -= G.pagesize)
932 	    {
933 	      e = XCNEWVAR (struct page_entry, page_entry_size);
934 	      e->order = order;
935 	      e->bytes = G.pagesize;
936 	      e->page = a;
937 	      e->group = group;
938 	      e->next = f;
939 	      f = e;
940 	    }
941 	  G.free_pages = f;
942 	}
943     }
944 #endif
945 
946   if (entry == NULL)
947     entry = XCNEWVAR (struct page_entry, page_entry_size);
948 
949   entry->bytes = entry_size;
950   entry->page = page;
951   entry->context_depth = G.context_depth;
952   entry->order = order;
953   entry->num_free_objects = num_objects;
954   entry->next_bit_hint = 1;
955 
956   G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
957 
958 #ifdef USING_MALLOC_PAGE_GROUPS
959   entry->group = group;
960   set_page_group_in_use (group, page);
961 #endif
962 
963   /* Set the one-past-the-end in-use bit.  This acts as a sentry as we
964      increment the hint.  */
965   entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
966     = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
967 
968   set_page_table_entry (page, entry);
969 
970   if (GGC_DEBUG_LEVEL >= 2)
971     fprintf (G.debug_file,
972 	     "Allocating page at %p, object size=%lu, data %p-%p\n",
973 	     (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
974 	     page + entry_size - 1);
975 
976   return entry;
977 }
978 
979 /* Adjust the size of G.depth so that no index greater than the one
980    used by the top of the G.by_depth is used.  */
981 
982 static inline void
983 adjust_depth (void)
984 {
985   page_entry *top;
986 
987   if (G.by_depth_in_use)
988     {
989       top = G.by_depth[G.by_depth_in_use-1];
990 
991       /* Peel back indices in depth that index into by_depth, so that
992 	 as new elements are added to by_depth, we note the indices
993 	 of those elements, if they are for new context depths.  */
994       while (G.depth_in_use > (size_t)top->context_depth+1)
995 	--G.depth_in_use;
996     }
997 }
998 
999 /* For a page that is no longer needed, put it on the free page list.  */
1000 
1001 static void
1002 free_page (page_entry *entry)
1003 {
1004   if (GGC_DEBUG_LEVEL >= 2)
1005     fprintf (G.debug_file,
1006 	     "Deallocating page at %p, data %p-%p\n", (void *) entry,
1007 	     entry->page, entry->page + entry->bytes - 1);
1008 
1009   /* Mark the page as inaccessible.  Discard the handle to avoid handle
1010      leak.  */
1011   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
1012 
1013   set_page_table_entry (entry->page, NULL);
1014 
1015 #ifdef USING_MALLOC_PAGE_GROUPS
1016   clear_page_group_in_use (entry->group, entry->page);
1017 #endif
1018 
1019   if (G.by_depth_in_use > 1)
1020     {
1021       page_entry *top = G.by_depth[G.by_depth_in_use-1];
1022       int i = entry->index_by_depth;
1023 
1024       /* We cannot free a page from a context deeper than the current
1025 	 one.  */
1026       gcc_assert (entry->context_depth == top->context_depth);
1027 
1028       /* Put top element into freed slot.  */
1029       G.by_depth[i] = top;
1030       G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1031       top->index_by_depth = i;
1032     }
1033   --G.by_depth_in_use;
1034 
1035   adjust_depth ();
1036 
1037   entry->next = G.free_pages;
1038   G.free_pages = entry;
1039 }
1040 
1041 /* Release the free page cache to the system.  */
1042 
1043 static void
1044 release_pages (void)
1045 {
1046 #ifdef USING_MADVISE
1047   page_entry *p, *start_p;
1048   char *start;
1049   size_t len;
1050   size_t mapped_len;
1051   page_entry *next, *prev, *newprev;
1052   size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1053 
1054   /* First free larger continuous areas to the OS.
1055      This allows other allocators to grab these areas if needed.
1056      This is only done on larger chunks to avoid fragmentation.
1057      This does not always work because the free_pages list is only
1058      approximately sorted. */
1059 
1060   p = G.free_pages;
1061   prev = NULL;
1062   while (p)
1063     {
1064       start = p->page;
1065       start_p = p;
1066       len = 0;
1067       mapped_len = 0;
1068       newprev = prev;
1069       while (p && p->page == start + len)
1070         {
1071           len += p->bytes;
1072 	  if (!p->discarded)
1073 	      mapped_len += p->bytes;
1074 	  newprev = p;
1075           p = p->next;
1076         }
1077       if (len >= free_unit)
1078         {
1079           while (start_p != p)
1080             {
1081               next = start_p->next;
1082               free (start_p);
1083               start_p = next;
1084             }
1085           munmap (start, len);
1086 	  if (prev)
1087 	    prev->next = p;
1088           else
1089             G.free_pages = p;
1090           G.bytes_mapped -= mapped_len;
1091 	  continue;
1092         }
1093       prev = newprev;
1094    }
1095 
1096   /* Now give back the fragmented pages to the OS, but keep the address
1097      space to reuse it next time. */
1098 
1099   for (p = G.free_pages; p; )
1100     {
1101       if (p->discarded)
1102         {
1103           p = p->next;
1104           continue;
1105         }
1106       start = p->page;
1107       len = p->bytes;
1108       start_p = p;
1109       p = p->next;
1110       while (p && p->page == start + len)
1111         {
1112           len += p->bytes;
1113           p = p->next;
1114         }
1115       /* Give the page back to the kernel, but don't free the mapping.
1116          This avoids fragmentation in the virtual memory map of the
1117  	 process. Next time we can reuse it by just touching it. */
1118       madvise (start, len, MADV_DONTNEED);
1119       /* Don't count those pages as mapped to not touch the garbage collector
1120          unnecessarily. */
1121       G.bytes_mapped -= len;
1122       while (start_p != p)
1123         {
1124           start_p->discarded = true;
1125           start_p = start_p->next;
1126         }
1127     }
1128 #endif
1129 #if defined(USING_MMAP) && !defined(USING_MADVISE)
1130   page_entry *p, *next;
1131   char *start;
1132   size_t len;
1133 
1134   /* Gather up adjacent pages so they are unmapped together.  */
1135   p = G.free_pages;
1136 
1137   while (p)
1138     {
1139       start = p->page;
1140       next = p->next;
1141       len = p->bytes;
1142       free (p);
1143       p = next;
1144 
1145       while (p && p->page == start + len)
1146 	{
1147 	  next = p->next;
1148 	  len += p->bytes;
1149 	  free (p);
1150 	  p = next;
1151 	}
1152 
1153       munmap (start, len);
1154       G.bytes_mapped -= len;
1155     }
1156 
1157   G.free_pages = NULL;
1158 #endif
1159 #ifdef USING_MALLOC_PAGE_GROUPS
1160   page_entry **pp, *p;
1161   page_group **gp, *g;
1162 
1163   /* Remove all pages from free page groups from the list.  */
1164   pp = &G.free_pages;
1165   while ((p = *pp) != NULL)
1166     if (p->group->in_use == 0)
1167       {
1168 	*pp = p->next;
1169 	free (p);
1170       }
1171     else
1172       pp = &p->next;
1173 
1174   /* Remove all free page groups, and release the storage.  */
1175   gp = &G.page_groups;
1176   while ((g = *gp) != NULL)
1177     if (g->in_use == 0)
1178       {
1179 	*gp = g->next;
1180 	G.bytes_mapped -= g->alloc_size;
1181 	free (g->allocation);
1182       }
1183     else
1184       gp = &g->next;
1185 #endif
1186 }
1187 
1188 /* This table provides a fast way to determine ceil(log_2(size)) for
1189    allocation requests.  The minimum allocation size is eight bytes.  */
1190 #define NUM_SIZE_LOOKUP 512
1191 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1192 {
1193   3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1194   4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1195   5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1196   6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1197   6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1198   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1199   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1200   7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1201   7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1202   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1203   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1204   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1205   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1206   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1207   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1208   8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1209   8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1210   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1211   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1212   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1213   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1214   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1215   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1216   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1217   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1218   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1219   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1220   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1221   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1222   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1223   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1224   9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1225 };
1226 
1227 /* For a given size of memory requested for allocation, return the
1228    actual size that is going to be allocated, as well as the size
1229    order.  */
1230 
1231 static void
1232 ggc_round_alloc_size_1 (size_t requested_size,
1233 			size_t *size_order,
1234 			size_t *alloced_size)
1235 {
1236   size_t order, object_size;
1237 
1238   if (requested_size < NUM_SIZE_LOOKUP)
1239     {
1240       order = size_lookup[requested_size];
1241       object_size = OBJECT_SIZE (order);
1242     }
1243   else
1244     {
1245       order = 10;
1246       while (requested_size > (object_size = OBJECT_SIZE (order)))
1247         order++;
1248     }
1249 
1250   if (size_order)
1251     *size_order = order;
1252   if (alloced_size)
1253     *alloced_size = object_size;
1254 }
1255 
1256 /* For a given size of memory requested for allocation, return the
1257    actual size that is going to be allocated.  */
1258 
1259 size_t
1260 ggc_round_alloc_size (size_t requested_size)
1261 {
1262   size_t size = 0;
1263 
1264   ggc_round_alloc_size_1 (requested_size, NULL, &size);
1265   return size;
1266 }
1267 
1268 /* Allocate a chunk of memory of SIZE bytes.  Its contents are undefined.  */
1269 
1270 void *
1271 ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1272 		    MEM_STAT_DECL)
1273 {
1274   size_t order, word, bit, object_offset, object_size;
1275   struct page_entry *entry;
1276   void *result;
1277 
1278   ggc_round_alloc_size_1 (size, &order, &object_size);
1279 
1280   /* If there are non-full pages for this size allocation, they are at
1281      the head of the list.  */
1282   entry = G.pages[order];
1283 
1284   /* If there is no page for this object size, or all pages in this
1285      context are full, allocate a new page.  */
1286   if (entry == NULL || entry->num_free_objects == 0)
1287     {
1288       struct page_entry *new_entry;
1289       new_entry = alloc_page (order);
1290 
1291       new_entry->index_by_depth = G.by_depth_in_use;
1292       push_by_depth (new_entry, 0);
1293 
1294       /* We can skip context depths, if we do, make sure we go all the
1295 	 way to the new depth.  */
1296       while (new_entry->context_depth >= G.depth_in_use)
1297 	push_depth (G.by_depth_in_use-1);
1298 
1299       /* If this is the only entry, it's also the tail.  If it is not
1300 	 the only entry, then we must update the PREV pointer of the
1301 	 ENTRY (G.pages[order]) to point to our new page entry.  */
1302       if (entry == NULL)
1303 	G.page_tails[order] = new_entry;
1304       else
1305 	entry->prev = new_entry;
1306 
1307       /* Put new pages at the head of the page list.  By definition the
1308 	 entry at the head of the list always has a NULL pointer.  */
1309       new_entry->next = entry;
1310       new_entry->prev = NULL;
1311       entry = new_entry;
1312       G.pages[order] = new_entry;
1313 
1314       /* For a new page, we know the word and bit positions (in the
1315 	 in_use bitmap) of the first available object -- they're zero.  */
1316       new_entry->next_bit_hint = 1;
1317       word = 0;
1318       bit = 0;
1319       object_offset = 0;
1320     }
1321   else
1322     {
1323       /* First try to use the hint left from the previous allocation
1324 	 to locate a clear bit in the in-use bitmap.  We've made sure
1325 	 that the one-past-the-end bit is always set, so if the hint
1326 	 has run over, this test will fail.  */
1327       unsigned hint = entry->next_bit_hint;
1328       word = hint / HOST_BITS_PER_LONG;
1329       bit = hint % HOST_BITS_PER_LONG;
1330 
1331       /* If the hint didn't work, scan the bitmap from the beginning.  */
1332       if ((entry->in_use_p[word] >> bit) & 1)
1333 	{
1334 	  word = bit = 0;
1335 	  while (~entry->in_use_p[word] == 0)
1336 	    ++word;
1337 
1338 #if GCC_VERSION >= 3004
1339 	  bit = __builtin_ctzl (~entry->in_use_p[word]);
1340 #else
1341 	  while ((entry->in_use_p[word] >> bit) & 1)
1342 	    ++bit;
1343 #endif
1344 
1345 	  hint = word * HOST_BITS_PER_LONG + bit;
1346 	}
1347 
1348       /* Next time, try the next bit.  */
1349       entry->next_bit_hint = hint + 1;
1350 
1351       object_offset = hint * object_size;
1352     }
1353 
1354   /* Set the in-use bit.  */
1355   entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1356 
1357   /* Keep a running total of the number of free objects.  If this page
1358      fills up, we may have to move it to the end of the list if the
1359      next page isn't full.  If the next page is full, all subsequent
1360      pages are full, so there's no need to move it.  */
1361   if (--entry->num_free_objects == 0
1362       && entry->next != NULL
1363       && entry->next->num_free_objects > 0)
1364     {
1365       /* We have a new head for the list.  */
1366       G.pages[order] = entry->next;
1367 
1368       /* We are moving ENTRY to the end of the page table list.
1369 	 The new page at the head of the list will have NULL in
1370 	 its PREV field and ENTRY will have NULL in its NEXT field.  */
1371       entry->next->prev = NULL;
1372       entry->next = NULL;
1373 
1374       /* Append ENTRY to the tail of the list.  */
1375       entry->prev = G.page_tails[order];
1376       G.page_tails[order]->next = entry;
1377       G.page_tails[order] = entry;
1378     }
1379 
1380   /* Calculate the object's address.  */
1381   result = entry->page + object_offset;
1382   if (GATHER_STATISTICS)
1383     ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1384 			 result FINAL_PASS_MEM_STAT);
1385 
1386 #ifdef ENABLE_GC_CHECKING
1387   /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1388      exact same semantics in presence of memory bugs, regardless of
1389      ENABLE_VALGRIND_CHECKING.  We override this request below.  Drop the
1390      handle to avoid handle leak.  */
1391   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1392 
1393   /* `Poison' the entire allocated object, including any padding at
1394      the end.  */
1395   memset (result, 0xaf, object_size);
1396 
1397   /* Make the bytes after the end of the object unaccessible.  Discard the
1398      handle to avoid handle leak.  */
1399   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1400 						object_size - size));
1401 #endif
1402 
1403   /* Tell Valgrind that the memory is there, but its content isn't
1404      defined.  The bytes at the end of the object are still marked
1405      unaccessible.  */
1406   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1407 
1408   /* Keep track of how many bytes are being allocated.  This
1409      information is used in deciding when to collect.  */
1410   G.allocated += object_size;
1411 
1412   /* For timevar statistics.  */
1413   timevar_ggc_mem_total += object_size;
1414 
1415   if (f && n == 1)
1416     G.finalizers.safe_push (finalizer (result, f));
1417   else if (f)
1418     G.vec_finalizers.safe_push
1419       (vec_finalizer (reinterpret_cast<uintptr_t> (result), f, s, n));
1420 
1421   if (GATHER_STATISTICS)
1422     {
1423       size_t overhead = object_size - size;
1424 
1425       G.stats.total_overhead += overhead;
1426       G.stats.total_allocated += object_size;
1427       G.stats.total_overhead_per_order[order] += overhead;
1428       G.stats.total_allocated_per_order[order] += object_size;
1429 
1430       if (size <= 32)
1431 	{
1432 	  G.stats.total_overhead_under32 += overhead;
1433 	  G.stats.total_allocated_under32 += object_size;
1434 	}
1435       if (size <= 64)
1436 	{
1437 	  G.stats.total_overhead_under64 += overhead;
1438 	  G.stats.total_allocated_under64 += object_size;
1439 	}
1440       if (size <= 128)
1441 	{
1442 	  G.stats.total_overhead_under128 += overhead;
1443 	  G.stats.total_allocated_under128 += object_size;
1444 	}
1445     }
1446 
1447   if (GGC_DEBUG_LEVEL >= 3)
1448     fprintf (G.debug_file,
1449 	     "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1450 	     (unsigned long) size, (unsigned long) object_size, result,
1451 	     (void *) entry);
1452 
1453   return result;
1454 }
1455 
1456 /* Mark function for strings.  */
1457 
1458 void
1459 gt_ggc_m_S (const void *p)
1460 {
1461   page_entry *entry;
1462   unsigned bit, word;
1463   unsigned long mask;
1464   unsigned long offset;
1465 
1466   if (!p || !ggc_allocated_p (p))
1467     return;
1468 
1469   /* Look up the page on which the object is alloced.  .  */
1470   entry = lookup_page_table_entry (p);
1471   gcc_assert (entry);
1472 
1473   /* Calculate the index of the object on the page; this is its bit
1474      position in the in_use_p bitmap.  Note that because a char* might
1475      point to the middle of an object, we need special code here to
1476      make sure P points to the start of an object.  */
1477   offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1478   if (offset)
1479     {
1480       /* Here we've seen a char* which does not point to the beginning
1481 	 of an allocated object.  We assume it points to the middle of
1482 	 a STRING_CST.  */
1483       gcc_assert (offset == offsetof (struct tree_string, str));
1484       p = ((const char *) p) - offset;
1485       gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1486       return;
1487     }
1488 
1489   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1490   word = bit / HOST_BITS_PER_LONG;
1491   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1492 
1493   /* If the bit was previously set, skip it.  */
1494   if (entry->in_use_p[word] & mask)
1495     return;
1496 
1497   /* Otherwise set it, and decrement the free object count.  */
1498   entry->in_use_p[word] |= mask;
1499   entry->num_free_objects -= 1;
1500 
1501   if (GGC_DEBUG_LEVEL >= 4)
1502     fprintf (G.debug_file, "Marking %p\n", p);
1503 
1504   return;
1505 }
1506 
1507 
1508 /* User-callable entry points for marking string X.  */
1509 
1510 void
1511 gt_ggc_mx (const char *& x)
1512 {
1513   gt_ggc_m_S (x);
1514 }
1515 
1516 void
1517 gt_ggc_mx (unsigned char *& x)
1518 {
1519   gt_ggc_m_S (x);
1520 }
1521 
1522 void
1523 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1524 {
1525 }
1526 
1527 /* If P is not marked, marks it and return false.  Otherwise return true.
1528    P must have been allocated by the GC allocator; it mustn't point to
1529    static objects, stack variables, or memory allocated with malloc.  */
1530 
1531 int
1532 ggc_set_mark (const void *p)
1533 {
1534   page_entry *entry;
1535   unsigned bit, word;
1536   unsigned long mask;
1537 
1538   /* Look up the page on which the object is alloced.  If the object
1539      wasn't allocated by the collector, we'll probably die.  */
1540   entry = lookup_page_table_entry (p);
1541   gcc_assert (entry);
1542 
1543   /* Calculate the index of the object on the page; this is its bit
1544      position in the in_use_p bitmap.  */
1545   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1546   word = bit / HOST_BITS_PER_LONG;
1547   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1548 
1549   /* If the bit was previously set, skip it.  */
1550   if (entry->in_use_p[word] & mask)
1551     return 1;
1552 
1553   /* Otherwise set it, and decrement the free object count.  */
1554   entry->in_use_p[word] |= mask;
1555   entry->num_free_objects -= 1;
1556 
1557   if (GGC_DEBUG_LEVEL >= 4)
1558     fprintf (G.debug_file, "Marking %p\n", p);
1559 
1560   return 0;
1561 }
1562 
1563 /* Return 1 if P has been marked, zero otherwise.
1564    P must have been allocated by the GC allocator; it mustn't point to
1565    static objects, stack variables, or memory allocated with malloc.  */
1566 
1567 int
1568 ggc_marked_p (const void *p)
1569 {
1570   page_entry *entry;
1571   unsigned bit, word;
1572   unsigned long mask;
1573 
1574   /* Look up the page on which the object is alloced.  If the object
1575      wasn't allocated by the collector, we'll probably die.  */
1576   entry = lookup_page_table_entry (p);
1577   gcc_assert (entry);
1578 
1579   /* Calculate the index of the object on the page; this is its bit
1580      position in the in_use_p bitmap.  */
1581   bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1582   word = bit / HOST_BITS_PER_LONG;
1583   mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1584 
1585   return (entry->in_use_p[word] & mask) != 0;
1586 }
1587 
1588 /* Return the size of the gc-able object P.  */
1589 
1590 size_t
1591 ggc_get_size (const void *p)
1592 {
1593   page_entry *pe = lookup_page_table_entry (p);
1594   return OBJECT_SIZE (pe->order);
1595 }
1596 
1597 /* Release the memory for object P.  */
1598 
1599 void
1600 ggc_free (void *p)
1601 {
1602   if (in_gc)
1603     return;
1604 
1605   page_entry *pe = lookup_page_table_entry (p);
1606   size_t order = pe->order;
1607   size_t size = OBJECT_SIZE (order);
1608 
1609   if (GATHER_STATISTICS)
1610     ggc_free_overhead (p);
1611 
1612   if (GGC_DEBUG_LEVEL >= 3)
1613     fprintf (G.debug_file,
1614 	     "Freeing object, actual size=%lu, at %p on %p\n",
1615 	     (unsigned long) size, p, (void *) pe);
1616 
1617 #ifdef ENABLE_GC_CHECKING
1618   /* Poison the data, to indicate the data is garbage.  */
1619   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1620   memset (p, 0xa5, size);
1621 #endif
1622   /* Let valgrind know the object is free.  */
1623   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1624 
1625 #ifdef ENABLE_GC_ALWAYS_COLLECT
1626   /* In the completely-anal-checking mode, we do *not* immediately free
1627      the data, but instead verify that the data is *actually* not
1628      reachable the next time we collect.  */
1629   {
1630     struct free_object *fo = XNEW (struct free_object);
1631     fo->object = p;
1632     fo->next = G.free_object_list;
1633     G.free_object_list = fo;
1634   }
1635 #else
1636   {
1637     unsigned int bit_offset, word, bit;
1638 
1639     G.allocated -= size;
1640 
1641     /* Mark the object not-in-use.  */
1642     bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1643     word = bit_offset / HOST_BITS_PER_LONG;
1644     bit = bit_offset % HOST_BITS_PER_LONG;
1645     pe->in_use_p[word] &= ~(1UL << bit);
1646 
1647     if (pe->num_free_objects++ == 0)
1648       {
1649 	page_entry *p, *q;
1650 
1651 	/* If the page is completely full, then it's supposed to
1652 	   be after all pages that aren't.  Since we've freed one
1653 	   object from a page that was full, we need to move the
1654 	   page to the head of the list.
1655 
1656 	   PE is the node we want to move.  Q is the previous node
1657 	   and P is the next node in the list.  */
1658 	q = pe->prev;
1659 	if (q && q->num_free_objects == 0)
1660 	  {
1661 	    p = pe->next;
1662 
1663 	    q->next = p;
1664 
1665 	    /* If PE was at the end of the list, then Q becomes the
1666 	       new end of the list.  If PE was not the end of the
1667 	       list, then we need to update the PREV field for P.  */
1668 	    if (!p)
1669 	      G.page_tails[order] = q;
1670 	    else
1671 	      p->prev = q;
1672 
1673 	    /* Move PE to the head of the list.  */
1674 	    pe->next = G.pages[order];
1675 	    pe->prev = NULL;
1676 	    G.pages[order]->prev = pe;
1677 	    G.pages[order] = pe;
1678 	  }
1679 
1680 	/* Reset the hint bit to point to the only free object.  */
1681 	pe->next_bit_hint = bit_offset;
1682       }
1683   }
1684 #endif
1685 }
1686 
1687 /* Subroutine of init_ggc which computes the pair of numbers used to
1688    perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1689 
1690    This algorithm is taken from Granlund and Montgomery's paper
1691    "Division by Invariant Integers using Multiplication"
1692    (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1693    constants).  */
1694 
1695 static void
1696 compute_inverse (unsigned order)
1697 {
1698   size_t size, inv;
1699   unsigned int e;
1700 
1701   size = OBJECT_SIZE (order);
1702   e = 0;
1703   while (size % 2 == 0)
1704     {
1705       e++;
1706       size >>= 1;
1707     }
1708 
1709   inv = size;
1710   while (inv * size != 1)
1711     inv = inv * (2 - inv*size);
1712 
1713   DIV_MULT (order) = inv;
1714   DIV_SHIFT (order) = e;
1715 }
1716 
1717 /* Initialize the ggc-mmap allocator.  */
1718 void
1719 init_ggc (void)
1720 {
1721   static bool init_p = false;
1722   unsigned order;
1723 
1724   if (init_p)
1725     return;
1726   init_p = true;
1727 
1728   G.pagesize = getpagesize ();
1729   G.lg_pagesize = exact_log2 (G.pagesize);
1730 
1731 #ifdef HAVE_MMAP_DEV_ZERO
1732   G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1733   if (G.dev_zero_fd == -1)
1734     internal_error ("open /dev/zero: %m");
1735 #endif
1736 
1737 #if 0
1738   G.debug_file = fopen ("ggc-mmap.debug", "w");
1739 #else
1740   G.debug_file = stdout;
1741 #endif
1742 
1743 #ifdef USING_MMAP
1744   /* StunOS has an amazing off-by-one error for the first mmap allocation
1745      after fiddling with RLIMIT_STACK.  The result, as hard as it is to
1746      believe, is an unaligned page allocation, which would cause us to
1747      hork badly if we tried to use it.  */
1748   {
1749     char *p = alloc_anon (NULL, G.pagesize, true);
1750     struct page_entry *e;
1751     if ((uintptr_t)p & (G.pagesize - 1))
1752       {
1753 	/* How losing.  Discard this one and try another.  If we still
1754 	   can't get something useful, give up.  */
1755 
1756 	p = alloc_anon (NULL, G.pagesize, true);
1757 	gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1758       }
1759 
1760     /* We have a good page, might as well hold onto it...  */
1761     e = XCNEW (struct page_entry);
1762     e->bytes = G.pagesize;
1763     e->page = p;
1764     e->next = G.free_pages;
1765     G.free_pages = e;
1766   }
1767 #endif
1768 
1769   /* Initialize the object size table.  */
1770   for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1771     object_size_table[order] = (size_t) 1 << order;
1772   for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1773     {
1774       size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1775 
1776       /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1777 	 so that we're sure of getting aligned memory.  */
1778       s = ROUND_UP (s, MAX_ALIGNMENT);
1779       object_size_table[order] = s;
1780     }
1781 
1782   /* Initialize the objects-per-page and inverse tables.  */
1783   for (order = 0; order < NUM_ORDERS; ++order)
1784     {
1785       objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1786       if (objects_per_page_table[order] == 0)
1787 	objects_per_page_table[order] = 1;
1788       compute_inverse (order);
1789     }
1790 
1791   /* Reset the size_lookup array to put appropriately sized objects in
1792      the special orders.  All objects bigger than the previous power
1793      of two, but no greater than the special size, should go in the
1794      new order.  */
1795   for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1796     {
1797       int o;
1798       int i;
1799 
1800       i = OBJECT_SIZE (order);
1801       if (i >= NUM_SIZE_LOOKUP)
1802 	continue;
1803 
1804       for (o = size_lookup[i]; o == size_lookup [i]; --i)
1805 	size_lookup[i] = order;
1806     }
1807 
1808   G.depth_in_use = 0;
1809   G.depth_max = 10;
1810   G.depth = XNEWVEC (unsigned int, G.depth_max);
1811 
1812   G.by_depth_in_use = 0;
1813   G.by_depth_max = INITIAL_PTE_COUNT;
1814   G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1815   G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1816 }
1817 
1818 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1819    reflects reality.  Recalculate NUM_FREE_OBJECTS as well.  */
1820 
1821 static void
1822 ggc_recalculate_in_use_p (page_entry *p)
1823 {
1824   unsigned int i;
1825   size_t num_objects;
1826 
1827   /* Because the past-the-end bit in in_use_p is always set, we
1828      pretend there is one additional object.  */
1829   num_objects = OBJECTS_IN_PAGE (p) + 1;
1830 
1831   /* Reset the free object count.  */
1832   p->num_free_objects = num_objects;
1833 
1834   /* Combine the IN_USE_P and SAVE_IN_USE_P arrays.  */
1835   for (i = 0;
1836        i < CEIL (BITMAP_SIZE (num_objects),
1837 		 sizeof (*p->in_use_p));
1838        ++i)
1839     {
1840       unsigned long j;
1841 
1842       /* Something is in use if it is marked, or if it was in use in a
1843 	 context further down the context stack.  */
1844       p->in_use_p[i] |= save_in_use_p (p)[i];
1845 
1846       /* Decrement the free object count for every object allocated.  */
1847       for (j = p->in_use_p[i]; j; j >>= 1)
1848 	p->num_free_objects -= (j & 1);
1849     }
1850 
1851   gcc_assert (p->num_free_objects < num_objects);
1852 }
1853 
1854 /* Unmark all objects.  */
1855 
1856 static void
1857 clear_marks (void)
1858 {
1859   unsigned order;
1860 
1861   for (order = 2; order < NUM_ORDERS; order++)
1862     {
1863       page_entry *p;
1864 
1865       for (p = G.pages[order]; p != NULL; p = p->next)
1866 	{
1867 	  size_t num_objects = OBJECTS_IN_PAGE (p);
1868 	  size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1869 
1870 	  /* The data should be page-aligned.  */
1871 	  gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
1872 
1873 	  /* Pages that aren't in the topmost context are not collected;
1874 	     nevertheless, we need their in-use bit vectors to store GC
1875 	     marks.  So, back them up first.  */
1876 	  if (p->context_depth < G.context_depth)
1877 	    {
1878 	      if (! save_in_use_p (p))
1879 		save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1880 	      memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1881 	    }
1882 
1883 	  /* Reset reset the number of free objects and clear the
1884              in-use bits.  These will be adjusted by mark_obj.  */
1885 	  p->num_free_objects = num_objects;
1886 	  memset (p->in_use_p, 0, bitmap_size);
1887 
1888 	  /* Make sure the one-past-the-end bit is always set.  */
1889 	  p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1890 	    = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1891 	}
1892     }
1893 }
1894 
1895 /* Check if any blocks with a registered finalizer have become unmarked. If so
1896    run the finalizer and unregister it because the block is about to be freed.
1897    Note that no garantee is made about what order finalizers will run in so
1898    touching other objects in gc memory is extremely unwise.  */
1899 
1900 static void
1901 ggc_handle_finalizers ()
1902 {
1903   if (G.context_depth != 0)
1904     return;
1905 
1906   unsigned length = G.finalizers.length ();
1907   for (unsigned int i = 0; i < length;)
1908     {
1909       finalizer &f = G.finalizers[i];
1910       if (!ggc_marked_p (f.addr ()))
1911 	{
1912 	  f.call ();
1913 	  G.finalizers.unordered_remove (i);
1914 	  length--;
1915 	}
1916       else
1917 	i++;
1918     }
1919 
1920 
1921   length = G.vec_finalizers.length ();
1922   for (unsigned int i = 0; i < length;)
1923     {
1924       vec_finalizer &f = G.vec_finalizers[i];
1925       if (!ggc_marked_p (f.addr ()))
1926 	{
1927 	  f.call ();
1928 	  G.vec_finalizers.unordered_remove (i);
1929 	  length--;
1930 	}
1931       else
1932 	i++;
1933     }
1934 }
1935 
1936 /* Free all empty pages.  Partially empty pages need no attention
1937    because the `mark' bit doubles as an `unused' bit.  */
1938 
1939 static void
1940 sweep_pages (void)
1941 {
1942   unsigned order;
1943 
1944   for (order = 2; order < NUM_ORDERS; order++)
1945     {
1946       /* The last page-entry to consider, regardless of entries
1947 	 placed at the end of the list.  */
1948       page_entry * const last = G.page_tails[order];
1949 
1950       size_t num_objects;
1951       size_t live_objects;
1952       page_entry *p, *previous;
1953       int done;
1954 
1955       p = G.pages[order];
1956       if (p == NULL)
1957 	continue;
1958 
1959       previous = NULL;
1960       do
1961 	{
1962 	  page_entry *next = p->next;
1963 
1964 	  /* Loop until all entries have been examined.  */
1965 	  done = (p == last);
1966 
1967 	  num_objects = OBJECTS_IN_PAGE (p);
1968 
1969 	  /* Add all live objects on this page to the count of
1970              allocated memory.  */
1971 	  live_objects = num_objects - p->num_free_objects;
1972 
1973 	  G.allocated += OBJECT_SIZE (order) * live_objects;
1974 
1975 	  /* Only objects on pages in the topmost context should get
1976 	     collected.  */
1977 	  if (p->context_depth < G.context_depth)
1978 	    ;
1979 
1980 	  /* Remove the page if it's empty.  */
1981 	  else if (live_objects == 0)
1982 	    {
1983 	      /* If P was the first page in the list, then NEXT
1984 		 becomes the new first page in the list, otherwise
1985 		 splice P out of the forward pointers.  */
1986 	      if (! previous)
1987 		G.pages[order] = next;
1988 	      else
1989 		previous->next = next;
1990 
1991 	      /* Splice P out of the back pointers too.  */
1992 	      if (next)
1993 		next->prev = previous;
1994 
1995 	      /* Are we removing the last element?  */
1996 	      if (p == G.page_tails[order])
1997 		G.page_tails[order] = previous;
1998 	      free_page (p);
1999 	      p = previous;
2000 	    }
2001 
2002 	  /* If the page is full, move it to the end.  */
2003 	  else if (p->num_free_objects == 0)
2004 	    {
2005 	      /* Don't move it if it's already at the end.  */
2006 	      if (p != G.page_tails[order])
2007 		{
2008 		  /* Move p to the end of the list.  */
2009 		  p->next = NULL;
2010 		  p->prev = G.page_tails[order];
2011 		  G.page_tails[order]->next = p;
2012 
2013 		  /* Update the tail pointer...  */
2014 		  G.page_tails[order] = p;
2015 
2016 		  /* ... and the head pointer, if necessary.  */
2017 		  if (! previous)
2018 		    G.pages[order] = next;
2019 		  else
2020 		    previous->next = next;
2021 
2022 		  /* And update the backpointer in NEXT if necessary.  */
2023 		  if (next)
2024 		    next->prev = previous;
2025 
2026 		  p = previous;
2027 		}
2028 	    }
2029 
2030 	  /* If we've fallen through to here, it's a page in the
2031 	     topmost context that is neither full nor empty.  Such a
2032 	     page must precede pages at lesser context depth in the
2033 	     list, so move it to the head.  */
2034 	  else if (p != G.pages[order])
2035 	    {
2036 	      previous->next = p->next;
2037 
2038 	      /* Update the backchain in the next node if it exists.  */
2039 	      if (p->next)
2040 		p->next->prev = previous;
2041 
2042 	      /* Move P to the head of the list.  */
2043 	      p->next = G.pages[order];
2044 	      p->prev = NULL;
2045 	      G.pages[order]->prev = p;
2046 
2047 	      /* Update the head pointer.  */
2048 	      G.pages[order] = p;
2049 
2050 	      /* Are we moving the last element?  */
2051 	      if (G.page_tails[order] == p)
2052 	        G.page_tails[order] = previous;
2053 	      p = previous;
2054 	    }
2055 
2056 	  previous = p;
2057 	  p = next;
2058 	}
2059       while (! done);
2060 
2061       /* Now, restore the in_use_p vectors for any pages from contexts
2062          other than the current one.  */
2063       for (p = G.pages[order]; p; p = p->next)
2064 	if (p->context_depth != G.context_depth)
2065 	  ggc_recalculate_in_use_p (p);
2066     }
2067 }
2068 
2069 #ifdef ENABLE_GC_CHECKING
2070 /* Clobber all free objects.  */
2071 
2072 static void
2073 poison_pages (void)
2074 {
2075   unsigned order;
2076 
2077   for (order = 2; order < NUM_ORDERS; order++)
2078     {
2079       size_t size = OBJECT_SIZE (order);
2080       page_entry *p;
2081 
2082       for (p = G.pages[order]; p != NULL; p = p->next)
2083 	{
2084 	  size_t num_objects;
2085 	  size_t i;
2086 
2087 	  if (p->context_depth != G.context_depth)
2088 	    /* Since we don't do any collection for pages in pushed
2089 	       contexts, there's no need to do any poisoning.  And
2090 	       besides, the IN_USE_P array isn't valid until we pop
2091 	       contexts.  */
2092 	    continue;
2093 
2094 	  num_objects = OBJECTS_IN_PAGE (p);
2095 	  for (i = 0; i < num_objects; i++)
2096 	    {
2097 	      size_t word, bit;
2098 	      word = i / HOST_BITS_PER_LONG;
2099 	      bit = i % HOST_BITS_PER_LONG;
2100 	      if (((p->in_use_p[word] >> bit) & 1) == 0)
2101 		{
2102 		  char *object = p->page + i * size;
2103 
2104 		  /* Keep poison-by-write when we expect to use Valgrind,
2105 		     so the exact same memory semantics is kept, in case
2106 		     there are memory errors.  We override this request
2107 		     below.  */
2108 		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2109 								 size));
2110 		  memset (object, 0xa5, size);
2111 
2112 		  /* Drop the handle to avoid handle leak.  */
2113 		  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
2114 		}
2115 	    }
2116 	}
2117     }
2118 }
2119 #else
2120 #define poison_pages()
2121 #endif
2122 
2123 #ifdef ENABLE_GC_ALWAYS_COLLECT
2124 /* Validate that the reportedly free objects actually are.  */
2125 
2126 static void
2127 validate_free_objects (void)
2128 {
2129   struct free_object *f, *next, *still_free = NULL;
2130 
2131   for (f = G.free_object_list; f ; f = next)
2132     {
2133       page_entry *pe = lookup_page_table_entry (f->object);
2134       size_t bit, word;
2135 
2136       bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2137       word = bit / HOST_BITS_PER_LONG;
2138       bit = bit % HOST_BITS_PER_LONG;
2139       next = f->next;
2140 
2141       /* Make certain it isn't visible from any root.  Notice that we
2142 	 do this check before sweep_pages merges save_in_use_p.  */
2143       gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
2144 
2145       /* If the object comes from an outer context, then retain the
2146 	 free_object entry, so that we can verify that the address
2147 	 isn't live on the stack in some outer context.  */
2148       if (pe->context_depth != G.context_depth)
2149 	{
2150 	  f->next = still_free;
2151 	  still_free = f;
2152 	}
2153       else
2154 	free (f);
2155     }
2156 
2157   G.free_object_list = still_free;
2158 }
2159 #else
2160 #define validate_free_objects()
2161 #endif
2162 
2163 /* Top level mark-and-sweep routine.  */
2164 
2165 void
2166 ggc_collect (void)
2167 {
2168   /* Avoid frequent unnecessary work by skipping collection if the
2169      total allocations haven't expanded much since the last
2170      collection.  */
2171   float allocated_last_gc =
2172     MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2173 
2174   float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2175   if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
2176     return;
2177 
2178   timevar_push (TV_GC);
2179   if (!quiet_flag)
2180     fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
2181   if (GGC_DEBUG_LEVEL >= 2)
2182     fprintf (G.debug_file, "BEGIN COLLECTING\n");
2183 
2184   /* Zero the total allocated bytes.  This will be recalculated in the
2185      sweep phase.  */
2186   G.allocated = 0;
2187 
2188   /* Release the pages we freed the last time we collected, but didn't
2189      reuse in the interim.  */
2190   release_pages ();
2191 
2192   /* Indicate that we've seen collections at this context depth.  */
2193   G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2194 
2195   invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2196 
2197   in_gc = true;
2198   clear_marks ();
2199   ggc_mark_roots ();
2200   ggc_handle_finalizers ();
2201 
2202   if (GATHER_STATISTICS)
2203     ggc_prune_overhead_list ();
2204 
2205   poison_pages ();
2206   validate_free_objects ();
2207   sweep_pages ();
2208 
2209   in_gc = false;
2210   G.allocated_last_gc = G.allocated;
2211 
2212   invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2213 
2214   timevar_pop (TV_GC);
2215 
2216   if (!quiet_flag)
2217     fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
2218   if (GGC_DEBUG_LEVEL >= 2)
2219     fprintf (G.debug_file, "END COLLECTING\n");
2220 }
2221 
2222 /* Assume that all GGC memory is reachable and grow the limits for next collection.
2223    With checking, trigger GGC so -Q compilation outputs how much of memory really is
2224    reachable.  */
2225 
2226 void
2227 ggc_grow (void)
2228 {
2229 #ifndef ENABLE_CHECKING
2230   G.allocated_last_gc = MAX (G.allocated_last_gc,
2231 			     G.allocated);
2232 #else
2233   ggc_collect ();
2234 #endif
2235   if (!quiet_flag)
2236     fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2237 }
2238 
2239 /* Print allocation statistics.  */
2240 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2241 		  ? (x) \
2242 		  : ((x) < 1024*1024*10 \
2243 		     ? (x) / 1024 \
2244 		     : (x) / (1024*1024))))
2245 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2246 
2247 void
2248 ggc_print_statistics (void)
2249 {
2250   struct ggc_statistics stats;
2251   unsigned int i;
2252   size_t total_overhead = 0;
2253 
2254   /* Clear the statistics.  */
2255   memset (&stats, 0, sizeof (stats));
2256 
2257   /* Make sure collection will really occur.  */
2258   G.allocated_last_gc = 0;
2259 
2260   /* Collect and print the statistics common across collectors.  */
2261   ggc_print_common_statistics (stderr, &stats);
2262 
2263   /* Release free pages so that we will not count the bytes allocated
2264      there as part of the total allocated memory.  */
2265   release_pages ();
2266 
2267   /* Collect some information about the various sizes of
2268      allocation.  */
2269   fprintf (stderr,
2270            "Memory still allocated at the end of the compilation process\n");
2271   fprintf (stderr, "%-5s %10s  %10s  %10s\n",
2272 	   "Size", "Allocated", "Used", "Overhead");
2273   for (i = 0; i < NUM_ORDERS; ++i)
2274     {
2275       page_entry *p;
2276       size_t allocated;
2277       size_t in_use;
2278       size_t overhead;
2279 
2280       /* Skip empty entries.  */
2281       if (!G.pages[i])
2282 	continue;
2283 
2284       overhead = allocated = in_use = 0;
2285 
2286       /* Figure out the total number of bytes allocated for objects of
2287 	 this size, and how many of them are actually in use.  Also figure
2288 	 out how much memory the page table is using.  */
2289       for (p = G.pages[i]; p; p = p->next)
2290 	{
2291 	  allocated += p->bytes;
2292 	  in_use +=
2293 	    (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2294 
2295 	  overhead += (sizeof (page_entry) - sizeof (long)
2296 		       + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2297 	}
2298       fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2299 	       (unsigned long) OBJECT_SIZE (i),
2300 	       SCALE (allocated), STAT_LABEL (allocated),
2301 	       SCALE (in_use), STAT_LABEL (in_use),
2302 	       SCALE (overhead), STAT_LABEL (overhead));
2303       total_overhead += overhead;
2304     }
2305   fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2306 	   SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2307 	   SCALE (G.allocated), STAT_LABEL (G.allocated),
2308 	   SCALE (total_overhead), STAT_LABEL (total_overhead));
2309 
2310   if (GATHER_STATISTICS)
2311     {
2312       fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2313 
2314       fprintf (stderr, "Total Overhead:                        %10" HOST_LONG_LONG_FORMAT "d\n",
2315 	       G.stats.total_overhead);
2316       fprintf (stderr, "Total Allocated:                       %10" HOST_LONG_LONG_FORMAT "d\n",
2317 	       G.stats.total_allocated);
2318 
2319       fprintf (stderr, "Total Overhead  under  32B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2320 	       G.stats.total_overhead_under32);
2321       fprintf (stderr, "Total Allocated under  32B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2322 	       G.stats.total_allocated_under32);
2323       fprintf (stderr, "Total Overhead  under  64B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2324 	       G.stats.total_overhead_under64);
2325       fprintf (stderr, "Total Allocated under  64B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2326 	       G.stats.total_allocated_under64);
2327       fprintf (stderr, "Total Overhead  under 128B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2328 	       G.stats.total_overhead_under128);
2329       fprintf (stderr, "Total Allocated under 128B:            %10" HOST_LONG_LONG_FORMAT "d\n",
2330 	       G.stats.total_allocated_under128);
2331 
2332       for (i = 0; i < NUM_ORDERS; i++)
2333 	if (G.stats.total_allocated_per_order[i])
2334 	  {
2335 	    fprintf (stderr, "Total Overhead  page size %7lu:     %10" HOST_LONG_LONG_FORMAT "d\n",
2336 		     (unsigned long) OBJECT_SIZE (i),
2337 		     G.stats.total_overhead_per_order[i]);
2338 	    fprintf (stderr, "Total Allocated page size %7lu:     %10" HOST_LONG_LONG_FORMAT "d\n",
2339 		     (unsigned long) OBJECT_SIZE (i),
2340 		     G.stats.total_allocated_per_order[i]);
2341 	  }
2342   }
2343 }
2344 
2345 struct ggc_pch_ondisk
2346 {
2347   unsigned totals[NUM_ORDERS];
2348 };
2349 
2350 struct ggc_pch_data
2351 {
2352   struct ggc_pch_ondisk d;
2353   uintptr_t base[NUM_ORDERS];
2354   size_t written[NUM_ORDERS];
2355 };
2356 
2357 struct ggc_pch_data *
2358 init_ggc_pch (void)
2359 {
2360   return XCNEW (struct ggc_pch_data);
2361 }
2362 
2363 void
2364 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2365 		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2366 {
2367   unsigned order;
2368 
2369   if (size < NUM_SIZE_LOOKUP)
2370     order = size_lookup[size];
2371   else
2372     {
2373       order = 10;
2374       while (size > OBJECT_SIZE (order))
2375 	order++;
2376     }
2377 
2378   d->d.totals[order]++;
2379 }
2380 
2381 size_t
2382 ggc_pch_total_size (struct ggc_pch_data *d)
2383 {
2384   size_t a = 0;
2385   unsigned i;
2386 
2387   for (i = 0; i < NUM_ORDERS; i++)
2388     a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2389   return a;
2390 }
2391 
2392 void
2393 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2394 {
2395   uintptr_t a = (uintptr_t) base;
2396   unsigned i;
2397 
2398   for (i = 0; i < NUM_ORDERS; i++)
2399     {
2400       d->base[i] = a;
2401       a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
2402     }
2403 }
2404 
2405 
2406 char *
2407 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2408 		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2409 {
2410   unsigned order;
2411   char *result;
2412 
2413   if (size < NUM_SIZE_LOOKUP)
2414     order = size_lookup[size];
2415   else
2416     {
2417       order = 10;
2418       while (size > OBJECT_SIZE (order))
2419 	order++;
2420     }
2421 
2422   result = (char *) d->base[order];
2423   d->base[order] += OBJECT_SIZE (order);
2424   return result;
2425 }
2426 
2427 void
2428 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2429 		       FILE *f ATTRIBUTE_UNUSED)
2430 {
2431   /* Nothing to do.  */
2432 }
2433 
2434 void
2435 ggc_pch_write_object (struct ggc_pch_data *d,
2436 		      FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2437 		      size_t size, bool is_string ATTRIBUTE_UNUSED)
2438 {
2439   unsigned order;
2440   static const char emptyBytes[256] = { 0 };
2441 
2442   if (size < NUM_SIZE_LOOKUP)
2443     order = size_lookup[size];
2444   else
2445     {
2446       order = 10;
2447       while (size > OBJECT_SIZE (order))
2448 	order++;
2449     }
2450 
2451   if (fwrite (x, size, 1, f) != 1)
2452     fatal_error (input_location, "can%'t write PCH file: %m");
2453 
2454   /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2455      object out to OBJECT_SIZE(order).  This happens for strings.  */
2456 
2457   if (size != OBJECT_SIZE (order))
2458     {
2459       unsigned padding = OBJECT_SIZE (order) - size;
2460 
2461       /* To speed small writes, we use a nulled-out array that's larger
2462          than most padding requests as the source for our null bytes.  This
2463          permits us to do the padding with fwrite() rather than fseek(), and
2464          limits the chance the OS may try to flush any outstanding writes.  */
2465       if (padding <= sizeof (emptyBytes))
2466         {
2467           if (fwrite (emptyBytes, 1, padding, f) != padding)
2468             fatal_error (input_location, "can%'t write PCH file");
2469         }
2470       else
2471         {
2472           /* Larger than our buffer?  Just default to fseek.  */
2473           if (fseek (f, padding, SEEK_CUR) != 0)
2474             fatal_error (input_location, "can%'t write PCH file");
2475         }
2476     }
2477 
2478   d->written[order]++;
2479   if (d->written[order] == d->d.totals[order]
2480       && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2481 				   G.pagesize),
2482 		SEEK_CUR) != 0)
2483     fatal_error (input_location, "can%'t write PCH file: %m");
2484 }
2485 
2486 void
2487 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2488 {
2489   if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2490     fatal_error (input_location, "can%'t write PCH file: %m");
2491   free (d);
2492 }
2493 
2494 /* Move the PCH PTE entries just added to the end of by_depth, to the
2495    front.  */
2496 
2497 static void
2498 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2499 {
2500   unsigned i;
2501 
2502   /* First, we swap the new entries to the front of the varrays.  */
2503   page_entry **new_by_depth;
2504   unsigned long **new_save_in_use;
2505 
2506   new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2507   new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2508 
2509   memcpy (&new_by_depth[0],
2510 	  &G.by_depth[count_old_page_tables],
2511 	  count_new_page_tables * sizeof (void *));
2512   memcpy (&new_by_depth[count_new_page_tables],
2513 	  &G.by_depth[0],
2514 	  count_old_page_tables * sizeof (void *));
2515   memcpy (&new_save_in_use[0],
2516 	  &G.save_in_use[count_old_page_tables],
2517 	  count_new_page_tables * sizeof (void *));
2518   memcpy (&new_save_in_use[count_new_page_tables],
2519 	  &G.save_in_use[0],
2520 	  count_old_page_tables * sizeof (void *));
2521 
2522   free (G.by_depth);
2523   free (G.save_in_use);
2524 
2525   G.by_depth = new_by_depth;
2526   G.save_in_use = new_save_in_use;
2527 
2528   /* Now update all the index_by_depth fields.  */
2529   for (i = G.by_depth_in_use; i > 0; --i)
2530     {
2531       page_entry *p = G.by_depth[i-1];
2532       p->index_by_depth = i-1;
2533     }
2534 
2535   /* And last, we update the depth pointers in G.depth.  The first
2536      entry is already 0, and context 0 entries always start at index
2537      0, so there is nothing to update in the first slot.  We need a
2538      second slot, only if we have old ptes, and if we do, they start
2539      at index count_new_page_tables.  */
2540   if (count_old_page_tables)
2541     push_depth (count_new_page_tables);
2542 }
2543 
2544 void
2545 ggc_pch_read (FILE *f, void *addr)
2546 {
2547   struct ggc_pch_ondisk d;
2548   unsigned i;
2549   char *offs = (char *) addr;
2550   unsigned long count_old_page_tables;
2551   unsigned long count_new_page_tables;
2552 
2553   count_old_page_tables = G.by_depth_in_use;
2554 
2555   /* We've just read in a PCH file.  So, every object that used to be
2556      allocated is now free.  */
2557   clear_marks ();
2558 #ifdef ENABLE_GC_CHECKING
2559   poison_pages ();
2560 #endif
2561   /* Since we free all the allocated objects, the free list becomes
2562      useless.  Validate it now, which will also clear it.  */
2563   validate_free_objects ();
2564 
2565   /* No object read from a PCH file should ever be freed.  So, set the
2566      context depth to 1, and set the depth of all the currently-allocated
2567      pages to be 1 too.  PCH pages will have depth 0.  */
2568   gcc_assert (!G.context_depth);
2569   G.context_depth = 1;
2570   for (i = 0; i < NUM_ORDERS; i++)
2571     {
2572       page_entry *p;
2573       for (p = G.pages[i]; p != NULL; p = p->next)
2574 	p->context_depth = G.context_depth;
2575     }
2576 
2577   /* Allocate the appropriate page-table entries for the pages read from
2578      the PCH file.  */
2579   if (fread (&d, sizeof (d), 1, f) != 1)
2580     fatal_error (input_location, "can%'t read PCH file: %m");
2581 
2582   for (i = 0; i < NUM_ORDERS; i++)
2583     {
2584       struct page_entry *entry;
2585       char *pte;
2586       size_t bytes;
2587       size_t num_objs;
2588       size_t j;
2589 
2590       if (d.totals[i] == 0)
2591 	continue;
2592 
2593       bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
2594       num_objs = bytes / OBJECT_SIZE (i);
2595       entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2596 					    - sizeof (long)
2597 					    + BITMAP_SIZE (num_objs + 1)));
2598       entry->bytes = bytes;
2599       entry->page = offs;
2600       entry->context_depth = 0;
2601       offs += bytes;
2602       entry->num_free_objects = 0;
2603       entry->order = i;
2604 
2605       for (j = 0;
2606 	   j + HOST_BITS_PER_LONG <= num_objs + 1;
2607 	   j += HOST_BITS_PER_LONG)
2608 	entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2609       for (; j < num_objs + 1; j++)
2610 	entry->in_use_p[j / HOST_BITS_PER_LONG]
2611 	  |= 1L << (j % HOST_BITS_PER_LONG);
2612 
2613       for (pte = entry->page;
2614 	   pte < entry->page + entry->bytes;
2615 	   pte += G.pagesize)
2616 	set_page_table_entry (pte, entry);
2617 
2618       if (G.page_tails[i] != NULL)
2619 	G.page_tails[i]->next = entry;
2620       else
2621 	G.pages[i] = entry;
2622       G.page_tails[i] = entry;
2623 
2624       /* We start off by just adding all the new information to the
2625 	 end of the varrays, later, we will move the new information
2626 	 to the front of the varrays, as the PCH page tables are at
2627 	 context 0.  */
2628       push_by_depth (entry, 0);
2629     }
2630 
2631   /* Now, we update the various data structures that speed page table
2632      handling.  */
2633   count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2634 
2635   move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2636 
2637   /* Update the statistics.  */
2638   G.allocated = G.allocated_last_gc = offs - (char *)addr;
2639 }
2640