1 /* "Bag-of-pages" garbage collector for the GNU compiler. 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "tree.h" 26 #include "rtl.h" 27 #include "tm_p.h" 28 #include "toplev.h" 29 #include "flags.h" 30 #include "ggc.h" 31 #include "timevar.h" 32 #include "params.h" 33 #include "tree-flow.h" 34 #include "cfgloop.h" 35 #include "plugin.h" 36 37 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a 38 file open. Prefer either to valloc. */ 39 #ifdef HAVE_MMAP_ANON 40 # undef HAVE_MMAP_DEV_ZERO 41 42 # include <sys/mman.h> 43 # ifndef MAP_FAILED 44 # define MAP_FAILED -1 45 # endif 46 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON) 47 # define MAP_ANONYMOUS MAP_ANON 48 # endif 49 # define USING_MMAP 50 51 #endif 52 53 #ifdef HAVE_MMAP_DEV_ZERO 54 55 # include <sys/mman.h> 56 # ifndef MAP_FAILED 57 # define MAP_FAILED -1 58 # endif 59 # define USING_MMAP 60 61 #endif 62 63 #ifndef USING_MMAP 64 #define USING_MALLOC_PAGE_GROUPS 65 #endif 66 67 /* Strategy: 68 69 This garbage-collecting allocator allocates objects on one of a set 70 of pages. Each page can allocate objects of a single size only; 71 available sizes are powers of two starting at four bytes. The size 72 of an allocation request is rounded up to the next power of two 73 (`order'), and satisfied from the appropriate page. 74 75 Each page is recorded in a page-entry, which also maintains an 76 in-use bitmap of object positions on the page. This allows the 77 allocation state of a particular object to be flipped without 78 touching the page itself. 79 80 Each page-entry also has a context depth, which is used to track 81 pushing and popping of allocation contexts. Only objects allocated 82 in the current (highest-numbered) context may be collected. 83 84 Page entries are arranged in an array of singly-linked lists. The 85 array is indexed by the allocation size, in bits, of the pages on 86 it; i.e. all pages on a list allocate objects of the same size. 87 Pages are ordered on the list such that all non-full pages precede 88 all full pages, with non-full pages arranged in order of decreasing 89 context depth. 90 91 Empty pages (of all orders) are kept on a single page cache list, 92 and are considered first when new pages are required; they are 93 deallocated at the start of the next collection if they haven't 94 been recycled by then. */ 95 96 /* Define GGC_DEBUG_LEVEL to print debugging information. 97 0: No debugging output. 98 1: GC statistics only. 99 2: Page-entry allocations/deallocations as well. 100 3: Object allocations as well. 101 4: Object marks as well. */ 102 #define GGC_DEBUG_LEVEL (0) 103 104 #ifndef HOST_BITS_PER_PTR 105 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG 106 #endif 107 108 109 /* A two-level tree is used to look up the page-entry for a given 110 pointer. Two chunks of the pointer's bits are extracted to index 111 the first and second levels of the tree, as follows: 112 113 HOST_PAGE_SIZE_BITS 114 32 | | 115 msb +----------------+----+------+------+ lsb 116 | | | 117 PAGE_L1_BITS | 118 | | 119 PAGE_L2_BITS 120 121 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry 122 pages are aligned on system page boundaries. The next most 123 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first 124 index values in the lookup table, respectively. 125 126 For 32-bit architectures and the settings below, there are no 127 leftover bits. For architectures with wider pointers, the lookup 128 tree points to a list of pages, which must be scanned to find the 129 correct one. */ 130 131 #define PAGE_L1_BITS (8) 132 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize) 133 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS) 134 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS) 135 136 #define LOOKUP_L1(p) \ 137 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1)) 138 139 #define LOOKUP_L2(p) \ 140 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1)) 141 142 /* The number of objects per allocation page, for objects on a page of 143 the indicated ORDER. */ 144 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER] 145 146 /* The number of objects in P. */ 147 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order)) 148 149 /* The size of an object on a page of the indicated ORDER. */ 150 #define OBJECT_SIZE(ORDER) object_size_table[ORDER] 151 152 /* For speed, we avoid doing a general integer divide to locate the 153 offset in the allocation bitmap, by precalculating numbers M, S 154 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O 155 within the page which is evenly divisible by the object size Z. */ 156 #define DIV_MULT(ORDER) inverse_table[ORDER].mult 157 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift 158 #define OFFSET_TO_BIT(OFFSET, ORDER) \ 159 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER)) 160 161 /* We use this structure to determine the alignment required for 162 allocations. For power-of-two sized allocations, that's not a 163 problem, but it does matter for odd-sized allocations. 164 We do not care about alignment for floating-point types. */ 165 166 struct max_alignment { 167 char c; 168 union { 169 HOST_WIDEST_INT i; 170 void *p; 171 } u; 172 }; 173 174 /* The biggest alignment required. */ 175 176 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u)) 177 178 179 /* The number of extra orders, not corresponding to power-of-two sized 180 objects. */ 181 182 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table) 183 184 #define RTL_SIZE(NSLOTS) \ 185 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion)) 186 187 #define TREE_EXP_SIZE(OPS) \ 188 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree)) 189 190 /* The Ith entry is the maximum size of an object to be stored in the 191 Ith extra order. Adding a new entry to this array is the *only* 192 thing you need to do to add a new special allocation size. */ 193 194 static const size_t extra_order_size_table[] = { 195 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT. 196 There are a lot of structures with these sizes and explicitly 197 listing them risks orders being dropped because they changed size. */ 198 MAX_ALIGNMENT * 3, 199 MAX_ALIGNMENT * 5, 200 MAX_ALIGNMENT * 6, 201 MAX_ALIGNMENT * 7, 202 MAX_ALIGNMENT * 9, 203 MAX_ALIGNMENT * 10, 204 MAX_ALIGNMENT * 11, 205 MAX_ALIGNMENT * 12, 206 MAX_ALIGNMENT * 13, 207 MAX_ALIGNMENT * 14, 208 MAX_ALIGNMENT * 15, 209 sizeof (struct tree_decl_non_common), 210 sizeof (struct tree_field_decl), 211 sizeof (struct tree_parm_decl), 212 sizeof (struct tree_var_decl), 213 sizeof (struct tree_type), 214 sizeof (struct function), 215 sizeof (struct basic_block_def), 216 sizeof (struct cgraph_node), 217 sizeof (struct loop), 218 }; 219 220 /* The total number of orders. */ 221 222 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS) 223 224 /* Compute the smallest nonnegative number which when added to X gives 225 a multiple of F. */ 226 227 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f)) 228 229 /* Compute the smallest multiple of F that is >= X. */ 230 231 #define ROUND_UP(x, f) (CEIL (x, f) * (f)) 232 233 /* The Ith entry is the number of objects on a page or order I. */ 234 235 static unsigned objects_per_page_table[NUM_ORDERS]; 236 237 /* The Ith entry is the size of an object on a page of order I. */ 238 239 static size_t object_size_table[NUM_ORDERS]; 240 241 /* The Ith entry is a pair of numbers (mult, shift) such that 242 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32, 243 for all k evenly divisible by OBJECT_SIZE(I). */ 244 245 static struct 246 { 247 size_t mult; 248 unsigned int shift; 249 } 250 inverse_table[NUM_ORDERS]; 251 252 /* A page_entry records the status of an allocation page. This 253 structure is dynamically sized to fit the bitmap in_use_p. */ 254 typedef struct page_entry 255 { 256 /* The next page-entry with objects of the same size, or NULL if 257 this is the last page-entry. */ 258 struct page_entry *next; 259 260 /* The previous page-entry with objects of the same size, or NULL if 261 this is the first page-entry. The PREV pointer exists solely to 262 keep the cost of ggc_free manageable. */ 263 struct page_entry *prev; 264 265 /* The number of bytes allocated. (This will always be a multiple 266 of the host system page size.) */ 267 size_t bytes; 268 269 /* The address at which the memory is allocated. */ 270 char *page; 271 272 #ifdef USING_MALLOC_PAGE_GROUPS 273 /* Back pointer to the page group this page came from. */ 274 struct page_group *group; 275 #endif 276 277 /* This is the index in the by_depth varray where this page table 278 can be found. */ 279 unsigned long index_by_depth; 280 281 /* Context depth of this page. */ 282 unsigned short context_depth; 283 284 /* The number of free objects remaining on this page. */ 285 unsigned short num_free_objects; 286 287 /* A likely candidate for the bit position of a free object for the 288 next allocation from this page. */ 289 unsigned short next_bit_hint; 290 291 /* The lg of size of objects allocated from this page. */ 292 unsigned char order; 293 294 /* A bit vector indicating whether or not objects are in use. The 295 Nth bit is one if the Nth object on this page is allocated. This 296 array is dynamically sized. */ 297 unsigned long in_use_p[1]; 298 } page_entry; 299 300 #ifdef USING_MALLOC_PAGE_GROUPS 301 /* A page_group describes a large allocation from malloc, from which 302 we parcel out aligned pages. */ 303 typedef struct page_group 304 { 305 /* A linked list of all extant page groups. */ 306 struct page_group *next; 307 308 /* The address we received from malloc. */ 309 char *allocation; 310 311 /* The size of the block. */ 312 size_t alloc_size; 313 314 /* A bitmask of pages in use. */ 315 unsigned int in_use; 316 } page_group; 317 #endif 318 319 #if HOST_BITS_PER_PTR <= 32 320 321 /* On 32-bit hosts, we use a two level page table, as pictured above. */ 322 typedef page_entry **page_table[PAGE_L1_SIZE]; 323 324 #else 325 326 /* On 64-bit hosts, we use the same two level page tables plus a linked 327 list that disambiguates the top 32-bits. There will almost always be 328 exactly one entry in the list. */ 329 typedef struct page_table_chain 330 { 331 struct page_table_chain *next; 332 size_t high_bits; 333 page_entry **table[PAGE_L1_SIZE]; 334 } *page_table; 335 336 #endif 337 338 #ifdef ENABLE_GC_ALWAYS_COLLECT 339 /* List of free objects to be verified as actually free on the 340 next collection. */ 341 struct free_object 342 { 343 void *object; 344 struct free_object *next; 345 }; 346 #endif 347 348 /* The rest of the global variables. */ 349 static struct globals 350 { 351 /* The Nth element in this array is a page with objects of size 2^N. 352 If there are any pages with free objects, they will be at the 353 head of the list. NULL if there are no page-entries for this 354 object size. */ 355 page_entry *pages[NUM_ORDERS]; 356 357 /* The Nth element in this array is the last page with objects of 358 size 2^N. NULL if there are no page-entries for this object 359 size. */ 360 page_entry *page_tails[NUM_ORDERS]; 361 362 /* Lookup table for associating allocation pages with object addresses. */ 363 page_table lookup; 364 365 /* The system's page size. */ 366 size_t pagesize; 367 size_t lg_pagesize; 368 369 /* Bytes currently allocated. */ 370 size_t allocated; 371 372 /* Bytes currently allocated at the end of the last collection. */ 373 size_t allocated_last_gc; 374 375 /* Total amount of memory mapped. */ 376 size_t bytes_mapped; 377 378 /* Bit N set if any allocations have been done at context depth N. */ 379 unsigned long context_depth_allocations; 380 381 /* Bit N set if any collections have been done at context depth N. */ 382 unsigned long context_depth_collections; 383 384 /* The current depth in the context stack. */ 385 unsigned short context_depth; 386 387 /* A file descriptor open to /dev/zero for reading. */ 388 #if defined (HAVE_MMAP_DEV_ZERO) 389 int dev_zero_fd; 390 #endif 391 392 /* A cache of free system pages. */ 393 page_entry *free_pages; 394 395 #ifdef USING_MALLOC_PAGE_GROUPS 396 page_group *page_groups; 397 #endif 398 399 /* The file descriptor for debugging output. */ 400 FILE *debug_file; 401 402 /* Current number of elements in use in depth below. */ 403 unsigned int depth_in_use; 404 405 /* Maximum number of elements that can be used before resizing. */ 406 unsigned int depth_max; 407 408 /* Each element of this array is an index in by_depth where the given 409 depth starts. This structure is indexed by that given depth we 410 are interested in. */ 411 unsigned int *depth; 412 413 /* Current number of elements in use in by_depth below. */ 414 unsigned int by_depth_in_use; 415 416 /* Maximum number of elements that can be used before resizing. */ 417 unsigned int by_depth_max; 418 419 /* Each element of this array is a pointer to a page_entry, all 420 page_entries can be found in here by increasing depth. 421 index_by_depth in the page_entry is the index into this data 422 structure where that page_entry can be found. This is used to 423 speed up finding all page_entries at a particular depth. */ 424 page_entry **by_depth; 425 426 /* Each element is a pointer to the saved in_use_p bits, if any, 427 zero otherwise. We allocate them all together, to enable a 428 better runtime data access pattern. */ 429 unsigned long **save_in_use; 430 431 #ifdef ENABLE_GC_ALWAYS_COLLECT 432 /* List of free objects to be verified as actually free on the 433 next collection. */ 434 struct free_object *free_object_list; 435 #endif 436 437 #ifdef GATHER_STATISTICS 438 struct 439 { 440 /* Total memory allocated with ggc_alloc. */ 441 unsigned long long total_allocated; 442 /* Total overhead for memory to be allocated with ggc_alloc. */ 443 unsigned long long total_overhead; 444 445 /* Total allocations and overhead for sizes less than 32, 64 and 128. 446 These sizes are interesting because they are typical cache line 447 sizes. */ 448 449 unsigned long long total_allocated_under32; 450 unsigned long long total_overhead_under32; 451 452 unsigned long long total_allocated_under64; 453 unsigned long long total_overhead_under64; 454 455 unsigned long long total_allocated_under128; 456 unsigned long long total_overhead_under128; 457 458 /* The allocations for each of the allocation orders. */ 459 unsigned long long total_allocated_per_order[NUM_ORDERS]; 460 461 /* The overhead for each of the allocation orders. */ 462 unsigned long long total_overhead_per_order[NUM_ORDERS]; 463 } stats; 464 #endif 465 } G; 466 467 /* The size in bytes required to maintain a bitmap for the objects 468 on a page-entry. */ 469 #define BITMAP_SIZE(Num_objects) \ 470 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long)) 471 472 /* Allocate pages in chunks of this size, to throttle calls to memory 473 allocation routines. The first page is used, the rest go onto the 474 free list. This cannot be larger than HOST_BITS_PER_INT for the 475 in_use bitmask for page_group. Hosts that need a different value 476 can override this by defining GGC_QUIRE_SIZE explicitly. */ 477 #ifndef GGC_QUIRE_SIZE 478 # ifdef USING_MMAP 479 # define GGC_QUIRE_SIZE 256 480 # else 481 # define GGC_QUIRE_SIZE 16 482 # endif 483 #endif 484 485 /* Initial guess as to how many page table entries we might need. */ 486 #define INITIAL_PTE_COUNT 128 487 488 static int ggc_allocated_p (const void *); 489 static page_entry *lookup_page_table_entry (const void *); 490 static void set_page_table_entry (void *, page_entry *); 491 #ifdef USING_MMAP 492 static char *alloc_anon (char *, size_t); 493 #endif 494 #ifdef USING_MALLOC_PAGE_GROUPS 495 static size_t page_group_index (char *, char *); 496 static void set_page_group_in_use (page_group *, char *); 497 static void clear_page_group_in_use (page_group *, char *); 498 #endif 499 static struct page_entry * alloc_page (unsigned); 500 static void free_page (struct page_entry *); 501 static void release_pages (void); 502 static void clear_marks (void); 503 static void sweep_pages (void); 504 static void ggc_recalculate_in_use_p (page_entry *); 505 static void compute_inverse (unsigned); 506 static inline void adjust_depth (void); 507 static void move_ptes_to_front (int, int); 508 509 void debug_print_page_list (int); 510 static void push_depth (unsigned int); 511 static void push_by_depth (page_entry *, unsigned long *); 512 513 /* Push an entry onto G.depth. */ 514 515 inline static void 516 push_depth (unsigned int i) 517 { 518 if (G.depth_in_use >= G.depth_max) 519 { 520 G.depth_max *= 2; 521 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max); 522 } 523 G.depth[G.depth_in_use++] = i; 524 } 525 526 /* Push an entry onto G.by_depth and G.save_in_use. */ 527 528 inline static void 529 push_by_depth (page_entry *p, unsigned long *s) 530 { 531 if (G.by_depth_in_use >= G.by_depth_max) 532 { 533 G.by_depth_max *= 2; 534 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max); 535 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use, 536 G.by_depth_max); 537 } 538 G.by_depth[G.by_depth_in_use] = p; 539 G.save_in_use[G.by_depth_in_use++] = s; 540 } 541 542 #if (GCC_VERSION < 3001) 543 #define prefetch(X) ((void) X) 544 #else 545 #define prefetch(X) __builtin_prefetch (X) 546 #endif 547 548 #define save_in_use_p_i(__i) \ 549 (G.save_in_use[__i]) 550 #define save_in_use_p(__p) \ 551 (save_in_use_p_i (__p->index_by_depth)) 552 553 /* Returns nonzero if P was allocated in GC'able memory. */ 554 555 static inline int 556 ggc_allocated_p (const void *p) 557 { 558 page_entry ***base; 559 size_t L1, L2; 560 561 #if HOST_BITS_PER_PTR <= 32 562 base = &G.lookup[0]; 563 #else 564 page_table table = G.lookup; 565 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff; 566 while (1) 567 { 568 if (table == NULL) 569 return 0; 570 if (table->high_bits == high_bits) 571 break; 572 table = table->next; 573 } 574 base = &table->table[0]; 575 #endif 576 577 /* Extract the level 1 and 2 indices. */ 578 L1 = LOOKUP_L1 (p); 579 L2 = LOOKUP_L2 (p); 580 581 return base[L1] && base[L1][L2]; 582 } 583 584 /* Traverse the page table and find the entry for a page. 585 Die (probably) if the object wasn't allocated via GC. */ 586 587 static inline page_entry * 588 lookup_page_table_entry (const void *p) 589 { 590 page_entry ***base; 591 size_t L1, L2; 592 593 #if HOST_BITS_PER_PTR <= 32 594 base = &G.lookup[0]; 595 #else 596 page_table table = G.lookup; 597 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff; 598 while (table->high_bits != high_bits) 599 table = table->next; 600 base = &table->table[0]; 601 #endif 602 603 /* Extract the level 1 and 2 indices. */ 604 L1 = LOOKUP_L1 (p); 605 L2 = LOOKUP_L2 (p); 606 607 return base[L1][L2]; 608 } 609 610 /* Set the page table entry for a page. */ 611 612 static void 613 set_page_table_entry (void *p, page_entry *entry) 614 { 615 page_entry ***base; 616 size_t L1, L2; 617 618 #if HOST_BITS_PER_PTR <= 32 619 base = &G.lookup[0]; 620 #else 621 page_table table; 622 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff; 623 for (table = G.lookup; table; table = table->next) 624 if (table->high_bits == high_bits) 625 goto found; 626 627 /* Not found -- allocate a new table. */ 628 table = XCNEW (struct page_table_chain); 629 table->next = G.lookup; 630 table->high_bits = high_bits; 631 G.lookup = table; 632 found: 633 base = &table->table[0]; 634 #endif 635 636 /* Extract the level 1 and 2 indices. */ 637 L1 = LOOKUP_L1 (p); 638 L2 = LOOKUP_L2 (p); 639 640 if (base[L1] == NULL) 641 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE); 642 643 base[L1][L2] = entry; 644 } 645 646 /* Prints the page-entry for object size ORDER, for debugging. */ 647 648 void 649 debug_print_page_list (int order) 650 { 651 page_entry *p; 652 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order], 653 (void *) G.page_tails[order]); 654 p = G.pages[order]; 655 while (p != NULL) 656 { 657 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth, 658 p->num_free_objects); 659 p = p->next; 660 } 661 printf ("NULL\n"); 662 fflush (stdout); 663 } 664 665 #ifdef USING_MMAP 666 /* Allocate SIZE bytes of anonymous memory, preferably near PREF, 667 (if non-null). The ifdef structure here is intended to cause a 668 compile error unless exactly one of the HAVE_* is defined. */ 669 670 static inline char * 671 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size) 672 { 673 #ifdef HAVE_MMAP_ANON 674 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 675 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 676 #endif 677 #ifdef HAVE_MMAP_DEV_ZERO 678 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 679 MAP_PRIVATE, G.dev_zero_fd, 0); 680 #endif 681 682 if (page == (char *) MAP_FAILED) 683 { 684 perror ("virtual memory exhausted"); 685 exit (FATAL_EXIT_CODE); 686 } 687 688 /* Remember that we allocated this memory. */ 689 G.bytes_mapped += size; 690 691 /* Pretend we don't have access to the allocated pages. We'll enable 692 access to smaller pieces of the area in ggc_alloc. Discard the 693 handle to avoid handle leak. */ 694 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size)); 695 696 return page; 697 } 698 #endif 699 #ifdef USING_MALLOC_PAGE_GROUPS 700 /* Compute the index for this page into the page group. */ 701 702 static inline size_t 703 page_group_index (char *allocation, char *page) 704 { 705 return (size_t) (page - allocation) >> G.lg_pagesize; 706 } 707 708 /* Set and clear the in_use bit for this page in the page group. */ 709 710 static inline void 711 set_page_group_in_use (page_group *group, char *page) 712 { 713 group->in_use |= 1 << page_group_index (group->allocation, page); 714 } 715 716 static inline void 717 clear_page_group_in_use (page_group *group, char *page) 718 { 719 group->in_use &= ~(1 << page_group_index (group->allocation, page)); 720 } 721 #endif 722 723 /* Allocate a new page for allocating objects of size 2^ORDER, 724 and return an entry for it. The entry is not added to the 725 appropriate page_table list. */ 726 727 static inline struct page_entry * 728 alloc_page (unsigned order) 729 { 730 struct page_entry *entry, *p, **pp; 731 char *page; 732 size_t num_objects; 733 size_t bitmap_size; 734 size_t page_entry_size; 735 size_t entry_size; 736 #ifdef USING_MALLOC_PAGE_GROUPS 737 page_group *group; 738 #endif 739 740 num_objects = OBJECTS_PER_PAGE (order); 741 bitmap_size = BITMAP_SIZE (num_objects + 1); 742 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size; 743 entry_size = num_objects * OBJECT_SIZE (order); 744 if (entry_size < G.pagesize) 745 entry_size = G.pagesize; 746 747 entry = NULL; 748 page = NULL; 749 750 /* Check the list of free pages for one we can use. */ 751 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp) 752 if (p->bytes == entry_size) 753 break; 754 755 if (p != NULL) 756 { 757 /* Recycle the allocated memory from this page ... */ 758 *pp = p->next; 759 page = p->page; 760 761 #ifdef USING_MALLOC_PAGE_GROUPS 762 group = p->group; 763 #endif 764 765 /* ... and, if possible, the page entry itself. */ 766 if (p->order == order) 767 { 768 entry = p; 769 memset (entry, 0, page_entry_size); 770 } 771 else 772 free (p); 773 } 774 #ifdef USING_MMAP 775 else if (entry_size == G.pagesize) 776 { 777 /* We want just one page. Allocate a bunch of them and put the 778 extras on the freelist. (Can only do this optimization with 779 mmap for backing store.) */ 780 struct page_entry *e, *f = G.free_pages; 781 int i; 782 783 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE); 784 785 /* This loop counts down so that the chain will be in ascending 786 memory order. */ 787 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--) 788 { 789 e = XCNEWVAR (struct page_entry, page_entry_size); 790 e->order = order; 791 e->bytes = G.pagesize; 792 e->page = page + (i << G.lg_pagesize); 793 e->next = f; 794 f = e; 795 } 796 797 G.free_pages = f; 798 } 799 else 800 page = alloc_anon (NULL, entry_size); 801 #endif 802 #ifdef USING_MALLOC_PAGE_GROUPS 803 else 804 { 805 /* Allocate a large block of memory and serve out the aligned 806 pages therein. This results in much less memory wastage 807 than the traditional implementation of valloc. */ 808 809 char *allocation, *a, *enda; 810 size_t alloc_size, head_slop, tail_slop; 811 int multiple_pages = (entry_size == G.pagesize); 812 813 if (multiple_pages) 814 alloc_size = GGC_QUIRE_SIZE * G.pagesize; 815 else 816 alloc_size = entry_size + G.pagesize - 1; 817 allocation = XNEWVEC (char, alloc_size); 818 819 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize); 820 head_slop = page - allocation; 821 if (multiple_pages) 822 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1); 823 else 824 tail_slop = alloc_size - entry_size - head_slop; 825 enda = allocation + alloc_size - tail_slop; 826 827 /* We allocated N pages, which are likely not aligned, leaving 828 us with N-1 usable pages. We plan to place the page_group 829 structure somewhere in the slop. */ 830 if (head_slop >= sizeof (page_group)) 831 group = (page_group *)page - 1; 832 else 833 { 834 /* We magically got an aligned allocation. Too bad, we have 835 to waste a page anyway. */ 836 if (tail_slop == 0) 837 { 838 enda -= G.pagesize; 839 tail_slop += G.pagesize; 840 } 841 gcc_assert (tail_slop >= sizeof (page_group)); 842 group = (page_group *)enda; 843 tail_slop -= sizeof (page_group); 844 } 845 846 /* Remember that we allocated this memory. */ 847 group->next = G.page_groups; 848 group->allocation = allocation; 849 group->alloc_size = alloc_size; 850 group->in_use = 0; 851 G.page_groups = group; 852 G.bytes_mapped += alloc_size; 853 854 /* If we allocated multiple pages, put the rest on the free list. */ 855 if (multiple_pages) 856 { 857 struct page_entry *e, *f = G.free_pages; 858 for (a = enda - G.pagesize; a != page; a -= G.pagesize) 859 { 860 e = XCNEWVAR (struct page_entry, page_entry_size); 861 e->order = order; 862 e->bytes = G.pagesize; 863 e->page = a; 864 e->group = group; 865 e->next = f; 866 f = e; 867 } 868 G.free_pages = f; 869 } 870 } 871 #endif 872 873 if (entry == NULL) 874 entry = XCNEWVAR (struct page_entry, page_entry_size); 875 876 entry->bytes = entry_size; 877 entry->page = page; 878 entry->context_depth = G.context_depth; 879 entry->order = order; 880 entry->num_free_objects = num_objects; 881 entry->next_bit_hint = 1; 882 883 G.context_depth_allocations |= (unsigned long)1 << G.context_depth; 884 885 #ifdef USING_MALLOC_PAGE_GROUPS 886 entry->group = group; 887 set_page_group_in_use (group, page); 888 #endif 889 890 /* Set the one-past-the-end in-use bit. This acts as a sentry as we 891 increment the hint. */ 892 entry->in_use_p[num_objects / HOST_BITS_PER_LONG] 893 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG); 894 895 set_page_table_entry (page, entry); 896 897 if (GGC_DEBUG_LEVEL >= 2) 898 fprintf (G.debug_file, 899 "Allocating page at %p, object size=%lu, data %p-%p\n", 900 (void *) entry, (unsigned long) OBJECT_SIZE (order), page, 901 page + entry_size - 1); 902 903 return entry; 904 } 905 906 /* Adjust the size of G.depth so that no index greater than the one 907 used by the top of the G.by_depth is used. */ 908 909 static inline void 910 adjust_depth (void) 911 { 912 page_entry *top; 913 914 if (G.by_depth_in_use) 915 { 916 top = G.by_depth[G.by_depth_in_use-1]; 917 918 /* Peel back indices in depth that index into by_depth, so that 919 as new elements are added to by_depth, we note the indices 920 of those elements, if they are for new context depths. */ 921 while (G.depth_in_use > (size_t)top->context_depth+1) 922 --G.depth_in_use; 923 } 924 } 925 926 /* For a page that is no longer needed, put it on the free page list. */ 927 928 static void 929 free_page (page_entry *entry) 930 { 931 if (GGC_DEBUG_LEVEL >= 2) 932 fprintf (G.debug_file, 933 "Deallocating page at %p, data %p-%p\n", (void *) entry, 934 entry->page, entry->page + entry->bytes - 1); 935 936 /* Mark the page as inaccessible. Discard the handle to avoid handle 937 leak. */ 938 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes)); 939 940 set_page_table_entry (entry->page, NULL); 941 942 #ifdef USING_MALLOC_PAGE_GROUPS 943 clear_page_group_in_use (entry->group, entry->page); 944 #endif 945 946 if (G.by_depth_in_use > 1) 947 { 948 page_entry *top = G.by_depth[G.by_depth_in_use-1]; 949 int i = entry->index_by_depth; 950 951 /* We cannot free a page from a context deeper than the current 952 one. */ 953 gcc_assert (entry->context_depth == top->context_depth); 954 955 /* Put top element into freed slot. */ 956 G.by_depth[i] = top; 957 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1]; 958 top->index_by_depth = i; 959 } 960 --G.by_depth_in_use; 961 962 adjust_depth (); 963 964 entry->next = G.free_pages; 965 G.free_pages = entry; 966 } 967 968 /* Release the free page cache to the system. */ 969 970 static void 971 release_pages (void) 972 { 973 #ifdef USING_MMAP 974 page_entry *p, *next; 975 char *start; 976 size_t len; 977 978 /* Gather up adjacent pages so they are unmapped together. */ 979 p = G.free_pages; 980 981 while (p) 982 { 983 start = p->page; 984 next = p->next; 985 len = p->bytes; 986 free (p); 987 p = next; 988 989 while (p && p->page == start + len) 990 { 991 next = p->next; 992 len += p->bytes; 993 free (p); 994 p = next; 995 } 996 997 munmap (start, len); 998 G.bytes_mapped -= len; 999 } 1000 1001 G.free_pages = NULL; 1002 #endif 1003 #ifdef USING_MALLOC_PAGE_GROUPS 1004 page_entry **pp, *p; 1005 page_group **gp, *g; 1006 1007 /* Remove all pages from free page groups from the list. */ 1008 pp = &G.free_pages; 1009 while ((p = *pp) != NULL) 1010 if (p->group->in_use == 0) 1011 { 1012 *pp = p->next; 1013 free (p); 1014 } 1015 else 1016 pp = &p->next; 1017 1018 /* Remove all free page groups, and release the storage. */ 1019 gp = &G.page_groups; 1020 while ((g = *gp) != NULL) 1021 if (g->in_use == 0) 1022 { 1023 *gp = g->next; 1024 G.bytes_mapped -= g->alloc_size; 1025 free (g->allocation); 1026 } 1027 else 1028 gp = &g->next; 1029 #endif 1030 } 1031 1032 /* This table provides a fast way to determine ceil(log_2(size)) for 1033 allocation requests. The minimum allocation size is eight bytes. */ 1034 #define NUM_SIZE_LOOKUP 512 1035 static unsigned char size_lookup[NUM_SIZE_LOOKUP] = 1036 { 1037 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 1038 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1039 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1040 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1041 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1042 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1043 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1044 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1045 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1046 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1047 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1048 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1049 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1050 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1051 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1052 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1053 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1054 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1055 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1056 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1057 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1058 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1059 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1060 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1061 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1062 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1063 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1064 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1065 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1066 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1067 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1068 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 1069 }; 1070 1071 /* Typed allocation function. Does nothing special in this collector. */ 1072 1073 void * 1074 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size 1075 MEM_STAT_DECL) 1076 { 1077 return ggc_alloc_stat (size PASS_MEM_STAT); 1078 } 1079 1080 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */ 1081 1082 void * 1083 ggc_alloc_stat (size_t size MEM_STAT_DECL) 1084 { 1085 size_t order, word, bit, object_offset, object_size; 1086 struct page_entry *entry; 1087 void *result; 1088 1089 if (size < NUM_SIZE_LOOKUP) 1090 { 1091 order = size_lookup[size]; 1092 object_size = OBJECT_SIZE (order); 1093 } 1094 else 1095 { 1096 order = 10; 1097 while (size > (object_size = OBJECT_SIZE (order))) 1098 order++; 1099 } 1100 1101 /* If there are non-full pages for this size allocation, they are at 1102 the head of the list. */ 1103 entry = G.pages[order]; 1104 1105 /* If there is no page for this object size, or all pages in this 1106 context are full, allocate a new page. */ 1107 if (entry == NULL || entry->num_free_objects == 0) 1108 { 1109 struct page_entry *new_entry; 1110 new_entry = alloc_page (order); 1111 1112 new_entry->index_by_depth = G.by_depth_in_use; 1113 push_by_depth (new_entry, 0); 1114 1115 /* We can skip context depths, if we do, make sure we go all the 1116 way to the new depth. */ 1117 while (new_entry->context_depth >= G.depth_in_use) 1118 push_depth (G.by_depth_in_use-1); 1119 1120 /* If this is the only entry, it's also the tail. If it is not 1121 the only entry, then we must update the PREV pointer of the 1122 ENTRY (G.pages[order]) to point to our new page entry. */ 1123 if (entry == NULL) 1124 G.page_tails[order] = new_entry; 1125 else 1126 entry->prev = new_entry; 1127 1128 /* Put new pages at the head of the page list. By definition the 1129 entry at the head of the list always has a NULL pointer. */ 1130 new_entry->next = entry; 1131 new_entry->prev = NULL; 1132 entry = new_entry; 1133 G.pages[order] = new_entry; 1134 1135 /* For a new page, we know the word and bit positions (in the 1136 in_use bitmap) of the first available object -- they're zero. */ 1137 new_entry->next_bit_hint = 1; 1138 word = 0; 1139 bit = 0; 1140 object_offset = 0; 1141 } 1142 else 1143 { 1144 /* First try to use the hint left from the previous allocation 1145 to locate a clear bit in the in-use bitmap. We've made sure 1146 that the one-past-the-end bit is always set, so if the hint 1147 has run over, this test will fail. */ 1148 unsigned hint = entry->next_bit_hint; 1149 word = hint / HOST_BITS_PER_LONG; 1150 bit = hint % HOST_BITS_PER_LONG; 1151 1152 /* If the hint didn't work, scan the bitmap from the beginning. */ 1153 if ((entry->in_use_p[word] >> bit) & 1) 1154 { 1155 word = bit = 0; 1156 while (~entry->in_use_p[word] == 0) 1157 ++word; 1158 1159 #if GCC_VERSION >= 3004 1160 bit = __builtin_ctzl (~entry->in_use_p[word]); 1161 #else 1162 while ((entry->in_use_p[word] >> bit) & 1) 1163 ++bit; 1164 #endif 1165 1166 hint = word * HOST_BITS_PER_LONG + bit; 1167 } 1168 1169 /* Next time, try the next bit. */ 1170 entry->next_bit_hint = hint + 1; 1171 1172 object_offset = hint * object_size; 1173 } 1174 1175 /* Set the in-use bit. */ 1176 entry->in_use_p[word] |= ((unsigned long) 1 << bit); 1177 1178 /* Keep a running total of the number of free objects. If this page 1179 fills up, we may have to move it to the end of the list if the 1180 next page isn't full. If the next page is full, all subsequent 1181 pages are full, so there's no need to move it. */ 1182 if (--entry->num_free_objects == 0 1183 && entry->next != NULL 1184 && entry->next->num_free_objects > 0) 1185 { 1186 /* We have a new head for the list. */ 1187 G.pages[order] = entry->next; 1188 1189 /* We are moving ENTRY to the end of the page table list. 1190 The new page at the head of the list will have NULL in 1191 its PREV field and ENTRY will have NULL in its NEXT field. */ 1192 entry->next->prev = NULL; 1193 entry->next = NULL; 1194 1195 /* Append ENTRY to the tail of the list. */ 1196 entry->prev = G.page_tails[order]; 1197 G.page_tails[order]->next = entry; 1198 G.page_tails[order] = entry; 1199 } 1200 1201 /* Calculate the object's address. */ 1202 result = entry->page + object_offset; 1203 #ifdef GATHER_STATISTICS 1204 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size, 1205 result PASS_MEM_STAT); 1206 #endif 1207 1208 #ifdef ENABLE_GC_CHECKING 1209 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the 1210 exact same semantics in presence of memory bugs, regardless of 1211 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the 1212 handle to avoid handle leak. */ 1213 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size)); 1214 1215 /* `Poison' the entire allocated object, including any padding at 1216 the end. */ 1217 memset (result, 0xaf, object_size); 1218 1219 /* Make the bytes after the end of the object unaccessible. Discard the 1220 handle to avoid handle leak. */ 1221 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size, 1222 object_size - size)); 1223 #endif 1224 1225 /* Tell Valgrind that the memory is there, but its content isn't 1226 defined. The bytes at the end of the object are still marked 1227 unaccessible. */ 1228 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size)); 1229 1230 /* Keep track of how many bytes are being allocated. This 1231 information is used in deciding when to collect. */ 1232 G.allocated += object_size; 1233 1234 /* For timevar statistics. */ 1235 timevar_ggc_mem_total += object_size; 1236 1237 #ifdef GATHER_STATISTICS 1238 { 1239 size_t overhead = object_size - size; 1240 1241 G.stats.total_overhead += overhead; 1242 G.stats.total_allocated += object_size; 1243 G.stats.total_overhead_per_order[order] += overhead; 1244 G.stats.total_allocated_per_order[order] += object_size; 1245 1246 if (size <= 32) 1247 { 1248 G.stats.total_overhead_under32 += overhead; 1249 G.stats.total_allocated_under32 += object_size; 1250 } 1251 if (size <= 64) 1252 { 1253 G.stats.total_overhead_under64 += overhead; 1254 G.stats.total_allocated_under64 += object_size; 1255 } 1256 if (size <= 128) 1257 { 1258 G.stats.total_overhead_under128 += overhead; 1259 G.stats.total_allocated_under128 += object_size; 1260 } 1261 } 1262 #endif 1263 1264 if (GGC_DEBUG_LEVEL >= 3) 1265 fprintf (G.debug_file, 1266 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n", 1267 (unsigned long) size, (unsigned long) object_size, result, 1268 (void *) entry); 1269 1270 return result; 1271 } 1272 1273 /* Mark function for strings. */ 1274 1275 void 1276 gt_ggc_m_S (const void *p) 1277 { 1278 page_entry *entry; 1279 unsigned bit, word; 1280 unsigned long mask; 1281 unsigned long offset; 1282 1283 if (!p || !ggc_allocated_p (p)) 1284 return; 1285 1286 /* Look up the page on which the object is alloced. . */ 1287 entry = lookup_page_table_entry (p); 1288 gcc_assert (entry); 1289 1290 /* Calculate the index of the object on the page; this is its bit 1291 position in the in_use_p bitmap. Note that because a char* might 1292 point to the middle of an object, we need special code here to 1293 make sure P points to the start of an object. */ 1294 offset = ((const char *) p - entry->page) % object_size_table[entry->order]; 1295 if (offset) 1296 { 1297 /* Here we've seen a char* which does not point to the beginning 1298 of an allocated object. We assume it points to the middle of 1299 a STRING_CST. */ 1300 gcc_assert (offset == offsetof (struct tree_string, str)); 1301 p = ((const char *) p) - offset; 1302 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p)); 1303 return; 1304 } 1305 1306 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1307 word = bit / HOST_BITS_PER_LONG; 1308 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1309 1310 /* If the bit was previously set, skip it. */ 1311 if (entry->in_use_p[word] & mask) 1312 return; 1313 1314 /* Otherwise set it, and decrement the free object count. */ 1315 entry->in_use_p[word] |= mask; 1316 entry->num_free_objects -= 1; 1317 1318 if (GGC_DEBUG_LEVEL >= 4) 1319 fprintf (G.debug_file, "Marking %p\n", p); 1320 1321 return; 1322 } 1323 1324 /* If P is not marked, marks it and return false. Otherwise return true. 1325 P must have been allocated by the GC allocator; it mustn't point to 1326 static objects, stack variables, or memory allocated with malloc. */ 1327 1328 int 1329 ggc_set_mark (const void *p) 1330 { 1331 page_entry *entry; 1332 unsigned bit, word; 1333 unsigned long mask; 1334 1335 /* Look up the page on which the object is alloced. If the object 1336 wasn't allocated by the collector, we'll probably die. */ 1337 entry = lookup_page_table_entry (p); 1338 gcc_assert (entry); 1339 1340 /* Calculate the index of the object on the page; this is its bit 1341 position in the in_use_p bitmap. */ 1342 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1343 word = bit / HOST_BITS_PER_LONG; 1344 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1345 1346 /* If the bit was previously set, skip it. */ 1347 if (entry->in_use_p[word] & mask) 1348 return 1; 1349 1350 /* Otherwise set it, and decrement the free object count. */ 1351 entry->in_use_p[word] |= mask; 1352 entry->num_free_objects -= 1; 1353 1354 if (GGC_DEBUG_LEVEL >= 4) 1355 fprintf (G.debug_file, "Marking %p\n", p); 1356 1357 return 0; 1358 } 1359 1360 /* Return 1 if P has been marked, zero otherwise. 1361 P must have been allocated by the GC allocator; it mustn't point to 1362 static objects, stack variables, or memory allocated with malloc. */ 1363 1364 int 1365 ggc_marked_p (const void *p) 1366 { 1367 page_entry *entry; 1368 unsigned bit, word; 1369 unsigned long mask; 1370 1371 /* Look up the page on which the object is alloced. If the object 1372 wasn't allocated by the collector, we'll probably die. */ 1373 entry = lookup_page_table_entry (p); 1374 gcc_assert (entry); 1375 1376 /* Calculate the index of the object on the page; this is its bit 1377 position in the in_use_p bitmap. */ 1378 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1379 word = bit / HOST_BITS_PER_LONG; 1380 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1381 1382 return (entry->in_use_p[word] & mask) != 0; 1383 } 1384 1385 /* Return the size of the gc-able object P. */ 1386 1387 size_t 1388 ggc_get_size (const void *p) 1389 { 1390 page_entry *pe = lookup_page_table_entry (p); 1391 return OBJECT_SIZE (pe->order); 1392 } 1393 1394 /* Release the memory for object P. */ 1395 1396 void 1397 ggc_free (void *p) 1398 { 1399 page_entry *pe = lookup_page_table_entry (p); 1400 size_t order = pe->order; 1401 size_t size = OBJECT_SIZE (order); 1402 1403 #ifdef GATHER_STATISTICS 1404 ggc_free_overhead (p); 1405 #endif 1406 1407 if (GGC_DEBUG_LEVEL >= 3) 1408 fprintf (G.debug_file, 1409 "Freeing object, actual size=%lu, at %p on %p\n", 1410 (unsigned long) size, p, (void *) pe); 1411 1412 #ifdef ENABLE_GC_CHECKING 1413 /* Poison the data, to indicate the data is garbage. */ 1414 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size)); 1415 memset (p, 0xa5, size); 1416 #endif 1417 /* Let valgrind know the object is free. */ 1418 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size)); 1419 1420 #ifdef ENABLE_GC_ALWAYS_COLLECT 1421 /* In the completely-anal-checking mode, we do *not* immediately free 1422 the data, but instead verify that the data is *actually* not 1423 reachable the next time we collect. */ 1424 { 1425 struct free_object *fo = XNEW (struct free_object); 1426 fo->object = p; 1427 fo->next = G.free_object_list; 1428 G.free_object_list = fo; 1429 } 1430 #else 1431 { 1432 unsigned int bit_offset, word, bit; 1433 1434 G.allocated -= size; 1435 1436 /* Mark the object not-in-use. */ 1437 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order); 1438 word = bit_offset / HOST_BITS_PER_LONG; 1439 bit = bit_offset % HOST_BITS_PER_LONG; 1440 pe->in_use_p[word] &= ~(1UL << bit); 1441 1442 if (pe->num_free_objects++ == 0) 1443 { 1444 page_entry *p, *q; 1445 1446 /* If the page is completely full, then it's supposed to 1447 be after all pages that aren't. Since we've freed one 1448 object from a page that was full, we need to move the 1449 page to the head of the list. 1450 1451 PE is the node we want to move. Q is the previous node 1452 and P is the next node in the list. */ 1453 q = pe->prev; 1454 if (q && q->num_free_objects == 0) 1455 { 1456 p = pe->next; 1457 1458 q->next = p; 1459 1460 /* If PE was at the end of the list, then Q becomes the 1461 new end of the list. If PE was not the end of the 1462 list, then we need to update the PREV field for P. */ 1463 if (!p) 1464 G.page_tails[order] = q; 1465 else 1466 p->prev = q; 1467 1468 /* Move PE to the head of the list. */ 1469 pe->next = G.pages[order]; 1470 pe->prev = NULL; 1471 G.pages[order]->prev = pe; 1472 G.pages[order] = pe; 1473 } 1474 1475 /* Reset the hint bit to point to the only free object. */ 1476 pe->next_bit_hint = bit_offset; 1477 } 1478 } 1479 #endif 1480 } 1481 1482 /* Subroutine of init_ggc which computes the pair of numbers used to 1483 perform division by OBJECT_SIZE (order) and fills in inverse_table[]. 1484 1485 This algorithm is taken from Granlund and Montgomery's paper 1486 "Division by Invariant Integers using Multiplication" 1487 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by 1488 constants). */ 1489 1490 static void 1491 compute_inverse (unsigned order) 1492 { 1493 size_t size, inv; 1494 unsigned int e; 1495 1496 size = OBJECT_SIZE (order); 1497 e = 0; 1498 while (size % 2 == 0) 1499 { 1500 e++; 1501 size >>= 1; 1502 } 1503 1504 inv = size; 1505 while (inv * size != 1) 1506 inv = inv * (2 - inv*size); 1507 1508 DIV_MULT (order) = inv; 1509 DIV_SHIFT (order) = e; 1510 } 1511 1512 /* Initialize the ggc-mmap allocator. */ 1513 void 1514 init_ggc (void) 1515 { 1516 unsigned order; 1517 1518 G.pagesize = getpagesize(); 1519 G.lg_pagesize = exact_log2 (G.pagesize); 1520 1521 #ifdef HAVE_MMAP_DEV_ZERO 1522 G.dev_zero_fd = open ("/dev/zero", O_RDONLY); 1523 if (G.dev_zero_fd == -1) 1524 internal_error ("open /dev/zero: %m"); 1525 #endif 1526 1527 #if 0 1528 G.debug_file = fopen ("ggc-mmap.debug", "w"); 1529 #else 1530 G.debug_file = stdout; 1531 #endif 1532 1533 #ifdef USING_MMAP 1534 /* StunOS has an amazing off-by-one error for the first mmap allocation 1535 after fiddling with RLIMIT_STACK. The result, as hard as it is to 1536 believe, is an unaligned page allocation, which would cause us to 1537 hork badly if we tried to use it. */ 1538 { 1539 char *p = alloc_anon (NULL, G.pagesize); 1540 struct page_entry *e; 1541 if ((size_t)p & (G.pagesize - 1)) 1542 { 1543 /* How losing. Discard this one and try another. If we still 1544 can't get something useful, give up. */ 1545 1546 p = alloc_anon (NULL, G.pagesize); 1547 gcc_assert (!((size_t)p & (G.pagesize - 1))); 1548 } 1549 1550 /* We have a good page, might as well hold onto it... */ 1551 e = XCNEW (struct page_entry); 1552 e->bytes = G.pagesize; 1553 e->page = p; 1554 e->next = G.free_pages; 1555 G.free_pages = e; 1556 } 1557 #endif 1558 1559 /* Initialize the object size table. */ 1560 for (order = 0; order < HOST_BITS_PER_PTR; ++order) 1561 object_size_table[order] = (size_t) 1 << order; 1562 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1563 { 1564 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR]; 1565 1566 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up 1567 so that we're sure of getting aligned memory. */ 1568 s = ROUND_UP (s, MAX_ALIGNMENT); 1569 object_size_table[order] = s; 1570 } 1571 1572 /* Initialize the objects-per-page and inverse tables. */ 1573 for (order = 0; order < NUM_ORDERS; ++order) 1574 { 1575 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order); 1576 if (objects_per_page_table[order] == 0) 1577 objects_per_page_table[order] = 1; 1578 compute_inverse (order); 1579 } 1580 1581 /* Reset the size_lookup array to put appropriately sized objects in 1582 the special orders. All objects bigger than the previous power 1583 of two, but no greater than the special size, should go in the 1584 new order. */ 1585 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1586 { 1587 int o; 1588 int i; 1589 1590 i = OBJECT_SIZE (order); 1591 if (i >= NUM_SIZE_LOOKUP) 1592 continue; 1593 1594 for (o = size_lookup[i]; o == size_lookup [i]; --i) 1595 size_lookup[i] = order; 1596 } 1597 1598 G.depth_in_use = 0; 1599 G.depth_max = 10; 1600 G.depth = XNEWVEC (unsigned int, G.depth_max); 1601 1602 G.by_depth_in_use = 0; 1603 G.by_depth_max = INITIAL_PTE_COUNT; 1604 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max); 1605 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 1606 } 1607 1608 /* Start a new GGC zone. */ 1609 1610 struct alloc_zone * 1611 new_ggc_zone (const char *name ATTRIBUTE_UNUSED) 1612 { 1613 return NULL; 1614 } 1615 1616 /* Destroy a GGC zone. */ 1617 void 1618 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED) 1619 { 1620 } 1621 1622 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P 1623 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */ 1624 1625 static void 1626 ggc_recalculate_in_use_p (page_entry *p) 1627 { 1628 unsigned int i; 1629 size_t num_objects; 1630 1631 /* Because the past-the-end bit in in_use_p is always set, we 1632 pretend there is one additional object. */ 1633 num_objects = OBJECTS_IN_PAGE (p) + 1; 1634 1635 /* Reset the free object count. */ 1636 p->num_free_objects = num_objects; 1637 1638 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */ 1639 for (i = 0; 1640 i < CEIL (BITMAP_SIZE (num_objects), 1641 sizeof (*p->in_use_p)); 1642 ++i) 1643 { 1644 unsigned long j; 1645 1646 /* Something is in use if it is marked, or if it was in use in a 1647 context further down the context stack. */ 1648 p->in_use_p[i] |= save_in_use_p (p)[i]; 1649 1650 /* Decrement the free object count for every object allocated. */ 1651 for (j = p->in_use_p[i]; j; j >>= 1) 1652 p->num_free_objects -= (j & 1); 1653 } 1654 1655 gcc_assert (p->num_free_objects < num_objects); 1656 } 1657 1658 /* Unmark all objects. */ 1659 1660 static void 1661 clear_marks (void) 1662 { 1663 unsigned order; 1664 1665 for (order = 2; order < NUM_ORDERS; order++) 1666 { 1667 page_entry *p; 1668 1669 for (p = G.pages[order]; p != NULL; p = p->next) 1670 { 1671 size_t num_objects = OBJECTS_IN_PAGE (p); 1672 size_t bitmap_size = BITMAP_SIZE (num_objects + 1); 1673 1674 /* The data should be page-aligned. */ 1675 gcc_assert (!((size_t) p->page & (G.pagesize - 1))); 1676 1677 /* Pages that aren't in the topmost context are not collected; 1678 nevertheless, we need their in-use bit vectors to store GC 1679 marks. So, back them up first. */ 1680 if (p->context_depth < G.context_depth) 1681 { 1682 if (! save_in_use_p (p)) 1683 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size); 1684 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size); 1685 } 1686 1687 /* Reset reset the number of free objects and clear the 1688 in-use bits. These will be adjusted by mark_obj. */ 1689 p->num_free_objects = num_objects; 1690 memset (p->in_use_p, 0, bitmap_size); 1691 1692 /* Make sure the one-past-the-end bit is always set. */ 1693 p->in_use_p[num_objects / HOST_BITS_PER_LONG] 1694 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG)); 1695 } 1696 } 1697 } 1698 1699 /* Free all empty pages. Partially empty pages need no attention 1700 because the `mark' bit doubles as an `unused' bit. */ 1701 1702 static void 1703 sweep_pages (void) 1704 { 1705 unsigned order; 1706 1707 for (order = 2; order < NUM_ORDERS; order++) 1708 { 1709 /* The last page-entry to consider, regardless of entries 1710 placed at the end of the list. */ 1711 page_entry * const last = G.page_tails[order]; 1712 1713 size_t num_objects; 1714 size_t live_objects; 1715 page_entry *p, *previous; 1716 int done; 1717 1718 p = G.pages[order]; 1719 if (p == NULL) 1720 continue; 1721 1722 previous = NULL; 1723 do 1724 { 1725 page_entry *next = p->next; 1726 1727 /* Loop until all entries have been examined. */ 1728 done = (p == last); 1729 1730 num_objects = OBJECTS_IN_PAGE (p); 1731 1732 /* Add all live objects on this page to the count of 1733 allocated memory. */ 1734 live_objects = num_objects - p->num_free_objects; 1735 1736 G.allocated += OBJECT_SIZE (order) * live_objects; 1737 1738 /* Only objects on pages in the topmost context should get 1739 collected. */ 1740 if (p->context_depth < G.context_depth) 1741 ; 1742 1743 /* Remove the page if it's empty. */ 1744 else if (live_objects == 0) 1745 { 1746 /* If P was the first page in the list, then NEXT 1747 becomes the new first page in the list, otherwise 1748 splice P out of the forward pointers. */ 1749 if (! previous) 1750 G.pages[order] = next; 1751 else 1752 previous->next = next; 1753 1754 /* Splice P out of the back pointers too. */ 1755 if (next) 1756 next->prev = previous; 1757 1758 /* Are we removing the last element? */ 1759 if (p == G.page_tails[order]) 1760 G.page_tails[order] = previous; 1761 free_page (p); 1762 p = previous; 1763 } 1764 1765 /* If the page is full, move it to the end. */ 1766 else if (p->num_free_objects == 0) 1767 { 1768 /* Don't move it if it's already at the end. */ 1769 if (p != G.page_tails[order]) 1770 { 1771 /* Move p to the end of the list. */ 1772 p->next = NULL; 1773 p->prev = G.page_tails[order]; 1774 G.page_tails[order]->next = p; 1775 1776 /* Update the tail pointer... */ 1777 G.page_tails[order] = p; 1778 1779 /* ... and the head pointer, if necessary. */ 1780 if (! previous) 1781 G.pages[order] = next; 1782 else 1783 previous->next = next; 1784 1785 /* And update the backpointer in NEXT if necessary. */ 1786 if (next) 1787 next->prev = previous; 1788 1789 p = previous; 1790 } 1791 } 1792 1793 /* If we've fallen through to here, it's a page in the 1794 topmost context that is neither full nor empty. Such a 1795 page must precede pages at lesser context depth in the 1796 list, so move it to the head. */ 1797 else if (p != G.pages[order]) 1798 { 1799 previous->next = p->next; 1800 1801 /* Update the backchain in the next node if it exists. */ 1802 if (p->next) 1803 p->next->prev = previous; 1804 1805 /* Move P to the head of the list. */ 1806 p->next = G.pages[order]; 1807 p->prev = NULL; 1808 G.pages[order]->prev = p; 1809 1810 /* Update the head pointer. */ 1811 G.pages[order] = p; 1812 1813 /* Are we moving the last element? */ 1814 if (G.page_tails[order] == p) 1815 G.page_tails[order] = previous; 1816 p = previous; 1817 } 1818 1819 previous = p; 1820 p = next; 1821 } 1822 while (! done); 1823 1824 /* Now, restore the in_use_p vectors for any pages from contexts 1825 other than the current one. */ 1826 for (p = G.pages[order]; p; p = p->next) 1827 if (p->context_depth != G.context_depth) 1828 ggc_recalculate_in_use_p (p); 1829 } 1830 } 1831 1832 #ifdef ENABLE_GC_CHECKING 1833 /* Clobber all free objects. */ 1834 1835 static void 1836 poison_pages (void) 1837 { 1838 unsigned order; 1839 1840 for (order = 2; order < NUM_ORDERS; order++) 1841 { 1842 size_t size = OBJECT_SIZE (order); 1843 page_entry *p; 1844 1845 for (p = G.pages[order]; p != NULL; p = p->next) 1846 { 1847 size_t num_objects; 1848 size_t i; 1849 1850 if (p->context_depth != G.context_depth) 1851 /* Since we don't do any collection for pages in pushed 1852 contexts, there's no need to do any poisoning. And 1853 besides, the IN_USE_P array isn't valid until we pop 1854 contexts. */ 1855 continue; 1856 1857 num_objects = OBJECTS_IN_PAGE (p); 1858 for (i = 0; i < num_objects; i++) 1859 { 1860 size_t word, bit; 1861 word = i / HOST_BITS_PER_LONG; 1862 bit = i % HOST_BITS_PER_LONG; 1863 if (((p->in_use_p[word] >> bit) & 1) == 0) 1864 { 1865 char *object = p->page + i * size; 1866 1867 /* Keep poison-by-write when we expect to use Valgrind, 1868 so the exact same memory semantics is kept, in case 1869 there are memory errors. We override this request 1870 below. */ 1871 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object, 1872 size)); 1873 memset (object, 0xa5, size); 1874 1875 /* Drop the handle to avoid handle leak. */ 1876 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size)); 1877 } 1878 } 1879 } 1880 } 1881 } 1882 #else 1883 #define poison_pages() 1884 #endif 1885 1886 #ifdef ENABLE_GC_ALWAYS_COLLECT 1887 /* Validate that the reportedly free objects actually are. */ 1888 1889 static void 1890 validate_free_objects (void) 1891 { 1892 struct free_object *f, *next, *still_free = NULL; 1893 1894 for (f = G.free_object_list; f ; f = next) 1895 { 1896 page_entry *pe = lookup_page_table_entry (f->object); 1897 size_t bit, word; 1898 1899 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order); 1900 word = bit / HOST_BITS_PER_LONG; 1901 bit = bit % HOST_BITS_PER_LONG; 1902 next = f->next; 1903 1904 /* Make certain it isn't visible from any root. Notice that we 1905 do this check before sweep_pages merges save_in_use_p. */ 1906 gcc_assert (!(pe->in_use_p[word] & (1UL << bit))); 1907 1908 /* If the object comes from an outer context, then retain the 1909 free_object entry, so that we can verify that the address 1910 isn't live on the stack in some outer context. */ 1911 if (pe->context_depth != G.context_depth) 1912 { 1913 f->next = still_free; 1914 still_free = f; 1915 } 1916 else 1917 free (f); 1918 } 1919 1920 G.free_object_list = still_free; 1921 } 1922 #else 1923 #define validate_free_objects() 1924 #endif 1925 1926 /* Top level mark-and-sweep routine. */ 1927 1928 void 1929 ggc_collect (void) 1930 { 1931 /* Avoid frequent unnecessary work by skipping collection if the 1932 total allocations haven't expanded much since the last 1933 collection. */ 1934 float allocated_last_gc = 1935 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024); 1936 1937 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100; 1938 1939 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect) 1940 return; 1941 1942 timevar_push (TV_GC); 1943 if (!quiet_flag) 1944 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024); 1945 if (GGC_DEBUG_LEVEL >= 2) 1946 fprintf (G.debug_file, "BEGIN COLLECTING\n"); 1947 1948 /* Zero the total allocated bytes. This will be recalculated in the 1949 sweep phase. */ 1950 G.allocated = 0; 1951 1952 /* Release the pages we freed the last time we collected, but didn't 1953 reuse in the interim. */ 1954 release_pages (); 1955 1956 /* Indicate that we've seen collections at this context depth. */ 1957 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1; 1958 1959 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL); 1960 1961 clear_marks (); 1962 ggc_mark_roots (); 1963 #ifdef GATHER_STATISTICS 1964 ggc_prune_overhead_list (); 1965 #endif 1966 poison_pages (); 1967 validate_free_objects (); 1968 sweep_pages (); 1969 1970 G.allocated_last_gc = G.allocated; 1971 1972 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL); 1973 1974 timevar_pop (TV_GC); 1975 1976 if (!quiet_flag) 1977 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024); 1978 if (GGC_DEBUG_LEVEL >= 2) 1979 fprintf (G.debug_file, "END COLLECTING\n"); 1980 } 1981 1982 /* Print allocation statistics. */ 1983 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ 1984 ? (x) \ 1985 : ((x) < 1024*1024*10 \ 1986 ? (x) / 1024 \ 1987 : (x) / (1024*1024)))) 1988 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) 1989 1990 void 1991 ggc_print_statistics (void) 1992 { 1993 struct ggc_statistics stats; 1994 unsigned int i; 1995 size_t total_overhead = 0; 1996 1997 /* Clear the statistics. */ 1998 memset (&stats, 0, sizeof (stats)); 1999 2000 /* Make sure collection will really occur. */ 2001 G.allocated_last_gc = 0; 2002 2003 /* Collect and print the statistics common across collectors. */ 2004 ggc_print_common_statistics (stderr, &stats); 2005 2006 /* Release free pages so that we will not count the bytes allocated 2007 there as part of the total allocated memory. */ 2008 release_pages (); 2009 2010 /* Collect some information about the various sizes of 2011 allocation. */ 2012 fprintf (stderr, 2013 "Memory still allocated at the end of the compilation process\n"); 2014 fprintf (stderr, "%-5s %10s %10s %10s\n", 2015 "Size", "Allocated", "Used", "Overhead"); 2016 for (i = 0; i < NUM_ORDERS; ++i) 2017 { 2018 page_entry *p; 2019 size_t allocated; 2020 size_t in_use; 2021 size_t overhead; 2022 2023 /* Skip empty entries. */ 2024 if (!G.pages[i]) 2025 continue; 2026 2027 overhead = allocated = in_use = 0; 2028 2029 /* Figure out the total number of bytes allocated for objects of 2030 this size, and how many of them are actually in use. Also figure 2031 out how much memory the page table is using. */ 2032 for (p = G.pages[i]; p; p = p->next) 2033 { 2034 allocated += p->bytes; 2035 in_use += 2036 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i); 2037 2038 overhead += (sizeof (page_entry) - sizeof (long) 2039 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1)); 2040 } 2041 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n", 2042 (unsigned long) OBJECT_SIZE (i), 2043 SCALE (allocated), STAT_LABEL (allocated), 2044 SCALE (in_use), STAT_LABEL (in_use), 2045 SCALE (overhead), STAT_LABEL (overhead)); 2046 total_overhead += overhead; 2047 } 2048 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total", 2049 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped), 2050 SCALE (G.allocated), STAT_LABEL(G.allocated), 2051 SCALE (total_overhead), STAT_LABEL (total_overhead)); 2052 2053 #ifdef GATHER_STATISTICS 2054 { 2055 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n"); 2056 2057 fprintf (stderr, "Total Overhead: %10lld\n", 2058 G.stats.total_overhead); 2059 fprintf (stderr, "Total Allocated: %10lld\n", 2060 G.stats.total_allocated); 2061 2062 fprintf (stderr, "Total Overhead under 32B: %10lld\n", 2063 G.stats.total_overhead_under32); 2064 fprintf (stderr, "Total Allocated under 32B: %10lld\n", 2065 G.stats.total_allocated_under32); 2066 fprintf (stderr, "Total Overhead under 64B: %10lld\n", 2067 G.stats.total_overhead_under64); 2068 fprintf (stderr, "Total Allocated under 64B: %10lld\n", 2069 G.stats.total_allocated_under64); 2070 fprintf (stderr, "Total Overhead under 128B: %10lld\n", 2071 G.stats.total_overhead_under128); 2072 fprintf (stderr, "Total Allocated under 128B: %10lld\n", 2073 G.stats.total_allocated_under128); 2074 2075 for (i = 0; i < NUM_ORDERS; i++) 2076 if (G.stats.total_allocated_per_order[i]) 2077 { 2078 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n", 2079 (unsigned long) OBJECT_SIZE (i), 2080 G.stats.total_overhead_per_order[i]); 2081 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n", 2082 (unsigned long) OBJECT_SIZE (i), 2083 G.stats.total_allocated_per_order[i]); 2084 } 2085 } 2086 #endif 2087 } 2088 2089 struct ggc_pch_ondisk 2090 { 2091 unsigned totals[NUM_ORDERS]; 2092 }; 2093 2094 struct ggc_pch_data 2095 { 2096 struct ggc_pch_ondisk d; 2097 size_t base[NUM_ORDERS]; 2098 size_t written[NUM_ORDERS]; 2099 }; 2100 2101 struct ggc_pch_data * 2102 init_ggc_pch (void) 2103 { 2104 return XCNEW (struct ggc_pch_data); 2105 } 2106 2107 void 2108 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2109 size_t size, bool is_string ATTRIBUTE_UNUSED, 2110 enum gt_types_enum type ATTRIBUTE_UNUSED) 2111 { 2112 unsigned order; 2113 2114 if (size < NUM_SIZE_LOOKUP) 2115 order = size_lookup[size]; 2116 else 2117 { 2118 order = 10; 2119 while (size > OBJECT_SIZE (order)) 2120 order++; 2121 } 2122 2123 d->d.totals[order]++; 2124 } 2125 2126 size_t 2127 ggc_pch_total_size (struct ggc_pch_data *d) 2128 { 2129 size_t a = 0; 2130 unsigned i; 2131 2132 for (i = 0; i < NUM_ORDERS; i++) 2133 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize); 2134 return a; 2135 } 2136 2137 void 2138 ggc_pch_this_base (struct ggc_pch_data *d, void *base) 2139 { 2140 size_t a = (size_t) base; 2141 unsigned i; 2142 2143 for (i = 0; i < NUM_ORDERS; i++) 2144 { 2145 d->base[i] = a; 2146 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize); 2147 } 2148 } 2149 2150 2151 char * 2152 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2153 size_t size, bool is_string ATTRIBUTE_UNUSED, 2154 enum gt_types_enum type ATTRIBUTE_UNUSED) 2155 { 2156 unsigned order; 2157 char *result; 2158 2159 if (size < NUM_SIZE_LOOKUP) 2160 order = size_lookup[size]; 2161 else 2162 { 2163 order = 10; 2164 while (size > OBJECT_SIZE (order)) 2165 order++; 2166 } 2167 2168 result = (char *) d->base[order]; 2169 d->base[order] += OBJECT_SIZE (order); 2170 return result; 2171 } 2172 2173 void 2174 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED, 2175 FILE *f ATTRIBUTE_UNUSED) 2176 { 2177 /* Nothing to do. */ 2178 } 2179 2180 void 2181 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED, 2182 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED, 2183 size_t size, bool is_string ATTRIBUTE_UNUSED) 2184 { 2185 unsigned order; 2186 static const char emptyBytes[256] = { 0 }; 2187 2188 if (size < NUM_SIZE_LOOKUP) 2189 order = size_lookup[size]; 2190 else 2191 { 2192 order = 10; 2193 while (size > OBJECT_SIZE (order)) 2194 order++; 2195 } 2196 2197 if (fwrite (x, size, 1, f) != 1) 2198 fatal_error ("can't write PCH file: %m"); 2199 2200 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the 2201 object out to OBJECT_SIZE(order). This happens for strings. */ 2202 2203 if (size != OBJECT_SIZE (order)) 2204 { 2205 unsigned padding = OBJECT_SIZE(order) - size; 2206 2207 /* To speed small writes, we use a nulled-out array that's larger 2208 than most padding requests as the source for our null bytes. This 2209 permits us to do the padding with fwrite() rather than fseek(), and 2210 limits the chance the OS may try to flush any outstanding writes. */ 2211 if (padding <= sizeof(emptyBytes)) 2212 { 2213 if (fwrite (emptyBytes, 1, padding, f) != padding) 2214 fatal_error ("can't write PCH file"); 2215 } 2216 else 2217 { 2218 /* Larger than our buffer? Just default to fseek. */ 2219 if (fseek (f, padding, SEEK_CUR) != 0) 2220 fatal_error ("can't write PCH file"); 2221 } 2222 } 2223 2224 d->written[order]++; 2225 if (d->written[order] == d->d.totals[order] 2226 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order), 2227 G.pagesize), 2228 SEEK_CUR) != 0) 2229 fatal_error ("can't write PCH file: %m"); 2230 } 2231 2232 void 2233 ggc_pch_finish (struct ggc_pch_data *d, FILE *f) 2234 { 2235 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1) 2236 fatal_error ("can't write PCH file: %m"); 2237 free (d); 2238 } 2239 2240 /* Move the PCH PTE entries just added to the end of by_depth, to the 2241 front. */ 2242 2243 static void 2244 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables) 2245 { 2246 unsigned i; 2247 2248 /* First, we swap the new entries to the front of the varrays. */ 2249 page_entry **new_by_depth; 2250 unsigned long **new_save_in_use; 2251 2252 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max); 2253 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 2254 2255 memcpy (&new_by_depth[0], 2256 &G.by_depth[count_old_page_tables], 2257 count_new_page_tables * sizeof (void *)); 2258 memcpy (&new_by_depth[count_new_page_tables], 2259 &G.by_depth[0], 2260 count_old_page_tables * sizeof (void *)); 2261 memcpy (&new_save_in_use[0], 2262 &G.save_in_use[count_old_page_tables], 2263 count_new_page_tables * sizeof (void *)); 2264 memcpy (&new_save_in_use[count_new_page_tables], 2265 &G.save_in_use[0], 2266 count_old_page_tables * sizeof (void *)); 2267 2268 free (G.by_depth); 2269 free (G.save_in_use); 2270 2271 G.by_depth = new_by_depth; 2272 G.save_in_use = new_save_in_use; 2273 2274 /* Now update all the index_by_depth fields. */ 2275 for (i = G.by_depth_in_use; i > 0; --i) 2276 { 2277 page_entry *p = G.by_depth[i-1]; 2278 p->index_by_depth = i-1; 2279 } 2280 2281 /* And last, we update the depth pointers in G.depth. The first 2282 entry is already 0, and context 0 entries always start at index 2283 0, so there is nothing to update in the first slot. We need a 2284 second slot, only if we have old ptes, and if we do, they start 2285 at index count_new_page_tables. */ 2286 if (count_old_page_tables) 2287 push_depth (count_new_page_tables); 2288 } 2289 2290 void 2291 ggc_pch_read (FILE *f, void *addr) 2292 { 2293 struct ggc_pch_ondisk d; 2294 unsigned i; 2295 char *offs = (char *) addr; 2296 unsigned long count_old_page_tables; 2297 unsigned long count_new_page_tables; 2298 2299 count_old_page_tables = G.by_depth_in_use; 2300 2301 /* We've just read in a PCH file. So, every object that used to be 2302 allocated is now free. */ 2303 clear_marks (); 2304 #ifdef ENABLE_GC_CHECKING 2305 poison_pages (); 2306 #endif 2307 /* Since we free all the allocated objects, the free list becomes 2308 useless. Validate it now, which will also clear it. */ 2309 validate_free_objects(); 2310 2311 /* No object read from a PCH file should ever be freed. So, set the 2312 context depth to 1, and set the depth of all the currently-allocated 2313 pages to be 1 too. PCH pages will have depth 0. */ 2314 gcc_assert (!G.context_depth); 2315 G.context_depth = 1; 2316 for (i = 0; i < NUM_ORDERS; i++) 2317 { 2318 page_entry *p; 2319 for (p = G.pages[i]; p != NULL; p = p->next) 2320 p->context_depth = G.context_depth; 2321 } 2322 2323 /* Allocate the appropriate page-table entries for the pages read from 2324 the PCH file. */ 2325 if (fread (&d, sizeof (d), 1, f) != 1) 2326 fatal_error ("can't read PCH file: %m"); 2327 2328 for (i = 0; i < NUM_ORDERS; i++) 2329 { 2330 struct page_entry *entry; 2331 char *pte; 2332 size_t bytes; 2333 size_t num_objs; 2334 size_t j; 2335 2336 if (d.totals[i] == 0) 2337 continue; 2338 2339 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize); 2340 num_objs = bytes / OBJECT_SIZE (i); 2341 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry) 2342 - sizeof (long) 2343 + BITMAP_SIZE (num_objs + 1))); 2344 entry->bytes = bytes; 2345 entry->page = offs; 2346 entry->context_depth = 0; 2347 offs += bytes; 2348 entry->num_free_objects = 0; 2349 entry->order = i; 2350 2351 for (j = 0; 2352 j + HOST_BITS_PER_LONG <= num_objs + 1; 2353 j += HOST_BITS_PER_LONG) 2354 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1; 2355 for (; j < num_objs + 1; j++) 2356 entry->in_use_p[j / HOST_BITS_PER_LONG] 2357 |= 1L << (j % HOST_BITS_PER_LONG); 2358 2359 for (pte = entry->page; 2360 pte < entry->page + entry->bytes; 2361 pte += G.pagesize) 2362 set_page_table_entry (pte, entry); 2363 2364 if (G.page_tails[i] != NULL) 2365 G.page_tails[i]->next = entry; 2366 else 2367 G.pages[i] = entry; 2368 G.page_tails[i] = entry; 2369 2370 /* We start off by just adding all the new information to the 2371 end of the varrays, later, we will move the new information 2372 to the front of the varrays, as the PCH page tables are at 2373 context 0. */ 2374 push_by_depth (entry, 0); 2375 } 2376 2377 /* Now, we update the various data structures that speed page table 2378 handling. */ 2379 count_new_page_tables = G.by_depth_in_use - count_old_page_tables; 2380 2381 move_ptes_to_front (count_old_page_tables, count_new_page_tables); 2382 2383 /* Update the statistics. */ 2384 G.allocated = G.allocated_last_gc = offs - (char *)addr; 2385 } 2386