1 /* "Bag-of-pages" garbage collector for the GNU compiler. 2 Copyright (C) 1999-2013 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 #include "config.h" 21 #include "system.h" 22 #include "coretypes.h" 23 #include "tm.h" 24 #include "tree.h" 25 #include "rtl.h" 26 #include "tm_p.h" 27 #include "diagnostic-core.h" 28 #include "flags.h" 29 #include "ggc.h" 30 #include "ggc-internal.h" 31 #include "timevar.h" 32 #include "params.h" 33 #include "tree-flow.h" 34 #include "cfgloop.h" 35 #include "plugin.h" 36 37 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a 38 file open. Prefer either to valloc. */ 39 #ifdef HAVE_MMAP_ANON 40 # undef HAVE_MMAP_DEV_ZERO 41 # define USING_MMAP 42 #endif 43 44 #ifdef HAVE_MMAP_DEV_ZERO 45 # define USING_MMAP 46 #endif 47 48 #ifndef USING_MMAP 49 #define USING_MALLOC_PAGE_GROUPS 50 #endif 51 52 #if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \ 53 && defined(USING_MMAP) 54 # define USING_MADVISE 55 #endif 56 57 /* Strategy: 58 59 This garbage-collecting allocator allocates objects on one of a set 60 of pages. Each page can allocate objects of a single size only; 61 available sizes are powers of two starting at four bytes. The size 62 of an allocation request is rounded up to the next power of two 63 (`order'), and satisfied from the appropriate page. 64 65 Each page is recorded in a page-entry, which also maintains an 66 in-use bitmap of object positions on the page. This allows the 67 allocation state of a particular object to be flipped without 68 touching the page itself. 69 70 Each page-entry also has a context depth, which is used to track 71 pushing and popping of allocation contexts. Only objects allocated 72 in the current (highest-numbered) context may be collected. 73 74 Page entries are arranged in an array of singly-linked lists. The 75 array is indexed by the allocation size, in bits, of the pages on 76 it; i.e. all pages on a list allocate objects of the same size. 77 Pages are ordered on the list such that all non-full pages precede 78 all full pages, with non-full pages arranged in order of decreasing 79 context depth. 80 81 Empty pages (of all orders) are kept on a single page cache list, 82 and are considered first when new pages are required; they are 83 deallocated at the start of the next collection if they haven't 84 been recycled by then. */ 85 86 /* Define GGC_DEBUG_LEVEL to print debugging information. 87 0: No debugging output. 88 1: GC statistics only. 89 2: Page-entry allocations/deallocations as well. 90 3: Object allocations as well. 91 4: Object marks as well. */ 92 #define GGC_DEBUG_LEVEL (0) 93 94 #ifndef HOST_BITS_PER_PTR 95 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG 96 #endif 97 98 99 /* A two-level tree is used to look up the page-entry for a given 100 pointer. Two chunks of the pointer's bits are extracted to index 101 the first and second levels of the tree, as follows: 102 103 HOST_PAGE_SIZE_BITS 104 32 | | 105 msb +----------------+----+------+------+ lsb 106 | | | 107 PAGE_L1_BITS | 108 | | 109 PAGE_L2_BITS 110 111 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry 112 pages are aligned on system page boundaries. The next most 113 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first 114 index values in the lookup table, respectively. 115 116 For 32-bit architectures and the settings below, there are no 117 leftover bits. For architectures with wider pointers, the lookup 118 tree points to a list of pages, which must be scanned to find the 119 correct one. */ 120 121 #define PAGE_L1_BITS (8) 122 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize) 123 #define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS) 124 #define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS) 125 126 #define LOOKUP_L1(p) \ 127 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1)) 128 129 #define LOOKUP_L2(p) \ 130 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1)) 131 132 /* The number of objects per allocation page, for objects on a page of 133 the indicated ORDER. */ 134 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER] 135 136 /* The number of objects in P. */ 137 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order)) 138 139 /* The size of an object on a page of the indicated ORDER. */ 140 #define OBJECT_SIZE(ORDER) object_size_table[ORDER] 141 142 /* For speed, we avoid doing a general integer divide to locate the 143 offset in the allocation bitmap, by precalculating numbers M, S 144 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O 145 within the page which is evenly divisible by the object size Z. */ 146 #define DIV_MULT(ORDER) inverse_table[ORDER].mult 147 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift 148 #define OFFSET_TO_BIT(OFFSET, ORDER) \ 149 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER)) 150 151 /* We use this structure to determine the alignment required for 152 allocations. For power-of-two sized allocations, that's not a 153 problem, but it does matter for odd-sized allocations. 154 We do not care about alignment for floating-point types. */ 155 156 struct max_alignment { 157 char c; 158 union { 159 HOST_WIDEST_INT i; 160 void *p; 161 } u; 162 }; 163 164 /* The biggest alignment required. */ 165 166 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u)) 167 168 169 /* The number of extra orders, not corresponding to power-of-two sized 170 objects. */ 171 172 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table) 173 174 #define RTL_SIZE(NSLOTS) \ 175 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion)) 176 177 #define TREE_EXP_SIZE(OPS) \ 178 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree)) 179 180 /* The Ith entry is the maximum size of an object to be stored in the 181 Ith extra order. Adding a new entry to this array is the *only* 182 thing you need to do to add a new special allocation size. */ 183 184 static const size_t extra_order_size_table[] = { 185 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT. 186 There are a lot of structures with these sizes and explicitly 187 listing them risks orders being dropped because they changed size. */ 188 MAX_ALIGNMENT * 3, 189 MAX_ALIGNMENT * 5, 190 MAX_ALIGNMENT * 6, 191 MAX_ALIGNMENT * 7, 192 MAX_ALIGNMENT * 9, 193 MAX_ALIGNMENT * 10, 194 MAX_ALIGNMENT * 11, 195 MAX_ALIGNMENT * 12, 196 MAX_ALIGNMENT * 13, 197 MAX_ALIGNMENT * 14, 198 MAX_ALIGNMENT * 15, 199 sizeof (struct tree_decl_non_common), 200 sizeof (struct tree_field_decl), 201 sizeof (struct tree_parm_decl), 202 sizeof (struct tree_var_decl), 203 sizeof (struct tree_type_non_common), 204 sizeof (struct function), 205 sizeof (struct basic_block_def), 206 sizeof (struct cgraph_node), 207 sizeof (struct loop), 208 }; 209 210 /* The total number of orders. */ 211 212 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS) 213 214 /* Compute the smallest nonnegative number which when added to X gives 215 a multiple of F. */ 216 217 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f)) 218 219 /* Compute the smallest multiple of F that is >= X. */ 220 221 #define ROUND_UP(x, f) (CEIL (x, f) * (f)) 222 223 /* Round X to next multiple of the page size */ 224 225 #define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1)) 226 227 /* The Ith entry is the number of objects on a page or order I. */ 228 229 static unsigned objects_per_page_table[NUM_ORDERS]; 230 231 /* The Ith entry is the size of an object on a page of order I. */ 232 233 static size_t object_size_table[NUM_ORDERS]; 234 235 /* The Ith entry is a pair of numbers (mult, shift) such that 236 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32, 237 for all k evenly divisible by OBJECT_SIZE(I). */ 238 239 static struct 240 { 241 size_t mult; 242 unsigned int shift; 243 } 244 inverse_table[NUM_ORDERS]; 245 246 /* A page_entry records the status of an allocation page. This 247 structure is dynamically sized to fit the bitmap in_use_p. */ 248 typedef struct page_entry 249 { 250 /* The next page-entry with objects of the same size, or NULL if 251 this is the last page-entry. */ 252 struct page_entry *next; 253 254 /* The previous page-entry with objects of the same size, or NULL if 255 this is the first page-entry. The PREV pointer exists solely to 256 keep the cost of ggc_free manageable. */ 257 struct page_entry *prev; 258 259 /* The number of bytes allocated. (This will always be a multiple 260 of the host system page size.) */ 261 size_t bytes; 262 263 /* The address at which the memory is allocated. */ 264 char *page; 265 266 #ifdef USING_MALLOC_PAGE_GROUPS 267 /* Back pointer to the page group this page came from. */ 268 struct page_group *group; 269 #endif 270 271 /* This is the index in the by_depth varray where this page table 272 can be found. */ 273 unsigned long index_by_depth; 274 275 /* Context depth of this page. */ 276 unsigned short context_depth; 277 278 /* The number of free objects remaining on this page. */ 279 unsigned short num_free_objects; 280 281 /* A likely candidate for the bit position of a free object for the 282 next allocation from this page. */ 283 unsigned short next_bit_hint; 284 285 /* The lg of size of objects allocated from this page. */ 286 unsigned char order; 287 288 /* Discarded page? */ 289 bool discarded; 290 291 /* A bit vector indicating whether or not objects are in use. The 292 Nth bit is one if the Nth object on this page is allocated. This 293 array is dynamically sized. */ 294 unsigned long in_use_p[1]; 295 } page_entry; 296 297 #ifdef USING_MALLOC_PAGE_GROUPS 298 /* A page_group describes a large allocation from malloc, from which 299 we parcel out aligned pages. */ 300 typedef struct page_group 301 { 302 /* A linked list of all extant page groups. */ 303 struct page_group *next; 304 305 /* The address we received from malloc. */ 306 char *allocation; 307 308 /* The size of the block. */ 309 size_t alloc_size; 310 311 /* A bitmask of pages in use. */ 312 unsigned int in_use; 313 } page_group; 314 #endif 315 316 #if HOST_BITS_PER_PTR <= 32 317 318 /* On 32-bit hosts, we use a two level page table, as pictured above. */ 319 typedef page_entry **page_table[PAGE_L1_SIZE]; 320 321 #else 322 323 /* On 64-bit hosts, we use the same two level page tables plus a linked 324 list that disambiguates the top 32-bits. There will almost always be 325 exactly one entry in the list. */ 326 typedef struct page_table_chain 327 { 328 struct page_table_chain *next; 329 size_t high_bits; 330 page_entry **table[PAGE_L1_SIZE]; 331 } *page_table; 332 333 #endif 334 335 #ifdef ENABLE_GC_ALWAYS_COLLECT 336 /* List of free objects to be verified as actually free on the 337 next collection. */ 338 struct free_object 339 { 340 void *object; 341 struct free_object *next; 342 }; 343 #endif 344 345 /* The rest of the global variables. */ 346 static struct globals 347 { 348 /* The Nth element in this array is a page with objects of size 2^N. 349 If there are any pages with free objects, they will be at the 350 head of the list. NULL if there are no page-entries for this 351 object size. */ 352 page_entry *pages[NUM_ORDERS]; 353 354 /* The Nth element in this array is the last page with objects of 355 size 2^N. NULL if there are no page-entries for this object 356 size. */ 357 page_entry *page_tails[NUM_ORDERS]; 358 359 /* Lookup table for associating allocation pages with object addresses. */ 360 page_table lookup; 361 362 /* The system's page size. */ 363 size_t pagesize; 364 size_t lg_pagesize; 365 366 /* Bytes currently allocated. */ 367 size_t allocated; 368 369 /* Bytes currently allocated at the end of the last collection. */ 370 size_t allocated_last_gc; 371 372 /* Total amount of memory mapped. */ 373 size_t bytes_mapped; 374 375 /* Bit N set if any allocations have been done at context depth N. */ 376 unsigned long context_depth_allocations; 377 378 /* Bit N set if any collections have been done at context depth N. */ 379 unsigned long context_depth_collections; 380 381 /* The current depth in the context stack. */ 382 unsigned short context_depth; 383 384 /* A file descriptor open to /dev/zero for reading. */ 385 #if defined (HAVE_MMAP_DEV_ZERO) 386 int dev_zero_fd; 387 #endif 388 389 /* A cache of free system pages. */ 390 page_entry *free_pages; 391 392 #ifdef USING_MALLOC_PAGE_GROUPS 393 page_group *page_groups; 394 #endif 395 396 /* The file descriptor for debugging output. */ 397 FILE *debug_file; 398 399 /* Current number of elements in use in depth below. */ 400 unsigned int depth_in_use; 401 402 /* Maximum number of elements that can be used before resizing. */ 403 unsigned int depth_max; 404 405 /* Each element of this array is an index in by_depth where the given 406 depth starts. This structure is indexed by that given depth we 407 are interested in. */ 408 unsigned int *depth; 409 410 /* Current number of elements in use in by_depth below. */ 411 unsigned int by_depth_in_use; 412 413 /* Maximum number of elements that can be used before resizing. */ 414 unsigned int by_depth_max; 415 416 /* Each element of this array is a pointer to a page_entry, all 417 page_entries can be found in here by increasing depth. 418 index_by_depth in the page_entry is the index into this data 419 structure where that page_entry can be found. This is used to 420 speed up finding all page_entries at a particular depth. */ 421 page_entry **by_depth; 422 423 /* Each element is a pointer to the saved in_use_p bits, if any, 424 zero otherwise. We allocate them all together, to enable a 425 better runtime data access pattern. */ 426 unsigned long **save_in_use; 427 428 #ifdef ENABLE_GC_ALWAYS_COLLECT 429 /* List of free objects to be verified as actually free on the 430 next collection. */ 431 struct free_object *free_object_list; 432 #endif 433 434 struct 435 { 436 /* Total GC-allocated memory. */ 437 unsigned long long total_allocated; 438 /* Total overhead for GC-allocated memory. */ 439 unsigned long long total_overhead; 440 441 /* Total allocations and overhead for sizes less than 32, 64 and 128. 442 These sizes are interesting because they are typical cache line 443 sizes. */ 444 445 unsigned long long total_allocated_under32; 446 unsigned long long total_overhead_under32; 447 448 unsigned long long total_allocated_under64; 449 unsigned long long total_overhead_under64; 450 451 unsigned long long total_allocated_under128; 452 unsigned long long total_overhead_under128; 453 454 /* The allocations for each of the allocation orders. */ 455 unsigned long long total_allocated_per_order[NUM_ORDERS]; 456 457 /* The overhead for each of the allocation orders. */ 458 unsigned long long total_overhead_per_order[NUM_ORDERS]; 459 } stats; 460 } G; 461 462 /* The size in bytes required to maintain a bitmap for the objects 463 on a page-entry. */ 464 #define BITMAP_SIZE(Num_objects) \ 465 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long)) 466 467 /* Allocate pages in chunks of this size, to throttle calls to memory 468 allocation routines. The first page is used, the rest go onto the 469 free list. This cannot be larger than HOST_BITS_PER_INT for the 470 in_use bitmask for page_group. Hosts that need a different value 471 can override this by defining GGC_QUIRE_SIZE explicitly. */ 472 #ifndef GGC_QUIRE_SIZE 473 # ifdef USING_MMAP 474 # define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */ 475 # else 476 # define GGC_QUIRE_SIZE 16 477 # endif 478 #endif 479 480 /* Initial guess as to how many page table entries we might need. */ 481 #define INITIAL_PTE_COUNT 128 482 483 static int ggc_allocated_p (const void *); 484 static page_entry *lookup_page_table_entry (const void *); 485 static void set_page_table_entry (void *, page_entry *); 486 #ifdef USING_MMAP 487 static char *alloc_anon (char *, size_t, bool check); 488 #endif 489 #ifdef USING_MALLOC_PAGE_GROUPS 490 static size_t page_group_index (char *, char *); 491 static void set_page_group_in_use (page_group *, char *); 492 static void clear_page_group_in_use (page_group *, char *); 493 #endif 494 static struct page_entry * alloc_page (unsigned); 495 static void free_page (struct page_entry *); 496 static void release_pages (void); 497 static void clear_marks (void); 498 static void sweep_pages (void); 499 static void ggc_recalculate_in_use_p (page_entry *); 500 static void compute_inverse (unsigned); 501 static inline void adjust_depth (void); 502 static void move_ptes_to_front (int, int); 503 504 void debug_print_page_list (int); 505 static void push_depth (unsigned int); 506 static void push_by_depth (page_entry *, unsigned long *); 507 508 /* Push an entry onto G.depth. */ 509 510 inline static void 511 push_depth (unsigned int i) 512 { 513 if (G.depth_in_use >= G.depth_max) 514 { 515 G.depth_max *= 2; 516 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max); 517 } 518 G.depth[G.depth_in_use++] = i; 519 } 520 521 /* Push an entry onto G.by_depth and G.save_in_use. */ 522 523 inline static void 524 push_by_depth (page_entry *p, unsigned long *s) 525 { 526 if (G.by_depth_in_use >= G.by_depth_max) 527 { 528 G.by_depth_max *= 2; 529 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max); 530 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use, 531 G.by_depth_max); 532 } 533 G.by_depth[G.by_depth_in_use] = p; 534 G.save_in_use[G.by_depth_in_use++] = s; 535 } 536 537 #if (GCC_VERSION < 3001) 538 #define prefetch(X) ((void) X) 539 #else 540 #define prefetch(X) __builtin_prefetch (X) 541 #endif 542 543 #define save_in_use_p_i(__i) \ 544 (G.save_in_use[__i]) 545 #define save_in_use_p(__p) \ 546 (save_in_use_p_i (__p->index_by_depth)) 547 548 /* Returns nonzero if P was allocated in GC'able memory. */ 549 550 static inline int 551 ggc_allocated_p (const void *p) 552 { 553 page_entry ***base; 554 size_t L1, L2; 555 556 #if HOST_BITS_PER_PTR <= 32 557 base = &G.lookup[0]; 558 #else 559 page_table table = G.lookup; 560 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; 561 while (1) 562 { 563 if (table == NULL) 564 return 0; 565 if (table->high_bits == high_bits) 566 break; 567 table = table->next; 568 } 569 base = &table->table[0]; 570 #endif 571 572 /* Extract the level 1 and 2 indices. */ 573 L1 = LOOKUP_L1 (p); 574 L2 = LOOKUP_L2 (p); 575 576 return base[L1] && base[L1][L2]; 577 } 578 579 /* Traverse the page table and find the entry for a page. 580 Die (probably) if the object wasn't allocated via GC. */ 581 582 static inline page_entry * 583 lookup_page_table_entry (const void *p) 584 { 585 page_entry ***base; 586 size_t L1, L2; 587 588 #if HOST_BITS_PER_PTR <= 32 589 base = &G.lookup[0]; 590 #else 591 page_table table = G.lookup; 592 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; 593 while (table->high_bits != high_bits) 594 table = table->next; 595 base = &table->table[0]; 596 #endif 597 598 /* Extract the level 1 and 2 indices. */ 599 L1 = LOOKUP_L1 (p); 600 L2 = LOOKUP_L2 (p); 601 602 return base[L1][L2]; 603 } 604 605 /* Set the page table entry for a page. */ 606 607 static void 608 set_page_table_entry (void *p, page_entry *entry) 609 { 610 page_entry ***base; 611 size_t L1, L2; 612 613 #if HOST_BITS_PER_PTR <= 32 614 base = &G.lookup[0]; 615 #else 616 page_table table; 617 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff; 618 for (table = G.lookup; table; table = table->next) 619 if (table->high_bits == high_bits) 620 goto found; 621 622 /* Not found -- allocate a new table. */ 623 table = XCNEW (struct page_table_chain); 624 table->next = G.lookup; 625 table->high_bits = high_bits; 626 G.lookup = table; 627 found: 628 base = &table->table[0]; 629 #endif 630 631 /* Extract the level 1 and 2 indices. */ 632 L1 = LOOKUP_L1 (p); 633 L2 = LOOKUP_L2 (p); 634 635 if (base[L1] == NULL) 636 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE); 637 638 base[L1][L2] = entry; 639 } 640 641 /* Prints the page-entry for object size ORDER, for debugging. */ 642 643 DEBUG_FUNCTION void 644 debug_print_page_list (int order) 645 { 646 page_entry *p; 647 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order], 648 (void *) G.page_tails[order]); 649 p = G.pages[order]; 650 while (p != NULL) 651 { 652 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth, 653 p->num_free_objects); 654 p = p->next; 655 } 656 printf ("NULL\n"); 657 fflush (stdout); 658 } 659 660 #ifdef USING_MMAP 661 /* Allocate SIZE bytes of anonymous memory, preferably near PREF, 662 (if non-null). The ifdef structure here is intended to cause a 663 compile error unless exactly one of the HAVE_* is defined. */ 664 665 static inline char * 666 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check) 667 { 668 #ifdef HAVE_MMAP_ANON 669 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 670 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 671 #endif 672 #ifdef HAVE_MMAP_DEV_ZERO 673 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE, 674 MAP_PRIVATE, G.dev_zero_fd, 0); 675 #endif 676 677 if (page == (char *) MAP_FAILED) 678 { 679 if (!check) 680 return NULL; 681 perror ("virtual memory exhausted"); 682 exit (FATAL_EXIT_CODE); 683 } 684 685 /* Remember that we allocated this memory. */ 686 G.bytes_mapped += size; 687 688 /* Pretend we don't have access to the allocated pages. We'll enable 689 access to smaller pieces of the area in ggc_internal_alloc. Discard the 690 handle to avoid handle leak. */ 691 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size)); 692 693 return page; 694 } 695 #endif 696 #ifdef USING_MALLOC_PAGE_GROUPS 697 /* Compute the index for this page into the page group. */ 698 699 static inline size_t 700 page_group_index (char *allocation, char *page) 701 { 702 return (size_t) (page - allocation) >> G.lg_pagesize; 703 } 704 705 /* Set and clear the in_use bit for this page in the page group. */ 706 707 static inline void 708 set_page_group_in_use (page_group *group, char *page) 709 { 710 group->in_use |= 1 << page_group_index (group->allocation, page); 711 } 712 713 static inline void 714 clear_page_group_in_use (page_group *group, char *page) 715 { 716 group->in_use &= ~(1 << page_group_index (group->allocation, page)); 717 } 718 #endif 719 720 /* Allocate a new page for allocating objects of size 2^ORDER, 721 and return an entry for it. The entry is not added to the 722 appropriate page_table list. */ 723 724 static inline struct page_entry * 725 alloc_page (unsigned order) 726 { 727 struct page_entry *entry, *p, **pp; 728 char *page; 729 size_t num_objects; 730 size_t bitmap_size; 731 size_t page_entry_size; 732 size_t entry_size; 733 #ifdef USING_MALLOC_PAGE_GROUPS 734 page_group *group; 735 #endif 736 737 num_objects = OBJECTS_PER_PAGE (order); 738 bitmap_size = BITMAP_SIZE (num_objects + 1); 739 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size; 740 entry_size = num_objects * OBJECT_SIZE (order); 741 if (entry_size < G.pagesize) 742 entry_size = G.pagesize; 743 entry_size = PAGE_ALIGN (entry_size); 744 745 entry = NULL; 746 page = NULL; 747 748 /* Check the list of free pages for one we can use. */ 749 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp) 750 if (p->bytes == entry_size) 751 break; 752 753 if (p != NULL) 754 { 755 if (p->discarded) 756 G.bytes_mapped += p->bytes; 757 p->discarded = false; 758 759 /* Recycle the allocated memory from this page ... */ 760 *pp = p->next; 761 page = p->page; 762 763 #ifdef USING_MALLOC_PAGE_GROUPS 764 group = p->group; 765 #endif 766 767 /* ... and, if possible, the page entry itself. */ 768 if (p->order == order) 769 { 770 entry = p; 771 memset (entry, 0, page_entry_size); 772 } 773 else 774 free (p); 775 } 776 #ifdef USING_MMAP 777 else if (entry_size == G.pagesize) 778 { 779 /* We want just one page. Allocate a bunch of them and put the 780 extras on the freelist. (Can only do this optimization with 781 mmap for backing store.) */ 782 struct page_entry *e, *f = G.free_pages; 783 int i, entries = GGC_QUIRE_SIZE; 784 785 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false); 786 if (page == NULL) 787 { 788 page = alloc_anon(NULL, G.pagesize, true); 789 entries = 1; 790 } 791 792 /* This loop counts down so that the chain will be in ascending 793 memory order. */ 794 for (i = entries - 1; i >= 1; i--) 795 { 796 e = XCNEWVAR (struct page_entry, page_entry_size); 797 e->order = order; 798 e->bytes = G.pagesize; 799 e->page = page + (i << G.lg_pagesize); 800 e->next = f; 801 f = e; 802 } 803 804 G.free_pages = f; 805 } 806 else 807 page = alloc_anon (NULL, entry_size, true); 808 #endif 809 #ifdef USING_MALLOC_PAGE_GROUPS 810 else 811 { 812 /* Allocate a large block of memory and serve out the aligned 813 pages therein. This results in much less memory wastage 814 than the traditional implementation of valloc. */ 815 816 char *allocation, *a, *enda; 817 size_t alloc_size, head_slop, tail_slop; 818 int multiple_pages = (entry_size == G.pagesize); 819 820 if (multiple_pages) 821 alloc_size = GGC_QUIRE_SIZE * G.pagesize; 822 else 823 alloc_size = entry_size + G.pagesize - 1; 824 allocation = XNEWVEC (char, alloc_size); 825 826 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize); 827 head_slop = page - allocation; 828 if (multiple_pages) 829 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1); 830 else 831 tail_slop = alloc_size - entry_size - head_slop; 832 enda = allocation + alloc_size - tail_slop; 833 834 /* We allocated N pages, which are likely not aligned, leaving 835 us with N-1 usable pages. We plan to place the page_group 836 structure somewhere in the slop. */ 837 if (head_slop >= sizeof (page_group)) 838 group = (page_group *)page - 1; 839 else 840 { 841 /* We magically got an aligned allocation. Too bad, we have 842 to waste a page anyway. */ 843 if (tail_slop == 0) 844 { 845 enda -= G.pagesize; 846 tail_slop += G.pagesize; 847 } 848 gcc_assert (tail_slop >= sizeof (page_group)); 849 group = (page_group *)enda; 850 tail_slop -= sizeof (page_group); 851 } 852 853 /* Remember that we allocated this memory. */ 854 group->next = G.page_groups; 855 group->allocation = allocation; 856 group->alloc_size = alloc_size; 857 group->in_use = 0; 858 G.page_groups = group; 859 G.bytes_mapped += alloc_size; 860 861 /* If we allocated multiple pages, put the rest on the free list. */ 862 if (multiple_pages) 863 { 864 struct page_entry *e, *f = G.free_pages; 865 for (a = enda - G.pagesize; a != page; a -= G.pagesize) 866 { 867 e = XCNEWVAR (struct page_entry, page_entry_size); 868 e->order = order; 869 e->bytes = G.pagesize; 870 e->page = a; 871 e->group = group; 872 e->next = f; 873 f = e; 874 } 875 G.free_pages = f; 876 } 877 } 878 #endif 879 880 if (entry == NULL) 881 entry = XCNEWVAR (struct page_entry, page_entry_size); 882 883 entry->bytes = entry_size; 884 entry->page = page; 885 entry->context_depth = G.context_depth; 886 entry->order = order; 887 entry->num_free_objects = num_objects; 888 entry->next_bit_hint = 1; 889 890 G.context_depth_allocations |= (unsigned long)1 << G.context_depth; 891 892 #ifdef USING_MALLOC_PAGE_GROUPS 893 entry->group = group; 894 set_page_group_in_use (group, page); 895 #endif 896 897 /* Set the one-past-the-end in-use bit. This acts as a sentry as we 898 increment the hint. */ 899 entry->in_use_p[num_objects / HOST_BITS_PER_LONG] 900 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG); 901 902 set_page_table_entry (page, entry); 903 904 if (GGC_DEBUG_LEVEL >= 2) 905 fprintf (G.debug_file, 906 "Allocating page at %p, object size=%lu, data %p-%p\n", 907 (void *) entry, (unsigned long) OBJECT_SIZE (order), page, 908 page + entry_size - 1); 909 910 return entry; 911 } 912 913 /* Adjust the size of G.depth so that no index greater than the one 914 used by the top of the G.by_depth is used. */ 915 916 static inline void 917 adjust_depth (void) 918 { 919 page_entry *top; 920 921 if (G.by_depth_in_use) 922 { 923 top = G.by_depth[G.by_depth_in_use-1]; 924 925 /* Peel back indices in depth that index into by_depth, so that 926 as new elements are added to by_depth, we note the indices 927 of those elements, if they are for new context depths. */ 928 while (G.depth_in_use > (size_t)top->context_depth+1) 929 --G.depth_in_use; 930 } 931 } 932 933 /* For a page that is no longer needed, put it on the free page list. */ 934 935 static void 936 free_page (page_entry *entry) 937 { 938 if (GGC_DEBUG_LEVEL >= 2) 939 fprintf (G.debug_file, 940 "Deallocating page at %p, data %p-%p\n", (void *) entry, 941 entry->page, entry->page + entry->bytes - 1); 942 943 /* Mark the page as inaccessible. Discard the handle to avoid handle 944 leak. */ 945 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes)); 946 947 set_page_table_entry (entry->page, NULL); 948 949 #ifdef USING_MALLOC_PAGE_GROUPS 950 clear_page_group_in_use (entry->group, entry->page); 951 #endif 952 953 if (G.by_depth_in_use > 1) 954 { 955 page_entry *top = G.by_depth[G.by_depth_in_use-1]; 956 int i = entry->index_by_depth; 957 958 /* We cannot free a page from a context deeper than the current 959 one. */ 960 gcc_assert (entry->context_depth == top->context_depth); 961 962 /* Put top element into freed slot. */ 963 G.by_depth[i] = top; 964 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1]; 965 top->index_by_depth = i; 966 } 967 --G.by_depth_in_use; 968 969 adjust_depth (); 970 971 entry->next = G.free_pages; 972 G.free_pages = entry; 973 } 974 975 /* Release the free page cache to the system. */ 976 977 static void 978 release_pages (void) 979 { 980 #ifdef USING_MADVISE 981 page_entry *p, *start_p; 982 char *start; 983 size_t len; 984 size_t mapped_len; 985 page_entry *next, *prev, *newprev; 986 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize; 987 988 /* First free larger continuous areas to the OS. 989 This allows other allocators to grab these areas if needed. 990 This is only done on larger chunks to avoid fragmentation. 991 This does not always work because the free_pages list is only 992 approximately sorted. */ 993 994 p = G.free_pages; 995 prev = NULL; 996 while (p) 997 { 998 start = p->page; 999 start_p = p; 1000 len = 0; 1001 mapped_len = 0; 1002 newprev = prev; 1003 while (p && p->page == start + len) 1004 { 1005 len += p->bytes; 1006 if (!p->discarded) 1007 mapped_len += p->bytes; 1008 newprev = p; 1009 p = p->next; 1010 } 1011 if (len >= free_unit) 1012 { 1013 while (start_p != p) 1014 { 1015 next = start_p->next; 1016 free (start_p); 1017 start_p = next; 1018 } 1019 munmap (start, len); 1020 if (prev) 1021 prev->next = p; 1022 else 1023 G.free_pages = p; 1024 G.bytes_mapped -= mapped_len; 1025 continue; 1026 } 1027 prev = newprev; 1028 } 1029 1030 /* Now give back the fragmented pages to the OS, but keep the address 1031 space to reuse it next time. */ 1032 1033 for (p = G.free_pages; p; ) 1034 { 1035 if (p->discarded) 1036 { 1037 p = p->next; 1038 continue; 1039 } 1040 start = p->page; 1041 len = p->bytes; 1042 start_p = p; 1043 p = p->next; 1044 while (p && p->page == start + len) 1045 { 1046 len += p->bytes; 1047 p = p->next; 1048 } 1049 /* Give the page back to the kernel, but don't free the mapping. 1050 This avoids fragmentation in the virtual memory map of the 1051 process. Next time we can reuse it by just touching it. */ 1052 madvise (start, len, MADV_DONTNEED); 1053 /* Don't count those pages as mapped to not touch the garbage collector 1054 unnecessarily. */ 1055 G.bytes_mapped -= len; 1056 while (start_p != p) 1057 { 1058 start_p->discarded = true; 1059 start_p = start_p->next; 1060 } 1061 } 1062 #endif 1063 #if defined(USING_MMAP) && !defined(USING_MADVISE) 1064 page_entry *p, *next; 1065 char *start; 1066 size_t len; 1067 1068 /* Gather up adjacent pages so they are unmapped together. */ 1069 p = G.free_pages; 1070 1071 while (p) 1072 { 1073 start = p->page; 1074 next = p->next; 1075 len = p->bytes; 1076 free (p); 1077 p = next; 1078 1079 while (p && p->page == start + len) 1080 { 1081 next = p->next; 1082 len += p->bytes; 1083 free (p); 1084 p = next; 1085 } 1086 1087 munmap (start, len); 1088 G.bytes_mapped -= len; 1089 } 1090 1091 G.free_pages = NULL; 1092 #endif 1093 #ifdef USING_MALLOC_PAGE_GROUPS 1094 page_entry **pp, *p; 1095 page_group **gp, *g; 1096 1097 /* Remove all pages from free page groups from the list. */ 1098 pp = &G.free_pages; 1099 while ((p = *pp) != NULL) 1100 if (p->group->in_use == 0) 1101 { 1102 *pp = p->next; 1103 free (p); 1104 } 1105 else 1106 pp = &p->next; 1107 1108 /* Remove all free page groups, and release the storage. */ 1109 gp = &G.page_groups; 1110 while ((g = *gp) != NULL) 1111 if (g->in_use == 0) 1112 { 1113 *gp = g->next; 1114 G.bytes_mapped -= g->alloc_size; 1115 free (g->allocation); 1116 } 1117 else 1118 gp = &g->next; 1119 #endif 1120 } 1121 1122 /* This table provides a fast way to determine ceil(log_2(size)) for 1123 allocation requests. The minimum allocation size is eight bytes. */ 1124 #define NUM_SIZE_LOOKUP 512 1125 static unsigned char size_lookup[NUM_SIZE_LOOKUP] = 1126 { 1127 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 1128 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1129 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1130 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1131 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1132 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1133 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1134 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 1135 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1136 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1137 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1138 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1139 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1140 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1141 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1142 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 1143 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1144 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1145 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1146 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1147 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1148 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1149 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1150 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1151 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1152 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1153 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1154 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1155 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1156 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1157 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1158 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9 1159 }; 1160 1161 /* For a given size of memory requested for allocation, return the 1162 actual size that is going to be allocated, as well as the size 1163 order. */ 1164 1165 static void 1166 ggc_round_alloc_size_1 (size_t requested_size, 1167 size_t *size_order, 1168 size_t *alloced_size) 1169 { 1170 size_t order, object_size; 1171 1172 if (requested_size < NUM_SIZE_LOOKUP) 1173 { 1174 order = size_lookup[requested_size]; 1175 object_size = OBJECT_SIZE (order); 1176 } 1177 else 1178 { 1179 order = 10; 1180 while (requested_size > (object_size = OBJECT_SIZE (order))) 1181 order++; 1182 } 1183 1184 if (size_order) 1185 *size_order = order; 1186 if (alloced_size) 1187 *alloced_size = object_size; 1188 } 1189 1190 /* For a given size of memory requested for allocation, return the 1191 actual size that is going to be allocated. */ 1192 1193 size_t 1194 ggc_round_alloc_size (size_t requested_size) 1195 { 1196 size_t size = 0; 1197 1198 ggc_round_alloc_size_1 (requested_size, NULL, &size); 1199 return size; 1200 } 1201 1202 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */ 1203 1204 void * 1205 ggc_internal_alloc_stat (size_t size MEM_STAT_DECL) 1206 { 1207 size_t order, word, bit, object_offset, object_size; 1208 struct page_entry *entry; 1209 void *result; 1210 1211 ggc_round_alloc_size_1 (size, &order, &object_size); 1212 1213 /* If there are non-full pages for this size allocation, they are at 1214 the head of the list. */ 1215 entry = G.pages[order]; 1216 1217 /* If there is no page for this object size, or all pages in this 1218 context are full, allocate a new page. */ 1219 if (entry == NULL || entry->num_free_objects == 0) 1220 { 1221 struct page_entry *new_entry; 1222 new_entry = alloc_page (order); 1223 1224 new_entry->index_by_depth = G.by_depth_in_use; 1225 push_by_depth (new_entry, 0); 1226 1227 /* We can skip context depths, if we do, make sure we go all the 1228 way to the new depth. */ 1229 while (new_entry->context_depth >= G.depth_in_use) 1230 push_depth (G.by_depth_in_use-1); 1231 1232 /* If this is the only entry, it's also the tail. If it is not 1233 the only entry, then we must update the PREV pointer of the 1234 ENTRY (G.pages[order]) to point to our new page entry. */ 1235 if (entry == NULL) 1236 G.page_tails[order] = new_entry; 1237 else 1238 entry->prev = new_entry; 1239 1240 /* Put new pages at the head of the page list. By definition the 1241 entry at the head of the list always has a NULL pointer. */ 1242 new_entry->next = entry; 1243 new_entry->prev = NULL; 1244 entry = new_entry; 1245 G.pages[order] = new_entry; 1246 1247 /* For a new page, we know the word and bit positions (in the 1248 in_use bitmap) of the first available object -- they're zero. */ 1249 new_entry->next_bit_hint = 1; 1250 word = 0; 1251 bit = 0; 1252 object_offset = 0; 1253 } 1254 else 1255 { 1256 /* First try to use the hint left from the previous allocation 1257 to locate a clear bit in the in-use bitmap. We've made sure 1258 that the one-past-the-end bit is always set, so if the hint 1259 has run over, this test will fail. */ 1260 unsigned hint = entry->next_bit_hint; 1261 word = hint / HOST_BITS_PER_LONG; 1262 bit = hint % HOST_BITS_PER_LONG; 1263 1264 /* If the hint didn't work, scan the bitmap from the beginning. */ 1265 if ((entry->in_use_p[word] >> bit) & 1) 1266 { 1267 word = bit = 0; 1268 while (~entry->in_use_p[word] == 0) 1269 ++word; 1270 1271 #if GCC_VERSION >= 3004 1272 bit = __builtin_ctzl (~entry->in_use_p[word]); 1273 #else 1274 while ((entry->in_use_p[word] >> bit) & 1) 1275 ++bit; 1276 #endif 1277 1278 hint = word * HOST_BITS_PER_LONG + bit; 1279 } 1280 1281 /* Next time, try the next bit. */ 1282 entry->next_bit_hint = hint + 1; 1283 1284 object_offset = hint * object_size; 1285 } 1286 1287 /* Set the in-use bit. */ 1288 entry->in_use_p[word] |= ((unsigned long) 1 << bit); 1289 1290 /* Keep a running total of the number of free objects. If this page 1291 fills up, we may have to move it to the end of the list if the 1292 next page isn't full. If the next page is full, all subsequent 1293 pages are full, so there's no need to move it. */ 1294 if (--entry->num_free_objects == 0 1295 && entry->next != NULL 1296 && entry->next->num_free_objects > 0) 1297 { 1298 /* We have a new head for the list. */ 1299 G.pages[order] = entry->next; 1300 1301 /* We are moving ENTRY to the end of the page table list. 1302 The new page at the head of the list will have NULL in 1303 its PREV field and ENTRY will have NULL in its NEXT field. */ 1304 entry->next->prev = NULL; 1305 entry->next = NULL; 1306 1307 /* Append ENTRY to the tail of the list. */ 1308 entry->prev = G.page_tails[order]; 1309 G.page_tails[order]->next = entry; 1310 G.page_tails[order] = entry; 1311 } 1312 1313 /* Calculate the object's address. */ 1314 result = entry->page + object_offset; 1315 if (GATHER_STATISTICS) 1316 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size, 1317 result FINAL_PASS_MEM_STAT); 1318 1319 #ifdef ENABLE_GC_CHECKING 1320 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the 1321 exact same semantics in presence of memory bugs, regardless of 1322 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the 1323 handle to avoid handle leak. */ 1324 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size)); 1325 1326 /* `Poison' the entire allocated object, including any padding at 1327 the end. */ 1328 memset (result, 0xaf, object_size); 1329 1330 /* Make the bytes after the end of the object unaccessible. Discard the 1331 handle to avoid handle leak. */ 1332 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size, 1333 object_size - size)); 1334 #endif 1335 1336 /* Tell Valgrind that the memory is there, but its content isn't 1337 defined. The bytes at the end of the object are still marked 1338 unaccessible. */ 1339 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size)); 1340 1341 /* Keep track of how many bytes are being allocated. This 1342 information is used in deciding when to collect. */ 1343 G.allocated += object_size; 1344 1345 /* For timevar statistics. */ 1346 timevar_ggc_mem_total += object_size; 1347 1348 if (GATHER_STATISTICS) 1349 { 1350 size_t overhead = object_size - size; 1351 1352 G.stats.total_overhead += overhead; 1353 G.stats.total_allocated += object_size; 1354 G.stats.total_overhead_per_order[order] += overhead; 1355 G.stats.total_allocated_per_order[order] += object_size; 1356 1357 if (size <= 32) 1358 { 1359 G.stats.total_overhead_under32 += overhead; 1360 G.stats.total_allocated_under32 += object_size; 1361 } 1362 if (size <= 64) 1363 { 1364 G.stats.total_overhead_under64 += overhead; 1365 G.stats.total_allocated_under64 += object_size; 1366 } 1367 if (size <= 128) 1368 { 1369 G.stats.total_overhead_under128 += overhead; 1370 G.stats.total_allocated_under128 += object_size; 1371 } 1372 } 1373 1374 if (GGC_DEBUG_LEVEL >= 3) 1375 fprintf (G.debug_file, 1376 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n", 1377 (unsigned long) size, (unsigned long) object_size, result, 1378 (void *) entry); 1379 1380 return result; 1381 } 1382 1383 /* Mark function for strings. */ 1384 1385 void 1386 gt_ggc_m_S (const void *p) 1387 { 1388 page_entry *entry; 1389 unsigned bit, word; 1390 unsigned long mask; 1391 unsigned long offset; 1392 1393 if (!p || !ggc_allocated_p (p)) 1394 return; 1395 1396 /* Look up the page on which the object is alloced. . */ 1397 entry = lookup_page_table_entry (p); 1398 gcc_assert (entry); 1399 1400 /* Calculate the index of the object on the page; this is its bit 1401 position in the in_use_p bitmap. Note that because a char* might 1402 point to the middle of an object, we need special code here to 1403 make sure P points to the start of an object. */ 1404 offset = ((const char *) p - entry->page) % object_size_table[entry->order]; 1405 if (offset) 1406 { 1407 /* Here we've seen a char* which does not point to the beginning 1408 of an allocated object. We assume it points to the middle of 1409 a STRING_CST. */ 1410 gcc_assert (offset == offsetof (struct tree_string, str)); 1411 p = ((const char *) p) - offset; 1412 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p)); 1413 return; 1414 } 1415 1416 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1417 word = bit / HOST_BITS_PER_LONG; 1418 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1419 1420 /* If the bit was previously set, skip it. */ 1421 if (entry->in_use_p[word] & mask) 1422 return; 1423 1424 /* Otherwise set it, and decrement the free object count. */ 1425 entry->in_use_p[word] |= mask; 1426 entry->num_free_objects -= 1; 1427 1428 if (GGC_DEBUG_LEVEL >= 4) 1429 fprintf (G.debug_file, "Marking %p\n", p); 1430 1431 return; 1432 } 1433 1434 1435 /* User-callable entry points for marking string X. */ 1436 1437 void 1438 gt_ggc_mx (const char *& x) 1439 { 1440 gt_ggc_m_S (x); 1441 } 1442 1443 void 1444 gt_ggc_mx (unsigned char *& x) 1445 { 1446 gt_ggc_m_S (x); 1447 } 1448 1449 void 1450 gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED) 1451 { 1452 } 1453 1454 /* If P is not marked, marks it and return false. Otherwise return true. 1455 P must have been allocated by the GC allocator; it mustn't point to 1456 static objects, stack variables, or memory allocated with malloc. */ 1457 1458 int 1459 ggc_set_mark (const void *p) 1460 { 1461 page_entry *entry; 1462 unsigned bit, word; 1463 unsigned long mask; 1464 1465 /* Look up the page on which the object is alloced. If the object 1466 wasn't allocated by the collector, we'll probably die. */ 1467 entry = lookup_page_table_entry (p); 1468 gcc_assert (entry); 1469 1470 /* Calculate the index of the object on the page; this is its bit 1471 position in the in_use_p bitmap. */ 1472 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1473 word = bit / HOST_BITS_PER_LONG; 1474 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1475 1476 /* If the bit was previously set, skip it. */ 1477 if (entry->in_use_p[word] & mask) 1478 return 1; 1479 1480 /* Otherwise set it, and decrement the free object count. */ 1481 entry->in_use_p[word] |= mask; 1482 entry->num_free_objects -= 1; 1483 1484 if (GGC_DEBUG_LEVEL >= 4) 1485 fprintf (G.debug_file, "Marking %p\n", p); 1486 1487 return 0; 1488 } 1489 1490 /* Return 1 if P has been marked, zero otherwise. 1491 P must have been allocated by the GC allocator; it mustn't point to 1492 static objects, stack variables, or memory allocated with malloc. */ 1493 1494 int 1495 ggc_marked_p (const void *p) 1496 { 1497 page_entry *entry; 1498 unsigned bit, word; 1499 unsigned long mask; 1500 1501 /* Look up the page on which the object is alloced. If the object 1502 wasn't allocated by the collector, we'll probably die. */ 1503 entry = lookup_page_table_entry (p); 1504 gcc_assert (entry); 1505 1506 /* Calculate the index of the object on the page; this is its bit 1507 position in the in_use_p bitmap. */ 1508 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order); 1509 word = bit / HOST_BITS_PER_LONG; 1510 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG); 1511 1512 return (entry->in_use_p[word] & mask) != 0; 1513 } 1514 1515 /* Return the size of the gc-able object P. */ 1516 1517 size_t 1518 ggc_get_size (const void *p) 1519 { 1520 page_entry *pe = lookup_page_table_entry (p); 1521 return OBJECT_SIZE (pe->order); 1522 } 1523 1524 /* Release the memory for object P. */ 1525 1526 void 1527 ggc_free (void *p) 1528 { 1529 page_entry *pe = lookup_page_table_entry (p); 1530 size_t order = pe->order; 1531 size_t size = OBJECT_SIZE (order); 1532 1533 if (GATHER_STATISTICS) 1534 ggc_free_overhead (p); 1535 1536 if (GGC_DEBUG_LEVEL >= 3) 1537 fprintf (G.debug_file, 1538 "Freeing object, actual size=%lu, at %p on %p\n", 1539 (unsigned long) size, p, (void *) pe); 1540 1541 #ifdef ENABLE_GC_CHECKING 1542 /* Poison the data, to indicate the data is garbage. */ 1543 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size)); 1544 memset (p, 0xa5, size); 1545 #endif 1546 /* Let valgrind know the object is free. */ 1547 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size)); 1548 1549 #ifdef ENABLE_GC_ALWAYS_COLLECT 1550 /* In the completely-anal-checking mode, we do *not* immediately free 1551 the data, but instead verify that the data is *actually* not 1552 reachable the next time we collect. */ 1553 { 1554 struct free_object *fo = XNEW (struct free_object); 1555 fo->object = p; 1556 fo->next = G.free_object_list; 1557 G.free_object_list = fo; 1558 } 1559 #else 1560 { 1561 unsigned int bit_offset, word, bit; 1562 1563 G.allocated -= size; 1564 1565 /* Mark the object not-in-use. */ 1566 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order); 1567 word = bit_offset / HOST_BITS_PER_LONG; 1568 bit = bit_offset % HOST_BITS_PER_LONG; 1569 pe->in_use_p[word] &= ~(1UL << bit); 1570 1571 if (pe->num_free_objects++ == 0) 1572 { 1573 page_entry *p, *q; 1574 1575 /* If the page is completely full, then it's supposed to 1576 be after all pages that aren't. Since we've freed one 1577 object from a page that was full, we need to move the 1578 page to the head of the list. 1579 1580 PE is the node we want to move. Q is the previous node 1581 and P is the next node in the list. */ 1582 q = pe->prev; 1583 if (q && q->num_free_objects == 0) 1584 { 1585 p = pe->next; 1586 1587 q->next = p; 1588 1589 /* If PE was at the end of the list, then Q becomes the 1590 new end of the list. If PE was not the end of the 1591 list, then we need to update the PREV field for P. */ 1592 if (!p) 1593 G.page_tails[order] = q; 1594 else 1595 p->prev = q; 1596 1597 /* Move PE to the head of the list. */ 1598 pe->next = G.pages[order]; 1599 pe->prev = NULL; 1600 G.pages[order]->prev = pe; 1601 G.pages[order] = pe; 1602 } 1603 1604 /* Reset the hint bit to point to the only free object. */ 1605 pe->next_bit_hint = bit_offset; 1606 } 1607 } 1608 #endif 1609 } 1610 1611 /* Subroutine of init_ggc which computes the pair of numbers used to 1612 perform division by OBJECT_SIZE (order) and fills in inverse_table[]. 1613 1614 This algorithm is taken from Granlund and Montgomery's paper 1615 "Division by Invariant Integers using Multiplication" 1616 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by 1617 constants). */ 1618 1619 static void 1620 compute_inverse (unsigned order) 1621 { 1622 size_t size, inv; 1623 unsigned int e; 1624 1625 size = OBJECT_SIZE (order); 1626 e = 0; 1627 while (size % 2 == 0) 1628 { 1629 e++; 1630 size >>= 1; 1631 } 1632 1633 inv = size; 1634 while (inv * size != 1) 1635 inv = inv * (2 - inv*size); 1636 1637 DIV_MULT (order) = inv; 1638 DIV_SHIFT (order) = e; 1639 } 1640 1641 /* Initialize the ggc-mmap allocator. */ 1642 void 1643 init_ggc (void) 1644 { 1645 unsigned order; 1646 1647 G.pagesize = getpagesize(); 1648 G.lg_pagesize = exact_log2 (G.pagesize); 1649 1650 #ifdef HAVE_MMAP_DEV_ZERO 1651 G.dev_zero_fd = open ("/dev/zero", O_RDONLY); 1652 if (G.dev_zero_fd == -1) 1653 internal_error ("open /dev/zero: %m"); 1654 #endif 1655 1656 #if 0 1657 G.debug_file = fopen ("ggc-mmap.debug", "w"); 1658 #else 1659 G.debug_file = stdout; 1660 #endif 1661 1662 #ifdef USING_MMAP 1663 /* StunOS has an amazing off-by-one error for the first mmap allocation 1664 after fiddling with RLIMIT_STACK. The result, as hard as it is to 1665 believe, is an unaligned page allocation, which would cause us to 1666 hork badly if we tried to use it. */ 1667 { 1668 char *p = alloc_anon (NULL, G.pagesize, true); 1669 struct page_entry *e; 1670 if ((uintptr_t)p & (G.pagesize - 1)) 1671 { 1672 /* How losing. Discard this one and try another. If we still 1673 can't get something useful, give up. */ 1674 1675 p = alloc_anon (NULL, G.pagesize, true); 1676 gcc_assert (!((uintptr_t)p & (G.pagesize - 1))); 1677 } 1678 1679 /* We have a good page, might as well hold onto it... */ 1680 e = XCNEW (struct page_entry); 1681 e->bytes = G.pagesize; 1682 e->page = p; 1683 e->next = G.free_pages; 1684 G.free_pages = e; 1685 } 1686 #endif 1687 1688 /* Initialize the object size table. */ 1689 for (order = 0; order < HOST_BITS_PER_PTR; ++order) 1690 object_size_table[order] = (size_t) 1 << order; 1691 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1692 { 1693 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR]; 1694 1695 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up 1696 so that we're sure of getting aligned memory. */ 1697 s = ROUND_UP (s, MAX_ALIGNMENT); 1698 object_size_table[order] = s; 1699 } 1700 1701 /* Initialize the objects-per-page and inverse tables. */ 1702 for (order = 0; order < NUM_ORDERS; ++order) 1703 { 1704 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order); 1705 if (objects_per_page_table[order] == 0) 1706 objects_per_page_table[order] = 1; 1707 compute_inverse (order); 1708 } 1709 1710 /* Reset the size_lookup array to put appropriately sized objects in 1711 the special orders. All objects bigger than the previous power 1712 of two, but no greater than the special size, should go in the 1713 new order. */ 1714 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order) 1715 { 1716 int o; 1717 int i; 1718 1719 i = OBJECT_SIZE (order); 1720 if (i >= NUM_SIZE_LOOKUP) 1721 continue; 1722 1723 for (o = size_lookup[i]; o == size_lookup [i]; --i) 1724 size_lookup[i] = order; 1725 } 1726 1727 G.depth_in_use = 0; 1728 G.depth_max = 10; 1729 G.depth = XNEWVEC (unsigned int, G.depth_max); 1730 1731 G.by_depth_in_use = 0; 1732 G.by_depth_max = INITIAL_PTE_COUNT; 1733 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max); 1734 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 1735 } 1736 1737 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P 1738 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */ 1739 1740 static void 1741 ggc_recalculate_in_use_p (page_entry *p) 1742 { 1743 unsigned int i; 1744 size_t num_objects; 1745 1746 /* Because the past-the-end bit in in_use_p is always set, we 1747 pretend there is one additional object. */ 1748 num_objects = OBJECTS_IN_PAGE (p) + 1; 1749 1750 /* Reset the free object count. */ 1751 p->num_free_objects = num_objects; 1752 1753 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */ 1754 for (i = 0; 1755 i < CEIL (BITMAP_SIZE (num_objects), 1756 sizeof (*p->in_use_p)); 1757 ++i) 1758 { 1759 unsigned long j; 1760 1761 /* Something is in use if it is marked, or if it was in use in a 1762 context further down the context stack. */ 1763 p->in_use_p[i] |= save_in_use_p (p)[i]; 1764 1765 /* Decrement the free object count for every object allocated. */ 1766 for (j = p->in_use_p[i]; j; j >>= 1) 1767 p->num_free_objects -= (j & 1); 1768 } 1769 1770 gcc_assert (p->num_free_objects < num_objects); 1771 } 1772 1773 /* Unmark all objects. */ 1774 1775 static void 1776 clear_marks (void) 1777 { 1778 unsigned order; 1779 1780 for (order = 2; order < NUM_ORDERS; order++) 1781 { 1782 page_entry *p; 1783 1784 for (p = G.pages[order]; p != NULL; p = p->next) 1785 { 1786 size_t num_objects = OBJECTS_IN_PAGE (p); 1787 size_t bitmap_size = BITMAP_SIZE (num_objects + 1); 1788 1789 /* The data should be page-aligned. */ 1790 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1))); 1791 1792 /* Pages that aren't in the topmost context are not collected; 1793 nevertheless, we need their in-use bit vectors to store GC 1794 marks. So, back them up first. */ 1795 if (p->context_depth < G.context_depth) 1796 { 1797 if (! save_in_use_p (p)) 1798 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size); 1799 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size); 1800 } 1801 1802 /* Reset reset the number of free objects and clear the 1803 in-use bits. These will be adjusted by mark_obj. */ 1804 p->num_free_objects = num_objects; 1805 memset (p->in_use_p, 0, bitmap_size); 1806 1807 /* Make sure the one-past-the-end bit is always set. */ 1808 p->in_use_p[num_objects / HOST_BITS_PER_LONG] 1809 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG)); 1810 } 1811 } 1812 } 1813 1814 /* Free all empty pages. Partially empty pages need no attention 1815 because the `mark' bit doubles as an `unused' bit. */ 1816 1817 static void 1818 sweep_pages (void) 1819 { 1820 unsigned order; 1821 1822 for (order = 2; order < NUM_ORDERS; order++) 1823 { 1824 /* The last page-entry to consider, regardless of entries 1825 placed at the end of the list. */ 1826 page_entry * const last = G.page_tails[order]; 1827 1828 size_t num_objects; 1829 size_t live_objects; 1830 page_entry *p, *previous; 1831 int done; 1832 1833 p = G.pages[order]; 1834 if (p == NULL) 1835 continue; 1836 1837 previous = NULL; 1838 do 1839 { 1840 page_entry *next = p->next; 1841 1842 /* Loop until all entries have been examined. */ 1843 done = (p == last); 1844 1845 num_objects = OBJECTS_IN_PAGE (p); 1846 1847 /* Add all live objects on this page to the count of 1848 allocated memory. */ 1849 live_objects = num_objects - p->num_free_objects; 1850 1851 G.allocated += OBJECT_SIZE (order) * live_objects; 1852 1853 /* Only objects on pages in the topmost context should get 1854 collected. */ 1855 if (p->context_depth < G.context_depth) 1856 ; 1857 1858 /* Remove the page if it's empty. */ 1859 else if (live_objects == 0) 1860 { 1861 /* If P was the first page in the list, then NEXT 1862 becomes the new first page in the list, otherwise 1863 splice P out of the forward pointers. */ 1864 if (! previous) 1865 G.pages[order] = next; 1866 else 1867 previous->next = next; 1868 1869 /* Splice P out of the back pointers too. */ 1870 if (next) 1871 next->prev = previous; 1872 1873 /* Are we removing the last element? */ 1874 if (p == G.page_tails[order]) 1875 G.page_tails[order] = previous; 1876 free_page (p); 1877 p = previous; 1878 } 1879 1880 /* If the page is full, move it to the end. */ 1881 else if (p->num_free_objects == 0) 1882 { 1883 /* Don't move it if it's already at the end. */ 1884 if (p != G.page_tails[order]) 1885 { 1886 /* Move p to the end of the list. */ 1887 p->next = NULL; 1888 p->prev = G.page_tails[order]; 1889 G.page_tails[order]->next = p; 1890 1891 /* Update the tail pointer... */ 1892 G.page_tails[order] = p; 1893 1894 /* ... and the head pointer, if necessary. */ 1895 if (! previous) 1896 G.pages[order] = next; 1897 else 1898 previous->next = next; 1899 1900 /* And update the backpointer in NEXT if necessary. */ 1901 if (next) 1902 next->prev = previous; 1903 1904 p = previous; 1905 } 1906 } 1907 1908 /* If we've fallen through to here, it's a page in the 1909 topmost context that is neither full nor empty. Such a 1910 page must precede pages at lesser context depth in the 1911 list, so move it to the head. */ 1912 else if (p != G.pages[order]) 1913 { 1914 previous->next = p->next; 1915 1916 /* Update the backchain in the next node if it exists. */ 1917 if (p->next) 1918 p->next->prev = previous; 1919 1920 /* Move P to the head of the list. */ 1921 p->next = G.pages[order]; 1922 p->prev = NULL; 1923 G.pages[order]->prev = p; 1924 1925 /* Update the head pointer. */ 1926 G.pages[order] = p; 1927 1928 /* Are we moving the last element? */ 1929 if (G.page_tails[order] == p) 1930 G.page_tails[order] = previous; 1931 p = previous; 1932 } 1933 1934 previous = p; 1935 p = next; 1936 } 1937 while (! done); 1938 1939 /* Now, restore the in_use_p vectors for any pages from contexts 1940 other than the current one. */ 1941 for (p = G.pages[order]; p; p = p->next) 1942 if (p->context_depth != G.context_depth) 1943 ggc_recalculate_in_use_p (p); 1944 } 1945 } 1946 1947 #ifdef ENABLE_GC_CHECKING 1948 /* Clobber all free objects. */ 1949 1950 static void 1951 poison_pages (void) 1952 { 1953 unsigned order; 1954 1955 for (order = 2; order < NUM_ORDERS; order++) 1956 { 1957 size_t size = OBJECT_SIZE (order); 1958 page_entry *p; 1959 1960 for (p = G.pages[order]; p != NULL; p = p->next) 1961 { 1962 size_t num_objects; 1963 size_t i; 1964 1965 if (p->context_depth != G.context_depth) 1966 /* Since we don't do any collection for pages in pushed 1967 contexts, there's no need to do any poisoning. And 1968 besides, the IN_USE_P array isn't valid until we pop 1969 contexts. */ 1970 continue; 1971 1972 num_objects = OBJECTS_IN_PAGE (p); 1973 for (i = 0; i < num_objects; i++) 1974 { 1975 size_t word, bit; 1976 word = i / HOST_BITS_PER_LONG; 1977 bit = i % HOST_BITS_PER_LONG; 1978 if (((p->in_use_p[word] >> bit) & 1) == 0) 1979 { 1980 char *object = p->page + i * size; 1981 1982 /* Keep poison-by-write when we expect to use Valgrind, 1983 so the exact same memory semantics is kept, in case 1984 there are memory errors. We override this request 1985 below. */ 1986 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object, 1987 size)); 1988 memset (object, 0xa5, size); 1989 1990 /* Drop the handle to avoid handle leak. */ 1991 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size)); 1992 } 1993 } 1994 } 1995 } 1996 } 1997 #else 1998 #define poison_pages() 1999 #endif 2000 2001 #ifdef ENABLE_GC_ALWAYS_COLLECT 2002 /* Validate that the reportedly free objects actually are. */ 2003 2004 static void 2005 validate_free_objects (void) 2006 { 2007 struct free_object *f, *next, *still_free = NULL; 2008 2009 for (f = G.free_object_list; f ; f = next) 2010 { 2011 page_entry *pe = lookup_page_table_entry (f->object); 2012 size_t bit, word; 2013 2014 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order); 2015 word = bit / HOST_BITS_PER_LONG; 2016 bit = bit % HOST_BITS_PER_LONG; 2017 next = f->next; 2018 2019 /* Make certain it isn't visible from any root. Notice that we 2020 do this check before sweep_pages merges save_in_use_p. */ 2021 gcc_assert (!(pe->in_use_p[word] & (1UL << bit))); 2022 2023 /* If the object comes from an outer context, then retain the 2024 free_object entry, so that we can verify that the address 2025 isn't live on the stack in some outer context. */ 2026 if (pe->context_depth != G.context_depth) 2027 { 2028 f->next = still_free; 2029 still_free = f; 2030 } 2031 else 2032 free (f); 2033 } 2034 2035 G.free_object_list = still_free; 2036 } 2037 #else 2038 #define validate_free_objects() 2039 #endif 2040 2041 /* Top level mark-and-sweep routine. */ 2042 2043 void 2044 ggc_collect (void) 2045 { 2046 /* Avoid frequent unnecessary work by skipping collection if the 2047 total allocations haven't expanded much since the last 2048 collection. */ 2049 float allocated_last_gc = 2050 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024); 2051 2052 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100; 2053 2054 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect) 2055 return; 2056 2057 timevar_push (TV_GC); 2058 if (!quiet_flag) 2059 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024); 2060 if (GGC_DEBUG_LEVEL >= 2) 2061 fprintf (G.debug_file, "BEGIN COLLECTING\n"); 2062 2063 /* Zero the total allocated bytes. This will be recalculated in the 2064 sweep phase. */ 2065 G.allocated = 0; 2066 2067 /* Release the pages we freed the last time we collected, but didn't 2068 reuse in the interim. */ 2069 release_pages (); 2070 2071 /* Indicate that we've seen collections at this context depth. */ 2072 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1; 2073 2074 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL); 2075 2076 clear_marks (); 2077 ggc_mark_roots (); 2078 2079 if (GATHER_STATISTICS) 2080 ggc_prune_overhead_list (); 2081 2082 poison_pages (); 2083 validate_free_objects (); 2084 sweep_pages (); 2085 2086 G.allocated_last_gc = G.allocated; 2087 2088 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL); 2089 2090 timevar_pop (TV_GC); 2091 2092 if (!quiet_flag) 2093 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024); 2094 if (GGC_DEBUG_LEVEL >= 2) 2095 fprintf (G.debug_file, "END COLLECTING\n"); 2096 } 2097 2098 /* Print allocation statistics. */ 2099 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ 2100 ? (x) \ 2101 : ((x) < 1024*1024*10 \ 2102 ? (x) / 1024 \ 2103 : (x) / (1024*1024)))) 2104 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) 2105 2106 void 2107 ggc_print_statistics (void) 2108 { 2109 struct ggc_statistics stats; 2110 unsigned int i; 2111 size_t total_overhead = 0; 2112 2113 /* Clear the statistics. */ 2114 memset (&stats, 0, sizeof (stats)); 2115 2116 /* Make sure collection will really occur. */ 2117 G.allocated_last_gc = 0; 2118 2119 /* Collect and print the statistics common across collectors. */ 2120 ggc_print_common_statistics (stderr, &stats); 2121 2122 /* Release free pages so that we will not count the bytes allocated 2123 there as part of the total allocated memory. */ 2124 release_pages (); 2125 2126 /* Collect some information about the various sizes of 2127 allocation. */ 2128 fprintf (stderr, 2129 "Memory still allocated at the end of the compilation process\n"); 2130 fprintf (stderr, "%-5s %10s %10s %10s\n", 2131 "Size", "Allocated", "Used", "Overhead"); 2132 for (i = 0; i < NUM_ORDERS; ++i) 2133 { 2134 page_entry *p; 2135 size_t allocated; 2136 size_t in_use; 2137 size_t overhead; 2138 2139 /* Skip empty entries. */ 2140 if (!G.pages[i]) 2141 continue; 2142 2143 overhead = allocated = in_use = 0; 2144 2145 /* Figure out the total number of bytes allocated for objects of 2146 this size, and how many of them are actually in use. Also figure 2147 out how much memory the page table is using. */ 2148 for (p = G.pages[i]; p; p = p->next) 2149 { 2150 allocated += p->bytes; 2151 in_use += 2152 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i); 2153 2154 overhead += (sizeof (page_entry) - sizeof (long) 2155 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1)); 2156 } 2157 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n", 2158 (unsigned long) OBJECT_SIZE (i), 2159 SCALE (allocated), STAT_LABEL (allocated), 2160 SCALE (in_use), STAT_LABEL (in_use), 2161 SCALE (overhead), STAT_LABEL (overhead)); 2162 total_overhead += overhead; 2163 } 2164 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total", 2165 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped), 2166 SCALE (G.allocated), STAT_LABEL(G.allocated), 2167 SCALE (total_overhead), STAT_LABEL (total_overhead)); 2168 2169 if (GATHER_STATISTICS) 2170 { 2171 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n"); 2172 2173 fprintf (stderr, "Total Overhead: %10" HOST_LONG_LONG_FORMAT "d\n", 2174 G.stats.total_overhead); 2175 fprintf (stderr, "Total Allocated: %10" HOST_LONG_LONG_FORMAT "d\n", 2176 G.stats.total_allocated); 2177 2178 fprintf (stderr, "Total Overhead under 32B: %10" HOST_LONG_LONG_FORMAT "d\n", 2179 G.stats.total_overhead_under32); 2180 fprintf (stderr, "Total Allocated under 32B: %10" HOST_LONG_LONG_FORMAT "d\n", 2181 G.stats.total_allocated_under32); 2182 fprintf (stderr, "Total Overhead under 64B: %10" HOST_LONG_LONG_FORMAT "d\n", 2183 G.stats.total_overhead_under64); 2184 fprintf (stderr, "Total Allocated under 64B: %10" HOST_LONG_LONG_FORMAT "d\n", 2185 G.stats.total_allocated_under64); 2186 fprintf (stderr, "Total Overhead under 128B: %10" HOST_LONG_LONG_FORMAT "d\n", 2187 G.stats.total_overhead_under128); 2188 fprintf (stderr, "Total Allocated under 128B: %10" HOST_LONG_LONG_FORMAT "d\n", 2189 G.stats.total_allocated_under128); 2190 2191 for (i = 0; i < NUM_ORDERS; i++) 2192 if (G.stats.total_allocated_per_order[i]) 2193 { 2194 fprintf (stderr, "Total Overhead page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n", 2195 (unsigned long) OBJECT_SIZE (i), 2196 G.stats.total_overhead_per_order[i]); 2197 fprintf (stderr, "Total Allocated page size %7lu: %10" HOST_LONG_LONG_FORMAT "d\n", 2198 (unsigned long) OBJECT_SIZE (i), 2199 G.stats.total_allocated_per_order[i]); 2200 } 2201 } 2202 } 2203 2204 struct ggc_pch_ondisk 2205 { 2206 unsigned totals[NUM_ORDERS]; 2207 }; 2208 2209 struct ggc_pch_data 2210 { 2211 struct ggc_pch_ondisk d; 2212 uintptr_t base[NUM_ORDERS]; 2213 size_t written[NUM_ORDERS]; 2214 }; 2215 2216 struct ggc_pch_data * 2217 init_ggc_pch (void) 2218 { 2219 return XCNEW (struct ggc_pch_data); 2220 } 2221 2222 void 2223 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2224 size_t size, bool is_string ATTRIBUTE_UNUSED) 2225 { 2226 unsigned order; 2227 2228 if (size < NUM_SIZE_LOOKUP) 2229 order = size_lookup[size]; 2230 else 2231 { 2232 order = 10; 2233 while (size > OBJECT_SIZE (order)) 2234 order++; 2235 } 2236 2237 d->d.totals[order]++; 2238 } 2239 2240 size_t 2241 ggc_pch_total_size (struct ggc_pch_data *d) 2242 { 2243 size_t a = 0; 2244 unsigned i; 2245 2246 for (i = 0; i < NUM_ORDERS; i++) 2247 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); 2248 return a; 2249 } 2250 2251 void 2252 ggc_pch_this_base (struct ggc_pch_data *d, void *base) 2253 { 2254 uintptr_t a = (uintptr_t) base; 2255 unsigned i; 2256 2257 for (i = 0; i < NUM_ORDERS; i++) 2258 { 2259 d->base[i] = a; 2260 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i)); 2261 } 2262 } 2263 2264 2265 char * 2266 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED, 2267 size_t size, bool is_string ATTRIBUTE_UNUSED) 2268 { 2269 unsigned order; 2270 char *result; 2271 2272 if (size < NUM_SIZE_LOOKUP) 2273 order = size_lookup[size]; 2274 else 2275 { 2276 order = 10; 2277 while (size > OBJECT_SIZE (order)) 2278 order++; 2279 } 2280 2281 result = (char *) d->base[order]; 2282 d->base[order] += OBJECT_SIZE (order); 2283 return result; 2284 } 2285 2286 void 2287 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED, 2288 FILE *f ATTRIBUTE_UNUSED) 2289 { 2290 /* Nothing to do. */ 2291 } 2292 2293 void 2294 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED, 2295 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED, 2296 size_t size, bool is_string ATTRIBUTE_UNUSED) 2297 { 2298 unsigned order; 2299 static const char emptyBytes[256] = { 0 }; 2300 2301 if (size < NUM_SIZE_LOOKUP) 2302 order = size_lookup[size]; 2303 else 2304 { 2305 order = 10; 2306 while (size > OBJECT_SIZE (order)) 2307 order++; 2308 } 2309 2310 if (fwrite (x, size, 1, f) != 1) 2311 fatal_error ("can%'t write PCH file: %m"); 2312 2313 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the 2314 object out to OBJECT_SIZE(order). This happens for strings. */ 2315 2316 if (size != OBJECT_SIZE (order)) 2317 { 2318 unsigned padding = OBJECT_SIZE(order) - size; 2319 2320 /* To speed small writes, we use a nulled-out array that's larger 2321 than most padding requests as the source for our null bytes. This 2322 permits us to do the padding with fwrite() rather than fseek(), and 2323 limits the chance the OS may try to flush any outstanding writes. */ 2324 if (padding <= sizeof(emptyBytes)) 2325 { 2326 if (fwrite (emptyBytes, 1, padding, f) != padding) 2327 fatal_error ("can%'t write PCH file"); 2328 } 2329 else 2330 { 2331 /* Larger than our buffer? Just default to fseek. */ 2332 if (fseek (f, padding, SEEK_CUR) != 0) 2333 fatal_error ("can%'t write PCH file"); 2334 } 2335 } 2336 2337 d->written[order]++; 2338 if (d->written[order] == d->d.totals[order] 2339 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order), 2340 G.pagesize), 2341 SEEK_CUR) != 0) 2342 fatal_error ("can%'t write PCH file: %m"); 2343 } 2344 2345 void 2346 ggc_pch_finish (struct ggc_pch_data *d, FILE *f) 2347 { 2348 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1) 2349 fatal_error ("can%'t write PCH file: %m"); 2350 free (d); 2351 } 2352 2353 /* Move the PCH PTE entries just added to the end of by_depth, to the 2354 front. */ 2355 2356 static void 2357 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables) 2358 { 2359 unsigned i; 2360 2361 /* First, we swap the new entries to the front of the varrays. */ 2362 page_entry **new_by_depth; 2363 unsigned long **new_save_in_use; 2364 2365 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max); 2366 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max); 2367 2368 memcpy (&new_by_depth[0], 2369 &G.by_depth[count_old_page_tables], 2370 count_new_page_tables * sizeof (void *)); 2371 memcpy (&new_by_depth[count_new_page_tables], 2372 &G.by_depth[0], 2373 count_old_page_tables * sizeof (void *)); 2374 memcpy (&new_save_in_use[0], 2375 &G.save_in_use[count_old_page_tables], 2376 count_new_page_tables * sizeof (void *)); 2377 memcpy (&new_save_in_use[count_new_page_tables], 2378 &G.save_in_use[0], 2379 count_old_page_tables * sizeof (void *)); 2380 2381 free (G.by_depth); 2382 free (G.save_in_use); 2383 2384 G.by_depth = new_by_depth; 2385 G.save_in_use = new_save_in_use; 2386 2387 /* Now update all the index_by_depth fields. */ 2388 for (i = G.by_depth_in_use; i > 0; --i) 2389 { 2390 page_entry *p = G.by_depth[i-1]; 2391 p->index_by_depth = i-1; 2392 } 2393 2394 /* And last, we update the depth pointers in G.depth. The first 2395 entry is already 0, and context 0 entries always start at index 2396 0, so there is nothing to update in the first slot. We need a 2397 second slot, only if we have old ptes, and if we do, they start 2398 at index count_new_page_tables. */ 2399 if (count_old_page_tables) 2400 push_depth (count_new_page_tables); 2401 } 2402 2403 void 2404 ggc_pch_read (FILE *f, void *addr) 2405 { 2406 struct ggc_pch_ondisk d; 2407 unsigned i; 2408 char *offs = (char *) addr; 2409 unsigned long count_old_page_tables; 2410 unsigned long count_new_page_tables; 2411 2412 count_old_page_tables = G.by_depth_in_use; 2413 2414 /* We've just read in a PCH file. So, every object that used to be 2415 allocated is now free. */ 2416 clear_marks (); 2417 #ifdef ENABLE_GC_CHECKING 2418 poison_pages (); 2419 #endif 2420 /* Since we free all the allocated objects, the free list becomes 2421 useless. Validate it now, which will also clear it. */ 2422 validate_free_objects(); 2423 2424 /* No object read from a PCH file should ever be freed. So, set the 2425 context depth to 1, and set the depth of all the currently-allocated 2426 pages to be 1 too. PCH pages will have depth 0. */ 2427 gcc_assert (!G.context_depth); 2428 G.context_depth = 1; 2429 for (i = 0; i < NUM_ORDERS; i++) 2430 { 2431 page_entry *p; 2432 for (p = G.pages[i]; p != NULL; p = p->next) 2433 p->context_depth = G.context_depth; 2434 } 2435 2436 /* Allocate the appropriate page-table entries for the pages read from 2437 the PCH file. */ 2438 if (fread (&d, sizeof (d), 1, f) != 1) 2439 fatal_error ("can%'t read PCH file: %m"); 2440 2441 for (i = 0; i < NUM_ORDERS; i++) 2442 { 2443 struct page_entry *entry; 2444 char *pte; 2445 size_t bytes; 2446 size_t num_objs; 2447 size_t j; 2448 2449 if (d.totals[i] == 0) 2450 continue; 2451 2452 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i)); 2453 num_objs = bytes / OBJECT_SIZE (i); 2454 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry) 2455 - sizeof (long) 2456 + BITMAP_SIZE (num_objs + 1))); 2457 entry->bytes = bytes; 2458 entry->page = offs; 2459 entry->context_depth = 0; 2460 offs += bytes; 2461 entry->num_free_objects = 0; 2462 entry->order = i; 2463 2464 for (j = 0; 2465 j + HOST_BITS_PER_LONG <= num_objs + 1; 2466 j += HOST_BITS_PER_LONG) 2467 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1; 2468 for (; j < num_objs + 1; j++) 2469 entry->in_use_p[j / HOST_BITS_PER_LONG] 2470 |= 1L << (j % HOST_BITS_PER_LONG); 2471 2472 for (pte = entry->page; 2473 pte < entry->page + entry->bytes; 2474 pte += G.pagesize) 2475 set_page_table_entry (pte, entry); 2476 2477 if (G.page_tails[i] != NULL) 2478 G.page_tails[i]->next = entry; 2479 else 2480 G.pages[i] = entry; 2481 G.page_tails[i] = entry; 2482 2483 /* We start off by just adding all the new information to the 2484 end of the varrays, later, we will move the new information 2485 to the front of the varrays, as the PCH page tables are at 2486 context 0. */ 2487 push_by_depth (entry, 0); 2488 } 2489 2490 /* Now, we update the various data structures that speed page table 2491 handling. */ 2492 count_new_page_tables = G.by_depth_in_use - count_old_page_tables; 2493 2494 move_ptes_to_front (count_old_page_tables, count_new_page_tables); 2495 2496 /* Update the statistics. */ 2497 G.allocated = G.allocated_last_gc = offs - (char *)addr; 2498 } 2499