1 /* Simple garbage collection for the GNU compiler. 2 Copyright (C) 1999-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* Generic garbage collection (GC) functions and data, not specific to 21 any particular GC implementation. */ 22 23 #include "config.h" 24 #include "system.h" 25 #include "coretypes.h" 26 #include "timevar.h" 27 #include "diagnostic-core.h" 28 #include "ggc-internal.h" 29 #include "params.h" 30 #include "hosthooks.h" 31 #include "plugin.h" 32 33 /* When set, ggc_collect will do collection. */ 34 bool ggc_force_collect; 35 36 /* When true, protect the contents of the identifier hash table. */ 37 bool ggc_protect_identifiers = true; 38 39 /* Statistics about the allocation. */ 40 static ggc_statistics *ggc_stats; 41 42 struct traversal_state; 43 44 static int compare_ptr_data (const void *, const void *); 45 static void relocate_ptrs (void *, void *); 46 static void write_pch_globals (const struct ggc_root_tab * const *tab, 47 struct traversal_state *state); 48 49 /* Maintain global roots that are preserved during GC. */ 50 51 /* This extra vector of dynamically registered root_tab-s is used by 52 ggc_mark_roots and gives the ability to dynamically add new GGC root 53 tables, for instance from some plugins; this vector is on the heap 54 since it is used by GGC internally. */ 55 typedef const struct ggc_root_tab *const_ggc_root_tab_t; 56 static vec<const_ggc_root_tab_t> extra_root_vec; 57 58 /* Dynamically register a new GGC root table RT. This is useful for 59 plugins. */ 60 61 void 62 ggc_register_root_tab (const struct ggc_root_tab* rt) 63 { 64 if (rt) 65 extra_root_vec.safe_push (rt); 66 } 67 68 /* Mark all the roots in the table RT. */ 69 70 static void 71 ggc_mark_root_tab (const_ggc_root_tab_t rt) 72 { 73 size_t i; 74 75 for ( ; rt->base != NULL; rt++) 76 for (i = 0; i < rt->nelt; i++) 77 (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i)); 78 } 79 80 /* Iterate through all registered roots and mark each element. */ 81 82 void 83 ggc_mark_roots (void) 84 { 85 const struct ggc_root_tab *const *rt; 86 const_ggc_root_tab_t rtp, rti; 87 size_t i; 88 89 for (rt = gt_ggc_deletable_rtab; *rt; rt++) 90 for (rti = *rt; rti->base != NULL; rti++) 91 memset (rti->base, 0, rti->stride); 92 93 for (rt = gt_ggc_rtab; *rt; rt++) 94 ggc_mark_root_tab (*rt); 95 96 FOR_EACH_VEC_ELT (extra_root_vec, i, rtp) 97 ggc_mark_root_tab (rtp); 98 99 if (ggc_protect_identifiers) 100 ggc_mark_stringpool (); 101 102 gt_clear_caches (); 103 104 if (! ggc_protect_identifiers) 105 ggc_purge_stringpool (); 106 107 /* Some plugins may call ggc_set_mark from here. */ 108 invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL); 109 } 110 111 /* Allocate a block of memory, then clear it. */ 112 void * 113 ggc_internal_cleared_alloc (size_t size, void (*f)(void *), size_t s, size_t n 114 MEM_STAT_DECL) 115 { 116 void *buf = ggc_internal_alloc (size, f, s, n PASS_MEM_STAT); 117 memset (buf, 0, size); 118 return buf; 119 } 120 121 /* Resize a block of memory, possibly re-allocating it. */ 122 void * 123 ggc_realloc (void *x, size_t size MEM_STAT_DECL) 124 { 125 void *r; 126 size_t old_size; 127 128 if (x == NULL) 129 return ggc_internal_alloc (size PASS_MEM_STAT); 130 131 old_size = ggc_get_size (x); 132 133 if (size <= old_size) 134 { 135 /* Mark the unwanted memory as unaccessible. We also need to make 136 the "new" size accessible, since ggc_get_size returns the size of 137 the pool, not the size of the individually allocated object, the 138 size which was previously made accessible. Unfortunately, we 139 don't know that previously allocated size. Without that 140 knowledge we have to lose some initialization-tracking for the 141 old parts of the object. An alternative is to mark the whole 142 old_size as reachable, but that would lose tracking of writes 143 after the end of the object (by small offsets). Discard the 144 handle to avoid handle leak. */ 145 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size, 146 old_size - size)); 147 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size)); 148 return x; 149 } 150 151 r = ggc_internal_alloc (size PASS_MEM_STAT); 152 153 /* Since ggc_get_size returns the size of the pool, not the size of the 154 individually allocated object, we'd access parts of the old object 155 that were marked invalid with the memcpy below. We lose a bit of the 156 initialization-tracking since some of it may be uninitialized. */ 157 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size)); 158 159 memcpy (r, x, old_size); 160 161 /* The old object is not supposed to be used anymore. */ 162 ggc_free (x); 163 164 return r; 165 } 166 167 void * 168 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED, 169 size_t n ATTRIBUTE_UNUSED) 170 { 171 gcc_assert (c * n == sizeof (struct htab)); 172 return ggc_cleared_alloc<htab> (); 173 } 174 175 /* TODO: once we actually use type information in GGC, create a new tag 176 gt_gcc_ptr_array and use it for pointer arrays. */ 177 void * 178 ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n) 179 { 180 gcc_assert (sizeof (PTR *) == n); 181 return ggc_cleared_vec_alloc<PTR *> (c); 182 } 183 184 /* These are for splay_tree_new_ggc. */ 185 void * 186 ggc_splay_alloc (int sz, void *nl) 187 { 188 gcc_assert (!nl); 189 return ggc_internal_alloc (sz); 190 } 191 192 void 193 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl) 194 { 195 gcc_assert (!nl); 196 } 197 198 /* Print statistics that are independent of the collector in use. */ 199 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ 200 ? (x) \ 201 : ((x) < 1024*1024*10 \ 202 ? (x) / 1024 \ 203 : (x) / (1024*1024)))) 204 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) 205 206 void 207 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED, 208 ggc_statistics *stats) 209 { 210 /* Set the pointer so that during collection we will actually gather 211 the statistics. */ 212 ggc_stats = stats; 213 214 /* Then do one collection to fill in the statistics. */ 215 ggc_collect (); 216 217 /* At present, we don't really gather any interesting statistics. */ 218 219 /* Don't gather statistics any more. */ 220 ggc_stats = NULL; 221 } 222 223 /* Functions for saving and restoring GCable memory to disk. */ 224 225 struct ptr_data 226 { 227 void *obj; 228 void *note_ptr_cookie; 229 gt_note_pointers note_ptr_fn; 230 gt_handle_reorder reorder_fn; 231 size_t size; 232 void *new_addr; 233 }; 234 235 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3) 236 237 /* Helper for hashing saving_htab. */ 238 239 struct saving_hasher : free_ptr_hash <ptr_data> 240 { 241 typedef void *compare_type; 242 static inline hashval_t hash (const ptr_data *); 243 static inline bool equal (const ptr_data *, const void *); 244 }; 245 246 inline hashval_t 247 saving_hasher::hash (const ptr_data *p) 248 { 249 return POINTER_HASH (p->obj); 250 } 251 252 inline bool 253 saving_hasher::equal (const ptr_data *p1, const void *p2) 254 { 255 return p1->obj == p2; 256 } 257 258 static hash_table<saving_hasher> *saving_htab; 259 260 /* Register an object in the hash table. */ 261 262 int 263 gt_pch_note_object (void *obj, void *note_ptr_cookie, 264 gt_note_pointers note_ptr_fn) 265 { 266 struct ptr_data **slot; 267 268 if (obj == NULL || obj == (void *) 1) 269 return 0; 270 271 slot = (struct ptr_data **) 272 saving_htab->find_slot_with_hash (obj, POINTER_HASH (obj), INSERT); 273 if (*slot != NULL) 274 { 275 gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn 276 && (*slot)->note_ptr_cookie == note_ptr_cookie); 277 return 0; 278 } 279 280 *slot = XCNEW (struct ptr_data); 281 (*slot)->obj = obj; 282 (*slot)->note_ptr_fn = note_ptr_fn; 283 (*slot)->note_ptr_cookie = note_ptr_cookie; 284 if (note_ptr_fn == gt_pch_p_S) 285 (*slot)->size = strlen ((const char *)obj) + 1; 286 else 287 (*slot)->size = ggc_get_size (obj); 288 return 1; 289 } 290 291 /* Register an object in the hash table. */ 292 293 void 294 gt_pch_note_reorder (void *obj, void *note_ptr_cookie, 295 gt_handle_reorder reorder_fn) 296 { 297 struct ptr_data *data; 298 299 if (obj == NULL || obj == (void *) 1) 300 return; 301 302 data = (struct ptr_data *) 303 saving_htab->find_with_hash (obj, POINTER_HASH (obj)); 304 gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie); 305 306 data->reorder_fn = reorder_fn; 307 } 308 309 /* Handy state for the traversal functions. */ 310 311 struct traversal_state 312 { 313 FILE *f; 314 struct ggc_pch_data *d; 315 size_t count; 316 struct ptr_data **ptrs; 317 size_t ptrs_i; 318 }; 319 320 /* Callbacks for htab_traverse. */ 321 322 int 323 ggc_call_count (ptr_data **slot, traversal_state *state) 324 { 325 struct ptr_data *d = *slot; 326 327 ggc_pch_count_object (state->d, d->obj, d->size, 328 d->note_ptr_fn == gt_pch_p_S); 329 state->count++; 330 return 1; 331 } 332 333 int 334 ggc_call_alloc (ptr_data **slot, traversal_state *state) 335 { 336 struct ptr_data *d = *slot; 337 338 d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size, 339 d->note_ptr_fn == gt_pch_p_S); 340 state->ptrs[state->ptrs_i++] = d; 341 return 1; 342 } 343 344 /* Callback for qsort. */ 345 346 static int 347 compare_ptr_data (const void *p1_p, const void *p2_p) 348 { 349 const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p; 350 const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p; 351 return (((size_t)p1->new_addr > (size_t)p2->new_addr) 352 - ((size_t)p1->new_addr < (size_t)p2->new_addr)); 353 } 354 355 /* Callbacks for note_ptr_fn. */ 356 357 static void 358 relocate_ptrs (void *ptr_p, void *state_p) 359 { 360 void **ptr = (void **)ptr_p; 361 struct traversal_state *state ATTRIBUTE_UNUSED 362 = (struct traversal_state *)state_p; 363 struct ptr_data *result; 364 365 if (*ptr == NULL || *ptr == (void *)1) 366 return; 367 368 result = (struct ptr_data *) 369 saving_htab->find_with_hash (*ptr, POINTER_HASH (*ptr)); 370 gcc_assert (result); 371 *ptr = result->new_addr; 372 } 373 374 /* Write out, after relocation, the pointers in TAB. */ 375 static void 376 write_pch_globals (const struct ggc_root_tab * const *tab, 377 struct traversal_state *state) 378 { 379 const struct ggc_root_tab *const *rt; 380 const struct ggc_root_tab *rti; 381 size_t i; 382 383 for (rt = tab; *rt; rt++) 384 for (rti = *rt; rti->base != NULL; rti++) 385 for (i = 0; i < rti->nelt; i++) 386 { 387 void *ptr = *(void **)((char *)rti->base + rti->stride * i); 388 struct ptr_data *new_ptr; 389 if (ptr == NULL || ptr == (void *)1) 390 { 391 if (fwrite (&ptr, sizeof (void *), 1, state->f) 392 != 1) 393 fatal_error (input_location, "can%'t write PCH file: %m"); 394 } 395 else 396 { 397 new_ptr = (struct ptr_data *) 398 saving_htab->find_with_hash (ptr, POINTER_HASH (ptr)); 399 if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f) 400 != 1) 401 fatal_error (input_location, "can%'t write PCH file: %m"); 402 } 403 } 404 } 405 406 /* Hold the information we need to mmap the file back in. */ 407 408 struct mmap_info 409 { 410 size_t offset; 411 size_t size; 412 void *preferred_base; 413 }; 414 415 /* Write out the state of the compiler to F. */ 416 417 void 418 gt_pch_save (FILE *f) 419 { 420 const struct ggc_root_tab *const *rt; 421 const struct ggc_root_tab *rti; 422 size_t i; 423 struct traversal_state state; 424 char *this_object = NULL; 425 size_t this_object_size = 0; 426 struct mmap_info mmi; 427 const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity (); 428 429 gt_pch_save_stringpool (); 430 431 timevar_push (TV_PCH_PTR_REALLOC); 432 saving_htab = new hash_table<saving_hasher> (50000); 433 434 for (rt = gt_ggc_rtab; *rt; rt++) 435 for (rti = *rt; rti->base != NULL; rti++) 436 for (i = 0; i < rti->nelt; i++) 437 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i)); 438 439 /* Prepare the objects for writing, determine addresses and such. */ 440 state.f = f; 441 state.d = init_ggc_pch (); 442 state.count = 0; 443 saving_htab->traverse <traversal_state *, ggc_call_count> (&state); 444 445 mmi.size = ggc_pch_total_size (state.d); 446 447 /* Try to arrange things so that no relocation is necessary, but 448 don't try very hard. On most platforms, this will always work, 449 and on the rest it's a lot of work to do better. 450 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and 451 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */ 452 mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f)); 453 454 ggc_pch_this_base (state.d, mmi.preferred_base); 455 456 state.ptrs = XNEWVEC (struct ptr_data *, state.count); 457 state.ptrs_i = 0; 458 459 saving_htab->traverse <traversal_state *, ggc_call_alloc> (&state); 460 timevar_pop (TV_PCH_PTR_REALLOC); 461 462 timevar_push (TV_PCH_PTR_SORT); 463 qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data); 464 timevar_pop (TV_PCH_PTR_SORT); 465 466 /* Write out all the scalar variables. */ 467 for (rt = gt_pch_scalar_rtab; *rt; rt++) 468 for (rti = *rt; rti->base != NULL; rti++) 469 if (fwrite (rti->base, rti->stride, 1, f) != 1) 470 fatal_error (input_location, "can%'t write PCH file: %m"); 471 472 /* Write out all the global pointers, after translation. */ 473 write_pch_globals (gt_ggc_rtab, &state); 474 475 /* Pad the PCH file so that the mmapped area starts on an allocation 476 granularity (usually page) boundary. */ 477 { 478 long o; 479 o = ftell (state.f) + sizeof (mmi); 480 if (o == -1) 481 fatal_error (input_location, "can%'t get position in PCH file: %m"); 482 mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment; 483 if (mmi.offset == mmap_offset_alignment) 484 mmi.offset = 0; 485 mmi.offset += o; 486 } 487 if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1) 488 fatal_error (input_location, "can%'t write PCH file: %m"); 489 if (mmi.offset != 0 490 && fseek (state.f, mmi.offset, SEEK_SET) != 0) 491 fatal_error (input_location, "can%'t write padding to PCH file: %m"); 492 493 ggc_pch_prepare_write (state.d, state.f); 494 495 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 496 vec<char> vbits = vNULL; 497 #endif 498 499 /* Actually write out the objects. */ 500 for (i = 0; i < state.count; i++) 501 { 502 if (this_object_size < state.ptrs[i]->size) 503 { 504 this_object_size = state.ptrs[i]->size; 505 this_object = XRESIZEVAR (char, this_object, this_object_size); 506 } 507 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 508 /* obj might contain uninitialized bytes, e.g. in the trailing 509 padding of the object. Avoid warnings by making the memory 510 temporarily defined and then restoring previous state. */ 511 int get_vbits = 0; 512 size_t valid_size = state.ptrs[i]->size; 513 if (__builtin_expect (RUNNING_ON_VALGRIND, 0)) 514 { 515 if (vbits.length () < valid_size) 516 vbits.safe_grow (valid_size); 517 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj, 518 vbits.address (), valid_size); 519 if (get_vbits == 3) 520 { 521 /* We assume that first part of obj is addressable, and 522 the rest is unaddressable. Find out where the boundary is 523 using binary search. */ 524 size_t lo = 0, hi = valid_size; 525 while (hi > lo) 526 { 527 size_t mid = (lo + hi) / 2; 528 get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj 529 + mid, vbits.address (), 530 1); 531 if (get_vbits == 3) 532 hi = mid; 533 else if (get_vbits == 1) 534 lo = mid + 1; 535 else 536 break; 537 } 538 if (get_vbits == 1 || get_vbits == 3) 539 { 540 valid_size = lo; 541 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj, 542 vbits.address (), 543 valid_size); 544 } 545 } 546 if (get_vbits == 1) 547 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj, 548 state.ptrs[i]->size)); 549 } 550 #endif 551 memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size); 552 if (state.ptrs[i]->reorder_fn != NULL) 553 state.ptrs[i]->reorder_fn (state.ptrs[i]->obj, 554 state.ptrs[i]->note_ptr_cookie, 555 relocate_ptrs, &state); 556 state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj, 557 state.ptrs[i]->note_ptr_cookie, 558 relocate_ptrs, &state); 559 ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj, 560 state.ptrs[i]->new_addr, state.ptrs[i]->size, 561 state.ptrs[i]->note_ptr_fn == gt_pch_p_S); 562 if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S) 563 memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size); 564 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 565 if (__builtin_expect (get_vbits == 1, 0)) 566 { 567 (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (), 568 valid_size); 569 if (valid_size != state.ptrs[i]->size) 570 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) 571 state.ptrs[i]->obj 572 + valid_size, 573 state.ptrs[i]->size 574 - valid_size)); 575 } 576 #endif 577 } 578 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 579 vbits.release (); 580 #endif 581 582 ggc_pch_finish (state.d, state.f); 583 gt_pch_fixup_stringpool (); 584 585 XDELETE (state.ptrs); 586 XDELETE (this_object); 587 delete saving_htab; 588 saving_htab = NULL; 589 } 590 591 /* Read the state of the compiler back in from F. */ 592 593 void 594 gt_pch_restore (FILE *f) 595 { 596 const struct ggc_root_tab *const *rt; 597 const struct ggc_root_tab *rti; 598 size_t i; 599 struct mmap_info mmi; 600 int result; 601 struct line_maps * old_line_table = line_table; 602 location_t old_input_loc = input_location; 603 604 /* Delete any deletable objects. This makes ggc_pch_read much 605 faster, as it can be sure that no GCable objects remain other 606 than the ones just read in. */ 607 for (rt = gt_ggc_deletable_rtab; *rt; rt++) 608 for (rti = *rt; rti->base != NULL; rti++) 609 memset (rti->base, 0, rti->stride); 610 611 /* Read in all the scalar variables. */ 612 for (rt = gt_pch_scalar_rtab; *rt; rt++) 613 for (rti = *rt; rti->base != NULL; rti++) 614 if (fread (rti->base, rti->stride, 1, f) != 1) { 615 line_table = old_line_table; 616 input_location = old_input_loc; 617 fatal_error (input_location, "can%'t read PCH file: %m"); 618 } 619 620 /* Read in all the global pointers, in 6 easy loops. */ 621 for (rt = gt_ggc_rtab; *rt; rt++) 622 for (rti = *rt; rti->base != NULL; rti++) 623 for (i = 0; i < rti->nelt; i++) 624 if (fread ((char *)rti->base + rti->stride * i, 625 sizeof (void *), 1, f) != 1) { 626 line_table = old_line_table; 627 input_location = old_input_loc; 628 fatal_error (input_location, "can%'t read PCH file: %m"); 629 } 630 631 if (fread (&mmi, sizeof (mmi), 1, f) != 1) { 632 line_table = old_line_table; 633 input_location = old_input_loc; 634 fatal_error (input_location, "can%'t read PCH file: %m"); 635 } 636 637 result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size, 638 fileno (f), mmi.offset); 639 if (result < 0) { 640 line_table = old_line_table; 641 input_location = old_input_loc; 642 fatal_error (input_location, "had to relocate PCH"); 643 } 644 if (result == 0) 645 { 646 if (fseek (f, mmi.offset, SEEK_SET) != 0 647 || fread (mmi.preferred_base, mmi.size, 1, f) != 1) { 648 line_table = old_line_table; 649 input_location = old_input_loc; 650 fatal_error (input_location, "can%'t read PCH file: %m"); 651 } 652 } 653 else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0) { 654 line_table = old_line_table; 655 input_location = old_input_loc; 656 fatal_error (input_location, "can%'t read PCH file: %m"); 657 } 658 659 ggc_pch_read (f, mmi.preferred_base); 660 661 gt_pch_restore_stringpool (); 662 } 663 664 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present. 665 Select no address whatsoever, and let gt_pch_save choose what it will with 666 malloc, presumably. */ 667 668 void * 669 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED, 670 int fd ATTRIBUTE_UNUSED) 671 { 672 return NULL; 673 } 674 675 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present. 676 Allocate SIZE bytes with malloc. Return 0 if the address we got is the 677 same as base, indicating that the memory has been allocated but needs to 678 be read in from the file. Return -1 if the address differs, to relocation 679 of the PCH file would be required. */ 680 681 int 682 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED, 683 size_t offset ATTRIBUTE_UNUSED) 684 { 685 void *addr = xmalloc (size); 686 return (addr == base) - 1; 687 } 688 689 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the 690 alignment required for allocating virtual memory. Usually this is the 691 same as pagesize. */ 692 693 size_t 694 default_gt_pch_alloc_granularity (void) 695 { 696 return getpagesize (); 697 } 698 699 #if HAVE_MMAP_FILE 700 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present. 701 We temporarily allocate SIZE bytes, and let the kernel place the data 702 wherever it will. If it worked, that's our spot, if not we're likely 703 to be in trouble. */ 704 705 void * 706 mmap_gt_pch_get_address (size_t size, int fd) 707 { 708 void *ret; 709 710 ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); 711 if (ret == (void *) MAP_FAILED) 712 ret = NULL; 713 else 714 munmap ((caddr_t) ret, size); 715 716 return ret; 717 } 718 719 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present. 720 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at 721 mapping the data at BASE, -1 if we couldn't. 722 723 This version assumes that the kernel honors the START operand of mmap 724 even without MAP_FIXED if START through START+SIZE are not currently 725 mapped with something. */ 726 727 int 728 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset) 729 { 730 void *addr; 731 732 /* We're called with size == 0 if we're not planning to load a PCH 733 file at all. This allows the hook to free any static space that 734 we might have allocated at link time. */ 735 if (size == 0) 736 return -1; 737 738 addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, 739 fd, offset); 740 741 return addr == base ? 1 : -1; 742 } 743 #endif /* HAVE_MMAP_FILE */ 744 745 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT 746 747 /* Modify the bound based on rlimits. */ 748 static double 749 ggc_rlimit_bound (double limit) 750 { 751 #if defined(HAVE_GETRLIMIT) 752 struct rlimit rlim; 753 # if defined (RLIMIT_AS) 754 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably 755 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */ 756 if (getrlimit (RLIMIT_AS, &rlim) == 0 757 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY 758 && rlim.rlim_cur < limit) 759 limit = rlim.rlim_cur; 760 # elif defined (RLIMIT_DATA) 761 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we 762 might be on an OS that has a broken mmap. (Others don't bound 763 mmap at all, apparently.) */ 764 if (getrlimit (RLIMIT_DATA, &rlim) == 0 765 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY 766 && rlim.rlim_cur < limit 767 /* Darwin has this horribly bogus default setting of 768 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA 769 appears to be ignored. Ignore such silliness. If a limit 770 this small was actually effective for mmap, GCC wouldn't even 771 start up. */ 772 && rlim.rlim_cur >= 8 * 1024 * 1024) 773 limit = rlim.rlim_cur; 774 # endif /* RLIMIT_AS or RLIMIT_DATA */ 775 #endif /* HAVE_GETRLIMIT */ 776 777 return limit; 778 } 779 780 /* Heuristic to set a default for GGC_MIN_EXPAND. */ 781 static int 782 ggc_min_expand_heuristic (void) 783 { 784 double min_expand = physmem_total (); 785 786 /* Adjust for rlimits. */ 787 min_expand = ggc_rlimit_bound (min_expand); 788 789 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding 790 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */ 791 min_expand /= 1024*1024*1024; 792 min_expand *= 70; 793 min_expand = MIN (min_expand, 70); 794 min_expand += 30; 795 796 return min_expand; 797 } 798 799 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */ 800 static int 801 ggc_min_heapsize_heuristic (void) 802 { 803 double phys_kbytes = physmem_total (); 804 double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2); 805 806 phys_kbytes /= 1024; /* Convert to Kbytes. */ 807 limit_kbytes /= 1024; 808 809 /* The heuristic is RAM/8, with a lower bound of 4M and an upper 810 bound of 128M (when RAM >= 1GB). */ 811 phys_kbytes /= 8; 812 813 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS) 814 /* Try not to overrun the RSS limit while doing garbage collection. 815 The RSS limit is only advisory, so no margin is subtracted. */ 816 { 817 struct rlimit rlim; 818 if (getrlimit (RLIMIT_RSS, &rlim) == 0 819 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY) 820 phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024); 821 } 822 # endif 823 824 /* Don't blindly run over our data limit; do GC at least when the 825 *next* GC would be within 20Mb of the limit or within a quarter of 826 the limit, whichever is larger. If GCC does hit the data limit, 827 compilation will fail, so this tries to be conservative. */ 828 limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024)); 829 limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ()); 830 phys_kbytes = MIN (phys_kbytes, limit_kbytes); 831 832 phys_kbytes = MAX (phys_kbytes, 4 * 1024); 833 phys_kbytes = MIN (phys_kbytes, 128 * 1024); 834 835 return phys_kbytes; 836 } 837 #endif 838 839 void 840 init_ggc_heuristics (void) 841 { 842 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT 843 set_default_param_value (GGC_MIN_EXPAND, ggc_min_expand_heuristic ()); 844 set_default_param_value (GGC_MIN_HEAPSIZE, ggc_min_heapsize_heuristic ()); 845 #endif 846 } 847 848 /* GGC memory usage. */ 849 struct ggc_usage: public mem_usage 850 { 851 /* Default constructor. */ 852 ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {} 853 /* Constructor. */ 854 ggc_usage (size_t allocated, size_t times, size_t peak, 855 size_t freed, size_t collected, size_t overhead) 856 : mem_usage (allocated, times, peak), 857 m_freed (freed), m_collected (collected), m_overhead (overhead) {} 858 859 /* Comparison operator. */ 860 inline bool 861 operator< (const ggc_usage &second) const 862 { 863 return (get_balance () == second.get_balance () ? 864 (m_peak == second.m_peak ? m_times < second.m_times 865 : m_peak < second.m_peak) 866 : get_balance () < second.get_balance ()); 867 } 868 869 /* Register overhead of ALLOCATED and OVERHEAD bytes. */ 870 inline void 871 register_overhead (size_t allocated, size_t overhead) 872 { 873 m_allocated += allocated; 874 m_overhead += overhead; 875 m_times++; 876 } 877 878 /* Release overhead of SIZE bytes. */ 879 inline void 880 release_overhead (size_t size) 881 { 882 m_freed += size; 883 } 884 885 /* Sum the usage with SECOND usage. */ 886 ggc_usage 887 operator+ (const ggc_usage &second) 888 { 889 return ggc_usage (m_allocated + second.m_allocated, 890 m_times + second.m_times, 891 m_peak + second.m_peak, 892 m_freed + second.m_freed, 893 m_collected + second.m_collected, 894 m_overhead + second.m_overhead); 895 } 896 897 /* Dump usage with PREFIX, where TOTAL is sum of all rows. */ 898 inline void 899 dump (const char *prefix, ggc_usage &total) const 900 { 901 long balance = get_balance (); 902 fprintf (stderr, 903 "%-48s %10li:%5.1f%%%10li:%5.1f%%" 904 "%10li:%5.1f%%%10li:%5.1f%%%10li\n", 905 prefix, (long)m_collected, 906 get_percent (m_collected, total.m_collected), 907 (long)m_freed, get_percent (m_freed, total.m_freed), 908 (long)balance, get_percent (balance, total.get_balance ()), 909 (long)m_overhead, get_percent (m_overhead, total.m_overhead), 910 (long)m_times); 911 } 912 913 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */ 914 inline void 915 dump (mem_location *loc, ggc_usage &total) const 916 { 917 char *location_string = loc->to_string (); 918 919 dump (location_string, total); 920 921 free (location_string); 922 } 923 924 /* Dump footer. */ 925 inline void 926 dump_footer () 927 { 928 print_dash_line (); 929 dump ("Total", *this); 930 print_dash_line (); 931 } 932 933 /* Get balance which is GGC allocation leak. */ 934 inline long 935 get_balance () const 936 { 937 return m_allocated + m_overhead - m_collected - m_freed; 938 } 939 940 typedef std::pair<mem_location *, ggc_usage *> mem_pair_t; 941 942 /* Compare wrapper used by qsort method. */ 943 static int 944 compare (const void *first, const void *second) 945 { 946 const mem_pair_t f = *(const mem_pair_t *)first; 947 const mem_pair_t s = *(const mem_pair_t *)second; 948 949 return (*f.second) < (*s.second); 950 } 951 952 /* Compare rows in final GGC summary dump. */ 953 static int 954 compare_final (const void *first, const void *second) 955 { 956 typedef std::pair<mem_location *, ggc_usage *> mem_pair_t; 957 958 const ggc_usage *f = ((const mem_pair_t *)first)->second; 959 const ggc_usage *s = ((const mem_pair_t *)second)->second; 960 961 size_t a = f->m_allocated + f->m_overhead - f->m_freed; 962 size_t b = s->m_allocated + s->m_overhead - s->m_freed; 963 964 return a == b ? 0 : (a < b ? 1 : -1); 965 } 966 967 /* Dump header with NAME. */ 968 static inline void 969 dump_header (const char *name) 970 { 971 fprintf (stderr, "%-48s %11s%17s%17s%16s%17s\n", name, "Garbage", "Freed", 972 "Leak", "Overhead", "Times"); 973 print_dash_line (); 974 } 975 976 /* Freed memory in bytes. */ 977 size_t m_freed; 978 /* Collected memory in bytes. */ 979 size_t m_collected; 980 /* Overhead memory in bytes. */ 981 size_t m_overhead; 982 }; 983 984 /* GCC memory description. */ 985 static mem_alloc_description<ggc_usage> ggc_mem_desc; 986 987 /* Dump per-site memory statistics. */ 988 989 void 990 dump_ggc_loc_statistics (bool final) 991 { 992 if (! GATHER_STATISTICS) 993 return; 994 995 ggc_force_collect = true; 996 ggc_collect (); 997 998 ggc_mem_desc.dump (GGC_ORIGIN, final ? ggc_usage::compare_final : NULL); 999 1000 ggc_force_collect = false; 1001 } 1002 1003 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */ 1004 void 1005 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr MEM_STAT_DECL) 1006 { 1007 ggc_usage *usage = ggc_mem_desc.register_descriptor (ptr, GGC_ORIGIN, false 1008 FINAL_PASS_MEM_STAT); 1009 1010 ggc_mem_desc.register_object_overhead (usage, allocated + overhead, ptr); 1011 usage->register_overhead (allocated, overhead); 1012 } 1013 1014 /* Notice that the pointer has been freed. */ 1015 void 1016 ggc_free_overhead (void *ptr) 1017 { 1018 ggc_mem_desc.release_object_overhead (ptr); 1019 } 1020 1021 /* After live values has been marked, walk all recorded pointers and see if 1022 they are still live. */ 1023 void 1024 ggc_prune_overhead_list (void) 1025 { 1026 typedef hash_map<const void *, std::pair<ggc_usage *, size_t > > map_t; 1027 1028 map_t::iterator it = ggc_mem_desc.m_reverse_object_map->begin (); 1029 1030 for (; it != ggc_mem_desc.m_reverse_object_map->end (); ++it) 1031 if (!ggc_marked_p ((*it).first)) 1032 (*it).second.first->m_collected += (*it).second.second; 1033 1034 delete ggc_mem_desc.m_reverse_object_map; 1035 ggc_mem_desc.m_reverse_object_map = new map_t (13, false, false); 1036 } 1037