1 /* Simple garbage collection for the GNU compiler. 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 3 Free Software Foundation, Inc. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* Generic garbage collection (GC) functions and data, not specific to 22 any particular GC implementation. */ 23 24 #include "config.h" 25 #include "system.h" 26 #include "coretypes.h" 27 #include "hashtab.h" 28 #include "ggc.h" 29 #include "toplev.h" 30 #include "params.h" 31 #include "hosthooks.h" 32 #include "hosthooks-def.h" 33 #include "plugin.h" 34 #include "vec.h" 35 36 #ifdef HAVE_SYS_RESOURCE_H 37 # include <sys/resource.h> 38 #endif 39 40 #ifdef HAVE_MMAP_FILE 41 # include <sys/mman.h> 42 # ifdef HAVE_MINCORE 43 /* This is on Solaris. */ 44 # include <sys/types.h> 45 # endif 46 #endif 47 48 #ifndef MAP_FAILED 49 # define MAP_FAILED ((void *)-1) 50 #endif 51 52 /* When set, ggc_collect will do collection. */ 53 bool ggc_force_collect; 54 55 /* When true, protect the contents of the identifier hash table. */ 56 bool ggc_protect_identifiers = true; 57 58 /* Statistics about the allocation. */ 59 static ggc_statistics *ggc_stats; 60 61 struct traversal_state; 62 63 static int ggc_htab_delete (void **, void *); 64 static hashval_t saving_htab_hash (const void *); 65 static int saving_htab_eq (const void *, const void *); 66 static int call_count (void **, void *); 67 static int call_alloc (void **, void *); 68 static int compare_ptr_data (const void *, const void *); 69 static void relocate_ptrs (void *, void *); 70 static void write_pch_globals (const struct ggc_root_tab * const *tab, 71 struct traversal_state *state); 72 static double ggc_rlimit_bound (double); 73 74 /* Maintain global roots that are preserved during GC. */ 75 76 /* Process a slot of an htab by deleting it if it has not been marked. */ 77 78 static int 79 ggc_htab_delete (void **slot, void *info) 80 { 81 const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info; 82 83 if (! (*r->marked_p) (*slot)) 84 htab_clear_slot (*r->base, slot); 85 else 86 (*r->cb) (*slot); 87 88 return 1; 89 } 90 91 92 /* This extra vector of dynamically registered root_tab-s is used by 93 ggc_mark_roots and gives the ability to dynamically add new GGC root 94 tables, for instance from some plugins; this vector is on the heap 95 since it is used by GGC internally. */ 96 typedef const struct ggc_root_tab *const_ggc_root_tab_t; 97 DEF_VEC_P(const_ggc_root_tab_t); 98 DEF_VEC_ALLOC_P(const_ggc_root_tab_t, heap); 99 static VEC(const_ggc_root_tab_t, heap) *extra_root_vec; 100 101 /* Dynamically register a new GGC root table RT. This is useful for 102 plugins. */ 103 104 void 105 ggc_register_root_tab (const struct ggc_root_tab* rt) 106 { 107 if (rt) 108 VEC_safe_push (const_ggc_root_tab_t, heap, extra_root_vec, rt); 109 } 110 111 /* This extra vector of dynamically registered cache_tab-s is used by 112 ggc_mark_roots and gives the ability to dynamically add new GGC cache 113 tables, for instance from some plugins; this vector is on the heap 114 since it is used by GGC internally. */ 115 typedef const struct ggc_cache_tab *const_ggc_cache_tab_t; 116 DEF_VEC_P(const_ggc_cache_tab_t); 117 DEF_VEC_ALLOC_P(const_ggc_cache_tab_t, heap); 118 static VEC(const_ggc_cache_tab_t, heap) *extra_cache_vec; 119 120 /* Dynamically register a new GGC cache table CT. This is useful for 121 plugins. */ 122 123 void 124 ggc_register_cache_tab (const struct ggc_cache_tab* ct) 125 { 126 if (ct) 127 VEC_safe_push (const_ggc_cache_tab_t, heap, extra_cache_vec, ct); 128 } 129 130 /* Scan a hash table that has objects which are to be deleted if they are not 131 already marked. */ 132 133 static void 134 ggc_scan_cache_tab (const_ggc_cache_tab_t ctp) 135 { 136 const struct ggc_cache_tab *cti; 137 138 for (cti = ctp; cti->base != NULL; cti++) 139 if (*cti->base) 140 { 141 ggc_set_mark (*cti->base); 142 htab_traverse_noresize (*cti->base, ggc_htab_delete, 143 CONST_CAST (void *, (const void *)cti)); 144 ggc_set_mark ((*cti->base)->entries); 145 } 146 } 147 148 /* Iterate through all registered roots and mark each element. */ 149 150 void 151 ggc_mark_roots (void) 152 { 153 const struct ggc_root_tab *const *rt; 154 const struct ggc_root_tab *rti; 155 const_ggc_root_tab_t rtp; 156 const struct ggc_cache_tab *const *ct; 157 const_ggc_cache_tab_t ctp; 158 size_t i; 159 160 for (rt = gt_ggc_deletable_rtab; *rt; rt++) 161 for (rti = *rt; rti->base != NULL; rti++) 162 memset (rti->base, 0, rti->stride); 163 164 for (rt = gt_ggc_rtab; *rt; rt++) 165 for (rti = *rt; rti->base != NULL; rti++) 166 for (i = 0; i < rti->nelt; i++) 167 (*rti->cb) (*(void **)((char *)rti->base + rti->stride * i)); 168 169 for (i = 0; VEC_iterate (const_ggc_root_tab_t, extra_root_vec, i, rtp); i++) 170 { 171 for (rti = rtp; rti->base != NULL; rti++) 172 for (i = 0; i < rti->nelt; i++) 173 (*rti->cb) (*(void **) ((char *)rti->base + rti->stride * i)); 174 } 175 176 if (ggc_protect_identifiers) 177 ggc_mark_stringpool (); 178 179 /* Now scan all hash tables that have objects which are to be deleted if 180 they are not already marked. */ 181 for (ct = gt_ggc_cache_rtab; *ct; ct++) 182 ggc_scan_cache_tab (*ct); 183 184 for (i = 0; VEC_iterate (const_ggc_cache_tab_t, extra_cache_vec, i, ctp); i++) 185 ggc_scan_cache_tab (ctp); 186 187 if (! ggc_protect_identifiers) 188 ggc_purge_stringpool (); 189 190 /* Some plugins may call ggc_set_mark from here. */ 191 invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL); 192 } 193 194 /* Allocate a block of memory, then clear it. */ 195 void * 196 ggc_alloc_cleared_stat (size_t size MEM_STAT_DECL) 197 { 198 void *buf = ggc_alloc_stat (size PASS_MEM_STAT); 199 memset (buf, 0, size); 200 return buf; 201 } 202 203 /* Resize a block of memory, possibly re-allocating it. */ 204 void * 205 ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL) 206 { 207 void *r; 208 size_t old_size; 209 210 if (x == NULL) 211 return ggc_alloc_stat (size PASS_MEM_STAT); 212 213 old_size = ggc_get_size (x); 214 215 if (size <= old_size) 216 { 217 /* Mark the unwanted memory as unaccessible. We also need to make 218 the "new" size accessible, since ggc_get_size returns the size of 219 the pool, not the size of the individually allocated object, the 220 size which was previously made accessible. Unfortunately, we 221 don't know that previously allocated size. Without that 222 knowledge we have to lose some initialization-tracking for the 223 old parts of the object. An alternative is to mark the whole 224 old_size as reachable, but that would lose tracking of writes 225 after the end of the object (by small offsets). Discard the 226 handle to avoid handle leak. */ 227 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size, 228 old_size - size)); 229 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size)); 230 return x; 231 } 232 233 r = ggc_alloc_stat (size PASS_MEM_STAT); 234 235 /* Since ggc_get_size returns the size of the pool, not the size of the 236 individually allocated object, we'd access parts of the old object 237 that were marked invalid with the memcpy below. We lose a bit of the 238 initialization-tracking since some of it may be uninitialized. */ 239 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size)); 240 241 memcpy (r, x, old_size); 242 243 /* The old object is not supposed to be used anymore. */ 244 ggc_free (x); 245 246 return r; 247 } 248 249 /* Like ggc_alloc_cleared, but performs a multiplication. */ 250 void * 251 ggc_calloc (size_t s1, size_t s2) 252 { 253 return ggc_alloc_cleared (s1 * s2); 254 } 255 256 /* These are for splay_tree_new_ggc. */ 257 void * 258 ggc_splay_alloc (int sz, void *nl) 259 { 260 gcc_assert (!nl); 261 return ggc_alloc (sz); 262 } 263 264 void 265 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl) 266 { 267 gcc_assert (!nl); 268 } 269 270 /* Print statistics that are independent of the collector in use. */ 271 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \ 272 ? (x) \ 273 : ((x) < 1024*1024*10 \ 274 ? (x) / 1024 \ 275 : (x) / (1024*1024)))) 276 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M')) 277 278 void 279 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED, 280 ggc_statistics *stats) 281 { 282 /* Set the pointer so that during collection we will actually gather 283 the statistics. */ 284 ggc_stats = stats; 285 286 /* Then do one collection to fill in the statistics. */ 287 ggc_collect (); 288 289 /* At present, we don't really gather any interesting statistics. */ 290 291 /* Don't gather statistics any more. */ 292 ggc_stats = NULL; 293 } 294 295 /* Functions for saving and restoring GCable memory to disk. */ 296 297 static htab_t saving_htab; 298 299 struct ptr_data 300 { 301 void *obj; 302 void *note_ptr_cookie; 303 gt_note_pointers note_ptr_fn; 304 gt_handle_reorder reorder_fn; 305 size_t size; 306 void *new_addr; 307 enum gt_types_enum type; 308 }; 309 310 #define POINTER_HASH(x) (hashval_t)((long)x >> 3) 311 312 /* Register an object in the hash table. */ 313 314 int 315 gt_pch_note_object (void *obj, void *note_ptr_cookie, 316 gt_note_pointers note_ptr_fn, 317 enum gt_types_enum type) 318 { 319 struct ptr_data **slot; 320 321 if (obj == NULL || obj == (void *) 1) 322 return 0; 323 324 slot = (struct ptr_data **) 325 htab_find_slot_with_hash (saving_htab, obj, POINTER_HASH (obj), 326 INSERT); 327 if (*slot != NULL) 328 { 329 gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn 330 && (*slot)->note_ptr_cookie == note_ptr_cookie); 331 return 0; 332 } 333 334 *slot = XCNEW (struct ptr_data); 335 (*slot)->obj = obj; 336 (*slot)->note_ptr_fn = note_ptr_fn; 337 (*slot)->note_ptr_cookie = note_ptr_cookie; 338 if (note_ptr_fn == gt_pch_p_S) 339 (*slot)->size = strlen ((const char *)obj) + 1; 340 else 341 (*slot)->size = ggc_get_size (obj); 342 (*slot)->type = type; 343 return 1; 344 } 345 346 /* Register an object in the hash table. */ 347 348 void 349 gt_pch_note_reorder (void *obj, void *note_ptr_cookie, 350 gt_handle_reorder reorder_fn) 351 { 352 struct ptr_data *data; 353 354 if (obj == NULL || obj == (void *) 1) 355 return; 356 357 data = (struct ptr_data *) 358 htab_find_with_hash (saving_htab, obj, POINTER_HASH (obj)); 359 gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie); 360 361 data->reorder_fn = reorder_fn; 362 } 363 364 /* Hash and equality functions for saving_htab, callbacks for htab_create. */ 365 366 static hashval_t 367 saving_htab_hash (const void *p) 368 { 369 return POINTER_HASH (((const struct ptr_data *)p)->obj); 370 } 371 372 static int 373 saving_htab_eq (const void *p1, const void *p2) 374 { 375 return ((const struct ptr_data *)p1)->obj == p2; 376 } 377 378 /* Handy state for the traversal functions. */ 379 380 struct traversal_state 381 { 382 FILE *f; 383 struct ggc_pch_data *d; 384 size_t count; 385 struct ptr_data **ptrs; 386 size_t ptrs_i; 387 }; 388 389 /* Callbacks for htab_traverse. */ 390 391 static int 392 call_count (void **slot, void *state_p) 393 { 394 struct ptr_data *d = (struct ptr_data *)*slot; 395 struct traversal_state *state = (struct traversal_state *)state_p; 396 397 ggc_pch_count_object (state->d, d->obj, d->size, 398 d->note_ptr_fn == gt_pch_p_S, 399 d->type); 400 state->count++; 401 return 1; 402 } 403 404 static int 405 call_alloc (void **slot, void *state_p) 406 { 407 struct ptr_data *d = (struct ptr_data *)*slot; 408 struct traversal_state *state = (struct traversal_state *)state_p; 409 410 d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size, 411 d->note_ptr_fn == gt_pch_p_S, 412 d->type); 413 state->ptrs[state->ptrs_i++] = d; 414 return 1; 415 } 416 417 /* Callback for qsort. */ 418 419 static int 420 compare_ptr_data (const void *p1_p, const void *p2_p) 421 { 422 const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p; 423 const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p; 424 return (((size_t)p1->new_addr > (size_t)p2->new_addr) 425 - ((size_t)p1->new_addr < (size_t)p2->new_addr)); 426 } 427 428 /* Callbacks for note_ptr_fn. */ 429 430 static void 431 relocate_ptrs (void *ptr_p, void *state_p) 432 { 433 void **ptr = (void **)ptr_p; 434 struct traversal_state *state ATTRIBUTE_UNUSED 435 = (struct traversal_state *)state_p; 436 struct ptr_data *result; 437 438 if (*ptr == NULL || *ptr == (void *)1) 439 return; 440 441 result = (struct ptr_data *) 442 htab_find_with_hash (saving_htab, *ptr, POINTER_HASH (*ptr)); 443 gcc_assert (result); 444 *ptr = result->new_addr; 445 } 446 447 /* Write out, after relocation, the pointers in TAB. */ 448 static void 449 write_pch_globals (const struct ggc_root_tab * const *tab, 450 struct traversal_state *state) 451 { 452 const struct ggc_root_tab *const *rt; 453 const struct ggc_root_tab *rti; 454 size_t i; 455 456 for (rt = tab; *rt; rt++) 457 for (rti = *rt; rti->base != NULL; rti++) 458 for (i = 0; i < rti->nelt; i++) 459 { 460 void *ptr = *(void **)((char *)rti->base + rti->stride * i); 461 struct ptr_data *new_ptr; 462 if (ptr == NULL || ptr == (void *)1) 463 { 464 if (fwrite (&ptr, sizeof (void *), 1, state->f) 465 != 1) 466 fatal_error ("can't write PCH file: %m"); 467 } 468 else 469 { 470 new_ptr = (struct ptr_data *) 471 htab_find_with_hash (saving_htab, ptr, POINTER_HASH (ptr)); 472 if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f) 473 != 1) 474 fatal_error ("can't write PCH file: %m"); 475 } 476 } 477 } 478 479 /* Hold the information we need to mmap the file back in. */ 480 481 struct mmap_info 482 { 483 size_t offset; 484 size_t size; 485 void *preferred_base; 486 }; 487 488 /* Write out the state of the compiler to F. */ 489 490 void 491 gt_pch_save (FILE *f) 492 { 493 const struct ggc_root_tab *const *rt; 494 const struct ggc_root_tab *rti; 495 size_t i; 496 struct traversal_state state; 497 char *this_object = NULL; 498 size_t this_object_size = 0; 499 struct mmap_info mmi; 500 const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity(); 501 502 gt_pch_save_stringpool (); 503 504 saving_htab = htab_create (50000, saving_htab_hash, saving_htab_eq, free); 505 506 for (rt = gt_ggc_rtab; *rt; rt++) 507 for (rti = *rt; rti->base != NULL; rti++) 508 for (i = 0; i < rti->nelt; i++) 509 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i)); 510 511 for (rt = gt_pch_cache_rtab; *rt; rt++) 512 for (rti = *rt; rti->base != NULL; rti++) 513 for (i = 0; i < rti->nelt; i++) 514 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i)); 515 516 /* Prepare the objects for writing, determine addresses and such. */ 517 state.f = f; 518 state.d = init_ggc_pch(); 519 state.count = 0; 520 htab_traverse (saving_htab, call_count, &state); 521 522 mmi.size = ggc_pch_total_size (state.d); 523 524 /* Try to arrange things so that no relocation is necessary, but 525 don't try very hard. On most platforms, this will always work, 526 and on the rest it's a lot of work to do better. 527 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and 528 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */ 529 mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f)); 530 531 ggc_pch_this_base (state.d, mmi.preferred_base); 532 533 state.ptrs = XNEWVEC (struct ptr_data *, state.count); 534 state.ptrs_i = 0; 535 htab_traverse (saving_htab, call_alloc, &state); 536 qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data); 537 538 /* Write out all the scalar variables. */ 539 for (rt = gt_pch_scalar_rtab; *rt; rt++) 540 for (rti = *rt; rti->base != NULL; rti++) 541 if (fwrite (rti->base, rti->stride, 1, f) != 1) 542 fatal_error ("can't write PCH file: %m"); 543 544 /* Write out all the global pointers, after translation. */ 545 write_pch_globals (gt_ggc_rtab, &state); 546 write_pch_globals (gt_pch_cache_rtab, &state); 547 548 /* Pad the PCH file so that the mmapped area starts on an allocation 549 granularity (usually page) boundary. */ 550 { 551 long o; 552 o = ftell (state.f) + sizeof (mmi); 553 if (o == -1) 554 fatal_error ("can't get position in PCH file: %m"); 555 mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment; 556 if (mmi.offset == mmap_offset_alignment) 557 mmi.offset = 0; 558 mmi.offset += o; 559 } 560 if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1) 561 fatal_error ("can't write PCH file: %m"); 562 if (mmi.offset != 0 563 && fseek (state.f, mmi.offset, SEEK_SET) != 0) 564 fatal_error ("can't write padding to PCH file: %m"); 565 566 ggc_pch_prepare_write (state.d, state.f); 567 568 /* Actually write out the objects. */ 569 for (i = 0; i < state.count; i++) 570 { 571 if (this_object_size < state.ptrs[i]->size) 572 { 573 this_object_size = state.ptrs[i]->size; 574 this_object = XRESIZEVAR (char, this_object, this_object_size); 575 } 576 memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size); 577 if (state.ptrs[i]->reorder_fn != NULL) 578 state.ptrs[i]->reorder_fn (state.ptrs[i]->obj, 579 state.ptrs[i]->note_ptr_cookie, 580 relocate_ptrs, &state); 581 state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj, 582 state.ptrs[i]->note_ptr_cookie, 583 relocate_ptrs, &state); 584 ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj, 585 state.ptrs[i]->new_addr, state.ptrs[i]->size, 586 state.ptrs[i]->note_ptr_fn == gt_pch_p_S); 587 if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S) 588 memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size); 589 } 590 ggc_pch_finish (state.d, state.f); 591 gt_pch_fixup_stringpool (); 592 593 free (state.ptrs); 594 htab_delete (saving_htab); 595 } 596 597 /* Read the state of the compiler back in from F. */ 598 599 void 600 gt_pch_restore (FILE *f) 601 { 602 const struct ggc_root_tab *const *rt; 603 const struct ggc_root_tab *rti; 604 size_t i; 605 struct mmap_info mmi; 606 int result; 607 608 /* Delete any deletable objects. This makes ggc_pch_read much 609 faster, as it can be sure that no GCable objects remain other 610 than the ones just read in. */ 611 for (rt = gt_ggc_deletable_rtab; *rt; rt++) 612 for (rti = *rt; rti->base != NULL; rti++) 613 memset (rti->base, 0, rti->stride); 614 615 /* Read in all the scalar variables. */ 616 for (rt = gt_pch_scalar_rtab; *rt; rt++) 617 for (rti = *rt; rti->base != NULL; rti++) 618 if (fread (rti->base, rti->stride, 1, f) != 1) 619 fatal_error ("can't read PCH file: %m"); 620 621 /* Read in all the global pointers, in 6 easy loops. */ 622 for (rt = gt_ggc_rtab; *rt; rt++) 623 for (rti = *rt; rti->base != NULL; rti++) 624 for (i = 0; i < rti->nelt; i++) 625 if (fread ((char *)rti->base + rti->stride * i, 626 sizeof (void *), 1, f) != 1) 627 fatal_error ("can't read PCH file: %m"); 628 629 for (rt = gt_pch_cache_rtab; *rt; rt++) 630 for (rti = *rt; rti->base != NULL; rti++) 631 for (i = 0; i < rti->nelt; i++) 632 if (fread ((char *)rti->base + rti->stride * i, 633 sizeof (void *), 1, f) != 1) 634 fatal_error ("can't read PCH file: %m"); 635 636 if (fread (&mmi, sizeof (mmi), 1, f) != 1) 637 fatal_error ("can't read PCH file: %m"); 638 639 result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size, 640 fileno (f), mmi.offset); 641 if (result < 0) 642 fatal_error ("had to relocate PCH"); 643 if (result == 0) 644 { 645 if (fseek (f, mmi.offset, SEEK_SET) != 0 646 || fread (mmi.preferred_base, mmi.size, 1, f) != 1) 647 fatal_error ("can't read PCH file: %m"); 648 } 649 else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0) 650 fatal_error ("can't read PCH file: %m"); 651 652 ggc_pch_read (f, mmi.preferred_base); 653 654 gt_pch_restore_stringpool (); 655 } 656 657 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present. 658 Select no address whatsoever, and let gt_pch_save choose what it will with 659 malloc, presumably. */ 660 661 void * 662 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED, 663 int fd ATTRIBUTE_UNUSED) 664 { 665 return NULL; 666 } 667 668 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present. 669 Allocate SIZE bytes with malloc. Return 0 if the address we got is the 670 same as base, indicating that the memory has been allocated but needs to 671 be read in from the file. Return -1 if the address differs, to relocation 672 of the PCH file would be required. */ 673 674 int 675 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED, 676 size_t offset ATTRIBUTE_UNUSED) 677 { 678 void *addr = xmalloc (size); 679 return (addr == base) - 1; 680 } 681 682 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the 683 alignment required for allocating virtual memory. Usually this is the 684 same as pagesize. */ 685 686 size_t 687 default_gt_pch_alloc_granularity (void) 688 { 689 return getpagesize(); 690 } 691 692 #if HAVE_MMAP_FILE 693 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present. 694 We temporarily allocate SIZE bytes, and let the kernel place the data 695 wherever it will. If it worked, that's our spot, if not we're likely 696 to be in trouble. */ 697 698 void * 699 mmap_gt_pch_get_address (size_t size, int fd) 700 { 701 void *ret; 702 703 ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); 704 if (ret == (void *) MAP_FAILED) 705 ret = NULL; 706 else 707 munmap ((caddr_t) ret, size); 708 709 return ret; 710 } 711 712 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present. 713 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at 714 mapping the data at BASE, -1 if we couldn't. 715 716 This version assumes that the kernel honors the START operand of mmap 717 even without MAP_FIXED if START through START+SIZE are not currently 718 mapped with something. */ 719 720 int 721 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset) 722 { 723 void *addr; 724 725 /* We're called with size == 0 if we're not planning to load a PCH 726 file at all. This allows the hook to free any static space that 727 we might have allocated at link time. */ 728 if (size == 0) 729 return -1; 730 731 addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, 732 fd, offset); 733 734 return addr == base ? 1 : -1; 735 } 736 #endif /* HAVE_MMAP_FILE */ 737 738 /* Modify the bound based on rlimits. */ 739 static double 740 ggc_rlimit_bound (double limit) 741 { 742 #if defined(HAVE_GETRLIMIT) 743 struct rlimit rlim; 744 # if defined (RLIMIT_AS) 745 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably 746 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */ 747 if (getrlimit (RLIMIT_AS, &rlim) == 0 748 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY 749 && rlim.rlim_cur < limit) 750 limit = rlim.rlim_cur; 751 # elif defined (RLIMIT_DATA) 752 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we 753 might be on an OS that has a broken mmap. (Others don't bound 754 mmap at all, apparently.) */ 755 if (getrlimit (RLIMIT_DATA, &rlim) == 0 756 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY 757 && rlim.rlim_cur < limit 758 /* Darwin has this horribly bogus default setting of 759 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA 760 appears to be ignored. Ignore such silliness. If a limit 761 this small was actually effective for mmap, GCC wouldn't even 762 start up. */ 763 && rlim.rlim_cur >= 8 * 1024 * 1024) 764 limit = rlim.rlim_cur; 765 # endif /* RLIMIT_AS or RLIMIT_DATA */ 766 #endif /* HAVE_GETRLIMIT */ 767 768 return limit; 769 } 770 771 /* Heuristic to set a default for GGC_MIN_EXPAND. */ 772 int 773 ggc_min_expand_heuristic (void) 774 { 775 double min_expand = physmem_total(); 776 777 /* Adjust for rlimits. */ 778 min_expand = ggc_rlimit_bound (min_expand); 779 780 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding 781 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */ 782 min_expand /= 1024*1024*1024; 783 min_expand *= 70; 784 min_expand = MIN (min_expand, 70); 785 min_expand += 30; 786 787 return min_expand; 788 } 789 790 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */ 791 int 792 ggc_min_heapsize_heuristic (void) 793 { 794 double phys_kbytes = physmem_total(); 795 double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2); 796 797 phys_kbytes /= 1024; /* Convert to Kbytes. */ 798 limit_kbytes /= 1024; 799 800 /* The heuristic is RAM/8, with a lower bound of 4M and an upper 801 bound of 128M (when RAM >= 1GB). */ 802 phys_kbytes /= 8; 803 804 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS) 805 /* Try not to overrun the RSS limit while doing garbage collection. 806 The RSS limit is only advisory, so no margin is subtracted. */ 807 { 808 struct rlimit rlim; 809 if (getrlimit (RLIMIT_RSS, &rlim) == 0 810 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY) 811 phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024); 812 } 813 # endif 814 815 /* Don't blindly run over our data limit; do GC at least when the 816 *next* GC would be within 20Mb of the limit or within a quarter of 817 the limit, whichever is larger. If GCC does hit the data limit, 818 compilation will fail, so this tries to be conservative. */ 819 limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024)); 820 limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic()); 821 phys_kbytes = MIN (phys_kbytes, limit_kbytes); 822 823 phys_kbytes = MAX (phys_kbytes, 4 * 1024); 824 phys_kbytes = MIN (phys_kbytes, 128 * 1024); 825 826 return phys_kbytes; 827 } 828 829 void 830 init_ggc_heuristics (void) 831 { 832 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT 833 set_param_value ("ggc-min-expand", ggc_min_expand_heuristic()); 834 set_param_value ("ggc-min-heapsize", ggc_min_heapsize_heuristic()); 835 #endif 836 } 837 838 #ifdef GATHER_STATISTICS 839 840 /* Datastructure used to store per-call-site statistics. */ 841 struct loc_descriptor 842 { 843 const char *file; 844 int line; 845 const char *function; 846 int times; 847 size_t allocated; 848 size_t overhead; 849 size_t freed; 850 size_t collected; 851 }; 852 853 /* Hashtable used for statistics. */ 854 static htab_t loc_hash; 855 856 /* Hash table helpers functions. */ 857 static hashval_t 858 hash_descriptor (const void *p) 859 { 860 const struct loc_descriptor *const d = (const struct loc_descriptor *) p; 861 862 return htab_hash_pointer (d->function) | d->line; 863 } 864 865 static int 866 eq_descriptor (const void *p1, const void *p2) 867 { 868 const struct loc_descriptor *const d = (const struct loc_descriptor *) p1; 869 const struct loc_descriptor *const d2 = (const struct loc_descriptor *) p2; 870 871 return (d->file == d2->file && d->line == d2->line 872 && d->function == d2->function); 873 } 874 875 /* Hashtable converting address of allocated field to loc descriptor. */ 876 static htab_t ptr_hash; 877 struct ptr_hash_entry 878 { 879 void *ptr; 880 struct loc_descriptor *loc; 881 size_t size; 882 }; 883 884 /* Hash table helpers functions. */ 885 static hashval_t 886 hash_ptr (const void *p) 887 { 888 const struct ptr_hash_entry *const d = (const struct ptr_hash_entry *) p; 889 890 return htab_hash_pointer (d->ptr); 891 } 892 893 static int 894 eq_ptr (const void *p1, const void *p2) 895 { 896 const struct ptr_hash_entry *const p = (const struct ptr_hash_entry *) p1; 897 898 return (p->ptr == p2); 899 } 900 901 /* Return descriptor for given call site, create new one if needed. */ 902 static struct loc_descriptor * 903 loc_descriptor (const char *name, int line, const char *function) 904 { 905 struct loc_descriptor loc; 906 struct loc_descriptor **slot; 907 908 loc.file = name; 909 loc.line = line; 910 loc.function = function; 911 if (!loc_hash) 912 loc_hash = htab_create (10, hash_descriptor, eq_descriptor, NULL); 913 914 slot = (struct loc_descriptor **) htab_find_slot (loc_hash, &loc, INSERT); 915 if (*slot) 916 return *slot; 917 *slot = XCNEW (struct loc_descriptor); 918 (*slot)->file = name; 919 (*slot)->line = line; 920 (*slot)->function = function; 921 return *slot; 922 } 923 924 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */ 925 void 926 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr, 927 const char *name, int line, const char *function) 928 { 929 struct loc_descriptor *loc = loc_descriptor (name, line, function); 930 struct ptr_hash_entry *p = XNEW (struct ptr_hash_entry); 931 PTR *slot; 932 933 p->ptr = ptr; 934 p->loc = loc; 935 p->size = allocated + overhead; 936 if (!ptr_hash) 937 ptr_hash = htab_create (10, hash_ptr, eq_ptr, NULL); 938 slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), INSERT); 939 gcc_assert (!*slot); 940 *slot = p; 941 942 loc->times++; 943 loc->allocated+=allocated; 944 loc->overhead+=overhead; 945 } 946 947 /* Helper function for prune_overhead_list. See if SLOT is still marked and 948 remove it from hashtable if it is not. */ 949 static int 950 ggc_prune_ptr (void **slot, void *b ATTRIBUTE_UNUSED) 951 { 952 struct ptr_hash_entry *p = (struct ptr_hash_entry *) *slot; 953 if (!ggc_marked_p (p->ptr)) 954 { 955 p->loc->collected += p->size; 956 htab_clear_slot (ptr_hash, slot); 957 free (p); 958 } 959 return 1; 960 } 961 962 /* After live values has been marked, walk all recorded pointers and see if 963 they are still live. */ 964 void 965 ggc_prune_overhead_list (void) 966 { 967 htab_traverse (ptr_hash, ggc_prune_ptr, NULL); 968 } 969 970 /* Notice that the pointer has been freed. */ 971 void 972 ggc_free_overhead (void *ptr) 973 { 974 PTR *slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), 975 NO_INSERT); 976 struct ptr_hash_entry *p = (struct ptr_hash_entry *) *slot; 977 p->loc->freed += p->size; 978 htab_clear_slot (ptr_hash, slot); 979 free (p); 980 } 981 982 /* Helper for qsort; sort descriptors by amount of memory consumed. */ 983 static int 984 final_cmp_statistic (const void *loc1, const void *loc2) 985 { 986 const struct loc_descriptor *const l1 = 987 *(const struct loc_descriptor *const *) loc1; 988 const struct loc_descriptor *const l2 = 989 *(const struct loc_descriptor *const *) loc2; 990 long diff; 991 diff = ((long)(l1->allocated + l1->overhead - l1->freed) - 992 (l2->allocated + l2->overhead - l2->freed)); 993 return diff > 0 ? 1 : diff < 0 ? -1 : 0; 994 } 995 996 /* Helper for qsort; sort descriptors by amount of memory consumed. */ 997 static int 998 cmp_statistic (const void *loc1, const void *loc2) 999 { 1000 const struct loc_descriptor *const l1 = 1001 *(const struct loc_descriptor *const *) loc1; 1002 const struct loc_descriptor *const l2 = 1003 *(const struct loc_descriptor *const *) loc2; 1004 long diff; 1005 1006 diff = ((long)(l1->allocated + l1->overhead - l1->freed - l1->collected) - 1007 (l2->allocated + l2->overhead - l2->freed - l2->collected)); 1008 if (diff) 1009 return diff > 0 ? 1 : diff < 0 ? -1 : 0; 1010 diff = ((long)(l1->allocated + l1->overhead - l1->freed) - 1011 (l2->allocated + l2->overhead - l2->freed)); 1012 return diff > 0 ? 1 : diff < 0 ? -1 : 0; 1013 } 1014 1015 /* Collect array of the descriptors from hashtable. */ 1016 static struct loc_descriptor **loc_array; 1017 static int 1018 add_statistics (void **slot, void *b) 1019 { 1020 int *n = (int *)b; 1021 loc_array[*n] = (struct loc_descriptor *) *slot; 1022 (*n)++; 1023 return 1; 1024 } 1025 1026 /* Dump per-site memory statistics. */ 1027 #endif 1028 void 1029 dump_ggc_loc_statistics (bool final ATTRIBUTE_UNUSED) 1030 { 1031 #ifdef GATHER_STATISTICS 1032 int nentries = 0; 1033 char s[4096]; 1034 size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0; 1035 int i; 1036 1037 ggc_force_collect = true; 1038 ggc_collect (); 1039 1040 loc_array = XCNEWVEC (struct loc_descriptor *, loc_hash->n_elements); 1041 fprintf (stderr, "-------------------------------------------------------\n"); 1042 fprintf (stderr, "\n%-48s %10s %10s %10s %10s %10s\n", 1043 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times"); 1044 fprintf (stderr, "-------------------------------------------------------\n"); 1045 htab_traverse (loc_hash, add_statistics, &nentries); 1046 qsort (loc_array, nentries, sizeof (*loc_array), 1047 final ? final_cmp_statistic : cmp_statistic); 1048 for (i = 0; i < nentries; i++) 1049 { 1050 struct loc_descriptor *d = loc_array[i]; 1051 allocated += d->allocated; 1052 times += d->times; 1053 freed += d->freed; 1054 collected += d->collected; 1055 overhead += d->overhead; 1056 } 1057 for (i = 0; i < nentries; i++) 1058 { 1059 struct loc_descriptor *d = loc_array[i]; 1060 if (d->allocated) 1061 { 1062 const char *s1 = d->file; 1063 const char *s2; 1064 while ((s2 = strstr (s1, "gcc/"))) 1065 s1 = s2 + 4; 1066 sprintf (s, "%s:%i (%s)", s1, d->line, d->function); 1067 s[48] = 0; 1068 fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s, 1069 (long)d->collected, 1070 (d->collected) * 100.0 / collected, 1071 (long)d->freed, 1072 (d->freed) * 100.0 / freed, 1073 (long)(d->allocated + d->overhead - d->freed - d->collected), 1074 (d->allocated + d->overhead - d->freed - d->collected) * 100.0 1075 / (allocated + overhead - freed - collected), 1076 (long)d->overhead, 1077 d->overhead * 100.0 / overhead, 1078 (long)d->times); 1079 } 1080 } 1081 fprintf (stderr, "%-48s %10ld %10ld %10ld %10ld %10ld\n", 1082 "Total", (long)collected, (long)freed, 1083 (long)(allocated + overhead - freed - collected), (long)overhead, 1084 (long)times); 1085 fprintf (stderr, "%-48s %10s %10s %10s %10s %10s\n", 1086 "source location", "Garbage", "Freed", "Leak", "Overhead", "Times"); 1087 fprintf (stderr, "-------------------------------------------------------\n"); 1088 ggc_force_collect = false; 1089 #endif 1090 } 1091