xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ggc-common.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Simple garbage collection for the GNU compiler.
2    Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3    Free Software Foundation, Inc.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* Generic garbage collection (GC) functions and data, not specific to
22    any particular GC implementation.  */
23 
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "hashtab.h"
28 #include "ggc.h"
29 #include "toplev.h"
30 #include "params.h"
31 #include "hosthooks.h"
32 #include "hosthooks-def.h"
33 #include "plugin.h"
34 #include "vec.h"
35 
36 #ifdef HAVE_SYS_RESOURCE_H
37 # include <sys/resource.h>
38 #endif
39 
40 #ifdef HAVE_MMAP_FILE
41 # include <sys/mman.h>
42 # ifdef HAVE_MINCORE
43 /* This is on Solaris.  */
44 #  include <sys/types.h>
45 # endif
46 #endif
47 
48 #ifndef MAP_FAILED
49 # define MAP_FAILED ((void *)-1)
50 #endif
51 
52 /* When set, ggc_collect will do collection.  */
53 bool ggc_force_collect;
54 
55 /* When true, protect the contents of the identifier hash table.  */
56 bool ggc_protect_identifiers = true;
57 
58 /* Statistics about the allocation.  */
59 static ggc_statistics *ggc_stats;
60 
61 struct traversal_state;
62 
63 static int ggc_htab_delete (void **, void *);
64 static hashval_t saving_htab_hash (const void *);
65 static int saving_htab_eq (const void *, const void *);
66 static int call_count (void **, void *);
67 static int call_alloc (void **, void *);
68 static int compare_ptr_data (const void *, const void *);
69 static void relocate_ptrs (void *, void *);
70 static void write_pch_globals (const struct ggc_root_tab * const *tab,
71 			       struct traversal_state *state);
72 static double ggc_rlimit_bound (double);
73 
74 /* Maintain global roots that are preserved during GC.  */
75 
76 /* Process a slot of an htab by deleting it if it has not been marked.  */
77 
78 static int
79 ggc_htab_delete (void **slot, void *info)
80 {
81   const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info;
82 
83   if (! (*r->marked_p) (*slot))
84     htab_clear_slot (*r->base, slot);
85   else
86     (*r->cb) (*slot);
87 
88   return 1;
89 }
90 
91 
92 /* This extra vector of dynamically registered root_tab-s is used by
93    ggc_mark_roots and gives the ability to dynamically add new GGC root
94    tables, for instance from some plugins; this vector is on the heap
95    since it is used by GGC internally.  */
96 typedef const struct ggc_root_tab *const_ggc_root_tab_t;
97 DEF_VEC_P(const_ggc_root_tab_t);
98 DEF_VEC_ALLOC_P(const_ggc_root_tab_t, heap);
99 static VEC(const_ggc_root_tab_t, heap) *extra_root_vec;
100 
101 /* Dynamically register a new GGC root table RT. This is useful for
102    plugins. */
103 
104 void
105 ggc_register_root_tab (const struct ggc_root_tab* rt)
106 {
107   if (rt)
108     VEC_safe_push (const_ggc_root_tab_t, heap, extra_root_vec, rt);
109 }
110 
111 /* This extra vector of dynamically registered cache_tab-s is used by
112    ggc_mark_roots and gives the ability to dynamically add new GGC cache
113    tables, for instance from some plugins; this vector is on the heap
114    since it is used by GGC internally.  */
115 typedef const struct ggc_cache_tab *const_ggc_cache_tab_t;
116 DEF_VEC_P(const_ggc_cache_tab_t);
117 DEF_VEC_ALLOC_P(const_ggc_cache_tab_t, heap);
118 static VEC(const_ggc_cache_tab_t, heap) *extra_cache_vec;
119 
120 /* Dynamically register a new GGC cache table CT. This is useful for
121    plugins. */
122 
123 void
124 ggc_register_cache_tab (const struct ggc_cache_tab* ct)
125 {
126   if (ct)
127     VEC_safe_push (const_ggc_cache_tab_t, heap, extra_cache_vec, ct);
128 }
129 
130 /* Scan a hash table that has objects which are to be deleted if they are not
131    already marked.  */
132 
133 static void
134 ggc_scan_cache_tab (const_ggc_cache_tab_t ctp)
135 {
136   const struct ggc_cache_tab *cti;
137 
138   for (cti = ctp; cti->base != NULL; cti++)
139     if (*cti->base)
140       {
141         ggc_set_mark (*cti->base);
142         htab_traverse_noresize (*cti->base, ggc_htab_delete,
143                                 CONST_CAST (void *, (const void *)cti));
144         ggc_set_mark ((*cti->base)->entries);
145       }
146 }
147 
148 /* Iterate through all registered roots and mark each element.  */
149 
150 void
151 ggc_mark_roots (void)
152 {
153   const struct ggc_root_tab *const *rt;
154   const struct ggc_root_tab *rti;
155   const_ggc_root_tab_t rtp;
156   const struct ggc_cache_tab *const *ct;
157   const_ggc_cache_tab_t ctp;
158   size_t i;
159 
160   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
161     for (rti = *rt; rti->base != NULL; rti++)
162       memset (rti->base, 0, rti->stride);
163 
164   for (rt = gt_ggc_rtab; *rt; rt++)
165     for (rti = *rt; rti->base != NULL; rti++)
166       for (i = 0; i < rti->nelt; i++)
167 	(*rti->cb) (*(void **)((char *)rti->base + rti->stride * i));
168 
169   for (i = 0; VEC_iterate (const_ggc_root_tab_t, extra_root_vec, i, rtp); i++)
170     {
171       for (rti = rtp; rti->base != NULL; rti++)
172         for (i = 0; i < rti->nelt; i++)
173           (*rti->cb) (*(void **) ((char *)rti->base + rti->stride * i));
174     }
175 
176   if (ggc_protect_identifiers)
177     ggc_mark_stringpool ();
178 
179   /* Now scan all hash tables that have objects which are to be deleted if
180      they are not already marked.  */
181   for (ct = gt_ggc_cache_rtab; *ct; ct++)
182     ggc_scan_cache_tab (*ct);
183 
184   for (i = 0; VEC_iterate (const_ggc_cache_tab_t, extra_cache_vec, i, ctp); i++)
185     ggc_scan_cache_tab (ctp);
186 
187   if (! ggc_protect_identifiers)
188     ggc_purge_stringpool ();
189 
190   /* Some plugins may call ggc_set_mark from here.  */
191   invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
192 }
193 
194 /* Allocate a block of memory, then clear it.  */
195 void *
196 ggc_alloc_cleared_stat (size_t size MEM_STAT_DECL)
197 {
198   void *buf = ggc_alloc_stat (size PASS_MEM_STAT);
199   memset (buf, 0, size);
200   return buf;
201 }
202 
203 /* Resize a block of memory, possibly re-allocating it.  */
204 void *
205 ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL)
206 {
207   void *r;
208   size_t old_size;
209 
210   if (x == NULL)
211     return ggc_alloc_stat (size PASS_MEM_STAT);
212 
213   old_size = ggc_get_size (x);
214 
215   if (size <= old_size)
216     {
217       /* Mark the unwanted memory as unaccessible.  We also need to make
218 	 the "new" size accessible, since ggc_get_size returns the size of
219 	 the pool, not the size of the individually allocated object, the
220 	 size which was previously made accessible.  Unfortunately, we
221 	 don't know that previously allocated size.  Without that
222 	 knowledge we have to lose some initialization-tracking for the
223 	 old parts of the object.  An alternative is to mark the whole
224 	 old_size as reachable, but that would lose tracking of writes
225 	 after the end of the object (by small offsets).  Discard the
226 	 handle to avoid handle leak.  */
227       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
228 						    old_size - size));
229       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
230       return x;
231     }
232 
233   r = ggc_alloc_stat (size PASS_MEM_STAT);
234 
235   /* Since ggc_get_size returns the size of the pool, not the size of the
236      individually allocated object, we'd access parts of the old object
237      that were marked invalid with the memcpy below.  We lose a bit of the
238      initialization-tracking since some of it may be uninitialized.  */
239   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));
240 
241   memcpy (r, x, old_size);
242 
243   /* The old object is not supposed to be used anymore.  */
244   ggc_free (x);
245 
246   return r;
247 }
248 
249 /* Like ggc_alloc_cleared, but performs a multiplication.  */
250 void *
251 ggc_calloc (size_t s1, size_t s2)
252 {
253   return ggc_alloc_cleared (s1 * s2);
254 }
255 
256 /* These are for splay_tree_new_ggc.  */
257 void *
258 ggc_splay_alloc (int sz, void *nl)
259 {
260   gcc_assert (!nl);
261   return ggc_alloc (sz);
262 }
263 
264 void
265 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
266 {
267   gcc_assert (!nl);
268 }
269 
270 /* Print statistics that are independent of the collector in use.  */
271 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
272 		  ? (x) \
273 		  : ((x) < 1024*1024*10 \
274 		     ? (x) / 1024 \
275 		     : (x) / (1024*1024))))
276 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
277 
278 void
279 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
280 			     ggc_statistics *stats)
281 {
282   /* Set the pointer so that during collection we will actually gather
283      the statistics.  */
284   ggc_stats = stats;
285 
286   /* Then do one collection to fill in the statistics.  */
287   ggc_collect ();
288 
289   /* At present, we don't really gather any interesting statistics.  */
290 
291   /* Don't gather statistics any more.  */
292   ggc_stats = NULL;
293 }
294 
295 /* Functions for saving and restoring GCable memory to disk.  */
296 
297 static htab_t saving_htab;
298 
299 struct ptr_data
300 {
301   void *obj;
302   void *note_ptr_cookie;
303   gt_note_pointers note_ptr_fn;
304   gt_handle_reorder reorder_fn;
305   size_t size;
306   void *new_addr;
307   enum gt_types_enum type;
308 };
309 
310 #define POINTER_HASH(x) (hashval_t)((long)x >> 3)
311 
312 /* Register an object in the hash table.  */
313 
314 int
315 gt_pch_note_object (void *obj, void *note_ptr_cookie,
316 		    gt_note_pointers note_ptr_fn,
317 		    enum gt_types_enum type)
318 {
319   struct ptr_data **slot;
320 
321   if (obj == NULL || obj == (void *) 1)
322     return 0;
323 
324   slot = (struct ptr_data **)
325     htab_find_slot_with_hash (saving_htab, obj, POINTER_HASH (obj),
326 			      INSERT);
327   if (*slot != NULL)
328     {
329       gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
330 		  && (*slot)->note_ptr_cookie == note_ptr_cookie);
331       return 0;
332     }
333 
334   *slot = XCNEW (struct ptr_data);
335   (*slot)->obj = obj;
336   (*slot)->note_ptr_fn = note_ptr_fn;
337   (*slot)->note_ptr_cookie = note_ptr_cookie;
338   if (note_ptr_fn == gt_pch_p_S)
339     (*slot)->size = strlen ((const char *)obj) + 1;
340   else
341     (*slot)->size = ggc_get_size (obj);
342   (*slot)->type = type;
343   return 1;
344 }
345 
346 /* Register an object in the hash table.  */
347 
348 void
349 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
350 		     gt_handle_reorder reorder_fn)
351 {
352   struct ptr_data *data;
353 
354   if (obj == NULL || obj == (void *) 1)
355     return;
356 
357   data = (struct ptr_data *)
358     htab_find_with_hash (saving_htab, obj, POINTER_HASH (obj));
359   gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
360 
361   data->reorder_fn = reorder_fn;
362 }
363 
364 /* Hash and equality functions for saving_htab, callbacks for htab_create.  */
365 
366 static hashval_t
367 saving_htab_hash (const void *p)
368 {
369   return POINTER_HASH (((const struct ptr_data *)p)->obj);
370 }
371 
372 static int
373 saving_htab_eq (const void *p1, const void *p2)
374 {
375   return ((const struct ptr_data *)p1)->obj == p2;
376 }
377 
378 /* Handy state for the traversal functions.  */
379 
380 struct traversal_state
381 {
382   FILE *f;
383   struct ggc_pch_data *d;
384   size_t count;
385   struct ptr_data **ptrs;
386   size_t ptrs_i;
387 };
388 
389 /* Callbacks for htab_traverse.  */
390 
391 static int
392 call_count (void **slot, void *state_p)
393 {
394   struct ptr_data *d = (struct ptr_data *)*slot;
395   struct traversal_state *state = (struct traversal_state *)state_p;
396 
397   ggc_pch_count_object (state->d, d->obj, d->size,
398 			d->note_ptr_fn == gt_pch_p_S,
399 			d->type);
400   state->count++;
401   return 1;
402 }
403 
404 static int
405 call_alloc (void **slot, void *state_p)
406 {
407   struct ptr_data *d = (struct ptr_data *)*slot;
408   struct traversal_state *state = (struct traversal_state *)state_p;
409 
410   d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
411 				      d->note_ptr_fn == gt_pch_p_S,
412 				      d->type);
413   state->ptrs[state->ptrs_i++] = d;
414   return 1;
415 }
416 
417 /* Callback for qsort.  */
418 
419 static int
420 compare_ptr_data (const void *p1_p, const void *p2_p)
421 {
422   const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
423   const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
424   return (((size_t)p1->new_addr > (size_t)p2->new_addr)
425 	  - ((size_t)p1->new_addr < (size_t)p2->new_addr));
426 }
427 
428 /* Callbacks for note_ptr_fn.  */
429 
430 static void
431 relocate_ptrs (void *ptr_p, void *state_p)
432 {
433   void **ptr = (void **)ptr_p;
434   struct traversal_state *state ATTRIBUTE_UNUSED
435     = (struct traversal_state *)state_p;
436   struct ptr_data *result;
437 
438   if (*ptr == NULL || *ptr == (void *)1)
439     return;
440 
441   result = (struct ptr_data *)
442     htab_find_with_hash (saving_htab, *ptr, POINTER_HASH (*ptr));
443   gcc_assert (result);
444   *ptr = result->new_addr;
445 }
446 
447 /* Write out, after relocation, the pointers in TAB.  */
448 static void
449 write_pch_globals (const struct ggc_root_tab * const *tab,
450 		   struct traversal_state *state)
451 {
452   const struct ggc_root_tab *const *rt;
453   const struct ggc_root_tab *rti;
454   size_t i;
455 
456   for (rt = tab; *rt; rt++)
457     for (rti = *rt; rti->base != NULL; rti++)
458       for (i = 0; i < rti->nelt; i++)
459 	{
460 	  void *ptr = *(void **)((char *)rti->base + rti->stride * i);
461 	  struct ptr_data *new_ptr;
462 	  if (ptr == NULL || ptr == (void *)1)
463 	    {
464 	      if (fwrite (&ptr, sizeof (void *), 1, state->f)
465 		  != 1)
466 		fatal_error ("can't write PCH file: %m");
467 	    }
468 	  else
469 	    {
470 	      new_ptr = (struct ptr_data *)
471 		htab_find_with_hash (saving_htab, ptr, POINTER_HASH (ptr));
472 	      if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
473 		  != 1)
474 		fatal_error ("can't write PCH file: %m");
475 	    }
476 	}
477 }
478 
479 /* Hold the information we need to mmap the file back in.  */
480 
481 struct mmap_info
482 {
483   size_t offset;
484   size_t size;
485   void *preferred_base;
486 };
487 
488 /* Write out the state of the compiler to F.  */
489 
490 void
491 gt_pch_save (FILE *f)
492 {
493   const struct ggc_root_tab *const *rt;
494   const struct ggc_root_tab *rti;
495   size_t i;
496   struct traversal_state state;
497   char *this_object = NULL;
498   size_t this_object_size = 0;
499   struct mmap_info mmi;
500   const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity();
501 
502   gt_pch_save_stringpool ();
503 
504   saving_htab = htab_create (50000, saving_htab_hash, saving_htab_eq, free);
505 
506   for (rt = gt_ggc_rtab; *rt; rt++)
507     for (rti = *rt; rti->base != NULL; rti++)
508       for (i = 0; i < rti->nelt; i++)
509 	(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
510 
511   for (rt = gt_pch_cache_rtab; *rt; rt++)
512     for (rti = *rt; rti->base != NULL; rti++)
513       for (i = 0; i < rti->nelt; i++)
514 	(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
515 
516   /* Prepare the objects for writing, determine addresses and such.  */
517   state.f = f;
518   state.d = init_ggc_pch();
519   state.count = 0;
520   htab_traverse (saving_htab, call_count, &state);
521 
522   mmi.size = ggc_pch_total_size (state.d);
523 
524   /* Try to arrange things so that no relocation is necessary, but
525      don't try very hard.  On most platforms, this will always work,
526      and on the rest it's a lot of work to do better.
527      (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
528      HOST_HOOKS_GT_PCH_USE_ADDRESS.)  */
529   mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
530 
531   ggc_pch_this_base (state.d, mmi.preferred_base);
532 
533   state.ptrs = XNEWVEC (struct ptr_data *, state.count);
534   state.ptrs_i = 0;
535   htab_traverse (saving_htab, call_alloc, &state);
536   qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
537 
538   /* Write out all the scalar variables.  */
539   for (rt = gt_pch_scalar_rtab; *rt; rt++)
540     for (rti = *rt; rti->base != NULL; rti++)
541       if (fwrite (rti->base, rti->stride, 1, f) != 1)
542 	fatal_error ("can't write PCH file: %m");
543 
544   /* Write out all the global pointers, after translation.  */
545   write_pch_globals (gt_ggc_rtab, &state);
546   write_pch_globals (gt_pch_cache_rtab, &state);
547 
548   /* Pad the PCH file so that the mmapped area starts on an allocation
549      granularity (usually page) boundary.  */
550   {
551     long o;
552     o = ftell (state.f) + sizeof (mmi);
553     if (o == -1)
554       fatal_error ("can't get position in PCH file: %m");
555     mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
556     if (mmi.offset == mmap_offset_alignment)
557       mmi.offset = 0;
558     mmi.offset += o;
559   }
560   if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
561     fatal_error ("can't write PCH file: %m");
562   if (mmi.offset != 0
563       && fseek (state.f, mmi.offset, SEEK_SET) != 0)
564     fatal_error ("can't write padding to PCH file: %m");
565 
566   ggc_pch_prepare_write (state.d, state.f);
567 
568   /* Actually write out the objects.  */
569   for (i = 0; i < state.count; i++)
570     {
571       if (this_object_size < state.ptrs[i]->size)
572 	{
573 	  this_object_size = state.ptrs[i]->size;
574 	  this_object = XRESIZEVAR (char, this_object, this_object_size);
575 	}
576       memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
577       if (state.ptrs[i]->reorder_fn != NULL)
578 	state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
579 				   state.ptrs[i]->note_ptr_cookie,
580 				   relocate_ptrs, &state);
581       state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
582 				  state.ptrs[i]->note_ptr_cookie,
583 				  relocate_ptrs, &state);
584       ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
585 			    state.ptrs[i]->new_addr, state.ptrs[i]->size,
586 			    state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
587       if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
588 	memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
589     }
590   ggc_pch_finish (state.d, state.f);
591   gt_pch_fixup_stringpool ();
592 
593   free (state.ptrs);
594   htab_delete (saving_htab);
595 }
596 
597 /* Read the state of the compiler back in from F.  */
598 
599 void
600 gt_pch_restore (FILE *f)
601 {
602   const struct ggc_root_tab *const *rt;
603   const struct ggc_root_tab *rti;
604   size_t i;
605   struct mmap_info mmi;
606   int result;
607 
608   /* Delete any deletable objects.  This makes ggc_pch_read much
609      faster, as it can be sure that no GCable objects remain other
610      than the ones just read in.  */
611   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
612     for (rti = *rt; rti->base != NULL; rti++)
613       memset (rti->base, 0, rti->stride);
614 
615   /* Read in all the scalar variables.  */
616   for (rt = gt_pch_scalar_rtab; *rt; rt++)
617     for (rti = *rt; rti->base != NULL; rti++)
618       if (fread (rti->base, rti->stride, 1, f) != 1)
619 	fatal_error ("can't read PCH file: %m");
620 
621   /* Read in all the global pointers, in 6 easy loops.  */
622   for (rt = gt_ggc_rtab; *rt; rt++)
623     for (rti = *rt; rti->base != NULL; rti++)
624       for (i = 0; i < rti->nelt; i++)
625 	if (fread ((char *)rti->base + rti->stride * i,
626 		   sizeof (void *), 1, f) != 1)
627 	  fatal_error ("can't read PCH file: %m");
628 
629   for (rt = gt_pch_cache_rtab; *rt; rt++)
630     for (rti = *rt; rti->base != NULL; rti++)
631       for (i = 0; i < rti->nelt; i++)
632 	if (fread ((char *)rti->base + rti->stride * i,
633 		   sizeof (void *), 1, f) != 1)
634 	  fatal_error ("can't read PCH file: %m");
635 
636   if (fread (&mmi, sizeof (mmi), 1, f) != 1)
637     fatal_error ("can't read PCH file: %m");
638 
639   result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
640 					  fileno (f), mmi.offset);
641   if (result < 0)
642     fatal_error ("had to relocate PCH");
643   if (result == 0)
644     {
645       if (fseek (f, mmi.offset, SEEK_SET) != 0
646 	  || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
647 	fatal_error ("can't read PCH file: %m");
648     }
649   else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
650     fatal_error ("can't read PCH file: %m");
651 
652   ggc_pch_read (f, mmi.preferred_base);
653 
654   gt_pch_restore_stringpool ();
655 }
656 
657 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
658    Select no address whatsoever, and let gt_pch_save choose what it will with
659    malloc, presumably.  */
660 
661 void *
662 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
663 			    int fd ATTRIBUTE_UNUSED)
664 {
665   return NULL;
666 }
667 
668 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
669    Allocate SIZE bytes with malloc.  Return 0 if the address we got is the
670    same as base, indicating that the memory has been allocated but needs to
671    be read in from the file.  Return -1 if the address differs, to relocation
672    of the PCH file would be required.  */
673 
674 int
675 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
676 			    size_t offset ATTRIBUTE_UNUSED)
677 {
678   void *addr = xmalloc (size);
679   return (addr == base) - 1;
680 }
681 
682 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS.   Return the
683    alignment required for allocating virtual memory. Usually this is the
684    same as pagesize.  */
685 
686 size_t
687 default_gt_pch_alloc_granularity (void)
688 {
689   return getpagesize();
690 }
691 
692 #if HAVE_MMAP_FILE
693 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
694    We temporarily allocate SIZE bytes, and let the kernel place the data
695    wherever it will.  If it worked, that's our spot, if not we're likely
696    to be in trouble.  */
697 
698 void *
699 mmap_gt_pch_get_address (size_t size, int fd)
700 {
701   void *ret;
702 
703   ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
704   if (ret == (void *) MAP_FAILED)
705     ret = NULL;
706   else
707     munmap ((caddr_t) ret, size);
708 
709   return ret;
710 }
711 
712 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
713    Map SIZE bytes of FD+OFFSET at BASE.  Return 1 if we succeeded at
714    mapping the data at BASE, -1 if we couldn't.
715 
716    This version assumes that the kernel honors the START operand of mmap
717    even without MAP_FIXED if START through START+SIZE are not currently
718    mapped with something.  */
719 
720 int
721 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
722 {
723   void *addr;
724 
725   /* We're called with size == 0 if we're not planning to load a PCH
726      file at all.  This allows the hook to free any static space that
727      we might have allocated at link time.  */
728   if (size == 0)
729     return -1;
730 
731   addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
732 	       fd, offset);
733 
734   return addr == base ? 1 : -1;
735 }
736 #endif /* HAVE_MMAP_FILE */
737 
738 /* Modify the bound based on rlimits.  */
739 static double
740 ggc_rlimit_bound (double limit)
741 {
742 #if defined(HAVE_GETRLIMIT)
743   struct rlimit rlim;
744 # if defined (RLIMIT_AS)
745   /* RLIMIT_AS is what POSIX says is the limit on mmap.  Presumably
746      any OS which has RLIMIT_AS also has a working mmap that GCC will use.  */
747   if (getrlimit (RLIMIT_AS, &rlim) == 0
748       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
749       && rlim.rlim_cur < limit)
750     limit = rlim.rlim_cur;
751 # elif defined (RLIMIT_DATA)
752   /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
753      might be on an OS that has a broken mmap.  (Others don't bound
754      mmap at all, apparently.)  */
755   if (getrlimit (RLIMIT_DATA, &rlim) == 0
756       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
757       && rlim.rlim_cur < limit
758       /* Darwin has this horribly bogus default setting of
759 	 RLIMIT_DATA, to 6144Kb.  No-one notices because RLIMIT_DATA
760 	 appears to be ignored.  Ignore such silliness.  If a limit
761 	 this small was actually effective for mmap, GCC wouldn't even
762 	 start up.  */
763       && rlim.rlim_cur >= 8 * 1024 * 1024)
764     limit = rlim.rlim_cur;
765 # endif /* RLIMIT_AS or RLIMIT_DATA */
766 #endif /* HAVE_GETRLIMIT */
767 
768   return limit;
769 }
770 
771 /* Heuristic to set a default for GGC_MIN_EXPAND.  */
772 int
773 ggc_min_expand_heuristic (void)
774 {
775   double min_expand = physmem_total();
776 
777   /* Adjust for rlimits.  */
778   min_expand = ggc_rlimit_bound (min_expand);
779 
780   /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
781      a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB).  */
782   min_expand /= 1024*1024*1024;
783   min_expand *= 70;
784   min_expand = MIN (min_expand, 70);
785   min_expand += 30;
786 
787   return min_expand;
788 }
789 
790 /* Heuristic to set a default for GGC_MIN_HEAPSIZE.  */
791 int
792 ggc_min_heapsize_heuristic (void)
793 {
794   double phys_kbytes = physmem_total();
795   double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
796 
797   phys_kbytes /= 1024; /* Convert to Kbytes.  */
798   limit_kbytes /= 1024;
799 
800   /* The heuristic is RAM/8, with a lower bound of 4M and an upper
801      bound of 128M (when RAM >= 1GB).  */
802   phys_kbytes /= 8;
803 
804 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
805   /* Try not to overrun the RSS limit while doing garbage collection.
806      The RSS limit is only advisory, so no margin is subtracted.  */
807  {
808    struct rlimit rlim;
809    if (getrlimit (RLIMIT_RSS, &rlim) == 0
810        && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
811      phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
812  }
813 # endif
814 
815   /* Don't blindly run over our data limit; do GC at least when the
816      *next* GC would be within 20Mb of the limit or within a quarter of
817      the limit, whichever is larger.  If GCC does hit the data limit,
818      compilation will fail, so this tries to be conservative.  */
819   limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
820   limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic());
821   phys_kbytes = MIN (phys_kbytes, limit_kbytes);
822 
823   phys_kbytes = MAX (phys_kbytes, 4 * 1024);
824   phys_kbytes = MIN (phys_kbytes, 128 * 1024);
825 
826   return phys_kbytes;
827 }
828 
829 void
830 init_ggc_heuristics (void)
831 {
832 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
833   set_param_value ("ggc-min-expand", ggc_min_expand_heuristic());
834   set_param_value ("ggc-min-heapsize", ggc_min_heapsize_heuristic());
835 #endif
836 }
837 
838 #ifdef GATHER_STATISTICS
839 
840 /* Datastructure used to store per-call-site statistics.  */
841 struct loc_descriptor
842 {
843   const char *file;
844   int line;
845   const char *function;
846   int times;
847   size_t allocated;
848   size_t overhead;
849   size_t freed;
850   size_t collected;
851 };
852 
853 /* Hashtable used for statistics.  */
854 static htab_t loc_hash;
855 
856 /* Hash table helpers functions.  */
857 static hashval_t
858 hash_descriptor (const void *p)
859 {
860   const struct loc_descriptor *const d = (const struct loc_descriptor *) p;
861 
862   return htab_hash_pointer (d->function) | d->line;
863 }
864 
865 static int
866 eq_descriptor (const void *p1, const void *p2)
867 {
868   const struct loc_descriptor *const d = (const struct loc_descriptor *) p1;
869   const struct loc_descriptor *const d2 = (const struct loc_descriptor *) p2;
870 
871   return (d->file == d2->file && d->line == d2->line
872 	  && d->function == d2->function);
873 }
874 
875 /* Hashtable converting address of allocated field to loc descriptor.  */
876 static htab_t ptr_hash;
877 struct ptr_hash_entry
878 {
879   void *ptr;
880   struct loc_descriptor *loc;
881   size_t size;
882 };
883 
884 /* Hash table helpers functions.  */
885 static hashval_t
886 hash_ptr (const void *p)
887 {
888   const struct ptr_hash_entry *const d = (const struct ptr_hash_entry *) p;
889 
890   return htab_hash_pointer (d->ptr);
891 }
892 
893 static int
894 eq_ptr (const void *p1, const void *p2)
895 {
896   const struct ptr_hash_entry *const p = (const struct ptr_hash_entry *) p1;
897 
898   return (p->ptr == p2);
899 }
900 
901 /* Return descriptor for given call site, create new one if needed.  */
902 static struct loc_descriptor *
903 loc_descriptor (const char *name, int line, const char *function)
904 {
905   struct loc_descriptor loc;
906   struct loc_descriptor **slot;
907 
908   loc.file = name;
909   loc.line = line;
910   loc.function = function;
911   if (!loc_hash)
912     loc_hash = htab_create (10, hash_descriptor, eq_descriptor, NULL);
913 
914   slot = (struct loc_descriptor **) htab_find_slot (loc_hash, &loc, INSERT);
915   if (*slot)
916     return *slot;
917   *slot = XCNEW (struct loc_descriptor);
918   (*slot)->file = name;
919   (*slot)->line = line;
920   (*slot)->function = function;
921   return *slot;
922 }
923 
924 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION).  */
925 void
926 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr,
927 		     const char *name, int line, const char *function)
928 {
929   struct loc_descriptor *loc = loc_descriptor (name, line, function);
930   struct ptr_hash_entry *p = XNEW (struct ptr_hash_entry);
931   PTR *slot;
932 
933   p->ptr = ptr;
934   p->loc = loc;
935   p->size = allocated + overhead;
936   if (!ptr_hash)
937     ptr_hash = htab_create (10, hash_ptr, eq_ptr, NULL);
938   slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), INSERT);
939   gcc_assert (!*slot);
940   *slot = p;
941 
942   loc->times++;
943   loc->allocated+=allocated;
944   loc->overhead+=overhead;
945 }
946 
947 /* Helper function for prune_overhead_list.  See if SLOT is still marked and
948    remove it from hashtable if it is not.  */
949 static int
950 ggc_prune_ptr (void **slot, void *b ATTRIBUTE_UNUSED)
951 {
952   struct ptr_hash_entry *p = (struct ptr_hash_entry *) *slot;
953   if (!ggc_marked_p (p->ptr))
954     {
955       p->loc->collected += p->size;
956       htab_clear_slot (ptr_hash, slot);
957       free (p);
958     }
959   return 1;
960 }
961 
962 /* After live values has been marked, walk all recorded pointers and see if
963    they are still live.  */
964 void
965 ggc_prune_overhead_list (void)
966 {
967   htab_traverse (ptr_hash, ggc_prune_ptr, NULL);
968 }
969 
970 /* Notice that the pointer has been freed.  */
971 void
972 ggc_free_overhead (void *ptr)
973 {
974   PTR *slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr),
975 					NO_INSERT);
976   struct ptr_hash_entry *p = (struct ptr_hash_entry *) *slot;
977   p->loc->freed += p->size;
978   htab_clear_slot (ptr_hash, slot);
979   free (p);
980 }
981 
982 /* Helper for qsort; sort descriptors by amount of memory consumed.  */
983 static int
984 final_cmp_statistic (const void *loc1, const void *loc2)
985 {
986   const struct loc_descriptor *const l1 =
987     *(const struct loc_descriptor *const *) loc1;
988   const struct loc_descriptor *const l2 =
989     *(const struct loc_descriptor *const *) loc2;
990   long diff;
991   diff = ((long)(l1->allocated + l1->overhead - l1->freed) -
992 	  (l2->allocated + l2->overhead - l2->freed));
993   return diff > 0 ? 1 : diff < 0 ? -1 : 0;
994 }
995 
996 /* Helper for qsort; sort descriptors by amount of memory consumed.  */
997 static int
998 cmp_statistic (const void *loc1, const void *loc2)
999 {
1000   const struct loc_descriptor *const l1 =
1001     *(const struct loc_descriptor *const *) loc1;
1002   const struct loc_descriptor *const l2 =
1003     *(const struct loc_descriptor *const *) loc2;
1004   long diff;
1005 
1006   diff = ((long)(l1->allocated + l1->overhead - l1->freed - l1->collected) -
1007 	  (l2->allocated + l2->overhead - l2->freed - l2->collected));
1008   if (diff)
1009     return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1010   diff =  ((long)(l1->allocated + l1->overhead - l1->freed) -
1011 	   (l2->allocated + l2->overhead - l2->freed));
1012   return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1013 }
1014 
1015 /* Collect array of the descriptors from hashtable.  */
1016 static struct loc_descriptor **loc_array;
1017 static int
1018 add_statistics (void **slot, void *b)
1019 {
1020   int *n = (int *)b;
1021   loc_array[*n] = (struct loc_descriptor *) *slot;
1022   (*n)++;
1023   return 1;
1024 }
1025 
1026 /* Dump per-site memory statistics.  */
1027 #endif
1028 void
1029 dump_ggc_loc_statistics (bool final ATTRIBUTE_UNUSED)
1030 {
1031 #ifdef GATHER_STATISTICS
1032   int nentries = 0;
1033   char s[4096];
1034   size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0;
1035   int i;
1036 
1037   ggc_force_collect = true;
1038   ggc_collect ();
1039 
1040   loc_array = XCNEWVEC (struct loc_descriptor *, loc_hash->n_elements);
1041   fprintf (stderr, "-------------------------------------------------------\n");
1042   fprintf (stderr, "\n%-48s %10s       %10s       %10s       %10s       %10s\n",
1043 	   "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1044   fprintf (stderr, "-------------------------------------------------------\n");
1045   htab_traverse (loc_hash, add_statistics, &nentries);
1046   qsort (loc_array, nentries, sizeof (*loc_array),
1047 	 final ? final_cmp_statistic : cmp_statistic);
1048   for (i = 0; i < nentries; i++)
1049     {
1050       struct loc_descriptor *d = loc_array[i];
1051       allocated += d->allocated;
1052       times += d->times;
1053       freed += d->freed;
1054       collected += d->collected;
1055       overhead += d->overhead;
1056     }
1057   for (i = 0; i < nentries; i++)
1058     {
1059       struct loc_descriptor *d = loc_array[i];
1060       if (d->allocated)
1061 	{
1062 	  const char *s1 = d->file;
1063 	  const char *s2;
1064 	  while ((s2 = strstr (s1, "gcc/")))
1065 	    s1 = s2 + 4;
1066 	  sprintf (s, "%s:%i (%s)", s1, d->line, d->function);
1067 	  s[48] = 0;
1068 	  fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s,
1069 		   (long)d->collected,
1070 		   (d->collected) * 100.0 / collected,
1071 		   (long)d->freed,
1072 		   (d->freed) * 100.0 / freed,
1073 		   (long)(d->allocated + d->overhead - d->freed - d->collected),
1074 		   (d->allocated + d->overhead - d->freed - d->collected) * 100.0
1075 		   / (allocated + overhead - freed - collected),
1076 		   (long)d->overhead,
1077 		   d->overhead * 100.0 / overhead,
1078 		   (long)d->times);
1079 	}
1080     }
1081   fprintf (stderr, "%-48s %10ld       %10ld       %10ld       %10ld       %10ld\n",
1082 	   "Total", (long)collected, (long)freed,
1083 	   (long)(allocated + overhead - freed - collected), (long)overhead,
1084 	   (long)times);
1085   fprintf (stderr, "%-48s %10s       %10s       %10s       %10s       %10s\n",
1086 	   "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1087   fprintf (stderr, "-------------------------------------------------------\n");
1088   ggc_force_collect = false;
1089 #endif
1090 }
1091