xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ggc-common.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* Simple garbage collection for the GNU compiler.
2    Copyright (C) 1999-2013 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* Generic garbage collection (GC) functions and data, not specific to
21    any particular GC implementation.  */
22 
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "hashtab.h"
27 #include "ggc.h"
28 #include "ggc-internal.h"
29 #include "diagnostic-core.h"
30 #include "params.h"
31 #include "hosthooks.h"
32 #include "hosthooks-def.h"
33 #include "plugin.h"
34 #include "vec.h"
35 #include "timevar.h"
36 
37 /* When set, ggc_collect will do collection.  */
38 bool ggc_force_collect;
39 
40 /* When true, protect the contents of the identifier hash table.  */
41 bool ggc_protect_identifiers = true;
42 
43 /* Statistics about the allocation.  */
44 static ggc_statistics *ggc_stats;
45 
46 struct traversal_state;
47 
48 static int ggc_htab_delete (void **, void *);
49 static hashval_t saving_htab_hash (const void *);
50 static int saving_htab_eq (const void *, const void *);
51 static int call_count (void **, void *);
52 static int call_alloc (void **, void *);
53 static int compare_ptr_data (const void *, const void *);
54 static void relocate_ptrs (void *, void *);
55 static void write_pch_globals (const struct ggc_root_tab * const *tab,
56 			       struct traversal_state *state);
57 
58 /* Maintain global roots that are preserved during GC.  */
59 
60 /* Process a slot of an htab by deleting it if it has not been marked.  */
61 
62 static int
63 ggc_htab_delete (void **slot, void *info)
64 {
65   const struct ggc_cache_tab *r = (const struct ggc_cache_tab *) info;
66 
67   if (! (*r->marked_p) (*slot))
68     htab_clear_slot (*r->base, slot);
69   else
70     (*r->cb) (*slot);
71 
72   return 1;
73 }
74 
75 
76 /* This extra vector of dynamically registered root_tab-s is used by
77    ggc_mark_roots and gives the ability to dynamically add new GGC root
78    tables, for instance from some plugins; this vector is on the heap
79    since it is used by GGC internally.  */
80 typedef const struct ggc_root_tab *const_ggc_root_tab_t;
81 static vec<const_ggc_root_tab_t> extra_root_vec;
82 
83 /* Dynamically register a new GGC root table RT. This is useful for
84    plugins. */
85 
86 void
87 ggc_register_root_tab (const struct ggc_root_tab* rt)
88 {
89   if (rt)
90     extra_root_vec.safe_push (rt);
91 }
92 
93 /* This extra vector of dynamically registered cache_tab-s is used by
94    ggc_mark_roots and gives the ability to dynamically add new GGC cache
95    tables, for instance from some plugins; this vector is on the heap
96    since it is used by GGC internally.  */
97 typedef const struct ggc_cache_tab *const_ggc_cache_tab_t;
98 static vec<const_ggc_cache_tab_t> extra_cache_vec;
99 
100 /* Dynamically register a new GGC cache table CT. This is useful for
101    plugins. */
102 
103 void
104 ggc_register_cache_tab (const struct ggc_cache_tab* ct)
105 {
106   if (ct)
107     extra_cache_vec.safe_push (ct);
108 }
109 
110 /* Scan a hash table that has objects which are to be deleted if they are not
111    already marked.  */
112 
113 static void
114 ggc_scan_cache_tab (const_ggc_cache_tab_t ctp)
115 {
116   const struct ggc_cache_tab *cti;
117 
118   for (cti = ctp; cti->base != NULL; cti++)
119     if (*cti->base)
120       {
121         ggc_set_mark (*cti->base);
122         htab_traverse_noresize (*cti->base, ggc_htab_delete,
123                                 CONST_CAST (void *, (const void *)cti));
124         ggc_set_mark ((*cti->base)->entries);
125       }
126 }
127 
128 /* Mark all the roots in the table RT.  */
129 
130 static void
131 ggc_mark_root_tab (const_ggc_root_tab_t rt)
132 {
133   size_t i;
134 
135   for ( ; rt->base != NULL; rt++)
136     for (i = 0; i < rt->nelt; i++)
137       (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
138 }
139 
140 /* Iterate through all registered roots and mark each element.  */
141 
142 void
143 ggc_mark_roots (void)
144 {
145   const struct ggc_root_tab *const *rt;
146   const_ggc_root_tab_t rtp, rti;
147   const struct ggc_cache_tab *const *ct;
148   const_ggc_cache_tab_t ctp;
149   size_t i;
150 
151   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
152     for (rti = *rt; rti->base != NULL; rti++)
153       memset (rti->base, 0, rti->stride);
154 
155   for (rt = gt_ggc_rtab; *rt; rt++)
156     ggc_mark_root_tab (*rt);
157 
158   FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
159     ggc_mark_root_tab (rtp);
160 
161   if (ggc_protect_identifiers)
162     ggc_mark_stringpool ();
163 
164   /* Now scan all hash tables that have objects which are to be deleted if
165      they are not already marked.  */
166   for (ct = gt_ggc_cache_rtab; *ct; ct++)
167     ggc_scan_cache_tab (*ct);
168 
169   FOR_EACH_VEC_ELT (extra_cache_vec, i, ctp)
170     ggc_scan_cache_tab (ctp);
171 
172   if (! ggc_protect_identifiers)
173     ggc_purge_stringpool ();
174 
175   /* Some plugins may call ggc_set_mark from here.  */
176   invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
177 }
178 
179 /* Allocate a block of memory, then clear it.  */
180 void *
181 ggc_internal_cleared_alloc_stat (size_t size MEM_STAT_DECL)
182 {
183   void *buf = ggc_internal_alloc_stat (size PASS_MEM_STAT);
184   memset (buf, 0, size);
185   return buf;
186 }
187 
188 /* Resize a block of memory, possibly re-allocating it.  */
189 void *
190 ggc_realloc_stat (void *x, size_t size MEM_STAT_DECL)
191 {
192   void *r;
193   size_t old_size;
194 
195   if (x == NULL)
196     return ggc_internal_alloc_stat (size PASS_MEM_STAT);
197 
198   old_size = ggc_get_size (x);
199 
200   if (size <= old_size)
201     {
202       /* Mark the unwanted memory as unaccessible.  We also need to make
203 	 the "new" size accessible, since ggc_get_size returns the size of
204 	 the pool, not the size of the individually allocated object, the
205 	 size which was previously made accessible.  Unfortunately, we
206 	 don't know that previously allocated size.  Without that
207 	 knowledge we have to lose some initialization-tracking for the
208 	 old parts of the object.  An alternative is to mark the whole
209 	 old_size as reachable, but that would lose tracking of writes
210 	 after the end of the object (by small offsets).  Discard the
211 	 handle to avoid handle leak.  */
212       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
213 						    old_size - size));
214       VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
215       return x;
216     }
217 
218   r = ggc_internal_alloc_stat (size PASS_MEM_STAT);
219 
220   /* Since ggc_get_size returns the size of the pool, not the size of the
221      individually allocated object, we'd access parts of the old object
222      that were marked invalid with the memcpy below.  We lose a bit of the
223      initialization-tracking since some of it may be uninitialized.  */
224   VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));
225 
226   memcpy (r, x, old_size);
227 
228   /* The old object is not supposed to be used anymore.  */
229   ggc_free (x);
230 
231   return r;
232 }
233 
234 void *
235 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
236 				    size_t n ATTRIBUTE_UNUSED)
237 {
238   gcc_assert (c * n == sizeof (struct htab));
239   return ggc_alloc_cleared_htab ();
240 }
241 
242 /* TODO: once we actually use type information in GGC, create a new tag
243    gt_gcc_ptr_array and use it for pointer arrays.  */
244 void *
245 ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
246 {
247   gcc_assert (sizeof (PTR *) == n);
248   return ggc_internal_cleared_vec_alloc (sizeof (PTR *), c);
249 }
250 
251 /* These are for splay_tree_new_ggc.  */
252 void *
253 ggc_splay_alloc (int sz, void *nl)
254 {
255   gcc_assert (!nl);
256   return ggc_internal_alloc (sz);
257 }
258 
259 void
260 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
261 {
262   gcc_assert (!nl);
263 }
264 
265 /* Print statistics that are independent of the collector in use.  */
266 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
267 		  ? (x) \
268 		  : ((x) < 1024*1024*10 \
269 		     ? (x) / 1024 \
270 		     : (x) / (1024*1024))))
271 #define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
272 
273 void
274 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
275 			     ggc_statistics *stats)
276 {
277   /* Set the pointer so that during collection we will actually gather
278      the statistics.  */
279   ggc_stats = stats;
280 
281   /* Then do one collection to fill in the statistics.  */
282   ggc_collect ();
283 
284   /* At present, we don't really gather any interesting statistics.  */
285 
286   /* Don't gather statistics any more.  */
287   ggc_stats = NULL;
288 }
289 
290 /* Functions for saving and restoring GCable memory to disk.  */
291 
292 static htab_t saving_htab;
293 
294 struct ptr_data
295 {
296   void *obj;
297   void *note_ptr_cookie;
298   gt_note_pointers note_ptr_fn;
299   gt_handle_reorder reorder_fn;
300   size_t size;
301   void *new_addr;
302 };
303 
304 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)
305 
306 /* Register an object in the hash table.  */
307 
308 int
309 gt_pch_note_object (void *obj, void *note_ptr_cookie,
310 		    gt_note_pointers note_ptr_fn)
311 {
312   struct ptr_data **slot;
313 
314   if (obj == NULL || obj == (void *) 1)
315     return 0;
316 
317   slot = (struct ptr_data **)
318     htab_find_slot_with_hash (saving_htab, obj, POINTER_HASH (obj),
319 			      INSERT);
320   if (*slot != NULL)
321     {
322       gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
323 		  && (*slot)->note_ptr_cookie == note_ptr_cookie);
324       return 0;
325     }
326 
327   *slot = XCNEW (struct ptr_data);
328   (*slot)->obj = obj;
329   (*slot)->note_ptr_fn = note_ptr_fn;
330   (*slot)->note_ptr_cookie = note_ptr_cookie;
331   if (note_ptr_fn == gt_pch_p_S)
332     (*slot)->size = strlen ((const char *)obj) + 1;
333   else
334     (*slot)->size = ggc_get_size (obj);
335   return 1;
336 }
337 
338 /* Register an object in the hash table.  */
339 
340 void
341 gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
342 		     gt_handle_reorder reorder_fn)
343 {
344   struct ptr_data *data;
345 
346   if (obj == NULL || obj == (void *) 1)
347     return;
348 
349   data = (struct ptr_data *)
350     htab_find_with_hash (saving_htab, obj, POINTER_HASH (obj));
351   gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);
352 
353   data->reorder_fn = reorder_fn;
354 }
355 
356 /* Hash and equality functions for saving_htab, callbacks for htab_create.  */
357 
358 static hashval_t
359 saving_htab_hash (const void *p)
360 {
361   return POINTER_HASH (((const struct ptr_data *)p)->obj);
362 }
363 
364 static int
365 saving_htab_eq (const void *p1, const void *p2)
366 {
367   return ((const struct ptr_data *)p1)->obj == p2;
368 }
369 
370 /* Handy state for the traversal functions.  */
371 
372 struct traversal_state
373 {
374   FILE *f;
375   struct ggc_pch_data *d;
376   size_t count;
377   struct ptr_data **ptrs;
378   size_t ptrs_i;
379 };
380 
381 /* Callbacks for htab_traverse.  */
382 
383 static int
384 call_count (void **slot, void *state_p)
385 {
386   struct ptr_data *d = (struct ptr_data *)*slot;
387   struct traversal_state *state = (struct traversal_state *)state_p;
388 
389   ggc_pch_count_object (state->d, d->obj, d->size,
390 			d->note_ptr_fn == gt_pch_p_S);
391   state->count++;
392   return 1;
393 }
394 
395 static int
396 call_alloc (void **slot, void *state_p)
397 {
398   struct ptr_data *d = (struct ptr_data *)*slot;
399   struct traversal_state *state = (struct traversal_state *)state_p;
400 
401   d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
402 				      d->note_ptr_fn == gt_pch_p_S);
403   state->ptrs[state->ptrs_i++] = d;
404   return 1;
405 }
406 
407 /* Callback for qsort.  */
408 
409 static int
410 compare_ptr_data (const void *p1_p, const void *p2_p)
411 {
412   const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
413   const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
414   return (((size_t)p1->new_addr > (size_t)p2->new_addr)
415 	  - ((size_t)p1->new_addr < (size_t)p2->new_addr));
416 }
417 
418 /* Callbacks for note_ptr_fn.  */
419 
420 static void
421 relocate_ptrs (void *ptr_p, void *state_p)
422 {
423   void **ptr = (void **)ptr_p;
424   struct traversal_state *state ATTRIBUTE_UNUSED
425     = (struct traversal_state *)state_p;
426   struct ptr_data *result;
427 
428   if (*ptr == NULL || *ptr == (void *)1)
429     return;
430 
431   result = (struct ptr_data *)
432     htab_find_with_hash (saving_htab, *ptr, POINTER_HASH (*ptr));
433   gcc_assert (result);
434   *ptr = result->new_addr;
435 }
436 
437 /* Write out, after relocation, the pointers in TAB.  */
438 static void
439 write_pch_globals (const struct ggc_root_tab * const *tab,
440 		   struct traversal_state *state)
441 {
442   const struct ggc_root_tab *const *rt;
443   const struct ggc_root_tab *rti;
444   size_t i;
445 
446   for (rt = tab; *rt; rt++)
447     for (rti = *rt; rti->base != NULL; rti++)
448       for (i = 0; i < rti->nelt; i++)
449 	{
450 	  void *ptr = *(void **)((char *)rti->base + rti->stride * i);
451 	  struct ptr_data *new_ptr;
452 	  if (ptr == NULL || ptr == (void *)1)
453 	    {
454 	      if (fwrite (&ptr, sizeof (void *), 1, state->f)
455 		  != 1)
456 		fatal_error ("can%'t write PCH file: %m");
457 	    }
458 	  else
459 	    {
460 	      new_ptr = (struct ptr_data *)
461 		htab_find_with_hash (saving_htab, ptr, POINTER_HASH (ptr));
462 	      if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
463 		  != 1)
464 		fatal_error ("can%'t write PCH file: %m");
465 	    }
466 	}
467 }
468 
469 /* Hold the information we need to mmap the file back in.  */
470 
471 struct mmap_info
472 {
473   size_t offset;
474   size_t size;
475   void *preferred_base;
476 };
477 
478 /* Write out the state of the compiler to F.  */
479 
480 void
481 gt_pch_save (FILE *f)
482 {
483   const struct ggc_root_tab *const *rt;
484   const struct ggc_root_tab *rti;
485   size_t i;
486   struct traversal_state state;
487   char *this_object = NULL;
488   size_t this_object_size = 0;
489   struct mmap_info mmi;
490   const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity();
491 
492   gt_pch_save_stringpool ();
493 
494   timevar_push (TV_PCH_PTR_REALLOC);
495   saving_htab = htab_create (50000, saving_htab_hash, saving_htab_eq, free);
496 
497   for (rt = gt_ggc_rtab; *rt; rt++)
498     for (rti = *rt; rti->base != NULL; rti++)
499       for (i = 0; i < rti->nelt; i++)
500 	(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
501 
502   for (rt = gt_pch_cache_rtab; *rt; rt++)
503     for (rti = *rt; rti->base != NULL; rti++)
504       for (i = 0; i < rti->nelt; i++)
505 	(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));
506 
507   /* Prepare the objects for writing, determine addresses and such.  */
508   state.f = f;
509   state.d = init_ggc_pch ();
510   state.count = 0;
511   htab_traverse (saving_htab, call_count, &state);
512 
513   mmi.size = ggc_pch_total_size (state.d);
514 
515   /* Try to arrange things so that no relocation is necessary, but
516      don't try very hard.  On most platforms, this will always work,
517      and on the rest it's a lot of work to do better.
518      (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
519      HOST_HOOKS_GT_PCH_USE_ADDRESS.)  */
520   mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));
521 
522   ggc_pch_this_base (state.d, mmi.preferred_base);
523 
524   state.ptrs = XNEWVEC (struct ptr_data *, state.count);
525   state.ptrs_i = 0;
526 
527   htab_traverse (saving_htab, call_alloc, &state);
528   timevar_pop (TV_PCH_PTR_REALLOC);
529 
530   timevar_push (TV_PCH_PTR_SORT);
531   qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
532   timevar_pop (TV_PCH_PTR_SORT);
533 
534   /* Write out all the scalar variables.  */
535   for (rt = gt_pch_scalar_rtab; *rt; rt++)
536     for (rti = *rt; rti->base != NULL; rti++)
537       if (fwrite (rti->base, rti->stride, 1, f) != 1)
538 	fatal_error ("can%'t write PCH file: %m");
539 
540   /* Write out all the global pointers, after translation.  */
541   write_pch_globals (gt_ggc_rtab, &state);
542   write_pch_globals (gt_pch_cache_rtab, &state);
543 
544   /* Pad the PCH file so that the mmapped area starts on an allocation
545      granularity (usually page) boundary.  */
546   {
547     long o;
548     o = ftell (state.f) + sizeof (mmi);
549     if (o == -1)
550       fatal_error ("can%'t get position in PCH file: %m");
551     mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
552     if (mmi.offset == mmap_offset_alignment)
553       mmi.offset = 0;
554     mmi.offset += o;
555   }
556   if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
557     fatal_error ("can%'t write PCH file: %m");
558   if (mmi.offset != 0
559       && fseek (state.f, mmi.offset, SEEK_SET) != 0)
560     fatal_error ("can%'t write padding to PCH file: %m");
561 
562   ggc_pch_prepare_write (state.d, state.f);
563 
564 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
565   vec<char> vbits = vNULL;
566 #endif
567 
568   /* Actually write out the objects.  */
569   for (i = 0; i < state.count; i++)
570     {
571       if (this_object_size < state.ptrs[i]->size)
572 	{
573 	  this_object_size = state.ptrs[i]->size;
574 	  this_object = XRESIZEVAR (char, this_object, this_object_size);
575 	}
576 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
577       /* obj might contain uninitialized bytes, e.g. in the trailing
578 	 padding of the object.  Avoid warnings by making the memory
579 	 temporarily defined and then restoring previous state.  */
580       int get_vbits = 0;
581       size_t valid_size = state.ptrs[i]->size;
582       if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
583 	{
584 	  if (vbits.length () < valid_size)
585 	    vbits.safe_grow (valid_size);
586 	  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
587 					  vbits.address (), valid_size);
588 	  if (get_vbits == 3)
589 	    {
590 	      /* We assume that first part of obj is addressable, and
591 		 the rest is unaddressable.  Find out where the boundary is
592 		 using binary search.  */
593 	      size_t lo = 0, hi = valid_size;
594 	      while (hi > lo)
595 		{
596 		  size_t mid = (lo + hi) / 2;
597 		  get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
598 						  + mid, vbits.address (),
599 						  1);
600 		  if (get_vbits == 3)
601 		    hi = mid;
602 		  else if (get_vbits == 1)
603 		    lo = mid + 1;
604 		  else
605 		    break;
606 		}
607 	      if (get_vbits == 1 || get_vbits == 3)
608 		{
609 		  valid_size = lo;
610 		  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
611 						  vbits.address (),
612 						  valid_size);
613 		}
614 	    }
615 	  if (get_vbits == 1)
616 	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
617 							 state.ptrs[i]->size));
618 	}
619 #endif
620       memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
621       if (state.ptrs[i]->reorder_fn != NULL)
622 	state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
623 				   state.ptrs[i]->note_ptr_cookie,
624 				   relocate_ptrs, &state);
625       state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
626 				  state.ptrs[i]->note_ptr_cookie,
627 				  relocate_ptrs, &state);
628       ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
629 			    state.ptrs[i]->new_addr, state.ptrs[i]->size,
630 			    state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
631       if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
632 	memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
633 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
634       if (__builtin_expect (get_vbits == 1, 0))
635 	{
636 	  (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
637 				     valid_size);
638 	  if (valid_size != state.ptrs[i]->size)
639 	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
640 							  state.ptrs[i]->obj
641 							  + valid_size,
642 							  state.ptrs[i]->size
643 							  - valid_size));
644 	}
645 #endif
646     }
647 #if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
648   vbits.release ();
649 #endif
650 
651   ggc_pch_finish (state.d, state.f);
652   gt_pch_fixup_stringpool ();
653 
654   XDELETE (state.ptrs);
655   XDELETE (this_object);
656   htab_delete (saving_htab);
657 }
658 
659 /* Read the state of the compiler back in from F.  */
660 
661 void
662 gt_pch_restore (FILE *f)
663 {
664   const struct ggc_root_tab *const *rt;
665   const struct ggc_root_tab *rti;
666   size_t i;
667   struct mmap_info mmi;
668   int result;
669   struct line_maps * old_line_table = line_table;
670   location_t old_input_loc = input_location;
671 
672   /* Delete any deletable objects.  This makes ggc_pch_read much
673      faster, as it can be sure that no GCable objects remain other
674      than the ones just read in.  */
675   for (rt = gt_ggc_deletable_rtab; *rt; rt++)
676     for (rti = *rt; rti->base != NULL; rti++)
677       memset (rti->base, 0, rti->stride);
678 
679   /* Read in all the scalar variables.  */
680   for (rt = gt_pch_scalar_rtab; *rt; rt++)
681     for (rti = *rt; rti->base != NULL; rti++)
682       if (fread (rti->base, rti->stride, 1, f) != 1) {
683         line_table = old_line_table;
684 	input_location = old_input_loc;
685 	fatal_error ("can%'t read PCH file: %m");
686       }
687 
688   /* Read in all the global pointers, in 6 easy loops.  */
689   for (rt = gt_ggc_rtab; *rt; rt++)
690     for (rti = *rt; rti->base != NULL; rti++)
691       for (i = 0; i < rti->nelt; i++)
692 	if (fread ((char *)rti->base + rti->stride * i,
693 		   sizeof (void *), 1, f) != 1) {
694           line_table = old_line_table;
695 	  input_location = old_input_loc;
696 	  fatal_error ("can%'t read PCH file: %m");
697         }
698 
699   for (rt = gt_pch_cache_rtab; *rt; rt++)
700     for (rti = *rt; rti->base != NULL; rti++)
701       for (i = 0; i < rti->nelt; i++)
702 	if (fread ((char *)rti->base + rti->stride * i,
703 		   sizeof (void *), 1, f) != 1) {
704           line_table = old_line_table;
705 	  input_location = old_input_loc;
706 	  fatal_error ("can%'t read PCH file: %m");
707         }
708 
709   if (fread (&mmi, sizeof (mmi), 1, f) != 1) {
710     line_table = old_line_table;
711     input_location = old_input_loc;
712     fatal_error ("can%'t read PCH file: %m");
713   }
714 
715   result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
716 					  fileno (f), mmi.offset);
717   if (result < 0) {
718     line_table = old_line_table;
719     input_location = old_input_loc;
720     fatal_error ("had to relocate PCH");
721   }
722   if (result == 0)
723     {
724       if (fseek (f, mmi.offset, SEEK_SET) != 0
725 	  || fread (mmi.preferred_base, mmi.size, 1, f) != 1) {
726         line_table = old_line_table;
727         input_location = old_input_loc;
728 	fatal_error ("can%'t read PCH file: %m");
729       }
730     }
731   else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0) {
732     line_table = old_line_table;
733     input_location = old_input_loc;
734     fatal_error ("can%'t read PCH file: %m");
735   }
736 
737   ggc_pch_read (f, mmi.preferred_base);
738 
739   gt_pch_restore_stringpool ();
740 }
741 
742 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
743    Select no address whatsoever, and let gt_pch_save choose what it will with
744    malloc, presumably.  */
745 
746 void *
747 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
748 			    int fd ATTRIBUTE_UNUSED)
749 {
750   return NULL;
751 }
752 
753 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
754    Allocate SIZE bytes with malloc.  Return 0 if the address we got is the
755    same as base, indicating that the memory has been allocated but needs to
756    be read in from the file.  Return -1 if the address differs, to relocation
757    of the PCH file would be required.  */
758 
759 int
760 default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
761 			    size_t offset ATTRIBUTE_UNUSED)
762 {
763   void *addr = xmalloc (size);
764   return (addr == base) - 1;
765 }
766 
767 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS.   Return the
768    alignment required for allocating virtual memory. Usually this is the
769    same as pagesize.  */
770 
771 size_t
772 default_gt_pch_alloc_granularity (void)
773 {
774   return getpagesize();
775 }
776 
777 #if HAVE_MMAP_FILE
778 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
779    We temporarily allocate SIZE bytes, and let the kernel place the data
780    wherever it will.  If it worked, that's our spot, if not we're likely
781    to be in trouble.  */
782 
783 void *
784 mmap_gt_pch_get_address (size_t size, int fd)
785 {
786   void *ret;
787 
788   ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
789   if (ret == (void *) MAP_FAILED)
790     ret = NULL;
791   else
792     munmap ((caddr_t) ret, size);
793 
794   return ret;
795 }
796 
797 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
798    Map SIZE bytes of FD+OFFSET at BASE.  Return 1 if we succeeded at
799    mapping the data at BASE, -1 if we couldn't.
800 
801    This version assumes that the kernel honors the START operand of mmap
802    even without MAP_FIXED if START through START+SIZE are not currently
803    mapped with something.  */
804 
805 int
806 mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
807 {
808   void *addr;
809 
810   /* We're called with size == 0 if we're not planning to load a PCH
811      file at all.  This allows the hook to free any static space that
812      we might have allocated at link time.  */
813   if (size == 0)
814     return -1;
815 
816   addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
817 	       fd, offset);
818 
819   return addr == base ? 1 : -1;
820 }
821 #endif /* HAVE_MMAP_FILE */
822 
823 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
824 
825 /* Modify the bound based on rlimits.  */
826 static double
827 ggc_rlimit_bound (double limit)
828 {
829 #if defined(HAVE_GETRLIMIT)
830   struct rlimit rlim;
831 # if defined (RLIMIT_AS)
832   /* RLIMIT_AS is what POSIX says is the limit on mmap.  Presumably
833      any OS which has RLIMIT_AS also has a working mmap that GCC will use.  */
834   if (getrlimit (RLIMIT_AS, &rlim) == 0
835       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
836       && rlim.rlim_cur < limit)
837     limit = rlim.rlim_cur;
838 # elif defined (RLIMIT_DATA)
839   /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
840      might be on an OS that has a broken mmap.  (Others don't bound
841      mmap at all, apparently.)  */
842   if (getrlimit (RLIMIT_DATA, &rlim) == 0
843       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
844       && rlim.rlim_cur < limit
845       /* Darwin has this horribly bogus default setting of
846 	 RLIMIT_DATA, to 6144Kb.  No-one notices because RLIMIT_DATA
847 	 appears to be ignored.  Ignore such silliness.  If a limit
848 	 this small was actually effective for mmap, GCC wouldn't even
849 	 start up.  */
850       && rlim.rlim_cur >= 8 * 1024 * 1024)
851     limit = rlim.rlim_cur;
852 # endif /* RLIMIT_AS or RLIMIT_DATA */
853 #endif /* HAVE_GETRLIMIT */
854 
855   return limit;
856 }
857 
858 /* Heuristic to set a default for GGC_MIN_EXPAND.  */
859 static int
860 ggc_min_expand_heuristic (void)
861 {
862   double min_expand = physmem_total();
863 
864   /* Adjust for rlimits.  */
865   min_expand = ggc_rlimit_bound (min_expand);
866 
867   /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
868      a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB).  */
869   min_expand /= 1024*1024*1024;
870   min_expand *= 70;
871   min_expand = MIN (min_expand, 70);
872   min_expand += 30;
873 
874   return min_expand;
875 }
876 
877 /* Heuristic to set a default for GGC_MIN_HEAPSIZE.  */
878 static int
879 ggc_min_heapsize_heuristic (void)
880 {
881   double phys_kbytes = physmem_total();
882   double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);
883 
884   phys_kbytes /= 1024; /* Convert to Kbytes.  */
885   limit_kbytes /= 1024;
886 
887   /* The heuristic is RAM/8, with a lower bound of 4M and an upper
888      bound of 128M (when RAM >= 1GB).  */
889   phys_kbytes /= 8;
890 
891 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
892   /* Try not to overrun the RSS limit while doing garbage collection.
893      The RSS limit is only advisory, so no margin is subtracted.  */
894  {
895    struct rlimit rlim;
896    if (getrlimit (RLIMIT_RSS, &rlim) == 0
897        && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
898      phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
899  }
900 # endif
901 
902   /* Don't blindly run over our data limit; do GC at least when the
903      *next* GC would be within 20Mb of the limit or within a quarter of
904      the limit, whichever is larger.  If GCC does hit the data limit,
905      compilation will fail, so this tries to be conservative.  */
906   limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
907   limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
908   phys_kbytes = MIN (phys_kbytes, limit_kbytes);
909 
910   phys_kbytes = MAX (phys_kbytes, 4 * 1024);
911   phys_kbytes = MIN (phys_kbytes, 128 * 1024);
912 
913   return phys_kbytes;
914 }
915 #endif
916 
917 void
918 init_ggc_heuristics (void)
919 {
920 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
921   set_default_param_value (GGC_MIN_EXPAND, ggc_min_expand_heuristic ());
922   set_default_param_value (GGC_MIN_HEAPSIZE, ggc_min_heapsize_heuristic ());
923 #endif
924 }
925 
926 /* Datastructure used to store per-call-site statistics.  */
927 struct loc_descriptor
928 {
929   const char *file;
930   int line;
931   const char *function;
932   int times;
933   size_t allocated;
934   size_t overhead;
935   size_t freed;
936   size_t collected;
937 };
938 
939 /* Hashtable used for statistics.  */
940 static htab_t loc_hash;
941 
942 /* Hash table helpers functions.  */
943 static hashval_t
944 hash_descriptor (const void *p)
945 {
946   const struct loc_descriptor *const d = (const struct loc_descriptor *) p;
947 
948   return htab_hash_pointer (d->function) | d->line;
949 }
950 
951 static int
952 eq_descriptor (const void *p1, const void *p2)
953 {
954   const struct loc_descriptor *const d = (const struct loc_descriptor *) p1;
955   const struct loc_descriptor *const d2 = (const struct loc_descriptor *) p2;
956 
957   return (d->file == d2->file && d->line == d2->line
958 	  && d->function == d2->function);
959 }
960 
961 /* Hashtable converting address of allocated field to loc descriptor.  */
962 static htab_t ptr_hash;
963 struct ptr_hash_entry
964 {
965   void *ptr;
966   struct loc_descriptor *loc;
967   size_t size;
968 };
969 
970 /* Hash table helpers functions.  */
971 static hashval_t
972 hash_ptr (const void *p)
973 {
974   const struct ptr_hash_entry *const d = (const struct ptr_hash_entry *) p;
975 
976   return htab_hash_pointer (d->ptr);
977 }
978 
979 static int
980 eq_ptr (const void *p1, const void *p2)
981 {
982   const struct ptr_hash_entry *const p = (const struct ptr_hash_entry *) p1;
983 
984   return (p->ptr == p2);
985 }
986 
987 /* Return descriptor for given call site, create new one if needed.  */
988 static struct loc_descriptor *
989 loc_descriptor (const char *name, int line, const char *function)
990 {
991   struct loc_descriptor loc;
992   struct loc_descriptor **slot;
993 
994   loc.file = name;
995   loc.line = line;
996   loc.function = function;
997   if (!loc_hash)
998     loc_hash = htab_create (10, hash_descriptor, eq_descriptor, NULL);
999 
1000   slot = (struct loc_descriptor **) htab_find_slot (loc_hash, &loc, INSERT);
1001   if (*slot)
1002     return *slot;
1003   *slot = XCNEW (struct loc_descriptor);
1004   (*slot)->file = name;
1005   (*slot)->line = line;
1006   (*slot)->function = function;
1007   return *slot;
1008 }
1009 
1010 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION).  */
1011 void
1012 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr,
1013 		     const char *name, int line, const char *function)
1014 {
1015   struct loc_descriptor *loc = loc_descriptor (name, line, function);
1016   struct ptr_hash_entry *p = XNEW (struct ptr_hash_entry);
1017   PTR *slot;
1018 
1019   p->ptr = ptr;
1020   p->loc = loc;
1021   p->size = allocated + overhead;
1022   if (!ptr_hash)
1023     ptr_hash = htab_create (10, hash_ptr, eq_ptr, NULL);
1024   slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr), INSERT);
1025   gcc_assert (!*slot);
1026   *slot = p;
1027 
1028   loc->times++;
1029   loc->allocated+=allocated;
1030   loc->overhead+=overhead;
1031 }
1032 
1033 /* Helper function for prune_overhead_list.  See if SLOT is still marked and
1034    remove it from hashtable if it is not.  */
1035 static int
1036 ggc_prune_ptr (void **slot, void *b ATTRIBUTE_UNUSED)
1037 {
1038   struct ptr_hash_entry *p = (struct ptr_hash_entry *) *slot;
1039   if (!ggc_marked_p (p->ptr))
1040     {
1041       p->loc->collected += p->size;
1042       htab_clear_slot (ptr_hash, slot);
1043       free (p);
1044     }
1045   return 1;
1046 }
1047 
1048 /* After live values has been marked, walk all recorded pointers and see if
1049    they are still live.  */
1050 void
1051 ggc_prune_overhead_list (void)
1052 {
1053   htab_traverse (ptr_hash, ggc_prune_ptr, NULL);
1054 }
1055 
1056 /* Notice that the pointer has been freed.  */
1057 void
1058 ggc_free_overhead (void *ptr)
1059 {
1060   PTR *slot = htab_find_slot_with_hash (ptr_hash, ptr, htab_hash_pointer (ptr),
1061 					NO_INSERT);
1062   struct ptr_hash_entry *p;
1063   /* The pointer might be not found if a PCH read happened between allocation
1064      and ggc_free () call.  FIXME: account memory properly in the presence of
1065      PCH. */
1066   if (!slot)
1067       return;
1068   p = (struct ptr_hash_entry *) *slot;
1069   p->loc->freed += p->size;
1070   htab_clear_slot (ptr_hash, slot);
1071   free (p);
1072 }
1073 
1074 /* Helper for qsort; sort descriptors by amount of memory consumed.  */
1075 static int
1076 final_cmp_statistic (const void *loc1, const void *loc2)
1077 {
1078   const struct loc_descriptor *const l1 =
1079     *(const struct loc_descriptor *const *) loc1;
1080   const struct loc_descriptor *const l2 =
1081     *(const struct loc_descriptor *const *) loc2;
1082   long diff;
1083   diff = ((long)(l1->allocated + l1->overhead - l1->freed) -
1084 	  (l2->allocated + l2->overhead - l2->freed));
1085   return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1086 }
1087 
1088 /* Helper for qsort; sort descriptors by amount of memory consumed.  */
1089 static int
1090 cmp_statistic (const void *loc1, const void *loc2)
1091 {
1092   const struct loc_descriptor *const l1 =
1093     *(const struct loc_descriptor *const *) loc1;
1094   const struct loc_descriptor *const l2 =
1095     *(const struct loc_descriptor *const *) loc2;
1096   long diff;
1097 
1098   diff = ((long)(l1->allocated + l1->overhead - l1->freed - l1->collected) -
1099 	  (l2->allocated + l2->overhead - l2->freed - l2->collected));
1100   if (diff)
1101     return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1102   diff =  ((long)(l1->allocated + l1->overhead - l1->freed) -
1103 	   (l2->allocated + l2->overhead - l2->freed));
1104   return diff > 0 ? 1 : diff < 0 ? -1 : 0;
1105 }
1106 
1107 /* Collect array of the descriptors from hashtable.  */
1108 static struct loc_descriptor **loc_array;
1109 static int
1110 add_statistics (void **slot, void *b)
1111 {
1112   int *n = (int *)b;
1113   loc_array[*n] = (struct loc_descriptor *) *slot;
1114   (*n)++;
1115   return 1;
1116 }
1117 
1118 /* Dump per-site memory statistics.  */
1119 
1120 void
1121 dump_ggc_loc_statistics (bool final)
1122 {
1123   int nentries = 0;
1124   char s[4096];
1125   size_t collected = 0, freed = 0, allocated = 0, overhead = 0, times = 0;
1126   int i;
1127 
1128   if (! GATHER_STATISTICS)
1129     return;
1130 
1131   ggc_force_collect = true;
1132   ggc_collect ();
1133 
1134   loc_array = XCNEWVEC (struct loc_descriptor *, loc_hash->n_elements);
1135   fprintf (stderr, "-------------------------------------------------------\n");
1136   fprintf (stderr, "\n%-48s %10s       %10s       %10s       %10s       %10s\n",
1137 	   "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1138   fprintf (stderr, "-------------------------------------------------------\n");
1139   htab_traverse (loc_hash, add_statistics, &nentries);
1140   qsort (loc_array, nentries, sizeof (*loc_array),
1141 	 final ? final_cmp_statistic : cmp_statistic);
1142   for (i = 0; i < nentries; i++)
1143     {
1144       struct loc_descriptor *d = loc_array[i];
1145       allocated += d->allocated;
1146       times += d->times;
1147       freed += d->freed;
1148       collected += d->collected;
1149       overhead += d->overhead;
1150     }
1151   for (i = 0; i < nentries; i++)
1152     {
1153       struct loc_descriptor *d = loc_array[i];
1154       if (d->allocated)
1155 	{
1156 	  const char *s1 = d->file;
1157 	  const char *s2;
1158 	  while ((s2 = strstr (s1, "gcc/")))
1159 	    s1 = s2 + 4;
1160 	  sprintf (s, "%s:%i (%s)", s1, d->line, d->function);
1161 	  s[48] = 0;
1162 	  fprintf (stderr, "%-48s %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li:%4.1f%% %10li\n", s,
1163 		   (long)d->collected,
1164 		   (d->collected) * 100.0 / collected,
1165 		   (long)d->freed,
1166 		   (d->freed) * 100.0 / freed,
1167 		   (long)(d->allocated + d->overhead - d->freed - d->collected),
1168 		   (d->allocated + d->overhead - d->freed - d->collected) * 100.0
1169 		   / (allocated + overhead - freed - collected),
1170 		   (long)d->overhead,
1171 		   d->overhead * 100.0 / overhead,
1172 		   (long)d->times);
1173 	}
1174     }
1175   fprintf (stderr, "%-48s %10ld       %10ld       %10ld       %10ld       %10ld\n",
1176 	   "Total", (long)collected, (long)freed,
1177 	   (long)(allocated + overhead - freed - collected), (long)overhead,
1178 	   (long)times);
1179   fprintf (stderr, "%-48s %10s       %10s       %10s       %10s       %10s\n",
1180 	   "source location", "Garbage", "Freed", "Leak", "Overhead", "Times");
1181   fprintf (stderr, "-------------------------------------------------------\n");
1182   ggc_force_collect = false;
1183 }
1184