xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/gcse.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Global common subexpression elimination/Partial redundancy elimination
2    and global constant/copy propagation for GNU compiler.
3    Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
4    2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* TODO
23    - reordering of memory allocation and freeing to be more space efficient
24    - do rough calc of how many regs are needed in each block, and a rough
25      calc of how many regs are available in each class and use that to
26      throttle back the code in cases where RTX_COST is minimal.
27    - a store to the same address as a load does not kill the load if the
28      source of the store is also the destination of the load.  Handling this
29      allows more load motion, particularly out of loops.
30 
31 */
32 
33 /* References searched while implementing this.
34 
35    Compilers Principles, Techniques and Tools
36    Aho, Sethi, Ullman
37    Addison-Wesley, 1988
38 
39    Global Optimization by Suppression of Partial Redundancies
40    E. Morel, C. Renvoise
41    communications of the acm, Vol. 22, Num. 2, Feb. 1979
42 
43    A Portable Machine-Independent Global Optimizer - Design and Measurements
44    Frederick Chow
45    Stanford Ph.D. thesis, Dec. 1983
46 
47    A Fast Algorithm for Code Movement Optimization
48    D.M. Dhamdhere
49    SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
50 
51    A Solution to a Problem with Morel and Renvoise's
52    Global Optimization by Suppression of Partial Redundancies
53    K-H Drechsler, M.P. Stadel
54    ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
55 
56    Practical Adaptation of the Global Optimization
57    Algorithm of Morel and Renvoise
58    D.M. Dhamdhere
59    ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
60 
61    Efficiently Computing Static Single Assignment Form and the Control
62    Dependence Graph
63    R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
64    ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
65 
66    Lazy Code Motion
67    J. Knoop, O. Ruthing, B. Steffen
68    ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
69 
70    What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
71    Time for Reducible Flow Control
72    Thomas Ball
73    ACM Letters on Programming Languages and Systems,
74    Vol. 2, Num. 1-4, Mar-Dec 1993
75 
76    An Efficient Representation for Sparse Sets
77    Preston Briggs, Linda Torczon
78    ACM Letters on Programming Languages and Systems,
79    Vol. 2, Num. 1-4, Mar-Dec 1993
80 
81    A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
82    K-H Drechsler, M.P. Stadel
83    ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
84 
85    Partial Dead Code Elimination
86    J. Knoop, O. Ruthing, B. Steffen
87    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
88 
89    Effective Partial Redundancy Elimination
90    P. Briggs, K.D. Cooper
91    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92 
93    The Program Structure Tree: Computing Control Regions in Linear Time
94    R. Johnson, D. Pearson, K. Pingali
95    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96 
97    Optimal Code Motion: Theory and Practice
98    J. Knoop, O. Ruthing, B. Steffen
99    ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
100 
101    The power of assignment motion
102    J. Knoop, O. Ruthing, B. Steffen
103    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
104 
105    Global code motion / global value numbering
106    C. Click
107    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108 
109    Value Driven Redundancy Elimination
110    L.T. Simpson
111    Rice University Ph.D. thesis, Apr. 1996
112 
113    Value Numbering
114    L.T. Simpson
115    Massively Scalar Compiler Project, Rice University, Sep. 1996
116 
117    High Performance Compilers for Parallel Computing
118    Michael Wolfe
119    Addison-Wesley, 1996
120 
121    Advanced Compiler Design and Implementation
122    Steven Muchnick
123    Morgan Kaufmann, 1997
124 
125    Building an Optimizing Compiler
126    Robert Morgan
127    Digital Press, 1998
128 
129    People wishing to speed up the code here should read:
130      Elimination Algorithms for Data Flow Analysis
131      B.G. Ryder, M.C. Paull
132      ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
133 
134      How to Analyze Large Programs Efficiently and Informatively
135      D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
136      ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
137 
138    People wishing to do something different can find various possibilities
139    in the above papers and elsewhere.
140 */
141 
142 #include "config.h"
143 #include "system.h"
144 #include "coretypes.h"
145 #include "tm.h"
146 #include "toplev.h"
147 
148 #include "rtl.h"
149 #include "tree.h"
150 #include "tm_p.h"
151 #include "regs.h"
152 #include "hard-reg-set.h"
153 #include "flags.h"
154 #include "real.h"
155 #include "insn-config.h"
156 #include "recog.h"
157 #include "basic-block.h"
158 #include "output.h"
159 #include "function.h"
160 #include "expr.h"
161 #include "except.h"
162 #include "ggc.h"
163 #include "params.h"
164 #include "cselib.h"
165 #include "intl.h"
166 #include "obstack.h"
167 #include "timevar.h"
168 #include "tree-pass.h"
169 #include "hashtab.h"
170 #include "df.h"
171 #include "dbgcnt.h"
172 #include "target.h"
173 
174 /* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
175    are a superset of those done by classic GCSE.
176 
177    We perform the following steps:
178 
179    1) Compute table of places where registers are set.
180 
181    2) Perform copy/constant propagation.
182 
183    3) Perform global cse using lazy code motion if not optimizing
184       for size, or code hoisting if we are.
185 
186    4) Perform another pass of copy/constant propagation.  Try to bypass
187       conditional jumps if the condition can be computed from a value of
188       an incoming edge.
189 
190    Two passes of copy/constant propagation are done because the first one
191    enables more GCSE and the second one helps to clean up the copies that
192    GCSE creates.  This is needed more for PRE than for Classic because Classic
193    GCSE will try to use an existing register containing the common
194    subexpression rather than create a new one.  This is harder to do for PRE
195    because of the code motion (which Classic GCSE doesn't do).
196 
197    Expressions we are interested in GCSE-ing are of the form
198    (set (pseudo-reg) (expression)).
199    Function want_to_gcse_p says what these are.
200 
201    In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
202    This allows PRE to hoist expressions that are expressed in multiple insns,
203    such as complex address calculations (e.g. for PIC code, or loads with a
204    high part and a low part).
205 
206    PRE handles moving invariant expressions out of loops (by treating them as
207    partially redundant).
208 
209    **********************
210 
211    We used to support multiple passes but there are diminishing returns in
212    doing so.  The first pass usually makes 90% of the changes that are doable.
213    A second pass can make a few more changes made possible by the first pass.
214    Experiments show any further passes don't make enough changes to justify
215    the expense.
216 
217    A study of spec92 using an unlimited number of passes:
218    [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
219    [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
220    [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
221 
222    It was found doing copy propagation between each pass enables further
223    substitutions.
224 
225    This study was done before expressions in REG_EQUAL notes were added as
226    candidate expressions for optimization, and before the GIMPLE optimizers
227    were added.  Probably, multiple passes is even less efficient now than
228    at the time when the study was conducted.
229 
230    PRE is quite expensive in complicated functions because the DFA can take
231    a while to converge.  Hence we only perform one pass.
232 
233    **********************
234 
235    The steps for PRE are:
236 
237    1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
238 
239    2) Perform the data flow analysis for PRE.
240 
241    3) Delete the redundant instructions
242 
243    4) Insert the required copies [if any] that make the partially
244       redundant instructions fully redundant.
245 
246    5) For other reaching expressions, insert an instruction to copy the value
247       to a newly created pseudo that will reach the redundant instruction.
248 
249    The deletion is done first so that when we do insertions we
250    know which pseudo reg to use.
251 
252    Various papers have argued that PRE DFA is expensive (O(n^2)) and others
253    argue it is not.  The number of iterations for the algorithm to converge
254    is typically 2-4 so I don't view it as that expensive (relatively speaking).
255 
256    PRE GCSE depends heavily on the second CPROP pass to clean up the copies
257    we create.  To make an expression reach the place where it's redundant,
258    the result of the expression is copied to a new register, and the redundant
259    expression is deleted by replacing it with this new register.  Classic GCSE
260    doesn't have this problem as much as it computes the reaching defs of
261    each register in each block and thus can try to use an existing
262    register.  */
263 
264 /* GCSE global vars.  */
265 
266 /* Set to non-zero if CSE should run after all GCSE optimizations are done.  */
267 int flag_rerun_cse_after_global_opts;
268 
269 /* An obstack for our working variables.  */
270 static struct obstack gcse_obstack;
271 
272 struct reg_use {rtx reg_rtx; };
273 
274 /* Hash table of expressions.  */
275 
276 struct expr
277 {
278   /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
279   rtx expr;
280   /* Index in the available expression bitmaps.  */
281   int bitmap_index;
282   /* Next entry with the same hash.  */
283   struct expr *next_same_hash;
284   /* List of anticipatable occurrences in basic blocks in the function.
285      An "anticipatable occurrence" is one that is the first occurrence in the
286      basic block, the operands are not modified in the basic block prior
287      to the occurrence and the output is not used between the start of
288      the block and the occurrence.  */
289   struct occr *antic_occr;
290   /* List of available occurrence in basic blocks in the function.
291      An "available occurrence" is one that is the last occurrence in the
292      basic block and the operands are not modified by following statements in
293      the basic block [including this insn].  */
294   struct occr *avail_occr;
295   /* Non-null if the computation is PRE redundant.
296      The value is the newly created pseudo-reg to record a copy of the
297      expression in all the places that reach the redundant copy.  */
298   rtx reaching_reg;
299 };
300 
301 /* Occurrence of an expression.
302    There is one per basic block.  If a pattern appears more than once the
303    last appearance is used [or first for anticipatable expressions].  */
304 
305 struct occr
306 {
307   /* Next occurrence of this expression.  */
308   struct occr *next;
309   /* The insn that computes the expression.  */
310   rtx insn;
311   /* Nonzero if this [anticipatable] occurrence has been deleted.  */
312   char deleted_p;
313   /* Nonzero if this [available] occurrence has been copied to
314      reaching_reg.  */
315   /* ??? This is mutually exclusive with deleted_p, so they could share
316      the same byte.  */
317   char copied_p;
318 };
319 
320 /* Expression and copy propagation hash tables.
321    Each hash table is an array of buckets.
322    ??? It is known that if it were an array of entries, structure elements
323    `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
324    not clear whether in the final analysis a sufficient amount of memory would
325    be saved as the size of the available expression bitmaps would be larger
326    [one could build a mapping table without holes afterwards though].
327    Someday I'll perform the computation and figure it out.  */
328 
329 struct hash_table_d
330 {
331   /* The table itself.
332      This is an array of `expr_hash_table_size' elements.  */
333   struct expr **table;
334 
335   /* Size of the hash table, in elements.  */
336   unsigned int size;
337 
338   /* Number of hash table elements.  */
339   unsigned int n_elems;
340 
341   /* Whether the table is expression of copy propagation one.  */
342   int set_p;
343 };
344 
345 /* Expression hash table.  */
346 static struct hash_table_d expr_hash_table;
347 
348 /* Copy propagation hash table.  */
349 static struct hash_table_d set_hash_table;
350 
351 /* This is a list of expressions which are MEMs and will be used by load
352    or store motion.
353    Load motion tracks MEMs which aren't killed by
354    anything except itself. (i.e., loads and stores to a single location).
355    We can then allow movement of these MEM refs with a little special
356    allowance. (all stores copy the same value to the reaching reg used
357    for the loads).  This means all values used to store into memory must have
358    no side effects so we can re-issue the setter value.
359    Store Motion uses this structure as an expression table to track stores
360    which look interesting, and might be moveable towards the exit block.  */
361 
362 struct ls_expr
363 {
364   struct expr * expr;		/* Gcse expression reference for LM.  */
365   rtx pattern;			/* Pattern of this mem.  */
366   rtx pattern_regs;		/* List of registers mentioned by the mem.  */
367   rtx loads;			/* INSN list of loads seen.  */
368   rtx stores;			/* INSN list of stores seen.  */
369   struct ls_expr * next;	/* Next in the list.  */
370   int invalid;			/* Invalid for some reason.  */
371   int index;			/* If it maps to a bitmap index.  */
372   unsigned int hash_index;	/* Index when in a hash table.  */
373   rtx reaching_reg;		/* Register to use when re-writing.  */
374 };
375 
376 /* Array of implicit set patterns indexed by basic block index.  */
377 static rtx *implicit_sets;
378 
379 /* Head of the list of load/store memory refs.  */
380 static struct ls_expr * pre_ldst_mems = NULL;
381 
382 /* Hashtable for the load/store memory refs.  */
383 static htab_t pre_ldst_table = NULL;
384 
385 /* Bitmap containing one bit for each register in the program.
386    Used when performing GCSE to track which registers have been set since
387    the start of the basic block.  */
388 static regset reg_set_bitmap;
389 
390 /* Array, indexed by basic block number for a list of insns which modify
391    memory within that block.  */
392 static rtx * modify_mem_list;
393 static bitmap modify_mem_list_set;
394 
395 /* This array parallels modify_mem_list, but is kept canonicalized.  */
396 static rtx * canon_modify_mem_list;
397 
398 /* Bitmap indexed by block numbers to record which blocks contain
399    function calls.  */
400 static bitmap blocks_with_calls;
401 
402 /* Various variables for statistics gathering.  */
403 
404 /* Memory used in a pass.
405    This isn't intended to be absolutely precise.  Its intent is only
406    to keep an eye on memory usage.  */
407 static int bytes_used;
408 
409 /* GCSE substitutions made.  */
410 static int gcse_subst_count;
411 /* Number of copy instructions created.  */
412 static int gcse_create_count;
413 /* Number of local constants propagated.  */
414 static int local_const_prop_count;
415 /* Number of local copies propagated.  */
416 static int local_copy_prop_count;
417 /* Number of global constants propagated.  */
418 static int global_const_prop_count;
419 /* Number of global copies propagated.  */
420 static int global_copy_prop_count;
421 
422 /* For available exprs */
423 static sbitmap *ae_kill;
424 
425 static void compute_can_copy (void);
426 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
427 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
428 static void *gcse_alloc (unsigned long);
429 static void alloc_gcse_mem (void);
430 static void free_gcse_mem (void);
431 static void hash_scan_insn (rtx, struct hash_table_d *);
432 static void hash_scan_set (rtx, rtx, struct hash_table_d *);
433 static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
434 static void hash_scan_call (rtx, rtx, struct hash_table_d *);
435 static int want_to_gcse_p (rtx);
436 static bool gcse_constant_p (const_rtx);
437 static int oprs_unchanged_p (const_rtx, const_rtx, int);
438 static int oprs_anticipatable_p (const_rtx, const_rtx);
439 static int oprs_available_p (const_rtx, const_rtx);
440 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
441 				  struct hash_table_d *);
442 static void insert_set_in_table (rtx, rtx, struct hash_table_d *);
443 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
444 static unsigned int hash_set (int, int);
445 static int expr_equiv_p (const_rtx, const_rtx);
446 static void record_last_reg_set_info (rtx, int);
447 static void record_last_mem_set_info (rtx);
448 static void record_last_set_info (rtx, const_rtx, void *);
449 static void compute_hash_table (struct hash_table_d *);
450 static void alloc_hash_table (struct hash_table_d *, int);
451 static void free_hash_table (struct hash_table_d *);
452 static void compute_hash_table_work (struct hash_table_d *);
453 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
454 static struct expr *lookup_set (unsigned int, struct hash_table_d *);
455 static struct expr *next_set (unsigned int, struct expr *);
456 static void reset_opr_set_tables (void);
457 static int oprs_not_set_p (const_rtx, const_rtx);
458 static void mark_call (rtx);
459 static void mark_set (rtx, rtx);
460 static void mark_clobber (rtx, rtx);
461 static void mark_oprs_set (rtx);
462 static void alloc_cprop_mem (int, int);
463 static void free_cprop_mem (void);
464 static void compute_transp (const_rtx, int, sbitmap *, int);
465 static void compute_transpout (void);
466 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
467 				      struct hash_table_d *);
468 static void compute_cprop_data (void);
469 static void find_used_regs (rtx *, void *);
470 static int try_replace_reg (rtx, rtx, rtx);
471 static struct expr *find_avail_set (int, rtx);
472 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
473 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
474 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
475 static void canon_list_insert (rtx, const_rtx, void *);
476 static int cprop_insn (rtx);
477 static void find_implicit_sets (void);
478 static int one_cprop_pass (void);
479 static bool constprop_register (rtx, rtx, rtx);
480 static struct expr *find_bypass_set (int, int);
481 static bool reg_killed_on_edge (const_rtx, const_edge);
482 static int bypass_block (basic_block, rtx, rtx);
483 static int bypass_conditional_jumps (void);
484 static void alloc_pre_mem (int, int);
485 static void free_pre_mem (void);
486 static void compute_pre_data (void);
487 static int pre_expr_reaches_here_p (basic_block, struct expr *,
488 				    basic_block);
489 static void insert_insn_end_basic_block (struct expr *, basic_block, int);
490 static void pre_insert_copy_insn (struct expr *, rtx);
491 static void pre_insert_copies (void);
492 static int pre_delete (void);
493 static int pre_gcse (void);
494 static int one_pre_gcse_pass (void);
495 static void add_label_notes (rtx, rtx);
496 static void alloc_code_hoist_mem (int, int);
497 static void free_code_hoist_mem (void);
498 static void compute_code_hoist_vbeinout (void);
499 static void compute_code_hoist_data (void);
500 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
501 static int hoist_code (void);
502 static int one_code_hoisting_pass (void);
503 static rtx process_insert_insn (struct expr *);
504 static int pre_edge_insert (struct edge_list *, struct expr **);
505 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
506 					 basic_block, char *);
507 static struct ls_expr * ldst_entry (rtx);
508 static void free_ldst_entry (struct ls_expr *);
509 static void free_ldst_mems (void);
510 static void print_ldst_list (FILE *);
511 static struct ls_expr * find_rtx_in_ldst (rtx);
512 static inline struct ls_expr * first_ls_expr (void);
513 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
514 static int simple_mem (const_rtx);
515 static void invalidate_any_buried_refs (rtx);
516 static void compute_ld_motion_mems (void);
517 static void trim_ld_motion_mems (void);
518 static void update_ld_motion_stores (struct expr *);
519 static void free_insn_expr_list_list (rtx *);
520 static void clear_modify_mem_tables (void);
521 static void free_modify_mem_tables (void);
522 static rtx gcse_emit_move_after (rtx, rtx, rtx);
523 static void local_cprop_find_used_regs (rtx *, void *);
524 static bool do_local_cprop (rtx, rtx);
525 static int local_cprop_pass (void);
526 static bool is_too_expensive (const char *);
527 
528 #define GNEW(T)			((T *) gmalloc (sizeof (T)))
529 #define GCNEW(T)		((T *) gcalloc (1, sizeof (T)))
530 
531 #define GNEWVEC(T, N)		((T *) gmalloc (sizeof (T) * (N)))
532 #define GCNEWVEC(T, N)		((T *) gcalloc ((N), sizeof (T)))
533 
534 #define GNEWVAR(T, S)		((T *) gmalloc ((S)))
535 #define GCNEWVAR(T, S)		((T *) gcalloc (1, (S)))
536 
537 #define GOBNEW(T)		((T *) gcse_alloc (sizeof (T)))
538 #define GOBNEWVAR(T, S)		((T *) gcse_alloc ((S)))
539 
540 /* Misc. utilities.  */
541 
542 /* Nonzero for each mode that supports (set (reg) (reg)).
543    This is trivially true for integer and floating point values.
544    It may or may not be true for condition codes.  */
545 static char can_copy[(int) NUM_MACHINE_MODES];
546 
547 /* Compute which modes support reg/reg copy operations.  */
548 
549 static void
550 compute_can_copy (void)
551 {
552   int i;
553 #ifndef AVOID_CCMODE_COPIES
554   rtx reg, insn;
555 #endif
556   memset (can_copy, 0, NUM_MACHINE_MODES);
557 
558   start_sequence ();
559   for (i = 0; i < NUM_MACHINE_MODES; i++)
560     if (GET_MODE_CLASS (i) == MODE_CC)
561       {
562 #ifdef AVOID_CCMODE_COPIES
563 	can_copy[i] = 0;
564 #else
565 	reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
566 	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
567 	if (recog (PATTERN (insn), insn, NULL) >= 0)
568 	  can_copy[i] = 1;
569 #endif
570       }
571     else
572       can_copy[i] = 1;
573 
574   end_sequence ();
575 }
576 
577 /* Returns whether the mode supports reg/reg copy operations.  */
578 
579 bool
580 can_copy_p (enum machine_mode mode)
581 {
582   static bool can_copy_init_p = false;
583 
584   if (! can_copy_init_p)
585     {
586       compute_can_copy ();
587       can_copy_init_p = true;
588     }
589 
590   return can_copy[mode] != 0;
591 }
592 
593 
594 /* Cover function to xmalloc to record bytes allocated.  */
595 
596 static void *
597 gmalloc (size_t size)
598 {
599   bytes_used += size;
600   return xmalloc (size);
601 }
602 
603 /* Cover function to xcalloc to record bytes allocated.  */
604 
605 static void *
606 gcalloc (size_t nelem, size_t elsize)
607 {
608   bytes_used += nelem * elsize;
609   return xcalloc (nelem, elsize);
610 }
611 
612 /* Cover function to obstack_alloc.  */
613 
614 static void *
615 gcse_alloc (unsigned long size)
616 {
617   bytes_used += size;
618   return obstack_alloc (&gcse_obstack, size);
619 }
620 
621 /* Allocate memory for the reg/memory set tracking tables.
622    This is called at the start of each pass.  */
623 
624 static void
625 alloc_gcse_mem (void)
626 {
627   /* Allocate vars to track sets of regs.  */
628   reg_set_bitmap = BITMAP_ALLOC (NULL);
629 
630   /* Allocate array to keep a list of insns which modify memory in each
631      basic block.  */
632   modify_mem_list = GCNEWVEC (rtx, last_basic_block);
633   canon_modify_mem_list = GCNEWVEC (rtx, last_basic_block);
634   modify_mem_list_set = BITMAP_ALLOC (NULL);
635   blocks_with_calls = BITMAP_ALLOC (NULL);
636 }
637 
638 /* Free memory allocated by alloc_gcse_mem.  */
639 
640 static void
641 free_gcse_mem (void)
642 {
643   free_modify_mem_tables ();
644   BITMAP_FREE (modify_mem_list_set);
645   BITMAP_FREE (blocks_with_calls);
646 }
647 
648 /* Compute the local properties of each recorded expression.
649 
650    Local properties are those that are defined by the block, irrespective of
651    other blocks.
652 
653    An expression is transparent in a block if its operands are not modified
654    in the block.
655 
656    An expression is computed (locally available) in a block if it is computed
657    at least once and expression would contain the same value if the
658    computation was moved to the end of the block.
659 
660    An expression is locally anticipatable in a block if it is computed at
661    least once and expression would contain the same value if the computation
662    was moved to the beginning of the block.
663 
664    We call this routine for cprop, pre and code hoisting.  They all compute
665    basically the same information and thus can easily share this code.
666 
667    TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
668    properties.  If NULL, then it is not necessary to compute or record that
669    particular property.
670 
671    TABLE controls which hash table to look at.  If it is  set hash table,
672    additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
673    ABSALTERED.  */
674 
675 static void
676 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
677 			  struct hash_table_d *table)
678 {
679   unsigned int i;
680 
681   /* Initialize any bitmaps that were passed in.  */
682   if (transp)
683     {
684       if (table->set_p)
685 	sbitmap_vector_zero (transp, last_basic_block);
686       else
687 	sbitmap_vector_ones (transp, last_basic_block);
688     }
689 
690   if (comp)
691     sbitmap_vector_zero (comp, last_basic_block);
692   if (antloc)
693     sbitmap_vector_zero (antloc, last_basic_block);
694 
695   for (i = 0; i < table->size; i++)
696     {
697       struct expr *expr;
698 
699       for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
700 	{
701 	  int indx = expr->bitmap_index;
702 	  struct occr *occr;
703 
704 	  /* The expression is transparent in this block if it is not killed.
705 	     We start by assuming all are transparent [none are killed], and
706 	     then reset the bits for those that are.  */
707 	  if (transp)
708 	    compute_transp (expr->expr, indx, transp, table->set_p);
709 
710 	  /* The occurrences recorded in antic_occr are exactly those that
711 	     we want to set to nonzero in ANTLOC.  */
712 	  if (antloc)
713 	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
714 	      {
715 		SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
716 
717 		/* While we're scanning the table, this is a good place to
718 		   initialize this.  */
719 		occr->deleted_p = 0;
720 	      }
721 
722 	  /* The occurrences recorded in avail_occr are exactly those that
723 	     we want to set to nonzero in COMP.  */
724 	  if (comp)
725 	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
726 	      {
727 		SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
728 
729 		/* While we're scanning the table, this is a good place to
730 		   initialize this.  */
731 		occr->copied_p = 0;
732 	      }
733 
734 	  /* While we're scanning the table, this is a good place to
735 	     initialize this.  */
736 	  expr->reaching_reg = 0;
737 	}
738     }
739 }
740 
741 /* Hash table support.  */
742 
743 struct reg_avail_info
744 {
745   basic_block last_bb;
746   int first_set;
747   int last_set;
748 };
749 
750 static struct reg_avail_info *reg_avail_info;
751 static basic_block current_bb;
752 
753 
754 /* See whether X, the source of a set, is something we want to consider for
755    GCSE.  */
756 
757 static int
758 want_to_gcse_p (rtx x)
759 {
760 #ifdef STACK_REGS
761   /* On register stack architectures, don't GCSE constants from the
762      constant pool, as the benefits are often swamped by the overhead
763      of shuffling the register stack between basic blocks.  */
764   if (IS_STACK_MODE (GET_MODE (x)))
765     x = avoid_constant_pool_reference (x);
766 #endif
767 
768   switch (GET_CODE (x))
769     {
770     case REG:
771     case SUBREG:
772     case CONST_INT:
773     case CONST_DOUBLE:
774     case CONST_FIXED:
775     case CONST_VECTOR:
776     case CALL:
777       return 0;
778 
779     default:
780       return can_assign_to_reg_without_clobbers_p (x);
781     }
782 }
783 
784 /* Used internally by can_assign_to_reg_without_clobbers_p.  */
785 
786 static GTY(()) rtx test_insn;
787 
788 /* Return true if we can assign X to a pseudo register such that the
789    resulting insn does not result in clobbering a hard register as a
790    side-effect.
791 
792    Additionally, if the target requires it, check that the resulting insn
793    can be copied.  If it cannot, this means that X is special and probably
794    has hidden side-effects we don't want to mess with.
795 
796    This function is typically used by code motion passes, to verify
797    that it is safe to insert an insn without worrying about clobbering
798    maybe live hard regs.  */
799 
800 bool
801 can_assign_to_reg_without_clobbers_p (rtx x)
802 {
803   int num_clobbers = 0;
804   int icode;
805 
806   /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
807   if (general_operand (x, GET_MODE (x)))
808     return 1;
809   else if (GET_MODE (x) == VOIDmode)
810     return 0;
811 
812   /* Otherwise, check if we can make a valid insn from it.  First initialize
813      our test insn if we haven't already.  */
814   if (test_insn == 0)
815     {
816       test_insn
817 	= make_insn_raw (gen_rtx_SET (VOIDmode,
818 				      gen_rtx_REG (word_mode,
819 						   FIRST_PSEUDO_REGISTER * 2),
820 				      const0_rtx));
821       NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
822     }
823 
824   /* Now make an insn like the one we would make when GCSE'ing and see if
825      valid.  */
826   PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
827   SET_SRC (PATTERN (test_insn)) = x;
828 
829   icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
830   if (icode < 0)
831     return false;
832 
833   if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
834     return false;
835 
836   if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
837     return false;
838 
839   return true;
840 }
841 
842 /* Return nonzero if the operands of expression X are unchanged from the
843    start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
844    or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
845 
846 static int
847 oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
848 {
849   int i, j;
850   enum rtx_code code;
851   const char *fmt;
852 
853   if (x == 0)
854     return 1;
855 
856   code = GET_CODE (x);
857   switch (code)
858     {
859     case REG:
860       {
861 	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
862 
863 	if (info->last_bb != current_bb)
864 	  return 1;
865 	if (avail_p)
866 	  return info->last_set < DF_INSN_LUID (insn);
867 	else
868 	  return info->first_set >= DF_INSN_LUID (insn);
869       }
870 
871     case MEM:
872       if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
873 				  x, avail_p))
874 	return 0;
875       else
876 	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
877 
878     case PRE_DEC:
879     case PRE_INC:
880     case POST_DEC:
881     case POST_INC:
882     case PRE_MODIFY:
883     case POST_MODIFY:
884       return 0;
885 
886     case PC:
887     case CC0: /*FIXME*/
888     case CONST:
889     case CONST_INT:
890     case CONST_DOUBLE:
891     case CONST_FIXED:
892     case CONST_VECTOR:
893     case SYMBOL_REF:
894     case LABEL_REF:
895     case ADDR_VEC:
896     case ADDR_DIFF_VEC:
897       return 1;
898 
899     default:
900       break;
901     }
902 
903   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
904     {
905       if (fmt[i] == 'e')
906 	{
907 	  /* If we are about to do the last recursive call needed at this
908 	     level, change it into iteration.  This function is called enough
909 	     to be worth it.  */
910 	  if (i == 0)
911 	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
912 
913 	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
914 	    return 0;
915 	}
916       else if (fmt[i] == 'E')
917 	for (j = 0; j < XVECLEN (x, i); j++)
918 	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
919 	    return 0;
920     }
921 
922   return 1;
923 }
924 
925 /* Used for communication between mems_conflict_for_gcse_p and
926    load_killed_in_block_p.  Nonzero if mems_conflict_for_gcse_p finds a
927    conflict between two memory references.  */
928 static int gcse_mems_conflict_p;
929 
930 /* Used for communication between mems_conflict_for_gcse_p and
931    load_killed_in_block_p.  A memory reference for a load instruction,
932    mems_conflict_for_gcse_p will see if a memory store conflicts with
933    this memory load.  */
934 static const_rtx gcse_mem_operand;
935 
936 /* DEST is the output of an instruction.  If it is a memory reference, and
937    possibly conflicts with the load found in gcse_mem_operand, then set
938    gcse_mems_conflict_p to a nonzero value.  */
939 
940 static void
941 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
942 			  void *data ATTRIBUTE_UNUSED)
943 {
944   while (GET_CODE (dest) == SUBREG
945 	 || GET_CODE (dest) == ZERO_EXTRACT
946 	 || GET_CODE (dest) == STRICT_LOW_PART)
947     dest = XEXP (dest, 0);
948 
949   /* If DEST is not a MEM, then it will not conflict with the load.  Note
950      that function calls are assumed to clobber memory, but are handled
951      elsewhere.  */
952   if (! MEM_P (dest))
953     return;
954 
955   /* If we are setting a MEM in our list of specially recognized MEMs,
956      don't mark as killed this time.  */
957 
958   if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
959     {
960       if (!find_rtx_in_ldst (dest))
961 	gcse_mems_conflict_p = 1;
962       return;
963     }
964 
965   if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
966 		       rtx_addr_varies_p))
967     gcse_mems_conflict_p = 1;
968 }
969 
970 /* Return nonzero if the expression in X (a memory reference) is killed
971    in block BB before or after the insn with the LUID in UID_LIMIT.
972    AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
973    before UID_LIMIT.
974 
975    To check the entire block, set UID_LIMIT to max_uid + 1 and
976    AVAIL_P to 0.  */
977 
978 static int
979 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
980 {
981   rtx list_entry = modify_mem_list[bb->index];
982 
983   /* If this is a readonly then we aren't going to be changing it.  */
984   if (MEM_READONLY_P (x))
985     return 0;
986 
987   while (list_entry)
988     {
989       rtx setter;
990       /* Ignore entries in the list that do not apply.  */
991       if ((avail_p
992 	   && DF_INSN_LUID (XEXP (list_entry, 0)) < uid_limit)
993 	  || (! avail_p
994 	      && DF_INSN_LUID (XEXP (list_entry, 0)) > uid_limit))
995 	{
996 	  list_entry = XEXP (list_entry, 1);
997 	  continue;
998 	}
999 
1000       setter = XEXP (list_entry, 0);
1001 
1002       /* If SETTER is a call everything is clobbered.  Note that calls
1003 	 to pure functions are never put on the list, so we need not
1004 	 worry about them.  */
1005       if (CALL_P (setter))
1006 	return 1;
1007 
1008       /* SETTER must be an INSN of some kind that sets memory.  Call
1009 	 note_stores to examine each hunk of memory that is modified.
1010 
1011 	 The note_stores interface is pretty limited, so we have to
1012 	 communicate via global variables.  Yuk.  */
1013       gcse_mem_operand = x;
1014       gcse_mems_conflict_p = 0;
1015       note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1016       if (gcse_mems_conflict_p)
1017 	return 1;
1018       list_entry = XEXP (list_entry, 1);
1019     }
1020   return 0;
1021 }
1022 
1023 /* Return nonzero if the operands of expression X are unchanged from
1024    the start of INSN's basic block up to but not including INSN.  */
1025 
1026 static int
1027 oprs_anticipatable_p (const_rtx x, const_rtx insn)
1028 {
1029   return oprs_unchanged_p (x, insn, 0);
1030 }
1031 
1032 /* Return nonzero if the operands of expression X are unchanged from
1033    INSN to the end of INSN's basic block.  */
1034 
1035 static int
1036 oprs_available_p (const_rtx x, const_rtx insn)
1037 {
1038   return oprs_unchanged_p (x, insn, 1);
1039 }
1040 
1041 /* Hash expression X.
1042 
1043    MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
1044    indicating if a volatile operand is found or if the expression contains
1045    something we don't want to insert in the table.  HASH_TABLE_SIZE is
1046    the current size of the hash table to be probed.  */
1047 
1048 static unsigned int
1049 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1050 	   int hash_table_size)
1051 {
1052   unsigned int hash;
1053 
1054   *do_not_record_p = 0;
1055 
1056   hash = hash_rtx (x, mode, do_not_record_p,
1057 		   NULL,  /*have_reg_qty=*/false);
1058   return hash % hash_table_size;
1059 }
1060 
1061 /* Hash a set of register REGNO.
1062 
1063    Sets are hashed on the register that is set.  This simplifies the PRE copy
1064    propagation code.
1065 
1066    ??? May need to make things more elaborate.  Later, as necessary.  */
1067 
1068 static unsigned int
1069 hash_set (int regno, int hash_table_size)
1070 {
1071   unsigned int hash;
1072 
1073   hash = regno;
1074   return hash % hash_table_size;
1075 }
1076 
1077 /* Return nonzero if exp1 is equivalent to exp2.  */
1078 
1079 static int
1080 expr_equiv_p (const_rtx x, const_rtx y)
1081 {
1082   return exp_equiv_p (x, y, 0, true);
1083 }
1084 
1085 /* Insert expression X in INSN in the hash TABLE.
1086    If it is already present, record it as the last occurrence in INSN's
1087    basic block.
1088 
1089    MODE is the mode of the value X is being stored into.
1090    It is only used if X is a CONST_INT.
1091 
1092    ANTIC_P is nonzero if X is an anticipatable expression.
1093    AVAIL_P is nonzero if X is an available expression.  */
1094 
1095 static void
1096 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1097 		      int avail_p, struct hash_table_d *table)
1098 {
1099   int found, do_not_record_p;
1100   unsigned int hash;
1101   struct expr *cur_expr, *last_expr = NULL;
1102   struct occr *antic_occr, *avail_occr;
1103 
1104   hash = hash_expr (x, mode, &do_not_record_p, table->size);
1105 
1106   /* Do not insert expression in table if it contains volatile operands,
1107      or if hash_expr determines the expression is something we don't want
1108      to or can't handle.  */
1109   if (do_not_record_p)
1110     return;
1111 
1112   cur_expr = table->table[hash];
1113   found = 0;
1114 
1115   while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1116     {
1117       /* If the expression isn't found, save a pointer to the end of
1118 	 the list.  */
1119       last_expr = cur_expr;
1120       cur_expr = cur_expr->next_same_hash;
1121     }
1122 
1123   if (! found)
1124     {
1125       cur_expr = GOBNEW (struct expr);
1126       bytes_used += sizeof (struct expr);
1127       if (table->table[hash] == NULL)
1128 	/* This is the first pattern that hashed to this index.  */
1129 	table->table[hash] = cur_expr;
1130       else
1131 	/* Add EXPR to end of this hash chain.  */
1132 	last_expr->next_same_hash = cur_expr;
1133 
1134       /* Set the fields of the expr element.  */
1135       cur_expr->expr = x;
1136       cur_expr->bitmap_index = table->n_elems++;
1137       cur_expr->next_same_hash = NULL;
1138       cur_expr->antic_occr = NULL;
1139       cur_expr->avail_occr = NULL;
1140     }
1141 
1142   /* Now record the occurrence(s).  */
1143   if (antic_p)
1144     {
1145       antic_occr = cur_expr->antic_occr;
1146 
1147       if (antic_occr
1148 	  && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1149 	antic_occr = NULL;
1150 
1151       if (antic_occr)
1152 	/* Found another instance of the expression in the same basic block.
1153 	   Prefer the currently recorded one.  We want the first one in the
1154 	   block and the block is scanned from start to end.  */
1155 	; /* nothing to do */
1156       else
1157 	{
1158 	  /* First occurrence of this expression in this basic block.  */
1159 	  antic_occr = GOBNEW (struct occr);
1160 	  bytes_used += sizeof (struct occr);
1161 	  antic_occr->insn = insn;
1162 	  antic_occr->next = cur_expr->antic_occr;
1163 	  antic_occr->deleted_p = 0;
1164 	  cur_expr->antic_occr = antic_occr;
1165 	}
1166     }
1167 
1168   if (avail_p)
1169     {
1170       avail_occr = cur_expr->avail_occr;
1171 
1172       if (avail_occr
1173 	  && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1174 	{
1175 	  /* Found another instance of the expression in the same basic block.
1176 	     Prefer this occurrence to the currently recorded one.  We want
1177 	     the last one in the block and the block is scanned from start
1178 	     to end.  */
1179 	  avail_occr->insn = insn;
1180 	}
1181       else
1182 	{
1183 	  /* First occurrence of this expression in this basic block.  */
1184 	  avail_occr = GOBNEW (struct occr);
1185 	  bytes_used += sizeof (struct occr);
1186 	  avail_occr->insn = insn;
1187 	  avail_occr->next = cur_expr->avail_occr;
1188 	  avail_occr->deleted_p = 0;
1189 	  cur_expr->avail_occr = avail_occr;
1190 	}
1191     }
1192 }
1193 
1194 /* Insert pattern X in INSN in the hash table.
1195    X is a SET of a reg to either another reg or a constant.
1196    If it is already present, record it as the last occurrence in INSN's
1197    basic block.  */
1198 
1199 static void
1200 insert_set_in_table (rtx x, rtx insn, struct hash_table_d *table)
1201 {
1202   int found;
1203   unsigned int hash;
1204   struct expr *cur_expr, *last_expr = NULL;
1205   struct occr *cur_occr;
1206 
1207   gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1208 
1209   hash = hash_set (REGNO (SET_DEST (x)), table->size);
1210 
1211   cur_expr = table->table[hash];
1212   found = 0;
1213 
1214   while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1215     {
1216       /* If the expression isn't found, save a pointer to the end of
1217 	 the list.  */
1218       last_expr = cur_expr;
1219       cur_expr = cur_expr->next_same_hash;
1220     }
1221 
1222   if (! found)
1223     {
1224       cur_expr = GOBNEW (struct expr);
1225       bytes_used += sizeof (struct expr);
1226       if (table->table[hash] == NULL)
1227 	/* This is the first pattern that hashed to this index.  */
1228 	table->table[hash] = cur_expr;
1229       else
1230 	/* Add EXPR to end of this hash chain.  */
1231 	last_expr->next_same_hash = cur_expr;
1232 
1233       /* Set the fields of the expr element.
1234 	 We must copy X because it can be modified when copy propagation is
1235 	 performed on its operands.  */
1236       cur_expr->expr = copy_rtx (x);
1237       cur_expr->bitmap_index = table->n_elems++;
1238       cur_expr->next_same_hash = NULL;
1239       cur_expr->antic_occr = NULL;
1240       cur_expr->avail_occr = NULL;
1241     }
1242 
1243   /* Now record the occurrence.  */
1244   cur_occr = cur_expr->avail_occr;
1245 
1246   if (cur_occr
1247       && BLOCK_FOR_INSN (cur_occr->insn) == BLOCK_FOR_INSN (insn))
1248     {
1249       /* Found another instance of the expression in the same basic block.
1250 	 Prefer this occurrence to the currently recorded one.  We want
1251 	 the last one in the block and the block is scanned from start
1252 	 to end.  */
1253       cur_occr->insn = insn;
1254     }
1255   else
1256     {
1257       /* First occurrence of this expression in this basic block.  */
1258       cur_occr = GOBNEW (struct occr);
1259       bytes_used += sizeof (struct occr);
1260       cur_occr->insn = insn;
1261       cur_occr->next = cur_expr->avail_occr;
1262       cur_occr->deleted_p = 0;
1263       cur_expr->avail_occr = cur_occr;
1264     }
1265 }
1266 
1267 /* Determine whether the rtx X should be treated as a constant for
1268    the purposes of GCSE's constant propagation.  */
1269 
1270 static bool
1271 gcse_constant_p (const_rtx x)
1272 {
1273   /* Consider a COMPARE of two integers constant.  */
1274   if (GET_CODE (x) == COMPARE
1275       && CONST_INT_P (XEXP (x, 0))
1276       && CONST_INT_P (XEXP (x, 1)))
1277     return true;
1278 
1279   /* Consider a COMPARE of the same registers is a constant
1280      if they are not floating point registers.  */
1281   if (GET_CODE(x) == COMPARE
1282       && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1283       && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1284       && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1285       && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1286     return true;
1287 
1288   /* Since X might be inserted more than once we have to take care that it
1289      is sharable.  */
1290   return CONSTANT_P (x) && (GET_CODE (x) != CONST || shared_const_p (x));
1291 }
1292 
1293 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1294    expression one).  */
1295 
1296 static void
1297 hash_scan_set (rtx pat, rtx insn, struct hash_table_d *table)
1298 {
1299   rtx src = SET_SRC (pat);
1300   rtx dest = SET_DEST (pat);
1301   rtx note;
1302 
1303   if (GET_CODE (src) == CALL)
1304     hash_scan_call (src, insn, table);
1305 
1306   else if (REG_P (dest))
1307     {
1308       unsigned int regno = REGNO (dest);
1309       rtx tmp;
1310 
1311       /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1312 
1313 	 This allows us to do a single GCSE pass and still eliminate
1314 	 redundant constants, addresses or other expressions that are
1315 	 constructed with multiple instructions.
1316 
1317 	 However, keep the original SRC if INSN is a simple reg-reg move.  In
1318 	 In this case, there will almost always be a REG_EQUAL note on the
1319 	 insn that sets SRC.  By recording the REG_EQUAL value here as SRC
1320 	 for INSN, we miss copy propagation opportunities and we perform the
1321 	 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1322 	 do more than one PRE GCSE pass.
1323 
1324 	 Note that this does not impede profitable constant propagations.  We
1325 	 "look through" reg-reg sets in lookup_avail_set.  */
1326       note = find_reg_equal_equiv_note (insn);
1327       if (note != 0
1328 	  && REG_NOTE_KIND (note) == REG_EQUAL
1329 	  && !REG_P (src)
1330 	  && (table->set_p
1331 	      ? gcse_constant_p (XEXP (note, 0))
1332 	      : want_to_gcse_p (XEXP (note, 0))))
1333 	src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1334 
1335       /* Only record sets of pseudo-regs in the hash table.  */
1336       if (! table->set_p
1337 	  && regno >= FIRST_PSEUDO_REGISTER
1338 	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1339 	  && can_copy_p (GET_MODE (dest))
1340 	  /* GCSE commonly inserts instruction after the insn.  We can't
1341 	     do that easily for EH edges so disable GCSE on these for now.  */
1342 	  /* ??? We can now easily create new EH landing pads at the
1343 	     gimple level, for splitting edges; there's no reason we
1344 	     can't do the same thing at the rtl level.  */
1345 	  && !can_throw_internal (insn)
1346 	  /* Is SET_SRC something we want to gcse?  */
1347 	  && want_to_gcse_p (src)
1348 	  /* Don't CSE a nop.  */
1349 	  && ! set_noop_p (pat)
1350 	  /* Don't GCSE if it has attached REG_EQUIV note.
1351 	     At this point this only function parameters should have
1352 	     REG_EQUIV notes and if the argument slot is used somewhere
1353 	     explicitly, it means address of parameter has been taken,
1354 	     so we should not extend the lifetime of the pseudo.  */
1355 	  && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1356 	{
1357 	  /* An expression is not anticipatable if its operands are
1358 	     modified before this insn or if this is not the only SET in
1359 	     this insn.  The latter condition does not have to mean that
1360 	     SRC itself is not anticipatable, but we just will not be
1361 	     able to handle code motion of insns with multiple sets.  */
1362 	  int antic_p = oprs_anticipatable_p (src, insn)
1363 			&& !multiple_sets (insn);
1364 	  /* An expression is not available if its operands are
1365 	     subsequently modified, including this insn.  It's also not
1366 	     available if this is a branch, because we can't insert
1367 	     a set after the branch.  */
1368 	  int avail_p = (oprs_available_p (src, insn)
1369 			 && ! JUMP_P (insn));
1370 
1371 	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1372 	}
1373 
1374       /* Record sets for constant/copy propagation.  */
1375       else if (table->set_p
1376 	       && regno >= FIRST_PSEUDO_REGISTER
1377 	       && ((REG_P (src)
1378 		    && REGNO (src) >= FIRST_PSEUDO_REGISTER
1379 		    && can_copy_p (GET_MODE (dest))
1380 		    && REGNO (src) != regno)
1381 		   || gcse_constant_p (src))
1382 	       /* A copy is not available if its src or dest is subsequently
1383 		  modified.  Here we want to search from INSN+1 on, but
1384 		  oprs_available_p searches from INSN on.  */
1385 	       && (insn == BB_END (BLOCK_FOR_INSN (insn))
1386 		   || (tmp = next_nonnote_nondebug_insn (insn)) == NULL_RTX
1387 		   || BLOCK_FOR_INSN (tmp) != BLOCK_FOR_INSN (insn)
1388 		   || oprs_available_p (pat, tmp)))
1389 	insert_set_in_table (pat, insn, table);
1390     }
1391   /* In case of store we want to consider the memory value as available in
1392      the REG stored in that memory. This makes it possible to remove
1393      redundant loads from due to stores to the same location.  */
1394   else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1395       {
1396         unsigned int regno = REGNO (src);
1397 
1398         /* Do not do this for constant/copy propagation.  */
1399         if (! table->set_p
1400             /* Only record sets of pseudo-regs in the hash table.  */
1401 	    && regno >= FIRST_PSEUDO_REGISTER
1402 	   /* Don't GCSE something if we can't do a reg/reg copy.  */
1403 	   && can_copy_p (GET_MODE (src))
1404 	   /* GCSE commonly inserts instruction after the insn.  We can't
1405 	      do that easily for EH edges so disable GCSE on these for now.  */
1406 	   && !can_throw_internal (insn)
1407 	   /* Is SET_DEST something we want to gcse?  */
1408 	   && want_to_gcse_p (dest)
1409 	   /* Don't CSE a nop.  */
1410 	   && ! set_noop_p (pat)
1411 	   /* Don't GCSE if it has attached REG_EQUIV note.
1412 	      At this point this only function parameters should have
1413 	      REG_EQUIV notes and if the argument slot is used somewhere
1414 	      explicitly, it means address of parameter has been taken,
1415 	      so we should not extend the lifetime of the pseudo.  */
1416 	   && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1417 	       || ! MEM_P (XEXP (note, 0))))
1418              {
1419                /* Stores are never anticipatable.  */
1420                int antic_p = 0;
1421 	       /* An expression is not available if its operands are
1422 	          subsequently modified, including this insn.  It's also not
1423 	          available if this is a branch, because we can't insert
1424 	          a set after the branch.  */
1425                int avail_p = oprs_available_p (dest, insn)
1426 			     && ! JUMP_P (insn);
1427 
1428 	       /* Record the memory expression (DEST) in the hash table.  */
1429 	       insert_expr_in_table (dest, GET_MODE (dest), insn,
1430 				     antic_p, avail_p, table);
1431              }
1432       }
1433 }
1434 
1435 static void
1436 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1437 		   struct hash_table_d *table ATTRIBUTE_UNUSED)
1438 {
1439   /* Currently nothing to do.  */
1440 }
1441 
1442 static void
1443 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1444 		struct hash_table_d *table ATTRIBUTE_UNUSED)
1445 {
1446   /* Currently nothing to do.  */
1447 }
1448 
1449 /* Process INSN and add hash table entries as appropriate.
1450 
1451    Only available expressions that set a single pseudo-reg are recorded.
1452 
1453    Single sets in a PARALLEL could be handled, but it's an extra complication
1454    that isn't dealt with right now.  The trick is handling the CLOBBERs that
1455    are also in the PARALLEL.  Later.
1456 
1457    If SET_P is nonzero, this is for the assignment hash table,
1458    otherwise it is for the expression hash table.  */
1459 
1460 static void
1461 hash_scan_insn (rtx insn, struct hash_table_d *table)
1462 {
1463   rtx pat = PATTERN (insn);
1464   int i;
1465 
1466   /* Pick out the sets of INSN and for other forms of instructions record
1467      what's been modified.  */
1468 
1469   if (GET_CODE (pat) == SET)
1470     hash_scan_set (pat, insn, table);
1471   else if (GET_CODE (pat) == PARALLEL)
1472     for (i = 0; i < XVECLEN (pat, 0); i++)
1473       {
1474 	rtx x = XVECEXP (pat, 0, i);
1475 
1476 	if (GET_CODE (x) == SET)
1477 	  hash_scan_set (x, insn, table);
1478 	else if (GET_CODE (x) == CLOBBER)
1479 	  hash_scan_clobber (x, insn, table);
1480 	else if (GET_CODE (x) == CALL)
1481 	  hash_scan_call (x, insn, table);
1482       }
1483 
1484   else if (GET_CODE (pat) == CLOBBER)
1485     hash_scan_clobber (pat, insn, table);
1486   else if (GET_CODE (pat) == CALL)
1487     hash_scan_call (pat, insn, table);
1488 }
1489 
1490 static void
1491 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1492 {
1493   int i;
1494   /* Flattened out table, so it's printed in proper order.  */
1495   struct expr **flat_table;
1496   unsigned int *hash_val;
1497   struct expr *expr;
1498 
1499   flat_table = XCNEWVEC (struct expr *, table->n_elems);
1500   hash_val = XNEWVEC (unsigned int, table->n_elems);
1501 
1502   for (i = 0; i < (int) table->size; i++)
1503     for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1504       {
1505 	flat_table[expr->bitmap_index] = expr;
1506 	hash_val[expr->bitmap_index] = i;
1507       }
1508 
1509   fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1510 	   name, table->size, table->n_elems);
1511 
1512   for (i = 0; i < (int) table->n_elems; i++)
1513     if (flat_table[i] != 0)
1514       {
1515 	expr = flat_table[i];
1516 	fprintf (file, "Index %d (hash value %d)\n  ",
1517 		 expr->bitmap_index, hash_val[i]);
1518 	print_rtl (file, expr->expr);
1519 	fprintf (file, "\n");
1520       }
1521 
1522   fprintf (file, "\n");
1523 
1524   free (flat_table);
1525   free (hash_val);
1526 }
1527 
1528 /* Record register first/last/block set information for REGNO in INSN.
1529 
1530    first_set records the first place in the block where the register
1531    is set and is used to compute "anticipatability".
1532 
1533    last_set records the last place in the block where the register
1534    is set and is used to compute "availability".
1535 
1536    last_bb records the block for which first_set and last_set are
1537    valid, as a quick test to invalidate them.  */
1538 
1539 static void
1540 record_last_reg_set_info (rtx insn, int regno)
1541 {
1542   struct reg_avail_info *info = &reg_avail_info[regno];
1543   int luid = DF_INSN_LUID (insn);
1544 
1545   info->last_set = luid;
1546   if (info->last_bb != current_bb)
1547     {
1548       info->last_bb = current_bb;
1549       info->first_set = luid;
1550     }
1551 }
1552 
1553 
1554 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1555    Note we store a pair of elements in the list, so they have to be
1556    taken off pairwise.  */
1557 
1558 static void
1559 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
1560 		   void * v_insn)
1561 {
1562   rtx dest_addr, insn;
1563   int bb;
1564 
1565   while (GET_CODE (dest) == SUBREG
1566       || GET_CODE (dest) == ZERO_EXTRACT
1567       || GET_CODE (dest) == STRICT_LOW_PART)
1568     dest = XEXP (dest, 0);
1569 
1570   /* If DEST is not a MEM, then it will not conflict with a load.  Note
1571      that function calls are assumed to clobber memory, but are handled
1572      elsewhere.  */
1573 
1574   if (! MEM_P (dest))
1575     return;
1576 
1577   dest_addr = get_addr (XEXP (dest, 0));
1578   dest_addr = canon_rtx (dest_addr);
1579   insn = (rtx) v_insn;
1580   bb = BLOCK_FOR_INSN (insn)->index;
1581 
1582   canon_modify_mem_list[bb] =
1583     alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
1584   canon_modify_mem_list[bb] =
1585     alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
1586 }
1587 
1588 /* Record memory modification information for INSN.  We do not actually care
1589    about the memory location(s) that are set, or even how they are set (consider
1590    a CALL_INSN).  We merely need to record which insns modify memory.  */
1591 
1592 static void
1593 record_last_mem_set_info (rtx insn)
1594 {
1595   int bb = BLOCK_FOR_INSN (insn)->index;
1596 
1597   /* load_killed_in_block_p will handle the case of calls clobbering
1598      everything.  */
1599   modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
1600   bitmap_set_bit (modify_mem_list_set, bb);
1601 
1602   if (CALL_P (insn))
1603     {
1604       /* Note that traversals of this loop (other than for free-ing)
1605 	 will break after encountering a CALL_INSN.  So, there's no
1606 	 need to insert a pair of items, as canon_list_insert does.  */
1607       canon_modify_mem_list[bb] =
1608 	alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
1609       bitmap_set_bit (blocks_with_calls, bb);
1610     }
1611   else
1612     note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1613 }
1614 
1615 /* Called from compute_hash_table via note_stores to handle one
1616    SET or CLOBBER in an insn.  DATA is really the instruction in which
1617    the SET is taking place.  */
1618 
1619 static void
1620 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1621 {
1622   rtx last_set_insn = (rtx) data;
1623 
1624   if (GET_CODE (dest) == SUBREG)
1625     dest = SUBREG_REG (dest);
1626 
1627   if (REG_P (dest))
1628     record_last_reg_set_info (last_set_insn, REGNO (dest));
1629   else if (MEM_P (dest)
1630 	   /* Ignore pushes, they clobber nothing.  */
1631 	   && ! push_operand (dest, GET_MODE (dest)))
1632     record_last_mem_set_info (last_set_insn);
1633 }
1634 
1635 /* Top level function to create an expression or assignment hash table.
1636 
1637    Expression entries are placed in the hash table if
1638    - they are of the form (set (pseudo-reg) src),
1639    - src is something we want to perform GCSE on,
1640    - none of the operands are subsequently modified in the block
1641 
1642    Assignment entries are placed in the hash table if
1643    - they are of the form (set (pseudo-reg) src),
1644    - src is something we want to perform const/copy propagation on,
1645    - none of the operands or target are subsequently modified in the block
1646 
1647    Currently src must be a pseudo-reg or a const_int.
1648 
1649    TABLE is the table computed.  */
1650 
1651 static void
1652 compute_hash_table_work (struct hash_table_d *table)
1653 {
1654   int i;
1655 
1656   /* re-Cache any INSN_LIST nodes we have allocated.  */
1657   clear_modify_mem_tables ();
1658   /* Some working arrays used to track first and last set in each block.  */
1659   reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1660 
1661   for (i = 0; i < max_reg_num (); ++i)
1662     reg_avail_info[i].last_bb = NULL;
1663 
1664   FOR_EACH_BB (current_bb)
1665     {
1666       rtx insn;
1667       unsigned int regno;
1668 
1669       /* First pass over the instructions records information used to
1670 	 determine when registers and memory are first and last set.  */
1671       FOR_BB_INSNS (current_bb, insn)
1672 	{
1673 	  if (!NONDEBUG_INSN_P (insn))
1674 	    continue;
1675 
1676 	  if (CALL_P (insn))
1677 	    {
1678 	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1679 		if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1680 		  record_last_reg_set_info (insn, regno);
1681 
1682 	      mark_call (insn);
1683 	    }
1684 
1685 	  note_stores (PATTERN (insn), record_last_set_info, insn);
1686 	}
1687 
1688       /* Insert implicit sets in the hash table.  */
1689       if (table->set_p
1690 	  && implicit_sets[current_bb->index] != NULL_RTX)
1691 	hash_scan_set (implicit_sets[current_bb->index],
1692 		       BB_HEAD (current_bb), table);
1693 
1694       /* The next pass builds the hash table.  */
1695       FOR_BB_INSNS (current_bb, insn)
1696 	if (NONDEBUG_INSN_P (insn))
1697 	  hash_scan_insn (insn, table);
1698     }
1699 
1700   free (reg_avail_info);
1701   reg_avail_info = NULL;
1702 }
1703 
1704 /* Allocate space for the set/expr hash TABLE.
1705    It is used to determine the number of buckets to use.
1706    SET_P determines whether set or expression table will
1707    be created.  */
1708 
1709 static void
1710 alloc_hash_table (struct hash_table_d *table, int set_p)
1711 {
1712   int n;
1713 
1714   n = get_max_insn_count ();
1715 
1716   table->size = n / 4;
1717   if (table->size < 11)
1718     table->size = 11;
1719 
1720   /* Attempt to maintain efficient use of hash table.
1721      Making it an odd number is simplest for now.
1722      ??? Later take some measurements.  */
1723   table->size |= 1;
1724   n = table->size * sizeof (struct expr *);
1725   table->table = GNEWVAR (struct expr *, n);
1726   table->set_p = set_p;
1727 }
1728 
1729 /* Free things allocated by alloc_hash_table.  */
1730 
1731 static void
1732 free_hash_table (struct hash_table_d *table)
1733 {
1734   free (table->table);
1735 }
1736 
1737 /* Compute the hash TABLE for doing copy/const propagation or
1738    expression hash table.  */
1739 
1740 static void
1741 compute_hash_table (struct hash_table_d *table)
1742 {
1743   /* Initialize count of number of entries in hash table.  */
1744   table->n_elems = 0;
1745   memset (table->table, 0, table->size * sizeof (struct expr *));
1746 
1747   compute_hash_table_work (table);
1748 }
1749 
1750 /* Expression tracking support.  */
1751 
1752 /* Lookup REGNO in the set TABLE.  The result is a pointer to the
1753    table entry, or NULL if not found.  */
1754 
1755 static struct expr *
1756 lookup_set (unsigned int regno, struct hash_table_d *table)
1757 {
1758   unsigned int hash = hash_set (regno, table->size);
1759   struct expr *expr;
1760 
1761   expr = table->table[hash];
1762 
1763   while (expr && REGNO (SET_DEST (expr->expr)) != regno)
1764     expr = expr->next_same_hash;
1765 
1766   return expr;
1767 }
1768 
1769 /* Return the next entry for REGNO in list EXPR.  */
1770 
1771 static struct expr *
1772 next_set (unsigned int regno, struct expr *expr)
1773 {
1774   do
1775     expr = expr->next_same_hash;
1776   while (expr && REGNO (SET_DEST (expr->expr)) != regno);
1777 
1778   return expr;
1779 }
1780 
1781 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
1782    types may be mixed.  */
1783 
1784 static void
1785 free_insn_expr_list_list (rtx *listp)
1786 {
1787   rtx list, next;
1788 
1789   for (list = *listp; list ; list = next)
1790     {
1791       next = XEXP (list, 1);
1792       if (GET_CODE (list) == EXPR_LIST)
1793 	free_EXPR_LIST_node (list);
1794       else
1795 	free_INSN_LIST_node (list);
1796     }
1797 
1798   *listp = NULL;
1799 }
1800 
1801 /* Clear canon_modify_mem_list and modify_mem_list tables.  */
1802 static void
1803 clear_modify_mem_tables (void)
1804 {
1805   unsigned i;
1806   bitmap_iterator bi;
1807 
1808   EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1809     {
1810       free_INSN_LIST_list (modify_mem_list + i);
1811       free_insn_expr_list_list (canon_modify_mem_list + i);
1812     }
1813   bitmap_clear (modify_mem_list_set);
1814   bitmap_clear (blocks_with_calls);
1815 }
1816 
1817 /* Release memory used by modify_mem_list_set.  */
1818 
1819 static void
1820 free_modify_mem_tables (void)
1821 {
1822   clear_modify_mem_tables ();
1823   free (modify_mem_list);
1824   free (canon_modify_mem_list);
1825   modify_mem_list = 0;
1826   canon_modify_mem_list = 0;
1827 }
1828 
1829 /* Reset tables used to keep track of what's still available [since the
1830    start of the block].  */
1831 
1832 static void
1833 reset_opr_set_tables (void)
1834 {
1835   /* Maintain a bitmap of which regs have been set since beginning of
1836      the block.  */
1837   CLEAR_REG_SET (reg_set_bitmap);
1838 
1839   /* Also keep a record of the last instruction to modify memory.
1840      For now this is very trivial, we only record whether any memory
1841      location has been modified.  */
1842   clear_modify_mem_tables ();
1843 }
1844 
1845 /* Return nonzero if the operands of X are not set before INSN in
1846    INSN's basic block.  */
1847 
1848 static int
1849 oprs_not_set_p (const_rtx x, const_rtx insn)
1850 {
1851   int i, j;
1852   enum rtx_code code;
1853   const char *fmt;
1854 
1855   if (x == 0)
1856     return 1;
1857 
1858   code = GET_CODE (x);
1859   switch (code)
1860     {
1861     case PC:
1862     case CC0:
1863     case CONST:
1864     case CONST_INT:
1865     case CONST_DOUBLE:
1866     case CONST_FIXED:
1867     case CONST_VECTOR:
1868     case SYMBOL_REF:
1869     case LABEL_REF:
1870     case ADDR_VEC:
1871     case ADDR_DIFF_VEC:
1872       return 1;
1873 
1874     case MEM:
1875       if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
1876 				  DF_INSN_LUID (insn), x, 0))
1877 	return 0;
1878       else
1879 	return oprs_not_set_p (XEXP (x, 0), insn);
1880 
1881     case REG:
1882       return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
1883 
1884     default:
1885       break;
1886     }
1887 
1888   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1889     {
1890       if (fmt[i] == 'e')
1891 	{
1892 	  /* If we are about to do the last recursive call
1893 	     needed at this level, change it into iteration.
1894 	     This function is called enough to be worth it.  */
1895 	  if (i == 0)
1896 	    return oprs_not_set_p (XEXP (x, i), insn);
1897 
1898 	  if (! oprs_not_set_p (XEXP (x, i), insn))
1899 	    return 0;
1900 	}
1901       else if (fmt[i] == 'E')
1902 	for (j = 0; j < XVECLEN (x, i); j++)
1903 	  if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
1904 	    return 0;
1905     }
1906 
1907   return 1;
1908 }
1909 
1910 /* Mark things set by a CALL.  */
1911 
1912 static void
1913 mark_call (rtx insn)
1914 {
1915   if (! RTL_CONST_OR_PURE_CALL_P (insn))
1916     record_last_mem_set_info (insn);
1917 }
1918 
1919 /* Mark things set by a SET.  */
1920 
1921 static void
1922 mark_set (rtx pat, rtx insn)
1923 {
1924   rtx dest = SET_DEST (pat);
1925 
1926   while (GET_CODE (dest) == SUBREG
1927 	 || GET_CODE (dest) == ZERO_EXTRACT
1928 	 || GET_CODE (dest) == STRICT_LOW_PART)
1929     dest = XEXP (dest, 0);
1930 
1931   if (REG_P (dest))
1932     SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
1933   else if (MEM_P (dest))
1934     record_last_mem_set_info (insn);
1935 
1936   if (GET_CODE (SET_SRC (pat)) == CALL)
1937     mark_call (insn);
1938 }
1939 
1940 /* Record things set by a CLOBBER.  */
1941 
1942 static void
1943 mark_clobber (rtx pat, rtx insn)
1944 {
1945   rtx clob = XEXP (pat, 0);
1946 
1947   while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
1948     clob = XEXP (clob, 0);
1949 
1950   if (REG_P (clob))
1951     SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
1952   else
1953     record_last_mem_set_info (insn);
1954 }
1955 
1956 /* Record things set by INSN.
1957    This data is used by oprs_not_set_p.  */
1958 
1959 static void
1960 mark_oprs_set (rtx insn)
1961 {
1962   rtx pat = PATTERN (insn);
1963   int i;
1964 
1965   if (GET_CODE (pat) == SET)
1966     mark_set (pat, insn);
1967   else if (GET_CODE (pat) == PARALLEL)
1968     for (i = 0; i < XVECLEN (pat, 0); i++)
1969       {
1970 	rtx x = XVECEXP (pat, 0, i);
1971 
1972 	if (GET_CODE (x) == SET)
1973 	  mark_set (x, insn);
1974 	else if (GET_CODE (x) == CLOBBER)
1975 	  mark_clobber (x, insn);
1976 	else if (GET_CODE (x) == CALL)
1977 	  mark_call (insn);
1978       }
1979 
1980   else if (GET_CODE (pat) == CLOBBER)
1981     mark_clobber (pat, insn);
1982   else if (GET_CODE (pat) == CALL)
1983     mark_call (insn);
1984 }
1985 
1986 
1987 /* Compute copy/constant propagation working variables.  */
1988 
1989 /* Local properties of assignments.  */
1990 static sbitmap *cprop_pavloc;
1991 static sbitmap *cprop_absaltered;
1992 
1993 /* Global properties of assignments (computed from the local properties).  */
1994 static sbitmap *cprop_avin;
1995 static sbitmap *cprop_avout;
1996 
1997 /* Allocate vars used for copy/const propagation.  N_BLOCKS is the number of
1998    basic blocks.  N_SETS is the number of sets.  */
1999 
2000 static void
2001 alloc_cprop_mem (int n_blocks, int n_sets)
2002 {
2003   cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2004   cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2005 
2006   cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2007   cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2008 }
2009 
2010 /* Free vars used by copy/const propagation.  */
2011 
2012 static void
2013 free_cprop_mem (void)
2014 {
2015   sbitmap_vector_free (cprop_pavloc);
2016   sbitmap_vector_free (cprop_absaltered);
2017   sbitmap_vector_free (cprop_avin);
2018   sbitmap_vector_free (cprop_avout);
2019 }
2020 
2021 /* For each block, compute whether X is transparent.  X is either an
2022    expression or an assignment [though we don't care which, for this context
2023    an assignment is treated as an expression].  For each block where an
2024    element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2025    bit in BMAP.  */
2026 
2027 static void
2028 compute_transp (const_rtx x, int indx, sbitmap *bmap, int set_p)
2029 {
2030   int i, j;
2031   enum rtx_code code;
2032   const char *fmt;
2033 
2034   /* repeat is used to turn tail-recursion into iteration since GCC
2035      can't do it when there's no return value.  */
2036  repeat:
2037 
2038   if (x == 0)
2039     return;
2040 
2041   code = GET_CODE (x);
2042   switch (code)
2043     {
2044     case REG:
2045       if (set_p)
2046 	{
2047 	  df_ref def;
2048 	  for (def = DF_REG_DEF_CHAIN (REGNO (x));
2049 	       def;
2050 	       def = DF_REF_NEXT_REG (def))
2051 	    SET_BIT (bmap[DF_REF_BB (def)->index], indx);
2052 	}
2053       else
2054 	{
2055 	  df_ref def;
2056 	  for (def = DF_REG_DEF_CHAIN (REGNO (x));
2057 	       def;
2058 	       def = DF_REF_NEXT_REG (def))
2059 	    RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
2060 	}
2061 
2062       return;
2063 
2064     case MEM:
2065       if (! MEM_READONLY_P (x))
2066 	{
2067 	  bitmap_iterator bi;
2068 	  unsigned bb_index;
2069 
2070 	  /* First handle all the blocks with calls.  We don't need to
2071 	     do any list walking for them.  */
2072 	  EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
2073 	    {
2074 	      if (set_p)
2075 		SET_BIT (bmap[bb_index], indx);
2076 	      else
2077 		RESET_BIT (bmap[bb_index], indx);
2078 	    }
2079 
2080 	    /* Now iterate over the blocks which have memory modifications
2081 	       but which do not have any calls.  */
2082 	    EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
2083 					    blocks_with_calls,
2084 					    0, bb_index, bi)
2085 	      {
2086 		rtx list_entry = canon_modify_mem_list[bb_index];
2087 
2088 		while (list_entry)
2089 		  {
2090 		    rtx dest, dest_addr;
2091 
2092 		    /* LIST_ENTRY must be an INSN of some kind that sets memory.
2093 		       Examine each hunk of memory that is modified.  */
2094 
2095 		    dest = XEXP (list_entry, 0);
2096 		    list_entry = XEXP (list_entry, 1);
2097 		    dest_addr = XEXP (list_entry, 0);
2098 
2099 		    if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2100 					       x, NULL_RTX, rtx_addr_varies_p))
2101 		      {
2102 			if (set_p)
2103 			  SET_BIT (bmap[bb_index], indx);
2104 			else
2105 			  RESET_BIT (bmap[bb_index], indx);
2106 			break;
2107 		      }
2108 		    list_entry = XEXP (list_entry, 1);
2109 	          }
2110 	      }
2111 	}
2112 
2113       x = XEXP (x, 0);
2114       goto repeat;
2115 
2116     case PC:
2117     case CC0: /*FIXME*/
2118     case CONST:
2119     case CONST_INT:
2120     case CONST_DOUBLE:
2121     case CONST_FIXED:
2122     case CONST_VECTOR:
2123     case SYMBOL_REF:
2124     case LABEL_REF:
2125     case ADDR_VEC:
2126     case ADDR_DIFF_VEC:
2127       return;
2128 
2129     default:
2130       break;
2131     }
2132 
2133   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2134     {
2135       if (fmt[i] == 'e')
2136 	{
2137 	  /* If we are about to do the last recursive call
2138 	     needed at this level, change it into iteration.
2139 	     This function is called enough to be worth it.  */
2140 	  if (i == 0)
2141 	    {
2142 	      x = XEXP (x, i);
2143 	      goto repeat;
2144 	    }
2145 
2146 	  compute_transp (XEXP (x, i), indx, bmap, set_p);
2147 	}
2148       else if (fmt[i] == 'E')
2149 	for (j = 0; j < XVECLEN (x, i); j++)
2150 	  compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2151     }
2152 }
2153 
2154 /* Top level routine to do the dataflow analysis needed by copy/const
2155    propagation.  */
2156 
2157 static void
2158 compute_cprop_data (void)
2159 {
2160   compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2161   compute_available (cprop_pavloc, cprop_absaltered,
2162 		     cprop_avout, cprop_avin);
2163 }
2164 
2165 /* Copy/constant propagation.  */
2166 
2167 /* Maximum number of register uses in an insn that we handle.  */
2168 #define MAX_USES 8
2169 
2170 /* Table of uses found in an insn.
2171    Allocated statically to avoid alloc/free complexity and overhead.  */
2172 static struct reg_use reg_use_table[MAX_USES];
2173 
2174 /* Index into `reg_use_table' while building it.  */
2175 static int reg_use_count;
2176 
2177 /* Set up a list of register numbers used in INSN.  The found uses are stored
2178    in `reg_use_table'.  `reg_use_count' is initialized to zero before entry,
2179    and contains the number of uses in the table upon exit.
2180 
2181    ??? If a register appears multiple times we will record it multiple times.
2182    This doesn't hurt anything but it will slow things down.  */
2183 
2184 static void
2185 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2186 {
2187   int i, j;
2188   enum rtx_code code;
2189   const char *fmt;
2190   rtx x = *xptr;
2191 
2192   /* repeat is used to turn tail-recursion into iteration since GCC
2193      can't do it when there's no return value.  */
2194  repeat:
2195   if (x == 0)
2196     return;
2197 
2198   code = GET_CODE (x);
2199   if (REG_P (x))
2200     {
2201       if (reg_use_count == MAX_USES)
2202 	return;
2203 
2204       reg_use_table[reg_use_count].reg_rtx = x;
2205       reg_use_count++;
2206     }
2207 
2208   /* Recursively scan the operands of this expression.  */
2209 
2210   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2211     {
2212       if (fmt[i] == 'e')
2213 	{
2214 	  /* If we are about to do the last recursive call
2215 	     needed at this level, change it into iteration.
2216 	     This function is called enough to be worth it.  */
2217 	  if (i == 0)
2218 	    {
2219 	      x = XEXP (x, 0);
2220 	      goto repeat;
2221 	    }
2222 
2223 	  find_used_regs (&XEXP (x, i), data);
2224 	}
2225       else if (fmt[i] == 'E')
2226 	for (j = 0; j < XVECLEN (x, i); j++)
2227 	  find_used_regs (&XVECEXP (x, i, j), data);
2228     }
2229 }
2230 
2231 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2232    Returns nonzero is successful.  */
2233 
2234 static int
2235 try_replace_reg (rtx from, rtx to, rtx insn)
2236 {
2237   rtx note = find_reg_equal_equiv_note (insn);
2238   rtx src = 0;
2239   int success = 0;
2240   rtx set = single_set (insn);
2241 
2242   /* Usually we substitute easy stuff, so we won't copy everything.
2243      We however need to take care to not duplicate non-trivial CONST
2244      expressions.  */
2245   to = copy_rtx (to);
2246 
2247   validate_replace_src_group (from, to, insn);
2248   if (num_changes_pending () && apply_change_group ())
2249     success = 1;
2250 
2251   /* Try to simplify SET_SRC if we have substituted a constant.  */
2252   if (success && set && CONSTANT_P (to))
2253     {
2254       src = simplify_rtx (SET_SRC (set));
2255 
2256       if (src)
2257 	validate_change (insn, &SET_SRC (set), src, 0);
2258     }
2259 
2260   /* If there is already a REG_EQUAL note, update the expression in it
2261      with our replacement.  */
2262   if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
2263     set_unique_reg_note (insn, REG_EQUAL,
2264 			 simplify_replace_rtx (XEXP (note, 0), from, to));
2265   if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2266     {
2267       /* If above failed and this is a single set, try to simplify the source of
2268 	 the set given our substitution.  We could perhaps try this for multiple
2269 	 SETs, but it probably won't buy us anything.  */
2270       src = simplify_replace_rtx (SET_SRC (set), from, to);
2271 
2272       if (!rtx_equal_p (src, SET_SRC (set))
2273 	  && validate_change (insn, &SET_SRC (set), src, 0))
2274 	success = 1;
2275 
2276       /* If we've failed to do replacement, have a single SET, don't already
2277 	 have a note, and have no special SET, add a REG_EQUAL note to not
2278 	 lose information.  */
2279       if (!success && note == 0 && set != 0
2280 	  && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2281 	  && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2282 	note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2283     }
2284 
2285   /* REG_EQUAL may get simplified into register.
2286      We don't allow that. Remove that note. This code ought
2287      not to happen, because previous code ought to synthesize
2288      reg-reg move, but be on the safe side.  */
2289   if (note && REG_NOTE_KIND (note) == REG_EQUAL && REG_P (XEXP (note, 0)))
2290     remove_note (insn, note);
2291 
2292   return success;
2293 }
2294 
2295 /* Find a set of REGNOs that are available on entry to INSN's block.  Returns
2296    NULL no such set is found.  */
2297 
2298 static struct expr *
2299 find_avail_set (int regno, rtx insn)
2300 {
2301   /* SET1 contains the last set found that can be returned to the caller for
2302      use in a substitution.  */
2303   struct expr *set1 = 0;
2304 
2305   /* Loops are not possible here.  To get a loop we would need two sets
2306      available at the start of the block containing INSN.  i.e. we would
2307      need two sets like this available at the start of the block:
2308 
2309        (set (reg X) (reg Y))
2310        (set (reg Y) (reg X))
2311 
2312      This can not happen since the set of (reg Y) would have killed the
2313      set of (reg X) making it unavailable at the start of this block.  */
2314   while (1)
2315     {
2316       rtx src;
2317       struct expr *set = lookup_set (regno, &set_hash_table);
2318 
2319       /* Find a set that is available at the start of the block
2320 	 which contains INSN.  */
2321       while (set)
2322 	{
2323 	  if (TEST_BIT (cprop_avin[BLOCK_FOR_INSN (insn)->index],
2324 			set->bitmap_index))
2325 	    break;
2326 	  set = next_set (regno, set);
2327 	}
2328 
2329       /* If no available set was found we've reached the end of the
2330 	 (possibly empty) copy chain.  */
2331       if (set == 0)
2332 	break;
2333 
2334       gcc_assert (GET_CODE (set->expr) == SET);
2335 
2336       src = SET_SRC (set->expr);
2337 
2338       /* We know the set is available.
2339 	 Now check that SRC is ANTLOC (i.e. none of the source operands
2340 	 have changed since the start of the block).
2341 
2342          If the source operand changed, we may still use it for the next
2343          iteration of this loop, but we may not use it for substitutions.  */
2344 
2345       if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2346 	set1 = set;
2347 
2348       /* If the source of the set is anything except a register, then
2349 	 we have reached the end of the copy chain.  */
2350       if (! REG_P (src))
2351 	break;
2352 
2353       /* Follow the copy chain, i.e. start another iteration of the loop
2354 	 and see if we have an available copy into SRC.  */
2355       regno = REGNO (src);
2356     }
2357 
2358   /* SET1 holds the last set that was available and anticipatable at
2359      INSN.  */
2360   return set1;
2361 }
2362 
2363 /* Subroutine of cprop_insn that tries to propagate constants into
2364    JUMP_INSNS.  JUMP must be a conditional jump.  If SETCC is non-NULL
2365    it is the instruction that immediately precedes JUMP, and must be a
2366    single SET of a register.  FROM is what we will try to replace,
2367    SRC is the constant we will try to substitute for it.  Returns nonzero
2368    if a change was made.  */
2369 
2370 static int
2371 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2372 {
2373   rtx new_rtx, set_src, note_src;
2374   rtx set = pc_set (jump);
2375   rtx note = find_reg_equal_equiv_note (jump);
2376 
2377   if (note)
2378     {
2379       note_src = XEXP (note, 0);
2380       if (GET_CODE (note_src) == EXPR_LIST)
2381 	note_src = NULL_RTX;
2382     }
2383   else note_src = NULL_RTX;
2384 
2385   /* Prefer REG_EQUAL notes except those containing EXPR_LISTs.  */
2386   set_src = note_src ? note_src : SET_SRC (set);
2387 
2388   /* First substitute the SETCC condition into the JUMP instruction,
2389      then substitute that given values into this expanded JUMP.  */
2390   if (setcc != NULL_RTX
2391       && !modified_between_p (from, setcc, jump)
2392       && !modified_between_p (src, setcc, jump))
2393     {
2394       rtx setcc_src;
2395       rtx setcc_set = single_set (setcc);
2396       rtx setcc_note = find_reg_equal_equiv_note (setcc);
2397       setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2398 		? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2399       set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2400 				      setcc_src);
2401     }
2402   else
2403     setcc = NULL_RTX;
2404 
2405   new_rtx = simplify_replace_rtx (set_src, from, src);
2406 
2407   /* If no simplification can be made, then try the next register.  */
2408   if (rtx_equal_p (new_rtx, SET_SRC (set)))
2409     return 0;
2410 
2411   /* If this is now a no-op delete it, otherwise this must be a valid insn.  */
2412   if (new_rtx == pc_rtx)
2413     delete_insn (jump);
2414   else
2415     {
2416       /* Ensure the value computed inside the jump insn to be equivalent
2417          to one computed by setcc.  */
2418       if (setcc && modified_in_p (new_rtx, setcc))
2419 	return 0;
2420       if (! validate_unshare_change (jump, &SET_SRC (set), new_rtx, 0))
2421 	{
2422 	  /* When (some) constants are not valid in a comparison, and there
2423 	     are two registers to be replaced by constants before the entire
2424 	     comparison can be folded into a constant, we need to keep
2425 	     intermediate information in REG_EQUAL notes.  For targets with
2426 	     separate compare insns, such notes are added by try_replace_reg.
2427 	     When we have a combined compare-and-branch instruction, however,
2428 	     we need to attach a note to the branch itself to make this
2429 	     optimization work.  */
2430 
2431 	  if (!rtx_equal_p (new_rtx, note_src))
2432 	    set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new_rtx));
2433 	  return 0;
2434 	}
2435 
2436       /* Remove REG_EQUAL note after simplification.  */
2437       if (note_src)
2438 	remove_note (jump, note);
2439      }
2440 
2441 #ifdef HAVE_cc0
2442   /* Delete the cc0 setter.  */
2443   if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2444     delete_insn (setcc);
2445 #endif
2446 
2447   global_const_prop_count++;
2448   if (dump_file != NULL)
2449     {
2450       fprintf (dump_file,
2451 	       "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2452 	       REGNO (from), INSN_UID (jump));
2453       print_rtl (dump_file, src);
2454       fprintf (dump_file, "\n");
2455     }
2456   purge_dead_edges (bb);
2457 
2458   /* If a conditional jump has been changed into unconditional jump, remove
2459      the jump and make the edge fallthru - this is always called in
2460      cfglayout mode.  */
2461   if (new_rtx != pc_rtx && simplejump_p (jump))
2462     {
2463       edge e;
2464       edge_iterator ei;
2465 
2466       for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ei_next (&ei))
2467 	if (e->dest != EXIT_BLOCK_PTR
2468 	    && BB_HEAD (e->dest) == JUMP_LABEL (jump))
2469 	  {
2470 	    e->flags |= EDGE_FALLTHRU;
2471 	    break;
2472 	  }
2473       delete_insn (jump);
2474     }
2475 
2476   return 1;
2477 }
2478 
2479 static bool
2480 constprop_register (rtx insn, rtx from, rtx to)
2481 {
2482   rtx sset;
2483 
2484   /* Check for reg or cc0 setting instructions followed by
2485      conditional branch instructions first.  */
2486   if ((sset = single_set (insn)) != NULL
2487       && NEXT_INSN (insn)
2488       && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2489     {
2490       rtx dest = SET_DEST (sset);
2491       if ((REG_P (dest) || CC0_P (dest))
2492 	  && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2493 	return 1;
2494     }
2495 
2496   /* Handle normal insns next.  */
2497   if (NONJUMP_INSN_P (insn)
2498       && try_replace_reg (from, to, insn))
2499     return 1;
2500 
2501   /* Try to propagate a CONST_INT into a conditional jump.
2502      We're pretty specific about what we will handle in this
2503      code, we can extend this as necessary over time.
2504 
2505      Right now the insn in question must look like
2506      (set (pc) (if_then_else ...))  */
2507   else if (any_condjump_p (insn) && onlyjump_p (insn))
2508     return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2509   return 0;
2510 }
2511 
2512 /* Perform constant and copy propagation on INSN.
2513    The result is nonzero if a change was made.  */
2514 
2515 static int
2516 cprop_insn (rtx insn)
2517 {
2518   struct reg_use *reg_used;
2519   int changed = 0;
2520   rtx note;
2521 
2522   if (!INSN_P (insn))
2523     return 0;
2524 
2525   reg_use_count = 0;
2526   note_uses (&PATTERN (insn), find_used_regs, NULL);
2527 
2528   note = find_reg_equal_equiv_note (insn);
2529 
2530   /* We may win even when propagating constants into notes.  */
2531   if (note)
2532     find_used_regs (&XEXP (note, 0), NULL);
2533 
2534   for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2535        reg_used++, reg_use_count--)
2536     {
2537       unsigned int regno = REGNO (reg_used->reg_rtx);
2538       rtx pat, src;
2539       struct expr *set;
2540 
2541       /* If the register has already been set in this block, there's
2542 	 nothing we can do.  */
2543       if (! oprs_not_set_p (reg_used->reg_rtx, insn))
2544 	continue;
2545 
2546       /* Find an assignment that sets reg_used and is available
2547 	 at the start of the block.  */
2548       set = find_avail_set (regno, insn);
2549       if (! set)
2550 	continue;
2551 
2552       pat = set->expr;
2553       /* ??? We might be able to handle PARALLELs.  Later.  */
2554       gcc_assert (GET_CODE (pat) == SET);
2555 
2556       src = SET_SRC (pat);
2557 
2558       /* Constant propagation.  */
2559       if (gcse_constant_p (src))
2560 	{
2561           if (constprop_register (insn, reg_used->reg_rtx, src))
2562 	    {
2563 	      changed = 1;
2564 	      global_const_prop_count++;
2565 	      if (dump_file != NULL)
2566 		{
2567 		  fprintf (dump_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
2568 		  fprintf (dump_file, "insn %d with constant ", INSN_UID (insn));
2569 		  print_rtl (dump_file, src);
2570 		  fprintf (dump_file, "\n");
2571 		}
2572 	      if (INSN_DELETED_P (insn))
2573 		return 1;
2574 	    }
2575 	}
2576       else if (REG_P (src)
2577 	       && REGNO (src) >= FIRST_PSEUDO_REGISTER
2578 	       && REGNO (src) != regno)
2579 	{
2580 	  if (try_replace_reg (reg_used->reg_rtx, src, insn))
2581 	    {
2582 	      changed = 1;
2583 	      global_copy_prop_count++;
2584 	      if (dump_file != NULL)
2585 		{
2586 		  fprintf (dump_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
2587 			   regno, INSN_UID (insn));
2588 		  fprintf (dump_file, " with reg %d\n", REGNO (src));
2589 		}
2590 
2591 	      /* The original insn setting reg_used may or may not now be
2592 		 deletable.  We leave the deletion to flow.  */
2593 	      /* FIXME: If it turns out that the insn isn't deletable,
2594 		 then we may have unnecessarily extended register lifetimes
2595 		 and made things worse.  */
2596 	    }
2597 	}
2598     }
2599 
2600   if (changed && DEBUG_INSN_P (insn))
2601     return 0;
2602 
2603   return changed;
2604 }
2605 
2606 /* Like find_used_regs, but avoid recording uses that appear in
2607    input-output contexts such as zero_extract or pre_dec.  This
2608    restricts the cases we consider to those for which local cprop
2609    can legitimately make replacements.  */
2610 
2611 static void
2612 local_cprop_find_used_regs (rtx *xptr, void *data)
2613 {
2614   rtx x = *xptr;
2615 
2616   if (x == 0)
2617     return;
2618 
2619   switch (GET_CODE (x))
2620     {
2621     case ZERO_EXTRACT:
2622     case SIGN_EXTRACT:
2623     case STRICT_LOW_PART:
2624       return;
2625 
2626     case PRE_DEC:
2627     case PRE_INC:
2628     case POST_DEC:
2629     case POST_INC:
2630     case PRE_MODIFY:
2631     case POST_MODIFY:
2632       /* Can only legitimately appear this early in the context of
2633 	 stack pushes for function arguments, but handle all of the
2634 	 codes nonetheless.  */
2635       return;
2636 
2637     case SUBREG:
2638       /* Setting a subreg of a register larger than word_mode leaves
2639 	 the non-written words unchanged.  */
2640       if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
2641 	return;
2642       break;
2643 
2644     default:
2645       break;
2646     }
2647 
2648   find_used_regs (xptr, data);
2649 }
2650 
2651 /* Try to perform local const/copy propagation on X in INSN.  */
2652 
2653 static bool
2654 do_local_cprop (rtx x, rtx insn)
2655 {
2656   rtx newreg = NULL, newcnst = NULL;
2657 
2658   /* Rule out USE instructions and ASM statements as we don't want to
2659      change the hard registers mentioned.  */
2660   if (REG_P (x)
2661       && (REGNO (x) >= FIRST_PSEUDO_REGISTER
2662           || (GET_CODE (PATTERN (insn)) != USE
2663 	      && asm_noperands (PATTERN (insn)) < 0)))
2664     {
2665       cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
2666       struct elt_loc_list *l;
2667 
2668       if (!val)
2669 	return false;
2670       for (l = val->locs; l; l = l->next)
2671 	{
2672 	  rtx this_rtx = l->loc;
2673 	  rtx note;
2674 
2675 	  if (gcse_constant_p (this_rtx))
2676 	    newcnst = this_rtx;
2677 	  if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
2678 	      /* Don't copy propagate if it has attached REG_EQUIV note.
2679 		 At this point this only function parameters should have
2680 		 REG_EQUIV notes and if the argument slot is used somewhere
2681 		 explicitly, it means address of parameter has been taken,
2682 		 so we should not extend the lifetime of the pseudo.  */
2683 	      && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
2684 		  || ! MEM_P (XEXP (note, 0))))
2685 	    newreg = this_rtx;
2686 	}
2687       if (newcnst && constprop_register (insn, x, newcnst))
2688 	{
2689 	  if (dump_file != NULL)
2690 	    {
2691 	      fprintf (dump_file, "LOCAL CONST-PROP: Replacing reg %d in ",
2692 		       REGNO (x));
2693 	      fprintf (dump_file, "insn %d with constant ",
2694 		       INSN_UID (insn));
2695 	      print_rtl (dump_file, newcnst);
2696 	      fprintf (dump_file, "\n");
2697 	    }
2698 	  local_const_prop_count++;
2699 	  return true;
2700 	}
2701       else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
2702 	{
2703 	  if (dump_file != NULL)
2704 	    {
2705 	      fprintf (dump_file,
2706 		       "LOCAL COPY-PROP: Replacing reg %d in insn %d",
2707 		       REGNO (x), INSN_UID (insn));
2708 	      fprintf (dump_file, " with reg %d\n", REGNO (newreg));
2709 	    }
2710 	  local_copy_prop_count++;
2711 	  return true;
2712 	}
2713     }
2714   return false;
2715 }
2716 
2717 /* Do local const/copy propagation (i.e. within each basic block).  */
2718 
2719 static int
2720 local_cprop_pass (void)
2721 {
2722   basic_block bb;
2723   rtx insn;
2724   struct reg_use *reg_used;
2725   bool changed = false;
2726 
2727   cselib_init (0);
2728   FOR_EACH_BB (bb)
2729     {
2730       FOR_BB_INSNS (bb, insn)
2731 	{
2732 	  if (INSN_P (insn))
2733 	    {
2734 	      rtx note = find_reg_equal_equiv_note (insn);
2735 	      do
2736 		{
2737 		  reg_use_count = 0;
2738 		  note_uses (&PATTERN (insn), local_cprop_find_used_regs,
2739 			     NULL);
2740 		  if (note)
2741 		    local_cprop_find_used_regs (&XEXP (note, 0), NULL);
2742 
2743 		  for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2744 		       reg_used++, reg_use_count--)
2745 		    {
2746 		      if (do_local_cprop (reg_used->reg_rtx, insn))
2747 			{
2748 			  changed = true;
2749 			  break;
2750 			}
2751 		    }
2752 		  if (INSN_DELETED_P (insn))
2753 		    break;
2754 		}
2755 	      while (reg_use_count);
2756 	    }
2757 	  cselib_process_insn (insn);
2758 	}
2759 
2760       /* Forget everything at the end of a basic block.  */
2761       cselib_clear_table ();
2762     }
2763 
2764   cselib_finish ();
2765 
2766   return changed;
2767 }
2768 
2769 /* Similar to get_condition, only the resulting condition must be
2770    valid at JUMP, instead of at EARLIEST.
2771 
2772    This differs from noce_get_condition in ifcvt.c in that we prefer not to
2773    settle for the condition variable in the jump instruction being integral.
2774    We prefer to be able to record the value of a user variable, rather than
2775    the value of a temporary used in a condition.  This could be solved by
2776    recording the value of *every* register scanned by canonicalize_condition,
2777    but this would require some code reorganization.  */
2778 
2779 rtx
2780 fis_get_condition (rtx jump)
2781 {
2782   return get_condition (jump, NULL, false, true);
2783 }
2784 
2785 /* Check the comparison COND to see if we can safely form an implicit set from
2786    it.  COND is either an EQ or NE comparison.  */
2787 
2788 static bool
2789 implicit_set_cond_p (const_rtx cond)
2790 {
2791   const enum machine_mode mode = GET_MODE (XEXP (cond, 0));
2792   const_rtx cst = XEXP (cond, 1);
2793 
2794   /* We can't perform this optimization if either operand might be or might
2795      contain a signed zero.  */
2796   if (HONOR_SIGNED_ZEROS (mode))
2797     {
2798       /* It is sufficient to check if CST is or contains a zero.  We must
2799 	 handle float, complex, and vector.  If any subpart is a zero, then
2800 	 the optimization can't be performed.  */
2801       /* ??? The complex and vector checks are not implemented yet.  We just
2802 	 always return zero for them.  */
2803       if (GET_CODE (cst) == CONST_DOUBLE)
2804 	{
2805 	  REAL_VALUE_TYPE d;
2806 	  REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
2807 	  if (REAL_VALUES_EQUAL (d, dconst0))
2808 	    return 0;
2809 	}
2810       else
2811 	return 0;
2812     }
2813 
2814   return gcse_constant_p (cst);
2815 }
2816 
2817 /* Find the implicit sets of a function.  An "implicit set" is a constraint
2818    on the value of a variable, implied by a conditional jump.  For example,
2819    following "if (x == 2)", the then branch may be optimized as though the
2820    conditional performed an "explicit set", in this example, "x = 2".  This
2821    function records the set patterns that are implicit at the start of each
2822    basic block.
2823 
2824    FIXME: This would be more effective if critical edges are pre-split.  As
2825 	  it is now, we can't record implicit sets for blocks that have
2826 	  critical successor edges.  This results in missed optimizations
2827 	  and in more (unnecessary) work in cfgcleanup.c:thread_jump().  */
2828 
2829 static void
2830 find_implicit_sets (void)
2831 {
2832   basic_block bb, dest;
2833   unsigned int count;
2834   rtx cond, new_rtx;
2835 
2836   count = 0;
2837   FOR_EACH_BB (bb)
2838     /* Check for more than one successor.  */
2839     if (EDGE_COUNT (bb->succs) > 1)
2840       {
2841 	cond = fis_get_condition (BB_END (bb));
2842 
2843 	if (cond
2844 	    && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
2845 	    && REG_P (XEXP (cond, 0))
2846 	    && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
2847 	    && implicit_set_cond_p (cond))
2848 	  {
2849 	    dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
2850 					 : FALLTHRU_EDGE (bb)->dest;
2851 
2852 	    if (dest
2853 		/* Record nothing for a critical edge.  */
2854 		&& single_pred_p (dest)
2855 		&& dest != EXIT_BLOCK_PTR)
2856 	      {
2857 		new_rtx = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
2858 					     XEXP (cond, 1));
2859 		implicit_sets[dest->index] = new_rtx;
2860 		if (dump_file)
2861 		  {
2862 		    fprintf(dump_file, "Implicit set of reg %d in ",
2863 			    REGNO (XEXP (cond, 0)));
2864 		    fprintf(dump_file, "basic block %d\n", dest->index);
2865 		  }
2866 		count++;
2867 	      }
2868 	  }
2869       }
2870 
2871   if (dump_file)
2872     fprintf (dump_file, "Found %d implicit sets\n", count);
2873 }
2874 
2875 /* Bypass conditional jumps.  */
2876 
2877 /* The value of last_basic_block at the beginning of the jump_bypass
2878    pass.  The use of redirect_edge_and_branch_force may introduce new
2879    basic blocks, but the data flow analysis is only valid for basic
2880    block indices less than bypass_last_basic_block.  */
2881 
2882 static int bypass_last_basic_block;
2883 
2884 /* Find a set of REGNO to a constant that is available at the end of basic
2885    block BB.  Returns NULL if no such set is found.  Based heavily upon
2886    find_avail_set.  */
2887 
2888 static struct expr *
2889 find_bypass_set (int regno, int bb)
2890 {
2891   struct expr *result = 0;
2892 
2893   for (;;)
2894     {
2895       rtx src;
2896       struct expr *set = lookup_set (regno, &set_hash_table);
2897 
2898       while (set)
2899 	{
2900 	  if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
2901 	    break;
2902 	  set = next_set (regno, set);
2903 	}
2904 
2905       if (set == 0)
2906 	break;
2907 
2908       gcc_assert (GET_CODE (set->expr) == SET);
2909 
2910       src = SET_SRC (set->expr);
2911       if (gcse_constant_p (src))
2912 	result = set;
2913 
2914       if (! REG_P (src))
2915 	break;
2916 
2917       regno = REGNO (src);
2918     }
2919   return result;
2920 }
2921 
2922 
2923 /* Subroutine of bypass_block that checks whether a pseudo is killed by
2924    any of the instructions inserted on an edge.  Jump bypassing places
2925    condition code setters on CFG edges using insert_insn_on_edge.  This
2926    function is required to check that our data flow analysis is still
2927    valid prior to commit_edge_insertions.  */
2928 
2929 static bool
2930 reg_killed_on_edge (const_rtx reg, const_edge e)
2931 {
2932   rtx insn;
2933 
2934   for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
2935     if (INSN_P (insn) && reg_set_p (reg, insn))
2936       return true;
2937 
2938   return false;
2939 }
2940 
2941 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
2942    basic block BB which has more than one predecessor.  If not NULL, SETCC
2943    is the first instruction of BB, which is immediately followed by JUMP_INSN
2944    JUMP.  Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
2945    Returns nonzero if a change was made.
2946 
2947    During the jump bypassing pass, we may place copies of SETCC instructions
2948    on CFG edges.  The following routine must be careful to pay attention to
2949    these inserted insns when performing its transformations.  */
2950 
2951 static int
2952 bypass_block (basic_block bb, rtx setcc, rtx jump)
2953 {
2954   rtx insn, note;
2955   edge e, edest;
2956   int i, change;
2957   int may_be_loop_header;
2958   unsigned removed_p;
2959   edge_iterator ei;
2960 
2961   insn = (setcc != NULL) ? setcc : jump;
2962 
2963   /* Determine set of register uses in INSN.  */
2964   reg_use_count = 0;
2965   note_uses (&PATTERN (insn), find_used_regs, NULL);
2966   note = find_reg_equal_equiv_note (insn);
2967   if (note)
2968     find_used_regs (&XEXP (note, 0), NULL);
2969 
2970   may_be_loop_header = false;
2971   FOR_EACH_EDGE (e, ei, bb->preds)
2972     if (e->flags & EDGE_DFS_BACK)
2973       {
2974 	may_be_loop_header = true;
2975 	break;
2976       }
2977 
2978   change = 0;
2979   for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
2980     {
2981       removed_p = 0;
2982 
2983       if (e->flags & EDGE_COMPLEX)
2984 	{
2985 	  ei_next (&ei);
2986 	  continue;
2987 	}
2988 
2989       /* We can't redirect edges from new basic blocks.  */
2990       if (e->src->index >= bypass_last_basic_block)
2991 	{
2992 	  ei_next (&ei);
2993 	  continue;
2994 	}
2995 
2996       /* The irreducible loops created by redirecting of edges entering the
2997 	 loop from outside would decrease effectiveness of some of the following
2998 	 optimizations, so prevent this.  */
2999       if (may_be_loop_header
3000 	  && !(e->flags & EDGE_DFS_BACK))
3001 	{
3002 	  ei_next (&ei);
3003 	  continue;
3004 	}
3005 
3006       for (i = 0; i < reg_use_count; i++)
3007 	{
3008 	  struct reg_use *reg_used = &reg_use_table[i];
3009 	  unsigned int regno = REGNO (reg_used->reg_rtx);
3010 	  basic_block dest, old_dest;
3011 	  struct expr *set;
3012 	  rtx src, new_rtx;
3013 
3014 	  set = find_bypass_set (regno, e->src->index);
3015 
3016 	  if (! set)
3017 	    continue;
3018 
3019 	  /* Check the data flow is valid after edge insertions.  */
3020 	  if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3021 	    continue;
3022 
3023 	  src = SET_SRC (pc_set (jump));
3024 
3025 	  if (setcc != NULL)
3026 	    src = simplify_replace_rtx (src,
3027 					SET_DEST (PATTERN (setcc)),
3028 					SET_SRC (PATTERN (setcc)));
3029 
3030 	  new_rtx = simplify_replace_rtx (src, reg_used->reg_rtx,
3031 					  SET_SRC (set->expr));
3032 
3033 	  /* Jump bypassing may have already placed instructions on
3034 	     edges of the CFG.  We can't bypass an outgoing edge that
3035 	     has instructions associated with it, as these insns won't
3036 	     get executed if the incoming edge is redirected.  */
3037 
3038 	  if (new_rtx == pc_rtx)
3039 	    {
3040 	      edest = FALLTHRU_EDGE (bb);
3041 	      dest = edest->insns.r ? NULL : edest->dest;
3042 	    }
3043 	  else if (GET_CODE (new_rtx) == LABEL_REF)
3044 	    {
3045 	      dest = BLOCK_FOR_INSN (XEXP (new_rtx, 0));
3046 	      /* Don't bypass edges containing instructions.  */
3047 	      edest = find_edge (bb, dest);
3048 	      if (edest && edest->insns.r)
3049 		dest = NULL;
3050 	    }
3051 	  else
3052 	    dest = NULL;
3053 
3054 	  /* Avoid unification of the edge with other edges from original
3055 	     branch.  We would end up emitting the instruction on "both"
3056 	     edges.  */
3057 
3058 	  if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc)))
3059 	      && find_edge (e->src, dest))
3060 	    dest = NULL;
3061 
3062 	  old_dest = e->dest;
3063 	  if (dest != NULL
3064 	      && dest != old_dest
3065 	      && dest != EXIT_BLOCK_PTR)
3066             {
3067 	      redirect_edge_and_branch_force (e, dest);
3068 
3069 	      /* Copy the register setter to the redirected edge.
3070 		 Don't copy CC0 setters, as CC0 is dead after jump.  */
3071 	      if (setcc)
3072 		{
3073 		  rtx pat = PATTERN (setcc);
3074 		  if (!CC0_P (SET_DEST (pat)))
3075 		    insert_insn_on_edge (copy_insn (pat), e);
3076 		}
3077 
3078 	      if (dump_file != NULL)
3079 		{
3080 		  fprintf (dump_file, "JUMP-BYPASS: Proved reg %d "
3081 				      "in jump_insn %d equals constant ",
3082 			   regno, INSN_UID (jump));
3083 		  print_rtl (dump_file, SET_SRC (set->expr));
3084 		  fprintf (dump_file, "\nBypass edge from %d->%d to %d\n",
3085 			   e->src->index, old_dest->index, dest->index);
3086 		}
3087 	      change = 1;
3088 	      removed_p = 1;
3089 	      break;
3090 	    }
3091 	}
3092       if (!removed_p)
3093 	ei_next (&ei);
3094     }
3095   return change;
3096 }
3097 
3098 /* Find basic blocks with more than one predecessor that only contain a
3099    single conditional jump.  If the result of the comparison is known at
3100    compile-time from any incoming edge, redirect that edge to the
3101    appropriate target.  Returns nonzero if a change was made.
3102 
3103    This function is now mis-named, because we also handle indirect jumps.  */
3104 
3105 static int
3106 bypass_conditional_jumps (void)
3107 {
3108   basic_block bb;
3109   int changed;
3110   rtx setcc;
3111   rtx insn;
3112   rtx dest;
3113 
3114   /* Note we start at block 1.  */
3115   if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3116     return 0;
3117 
3118   bypass_last_basic_block = last_basic_block;
3119   mark_dfs_back_edges ();
3120 
3121   changed = 0;
3122   FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3123 		  EXIT_BLOCK_PTR, next_bb)
3124     {
3125       /* Check for more than one predecessor.  */
3126       if (!single_pred_p (bb))
3127 	{
3128 	  setcc = NULL_RTX;
3129 	  FOR_BB_INSNS (bb, insn)
3130 	    if (DEBUG_INSN_P (insn))
3131 	      continue;
3132 	    else if (NONJUMP_INSN_P (insn))
3133 	      {
3134 		if (setcc)
3135 		  break;
3136 		if (GET_CODE (PATTERN (insn)) != SET)
3137 		  break;
3138 
3139 		dest = SET_DEST (PATTERN (insn));
3140 		if (REG_P (dest) || CC0_P (dest))
3141 		  setcc = insn;
3142 		else
3143 		  break;
3144 	      }
3145 	    else if (JUMP_P (insn))
3146 	      {
3147 		if ((any_condjump_p (insn) || computed_jump_p (insn))
3148 		    && onlyjump_p (insn))
3149 		  changed |= bypass_block (bb, setcc, insn);
3150 		break;
3151 	      }
3152 	    else if (INSN_P (insn))
3153 	      break;
3154 	}
3155     }
3156 
3157   /* If we bypassed any register setting insns, we inserted a
3158      copy on the redirected edge.  These need to be committed.  */
3159   if (changed)
3160     commit_edge_insertions ();
3161 
3162   return changed;
3163 }
3164 
3165 /* Compute PRE+LCM working variables.  */
3166 
3167 /* Local properties of expressions.  */
3168 /* Nonzero for expressions that are transparent in the block.  */
3169 static sbitmap *transp;
3170 
3171 /* Nonzero for expressions that are transparent at the end of the block.
3172    This is only zero for expressions killed by abnormal critical edge
3173    created by a calls.  */
3174 static sbitmap *transpout;
3175 
3176 /* Nonzero for expressions that are computed (available) in the block.  */
3177 static sbitmap *comp;
3178 
3179 /* Nonzero for expressions that are locally anticipatable in the block.  */
3180 static sbitmap *antloc;
3181 
3182 /* Nonzero for expressions where this block is an optimal computation
3183    point.  */
3184 static sbitmap *pre_optimal;
3185 
3186 /* Nonzero for expressions which are redundant in a particular block.  */
3187 static sbitmap *pre_redundant;
3188 
3189 /* Nonzero for expressions which should be inserted on a specific edge.  */
3190 static sbitmap *pre_insert_map;
3191 
3192 /* Nonzero for expressions which should be deleted in a specific block.  */
3193 static sbitmap *pre_delete_map;
3194 
3195 /* Contains the edge_list returned by pre_edge_lcm.  */
3196 static struct edge_list *edge_list;
3197 
3198 /* Allocate vars used for PRE analysis.  */
3199 
3200 static void
3201 alloc_pre_mem (int n_blocks, int n_exprs)
3202 {
3203   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3204   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3205   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3206 
3207   pre_optimal = NULL;
3208   pre_redundant = NULL;
3209   pre_insert_map = NULL;
3210   pre_delete_map = NULL;
3211   ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3212 
3213   /* pre_insert and pre_delete are allocated later.  */
3214 }
3215 
3216 /* Free vars used for PRE analysis.  */
3217 
3218 static void
3219 free_pre_mem (void)
3220 {
3221   sbitmap_vector_free (transp);
3222   sbitmap_vector_free (comp);
3223 
3224   /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
3225 
3226   if (pre_optimal)
3227     sbitmap_vector_free (pre_optimal);
3228   if (pre_redundant)
3229     sbitmap_vector_free (pre_redundant);
3230   if (pre_insert_map)
3231     sbitmap_vector_free (pre_insert_map);
3232   if (pre_delete_map)
3233     sbitmap_vector_free (pre_delete_map);
3234 
3235   transp = comp = NULL;
3236   pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3237 }
3238 
3239 /* Top level routine to do the dataflow analysis needed by PRE.  */
3240 
3241 static void
3242 compute_pre_data (void)
3243 {
3244   sbitmap trapping_expr;
3245   basic_block bb;
3246   unsigned int ui;
3247 
3248   compute_local_properties (transp, comp, antloc, &expr_hash_table);
3249   sbitmap_vector_zero (ae_kill, last_basic_block);
3250 
3251   /* Collect expressions which might trap.  */
3252   trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3253   sbitmap_zero (trapping_expr);
3254   for (ui = 0; ui < expr_hash_table.size; ui++)
3255     {
3256       struct expr *e;
3257       for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3258 	if (may_trap_p (e->expr))
3259 	  SET_BIT (trapping_expr, e->bitmap_index);
3260     }
3261 
3262   /* Compute ae_kill for each basic block using:
3263 
3264      ~(TRANSP | COMP)
3265   */
3266 
3267   FOR_EACH_BB (bb)
3268     {
3269       edge e;
3270       edge_iterator ei;
3271 
3272       /* If the current block is the destination of an abnormal edge, we
3273 	 kill all trapping expressions because we won't be able to properly
3274 	 place the instruction on the edge.  So make them neither
3275 	 anticipatable nor transparent.  This is fairly conservative.  */
3276       FOR_EACH_EDGE (e, ei, bb->preds)
3277 	if (e->flags & EDGE_ABNORMAL)
3278 	  {
3279 	    sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3280 	    sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3281 	    break;
3282 	  }
3283 
3284       sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3285       sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3286     }
3287 
3288   edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
3289 			    ae_kill, &pre_insert_map, &pre_delete_map);
3290   sbitmap_vector_free (antloc);
3291   antloc = NULL;
3292   sbitmap_vector_free (ae_kill);
3293   ae_kill = NULL;
3294   sbitmap_free (trapping_expr);
3295 }
3296 
3297 /* PRE utilities */
3298 
3299 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3300    block BB.
3301 
3302    VISITED is a pointer to a working buffer for tracking which BB's have
3303    been visited.  It is NULL for the top-level call.
3304 
3305    We treat reaching expressions that go through blocks containing the same
3306    reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
3307    2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3308    2 as not reaching.  The intent is to improve the probability of finding
3309    only one reaching expression and to reduce register lifetimes by picking
3310    the closest such expression.  */
3311 
3312 static int
3313 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3314 {
3315   edge pred;
3316   edge_iterator ei;
3317 
3318   FOR_EACH_EDGE (pred, ei, bb->preds)
3319     {
3320       basic_block pred_bb = pred->src;
3321 
3322       if (pred->src == ENTRY_BLOCK_PTR
3323 	  /* Has predecessor has already been visited?  */
3324 	  || visited[pred_bb->index])
3325 	;/* Nothing to do.  */
3326 
3327       /* Does this predecessor generate this expression?  */
3328       else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3329 	{
3330 	  /* Is this the occurrence we're looking for?
3331 	     Note that there's only one generating occurrence per block
3332 	     so we just need to check the block number.  */
3333 	  if (occr_bb == pred_bb)
3334 	    return 1;
3335 
3336 	  visited[pred_bb->index] = 1;
3337 	}
3338       /* Ignore this predecessor if it kills the expression.  */
3339       else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3340 	visited[pred_bb->index] = 1;
3341 
3342       /* Neither gen nor kill.  */
3343       else
3344 	{
3345 	  visited[pred_bb->index] = 1;
3346 	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3347 	    return 1;
3348 	}
3349     }
3350 
3351   /* All paths have been checked.  */
3352   return 0;
3353 }
3354 
3355 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3356    memory allocated for that function is returned.  */
3357 
3358 static int
3359 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3360 {
3361   int rval;
3362   char *visited = XCNEWVEC (char, last_basic_block);
3363 
3364   rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3365 
3366   free (visited);
3367   return rval;
3368 }
3369 
3370 
3371 /* Given an expr, generate RTL which we can insert at the end of a BB,
3372    or on an edge.  Set the block number of any insns generated to
3373    the value of BB.  */
3374 
3375 static rtx
3376 process_insert_insn (struct expr *expr)
3377 {
3378   rtx reg = expr->reaching_reg;
3379   rtx exp = copy_rtx (expr->expr);
3380   rtx pat;
3381 
3382   start_sequence ();
3383 
3384   /* If the expression is something that's an operand, like a constant,
3385      just copy it to a register.  */
3386   if (general_operand (exp, GET_MODE (reg)))
3387     emit_move_insn (reg, exp);
3388 
3389   /* Otherwise, make a new insn to compute this expression and make sure the
3390      insn will be recognized (this also adds any needed CLOBBERs).  Copy the
3391      expression to make sure we don't have any sharing issues.  */
3392   else
3393     {
3394       rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
3395 
3396       if (insn_invalid_p (insn))
3397 	gcc_unreachable ();
3398     }
3399 
3400 
3401   pat = get_insns ();
3402   end_sequence ();
3403 
3404   return pat;
3405 }
3406 
3407 /* Add EXPR to the end of basic block BB.
3408 
3409    This is used by both the PRE and code hoisting.
3410 
3411    For PRE, we want to verify that the expr is either transparent
3412    or locally anticipatable in the target block.  This check makes
3413    no sense for code hoisting.  */
3414 
3415 static void
3416 insert_insn_end_basic_block (struct expr *expr, basic_block bb, int pre)
3417 {
3418   rtx insn = BB_END (bb);
3419   rtx new_insn;
3420   rtx reg = expr->reaching_reg;
3421   int regno = REGNO (reg);
3422   rtx pat, pat_end;
3423 
3424   pat = process_insert_insn (expr);
3425   gcc_assert (pat && INSN_P (pat));
3426 
3427   pat_end = pat;
3428   while (NEXT_INSN (pat_end) != NULL_RTX)
3429     pat_end = NEXT_INSN (pat_end);
3430 
3431   /* If the last insn is a jump, insert EXPR in front [taking care to
3432      handle cc0, etc. properly].  Similarly we need to care trapping
3433      instructions in presence of non-call exceptions.  */
3434 
3435   if (JUMP_P (insn)
3436       || (NONJUMP_INSN_P (insn)
3437 	  && (!single_succ_p (bb)
3438 	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
3439     {
3440 #ifdef HAVE_cc0
3441       rtx note;
3442 #endif
3443       /* It should always be the case that we can put these instructions
3444 	 anywhere in the basic block with performing PRE optimizations.
3445 	 Check this.  */
3446       gcc_assert (!NONJUMP_INSN_P (insn) || !pre
3447 		  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
3448 		  || TEST_BIT (transp[bb->index], expr->bitmap_index));
3449 
3450       /* If this is a jump table, then we can't insert stuff here.  Since
3451 	 we know the previous real insn must be the tablejump, we insert
3452 	 the new instruction just before the tablejump.  */
3453       if (GET_CODE (PATTERN (insn)) == ADDR_VEC
3454 	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
3455 	insn = prev_real_insn (insn);
3456 
3457 #ifdef HAVE_cc0
3458       /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
3459 	 if cc0 isn't set.  */
3460       note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3461       if (note)
3462 	insn = XEXP (note, 0);
3463       else
3464 	{
3465 	  rtx maybe_cc0_setter = prev_nonnote_insn (insn);
3466 	  if (maybe_cc0_setter
3467 	      && INSN_P (maybe_cc0_setter)
3468 	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
3469 	    insn = maybe_cc0_setter;
3470 	}
3471 #endif
3472       /* FIXME: What if something in cc0/jump uses value set in new insn?  */
3473       new_insn = emit_insn_before_noloc (pat, insn, bb);
3474     }
3475 
3476   /* Likewise if the last insn is a call, as will happen in the presence
3477      of exception handling.  */
3478   else if (CALL_P (insn)
3479 	   && (!single_succ_p (bb)
3480 	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3481     {
3482       /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
3483 	 we search backward and place the instructions before the first
3484 	 parameter is loaded.  Do this for everyone for consistency and a
3485 	 presumption that we'll get better code elsewhere as well.
3486 
3487 	 It should always be the case that we can put these instructions
3488 	 anywhere in the basic block with performing PRE optimizations.
3489 	 Check this.  */
3490 
3491       gcc_assert (!pre
3492 		  || TEST_BIT (antloc[bb->index], expr->bitmap_index)
3493 		  || TEST_BIT (transp[bb->index], expr->bitmap_index));
3494 
3495       /* Since different machines initialize their parameter registers
3496 	 in different orders, assume nothing.  Collect the set of all
3497 	 parameter registers.  */
3498       insn = find_first_parameter_load (insn, BB_HEAD (bb));
3499 
3500       /* If we found all the parameter loads, then we want to insert
3501 	 before the first parameter load.
3502 
3503 	 If we did not find all the parameter loads, then we might have
3504 	 stopped on the head of the block, which could be a CODE_LABEL.
3505 	 If we inserted before the CODE_LABEL, then we would be putting
3506 	 the insn in the wrong basic block.  In that case, put the insn
3507 	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
3508       while (LABEL_P (insn)
3509 	     || NOTE_INSN_BASIC_BLOCK_P (insn))
3510 	insn = NEXT_INSN (insn);
3511 
3512       new_insn = emit_insn_before_noloc (pat, insn, bb);
3513     }
3514   else
3515     new_insn = emit_insn_after_noloc (pat, insn, bb);
3516 
3517   while (1)
3518     {
3519       if (INSN_P (pat))
3520 	add_label_notes (PATTERN (pat), new_insn);
3521       if (pat == pat_end)
3522 	break;
3523       pat = NEXT_INSN (pat);
3524     }
3525 
3526   gcse_create_count++;
3527 
3528   if (dump_file)
3529     {
3530       fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
3531 	       bb->index, INSN_UID (new_insn));
3532       fprintf (dump_file, "copying expression %d to reg %d\n",
3533 	       expr->bitmap_index, regno);
3534     }
3535 }
3536 
3537 /* Insert partially redundant expressions on edges in the CFG to make
3538    the expressions fully redundant.  */
3539 
3540 static int
3541 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
3542 {
3543   int e, i, j, num_edges, set_size, did_insert = 0;
3544   sbitmap *inserted;
3545 
3546   /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
3547      if it reaches any of the deleted expressions.  */
3548 
3549   set_size = pre_insert_map[0]->size;
3550   num_edges = NUM_EDGES (edge_list);
3551   inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
3552   sbitmap_vector_zero (inserted, num_edges);
3553 
3554   for (e = 0; e < num_edges; e++)
3555     {
3556       int indx;
3557       basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
3558 
3559       for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
3560 	{
3561 	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
3562 
3563 	  for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
3564 	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
3565 	      {
3566 		struct expr *expr = index_map[j];
3567 		struct occr *occr;
3568 
3569 		/* Now look at each deleted occurrence of this expression.  */
3570 		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3571 		  {
3572 		    if (! occr->deleted_p)
3573 		      continue;
3574 
3575 		    /* Insert this expression on this edge if it would
3576 		       reach the deleted occurrence in BB.  */
3577 		    if (!TEST_BIT (inserted[e], j))
3578 		      {
3579 			rtx insn;
3580 			edge eg = INDEX_EDGE (edge_list, e);
3581 
3582 			/* We can't insert anything on an abnormal and
3583 			   critical edge, so we insert the insn at the end of
3584 			   the previous block. There are several alternatives
3585 			   detailed in Morgans book P277 (sec 10.5) for
3586 			   handling this situation.  This one is easiest for
3587 			   now.  */
3588 
3589 			if (eg->flags & EDGE_ABNORMAL)
3590 			  insert_insn_end_basic_block (index_map[j], bb, 0);
3591 			else
3592 			  {
3593 			    insn = process_insert_insn (index_map[j]);
3594 			    insert_insn_on_edge (insn, eg);
3595 			  }
3596 
3597 			if (dump_file)
3598 			  {
3599 			    fprintf (dump_file, "PRE: edge (%d,%d), ",
3600 				     bb->index,
3601 				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
3602 			    fprintf (dump_file, "copy expression %d\n",
3603 				     expr->bitmap_index);
3604 			  }
3605 
3606 			update_ld_motion_stores (expr);
3607 			SET_BIT (inserted[e], j);
3608 			did_insert = 1;
3609 			gcse_create_count++;
3610 		      }
3611 		  }
3612 	      }
3613 	}
3614     }
3615 
3616   sbitmap_vector_free (inserted);
3617   return did_insert;
3618 }
3619 
3620 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
3621    Given "old_reg <- expr" (INSN), instead of adding after it
3622      reaching_reg <- old_reg
3623    it's better to do the following:
3624      reaching_reg <- expr
3625      old_reg      <- reaching_reg
3626    because this way copy propagation can discover additional PRE
3627    opportunities.  But if this fails, we try the old way.
3628    When "expr" is a store, i.e.
3629    given "MEM <- old_reg", instead of adding after it
3630      reaching_reg <- old_reg
3631    it's better to add it before as follows:
3632      reaching_reg <- old_reg
3633      MEM          <- reaching_reg.  */
3634 
3635 static void
3636 pre_insert_copy_insn (struct expr *expr, rtx insn)
3637 {
3638   rtx reg = expr->reaching_reg;
3639   int regno = REGNO (reg);
3640   int indx = expr->bitmap_index;
3641   rtx pat = PATTERN (insn);
3642   rtx set, first_set, new_insn;
3643   rtx old_reg;
3644   int i;
3645 
3646   /* This block matches the logic in hash_scan_insn.  */
3647   switch (GET_CODE (pat))
3648     {
3649     case SET:
3650       set = pat;
3651       break;
3652 
3653     case PARALLEL:
3654       /* Search through the parallel looking for the set whose
3655 	 source was the expression that we're interested in.  */
3656       first_set = NULL_RTX;
3657       set = NULL_RTX;
3658       for (i = 0; i < XVECLEN (pat, 0); i++)
3659 	{
3660 	  rtx x = XVECEXP (pat, 0, i);
3661 	  if (GET_CODE (x) == SET)
3662 	    {
3663 	      /* If the source was a REG_EQUAL or REG_EQUIV note, we
3664 		 may not find an equivalent expression, but in this
3665 		 case the PARALLEL will have a single set.  */
3666 	      if (first_set == NULL_RTX)
3667 		first_set = x;
3668 	      if (expr_equiv_p (SET_SRC (x), expr->expr))
3669 	        {
3670 	          set = x;
3671 	          break;
3672 	        }
3673 	    }
3674 	}
3675 
3676       gcc_assert (first_set);
3677       if (set == NULL_RTX)
3678         set = first_set;
3679       break;
3680 
3681     default:
3682       gcc_unreachable ();
3683     }
3684 
3685   if (REG_P (SET_DEST (set)))
3686     {
3687       old_reg = SET_DEST (set);
3688       /* Check if we can modify the set destination in the original insn.  */
3689       if (validate_change (insn, &SET_DEST (set), reg, 0))
3690         {
3691           new_insn = gen_move_insn (old_reg, reg);
3692           new_insn = emit_insn_after (new_insn, insn);
3693         }
3694       else
3695         {
3696           new_insn = gen_move_insn (reg, old_reg);
3697           new_insn = emit_insn_after (new_insn, insn);
3698         }
3699     }
3700   else /* This is possible only in case of a store to memory.  */
3701     {
3702       old_reg = SET_SRC (set);
3703       new_insn = gen_move_insn (reg, old_reg);
3704 
3705       /* Check if we can modify the set source in the original insn.  */
3706       if (validate_change (insn, &SET_SRC (set), reg, 0))
3707         new_insn = emit_insn_before (new_insn, insn);
3708       else
3709         new_insn = emit_insn_after (new_insn, insn);
3710     }
3711 
3712   gcse_create_count++;
3713 
3714   if (dump_file)
3715     fprintf (dump_file,
3716 	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
3717 	      BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
3718 	      INSN_UID (insn), regno);
3719 }
3720 
3721 /* Copy available expressions that reach the redundant expression
3722    to `reaching_reg'.  */
3723 
3724 static void
3725 pre_insert_copies (void)
3726 {
3727   unsigned int i, added_copy;
3728   struct expr *expr;
3729   struct occr *occr;
3730   struct occr *avail;
3731 
3732   /* For each available expression in the table, copy the result to
3733      `reaching_reg' if the expression reaches a deleted one.
3734 
3735      ??? The current algorithm is rather brute force.
3736      Need to do some profiling.  */
3737 
3738   for (i = 0; i < expr_hash_table.size; i++)
3739     for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
3740       {
3741 	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
3742 	   we don't want to insert a copy here because the expression may not
3743 	   really be redundant.  So only insert an insn if the expression was
3744 	   deleted.  This test also avoids further processing if the
3745 	   expression wasn't deleted anywhere.  */
3746 	if (expr->reaching_reg == NULL)
3747 	  continue;
3748 
3749 	/* Set when we add a copy for that expression.  */
3750 	added_copy = 0;
3751 
3752 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3753 	  {
3754 	    if (! occr->deleted_p)
3755 	      continue;
3756 
3757 	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
3758 	      {
3759 		rtx insn = avail->insn;
3760 
3761 		/* No need to handle this one if handled already.  */
3762 		if (avail->copied_p)
3763 		  continue;
3764 
3765 		/* Don't handle this one if it's a redundant one.  */
3766 		if (INSN_DELETED_P (insn))
3767 		  continue;
3768 
3769 		/* Or if the expression doesn't reach the deleted one.  */
3770 		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
3771 					       expr,
3772 					       BLOCK_FOR_INSN (occr->insn)))
3773 		  continue;
3774 
3775                 added_copy = 1;
3776 
3777 		/* Copy the result of avail to reaching_reg.  */
3778 		pre_insert_copy_insn (expr, insn);
3779 		avail->copied_p = 1;
3780 	      }
3781 	  }
3782 
3783 	  if (added_copy)
3784             update_ld_motion_stores (expr);
3785       }
3786 }
3787 
3788 /* Emit move from SRC to DEST noting the equivalence with expression computed
3789    in INSN.  */
3790 static rtx
3791 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
3792 {
3793   rtx new_rtx;
3794   rtx set = single_set (insn), set2;
3795   rtx note;
3796   rtx eqv;
3797 
3798   /* This should never fail since we're creating a reg->reg copy
3799      we've verified to be valid.  */
3800 
3801   new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
3802 
3803   /* Note the equivalence for local CSE pass.  */
3804   set2 = single_set (new_rtx);
3805   if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
3806     return new_rtx;
3807   if ((note = find_reg_equal_equiv_note (insn)))
3808     eqv = XEXP (note, 0);
3809   else
3810     eqv = SET_SRC (set);
3811 
3812   set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
3813 
3814   return new_rtx;
3815 }
3816 
3817 /* Delete redundant computations.
3818    Deletion is done by changing the insn to copy the `reaching_reg' of
3819    the expression into the result of the SET.  It is left to later passes
3820    (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
3821 
3822    Returns nonzero if a change is made.  */
3823 
3824 static int
3825 pre_delete (void)
3826 {
3827   unsigned int i;
3828   int changed;
3829   struct expr *expr;
3830   struct occr *occr;
3831 
3832   changed = 0;
3833   for (i = 0; i < expr_hash_table.size; i++)
3834     for (expr = expr_hash_table.table[i];
3835 	 expr != NULL;
3836 	 expr = expr->next_same_hash)
3837       {
3838 	int indx = expr->bitmap_index;
3839 
3840 	/* We only need to search antic_occr since we require
3841 	   ANTLOC != 0.  */
3842 
3843 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
3844 	  {
3845 	    rtx insn = occr->insn;
3846 	    rtx set;
3847 	    basic_block bb = BLOCK_FOR_INSN (insn);
3848 
3849 	    /* We only delete insns that have a single_set.  */
3850 	    if (TEST_BIT (pre_delete_map[bb->index], indx)
3851 		&& (set = single_set (insn)) != 0
3852                 && dbg_cnt (pre_insn))
3853 	      {
3854 		/* Create a pseudo-reg to store the result of reaching
3855 		   expressions into.  Get the mode for the new pseudo from
3856 		   the mode of the original destination pseudo.  */
3857 		if (expr->reaching_reg == NULL)
3858 		  expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
3859 
3860 		gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
3861 		delete_insn (insn);
3862 		occr->deleted_p = 1;
3863 		changed = 1;
3864 		gcse_subst_count++;
3865 
3866 		if (dump_file)
3867 		  {
3868 		    fprintf (dump_file,
3869 			     "PRE: redundant insn %d (expression %d) in ",
3870 			       INSN_UID (insn), indx);
3871 		    fprintf (dump_file, "bb %d, reaching reg is %d\n",
3872 			     bb->index, REGNO (expr->reaching_reg));
3873 		  }
3874 	      }
3875 	  }
3876       }
3877 
3878   return changed;
3879 }
3880 
3881 /* Perform GCSE optimizations using PRE.
3882    This is called by one_pre_gcse_pass after all the dataflow analysis
3883    has been done.
3884 
3885    This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
3886    lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
3887    Compiler Design and Implementation.
3888 
3889    ??? A new pseudo reg is created to hold the reaching expression.  The nice
3890    thing about the classical approach is that it would try to use an existing
3891    reg.  If the register can't be adequately optimized [i.e. we introduce
3892    reload problems], one could add a pass here to propagate the new register
3893    through the block.
3894 
3895    ??? We don't handle single sets in PARALLELs because we're [currently] not
3896    able to copy the rest of the parallel when we insert copies to create full
3897    redundancies from partial redundancies.  However, there's no reason why we
3898    can't handle PARALLELs in the cases where there are no partial
3899    redundancies.  */
3900 
3901 static int
3902 pre_gcse (void)
3903 {
3904   unsigned int i;
3905   int did_insert, changed;
3906   struct expr **index_map;
3907   struct expr *expr;
3908 
3909   /* Compute a mapping from expression number (`bitmap_index') to
3910      hash table entry.  */
3911 
3912   index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3913   for (i = 0; i < expr_hash_table.size; i++)
3914     for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
3915       index_map[expr->bitmap_index] = expr;
3916 
3917   /* Delete the redundant insns first so that
3918      - we know what register to use for the new insns and for the other
3919        ones with reaching expressions
3920      - we know which insns are redundant when we go to create copies  */
3921 
3922   changed = pre_delete ();
3923   did_insert = pre_edge_insert (edge_list, index_map);
3924 
3925   /* In other places with reaching expressions, copy the expression to the
3926      specially allocated pseudo-reg that reaches the redundant expr.  */
3927   pre_insert_copies ();
3928   if (did_insert)
3929     {
3930       commit_edge_insertions ();
3931       changed = 1;
3932     }
3933 
3934   free (index_map);
3935   return changed;
3936 }
3937 
3938 /* Top level routine to perform one PRE GCSE pass.
3939 
3940    Return nonzero if a change was made.  */
3941 
3942 static int
3943 one_pre_gcse_pass (void)
3944 {
3945   int changed = 0;
3946 
3947   gcse_subst_count = 0;
3948   gcse_create_count = 0;
3949 
3950   /* Return if there's nothing to do, or it is too expensive.  */
3951   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
3952       || is_too_expensive (_("PRE disabled")))
3953     return 0;
3954 
3955   /* We need alias.  */
3956   init_alias_analysis ();
3957 
3958   bytes_used = 0;
3959   gcc_obstack_init (&gcse_obstack);
3960   alloc_gcse_mem ();
3961 
3962   alloc_hash_table (&expr_hash_table, 0);
3963   add_noreturn_fake_exit_edges ();
3964   if (flag_gcse_lm)
3965     compute_ld_motion_mems ();
3966 
3967   compute_hash_table (&expr_hash_table);
3968   trim_ld_motion_mems ();
3969   if (dump_file)
3970     dump_hash_table (dump_file, "Expression", &expr_hash_table);
3971 
3972   if (expr_hash_table.n_elems > 0)
3973     {
3974       alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
3975       compute_pre_data ();
3976       changed |= pre_gcse ();
3977       free_edge_list (edge_list);
3978       free_pre_mem ();
3979     }
3980 
3981   free_ldst_mems ();
3982   remove_fake_exit_edges ();
3983   free_hash_table (&expr_hash_table);
3984 
3985   free_gcse_mem ();
3986   obstack_free (&gcse_obstack, NULL);
3987 
3988   /* We are finished with alias.  */
3989   end_alias_analysis ();
3990 
3991   if (dump_file)
3992     {
3993       fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
3994 	       current_function_name (), n_basic_blocks, bytes_used);
3995       fprintf (dump_file, "%d substs, %d insns created\n",
3996 	       gcse_subst_count, gcse_create_count);
3997     }
3998 
3999   return changed;
4000 }
4001 
4002 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
4003    to INSN.  If such notes are added to an insn which references a
4004    CODE_LABEL, the LABEL_NUSES count is incremented.  We have to add
4005    that note, because the following loop optimization pass requires
4006    them.  */
4007 
4008 /* ??? If there was a jump optimization pass after gcse and before loop,
4009    then we would not need to do this here, because jump would add the
4010    necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes.  */
4011 
4012 static void
4013 add_label_notes (rtx x, rtx insn)
4014 {
4015   enum rtx_code code = GET_CODE (x);
4016   int i, j;
4017   const char *fmt;
4018 
4019   if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4020     {
4021       /* This code used to ignore labels that referred to dispatch tables to
4022 	 avoid flow generating (slightly) worse code.
4023 
4024 	 We no longer ignore such label references (see LABEL_REF handling in
4025 	 mark_jump_label for additional information).  */
4026 
4027       /* There's no reason for current users to emit jump-insns with
4028 	 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
4029 	 notes.  */
4030       gcc_assert (!JUMP_P (insn));
4031       add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
4032 
4033       if (LABEL_P (XEXP (x, 0)))
4034 	LABEL_NUSES (XEXP (x, 0))++;
4035 
4036       return;
4037     }
4038 
4039   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4040     {
4041       if (fmt[i] == 'e')
4042 	add_label_notes (XEXP (x, i), insn);
4043       else if (fmt[i] == 'E')
4044 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4045 	  add_label_notes (XVECEXP (x, i, j), insn);
4046     }
4047 }
4048 
4049 /* Compute transparent outgoing information for each block.
4050 
4051    An expression is transparent to an edge unless it is killed by
4052    the edge itself.  This can only happen with abnormal control flow,
4053    when the edge is traversed through a call.  This happens with
4054    non-local labels and exceptions.
4055 
4056    This would not be necessary if we split the edge.  While this is
4057    normally impossible for abnormal critical edges, with some effort
4058    it should be possible with exception handling, since we still have
4059    control over which handler should be invoked.  But due to increased
4060    EH table sizes, this may not be worthwhile.  */
4061 
4062 static void
4063 compute_transpout (void)
4064 {
4065   basic_block bb;
4066   unsigned int i;
4067   struct expr *expr;
4068 
4069   sbitmap_vector_ones (transpout, last_basic_block);
4070 
4071   FOR_EACH_BB (bb)
4072     {
4073       /* Note that flow inserted a nop at the end of basic blocks that
4074 	 end in call instructions for reasons other than abnormal
4075 	 control flow.  */
4076       if (! CALL_P (BB_END (bb)))
4077 	continue;
4078 
4079       for (i = 0; i < expr_hash_table.size; i++)
4080 	for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4081 	  if (MEM_P (expr->expr))
4082 	    {
4083 	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4084 		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4085 		continue;
4086 
4087 	      /* ??? Optimally, we would use interprocedural alias
4088 		 analysis to determine if this mem is actually killed
4089 		 by this call.  */
4090 	      RESET_BIT (transpout[bb->index], expr->bitmap_index);
4091 	    }
4092     }
4093 }
4094 
4095 /* Code Hoisting variables and subroutines.  */
4096 
4097 /* Very busy expressions.  */
4098 static sbitmap *hoist_vbein;
4099 static sbitmap *hoist_vbeout;
4100 
4101 /* Hoistable expressions.  */
4102 static sbitmap *hoist_exprs;
4103 
4104 /* ??? We could compute post dominators and run this algorithm in
4105    reverse to perform tail merging, doing so would probably be
4106    more effective than the tail merging code in jump.c.
4107 
4108    It's unclear if tail merging could be run in parallel with
4109    code hoisting.  It would be nice.  */
4110 
4111 /* Allocate vars used for code hoisting analysis.  */
4112 
4113 static void
4114 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4115 {
4116   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4117   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4118   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4119 
4120   hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4121   hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4122   hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4123   transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4124 }
4125 
4126 /* Free vars used for code hoisting analysis.  */
4127 
4128 static void
4129 free_code_hoist_mem (void)
4130 {
4131   sbitmap_vector_free (antloc);
4132   sbitmap_vector_free (transp);
4133   sbitmap_vector_free (comp);
4134 
4135   sbitmap_vector_free (hoist_vbein);
4136   sbitmap_vector_free (hoist_vbeout);
4137   sbitmap_vector_free (hoist_exprs);
4138   sbitmap_vector_free (transpout);
4139 
4140   free_dominance_info (CDI_DOMINATORS);
4141 }
4142 
4143 /* Compute the very busy expressions at entry/exit from each block.
4144 
4145    An expression is very busy if all paths from a given point
4146    compute the expression.  */
4147 
4148 static void
4149 compute_code_hoist_vbeinout (void)
4150 {
4151   int changed, passes;
4152   basic_block bb;
4153 
4154   sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4155   sbitmap_vector_zero (hoist_vbein, last_basic_block);
4156 
4157   passes = 0;
4158   changed = 1;
4159 
4160   while (changed)
4161     {
4162       changed = 0;
4163 
4164       /* We scan the blocks in the reverse order to speed up
4165 	 the convergence.  */
4166       FOR_EACH_BB_REVERSE (bb)
4167 	{
4168 	  if (bb->next_bb != EXIT_BLOCK_PTR)
4169 	    sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
4170 					   hoist_vbein, bb->index);
4171 
4172 	  changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
4173 					      antloc[bb->index],
4174 					      hoist_vbeout[bb->index],
4175 					      transp[bb->index]);
4176 	}
4177 
4178       passes++;
4179     }
4180 
4181   if (dump_file)
4182     fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
4183 }
4184 
4185 /* Top level routine to do the dataflow analysis needed by code hoisting.  */
4186 
4187 static void
4188 compute_code_hoist_data (void)
4189 {
4190   compute_local_properties (transp, comp, antloc, &expr_hash_table);
4191   compute_transpout ();
4192   compute_code_hoist_vbeinout ();
4193   calculate_dominance_info (CDI_DOMINATORS);
4194   if (dump_file)
4195     fprintf (dump_file, "\n");
4196 }
4197 
4198 /* Determine if the expression identified by EXPR_INDEX would
4199    reach BB unimpared if it was placed at the end of EXPR_BB.
4200 
4201    It's unclear exactly what Muchnick meant by "unimpared".  It seems
4202    to me that the expression must either be computed or transparent in
4203    *every* block in the path(s) from EXPR_BB to BB.  Any other definition
4204    would allow the expression to be hoisted out of loops, even if
4205    the expression wasn't a loop invariant.
4206 
4207    Contrast this to reachability for PRE where an expression is
4208    considered reachable if *any* path reaches instead of *all*
4209    paths.  */
4210 
4211 static int
4212 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4213 {
4214   edge pred;
4215   edge_iterator ei;
4216   int visited_allocated_locally = 0;
4217 
4218 
4219   if (visited == NULL)
4220     {
4221       visited_allocated_locally = 1;
4222       visited = XCNEWVEC (char, last_basic_block);
4223     }
4224 
4225   FOR_EACH_EDGE (pred, ei, bb->preds)
4226     {
4227       basic_block pred_bb = pred->src;
4228 
4229       if (pred->src == ENTRY_BLOCK_PTR)
4230 	break;
4231       else if (pred_bb == expr_bb)
4232 	continue;
4233       else if (visited[pred_bb->index])
4234 	continue;
4235 
4236       /* Does this predecessor generate this expression?  */
4237       else if (TEST_BIT (comp[pred_bb->index], expr_index))
4238 	break;
4239       else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4240 	break;
4241 
4242       /* Not killed.  */
4243       else
4244 	{
4245 	  visited[pred_bb->index] = 1;
4246 	  if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4247 					   pred_bb, visited))
4248 	    break;
4249 	}
4250     }
4251   if (visited_allocated_locally)
4252     free (visited);
4253 
4254   return (pred == NULL);
4255 }
4256 
4257 /* Actually perform code hoisting.  */
4258 
4259 static int
4260 hoist_code (void)
4261 {
4262   basic_block bb, dominated;
4263   VEC (basic_block, heap) *domby;
4264   unsigned int i,j;
4265   struct expr **index_map;
4266   struct expr *expr;
4267   int changed = 0;
4268 
4269   sbitmap_vector_zero (hoist_exprs, last_basic_block);
4270 
4271   /* Compute a mapping from expression number (`bitmap_index') to
4272      hash table entry.  */
4273 
4274   index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
4275   for (i = 0; i < expr_hash_table.size; i++)
4276     for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4277       index_map[expr->bitmap_index] = expr;
4278 
4279   /* Walk over each basic block looking for potentially hoistable
4280      expressions, nothing gets hoisted from the entry block.  */
4281   FOR_EACH_BB (bb)
4282     {
4283       int found = 0;
4284       int insn_inserted_p;
4285 
4286       domby = get_dominated_by (CDI_DOMINATORS, bb);
4287       /* Examine each expression that is very busy at the exit of this
4288 	 block.  These are the potentially hoistable expressions.  */
4289       for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4290 	{
4291 	  int hoistable = 0;
4292 
4293 	  if (TEST_BIT (hoist_vbeout[bb->index], i)
4294 	      && TEST_BIT (transpout[bb->index], i))
4295 	    {
4296 	      /* We've found a potentially hoistable expression, now
4297 		 we look at every block BB dominates to see if it
4298 		 computes the expression.  */
4299 	      for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4300 		{
4301 		  /* Ignore self dominance.  */
4302 		  if (bb == dominated)
4303 		    continue;
4304 		  /* We've found a dominated block, now see if it computes
4305 		     the busy expression and whether or not moving that
4306 		     expression to the "beginning" of that block is safe.  */
4307 		  if (!TEST_BIT (antloc[dominated->index], i))
4308 		    continue;
4309 
4310 		  /* Note if the expression would reach the dominated block
4311 		     unimpared if it was placed at the end of BB.
4312 
4313 		     Keep track of how many times this expression is hoistable
4314 		     from a dominated block into BB.  */
4315 		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4316 		    hoistable++;
4317 		}
4318 
4319 	      /* If we found more than one hoistable occurrence of this
4320 		 expression, then note it in the bitmap of expressions to
4321 		 hoist.  It makes no sense to hoist things which are computed
4322 		 in only one BB, and doing so tends to pessimize register
4323 		 allocation.  One could increase this value to try harder
4324 		 to avoid any possible code expansion due to register
4325 		 allocation issues; however experiments have shown that
4326 		 the vast majority of hoistable expressions are only movable
4327 		 from two successors, so raising this threshold is likely
4328 		 to nullify any benefit we get from code hoisting.  */
4329 	      if (hoistable > 1)
4330 		{
4331 		  SET_BIT (hoist_exprs[bb->index], i);
4332 		  found = 1;
4333 		}
4334 	    }
4335 	}
4336       /* If we found nothing to hoist, then quit now.  */
4337       if (! found)
4338         {
4339 	  VEC_free (basic_block, heap, domby);
4340 	  continue;
4341 	}
4342 
4343       /* Loop over all the hoistable expressions.  */
4344       for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4345 	{
4346 	  /* We want to insert the expression into BB only once, so
4347 	     note when we've inserted it.  */
4348 	  insn_inserted_p = 0;
4349 
4350 	  /* These tests should be the same as the tests above.  */
4351 	  if (TEST_BIT (hoist_exprs[bb->index], i))
4352 	    {
4353 	      /* We've found a potentially hoistable expression, now
4354 		 we look at every block BB dominates to see if it
4355 		 computes the expression.  */
4356 	      for (j = 0; VEC_iterate (basic_block, domby, j, dominated); j++)
4357 		{
4358 		  /* Ignore self dominance.  */
4359 		  if (bb == dominated)
4360 		    continue;
4361 
4362 		  /* We've found a dominated block, now see if it computes
4363 		     the busy expression and whether or not moving that
4364 		     expression to the "beginning" of that block is safe.  */
4365 		  if (!TEST_BIT (antloc[dominated->index], i))
4366 		    continue;
4367 
4368 		  /* The expression is computed in the dominated block and
4369 		     it would be safe to compute it at the start of the
4370 		     dominated block.  Now we have to determine if the
4371 		     expression would reach the dominated block if it was
4372 		     placed at the end of BB.  */
4373 		  if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4374 		    {
4375 		      struct expr *expr = index_map[i];
4376 		      struct occr *occr = expr->antic_occr;
4377 		      rtx insn;
4378 		      rtx set;
4379 
4380 		      /* Find the right occurrence of this expression.  */
4381 		      while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4382 			occr = occr->next;
4383 
4384 		      gcc_assert (occr);
4385 		      insn = occr->insn;
4386 		      set = single_set (insn);
4387 		      gcc_assert (set);
4388 
4389 		      /* Create a pseudo-reg to store the result of reaching
4390 			 expressions into.  Get the mode for the new pseudo
4391 			 from the mode of the original destination pseudo.  */
4392 		      if (expr->reaching_reg == NULL)
4393 			expr->reaching_reg
4394 			  = gen_reg_rtx_and_attrs (SET_DEST (set));
4395 
4396 		      gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4397 		      delete_insn (insn);
4398 		      occr->deleted_p = 1;
4399 		      changed = 1;
4400 		      gcse_subst_count++;
4401 
4402 		      if (!insn_inserted_p)
4403 			{
4404 			  insert_insn_end_basic_block (index_map[i], bb, 0);
4405 			  insn_inserted_p = 1;
4406 			}
4407 		    }
4408 		}
4409 	    }
4410 	}
4411       VEC_free (basic_block, heap, domby);
4412     }
4413 
4414   free (index_map);
4415 
4416   return changed;
4417 }
4418 
4419 /* Top level routine to perform one code hoisting (aka unification) pass
4420 
4421    Return nonzero if a change was made.  */
4422 
4423 static int
4424 one_code_hoisting_pass (void)
4425 {
4426   int changed = 0;
4427 
4428   gcse_subst_count = 0;
4429   gcse_create_count = 0;
4430 
4431   /* Return if there's nothing to do, or it is too expensive.  */
4432   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4433       || is_too_expensive (_("GCSE disabled")))
4434     return 0;
4435 
4436   /* We need alias.  */
4437   init_alias_analysis ();
4438 
4439   bytes_used = 0;
4440   gcc_obstack_init (&gcse_obstack);
4441   alloc_gcse_mem ();
4442 
4443   alloc_hash_table (&expr_hash_table, 0);
4444   compute_hash_table (&expr_hash_table);
4445   if (dump_file)
4446     dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
4447 
4448   if (expr_hash_table.n_elems > 0)
4449     {
4450       alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
4451       compute_code_hoist_data ();
4452       changed = hoist_code ();
4453       free_code_hoist_mem ();
4454     }
4455 
4456   free_hash_table (&expr_hash_table);
4457   free_gcse_mem ();
4458   obstack_free (&gcse_obstack, NULL);
4459 
4460   /* We are finished with alias.  */
4461   end_alias_analysis ();
4462 
4463   if (dump_file)
4464     {
4465       fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
4466 	       current_function_name (), n_basic_blocks, bytes_used);
4467       fprintf (dump_file, "%d substs, %d insns created\n",
4468 	       gcse_subst_count, gcse_create_count);
4469     }
4470 
4471   return changed;
4472 }
4473 
4474 /*  Here we provide the things required to do store motion towards
4475     the exit. In order for this to be effective, gcse also needed to
4476     be taught how to move a load when it is kill only by a store to itself.
4477 
4478 	    int i;
4479 	    float a[10];
4480 
4481 	    void foo(float scale)
4482 	    {
4483 	      for (i=0; i<10; i++)
4484 		a[i] *= scale;
4485 	    }
4486 
4487     'i' is both loaded and stored to in the loop. Normally, gcse cannot move
4488     the load out since its live around the loop, and stored at the bottom
4489     of the loop.
4490 
4491       The 'Load Motion' referred to and implemented in this file is
4492     an enhancement to gcse which when using edge based lcm, recognizes
4493     this situation and allows gcse to move the load out of the loop.
4494 
4495       Once gcse has hoisted the load, store motion can then push this
4496     load towards the exit, and we end up with no loads or stores of 'i'
4497     in the loop.  */
4498 
4499 static hashval_t
4500 pre_ldst_expr_hash (const void *p)
4501 {
4502   int do_not_record_p = 0;
4503   const struct ls_expr *const x = (const struct ls_expr *) p;
4504   return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
4505 }
4506 
4507 static int
4508 pre_ldst_expr_eq (const void *p1, const void *p2)
4509 {
4510   const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
4511     *const ptr2 = (const struct ls_expr *) p2;
4512   return expr_equiv_p (ptr1->pattern, ptr2->pattern);
4513 }
4514 
4515 /* This will search the ldst list for a matching expression. If it
4516    doesn't find one, we create one and initialize it.  */
4517 
4518 static struct ls_expr *
4519 ldst_entry (rtx x)
4520 {
4521   int do_not_record_p = 0;
4522   struct ls_expr * ptr;
4523   unsigned int hash;
4524   void **slot;
4525   struct ls_expr e;
4526 
4527   hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
4528 		   NULL,  /*have_reg_qty=*/false);
4529 
4530   e.pattern = x;
4531   slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
4532   if (*slot)
4533     return (struct ls_expr *)*slot;
4534 
4535   ptr = XNEW (struct ls_expr);
4536 
4537   ptr->next         = pre_ldst_mems;
4538   ptr->expr         = NULL;
4539   ptr->pattern      = x;
4540   ptr->pattern_regs = NULL_RTX;
4541   ptr->loads        = NULL_RTX;
4542   ptr->stores       = NULL_RTX;
4543   ptr->reaching_reg = NULL_RTX;
4544   ptr->invalid      = 0;
4545   ptr->index        = 0;
4546   ptr->hash_index   = hash;
4547   pre_ldst_mems     = ptr;
4548   *slot = ptr;
4549 
4550   return ptr;
4551 }
4552 
4553 /* Free up an individual ldst entry.  */
4554 
4555 static void
4556 free_ldst_entry (struct ls_expr * ptr)
4557 {
4558   free_INSN_LIST_list (& ptr->loads);
4559   free_INSN_LIST_list (& ptr->stores);
4560 
4561   free (ptr);
4562 }
4563 
4564 /* Free up all memory associated with the ldst list.  */
4565 
4566 static void
4567 free_ldst_mems (void)
4568 {
4569   if (pre_ldst_table)
4570     htab_delete (pre_ldst_table);
4571   pre_ldst_table = NULL;
4572 
4573   while (pre_ldst_mems)
4574     {
4575       struct ls_expr * tmp = pre_ldst_mems;
4576 
4577       pre_ldst_mems = pre_ldst_mems->next;
4578 
4579       free_ldst_entry (tmp);
4580     }
4581 
4582   pre_ldst_mems = NULL;
4583 }
4584 
4585 /* Dump debugging info about the ldst list.  */
4586 
4587 static void
4588 print_ldst_list (FILE * file)
4589 {
4590   struct ls_expr * ptr;
4591 
4592   fprintf (file, "LDST list: \n");
4593 
4594   for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
4595     {
4596       fprintf (file, "  Pattern (%3d): ", ptr->index);
4597 
4598       print_rtl (file, ptr->pattern);
4599 
4600       fprintf (file, "\n	 Loads : ");
4601 
4602       if (ptr->loads)
4603 	print_rtl (file, ptr->loads);
4604       else
4605 	fprintf (file, "(nil)");
4606 
4607       fprintf (file, "\n	Stores : ");
4608 
4609       if (ptr->stores)
4610 	print_rtl (file, ptr->stores);
4611       else
4612 	fprintf (file, "(nil)");
4613 
4614       fprintf (file, "\n\n");
4615     }
4616 
4617   fprintf (file, "\n");
4618 }
4619 
4620 /* Returns 1 if X is in the list of ldst only expressions.  */
4621 
4622 static struct ls_expr *
4623 find_rtx_in_ldst (rtx x)
4624 {
4625   struct ls_expr e;
4626   void **slot;
4627   if (!pre_ldst_table)
4628     return NULL;
4629   e.pattern = x;
4630   slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
4631   if (!slot || ((struct ls_expr *)*slot)->invalid)
4632     return NULL;
4633   return (struct ls_expr *) *slot;
4634 }
4635 
4636 /* Return first item in the list.  */
4637 
4638 static inline struct ls_expr *
4639 first_ls_expr (void)
4640 {
4641   return pre_ldst_mems;
4642 }
4643 
4644 /* Return the next item in the list after the specified one.  */
4645 
4646 static inline struct ls_expr *
4647 next_ls_expr (struct ls_expr * ptr)
4648 {
4649   return ptr->next;
4650 }
4651 
4652 /* Load Motion for loads which only kill themselves.  */
4653 
4654 /* Return true if x is a simple MEM operation, with no registers or
4655    side effects. These are the types of loads we consider for the
4656    ld_motion list, otherwise we let the usual aliasing take care of it.  */
4657 
4658 static int
4659 simple_mem (const_rtx x)
4660 {
4661   if (! MEM_P (x))
4662     return 0;
4663 
4664   if (MEM_VOLATILE_P (x))
4665     return 0;
4666 
4667   if (GET_MODE (x) == BLKmode)
4668     return 0;
4669 
4670   /* If we are handling exceptions, we must be careful with memory references
4671      that may trap. If we are not, the behavior is undefined, so we may just
4672      continue.  */
4673   if (flag_non_call_exceptions && may_trap_p (x))
4674     return 0;
4675 
4676   if (side_effects_p (x))
4677     return 0;
4678 
4679   /* Do not consider function arguments passed on stack.  */
4680   if (reg_mentioned_p (stack_pointer_rtx, x))
4681     return 0;
4682 
4683   if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
4684     return 0;
4685 
4686   return 1;
4687 }
4688 
4689 /* Make sure there isn't a buried reference in this pattern anywhere.
4690    If there is, invalidate the entry for it since we're not capable
4691    of fixing it up just yet.. We have to be sure we know about ALL
4692    loads since the aliasing code will allow all entries in the
4693    ld_motion list to not-alias itself.  If we miss a load, we will get
4694    the wrong value since gcse might common it and we won't know to
4695    fix it up.  */
4696 
4697 static void
4698 invalidate_any_buried_refs (rtx x)
4699 {
4700   const char * fmt;
4701   int i, j;
4702   struct ls_expr * ptr;
4703 
4704   /* Invalidate it in the list.  */
4705   if (MEM_P (x) && simple_mem (x))
4706     {
4707       ptr = ldst_entry (x);
4708       ptr->invalid = 1;
4709     }
4710 
4711   /* Recursively process the insn.  */
4712   fmt = GET_RTX_FORMAT (GET_CODE (x));
4713 
4714   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
4715     {
4716       if (fmt[i] == 'e')
4717 	invalidate_any_buried_refs (XEXP (x, i));
4718       else if (fmt[i] == 'E')
4719 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4720 	  invalidate_any_buried_refs (XVECEXP (x, i, j));
4721     }
4722 }
4723 
4724 /* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
4725    being defined as MEM loads and stores to symbols, with no side effects
4726    and no registers in the expression.  For a MEM destination, we also
4727    check that the insn is still valid if we replace the destination with a
4728    REG, as is done in update_ld_motion_stores.  If there are any uses/defs
4729    which don't match this criteria, they are invalidated and trimmed out
4730    later.  */
4731 
4732 static void
4733 compute_ld_motion_mems (void)
4734 {
4735   struct ls_expr * ptr;
4736   basic_block bb;
4737   rtx insn;
4738 
4739   pre_ldst_mems = NULL;
4740   pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
4741 				pre_ldst_expr_eq, NULL);
4742 
4743   FOR_EACH_BB (bb)
4744     {
4745       FOR_BB_INSNS (bb, insn)
4746 	{
4747 	  if (NONDEBUG_INSN_P (insn))
4748 	    {
4749 	      if (GET_CODE (PATTERN (insn)) == SET)
4750 		{
4751 		  rtx src = SET_SRC (PATTERN (insn));
4752 		  rtx dest = SET_DEST (PATTERN (insn));
4753 
4754 		  /* Check for a simple LOAD...  */
4755 		  if (MEM_P (src) && simple_mem (src))
4756 		    {
4757 		      ptr = ldst_entry (src);
4758 		      if (REG_P (dest))
4759 			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
4760 		      else
4761 			ptr->invalid = 1;
4762 		    }
4763 		  else
4764 		    {
4765 		      /* Make sure there isn't a buried load somewhere.  */
4766 		      invalidate_any_buried_refs (src);
4767 		    }
4768 
4769 		  /* Check for stores. Don't worry about aliased ones, they
4770 		     will block any movement we might do later. We only care
4771 		     about this exact pattern since those are the only
4772 		     circumstance that we will ignore the aliasing info.  */
4773 		  if (MEM_P (dest) && simple_mem (dest))
4774 		    {
4775 		      ptr = ldst_entry (dest);
4776 
4777 		      if (! MEM_P (src)
4778 			  && GET_CODE (src) != ASM_OPERANDS
4779 			  /* Check for REG manually since want_to_gcse_p
4780 			     returns 0 for all REGs.  */
4781 			  && can_assign_to_reg_without_clobbers_p (src))
4782 			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
4783 		      else
4784 			ptr->invalid = 1;
4785 		    }
4786 		}
4787 	      else
4788 		invalidate_any_buried_refs (PATTERN (insn));
4789 	    }
4790 	}
4791     }
4792 }
4793 
4794 /* Remove any references that have been either invalidated or are not in the
4795    expression list for pre gcse.  */
4796 
4797 static void
4798 trim_ld_motion_mems (void)
4799 {
4800   struct ls_expr * * last = & pre_ldst_mems;
4801   struct ls_expr * ptr = pre_ldst_mems;
4802 
4803   while (ptr != NULL)
4804     {
4805       struct expr * expr;
4806 
4807       /* Delete if entry has been made invalid.  */
4808       if (! ptr->invalid)
4809 	{
4810 	  /* Delete if we cannot find this mem in the expression list.  */
4811 	  unsigned int hash = ptr->hash_index % expr_hash_table.size;
4812 
4813 	  for (expr = expr_hash_table.table[hash];
4814 	       expr != NULL;
4815 	       expr = expr->next_same_hash)
4816 	    if (expr_equiv_p (expr->expr, ptr->pattern))
4817 	      break;
4818 	}
4819       else
4820 	expr = (struct expr *) 0;
4821 
4822       if (expr)
4823 	{
4824 	  /* Set the expression field if we are keeping it.  */
4825 	  ptr->expr = expr;
4826 	  last = & ptr->next;
4827 	  ptr = ptr->next;
4828 	}
4829       else
4830 	{
4831 	  *last = ptr->next;
4832 	  htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
4833 	  free_ldst_entry (ptr);
4834 	  ptr = * last;
4835 	}
4836     }
4837 
4838   /* Show the world what we've found.  */
4839   if (dump_file && pre_ldst_mems != NULL)
4840     print_ldst_list (dump_file);
4841 }
4842 
4843 /* This routine will take an expression which we are replacing with
4844    a reaching register, and update any stores that are needed if
4845    that expression is in the ld_motion list.  Stores are updated by
4846    copying their SRC to the reaching register, and then storing
4847    the reaching register into the store location. These keeps the
4848    correct value in the reaching register for the loads.  */
4849 
4850 static void
4851 update_ld_motion_stores (struct expr * expr)
4852 {
4853   struct ls_expr * mem_ptr;
4854 
4855   if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4856     {
4857       /* We can try to find just the REACHED stores, but is shouldn't
4858 	 matter to set the reaching reg everywhere...  some might be
4859 	 dead and should be eliminated later.  */
4860 
4861       /* We replace (set mem expr) with (set reg expr) (set mem reg)
4862 	 where reg is the reaching reg used in the load.  We checked in
4863 	 compute_ld_motion_mems that we can replace (set mem expr) with
4864 	 (set reg expr) in that insn.  */
4865       rtx list = mem_ptr->stores;
4866 
4867       for ( ; list != NULL_RTX; list = XEXP (list, 1))
4868 	{
4869 	  rtx insn = XEXP (list, 0);
4870 	  rtx pat = PATTERN (insn);
4871 	  rtx src = SET_SRC (pat);
4872 	  rtx reg = expr->reaching_reg;
4873 	  rtx copy;
4874 
4875 	  /* If we've already copied it, continue.  */
4876 	  if (expr->reaching_reg == src)
4877 	    continue;
4878 
4879 	  if (dump_file)
4880 	    {
4881 	      fprintf (dump_file, "PRE:  store updated with reaching reg ");
4882 	      print_rtl (dump_file, expr->reaching_reg);
4883 	      fprintf (dump_file, ":\n	");
4884 	      print_inline_rtx (dump_file, insn, 8);
4885 	      fprintf (dump_file, "\n");
4886 	    }
4887 
4888 	  copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4889 	  emit_insn_before (copy, insn);
4890 	  SET_SRC (pat) = reg;
4891 	  df_insn_rescan (insn);
4892 
4893 	  /* un-recognize this pattern since it's probably different now.  */
4894 	  INSN_CODE (insn) = -1;
4895 	  gcse_create_count++;
4896 	}
4897     }
4898 }
4899 
4900 /* Return true if the graph is too expensive to optimize. PASS is the
4901    optimization about to be performed.  */
4902 
4903 static bool
4904 is_too_expensive (const char *pass)
4905 {
4906   /* Trying to perform global optimizations on flow graphs which have
4907      a high connectivity will take a long time and is unlikely to be
4908      particularly useful.
4909 
4910      In normal circumstances a cfg should have about twice as many
4911      edges as blocks.  But we do not want to punish small functions
4912      which have a couple switch statements.  Rather than simply
4913      threshold the number of blocks, uses something with a more
4914      graceful degradation.  */
4915   if (n_edges > 20000 + n_basic_blocks * 4)
4916     {
4917       warning (OPT_Wdisabled_optimization,
4918 	       "%s: %d basic blocks and %d edges/basic block",
4919 	       pass, n_basic_blocks, n_edges / n_basic_blocks);
4920 
4921       return true;
4922     }
4923 
4924   /* If allocating memory for the cprop bitmap would take up too much
4925      storage it's better just to disable the optimization.  */
4926   if ((n_basic_blocks
4927        * SBITMAP_SET_SIZE (max_reg_num ())
4928        * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4929     {
4930       warning (OPT_Wdisabled_optimization,
4931 	       "%s: %d basic blocks and %d registers",
4932 	       pass, n_basic_blocks, max_reg_num ());
4933 
4934       return true;
4935     }
4936 
4937   return false;
4938 }
4939 
4940 
4941 /* Main function for the CPROP pass.  */
4942 
4943 static int
4944 one_cprop_pass (void)
4945 {
4946   int changed = 0;
4947 
4948   /* Return if there's nothing to do, or it is too expensive.  */
4949   if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
4950       || is_too_expensive (_ ("const/copy propagation disabled")))
4951     return 0;
4952 
4953   global_const_prop_count = local_const_prop_count = 0;
4954   global_copy_prop_count = local_copy_prop_count = 0;
4955 
4956   bytes_used = 0;
4957   gcc_obstack_init (&gcse_obstack);
4958   alloc_gcse_mem ();
4959 
4960   /* Do a local const/copy propagation pass first.  The global pass
4961      only handles global opportunities.
4962      If the local pass changes something, remove any unreachable blocks
4963      because the CPROP global dataflow analysis may get into infinite
4964      loops for CFGs with unreachable blocks.
4965 
4966      FIXME: This local pass should not be necessary after CSE (but for
4967 	    some reason it still is).  It is also (proven) not necessary
4968 	    to run the local pass right after FWPWOP.
4969 
4970      FIXME: The global analysis would not get into infinite loops if it
4971 	    would use the DF solver (via df_simple_dataflow) instead of
4972 	    the solver implemented in this file.  */
4973   if (local_cprop_pass ())
4974     {
4975       delete_unreachable_blocks ();
4976       df_analyze ();
4977     }
4978 
4979   /* Determine implicit sets.  */
4980   implicit_sets = XCNEWVEC (rtx, last_basic_block);
4981   find_implicit_sets ();
4982 
4983   alloc_hash_table (&set_hash_table, 1);
4984   compute_hash_table (&set_hash_table);
4985 
4986   /* Free implicit_sets before peak usage.  */
4987   free (implicit_sets);
4988   implicit_sets = NULL;
4989 
4990   if (dump_file)
4991     dump_hash_table (dump_file, "SET", &set_hash_table);
4992   if (set_hash_table.n_elems > 0)
4993     {
4994       basic_block bb;
4995       rtx insn;
4996 
4997       alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
4998       compute_cprop_data ();
4999 
5000       FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
5001 	{
5002 	  /* Reset tables used to keep track of what's still valid [since
5003 	     the start of the block].  */
5004 	  reset_opr_set_tables ();
5005 
5006 	  FOR_BB_INSNS (bb, insn)
5007 	    if (INSN_P (insn))
5008 	      {
5009 		changed |= cprop_insn (insn);
5010 
5011 		/* Keep track of everything modified by this insn.  */
5012 		/* ??? Need to be careful w.r.t. mods done to INSN.
5013 		       Don't call mark_oprs_set if we turned the
5014 		       insn into a NOTE.  */
5015 		if (! NOTE_P (insn))
5016 		  mark_oprs_set (insn);
5017 	      }
5018 	}
5019 
5020       changed |= bypass_conditional_jumps ();
5021       free_cprop_mem ();
5022     }
5023 
5024   free_hash_table (&set_hash_table);
5025   free_gcse_mem ();
5026   obstack_free (&gcse_obstack, NULL);
5027 
5028   if (dump_file)
5029     {
5030       fprintf (dump_file, "CPROP of %s, %d basic blocks, %d bytes needed, ",
5031 	       current_function_name (), n_basic_blocks, bytes_used);
5032       fprintf (dump_file, "%d local const props, %d local copy props, ",
5033 	       local_const_prop_count, local_copy_prop_count);
5034       fprintf (dump_file, "%d global const props, %d global copy props\n\n",
5035 	       global_const_prop_count, global_copy_prop_count);
5036     }
5037 
5038   return changed;
5039 }
5040 
5041 
5042 /* All the passes implemented in this file.  Each pass has its
5043    own gate and execute function, and at the end of the file a
5044    pass definition for passes.c.
5045 
5046    We do not construct an accurate cfg in functions which call
5047    setjmp, so none of these passes runs if the function calls
5048    setjmp.
5049    FIXME: Should just handle setjmp via REG_SETJMP notes.  */
5050 
5051 static bool
5052 gate_rtl_cprop (void)
5053 {
5054   return optimize > 0 && flag_gcse
5055     && !cfun->calls_setjmp
5056     && dbg_cnt (cprop);
5057 }
5058 
5059 static unsigned int
5060 execute_rtl_cprop (void)
5061 {
5062   delete_unreachable_blocks ();
5063   df_set_flags (DF_LR_RUN_DCE);
5064   df_analyze ();
5065   flag_rerun_cse_after_global_opts |= one_cprop_pass ();
5066   return 0;
5067 }
5068 
5069 static bool
5070 gate_rtl_pre (void)
5071 {
5072   return optimize > 0 && flag_gcse
5073     && !cfun->calls_setjmp
5074     && optimize_function_for_speed_p (cfun)
5075     && dbg_cnt (pre);
5076 }
5077 
5078 static unsigned int
5079 execute_rtl_pre (void)
5080 {
5081   delete_unreachable_blocks ();
5082   df_analyze ();
5083   flag_rerun_cse_after_global_opts |= one_pre_gcse_pass ();
5084   return 0;
5085 }
5086 
5087 static bool
5088 gate_rtl_hoist (void)
5089 {
5090   return optimize > 0 && flag_gcse
5091     && !cfun->calls_setjmp
5092     /* It does not make sense to run code hoisting unless we are optimizing
5093        for code size -- it rarely makes programs faster, and can make then
5094        bigger if we did PRE (when optimizing for space, we don't run PRE).  */
5095     && optimize_function_for_size_p (cfun)
5096     && dbg_cnt (hoist);
5097 }
5098 
5099 static unsigned int
5100 execute_rtl_hoist (void)
5101 {
5102   delete_unreachable_blocks ();
5103   df_analyze ();
5104   flag_rerun_cse_after_global_opts |= one_code_hoisting_pass ();
5105   return 0;
5106 }
5107 
5108 struct rtl_opt_pass pass_rtl_cprop =
5109 {
5110  {
5111   RTL_PASS,
5112   "cprop",                              /* name */
5113   gate_rtl_cprop,                       /* gate */
5114   execute_rtl_cprop,  			/* execute */
5115   NULL,                                 /* sub */
5116   NULL,                                 /* next */
5117   0,                                    /* static_pass_number */
5118   TV_CPROP,                             /* tv_id */
5119   PROP_cfglayout,                       /* properties_required */
5120   0,                                    /* properties_provided */
5121   0,                                    /* properties_destroyed */
5122   0,                                    /* todo_flags_start */
5123   TODO_df_finish | TODO_verify_rtl_sharing |
5124   TODO_dump_func |
5125   TODO_verify_flow | TODO_ggc_collect   /* todo_flags_finish */
5126  }
5127 };
5128 
5129 struct rtl_opt_pass pass_rtl_pre =
5130 {
5131  {
5132   RTL_PASS,
5133   "rtl pre",                            /* name */
5134   gate_rtl_pre,                         /* gate */
5135   execute_rtl_pre,    			/* execute */
5136   NULL,                                 /* sub */
5137   NULL,                                 /* next */
5138   0,                                    /* static_pass_number */
5139   TV_PRE,                               /* tv_id */
5140   PROP_cfglayout,                       /* properties_required */
5141   0,                                    /* properties_provided */
5142   0,                                    /* properties_destroyed */
5143   0,                                    /* todo_flags_start */
5144   TODO_df_finish | TODO_verify_rtl_sharing |
5145   TODO_dump_func |
5146   TODO_verify_flow | TODO_ggc_collect   /* todo_flags_finish */
5147  }
5148 };
5149 
5150 struct rtl_opt_pass pass_rtl_hoist =
5151 {
5152  {
5153   RTL_PASS,
5154   "hoist",                              /* name */
5155   gate_rtl_hoist,                       /* gate */
5156   execute_rtl_hoist,  			/* execute */
5157   NULL,                                 /* sub */
5158   NULL,                                 /* next */
5159   0,                                    /* static_pass_number */
5160   TV_HOIST,                             /* tv_id */
5161   PROP_cfglayout,                       /* properties_required */
5162   0,                                    /* properties_provided */
5163   0,                                    /* properties_destroyed */
5164   0,                                    /* todo_flags_start */
5165   TODO_df_finish | TODO_verify_rtl_sharing |
5166   TODO_dump_func |
5167   TODO_verify_flow | TODO_ggc_collect   /* todo_flags_finish */
5168  }
5169 };
5170 
5171 #include "gt-gcse.h"
5172