xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/gcse.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* Partial redundancy elimination / Hoisting for RTL.
2    Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* TODO
21    - reordering of memory allocation and freeing to be more space efficient
22    - calc rough register pressure information and use the info to drive all
23      kinds of code motion (including code hoisting) in a unified way.
24 */
25 
26 /* References searched while implementing this.
27 
28    Compilers Principles, Techniques and Tools
29    Aho, Sethi, Ullman
30    Addison-Wesley, 1988
31 
32    Global Optimization by Suppression of Partial Redundancies
33    E. Morel, C. Renvoise
34    communications of the acm, Vol. 22, Num. 2, Feb. 1979
35 
36    A Portable Machine-Independent Global Optimizer - Design and Measurements
37    Frederick Chow
38    Stanford Ph.D. thesis, Dec. 1983
39 
40    A Fast Algorithm for Code Movement Optimization
41    D.M. Dhamdhere
42    SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43 
44    A Solution to a Problem with Morel and Renvoise's
45    Global Optimization by Suppression of Partial Redundancies
46    K-H Drechsler, M.P. Stadel
47    ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48 
49    Practical Adaptation of the Global Optimization
50    Algorithm of Morel and Renvoise
51    D.M. Dhamdhere
52    ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53 
54    Efficiently Computing Static Single Assignment Form and the Control
55    Dependence Graph
56    R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57    ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58 
59    Lazy Code Motion
60    J. Knoop, O. Ruthing, B. Steffen
61    ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62 
63    What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
64    Time for Reducible Flow Control
65    Thomas Ball
66    ACM Letters on Programming Languages and Systems,
67    Vol. 2, Num. 1-4, Mar-Dec 1993
68 
69    An Efficient Representation for Sparse Sets
70    Preston Briggs, Linda Torczon
71    ACM Letters on Programming Languages and Systems,
72    Vol. 2, Num. 1-4, Mar-Dec 1993
73 
74    A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75    K-H Drechsler, M.P. Stadel
76    ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77 
78    Partial Dead Code Elimination
79    J. Knoop, O. Ruthing, B. Steffen
80    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81 
82    Effective Partial Redundancy Elimination
83    P. Briggs, K.D. Cooper
84    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85 
86    The Program Structure Tree: Computing Control Regions in Linear Time
87    R. Johnson, D. Pearson, K. Pingali
88    ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89 
90    Optimal Code Motion: Theory and Practice
91    J. Knoop, O. Ruthing, B. Steffen
92    ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93 
94    The power of assignment motion
95    J. Knoop, O. Ruthing, B. Steffen
96    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97 
98    Global code motion / global value numbering
99    C. Click
100    ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101 
102    Value Driven Redundancy Elimination
103    L.T. Simpson
104    Rice University Ph.D. thesis, Apr. 1996
105 
106    Value Numbering
107    L.T. Simpson
108    Massively Scalar Compiler Project, Rice University, Sep. 1996
109 
110    High Performance Compilers for Parallel Computing
111    Michael Wolfe
112    Addison-Wesley, 1996
113 
114    Advanced Compiler Design and Implementation
115    Steven Muchnick
116    Morgan Kaufmann, 1997
117 
118    Building an Optimizing Compiler
119    Robert Morgan
120    Digital Press, 1998
121 
122    People wishing to speed up the code here should read:
123      Elimination Algorithms for Data Flow Analysis
124      B.G. Ryder, M.C. Paull
125      ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126 
127      How to Analyze Large Programs Efficiently and Informatively
128      D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129      ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130 
131    People wishing to do something different can find various possibilities
132    in the above papers and elsewhere.
133 */
134 
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
141 #include "hard-reg-set.h"
142 #include "rtl.h"
143 #include "hash-set.h"
144 #include "machmode.h"
145 #include "vec.h"
146 #include "double-int.h"
147 #include "input.h"
148 #include "alias.h"
149 #include "symtab.h"
150 #include "wide-int.h"
151 #include "inchash.h"
152 #include "tree.h"
153 #include "tm_p.h"
154 #include "regs.h"
155 #include "ira.h"
156 #include "flags.h"
157 #include "insn-config.h"
158 #include "recog.h"
159 #include "predict.h"
160 #include "function.h"
161 #include "dominance.h"
162 #include "cfg.h"
163 #include "cfgrtl.h"
164 #include "cfganal.h"
165 #include "lcm.h"
166 #include "cfgcleanup.h"
167 #include "basic-block.h"
168 #include "hashtab.h"
169 #include "statistics.h"
170 #include "real.h"
171 #include "fixed-value.h"
172 #include "expmed.h"
173 #include "dojump.h"
174 #include "explow.h"
175 #include "calls.h"
176 #include "emit-rtl.h"
177 #include "varasm.h"
178 #include "stmt.h"
179 #include "expr.h"
180 #include "except.h"
181 #include "ggc.h"
182 #include "params.h"
183 #include "cselib.h"
184 #include "intl.h"
185 #include "obstack.h"
186 #include "tree-pass.h"
187 #include "hash-table.h"
188 #include "df.h"
189 #include "dbgcnt.h"
190 #include "target.h"
191 #include "gcse.h"
192 #include "gcse-common.h"
193 
194 /* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
195    are a superset of those done by classic GCSE.
196 
197    Two passes of copy/constant propagation are done around PRE or hoisting
198    because the first one enables more GCSE and the second one helps to clean
199    up the copies that PRE and HOIST create.  This is needed more for PRE than
200    for HOIST because code hoisting will try to use an existing register
201    containing the common subexpression rather than create a new one.  This is
202    harder to do for PRE because of the code motion (which HOIST doesn't do).
203 
204    Expressions we are interested in GCSE-ing are of the form
205    (set (pseudo-reg) (expression)).
206    Function want_to_gcse_p says what these are.
207 
208    In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
209    This allows PRE to hoist expressions that are expressed in multiple insns,
210    such as complex address calculations (e.g. for PIC code, or loads with a
211    high part and a low part).
212 
213    PRE handles moving invariant expressions out of loops (by treating them as
214    partially redundant).
215 
216    **********************
217 
218    We used to support multiple passes but there are diminishing returns in
219    doing so.  The first pass usually makes 90% of the changes that are doable.
220    A second pass can make a few more changes made possible by the first pass.
221    Experiments show any further passes don't make enough changes to justify
222    the expense.
223 
224    A study of spec92 using an unlimited number of passes:
225    [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
226    [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
227    [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
228 
229    It was found doing copy propagation between each pass enables further
230    substitutions.
231 
232    This study was done before expressions in REG_EQUAL notes were added as
233    candidate expressions for optimization, and before the GIMPLE optimizers
234    were added.  Probably, multiple passes is even less efficient now than
235    at the time when the study was conducted.
236 
237    PRE is quite expensive in complicated functions because the DFA can take
238    a while to converge.  Hence we only perform one pass.
239 
240    **********************
241 
242    The steps for PRE are:
243 
244    1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 
246    2) Perform the data flow analysis for PRE.
247 
248    3) Delete the redundant instructions
249 
250    4) Insert the required copies [if any] that make the partially
251       redundant instructions fully redundant.
252 
253    5) For other reaching expressions, insert an instruction to copy the value
254       to a newly created pseudo that will reach the redundant instruction.
255 
256    The deletion is done first so that when we do insertions we
257    know which pseudo reg to use.
258 
259    Various papers have argued that PRE DFA is expensive (O(n^2)) and others
260    argue it is not.  The number of iterations for the algorithm to converge
261    is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 
263    PRE GCSE depends heavily on the second CPROP pass to clean up the copies
264    we create.  To make an expression reach the place where it's redundant,
265    the result of the expression is copied to a new register, and the redundant
266    expression is deleted by replacing it with this new register.  Classic GCSE
267    doesn't have this problem as much as it computes the reaching defs of
268    each register in each block and thus can try to use an existing
269    register.  */
270 
271 /* GCSE global vars.  */
272 
273 struct target_gcse default_target_gcse;
274 #if SWITCHABLE_TARGET
275 struct target_gcse *this_target_gcse = &default_target_gcse;
276 #endif
277 
278 /* Set to non-zero if CSE should run after all GCSE optimizations are done.  */
279 int flag_rerun_cse_after_global_opts;
280 
281 /* An obstack for our working variables.  */
282 static struct obstack gcse_obstack;
283 
284 /* Hash table of expressions.  */
285 
286 struct gcse_expr
287 {
288   /* The expression.  */
289   rtx expr;
290   /* Index in the available expression bitmaps.  */
291   int bitmap_index;
292   /* Next entry with the same hash.  */
293   struct gcse_expr *next_same_hash;
294   /* List of anticipatable occurrences in basic blocks in the function.
295      An "anticipatable occurrence" is one that is the first occurrence in the
296      basic block, the operands are not modified in the basic block prior
297      to the occurrence and the output is not used between the start of
298      the block and the occurrence.  */
299   struct gcse_occr *antic_occr;
300   /* List of available occurrence in basic blocks in the function.
301      An "available occurrence" is one that is the last occurrence in the
302      basic block and the operands are not modified by following statements in
303      the basic block [including this insn].  */
304   struct gcse_occr *avail_occr;
305   /* Non-null if the computation is PRE redundant.
306      The value is the newly created pseudo-reg to record a copy of the
307      expression in all the places that reach the redundant copy.  */
308   rtx reaching_reg;
309   /* Maximum distance in instructions this expression can travel.
310      We avoid moving simple expressions for more than a few instructions
311      to keep register pressure under control.
312      A value of "0" removes restrictions on how far the expression can
313      travel.  */
314   HOST_WIDE_INT max_distance;
315 };
316 
317 /* Occurrence of an expression.
318    There is one per basic block.  If a pattern appears more than once the
319    last appearance is used [or first for anticipatable expressions].  */
320 
321 struct gcse_occr
322 {
323   /* Next occurrence of this expression.  */
324   struct gcse_occr *next;
325   /* The insn that computes the expression.  */
326   rtx_insn *insn;
327   /* Nonzero if this [anticipatable] occurrence has been deleted.  */
328   char deleted_p;
329   /* Nonzero if this [available] occurrence has been copied to
330      reaching_reg.  */
331   /* ??? This is mutually exclusive with deleted_p, so they could share
332      the same byte.  */
333   char copied_p;
334 };
335 
336 typedef struct gcse_occr *occr_t;
337 
338 /* Expression hash tables.
339    Each hash table is an array of buckets.
340    ??? It is known that if it were an array of entries, structure elements
341    `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
342    not clear whether in the final analysis a sufficient amount of memory would
343    be saved as the size of the available expression bitmaps would be larger
344    [one could build a mapping table without holes afterwards though].
345    Someday I'll perform the computation and figure it out.  */
346 
347 struct gcse_hash_table_d
348 {
349   /* The table itself.
350      This is an array of `expr_hash_table_size' elements.  */
351   struct gcse_expr **table;
352 
353   /* Size of the hash table, in elements.  */
354   unsigned int size;
355 
356   /* Number of hash table elements.  */
357   unsigned int n_elems;
358 };
359 
360 /* Expression hash table.  */
361 static struct gcse_hash_table_d expr_hash_table;
362 
363 /* This is a list of expressions which are MEMs and will be used by load
364    or store motion.
365    Load motion tracks MEMs which aren't killed by anything except itself,
366    i.e. loads and stores to a single location.
367    We can then allow movement of these MEM refs with a little special
368    allowance. (all stores copy the same value to the reaching reg used
369    for the loads).  This means all values used to store into memory must have
370    no side effects so we can re-issue the setter value.  */
371 
372 struct ls_expr
373 {
374   struct gcse_expr * expr;	/* Gcse expression reference for LM.  */
375   rtx pattern;			/* Pattern of this mem.  */
376   rtx pattern_regs;		/* List of registers mentioned by the mem.  */
377   rtx_insn_list *loads;		/* INSN list of loads seen.  */
378   rtx_insn_list *stores;	/* INSN list of stores seen.  */
379   struct ls_expr * next;	/* Next in the list.  */
380   int invalid;			/* Invalid for some reason.  */
381   int index;			/* If it maps to a bitmap index.  */
382   unsigned int hash_index;	/* Index when in a hash table.  */
383   rtx reaching_reg;		/* Register to use when re-writing.  */
384 };
385 
386 /* Head of the list of load/store memory refs.  */
387 static struct ls_expr * pre_ldst_mems = NULL;
388 
389 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
390 {
391   typedef ls_expr value_type;
392   typedef value_type compare_type;
393   static inline hashval_t hash (const value_type *);
394   static inline bool equal (const value_type *, const compare_type *);
395 };
396 
397 /* Hashtable helpers.  */
398 inline hashval_t
399 pre_ldst_expr_hasher::hash (const value_type *x)
400 {
401   int do_not_record_p = 0;
402   return
403     hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
404 }
405 
406 static int expr_equiv_p (const_rtx, const_rtx);
407 
408 inline bool
409 pre_ldst_expr_hasher::equal (const value_type *ptr1,
410 			     const compare_type *ptr2)
411 {
412   return expr_equiv_p (ptr1->pattern, ptr2->pattern);
413 }
414 
415 /* Hashtable for the load/store memory refs.  */
416 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
417 
418 /* Bitmap containing one bit for each register in the program.
419    Used when performing GCSE to track which registers have been set since
420    the start of the basic block.  */
421 static regset reg_set_bitmap;
422 
423 /* Array, indexed by basic block number for a list of insns which modify
424    memory within that block.  */
425 static vec<rtx_insn *> *modify_mem_list;
426 static bitmap modify_mem_list_set;
427 
428 /* This array parallels modify_mem_list, except that it stores MEMs
429    being set and their canonicalized memory addresses.  */
430 static vec<modify_pair> *canon_modify_mem_list;
431 
432 /* Bitmap indexed by block numbers to record which blocks contain
433    function calls.  */
434 static bitmap blocks_with_calls;
435 
436 /* Various variables for statistics gathering.  */
437 
438 /* Memory used in a pass.
439    This isn't intended to be absolutely precise.  Its intent is only
440    to keep an eye on memory usage.  */
441 static int bytes_used;
442 
443 /* GCSE substitutions made.  */
444 static int gcse_subst_count;
445 /* Number of copy instructions created.  */
446 static int gcse_create_count;
447 
448 /* Doing code hoisting.  */
449 static bool doing_code_hoisting_p = false;
450 
451 /* For available exprs */
452 static sbitmap *ae_kill;
453 
454 /* Data stored for each basic block.  */
455 struct bb_data
456 {
457   /* Maximal register pressure inside basic block for given register class
458      (defined only for the pressure classes).  */
459   int max_reg_pressure[N_REG_CLASSES];
460   /* Recorded register pressure of basic block before trying to hoist
461      an expression.  Will be used to restore the register pressure
462      if the expression should not be hoisted.  */
463   int old_pressure;
464   /* Recorded register live_in info of basic block during code hoisting
465      process.  BACKUP is used to record live_in info before trying to
466      hoist an expression, and will be used to restore LIVE_IN if the
467      expression should not be hoisted.  */
468   bitmap live_in, backup;
469 };
470 
471 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
472 
473 static basic_block curr_bb;
474 
475 /* Current register pressure for each pressure class.  */
476 static int curr_reg_pressure[N_REG_CLASSES];
477 
478 
479 static void compute_can_copy (void);
480 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
481 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
482 static void *gcse_alloc (unsigned long);
483 static void alloc_gcse_mem (void);
484 static void free_gcse_mem (void);
485 static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
486 static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
487 static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
488 static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
489 static int want_to_gcse_p (rtx, HOST_WIDE_INT *);
490 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
491 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
492 static int oprs_available_p (const_rtx, const rtx_insn *);
493 static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
494 				  HOST_WIDE_INT, struct gcse_hash_table_d *);
495 static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
496 static void record_last_reg_set_info (rtx, int);
497 static void record_last_mem_set_info (rtx_insn *);
498 static void record_last_set_info (rtx, const_rtx, void *);
499 static void compute_hash_table (struct gcse_hash_table_d *);
500 static void alloc_hash_table (struct gcse_hash_table_d *);
501 static void free_hash_table (struct gcse_hash_table_d *);
502 static void compute_hash_table_work (struct gcse_hash_table_d *);
503 static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
504 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
505 				      struct gcse_hash_table_d *);
506 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
507 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
508 static void alloc_pre_mem (int, int);
509 static void free_pre_mem (void);
510 static struct edge_list *compute_pre_data (void);
511 static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
512 				    basic_block);
513 static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
514 static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
515 static void pre_insert_copies (void);
516 static int pre_delete (void);
517 static int pre_gcse (struct edge_list *);
518 static int one_pre_gcse_pass (void);
519 static void add_label_notes (rtx, rtx);
520 static void alloc_code_hoist_mem (int, int);
521 static void free_code_hoist_mem (void);
522 static void compute_code_hoist_vbeinout (void);
523 static void compute_code_hoist_data (void);
524 static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
525 				     basic_block,
526 				     sbitmap, HOST_WIDE_INT, int *,
527 				     enum reg_class,
528 				     int *, bitmap, rtx_insn *);
529 static int hoist_code (void);
530 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
531 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
532 static int one_code_hoisting_pass (void);
533 static rtx_insn *process_insert_insn (struct gcse_expr *);
534 static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
535 static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
536 					 basic_block, char *);
537 static struct ls_expr * ldst_entry (rtx);
538 static void free_ldst_entry (struct ls_expr *);
539 static void free_ld_motion_mems (void);
540 static void print_ldst_list (FILE *);
541 static struct ls_expr * find_rtx_in_ldst (rtx);
542 static int simple_mem (const_rtx);
543 static void invalidate_any_buried_refs (rtx);
544 static void compute_ld_motion_mems (void);
545 static void trim_ld_motion_mems (void);
546 static void update_ld_motion_stores (struct gcse_expr *);
547 static void clear_modify_mem_tables (void);
548 static void free_modify_mem_tables (void);
549 static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
550 static bool is_too_expensive (const char *);
551 
552 #define GNEW(T)			((T *) gmalloc (sizeof (T)))
553 #define GCNEW(T)		((T *) gcalloc (1, sizeof (T)))
554 
555 #define GNEWVEC(T, N)		((T *) gmalloc (sizeof (T) * (N)))
556 #define GCNEWVEC(T, N)		((T *) gcalloc ((N), sizeof (T)))
557 
558 #define GNEWVAR(T, S)		((T *) gmalloc ((S)))
559 #define GCNEWVAR(T, S)		((T *) gcalloc (1, (S)))
560 
561 #define GOBNEW(T)		((T *) gcse_alloc (sizeof (T)))
562 #define GOBNEWVAR(T, S)		((T *) gcse_alloc ((S)))
563 
564 /* Misc. utilities.  */
565 
566 #define can_copy \
567   (this_target_gcse->x_can_copy)
568 #define can_copy_init_p \
569   (this_target_gcse->x_can_copy_init_p)
570 
571 /* Compute which modes support reg/reg copy operations.  */
572 
573 static void
574 compute_can_copy (void)
575 {
576   int i;
577 #ifndef AVOID_CCMODE_COPIES
578   rtx reg, insn;
579 #endif
580   memset (can_copy, 0, NUM_MACHINE_MODES);
581 
582   start_sequence ();
583   for (i = 0; i < NUM_MACHINE_MODES; i++)
584     if (GET_MODE_CLASS (i) == MODE_CC)
585       {
586 #ifdef AVOID_CCMODE_COPIES
587 	can_copy[i] = 0;
588 #else
589 	reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
590 	insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
591 	if (recog (PATTERN (insn), insn, NULL) >= 0)
592 	  can_copy[i] = 1;
593 #endif
594       }
595     else
596       can_copy[i] = 1;
597 
598   end_sequence ();
599 }
600 
601 /* Returns whether the mode supports reg/reg copy operations.  */
602 
603 bool
604 can_copy_p (machine_mode mode)
605 {
606   if (! can_copy_init_p)
607     {
608       compute_can_copy ();
609       can_copy_init_p = true;
610     }
611 
612   return can_copy[mode] != 0;
613 }
614 
615 /* Cover function to xmalloc to record bytes allocated.  */
616 
617 static void *
618 gmalloc (size_t size)
619 {
620   bytes_used += size;
621   return xmalloc (size);
622 }
623 
624 /* Cover function to xcalloc to record bytes allocated.  */
625 
626 static void *
627 gcalloc (size_t nelem, size_t elsize)
628 {
629   bytes_used += nelem * elsize;
630   return xcalloc (nelem, elsize);
631 }
632 
633 /* Cover function to obstack_alloc.  */
634 
635 static void *
636 gcse_alloc (unsigned long size)
637 {
638   bytes_used += size;
639   return obstack_alloc (&gcse_obstack, size);
640 }
641 
642 /* Allocate memory for the reg/memory set tracking tables.
643    This is called at the start of each pass.  */
644 
645 static void
646 alloc_gcse_mem (void)
647 {
648   /* Allocate vars to track sets of regs.  */
649   reg_set_bitmap = ALLOC_REG_SET (NULL);
650 
651   /* Allocate array to keep a list of insns which modify memory in each
652      basic block.  The two typedefs are needed to work around the
653      pre-processor limitation with template types in macro arguments.  */
654   typedef vec<rtx_insn *> vec_rtx_heap;
655   typedef vec<modify_pair> vec_modify_pair_heap;
656   modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
657   canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
658 				    last_basic_block_for_fn (cfun));
659   modify_mem_list_set = BITMAP_ALLOC (NULL);
660   blocks_with_calls = BITMAP_ALLOC (NULL);
661 }
662 
663 /* Free memory allocated by alloc_gcse_mem.  */
664 
665 static void
666 free_gcse_mem (void)
667 {
668   FREE_REG_SET (reg_set_bitmap);
669 
670   free_modify_mem_tables ();
671   BITMAP_FREE (modify_mem_list_set);
672   BITMAP_FREE (blocks_with_calls);
673 }
674 
675 /* Compute the local properties of each recorded expression.
676 
677    Local properties are those that are defined by the block, irrespective of
678    other blocks.
679 
680    An expression is transparent in a block if its operands are not modified
681    in the block.
682 
683    An expression is computed (locally available) in a block if it is computed
684    at least once and expression would contain the same value if the
685    computation was moved to the end of the block.
686 
687    An expression is locally anticipatable in a block if it is computed at
688    least once and expression would contain the same value if the computation
689    was moved to the beginning of the block.
690 
691    We call this routine for pre and code hoisting.  They all compute
692    basically the same information and thus can easily share this code.
693 
694    TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
695    properties.  If NULL, then it is not necessary to compute or record that
696    particular property.
697 
698    TABLE controls which hash table to look at.  */
699 
700 static void
701 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
702 			  struct gcse_hash_table_d *table)
703 {
704   unsigned int i;
705 
706   /* Initialize any bitmaps that were passed in.  */
707   if (transp)
708     {
709       bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
710     }
711 
712   if (comp)
713     bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
714   if (antloc)
715     bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
716 
717   for (i = 0; i < table->size; i++)
718     {
719       struct gcse_expr *expr;
720 
721       for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
722 	{
723 	  int indx = expr->bitmap_index;
724 	  struct gcse_occr *occr;
725 
726 	  /* The expression is transparent in this block if it is not killed.
727 	     We start by assuming all are transparent [none are killed], and
728 	     then reset the bits for those that are.  */
729 	  if (transp)
730 	    compute_transp (expr->expr, indx, transp,
731 			    blocks_with_calls,
732 			    modify_mem_list_set,
733 			    canon_modify_mem_list);
734 
735 	  /* The occurrences recorded in antic_occr are exactly those that
736 	     we want to set to nonzero in ANTLOC.  */
737 	  if (antloc)
738 	    for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
739 	      {
740 		bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
741 
742 		/* While we're scanning the table, this is a good place to
743 		   initialize this.  */
744 		occr->deleted_p = 0;
745 	      }
746 
747 	  /* The occurrences recorded in avail_occr are exactly those that
748 	     we want to set to nonzero in COMP.  */
749 	  if (comp)
750 	    for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
751 	      {
752 		bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
753 
754 		/* While we're scanning the table, this is a good place to
755 		   initialize this.  */
756 		occr->copied_p = 0;
757 	      }
758 
759 	  /* While we're scanning the table, this is a good place to
760 	     initialize this.  */
761 	  expr->reaching_reg = 0;
762 	}
763     }
764 }
765 
766 /* Hash table support.  */
767 
768 struct reg_avail_info
769 {
770   basic_block last_bb;
771   int first_set;
772   int last_set;
773 };
774 
775 static struct reg_avail_info *reg_avail_info;
776 static basic_block current_bb;
777 
778 /* See whether X, the source of a set, is something we want to consider for
779    GCSE.  */
780 
781 static int
782 want_to_gcse_p (rtx x, HOST_WIDE_INT *max_distance_ptr)
783 {
784 #ifdef STACK_REGS
785   /* On register stack architectures, don't GCSE constants from the
786      constant pool, as the benefits are often swamped by the overhead
787      of shuffling the register stack between basic blocks.  */
788   if (IS_STACK_MODE (GET_MODE (x)))
789     x = avoid_constant_pool_reference (x);
790 #endif
791 
792   /* GCSE'ing constants:
793 
794      We do not specifically distinguish between constant and non-constant
795      expressions in PRE and Hoist.  We use set_src_cost below to limit
796      the maximum distance simple expressions can travel.
797 
798      Nevertheless, constants are much easier to GCSE, and, hence,
799      it is easy to overdo the optimizations.  Usually, excessive PRE and
800      Hoisting of constant leads to increased register pressure.
801 
802      RA can deal with this by rematerialing some of the constants.
803      Therefore, it is important that the back-end generates sets of constants
804      in a way that allows reload rematerialize them under high register
805      pressure, i.e., a pseudo register with REG_EQUAL to constant
806      is set only once.  Failing to do so will result in IRA/reload
807      spilling such constants under high register pressure instead of
808      rematerializing them.  */
809 
810   switch (GET_CODE (x))
811     {
812     case REG:
813     case SUBREG:
814     case CALL:
815       return 0;
816 
817     CASE_CONST_ANY:
818       if (!doing_code_hoisting_p)
819 	/* Do not PRE constants.  */
820 	return 0;
821 
822       /* FALLTHRU */
823 
824     default:
825       if (doing_code_hoisting_p)
826 	/* PRE doesn't implement max_distance restriction.  */
827 	{
828 	  int cost;
829 	  HOST_WIDE_INT max_distance;
830 
831 	  gcc_assert (!optimize_function_for_speed_p (cfun)
832 		      && optimize_function_for_size_p (cfun));
833 	  cost = set_src_cost (x, 0);
834 
835 	  if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
836 	    {
837 	      max_distance
838 		= ((HOST_WIDE_INT)GCSE_COST_DISTANCE_RATIO * cost) / 10;
839 	      if (max_distance == 0)
840 		return 0;
841 
842 	      gcc_assert (max_distance > 0);
843 	    }
844 	  else
845 	    max_distance = 0;
846 
847 	  if (max_distance_ptr)
848 	    *max_distance_ptr = max_distance;
849 	}
850 
851       return can_assign_to_reg_without_clobbers_p (x);
852     }
853 }
854 
855 /* Used internally by can_assign_to_reg_without_clobbers_p.  */
856 
857 static GTY(()) rtx_insn *test_insn;
858 
859 /* Return true if we can assign X to a pseudo register such that the
860    resulting insn does not result in clobbering a hard register as a
861    side-effect.
862 
863    Additionally, if the target requires it, check that the resulting insn
864    can be copied.  If it cannot, this means that X is special and probably
865    has hidden side-effects we don't want to mess with.
866 
867    This function is typically used by code motion passes, to verify
868    that it is safe to insert an insn without worrying about clobbering
869    maybe live hard regs.  */
870 
871 bool
872 can_assign_to_reg_without_clobbers_p (rtx x)
873 {
874   int num_clobbers = 0;
875   int icode;
876   bool can_assign = false;
877 
878   /* If this is a valid operand, we are OK.  If it's VOIDmode, we aren't.  */
879   if (general_operand (x, GET_MODE (x)))
880     return 1;
881   else if (GET_MODE (x) == VOIDmode)
882     return 0;
883 
884   /* Otherwise, check if we can make a valid insn from it.  First initialize
885      our test insn if we haven't already.  */
886   if (test_insn == 0)
887     {
888       test_insn
889 	= make_insn_raw (gen_rtx_SET (VOIDmode,
890 				      gen_rtx_REG (word_mode,
891 						   FIRST_PSEUDO_REGISTER * 2),
892 				      const0_rtx));
893       SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
894       INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
895     }
896 
897   /* Now make an insn like the one we would make when GCSE'ing and see if
898      valid.  */
899   PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
900   SET_SRC (PATTERN (test_insn)) = x;
901 
902   icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
903 
904   /* If the test insn is valid and doesn't need clobbers, and the target also
905      has no objections, we're good.  */
906   if (icode >= 0
907       && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
908       && ! (targetm.cannot_copy_insn_p
909 	    && targetm.cannot_copy_insn_p (test_insn)))
910     can_assign = true;
911 
912   /* Make sure test_insn doesn't have any pointers into GC space.  */
913   SET_SRC (PATTERN (test_insn)) = NULL_RTX;
914 
915   return can_assign;
916 }
917 
918 /* Return nonzero if the operands of expression X are unchanged from the
919    start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
920    or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */
921 
922 static int
923 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
924 {
925   int i, j;
926   enum rtx_code code;
927   const char *fmt;
928 
929   if (x == 0)
930     return 1;
931 
932   code = GET_CODE (x);
933   switch (code)
934     {
935     case REG:
936       {
937 	struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
938 
939 	if (info->last_bb != current_bb)
940 	  return 1;
941 	if (avail_p)
942 	  return info->last_set < DF_INSN_LUID (insn);
943 	else
944 	  return info->first_set >= DF_INSN_LUID (insn);
945       }
946 
947     case MEM:
948       if (! flag_gcse_lm
949 	  || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
950 				     x, avail_p))
951 	return 0;
952       else
953 	return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
954 
955     case PRE_DEC:
956     case PRE_INC:
957     case POST_DEC:
958     case POST_INC:
959     case PRE_MODIFY:
960     case POST_MODIFY:
961       return 0;
962 
963     case PC:
964     case CC0: /*FIXME*/
965     case CONST:
966     CASE_CONST_ANY:
967     case SYMBOL_REF:
968     case LABEL_REF:
969     case ADDR_VEC:
970     case ADDR_DIFF_VEC:
971       return 1;
972 
973     default:
974       break;
975     }
976 
977   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
978     {
979       if (fmt[i] == 'e')
980 	{
981 	  /* If we are about to do the last recursive call needed at this
982 	     level, change it into iteration.  This function is called enough
983 	     to be worth it.  */
984 	  if (i == 0)
985 	    return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
986 
987 	  else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
988 	    return 0;
989 	}
990       else if (fmt[i] == 'E')
991 	for (j = 0; j < XVECLEN (x, i); j++)
992 	  if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
993 	    return 0;
994     }
995 
996   return 1;
997 }
998 
999 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p.  */
1000 
1001 struct mem_conflict_info
1002 {
1003   /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
1004      see if a memory store conflicts with this memory load.  */
1005   const_rtx mem;
1006 
1007   /* True if mems_conflict_for_gcse_p finds a conflict between two memory
1008      references.  */
1009   bool conflict;
1010 };
1011 
1012 /* DEST is the output of an instruction.  If it is a memory reference and
1013    possibly conflicts with the load found in DATA, then communicate this
1014    information back through DATA.  */
1015 
1016 static void
1017 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
1018 			  void *data)
1019 {
1020   struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
1021 
1022   while (GET_CODE (dest) == SUBREG
1023 	 || GET_CODE (dest) == ZERO_EXTRACT
1024 	 || GET_CODE (dest) == STRICT_LOW_PART)
1025     dest = XEXP (dest, 0);
1026 
1027   /* If DEST is not a MEM, then it will not conflict with the load.  Note
1028      that function calls are assumed to clobber memory, but are handled
1029      elsewhere.  */
1030   if (! MEM_P (dest))
1031     return;
1032 
1033   /* If we are setting a MEM in our list of specially recognized MEMs,
1034      don't mark as killed this time.  */
1035   if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1036     {
1037       if (!find_rtx_in_ldst (dest))
1038 	mci->conflict = true;
1039       return;
1040     }
1041 
1042   if (true_dependence (dest, GET_MODE (dest), mci->mem))
1043     mci->conflict = true;
1044 }
1045 
1046 /* Return nonzero if the expression in X (a memory reference) is killed
1047    in block BB before or after the insn with the LUID in UID_LIMIT.
1048    AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1049    before UID_LIMIT.
1050 
1051    To check the entire block, set UID_LIMIT to max_uid + 1 and
1052    AVAIL_P to 0.  */
1053 
1054 static int
1055 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1056 			int avail_p)
1057 {
1058   vec<rtx_insn *> list = modify_mem_list[bb->index];
1059   rtx_insn *setter;
1060   unsigned ix;
1061 
1062   /* If this is a readonly then we aren't going to be changing it.  */
1063   if (MEM_READONLY_P (x))
1064     return 0;
1065 
1066   FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1067     {
1068       struct mem_conflict_info mci;
1069 
1070       /* Ignore entries in the list that do not apply.  */
1071       if ((avail_p
1072 	   && DF_INSN_LUID (setter) < uid_limit)
1073 	  || (! avail_p
1074 	      && DF_INSN_LUID (setter) > uid_limit))
1075 	continue;
1076 
1077       /* If SETTER is a call everything is clobbered.  Note that calls
1078 	 to pure functions are never put on the list, so we need not
1079 	 worry about them.  */
1080       if (CALL_P (setter))
1081 	return 1;
1082 
1083       /* SETTER must be an INSN of some kind that sets memory.  Call
1084 	 note_stores to examine each hunk of memory that is modified.  */
1085       mci.mem = x;
1086       mci.conflict = false;
1087       note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1088       if (mci.conflict)
1089 	return 1;
1090     }
1091   return 0;
1092 }
1093 
1094 /* Return nonzero if the operands of expression X are unchanged from
1095    the start of INSN's basic block up to but not including INSN.  */
1096 
1097 static int
1098 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1099 {
1100   return oprs_unchanged_p (x, insn, 0);
1101 }
1102 
1103 /* Return nonzero if the operands of expression X are unchanged from
1104    INSN to the end of INSN's basic block.  */
1105 
1106 static int
1107 oprs_available_p (const_rtx x, const rtx_insn *insn)
1108 {
1109   return oprs_unchanged_p (x, insn, 1);
1110 }
1111 
1112 /* Hash expression X.
1113 
1114    MODE is only used if X is a CONST_INT.  DO_NOT_RECORD_P is a boolean
1115    indicating if a volatile operand is found or if the expression contains
1116    something we don't want to insert in the table.  HASH_TABLE_SIZE is
1117    the current size of the hash table to be probed.  */
1118 
1119 static unsigned int
1120 hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
1121 	   int hash_table_size)
1122 {
1123   unsigned int hash;
1124 
1125   *do_not_record_p = 0;
1126 
1127   hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1128   return hash % hash_table_size;
1129 }
1130 
1131 /* Return nonzero if exp1 is equivalent to exp2.  */
1132 
1133 static int
1134 expr_equiv_p (const_rtx x, const_rtx y)
1135 {
1136   return exp_equiv_p (x, y, 0, true);
1137 }
1138 
1139 /* Insert expression X in INSN in the hash TABLE.
1140    If it is already present, record it as the last occurrence in INSN's
1141    basic block.
1142 
1143    MODE is the mode of the value X is being stored into.
1144    It is only used if X is a CONST_INT.
1145 
1146    ANTIC_P is nonzero if X is an anticipatable expression.
1147    AVAIL_P is nonzero if X is an available expression.
1148 
1149    MAX_DISTANCE is the maximum distance in instructions this expression can
1150    be moved.  */
1151 
1152 static void
1153 insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
1154 		      int antic_p,
1155 		      int avail_p, HOST_WIDE_INT max_distance,
1156 		      struct gcse_hash_table_d *table)
1157 {
1158   int found, do_not_record_p;
1159   unsigned int hash;
1160   struct gcse_expr *cur_expr, *last_expr = NULL;
1161   struct gcse_occr *antic_occr, *avail_occr;
1162 
1163   hash = hash_expr (x, mode, &do_not_record_p, table->size);
1164 
1165   /* Do not insert expression in table if it contains volatile operands,
1166      or if hash_expr determines the expression is something we don't want
1167      to or can't handle.  */
1168   if (do_not_record_p)
1169     return;
1170 
1171   cur_expr = table->table[hash];
1172   found = 0;
1173 
1174   while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1175     {
1176       /* If the expression isn't found, save a pointer to the end of
1177 	 the list.  */
1178       last_expr = cur_expr;
1179       cur_expr = cur_expr->next_same_hash;
1180     }
1181 
1182   if (! found)
1183     {
1184       cur_expr = GOBNEW (struct gcse_expr);
1185       bytes_used += sizeof (struct gcse_expr);
1186       if (table->table[hash] == NULL)
1187 	/* This is the first pattern that hashed to this index.  */
1188 	table->table[hash] = cur_expr;
1189       else
1190 	/* Add EXPR to end of this hash chain.  */
1191 	last_expr->next_same_hash = cur_expr;
1192 
1193       /* Set the fields of the expr element.  */
1194       cur_expr->expr = x;
1195       cur_expr->bitmap_index = table->n_elems++;
1196       cur_expr->next_same_hash = NULL;
1197       cur_expr->antic_occr = NULL;
1198       cur_expr->avail_occr = NULL;
1199       gcc_assert (max_distance >= 0);
1200       cur_expr->max_distance = max_distance;
1201     }
1202   else
1203     gcc_assert (cur_expr->max_distance == max_distance);
1204 
1205   /* Now record the occurrence(s).  */
1206   if (antic_p)
1207     {
1208       antic_occr = cur_expr->antic_occr;
1209 
1210       if (antic_occr
1211 	  && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1212 	antic_occr = NULL;
1213 
1214       if (antic_occr)
1215 	/* Found another instance of the expression in the same basic block.
1216 	   Prefer the currently recorded one.  We want the first one in the
1217 	   block and the block is scanned from start to end.  */
1218 	; /* nothing to do */
1219       else
1220 	{
1221 	  /* First occurrence of this expression in this basic block.  */
1222 	  antic_occr = GOBNEW (struct gcse_occr);
1223 	  bytes_used += sizeof (struct gcse_occr);
1224 	  antic_occr->insn = insn;
1225 	  antic_occr->next = cur_expr->antic_occr;
1226 	  antic_occr->deleted_p = 0;
1227 	  cur_expr->antic_occr = antic_occr;
1228 	}
1229     }
1230 
1231   if (avail_p)
1232     {
1233       avail_occr = cur_expr->avail_occr;
1234 
1235       if (avail_occr
1236 	  && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1237 	{
1238 	  /* Found another instance of the expression in the same basic block.
1239 	     Prefer this occurrence to the currently recorded one.  We want
1240 	     the last one in the block and the block is scanned from start
1241 	     to end.  */
1242 	  avail_occr->insn = insn;
1243 	}
1244       else
1245 	{
1246 	  /* First occurrence of this expression in this basic block.  */
1247 	  avail_occr = GOBNEW (struct gcse_occr);
1248 	  bytes_used += sizeof (struct gcse_occr);
1249 	  avail_occr->insn = insn;
1250 	  avail_occr->next = cur_expr->avail_occr;
1251 	  avail_occr->deleted_p = 0;
1252 	  cur_expr->avail_occr = avail_occr;
1253 	}
1254     }
1255 }
1256 
1257 /* Scan SET present in INSN and add an entry to the hash TABLE.  */
1258 
1259 static void
1260 hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
1261 {
1262   rtx src = SET_SRC (set);
1263   rtx dest = SET_DEST (set);
1264   rtx note;
1265 
1266   if (GET_CODE (src) == CALL)
1267     hash_scan_call (src, insn, table);
1268 
1269   else if (REG_P (dest))
1270     {
1271       unsigned int regno = REGNO (dest);
1272       HOST_WIDE_INT max_distance = 0;
1273 
1274       /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1275 
1276 	 This allows us to do a single GCSE pass and still eliminate
1277 	 redundant constants, addresses or other expressions that are
1278 	 constructed with multiple instructions.
1279 
1280 	 However, keep the original SRC if INSN is a simple reg-reg move.
1281 	 In this case, there will almost always be a REG_EQUAL note on the
1282 	 insn that sets SRC.  By recording the REG_EQUAL value here as SRC
1283 	 for INSN, we miss copy propagation opportunities and we perform the
1284 	 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1285 	 do more than one PRE GCSE pass.
1286 
1287 	 Note that this does not impede profitable constant propagations.  We
1288 	 "look through" reg-reg sets in lookup_avail_set.  */
1289       note = find_reg_equal_equiv_note (insn);
1290       if (note != 0
1291 	  && REG_NOTE_KIND (note) == REG_EQUAL
1292 	  && !REG_P (src)
1293 	  && want_to_gcse_p (XEXP (note, 0), NULL))
1294 	src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1295 
1296       /* Only record sets of pseudo-regs in the hash table.  */
1297       if (regno >= FIRST_PSEUDO_REGISTER
1298 	  /* Don't GCSE something if we can't do a reg/reg copy.  */
1299 	  && can_copy_p (GET_MODE (dest))
1300 	  /* GCSE commonly inserts instruction after the insn.  We can't
1301 	     do that easily for EH edges so disable GCSE on these for now.  */
1302 	  /* ??? We can now easily create new EH landing pads at the
1303 	     gimple level, for splitting edges; there's no reason we
1304 	     can't do the same thing at the rtl level.  */
1305 	  && !can_throw_internal (insn)
1306 	  /* Is SET_SRC something we want to gcse?  */
1307 	  && want_to_gcse_p (src, &max_distance)
1308 	  /* Don't CSE a nop.  */
1309 	  && ! set_noop_p (set)
1310 	  /* Don't GCSE if it has attached REG_EQUIV note.
1311 	     At this point this only function parameters should have
1312 	     REG_EQUIV notes and if the argument slot is used somewhere
1313 	     explicitly, it means address of parameter has been taken,
1314 	     so we should not extend the lifetime of the pseudo.  */
1315 	  && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1316 	{
1317 	  /* An expression is not anticipatable if its operands are
1318 	     modified before this insn or if this is not the only SET in
1319 	     this insn.  The latter condition does not have to mean that
1320 	     SRC itself is not anticipatable, but we just will not be
1321 	     able to handle code motion of insns with multiple sets.  */
1322 	  int antic_p = oprs_anticipatable_p (src, insn)
1323 			&& !multiple_sets (insn);
1324 	  /* An expression is not available if its operands are
1325 	     subsequently modified, including this insn.  It's also not
1326 	     available if this is a branch, because we can't insert
1327 	     a set after the branch.  */
1328 	  int avail_p = (oprs_available_p (src, insn)
1329 			 && ! JUMP_P (insn));
1330 
1331 	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1332 				max_distance, table);
1333 	}
1334     }
1335   /* In case of store we want to consider the memory value as available in
1336      the REG stored in that memory. This makes it possible to remove
1337      redundant loads from due to stores to the same location.  */
1338   else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1339       {
1340         unsigned int regno = REGNO (src);
1341 	HOST_WIDE_INT max_distance = 0;
1342 
1343 	/* Only record sets of pseudo-regs in the hash table.  */
1344         if (regno >= FIRST_PSEUDO_REGISTER
1345 	   /* Don't GCSE something if we can't do a reg/reg copy.  */
1346 	   && can_copy_p (GET_MODE (src))
1347 	   /* GCSE commonly inserts instruction after the insn.  We can't
1348 	      do that easily for EH edges so disable GCSE on these for now.  */
1349 	   && !can_throw_internal (insn)
1350 	   /* Is SET_DEST something we want to gcse?  */
1351 	   && want_to_gcse_p (dest, &max_distance)
1352 	   /* Don't CSE a nop.  */
1353 	   && ! set_noop_p (set)
1354 	   /* Don't GCSE if it has attached REG_EQUIV note.
1355 	      At this point this only function parameters should have
1356 	      REG_EQUIV notes and if the argument slot is used somewhere
1357 	      explicitly, it means address of parameter has been taken,
1358 	      so we should not extend the lifetime of the pseudo.  */
1359 	   && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1360 	       || ! MEM_P (XEXP (note, 0))))
1361              {
1362                /* Stores are never anticipatable.  */
1363                int antic_p = 0;
1364 	       /* An expression is not available if its operands are
1365 	          subsequently modified, including this insn.  It's also not
1366 	          available if this is a branch, because we can't insert
1367 	          a set after the branch.  */
1368                int avail_p = oprs_available_p (dest, insn)
1369 			     && ! JUMP_P (insn);
1370 
1371 	       /* Record the memory expression (DEST) in the hash table.  */
1372 	       insert_expr_in_table (dest, GET_MODE (dest), insn,
1373 				     antic_p, avail_p, max_distance, table);
1374              }
1375       }
1376 }
1377 
1378 static void
1379 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1380 		   struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1381 {
1382   /* Currently nothing to do.  */
1383 }
1384 
1385 static void
1386 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1387 		struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
1388 {
1389   /* Currently nothing to do.  */
1390 }
1391 
1392 /* Process INSN and add hash table entries as appropriate.  */
1393 
1394 static void
1395 hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
1396 {
1397   rtx pat = PATTERN (insn);
1398   int i;
1399 
1400   /* Pick out the sets of INSN and for other forms of instructions record
1401      what's been modified.  */
1402 
1403   if (GET_CODE (pat) == SET)
1404     hash_scan_set (pat, insn, table);
1405 
1406   else if (GET_CODE (pat) == CLOBBER)
1407     hash_scan_clobber (pat, insn, table);
1408 
1409   else if (GET_CODE (pat) == CALL)
1410     hash_scan_call (pat, insn, table);
1411 
1412   else if (GET_CODE (pat) == PARALLEL)
1413     for (i = 0; i < XVECLEN (pat, 0); i++)
1414       {
1415 	rtx x = XVECEXP (pat, 0, i);
1416 
1417 	if (GET_CODE (x) == SET)
1418 	  hash_scan_set (x, insn, table);
1419 	else if (GET_CODE (x) == CLOBBER)
1420 	  hash_scan_clobber (x, insn, table);
1421 	else if (GET_CODE (x) == CALL)
1422 	  hash_scan_call (x, insn, table);
1423       }
1424 }
1425 
1426 /* Dump the hash table TABLE to file FILE under the name NAME.  */
1427 
1428 static void
1429 dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
1430 {
1431   int i;
1432   /* Flattened out table, so it's printed in proper order.  */
1433   struct gcse_expr **flat_table;
1434   unsigned int *hash_val;
1435   struct gcse_expr *expr;
1436 
1437   flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1438   hash_val = XNEWVEC (unsigned int, table->n_elems);
1439 
1440   for (i = 0; i < (int) table->size; i++)
1441     for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1442       {
1443 	flat_table[expr->bitmap_index] = expr;
1444 	hash_val[expr->bitmap_index] = i;
1445       }
1446 
1447   fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1448 	   name, table->size, table->n_elems);
1449 
1450   for (i = 0; i < (int) table->n_elems; i++)
1451     if (flat_table[i] != 0)
1452       {
1453 	expr = flat_table[i];
1454 	fprintf (file, "Index %d (hash value %d; max distance "
1455 		 HOST_WIDE_INT_PRINT_DEC ")\n  ",
1456 		 expr->bitmap_index, hash_val[i], expr->max_distance);
1457 	print_rtl (file, expr->expr);
1458 	fprintf (file, "\n");
1459       }
1460 
1461   fprintf (file, "\n");
1462 
1463   free (flat_table);
1464   free (hash_val);
1465 }
1466 
1467 /* Record register first/last/block set information for REGNO in INSN.
1468 
1469    first_set records the first place in the block where the register
1470    is set and is used to compute "anticipatability".
1471 
1472    last_set records the last place in the block where the register
1473    is set and is used to compute "availability".
1474 
1475    last_bb records the block for which first_set and last_set are
1476    valid, as a quick test to invalidate them.  */
1477 
1478 static void
1479 record_last_reg_set_info (rtx insn, int regno)
1480 {
1481   struct reg_avail_info *info = &reg_avail_info[regno];
1482   int luid = DF_INSN_LUID (insn);
1483 
1484   info->last_set = luid;
1485   if (info->last_bb != current_bb)
1486     {
1487       info->last_bb = current_bb;
1488       info->first_set = luid;
1489     }
1490 }
1491 
1492 /* Record memory modification information for INSN.  We do not actually care
1493    about the memory location(s) that are set, or even how they are set (consider
1494    a CALL_INSN).  We merely need to record which insns modify memory.  */
1495 
1496 static void
1497 record_last_mem_set_info (rtx_insn *insn)
1498 {
1499   if (! flag_gcse_lm)
1500     return;
1501 
1502   record_last_mem_set_info_common (insn, modify_mem_list,
1503 				   canon_modify_mem_list,
1504 				   modify_mem_list_set,
1505 				   blocks_with_calls);
1506 }
1507 
1508 /* Called from compute_hash_table via note_stores to handle one
1509    SET or CLOBBER in an insn.  DATA is really the instruction in which
1510    the SET is taking place.  */
1511 
1512 static void
1513 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1514 {
1515   rtx_insn *last_set_insn = (rtx_insn *) data;
1516 
1517   if (GET_CODE (dest) == SUBREG)
1518     dest = SUBREG_REG (dest);
1519 
1520   if (REG_P (dest))
1521     record_last_reg_set_info (last_set_insn, REGNO (dest));
1522   else if (MEM_P (dest)
1523 	   /* Ignore pushes, they clobber nothing.  */
1524 	   && ! push_operand (dest, GET_MODE (dest)))
1525     record_last_mem_set_info (last_set_insn);
1526 }
1527 
1528 /* Top level function to create an expression hash table.
1529 
1530    Expression entries are placed in the hash table if
1531    - they are of the form (set (pseudo-reg) src),
1532    - src is something we want to perform GCSE on,
1533    - none of the operands are subsequently modified in the block
1534 
1535    Currently src must be a pseudo-reg or a const_int.
1536 
1537    TABLE is the table computed.  */
1538 
1539 static void
1540 compute_hash_table_work (struct gcse_hash_table_d *table)
1541 {
1542   int i;
1543 
1544   /* re-Cache any INSN_LIST nodes we have allocated.  */
1545   clear_modify_mem_tables ();
1546   /* Some working arrays used to track first and last set in each block.  */
1547   reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1548 
1549   for (i = 0; i < max_reg_num (); ++i)
1550     reg_avail_info[i].last_bb = NULL;
1551 
1552   FOR_EACH_BB_FN (current_bb, cfun)
1553     {
1554       rtx_insn *insn;
1555       unsigned int regno;
1556 
1557       /* First pass over the instructions records information used to
1558 	 determine when registers and memory are first and last set.  */
1559       FOR_BB_INSNS (current_bb, insn)
1560 	{
1561 	  if (!NONDEBUG_INSN_P (insn))
1562 	    continue;
1563 
1564 	  if (CALL_P (insn))
1565 	    {
1566 	      hard_reg_set_iterator hrsi;
1567 	      EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1568 					      0, regno, hrsi)
1569 		record_last_reg_set_info (insn, regno);
1570 
1571 	      if (! RTL_CONST_OR_PURE_CALL_P (insn))
1572 		record_last_mem_set_info (insn);
1573 	    }
1574 
1575 	  note_stores (PATTERN (insn), record_last_set_info, insn);
1576 	}
1577 
1578       /* The next pass builds the hash table.  */
1579       FOR_BB_INSNS (current_bb, insn)
1580 	if (NONDEBUG_INSN_P (insn))
1581 	  hash_scan_insn (insn, table);
1582     }
1583 
1584   free (reg_avail_info);
1585   reg_avail_info = NULL;
1586 }
1587 
1588 /* Allocate space for the set/expr hash TABLE.
1589    It is used to determine the number of buckets to use.  */
1590 
1591 static void
1592 alloc_hash_table (struct gcse_hash_table_d *table)
1593 {
1594   int n;
1595 
1596   n = get_max_insn_count ();
1597 
1598   table->size = n / 4;
1599   if (table->size < 11)
1600     table->size = 11;
1601 
1602   /* Attempt to maintain efficient use of hash table.
1603      Making it an odd number is simplest for now.
1604      ??? Later take some measurements.  */
1605   table->size |= 1;
1606   n = table->size * sizeof (struct gcse_expr *);
1607   table->table = GNEWVAR (struct gcse_expr *, n);
1608 }
1609 
1610 /* Free things allocated by alloc_hash_table.  */
1611 
1612 static void
1613 free_hash_table (struct gcse_hash_table_d *table)
1614 {
1615   free (table->table);
1616 }
1617 
1618 /* Compute the expression hash table TABLE.  */
1619 
1620 static void
1621 compute_hash_table (struct gcse_hash_table_d *table)
1622 {
1623   /* Initialize count of number of entries in hash table.  */
1624   table->n_elems = 0;
1625   memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
1626 
1627   compute_hash_table_work (table);
1628 }
1629 
1630 /* Expression tracking support.  */
1631 
1632 /* Clear canon_modify_mem_list and modify_mem_list tables.  */
1633 static void
1634 clear_modify_mem_tables (void)
1635 {
1636   unsigned i;
1637   bitmap_iterator bi;
1638 
1639   EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1640     {
1641       modify_mem_list[i].release ();
1642       canon_modify_mem_list[i].release ();
1643     }
1644   bitmap_clear (modify_mem_list_set);
1645   bitmap_clear (blocks_with_calls);
1646 }
1647 
1648 /* Release memory used by modify_mem_list_set.  */
1649 
1650 static void
1651 free_modify_mem_tables (void)
1652 {
1653   clear_modify_mem_tables ();
1654   free (modify_mem_list);
1655   free (canon_modify_mem_list);
1656   modify_mem_list = 0;
1657   canon_modify_mem_list = 0;
1658 }
1659 
1660 /* Compute PRE+LCM working variables.  */
1661 
1662 /* Local properties of expressions.  */
1663 
1664 /* Nonzero for expressions that are transparent in the block.  */
1665 static sbitmap *transp;
1666 
1667 /* Nonzero for expressions that are computed (available) in the block.  */
1668 static sbitmap *comp;
1669 
1670 /* Nonzero for expressions that are locally anticipatable in the block.  */
1671 static sbitmap *antloc;
1672 
1673 /* Nonzero for expressions where this block is an optimal computation
1674    point.  */
1675 static sbitmap *pre_optimal;
1676 
1677 /* Nonzero for expressions which are redundant in a particular block.  */
1678 static sbitmap *pre_redundant;
1679 
1680 /* Nonzero for expressions which should be inserted on a specific edge.  */
1681 static sbitmap *pre_insert_map;
1682 
1683 /* Nonzero for expressions which should be deleted in a specific block.  */
1684 static sbitmap *pre_delete_map;
1685 
1686 /* Allocate vars used for PRE analysis.  */
1687 
1688 static void
1689 alloc_pre_mem (int n_blocks, int n_exprs)
1690 {
1691   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1692   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1693   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1694 
1695   pre_optimal = NULL;
1696   pre_redundant = NULL;
1697   pre_insert_map = NULL;
1698   pre_delete_map = NULL;
1699   ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1700 
1701   /* pre_insert and pre_delete are allocated later.  */
1702 }
1703 
1704 /* Free vars used for PRE analysis.  */
1705 
1706 static void
1707 free_pre_mem (void)
1708 {
1709   sbitmap_vector_free (transp);
1710   sbitmap_vector_free (comp);
1711 
1712   /* ANTLOC and AE_KILL are freed just after pre_lcm finishes.  */
1713 
1714   if (pre_optimal)
1715     sbitmap_vector_free (pre_optimal);
1716   if (pre_redundant)
1717     sbitmap_vector_free (pre_redundant);
1718   if (pre_insert_map)
1719     sbitmap_vector_free (pre_insert_map);
1720   if (pre_delete_map)
1721     sbitmap_vector_free (pre_delete_map);
1722 
1723   transp = comp = NULL;
1724   pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1725 }
1726 
1727 /* Remove certain expressions from anticipatable and transparent
1728    sets of basic blocks that have incoming abnormal edge.
1729    For PRE remove potentially trapping expressions to avoid placing
1730    them on abnormal edges.  For hoisting remove memory references that
1731    can be clobbered by calls.  */
1732 
1733 static void
1734 prune_expressions (bool pre_p)
1735 {
1736   sbitmap prune_exprs;
1737   struct gcse_expr *expr;
1738   unsigned int ui;
1739   basic_block bb;
1740 
1741   prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1742   bitmap_clear (prune_exprs);
1743   for (ui = 0; ui < expr_hash_table.size; ui++)
1744     {
1745       for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1746 	{
1747 	  /* Note potentially trapping expressions.  */
1748 	  if (may_trap_p (expr->expr))
1749 	    {
1750 	      bitmap_set_bit (prune_exprs, expr->bitmap_index);
1751 	      continue;
1752 	    }
1753 
1754 	  if (!pre_p && MEM_P (expr->expr))
1755 	    /* Note memory references that can be clobbered by a call.
1756 	       We do not split abnormal edges in hoisting, so would
1757 	       a memory reference get hoisted along an abnormal edge,
1758 	       it would be placed /before/ the call.  Therefore, only
1759 	       constant memory references can be hoisted along abnormal
1760 	       edges.  */
1761 	    {
1762 	      if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1763 		  && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1764 		continue;
1765 
1766 	      if (MEM_READONLY_P (expr->expr)
1767 		  && !MEM_VOLATILE_P (expr->expr)
1768 		  && MEM_NOTRAP_P (expr->expr))
1769 		/* Constant memory reference, e.g., a PIC address.  */
1770 		continue;
1771 
1772 	      /* ??? Optimally, we would use interprocedural alias
1773 		 analysis to determine if this mem is actually killed
1774 		 by this call.  */
1775 
1776 	      bitmap_set_bit (prune_exprs, expr->bitmap_index);
1777 	    }
1778 	}
1779     }
1780 
1781   FOR_EACH_BB_FN (bb, cfun)
1782     {
1783       edge e;
1784       edge_iterator ei;
1785 
1786       /* If the current block is the destination of an abnormal edge, we
1787 	 kill all trapping (for PRE) and memory (for hoist) expressions
1788 	 because we won't be able to properly place the instruction on
1789 	 the edge.  So make them neither anticipatable nor transparent.
1790 	 This is fairly conservative.
1791 
1792 	 ??? For hoisting it may be necessary to check for set-and-jump
1793 	 instructions here, not just for abnormal edges.  The general problem
1794 	 is that when an expression cannot not be placed right at the end of
1795 	 a basic block we should account for any side-effects of a subsequent
1796 	 jump instructions that could clobber the expression.  It would
1797 	 be best to implement this check along the lines of
1798 	 should_hoist_expr_to_dom where the target block is already known
1799 	 and, hence, there's no need to conservatively prune expressions on
1800 	 "intermediate" set-and-jump instructions.  */
1801       FOR_EACH_EDGE (e, ei, bb->preds)
1802 	if ((e->flags & EDGE_ABNORMAL)
1803 	    && (pre_p || CALL_P (BB_END (e->src))))
1804 	  {
1805 	    bitmap_and_compl (antloc[bb->index],
1806 				antloc[bb->index], prune_exprs);
1807 	    bitmap_and_compl (transp[bb->index],
1808 				transp[bb->index], prune_exprs);
1809 	    break;
1810 	  }
1811     }
1812 
1813   sbitmap_free (prune_exprs);
1814 }
1815 
1816 /* It may be necessary to insert a large number of insns on edges to
1817    make the existing occurrences of expressions fully redundant.  This
1818    routine examines the set of insertions and deletions and if the ratio
1819    of insertions to deletions is too high for a particular expression, then
1820    the expression is removed from the insertion/deletion sets.
1821 
1822    N_ELEMS is the number of elements in the hash table.  */
1823 
1824 static void
1825 prune_insertions_deletions (int n_elems)
1826 {
1827   sbitmap_iterator sbi;
1828   sbitmap prune_exprs;
1829 
1830   /* We always use I to iterate over blocks/edges and J to iterate over
1831      expressions.  */
1832   unsigned int i, j;
1833 
1834   /* Counts for the number of times an expression needs to be inserted and
1835      number of times an expression can be removed as a result.  */
1836   int *insertions = GCNEWVEC (int, n_elems);
1837   int *deletions = GCNEWVEC (int, n_elems);
1838 
1839   /* Set of expressions which require too many insertions relative to
1840      the number of deletions achieved.  We will prune these out of the
1841      insertion/deletion sets.  */
1842   prune_exprs = sbitmap_alloc (n_elems);
1843   bitmap_clear (prune_exprs);
1844 
1845   /* Iterate over the edges counting the number of times each expression
1846      needs to be inserted.  */
1847   for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1848     {
1849       EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1850 	insertions[j]++;
1851     }
1852 
1853   /* Similarly for deletions, but those occur in blocks rather than on
1854      edges.  */
1855   for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1856     {
1857       EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1858 	deletions[j]++;
1859     }
1860 
1861   /* Now that we have accurate counts, iterate over the elements in the
1862      hash table and see if any need too many insertions relative to the
1863      number of evaluations that can be removed.  If so, mark them in
1864      PRUNE_EXPRS.  */
1865   for (j = 0; j < (unsigned) n_elems; j++)
1866     if (deletions[j]
1867 	&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1868       bitmap_set_bit (prune_exprs, j);
1869 
1870   /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS.  */
1871   EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
1872     {
1873       for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1874 	bitmap_clear_bit (pre_insert_map[i], j);
1875 
1876       for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1877 	bitmap_clear_bit (pre_delete_map[i], j);
1878     }
1879 
1880   sbitmap_free (prune_exprs);
1881   free (insertions);
1882   free (deletions);
1883 }
1884 
1885 /* Top level routine to do the dataflow analysis needed by PRE.  */
1886 
1887 static struct edge_list *
1888 compute_pre_data (void)
1889 {
1890   struct edge_list *edge_list;
1891   basic_block bb;
1892 
1893   compute_local_properties (transp, comp, antloc, &expr_hash_table);
1894   prune_expressions (true);
1895   bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
1896 
1897   /* Compute ae_kill for each basic block using:
1898 
1899      ~(TRANSP | COMP)
1900   */
1901 
1902   FOR_EACH_BB_FN (bb, cfun)
1903     {
1904       bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1905       bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
1906     }
1907 
1908   edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
1909 			    ae_kill, &pre_insert_map, &pre_delete_map);
1910   sbitmap_vector_free (antloc);
1911   antloc = NULL;
1912   sbitmap_vector_free (ae_kill);
1913   ae_kill = NULL;
1914 
1915   prune_insertions_deletions (expr_hash_table.n_elems);
1916 
1917   return edge_list;
1918 }
1919 
1920 /* PRE utilities */
1921 
1922 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
1923    block BB.
1924 
1925    VISITED is a pointer to a working buffer for tracking which BB's have
1926    been visited.  It is NULL for the top-level call.
1927 
1928    We treat reaching expressions that go through blocks containing the same
1929    reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
1930    2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1931    2 as not reaching.  The intent is to improve the probability of finding
1932    only one reaching expression and to reduce register lifetimes by picking
1933    the closest such expression.  */
1934 
1935 static int
1936 pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
1937 			      basic_block bb, char *visited)
1938 {
1939   edge pred;
1940   edge_iterator ei;
1941 
1942   FOR_EACH_EDGE (pred, ei, bb->preds)
1943     {
1944       basic_block pred_bb = pred->src;
1945 
1946       if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1947 	  /* Has predecessor has already been visited?  */
1948 	  || visited[pred_bb->index])
1949 	;/* Nothing to do.  */
1950 
1951       /* Does this predecessor generate this expression?  */
1952       else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
1953 	{
1954 	  /* Is this the occurrence we're looking for?
1955 	     Note that there's only one generating occurrence per block
1956 	     so we just need to check the block number.  */
1957 	  if (occr_bb == pred_bb)
1958 	    return 1;
1959 
1960 	  visited[pred_bb->index] = 1;
1961 	}
1962       /* Ignore this predecessor if it kills the expression.  */
1963       else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
1964 	visited[pred_bb->index] = 1;
1965 
1966       /* Neither gen nor kill.  */
1967       else
1968 	{
1969 	  visited[pred_bb->index] = 1;
1970 	  if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
1971 	    return 1;
1972 	}
1973     }
1974 
1975   /* All paths have been checked.  */
1976   return 0;
1977 }
1978 
1979 /* The wrapper for pre_expr_reaches_here_work that ensures that any
1980    memory allocated for that function is returned.  */
1981 
1982 static int
1983 pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
1984 {
1985   int rval;
1986   char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
1987 
1988   rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
1989 
1990   free (visited);
1991   return rval;
1992 }
1993 
1994 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it.  */
1995 
1996 static rtx_insn *
1997 process_insert_insn (struct gcse_expr *expr)
1998 {
1999   rtx reg = expr->reaching_reg;
2000   /* Copy the expression to make sure we don't have any sharing issues.  */
2001   rtx exp = copy_rtx (expr->expr);
2002   rtx_insn *pat;
2003 
2004   start_sequence ();
2005 
2006   /* If the expression is something that's an operand, like a constant,
2007      just copy it to a register.  */
2008   if (general_operand (exp, GET_MODE (reg)))
2009     emit_move_insn (reg, exp);
2010 
2011   /* Otherwise, make a new insn to compute this expression and make sure the
2012      insn will be recognized (this also adds any needed CLOBBERs).  */
2013   else
2014     {
2015       rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2016 
2017       if (insn_invalid_p (insn, false))
2018 	gcc_unreachable ();
2019     }
2020 
2021   pat = get_insns ();
2022   end_sequence ();
2023 
2024   return pat;
2025 }
2026 
2027 /* Add EXPR to the end of basic block BB.
2028 
2029    This is used by both the PRE and code hoisting.  */
2030 
2031 static void
2032 insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
2033 {
2034   rtx_insn *insn = BB_END (bb);
2035   rtx_insn *new_insn;
2036   rtx reg = expr->reaching_reg;
2037   int regno = REGNO (reg);
2038   rtx_insn *pat, *pat_end;
2039 
2040   pat = process_insert_insn (expr);
2041   gcc_assert (pat && INSN_P (pat));
2042 
2043   pat_end = pat;
2044   while (NEXT_INSN (pat_end) != NULL_RTX)
2045     pat_end = NEXT_INSN (pat_end);
2046 
2047   /* If the last insn is a jump, insert EXPR in front [taking care to
2048      handle cc0, etc. properly].  Similarly we need to care trapping
2049      instructions in presence of non-call exceptions.  */
2050 
2051   if (JUMP_P (insn)
2052       || (NONJUMP_INSN_P (insn)
2053 	  && (!single_succ_p (bb)
2054 	      || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2055     {
2056 #ifdef HAVE_cc0
2057       /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2058 	 if cc0 isn't set.  */
2059       rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2060       if (note)
2061 	insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2062       else
2063 	{
2064 	  rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2065 	  if (maybe_cc0_setter
2066 	      && INSN_P (maybe_cc0_setter)
2067 	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2068 	    insn = maybe_cc0_setter;
2069 	}
2070 #endif
2071       /* FIXME: What if something in cc0/jump uses value set in new insn?  */
2072       new_insn = emit_insn_before_noloc (pat, insn, bb);
2073     }
2074 
2075   /* Likewise if the last insn is a call, as will happen in the presence
2076      of exception handling.  */
2077   else if (CALL_P (insn)
2078 	   && (!single_succ_p (bb)
2079 	       || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2080     {
2081       /* Keeping in mind targets with small register classes and parameters
2082          in registers, we search backward and place the instructions before
2083 	 the first parameter is loaded.  Do this for everyone for consistency
2084 	 and a presumption that we'll get better code elsewhere as well.  */
2085 
2086       /* Since different machines initialize their parameter registers
2087 	 in different orders, assume nothing.  Collect the set of all
2088 	 parameter registers.  */
2089       insn = find_first_parameter_load (insn, BB_HEAD (bb));
2090 
2091       /* If we found all the parameter loads, then we want to insert
2092 	 before the first parameter load.
2093 
2094 	 If we did not find all the parameter loads, then we might have
2095 	 stopped on the head of the block, which could be a CODE_LABEL.
2096 	 If we inserted before the CODE_LABEL, then we would be putting
2097 	 the insn in the wrong basic block.  In that case, put the insn
2098 	 after the CODE_LABEL.  Also, respect NOTE_INSN_BASIC_BLOCK.  */
2099       while (LABEL_P (insn)
2100 	     || NOTE_INSN_BASIC_BLOCK_P (insn))
2101 	insn = NEXT_INSN (insn);
2102 
2103       new_insn = emit_insn_before_noloc (pat, insn, bb);
2104     }
2105   else
2106     new_insn = emit_insn_after_noloc (pat, insn, bb);
2107 
2108   while (1)
2109     {
2110       if (INSN_P (pat))
2111 	add_label_notes (PATTERN (pat), new_insn);
2112       if (pat == pat_end)
2113 	break;
2114       pat = NEXT_INSN (pat);
2115     }
2116 
2117   gcse_create_count++;
2118 
2119   if (dump_file)
2120     {
2121       fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2122 	       bb->index, INSN_UID (new_insn));
2123       fprintf (dump_file, "copying expression %d to reg %d\n",
2124 	       expr->bitmap_index, regno);
2125     }
2126 }
2127 
2128 /* Insert partially redundant expressions on edges in the CFG to make
2129    the expressions fully redundant.  */
2130 
2131 static int
2132 pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
2133 {
2134   int e, i, j, num_edges, set_size, did_insert = 0;
2135   sbitmap *inserted;
2136 
2137   /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2138      if it reaches any of the deleted expressions.  */
2139 
2140   set_size = pre_insert_map[0]->size;
2141   num_edges = NUM_EDGES (edge_list);
2142   inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2143   bitmap_vector_clear (inserted, num_edges);
2144 
2145   for (e = 0; e < num_edges; e++)
2146     {
2147       int indx;
2148       basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2149 
2150       for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2151 	{
2152 	  SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2153 
2154 	  for (j = indx;
2155 	       insert && j < (int) expr_hash_table.n_elems;
2156 	       j++, insert >>= 1)
2157 	    if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2158 	      {
2159 		struct gcse_expr *expr = index_map[j];
2160 		struct gcse_occr *occr;
2161 
2162 		/* Now look at each deleted occurrence of this expression.  */
2163 		for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2164 		  {
2165 		    if (! occr->deleted_p)
2166 		      continue;
2167 
2168 		    /* Insert this expression on this edge if it would
2169 		       reach the deleted occurrence in BB.  */
2170 		    if (!bitmap_bit_p (inserted[e], j))
2171 		      {
2172 			rtx_insn *insn;
2173 			edge eg = INDEX_EDGE (edge_list, e);
2174 
2175 			/* We can't insert anything on an abnormal and
2176 			   critical edge, so we insert the insn at the end of
2177 			   the previous block. There are several alternatives
2178 			   detailed in Morgans book P277 (sec 10.5) for
2179 			   handling this situation.  This one is easiest for
2180 			   now.  */
2181 
2182 			if (eg->flags & EDGE_ABNORMAL)
2183 			  insert_insn_end_basic_block (index_map[j], bb);
2184 			else
2185 			  {
2186 			    insn = process_insert_insn (index_map[j]);
2187 			    insert_insn_on_edge (insn, eg);
2188 			  }
2189 
2190 			if (dump_file)
2191 			  {
2192 			    fprintf (dump_file, "PRE: edge (%d,%d), ",
2193 				     bb->index,
2194 				     INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2195 			    fprintf (dump_file, "copy expression %d\n",
2196 				     expr->bitmap_index);
2197 			  }
2198 
2199 			update_ld_motion_stores (expr);
2200 			bitmap_set_bit (inserted[e], j);
2201 			did_insert = 1;
2202 			gcse_create_count++;
2203 		      }
2204 		  }
2205 	      }
2206 	}
2207     }
2208 
2209   sbitmap_vector_free (inserted);
2210   return did_insert;
2211 }
2212 
2213 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2214    Given "old_reg <- expr" (INSN), instead of adding after it
2215      reaching_reg <- old_reg
2216    it's better to do the following:
2217      reaching_reg <- expr
2218      old_reg      <- reaching_reg
2219    because this way copy propagation can discover additional PRE
2220    opportunities.  But if this fails, we try the old way.
2221    When "expr" is a store, i.e.
2222    given "MEM <- old_reg", instead of adding after it
2223      reaching_reg <- old_reg
2224    it's better to add it before as follows:
2225      reaching_reg <- old_reg
2226      MEM          <- reaching_reg.  */
2227 
2228 static void
2229 pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
2230 {
2231   rtx reg = expr->reaching_reg;
2232   int regno = REGNO (reg);
2233   int indx = expr->bitmap_index;
2234   rtx pat = PATTERN (insn);
2235   rtx set, first_set, new_insn;
2236   rtx old_reg;
2237   int i;
2238 
2239   /* This block matches the logic in hash_scan_insn.  */
2240   switch (GET_CODE (pat))
2241     {
2242     case SET:
2243       set = pat;
2244       break;
2245 
2246     case PARALLEL:
2247       /* Search through the parallel looking for the set whose
2248 	 source was the expression that we're interested in.  */
2249       first_set = NULL_RTX;
2250       set = NULL_RTX;
2251       for (i = 0; i < XVECLEN (pat, 0); i++)
2252 	{
2253 	  rtx x = XVECEXP (pat, 0, i);
2254 	  if (GET_CODE (x) == SET)
2255 	    {
2256 	      /* If the source was a REG_EQUAL or REG_EQUIV note, we
2257 		 may not find an equivalent expression, but in this
2258 		 case the PARALLEL will have a single set.  */
2259 	      if (first_set == NULL_RTX)
2260 		first_set = x;
2261 	      if (expr_equiv_p (SET_SRC (x), expr->expr))
2262 	        {
2263 	          set = x;
2264 	          break;
2265 	        }
2266 	    }
2267 	}
2268 
2269       gcc_assert (first_set);
2270       if (set == NULL_RTX)
2271         set = first_set;
2272       break;
2273 
2274     default:
2275       gcc_unreachable ();
2276     }
2277 
2278   if (REG_P (SET_DEST (set)))
2279     {
2280       old_reg = SET_DEST (set);
2281       /* Check if we can modify the set destination in the original insn.  */
2282       if (validate_change (insn, &SET_DEST (set), reg, 0))
2283         {
2284           new_insn = gen_move_insn (old_reg, reg);
2285           new_insn = emit_insn_after (new_insn, insn);
2286         }
2287       else
2288         {
2289           new_insn = gen_move_insn (reg, old_reg);
2290           new_insn = emit_insn_after (new_insn, insn);
2291         }
2292     }
2293   else /* This is possible only in case of a store to memory.  */
2294     {
2295       old_reg = SET_SRC (set);
2296       new_insn = gen_move_insn (reg, old_reg);
2297 
2298       /* Check if we can modify the set source in the original insn.  */
2299       if (validate_change (insn, &SET_SRC (set), reg, 0))
2300         new_insn = emit_insn_before (new_insn, insn);
2301       else
2302         new_insn = emit_insn_after (new_insn, insn);
2303     }
2304 
2305   gcse_create_count++;
2306 
2307   if (dump_file)
2308     fprintf (dump_file,
2309 	     "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2310 	      BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2311 	      INSN_UID (insn), regno);
2312 }
2313 
2314 /* Copy available expressions that reach the redundant expression
2315    to `reaching_reg'.  */
2316 
2317 static void
2318 pre_insert_copies (void)
2319 {
2320   unsigned int i, added_copy;
2321   struct gcse_expr *expr;
2322   struct gcse_occr *occr;
2323   struct gcse_occr *avail;
2324 
2325   /* For each available expression in the table, copy the result to
2326      `reaching_reg' if the expression reaches a deleted one.
2327 
2328      ??? The current algorithm is rather brute force.
2329      Need to do some profiling.  */
2330 
2331   for (i = 0; i < expr_hash_table.size; i++)
2332     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2333       {
2334 	/* If the basic block isn't reachable, PPOUT will be TRUE.  However,
2335 	   we don't want to insert a copy here because the expression may not
2336 	   really be redundant.  So only insert an insn if the expression was
2337 	   deleted.  This test also avoids further processing if the
2338 	   expression wasn't deleted anywhere.  */
2339 	if (expr->reaching_reg == NULL)
2340 	  continue;
2341 
2342 	/* Set when we add a copy for that expression.  */
2343 	added_copy = 0;
2344 
2345 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2346 	  {
2347 	    if (! occr->deleted_p)
2348 	      continue;
2349 
2350 	    for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2351 	      {
2352 		rtx_insn *insn = avail->insn;
2353 
2354 		/* No need to handle this one if handled already.  */
2355 		if (avail->copied_p)
2356 		  continue;
2357 
2358 		/* Don't handle this one if it's a redundant one.  */
2359 		if (insn->deleted ())
2360 		  continue;
2361 
2362 		/* Or if the expression doesn't reach the deleted one.  */
2363 		if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2364 					       expr,
2365 					       BLOCK_FOR_INSN (occr->insn)))
2366 		  continue;
2367 
2368                 added_copy = 1;
2369 
2370 		/* Copy the result of avail to reaching_reg.  */
2371 		pre_insert_copy_insn (expr, insn);
2372 		avail->copied_p = 1;
2373 	      }
2374 	  }
2375 
2376 	  if (added_copy)
2377             update_ld_motion_stores (expr);
2378       }
2379 }
2380 
2381 struct set_data
2382 {
2383   rtx_insn *insn;
2384   const_rtx set;
2385   int nsets;
2386 };
2387 
2388 /* Increment number of sets and record set in DATA.  */
2389 
2390 static void
2391 record_set_data (rtx dest, const_rtx set, void *data)
2392 {
2393   struct set_data *s = (struct set_data *)data;
2394 
2395   if (GET_CODE (set) == SET)
2396     {
2397       /* We allow insns having multiple sets, where all but one are
2398 	 dead as single set insns.  In the common case only a single
2399 	 set is present, so we want to avoid checking for REG_UNUSED
2400 	 notes unless necessary.  */
2401       if (s->nsets == 1
2402 	  && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2403 	  && !side_effects_p (s->set))
2404 	s->nsets = 0;
2405 
2406       if (!s->nsets)
2407 	{
2408 	  /* Record this set.  */
2409 	  s->nsets += 1;
2410 	  s->set = set;
2411 	}
2412       else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2413 	       || side_effects_p (set))
2414 	s->nsets += 1;
2415     }
2416 }
2417 
2418 static const_rtx
2419 single_set_gcse (rtx_insn *insn)
2420 {
2421   struct set_data s;
2422   rtx pattern;
2423 
2424   gcc_assert (INSN_P (insn));
2425 
2426   /* Optimize common case.  */
2427   pattern = PATTERN (insn);
2428   if (GET_CODE (pattern) == SET)
2429     return pattern;
2430 
2431   s.insn = insn;
2432   s.nsets = 0;
2433   note_stores (pattern, record_set_data, &s);
2434 
2435   /* Considered invariant insns have exactly one set.  */
2436   gcc_assert (s.nsets == 1);
2437   return s.set;
2438 }
2439 
2440 /* Emit move from SRC to DEST noting the equivalence with expression computed
2441    in INSN.  */
2442 
2443 static rtx
2444 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2445 {
2446   rtx_insn *new_rtx;
2447   const_rtx set = single_set_gcse (insn);
2448   rtx set2;
2449   rtx note;
2450   rtx eqv = NULL_RTX;
2451 
2452   /* This should never fail since we're creating a reg->reg copy
2453      we've verified to be valid.  */
2454 
2455   new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2456 
2457   /* Note the equivalence for local CSE pass.  Take the note from the old
2458      set if there was one.  Otherwise record the SET_SRC from the old set
2459      unless DEST is also an operand of the SET_SRC.  */
2460   set2 = single_set (new_rtx);
2461   if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2462     return new_rtx;
2463   if ((note = find_reg_equal_equiv_note (insn)))
2464     eqv = XEXP (note, 0);
2465   else if (! REG_P (dest)
2466 	   || ! reg_mentioned_p (dest, SET_SRC (set)))
2467     eqv = SET_SRC (set);
2468 
2469   if (eqv != NULL_RTX)
2470     set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2471 
2472   return new_rtx;
2473 }
2474 
2475 /* Delete redundant computations.
2476    Deletion is done by changing the insn to copy the `reaching_reg' of
2477    the expression into the result of the SET.  It is left to later passes
2478    to propagate the copy or eliminate it.
2479 
2480    Return nonzero if a change is made.  */
2481 
2482 static int
2483 pre_delete (void)
2484 {
2485   unsigned int i;
2486   int changed;
2487   struct gcse_expr *expr;
2488   struct gcse_occr *occr;
2489 
2490   changed = 0;
2491   for (i = 0; i < expr_hash_table.size; i++)
2492     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2493       {
2494 	int indx = expr->bitmap_index;
2495 
2496 	/* We only need to search antic_occr since we require ANTLOC != 0.  */
2497 	for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2498 	  {
2499 	    rtx_insn *insn = occr->insn;
2500 	    rtx set;
2501 	    basic_block bb = BLOCK_FOR_INSN (insn);
2502 
2503 	    /* We only delete insns that have a single_set.  */
2504 	    if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2505 		&& (set = single_set (insn)) != 0
2506                 && dbg_cnt (pre_insn))
2507 	      {
2508 		/* Create a pseudo-reg to store the result of reaching
2509 		   expressions into.  Get the mode for the new pseudo from
2510 		   the mode of the original destination pseudo.  */
2511 		if (expr->reaching_reg == NULL)
2512 		  expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2513 
2514 		gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2515 		delete_insn (insn);
2516 		occr->deleted_p = 1;
2517 		changed = 1;
2518 		gcse_subst_count++;
2519 
2520 		if (dump_file)
2521 		  {
2522 		    fprintf (dump_file,
2523 			     "PRE: redundant insn %d (expression %d) in ",
2524 			       INSN_UID (insn), indx);
2525 		    fprintf (dump_file, "bb %d, reaching reg is %d\n",
2526 			     bb->index, REGNO (expr->reaching_reg));
2527 		  }
2528 	      }
2529 	  }
2530       }
2531 
2532   return changed;
2533 }
2534 
2535 /* Perform GCSE optimizations using PRE.
2536    This is called by one_pre_gcse_pass after all the dataflow analysis
2537    has been done.
2538 
2539    This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2540    lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2541    Compiler Design and Implementation.
2542 
2543    ??? A new pseudo reg is created to hold the reaching expression.  The nice
2544    thing about the classical approach is that it would try to use an existing
2545    reg.  If the register can't be adequately optimized [i.e. we introduce
2546    reload problems], one could add a pass here to propagate the new register
2547    through the block.
2548 
2549    ??? We don't handle single sets in PARALLELs because we're [currently] not
2550    able to copy the rest of the parallel when we insert copies to create full
2551    redundancies from partial redundancies.  However, there's no reason why we
2552    can't handle PARALLELs in the cases where there are no partial
2553    redundancies.  */
2554 
2555 static int
2556 pre_gcse (struct edge_list *edge_list)
2557 {
2558   unsigned int i;
2559   int did_insert, changed;
2560   struct gcse_expr **index_map;
2561   struct gcse_expr *expr;
2562 
2563   /* Compute a mapping from expression number (`bitmap_index') to
2564      hash table entry.  */
2565 
2566   index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
2567   for (i = 0; i < expr_hash_table.size; i++)
2568     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2569       index_map[expr->bitmap_index] = expr;
2570 
2571   /* Delete the redundant insns first so that
2572      - we know what register to use for the new insns and for the other
2573        ones with reaching expressions
2574      - we know which insns are redundant when we go to create copies  */
2575 
2576   changed = pre_delete ();
2577   did_insert = pre_edge_insert (edge_list, index_map);
2578 
2579   /* In other places with reaching expressions, copy the expression to the
2580      specially allocated pseudo-reg that reaches the redundant expr.  */
2581   pre_insert_copies ();
2582   if (did_insert)
2583     {
2584       commit_edge_insertions ();
2585       changed = 1;
2586     }
2587 
2588   free (index_map);
2589   return changed;
2590 }
2591 
2592 /* Top level routine to perform one PRE GCSE pass.
2593 
2594    Return nonzero if a change was made.  */
2595 
2596 static int
2597 one_pre_gcse_pass (void)
2598 {
2599   int changed = 0;
2600 
2601   gcse_subst_count = 0;
2602   gcse_create_count = 0;
2603 
2604   /* Return if there's nothing to do, or it is too expensive.  */
2605   if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2606       || is_too_expensive (_("PRE disabled")))
2607     return 0;
2608 
2609   /* We need alias.  */
2610   init_alias_analysis ();
2611 
2612   bytes_used = 0;
2613   gcc_obstack_init (&gcse_obstack);
2614   alloc_gcse_mem ();
2615 
2616   alloc_hash_table (&expr_hash_table);
2617   add_noreturn_fake_exit_edges ();
2618   if (flag_gcse_lm)
2619     compute_ld_motion_mems ();
2620 
2621   compute_hash_table (&expr_hash_table);
2622   if (flag_gcse_lm)
2623     trim_ld_motion_mems ();
2624   if (dump_file)
2625     dump_hash_table (dump_file, "Expression", &expr_hash_table);
2626 
2627   if (expr_hash_table.n_elems > 0)
2628     {
2629       struct edge_list *edge_list;
2630       alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2631       edge_list = compute_pre_data ();
2632       changed |= pre_gcse (edge_list);
2633       free_edge_list (edge_list);
2634       free_pre_mem ();
2635     }
2636 
2637   if (flag_gcse_lm)
2638     free_ld_motion_mems ();
2639   remove_fake_exit_edges ();
2640   free_hash_table (&expr_hash_table);
2641 
2642   free_gcse_mem ();
2643   obstack_free (&gcse_obstack, NULL);
2644 
2645   /* We are finished with alias.  */
2646   end_alias_analysis ();
2647 
2648   if (dump_file)
2649     {
2650       fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2651 	       current_function_name (), n_basic_blocks_for_fn (cfun),
2652 	       bytes_used);
2653       fprintf (dump_file, "%d substs, %d insns created\n",
2654 	       gcse_subst_count, gcse_create_count);
2655     }
2656 
2657   return changed;
2658 }
2659 
2660 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2661    to INSN.  If such notes are added to an insn which references a
2662    CODE_LABEL, the LABEL_NUSES count is incremented.  We have to add
2663    that note, because the following loop optimization pass requires
2664    them.  */
2665 
2666 /* ??? If there was a jump optimization pass after gcse and before loop,
2667    then we would not need to do this here, because jump would add the
2668    necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes.  */
2669 
2670 static void
2671 add_label_notes (rtx x, rtx insn)
2672 {
2673   enum rtx_code code = GET_CODE (x);
2674   int i, j;
2675   const char *fmt;
2676 
2677   if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2678     {
2679       /* This code used to ignore labels that referred to dispatch tables to
2680 	 avoid flow generating (slightly) worse code.
2681 
2682 	 We no longer ignore such label references (see LABEL_REF handling in
2683 	 mark_jump_label for additional information).  */
2684 
2685       /* There's no reason for current users to emit jump-insns with
2686 	 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2687 	 notes.  */
2688       gcc_assert (!JUMP_P (insn));
2689       add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
2690 
2691       if (LABEL_P (LABEL_REF_LABEL (x)))
2692 	LABEL_NUSES (LABEL_REF_LABEL (x))++;
2693 
2694       return;
2695     }
2696 
2697   for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2698     {
2699       if (fmt[i] == 'e')
2700 	add_label_notes (XEXP (x, i), insn);
2701       else if (fmt[i] == 'E')
2702 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2703 	  add_label_notes (XVECEXP (x, i, j), insn);
2704     }
2705 }
2706 
2707 /* Code Hoisting variables and subroutines.  */
2708 
2709 /* Very busy expressions.  */
2710 static sbitmap *hoist_vbein;
2711 static sbitmap *hoist_vbeout;
2712 
2713 /* ??? We could compute post dominators and run this algorithm in
2714    reverse to perform tail merging, doing so would probably be
2715    more effective than the tail merging code in jump.c.
2716 
2717    It's unclear if tail merging could be run in parallel with
2718    code hoisting.  It would be nice.  */
2719 
2720 /* Allocate vars used for code hoisting analysis.  */
2721 
2722 static void
2723 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2724 {
2725   antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2726   transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2727   comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2728 
2729   hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2730   hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2731 }
2732 
2733 /* Free vars used for code hoisting analysis.  */
2734 
2735 static void
2736 free_code_hoist_mem (void)
2737 {
2738   sbitmap_vector_free (antloc);
2739   sbitmap_vector_free (transp);
2740   sbitmap_vector_free (comp);
2741 
2742   sbitmap_vector_free (hoist_vbein);
2743   sbitmap_vector_free (hoist_vbeout);
2744 
2745   free_dominance_info (CDI_DOMINATORS);
2746 }
2747 
2748 /* Compute the very busy expressions at entry/exit from each block.
2749 
2750    An expression is very busy if all paths from a given point
2751    compute the expression.  */
2752 
2753 static void
2754 compute_code_hoist_vbeinout (void)
2755 {
2756   int changed, passes;
2757   basic_block bb;
2758 
2759   bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2760   bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2761 
2762   passes = 0;
2763   changed = 1;
2764 
2765   while (changed)
2766     {
2767       changed = 0;
2768 
2769       /* We scan the blocks in the reverse order to speed up
2770 	 the convergence.  */
2771       FOR_EACH_BB_REVERSE_FN (bb, cfun)
2772 	{
2773 	  if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2774 	    {
2775 	      bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2776 					    hoist_vbein, bb);
2777 
2778 	      /* Include expressions in VBEout that are calculated
2779 		 in BB and available at its end.  */
2780 	      bitmap_ior (hoist_vbeout[bb->index],
2781 			      hoist_vbeout[bb->index], comp[bb->index]);
2782 	    }
2783 
2784 	  changed |= bitmap_or_and (hoist_vbein[bb->index],
2785 					      antloc[bb->index],
2786 					      hoist_vbeout[bb->index],
2787 					      transp[bb->index]);
2788 	}
2789 
2790       passes++;
2791     }
2792 
2793   if (dump_file)
2794     {
2795       fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2796 
2797       FOR_EACH_BB_FN (bb, cfun)
2798         {
2799 	  fprintf (dump_file, "vbein (%d): ", bb->index);
2800 	  dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2801 	  fprintf (dump_file, "vbeout(%d): ", bb->index);
2802 	  dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2803 	}
2804     }
2805 }
2806 
2807 /* Top level routine to do the dataflow analysis needed by code hoisting.  */
2808 
2809 static void
2810 compute_code_hoist_data (void)
2811 {
2812   compute_local_properties (transp, comp, antloc, &expr_hash_table);
2813   prune_expressions (false);
2814   compute_code_hoist_vbeinout ();
2815   calculate_dominance_info (CDI_DOMINATORS);
2816   if (dump_file)
2817     fprintf (dump_file, "\n");
2818 }
2819 
2820 /* Update register pressure for BB when hoisting an expression from
2821    instruction FROM, if live ranges of inputs are shrunk.  Also
2822    maintain live_in information if live range of register referred
2823    in FROM is shrunk.
2824 
2825    Return 0 if register pressure doesn't change, otherwise return
2826    the number by which register pressure is decreased.
2827 
2828    NOTE: Register pressure won't be increased in this function.  */
2829 
2830 static int
2831 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2832 {
2833   rtx dreg;
2834   rtx_insn *insn;
2835   basic_block succ_bb;
2836   df_ref use, op_ref;
2837   edge succ;
2838   edge_iterator ei;
2839   int decreased_pressure = 0;
2840   int nregs;
2841   enum reg_class pressure_class;
2842 
2843   FOR_EACH_INSN_USE (use, from)
2844     {
2845       dreg = DF_REF_REAL_REG (use);
2846       /* The live range of register is shrunk only if it isn't:
2847 	 1. referred on any path from the end of this block to EXIT, or
2848 	 2. referred by insns other than FROM in this block.  */
2849       FOR_EACH_EDGE (succ, ei, bb->succs)
2850 	{
2851 	  succ_bb = succ->dest;
2852 	  if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2853 	    continue;
2854 
2855 	  if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2856 	    break;
2857 	}
2858       if (succ != NULL)
2859 	continue;
2860 
2861       op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2862       for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2863 	{
2864 	  if (!DF_REF_INSN_INFO (op_ref))
2865 	    continue;
2866 
2867 	  insn = DF_REF_INSN (op_ref);
2868 	  if (BLOCK_FOR_INSN (insn) == bb
2869 	      && NONDEBUG_INSN_P (insn) && insn != from)
2870 	    break;
2871 	}
2872 
2873       pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2874       /* Decrease register pressure and update live_in information for
2875 	 this block.  */
2876       if (!op_ref && pressure_class != NO_REGS)
2877 	{
2878 	  decreased_pressure += nregs;
2879 	  BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2880 	  bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2881 	}
2882     }
2883   return decreased_pressure;
2884 }
2885 
2886 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2887    flow graph, if it can reach BB unimpared.  Stop the search if the
2888    expression would need to be moved more than DISTANCE instructions.
2889 
2890    DISTANCE is the number of instructions through which EXPR can be
2891    hoisted up in flow graph.
2892 
2893    BB_SIZE points to an array which contains the number of instructions
2894    for each basic block.
2895 
2896    PRESSURE_CLASS and NREGS are register class and number of hard registers
2897    for storing EXPR.
2898 
2899    HOISTED_BBS points to a bitmap indicating basic blocks through which
2900    EXPR is hoisted.
2901 
2902    FROM is the instruction from which EXPR is hoisted.
2903 
2904    It's unclear exactly what Muchnick meant by "unimpared".  It seems
2905    to me that the expression must either be computed or transparent in
2906    *every* block in the path(s) from EXPR_BB to BB.  Any other definition
2907    would allow the expression to be hoisted out of loops, even if
2908    the expression wasn't a loop invariant.
2909 
2910    Contrast this to reachability for PRE where an expression is
2911    considered reachable if *any* path reaches instead of *all*
2912    paths.  */
2913 
2914 static int
2915 should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
2916 			  basic_block bb, sbitmap visited,
2917 			  HOST_WIDE_INT distance,
2918 			  int *bb_size, enum reg_class pressure_class,
2919 			  int *nregs, bitmap hoisted_bbs, rtx_insn *from)
2920 {
2921   unsigned int i;
2922   edge pred;
2923   edge_iterator ei;
2924   sbitmap_iterator sbi;
2925   int visited_allocated_locally = 0;
2926   int decreased_pressure = 0;
2927 
2928   if (flag_ira_hoist_pressure)
2929     {
2930       /* Record old information of basic block BB when it is visited
2931 	 at the first time.  */
2932       if (!bitmap_bit_p (hoisted_bbs, bb->index))
2933 	{
2934 	  struct bb_data *data = BB_DATA (bb);
2935 	  bitmap_copy (data->backup, data->live_in);
2936 	  data->old_pressure = data->max_reg_pressure[pressure_class];
2937 	}
2938       decreased_pressure = update_bb_reg_pressure (bb, from);
2939     }
2940   /* Terminate the search if distance, for which EXPR is allowed to move,
2941      is exhausted.  */
2942   if (distance > 0)
2943     {
2944       if (flag_ira_hoist_pressure)
2945 	{
2946 	  /* Prefer to hoist EXPR if register pressure is decreased.  */
2947 	  if (decreased_pressure > *nregs)
2948 	    distance += bb_size[bb->index];
2949 	  /* Let EXPR be hoisted through basic block at no cost if one
2950 	     of following conditions is satisfied:
2951 
2952 	     1. The basic block has low register pressure.
2953 	     2. Register pressure won't be increases after hoisting EXPR.
2954 
2955 	     Constant expressions is handled conservatively, because
2956 	     hoisting constant expression aggressively results in worse
2957 	     code.  This decision is made by the observation of CSiBE
2958 	     on ARM target, while it has no obvious effect on other
2959 	     targets like x86, x86_64, mips and powerpc.  */
2960 	  else if (CONST_INT_P (expr->expr)
2961 		   || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2962 			 >= ira_class_hard_regs_num[pressure_class]
2963 		       && decreased_pressure < *nregs))
2964 	    distance -= bb_size[bb->index];
2965 	}
2966       else
2967 	distance -= bb_size[bb->index];
2968 
2969       if (distance <= 0)
2970 	return 0;
2971     }
2972   else
2973     gcc_assert (distance == 0);
2974 
2975   if (visited == NULL)
2976     {
2977       visited_allocated_locally = 1;
2978       visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
2979       bitmap_clear (visited);
2980     }
2981 
2982   FOR_EACH_EDGE (pred, ei, bb->preds)
2983     {
2984       basic_block pred_bb = pred->src;
2985 
2986       if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2987 	break;
2988       else if (pred_bb == expr_bb)
2989 	continue;
2990       else if (bitmap_bit_p (visited, pred_bb->index))
2991 	continue;
2992       else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2993 	break;
2994       /* Not killed.  */
2995       else
2996 	{
2997 	  bitmap_set_bit (visited, pred_bb->index);
2998 	  if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2999 					  visited, distance, bb_size,
3000 					  pressure_class, nregs,
3001 					  hoisted_bbs, from))
3002 	    break;
3003 	}
3004     }
3005   if (visited_allocated_locally)
3006     {
3007       /* If EXPR can be hoisted to expr_bb, record basic blocks through
3008 	 which EXPR is hoisted in hoisted_bbs.  */
3009       if (flag_ira_hoist_pressure && !pred)
3010 	{
3011 	  /* Record the basic block from which EXPR is hoisted.  */
3012 	  bitmap_set_bit (visited, bb->index);
3013 	  EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3014 	    bitmap_set_bit (hoisted_bbs, i);
3015 	}
3016       sbitmap_free (visited);
3017     }
3018 
3019   return (pred == NULL);
3020 }
3021 
3022 /* Find occurrence in BB.  */
3023 
3024 static struct gcse_occr *
3025 find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
3026 {
3027   /* Find the right occurrence of this expression.  */
3028   while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3029     occr = occr->next;
3030 
3031   return occr;
3032 }
3033 
3034 /* Actually perform code hoisting.
3035 
3036    The code hoisting pass can hoist multiple computations of the same
3037    expression along dominated path to a dominating basic block, like
3038    from b2/b3 to b1 as depicted below:
3039 
3040           b1      ------
3041           /\         |
3042          /  \        |
3043         bx   by   distance
3044        /      \      |
3045       /        \     |
3046      b2        b3 ------
3047 
3048    Unfortunately code hoisting generally extends the live range of an
3049    output pseudo register, which increases register pressure and hurts
3050    register allocation.  To address this issue, an attribute MAX_DISTANCE
3051    is computed and attached to each expression.  The attribute is computed
3052    from rtx cost of the corresponding expression and it's used to control
3053    how long the expression can be hoisted up in flow graph.  As the
3054    expression is hoisted up in flow graph, GCC decreases its DISTANCE
3055    and stops the hoist if DISTANCE reaches 0.  Code hoisting can decrease
3056    register pressure if live ranges of inputs are shrunk.
3057 
3058    Option "-fira-hoist-pressure" implements register pressure directed
3059    hoist based on upper method.  The rationale is:
3060      1. Calculate register pressure for each basic block by reusing IRA
3061 	facility.
3062      2. When expression is hoisted through one basic block, GCC checks
3063 	the change of live ranges for inputs/output.  The basic block's
3064 	register pressure will be increased because of extended live
3065 	range of output.  However, register pressure will be decreased
3066 	if the live ranges of inputs are shrunk.
3067      3. After knowing how hoisting affects register pressure, GCC prefers
3068 	to hoist the expression if it can decrease register pressure, by
3069 	increasing DISTANCE of the corresponding expression.
3070      4. If hoisting the expression increases register pressure, GCC checks
3071 	register pressure of the basic block and decrease DISTANCE only if
3072 	the register pressure is high.  In other words, expression will be
3073 	hoisted through at no cost if the basic block has low register
3074 	pressure.
3075      5. Update register pressure information for basic blocks through
3076 	which expression is hoisted.  */
3077 
3078 static int
3079 hoist_code (void)
3080 {
3081   basic_block bb, dominated;
3082   vec<basic_block> dom_tree_walk;
3083   unsigned int dom_tree_walk_index;
3084   vec<basic_block> domby;
3085   unsigned int i, j, k;
3086   struct gcse_expr **index_map;
3087   struct gcse_expr *expr;
3088   int *to_bb_head;
3089   int *bb_size;
3090   int changed = 0;
3091   struct bb_data *data;
3092   /* Basic blocks that have occurrences reachable from BB.  */
3093   bitmap from_bbs;
3094   /* Basic blocks through which expr is hoisted.  */
3095   bitmap hoisted_bbs = NULL;
3096   bitmap_iterator bi;
3097 
3098   /* Compute a mapping from expression number (`bitmap_index') to
3099      hash table entry.  */
3100 
3101   index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
3102   for (i = 0; i < expr_hash_table.size; i++)
3103     for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3104       index_map[expr->bitmap_index] = expr;
3105 
3106   /* Calculate sizes of basic blocks and note how far
3107      each instruction is from the start of its block.  We then use this
3108      data to restrict distance an expression can travel.  */
3109 
3110   to_bb_head = XCNEWVEC (int, get_max_uid ());
3111   bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3112 
3113   FOR_EACH_BB_FN (bb, cfun)
3114     {
3115       rtx_insn *insn;
3116       int to_head;
3117 
3118       to_head = 0;
3119       FOR_BB_INSNS (bb, insn)
3120 	{
3121 	  /* Don't count debug instructions to avoid them affecting
3122 	     decision choices.  */
3123 	  if (NONDEBUG_INSN_P (insn))
3124 	    to_bb_head[INSN_UID (insn)] = to_head++;
3125 	}
3126 
3127       bb_size[bb->index] = to_head;
3128     }
3129 
3130   gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3131 	      && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3132 		  == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3133 
3134   from_bbs = BITMAP_ALLOC (NULL);
3135   if (flag_ira_hoist_pressure)
3136     hoisted_bbs = BITMAP_ALLOC (NULL);
3137 
3138   dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3139 					    ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3140 
3141   /* Walk over each basic block looking for potentially hoistable
3142      expressions, nothing gets hoisted from the entry block.  */
3143   FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3144     {
3145       domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3146 
3147       if (domby.length () == 0)
3148 	continue;
3149 
3150       /* Examine each expression that is very busy at the exit of this
3151 	 block.  These are the potentially hoistable expressions.  */
3152       for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3153 	{
3154 	  if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3155 	    {
3156 	      int nregs = 0;
3157 	      enum reg_class pressure_class = NO_REGS;
3158 	      /* Current expression.  */
3159 	      struct gcse_expr *expr = index_map[i];
3160 	      /* Number of occurrences of EXPR that can be hoisted to BB.  */
3161 	      int hoistable = 0;
3162 	      /* Occurrences reachable from BB.  */
3163 	      vec<occr_t> occrs_to_hoist = vNULL;
3164 	      /* We want to insert the expression into BB only once, so
3165 		 note when we've inserted it.  */
3166 	      int insn_inserted_p;
3167 	      occr_t occr;
3168 
3169 	      /* If an expression is computed in BB and is available at end of
3170 		 BB, hoist all occurrences dominated by BB to BB.  */
3171 	      if (bitmap_bit_p (comp[bb->index], i))
3172 		{
3173 		  occr = find_occr_in_bb (expr->antic_occr, bb);
3174 
3175 		  if (occr)
3176 		    {
3177 		      /* An occurrence might've been already deleted
3178 			 while processing a dominator of BB.  */
3179 		      if (!occr->deleted_p)
3180 			{
3181 			  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3182 			  hoistable++;
3183 			}
3184 		    }
3185 		  else
3186 		    hoistable++;
3187 		}
3188 
3189 	      /* We've found a potentially hoistable expression, now
3190 		 we look at every block BB dominates to see if it
3191 		 computes the expression.  */
3192 	      FOR_EACH_VEC_ELT (domby, j, dominated)
3193 		{
3194 		  HOST_WIDE_INT max_distance;
3195 
3196 		  /* Ignore self dominance.  */
3197 		  if (bb == dominated)
3198 		    continue;
3199 		  /* We've found a dominated block, now see if it computes
3200 		     the busy expression and whether or not moving that
3201 		     expression to the "beginning" of that block is safe.  */
3202 		  if (!bitmap_bit_p (antloc[dominated->index], i))
3203 		    continue;
3204 
3205 		  occr = find_occr_in_bb (expr->antic_occr, dominated);
3206 		  gcc_assert (occr);
3207 
3208 		  /* An occurrence might've been already deleted
3209 		     while processing a dominator of BB.  */
3210 		  if (occr->deleted_p)
3211 		    continue;
3212 		  gcc_assert (NONDEBUG_INSN_P (occr->insn));
3213 
3214 		  max_distance = expr->max_distance;
3215 		  if (max_distance > 0)
3216 		    /* Adjust MAX_DISTANCE to account for the fact that
3217 		       OCCR won't have to travel all of DOMINATED, but
3218 		       only part of it.  */
3219 		    max_distance += (bb_size[dominated->index]
3220 				     - to_bb_head[INSN_UID (occr->insn)]);
3221 
3222 		  pressure_class = get_pressure_class_and_nregs (occr->insn,
3223 								 &nregs);
3224 
3225 		  /* Note if the expression should be hoisted from the dominated
3226 		     block to BB if it can reach DOMINATED unimpared.
3227 
3228 		     Keep track of how many times this expression is hoistable
3229 		     from a dominated block into BB.  */
3230 		  if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3231 						max_distance, bb_size,
3232 						pressure_class,	&nregs,
3233 						hoisted_bbs, occr->insn))
3234 		    {
3235 		      hoistable++;
3236 		      occrs_to_hoist.safe_push (occr);
3237 		      bitmap_set_bit (from_bbs, dominated->index);
3238 		    }
3239 		}
3240 
3241 	      /* If we found more than one hoistable occurrence of this
3242 		 expression, then note it in the vector of expressions to
3243 		 hoist.  It makes no sense to hoist things which are computed
3244 		 in only one BB, and doing so tends to pessimize register
3245 		 allocation.  One could increase this value to try harder
3246 		 to avoid any possible code expansion due to register
3247 		 allocation issues; however experiments have shown that
3248 		 the vast majority of hoistable expressions are only movable
3249 		 from two successors, so raising this threshold is likely
3250 		 to nullify any benefit we get from code hoisting.  */
3251 	      if (hoistable > 1 && dbg_cnt (hoist_insn))
3252 		{
3253 		  /* If (hoistable != vec::length), then there is
3254 		     an occurrence of EXPR in BB itself.  Don't waste
3255 		     time looking for LCA in this case.  */
3256 		  if ((unsigned) hoistable == occrs_to_hoist.length ())
3257 		    {
3258 		      basic_block lca;
3259 
3260 		      lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3261 							      from_bbs);
3262 		      if (lca != bb)
3263 			/* Punt, it's better to hoist these occurrences to
3264 			   LCA.  */
3265 			occrs_to_hoist.release ();
3266 		    }
3267 		}
3268 	      else
3269 		/* Punt, no point hoisting a single occurrence.  */
3270 		occrs_to_hoist.release ();
3271 
3272 	      if (flag_ira_hoist_pressure
3273 		  && !occrs_to_hoist.is_empty ())
3274 		{
3275 		  /* Increase register pressure of basic blocks to which
3276 		     expr is hoisted because of extended live range of
3277 		     output.  */
3278 		  data = BB_DATA (bb);
3279 		  data->max_reg_pressure[pressure_class] += nregs;
3280 		  EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3281 		    {
3282 		      data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3283 		      data->max_reg_pressure[pressure_class] += nregs;
3284 		    }
3285 		}
3286 	      else if (flag_ira_hoist_pressure)
3287 		{
3288 		  /* Restore register pressure and live_in info for basic
3289 		     blocks recorded in hoisted_bbs when expr will not be
3290 		     hoisted.  */
3291 		  EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3292 		    {
3293 		      data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3294 		      bitmap_copy (data->live_in, data->backup);
3295 		      data->max_reg_pressure[pressure_class]
3296 			  = data->old_pressure;
3297 		    }
3298 		}
3299 
3300 	      if (flag_ira_hoist_pressure)
3301 		bitmap_clear (hoisted_bbs);
3302 
3303 	      insn_inserted_p = 0;
3304 
3305 	      /* Walk through occurrences of I'th expressions we want
3306 		 to hoist to BB and make the transformations.  */
3307 	      FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3308 		{
3309 		  rtx_insn *insn;
3310 		  const_rtx set;
3311 
3312 		  gcc_assert (!occr->deleted_p);
3313 
3314 		  insn = occr->insn;
3315 		  set = single_set_gcse (insn);
3316 
3317 		  /* Create a pseudo-reg to store the result of reaching
3318 		     expressions into.  Get the mode for the new pseudo
3319 		     from the mode of the original destination pseudo.
3320 
3321 		     It is important to use new pseudos whenever we
3322 		     emit a set.  This will allow reload to use
3323 		     rematerialization for such registers.  */
3324 		  if (!insn_inserted_p)
3325 		    expr->reaching_reg
3326 		      = gen_reg_rtx_and_attrs (SET_DEST (set));
3327 
3328 		  gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3329 					insn);
3330 		  delete_insn (insn);
3331 		  occr->deleted_p = 1;
3332 		  changed = 1;
3333 		  gcse_subst_count++;
3334 
3335 		  if (!insn_inserted_p)
3336 		    {
3337 		      insert_insn_end_basic_block (expr, bb);
3338 		      insn_inserted_p = 1;
3339 		    }
3340 		}
3341 
3342 	      occrs_to_hoist.release ();
3343 	      bitmap_clear (from_bbs);
3344 	    }
3345 	}
3346       domby.release ();
3347     }
3348 
3349   dom_tree_walk.release ();
3350   BITMAP_FREE (from_bbs);
3351   if (flag_ira_hoist_pressure)
3352     BITMAP_FREE (hoisted_bbs);
3353 
3354   free (bb_size);
3355   free (to_bb_head);
3356   free (index_map);
3357 
3358   return changed;
3359 }
3360 
3361 /* Return pressure class and number of needed hard registers (through
3362    *NREGS) of register REGNO.  */
3363 static enum reg_class
3364 get_regno_pressure_class (int regno, int *nregs)
3365 {
3366   if (regno >= FIRST_PSEUDO_REGISTER)
3367     {
3368       enum reg_class pressure_class;
3369 
3370       pressure_class = reg_allocno_class (regno);
3371       pressure_class = ira_pressure_class_translate[pressure_class];
3372       *nregs
3373 	= ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3374       return pressure_class;
3375     }
3376   else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3377 	   && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3378     {
3379       *nregs = 1;
3380       return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3381     }
3382   else
3383     {
3384       *nregs = 0;
3385       return NO_REGS;
3386     }
3387 }
3388 
3389 /* Return pressure class and number of hard registers (through *NREGS)
3390    for destination of INSN. */
3391 static enum reg_class
3392 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3393 {
3394   rtx reg;
3395   enum reg_class pressure_class;
3396   const_rtx set = single_set_gcse (insn);
3397 
3398   reg = SET_DEST (set);
3399   if (GET_CODE (reg) == SUBREG)
3400     reg = SUBREG_REG (reg);
3401   if (MEM_P (reg))
3402     {
3403       *nregs = 0;
3404       pressure_class = NO_REGS;
3405     }
3406   else
3407     {
3408       gcc_assert (REG_P (reg));
3409       pressure_class = reg_allocno_class (REGNO (reg));
3410       pressure_class = ira_pressure_class_translate[pressure_class];
3411       *nregs
3412 	= ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3413     }
3414   return pressure_class;
3415 }
3416 
3417 /* Increase (if INCR_P) or decrease current register pressure for
3418    register REGNO.  */
3419 static void
3420 change_pressure (int regno, bool incr_p)
3421 {
3422   int nregs;
3423   enum reg_class pressure_class;
3424 
3425   pressure_class = get_regno_pressure_class (regno, &nregs);
3426   if (! incr_p)
3427     curr_reg_pressure[pressure_class] -= nregs;
3428   else
3429     {
3430       curr_reg_pressure[pressure_class] += nregs;
3431       if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3432 	  < curr_reg_pressure[pressure_class])
3433 	BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3434 	  = curr_reg_pressure[pressure_class];
3435     }
3436 }
3437 
3438 /* Calculate register pressure for each basic block by walking insns
3439    from last to first.  */
3440 static void
3441 calculate_bb_reg_pressure (void)
3442 {
3443   int i;
3444   unsigned int j;
3445   rtx_insn *insn;
3446   basic_block bb;
3447   bitmap curr_regs_live;
3448   bitmap_iterator bi;
3449 
3450 
3451   ira_setup_eliminable_regset ();
3452   curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3453   FOR_EACH_BB_FN (bb, cfun)
3454     {
3455       curr_bb = bb;
3456       BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3457       BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3458       bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3459       bitmap_copy (curr_regs_live, df_get_live_out (bb));
3460       for (i = 0; i < ira_pressure_classes_num; i++)
3461 	curr_reg_pressure[ira_pressure_classes[i]] = 0;
3462       EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3463 	change_pressure (j, true);
3464 
3465       FOR_BB_INSNS_REVERSE (bb, insn)
3466 	{
3467 	  rtx dreg;
3468 	  int regno;
3469 	  df_ref def, use;
3470 
3471 	  if (! NONDEBUG_INSN_P (insn))
3472 	    continue;
3473 
3474 	  FOR_EACH_INSN_DEF (def, insn)
3475 	    {
3476 	      dreg = DF_REF_REAL_REG (def);
3477 	      gcc_assert (REG_P (dreg));
3478 	      regno = REGNO (dreg);
3479 	      if (!(DF_REF_FLAGS (def)
3480 		    & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3481 		{
3482 		  if (bitmap_clear_bit (curr_regs_live, regno))
3483 		    change_pressure (regno, false);
3484 		}
3485 	    }
3486 
3487 	  FOR_EACH_INSN_USE (use, insn)
3488 	    {
3489 	      dreg = DF_REF_REAL_REG (use);
3490 	      gcc_assert (REG_P (dreg));
3491 	      regno = REGNO (dreg);
3492 	      if (bitmap_set_bit (curr_regs_live, regno))
3493 		change_pressure (regno, true);
3494 	    }
3495 	}
3496     }
3497   BITMAP_FREE (curr_regs_live);
3498 
3499   if (dump_file == NULL)
3500     return;
3501 
3502   fprintf (dump_file, "\nRegister Pressure: \n");
3503   FOR_EACH_BB_FN (bb, cfun)
3504     {
3505       fprintf (dump_file, "  Basic block %d: \n", bb->index);
3506       for (i = 0; (int) i < ira_pressure_classes_num; i++)
3507 	{
3508 	  enum reg_class pressure_class;
3509 
3510 	  pressure_class = ira_pressure_classes[i];
3511 	  if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3512 	    continue;
3513 
3514 	  fprintf (dump_file, "    %s=%d\n", reg_class_names[pressure_class],
3515 		   BB_DATA (bb)->max_reg_pressure[pressure_class]);
3516 	}
3517     }
3518   fprintf (dump_file, "\n");
3519 }
3520 
3521 /* Top level routine to perform one code hoisting (aka unification) pass
3522 
3523    Return nonzero if a change was made.  */
3524 
3525 static int
3526 one_code_hoisting_pass (void)
3527 {
3528   int changed = 0;
3529 
3530   gcse_subst_count = 0;
3531   gcse_create_count = 0;
3532 
3533   /* Return if there's nothing to do, or it is too expensive.  */
3534   if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3535       || is_too_expensive (_("GCSE disabled")))
3536     return 0;
3537 
3538   doing_code_hoisting_p = true;
3539 
3540   /* Calculate register pressure for each basic block.  */
3541   if (flag_ira_hoist_pressure)
3542     {
3543       regstat_init_n_sets_and_refs ();
3544       ira_set_pseudo_classes (false, dump_file);
3545       alloc_aux_for_blocks (sizeof (struct bb_data));
3546       calculate_bb_reg_pressure ();
3547       regstat_free_n_sets_and_refs ();
3548     }
3549 
3550   /* We need alias.  */
3551   init_alias_analysis ();
3552 
3553   bytes_used = 0;
3554   gcc_obstack_init (&gcse_obstack);
3555   alloc_gcse_mem ();
3556 
3557   alloc_hash_table (&expr_hash_table);
3558   compute_hash_table (&expr_hash_table);
3559   if (dump_file)
3560     dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3561 
3562   if (expr_hash_table.n_elems > 0)
3563     {
3564       alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3565 			    expr_hash_table.n_elems);
3566       compute_code_hoist_data ();
3567       changed = hoist_code ();
3568       free_code_hoist_mem ();
3569     }
3570 
3571   if (flag_ira_hoist_pressure)
3572     {
3573       free_aux_for_blocks ();
3574       free_reg_info ();
3575     }
3576   free_hash_table (&expr_hash_table);
3577   free_gcse_mem ();
3578   obstack_free (&gcse_obstack, NULL);
3579 
3580   /* We are finished with alias.  */
3581   end_alias_analysis ();
3582 
3583   if (dump_file)
3584     {
3585       fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3586 	       current_function_name (), n_basic_blocks_for_fn (cfun),
3587 	       bytes_used);
3588       fprintf (dump_file, "%d substs, %d insns created\n",
3589 	       gcse_subst_count, gcse_create_count);
3590     }
3591 
3592   doing_code_hoisting_p = false;
3593 
3594   return changed;
3595 }
3596 
3597 /*  Here we provide the things required to do store motion towards the exit.
3598     In order for this to be effective, gcse also needed to be taught how to
3599     move a load when it is killed only by a store to itself.
3600 
3601 	    int i;
3602 	    float a[10];
3603 
3604 	    void foo(float scale)
3605 	    {
3606 	      for (i=0; i<10; i++)
3607 		a[i] *= scale;
3608 	    }
3609 
3610     'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3611     the load out since its live around the loop, and stored at the bottom
3612     of the loop.
3613 
3614       The 'Load Motion' referred to and implemented in this file is
3615     an enhancement to gcse which when using edge based LCM, recognizes
3616     this situation and allows gcse to move the load out of the loop.
3617 
3618       Once gcse has hoisted the load, store motion can then push this
3619     load towards the exit, and we end up with no loads or stores of 'i'
3620     in the loop.  */
3621 
3622 /* This will search the ldst list for a matching expression. If it
3623    doesn't find one, we create one and initialize it.  */
3624 
3625 static struct ls_expr *
3626 ldst_entry (rtx x)
3627 {
3628   int do_not_record_p = 0;
3629   struct ls_expr * ptr;
3630   unsigned int hash;
3631   ls_expr **slot;
3632   struct ls_expr e;
3633 
3634   hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3635 		   NULL,  /*have_reg_qty=*/false);
3636 
3637   e.pattern = x;
3638   slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3639   if (*slot)
3640     return *slot;
3641 
3642   ptr = XNEW (struct ls_expr);
3643 
3644   ptr->next         = pre_ldst_mems;
3645   ptr->expr         = NULL;
3646   ptr->pattern      = x;
3647   ptr->pattern_regs = NULL_RTX;
3648   ptr->loads        = NULL;
3649   ptr->stores       = NULL;
3650   ptr->reaching_reg = NULL_RTX;
3651   ptr->invalid      = 0;
3652   ptr->index        = 0;
3653   ptr->hash_index   = hash;
3654   pre_ldst_mems     = ptr;
3655   *slot = ptr;
3656 
3657   return ptr;
3658 }
3659 
3660 /* Free up an individual ldst entry.  */
3661 
3662 static void
3663 free_ldst_entry (struct ls_expr * ptr)
3664 {
3665   free_INSN_LIST_list (& ptr->loads);
3666   free_INSN_LIST_list (& ptr->stores);
3667 
3668   free (ptr);
3669 }
3670 
3671 /* Free up all memory associated with the ldst list.  */
3672 
3673 static void
3674 free_ld_motion_mems (void)
3675 {
3676   delete pre_ldst_table;
3677   pre_ldst_table = NULL;
3678 
3679   while (pre_ldst_mems)
3680     {
3681       struct ls_expr * tmp = pre_ldst_mems;
3682 
3683       pre_ldst_mems = pre_ldst_mems->next;
3684 
3685       free_ldst_entry (tmp);
3686     }
3687 
3688   pre_ldst_mems = NULL;
3689 }
3690 
3691 /* Dump debugging info about the ldst list.  */
3692 
3693 static void
3694 print_ldst_list (FILE * file)
3695 {
3696   struct ls_expr * ptr;
3697 
3698   fprintf (file, "LDST list: \n");
3699 
3700   for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3701     {
3702       fprintf (file, "  Pattern (%3d): ", ptr->index);
3703 
3704       print_rtl (file, ptr->pattern);
3705 
3706       fprintf (file, "\n	 Loads : ");
3707 
3708       if (ptr->loads)
3709 	print_rtl (file, ptr->loads);
3710       else
3711 	fprintf (file, "(nil)");
3712 
3713       fprintf (file, "\n	Stores : ");
3714 
3715       if (ptr->stores)
3716 	print_rtl (file, ptr->stores);
3717       else
3718 	fprintf (file, "(nil)");
3719 
3720       fprintf (file, "\n\n");
3721     }
3722 
3723   fprintf (file, "\n");
3724 }
3725 
3726 /* Returns 1 if X is in the list of ldst only expressions.  */
3727 
3728 static struct ls_expr *
3729 find_rtx_in_ldst (rtx x)
3730 {
3731   struct ls_expr e;
3732   ls_expr **slot;
3733   if (!pre_ldst_table)
3734     return NULL;
3735   e.pattern = x;
3736   slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3737   if (!slot || (*slot)->invalid)
3738     return NULL;
3739   return *slot;
3740 }
3741 
3742 /* Load Motion for loads which only kill themselves.  */
3743 
3744 /* Return true if x, a MEM, is a simple access with no side effects.
3745    These are the types of loads we consider for the ld_motion list,
3746    otherwise we let the usual aliasing take care of it.  */
3747 
3748 static int
3749 simple_mem (const_rtx x)
3750 {
3751   if (MEM_VOLATILE_P (x))
3752     return 0;
3753 
3754   if (GET_MODE (x) == BLKmode)
3755     return 0;
3756 
3757   /* If we are handling exceptions, we must be careful with memory references
3758      that may trap.  If we are not, the behavior is undefined, so we may just
3759      continue.  */
3760   if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3761     return 0;
3762 
3763   if (side_effects_p (x))
3764     return 0;
3765 
3766   /* Do not consider function arguments passed on stack.  */
3767   if (reg_mentioned_p (stack_pointer_rtx, x))
3768     return 0;
3769 
3770   if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3771     return 0;
3772 
3773   return 1;
3774 }
3775 
3776 /* Make sure there isn't a buried reference in this pattern anywhere.
3777    If there is, invalidate the entry for it since we're not capable
3778    of fixing it up just yet.. We have to be sure we know about ALL
3779    loads since the aliasing code will allow all entries in the
3780    ld_motion list to not-alias itself.  If we miss a load, we will get
3781    the wrong value since gcse might common it and we won't know to
3782    fix it up.  */
3783 
3784 static void
3785 invalidate_any_buried_refs (rtx x)
3786 {
3787   const char * fmt;
3788   int i, j;
3789   struct ls_expr * ptr;
3790 
3791   /* Invalidate it in the list.  */
3792   if (MEM_P (x) && simple_mem (x))
3793     {
3794       ptr = ldst_entry (x);
3795       ptr->invalid = 1;
3796     }
3797 
3798   /* Recursively process the insn.  */
3799   fmt = GET_RTX_FORMAT (GET_CODE (x));
3800 
3801   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3802     {
3803       if (fmt[i] == 'e')
3804 	invalidate_any_buried_refs (XEXP (x, i));
3805       else if (fmt[i] == 'E')
3806 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3807 	  invalidate_any_buried_refs (XVECEXP (x, i, j));
3808     }
3809 }
3810 
3811 /* Find all the 'simple' MEMs which are used in LOADs and STORES.  Simple
3812    being defined as MEM loads and stores to symbols, with no side effects
3813    and no registers in the expression.  For a MEM destination, we also
3814    check that the insn is still valid if we replace the destination with a
3815    REG, as is done in update_ld_motion_stores.  If there are any uses/defs
3816    which don't match this criteria, they are invalidated and trimmed out
3817    later.  */
3818 
3819 static void
3820 compute_ld_motion_mems (void)
3821 {
3822   struct ls_expr * ptr;
3823   basic_block bb;
3824   rtx_insn *insn;
3825 
3826   pre_ldst_mems = NULL;
3827   pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3828 
3829   FOR_EACH_BB_FN (bb, cfun)
3830     {
3831       FOR_BB_INSNS (bb, insn)
3832 	{
3833 	  if (NONDEBUG_INSN_P (insn))
3834 	    {
3835 	      if (GET_CODE (PATTERN (insn)) == SET)
3836 		{
3837 		  rtx src = SET_SRC (PATTERN (insn));
3838 		  rtx dest = SET_DEST (PATTERN (insn));
3839 
3840 		  /* Check for a simple load.  */
3841 		  if (MEM_P (src) && simple_mem (src))
3842 		    {
3843 		      ptr = ldst_entry (src);
3844 		      if (REG_P (dest))
3845 			ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3846 		      else
3847 			ptr->invalid = 1;
3848 		    }
3849 		  else
3850 		    {
3851 		      /* Make sure there isn't a buried load somewhere.  */
3852 		      invalidate_any_buried_refs (src);
3853 		    }
3854 
3855 		  /* Check for a simple load through a REG_EQUAL note.  */
3856 		  rtx note = find_reg_equal_equiv_note (insn), src_eq;
3857 		  if (note
3858 		      && REG_NOTE_KIND (note) == REG_EQUAL
3859 		      && (src_eq = XEXP (note, 0))
3860 		      && !(MEM_P (src_eq) && simple_mem (src_eq)))
3861 		    invalidate_any_buried_refs (src_eq);
3862 
3863 		  /* Check for stores. Don't worry about aliased ones, they
3864 		     will block any movement we might do later. We only care
3865 		     about this exact pattern since those are the only
3866 		     circumstance that we will ignore the aliasing info.  */
3867 		  if (MEM_P (dest) && simple_mem (dest))
3868 		    {
3869 		      ptr = ldst_entry (dest);
3870 
3871 		      if (! MEM_P (src)
3872 			  && GET_CODE (src) != ASM_OPERANDS
3873 			  /* Check for REG manually since want_to_gcse_p
3874 			     returns 0 for all REGs.  */
3875 			  && can_assign_to_reg_without_clobbers_p (src))
3876 			ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3877 		      else
3878 			ptr->invalid = 1;
3879 		    }
3880 		}
3881 	      else
3882 		{
3883 		  /* Invalidate all MEMs in the pattern and...  */
3884 		  invalidate_any_buried_refs (PATTERN (insn));
3885 
3886 		  /* ...in REG_EQUAL notes for PARALLELs with single SET.  */
3887 		  rtx note = find_reg_equal_equiv_note (insn), src_eq;
3888 		  if (note
3889 		      && REG_NOTE_KIND (note) == REG_EQUAL
3890 		      && (src_eq = XEXP (note, 0)))
3891 		    invalidate_any_buried_refs (src_eq);
3892 		}
3893 	    }
3894 	}
3895     }
3896 }
3897 
3898 /* Remove any references that have been either invalidated or are not in the
3899    expression list for pre gcse.  */
3900 
3901 static void
3902 trim_ld_motion_mems (void)
3903 {
3904   struct ls_expr * * last = & pre_ldst_mems;
3905   struct ls_expr * ptr = pre_ldst_mems;
3906 
3907   while (ptr != NULL)
3908     {
3909       struct gcse_expr * expr;
3910 
3911       /* Delete if entry has been made invalid.  */
3912       if (! ptr->invalid)
3913 	{
3914 	  /* Delete if we cannot find this mem in the expression list.  */
3915 	  unsigned int hash = ptr->hash_index % expr_hash_table.size;
3916 
3917 	  for (expr = expr_hash_table.table[hash];
3918 	       expr != NULL;
3919 	       expr = expr->next_same_hash)
3920 	    if (expr_equiv_p (expr->expr, ptr->pattern))
3921 	      break;
3922 	}
3923       else
3924 	expr = (struct gcse_expr *) 0;
3925 
3926       if (expr)
3927 	{
3928 	  /* Set the expression field if we are keeping it.  */
3929 	  ptr->expr = expr;
3930 	  last = & ptr->next;
3931 	  ptr = ptr->next;
3932 	}
3933       else
3934 	{
3935 	  *last = ptr->next;
3936 	  pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
3937 	  free_ldst_entry (ptr);
3938 	  ptr = * last;
3939 	}
3940     }
3941 
3942   /* Show the world what we've found.  */
3943   if (dump_file && pre_ldst_mems != NULL)
3944     print_ldst_list (dump_file);
3945 }
3946 
3947 /* This routine will take an expression which we are replacing with
3948    a reaching register, and update any stores that are needed if
3949    that expression is in the ld_motion list.  Stores are updated by
3950    copying their SRC to the reaching register, and then storing
3951    the reaching register into the store location. These keeps the
3952    correct value in the reaching register for the loads.  */
3953 
3954 static void
3955 update_ld_motion_stores (struct gcse_expr * expr)
3956 {
3957   struct ls_expr * mem_ptr;
3958 
3959   if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3960     {
3961       /* We can try to find just the REACHED stores, but is shouldn't
3962 	 matter to set the reaching reg everywhere...  some might be
3963 	 dead and should be eliminated later.  */
3964 
3965       /* We replace (set mem expr) with (set reg expr) (set mem reg)
3966 	 where reg is the reaching reg used in the load.  We checked in
3967 	 compute_ld_motion_mems that we can replace (set mem expr) with
3968 	 (set reg expr) in that insn.  */
3969       rtx list = mem_ptr->stores;
3970 
3971       for ( ; list != NULL_RTX; list = XEXP (list, 1))
3972 	{
3973 	  rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
3974 	  rtx pat = PATTERN (insn);
3975 	  rtx src = SET_SRC (pat);
3976 	  rtx reg = expr->reaching_reg;
3977 	  rtx copy;
3978 
3979 	  /* If we've already copied it, continue.  */
3980 	  if (expr->reaching_reg == src)
3981 	    continue;
3982 
3983 	  if (dump_file)
3984 	    {
3985 	      fprintf (dump_file, "PRE:  store updated with reaching reg ");
3986 	      print_rtl (dump_file, reg);
3987 	      fprintf (dump_file, ":\n	");
3988 	      print_inline_rtx (dump_file, insn, 8);
3989 	      fprintf (dump_file, "\n");
3990 	    }
3991 
3992 	  copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
3993 	  emit_insn_before (copy, insn);
3994 	  SET_SRC (pat) = reg;
3995 	  df_insn_rescan (insn);
3996 
3997 	  /* un-recognize this pattern since it's probably different now.  */
3998 	  INSN_CODE (insn) = -1;
3999 	  gcse_create_count++;
4000 	}
4001     }
4002 }
4003 
4004 /* Return true if the graph is too expensive to optimize. PASS is the
4005    optimization about to be performed.  */
4006 
4007 static bool
4008 is_too_expensive (const char *pass)
4009 {
4010   /* Trying to perform global optimizations on flow graphs which have
4011      a high connectivity will take a long time and is unlikely to be
4012      particularly useful.
4013 
4014      In normal circumstances a cfg should have about twice as many
4015      edges as blocks.  But we do not want to punish small functions
4016      which have a couple switch statements.  Rather than simply
4017      threshold the number of blocks, uses something with a more
4018      graceful degradation.  */
4019   if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4020     {
4021       warning (OPT_Wdisabled_optimization,
4022 	       "%s: %d basic blocks and %d edges/basic block",
4023 	       pass, n_basic_blocks_for_fn (cfun),
4024 	       n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4025 
4026       return true;
4027     }
4028 
4029   /* If allocating memory for the dataflow bitmaps would take up too much
4030      storage it's better just to disable the optimization.  */
4031   if ((n_basic_blocks_for_fn (cfun)
4032        * SBITMAP_SET_SIZE (max_reg_num ())
4033        * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4034     {
4035       warning (OPT_Wdisabled_optimization,
4036 	       "%s: %d basic blocks and %d registers",
4037 	       pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4038 
4039       return true;
4040     }
4041 
4042   return false;
4043 }
4044 
4045 static unsigned int
4046 execute_rtl_pre (void)
4047 {
4048   int changed;
4049   delete_unreachable_blocks ();
4050   df_analyze ();
4051   changed = one_pre_gcse_pass ();
4052   flag_rerun_cse_after_global_opts |= changed;
4053   if (changed)
4054     cleanup_cfg (0);
4055   return 0;
4056 }
4057 
4058 static unsigned int
4059 execute_rtl_hoist (void)
4060 {
4061   int changed;
4062   delete_unreachable_blocks ();
4063   df_analyze ();
4064   changed = one_code_hoisting_pass ();
4065   flag_rerun_cse_after_global_opts |= changed;
4066   if (changed)
4067     cleanup_cfg (0);
4068   return 0;
4069 }
4070 
4071 namespace {
4072 
4073 const pass_data pass_data_rtl_pre =
4074 {
4075   RTL_PASS, /* type */
4076   "rtl pre", /* name */
4077   OPTGROUP_NONE, /* optinfo_flags */
4078   TV_PRE, /* tv_id */
4079   PROP_cfglayout, /* properties_required */
4080   0, /* properties_provided */
4081   0, /* properties_destroyed */
4082   0, /* todo_flags_start */
4083   TODO_df_finish, /* todo_flags_finish */
4084 };
4085 
4086 class pass_rtl_pre : public rtl_opt_pass
4087 {
4088 public:
4089   pass_rtl_pre (gcc::context *ctxt)
4090     : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4091   {}
4092 
4093   /* opt_pass methods: */
4094   virtual bool gate (function *);
4095   virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4096 
4097 }; // class pass_rtl_pre
4098 
4099 /* We do not construct an accurate cfg in functions which call
4100    setjmp, so none of these passes runs if the function calls
4101    setjmp.
4102    FIXME: Should just handle setjmp via REG_SETJMP notes.  */
4103 
4104 bool
4105 pass_rtl_pre::gate (function *fun)
4106 {
4107   return optimize > 0 && flag_gcse
4108     && !fun->calls_setjmp
4109     && optimize_function_for_speed_p (fun)
4110     && dbg_cnt (pre);
4111 }
4112 
4113 } // anon namespace
4114 
4115 rtl_opt_pass *
4116 make_pass_rtl_pre (gcc::context *ctxt)
4117 {
4118   return new pass_rtl_pre (ctxt);
4119 }
4120 
4121 namespace {
4122 
4123 const pass_data pass_data_rtl_hoist =
4124 {
4125   RTL_PASS, /* type */
4126   "hoist", /* name */
4127   OPTGROUP_NONE, /* optinfo_flags */
4128   TV_HOIST, /* tv_id */
4129   PROP_cfglayout, /* properties_required */
4130   0, /* properties_provided */
4131   0, /* properties_destroyed */
4132   0, /* todo_flags_start */
4133   TODO_df_finish, /* todo_flags_finish */
4134 };
4135 
4136 class pass_rtl_hoist : public rtl_opt_pass
4137 {
4138 public:
4139   pass_rtl_hoist (gcc::context *ctxt)
4140     : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4141   {}
4142 
4143   /* opt_pass methods: */
4144   virtual bool gate (function *);
4145   virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4146 
4147 }; // class pass_rtl_hoist
4148 
4149 bool
4150 pass_rtl_hoist::gate (function *)
4151 {
4152   return optimize > 0 && flag_gcse
4153     && !cfun->calls_setjmp
4154     /* It does not make sense to run code hoisting unless we are optimizing
4155        for code size -- it rarely makes programs faster, and can make then
4156        bigger if we did PRE (when optimizing for space, we don't run PRE).  */
4157     && optimize_function_for_size_p (cfun)
4158     && dbg_cnt (hoist);
4159 }
4160 
4161 } // anon namespace
4162 
4163 rtl_opt_pass *
4164 make_pass_rtl_hoist (gcc::context *ctxt)
4165 {
4166   return new pass_rtl_hoist (ctxt);
4167 }
4168 
4169 /* Reset all state within gcse.c so that we can rerun the compiler
4170    within the same process.  For use by toplev::finalize.  */
4171 
4172 void
4173 gcse_c_finalize (void)
4174 {
4175   test_insn = NULL;
4176 }
4177 
4178 #include "gt-gcse.h"
4179