1 /* RTL-based forward propagation pass for GNU compiler. 2 Copyright (C) 2005-2015 Free Software Foundation, Inc. 3 Contributed by Paolo Bonzini and Steven Bosscher. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tm.h" 25 #include "diagnostic-core.h" 26 27 #include "sparseset.h" 28 #include "rtl.h" 29 #include "tm_p.h" 30 #include "insn-config.h" 31 #include "recog.h" 32 #include "flags.h" 33 #include "obstack.h" 34 #include "predict.h" 35 #include "vec.h" 36 #include "hashtab.h" 37 #include "hash-set.h" 38 #include "machmode.h" 39 #include "hard-reg-set.h" 40 #include "input.h" 41 #include "function.h" 42 #include "dominance.h" 43 #include "cfg.h" 44 #include "cfgrtl.h" 45 #include "cfgcleanup.h" 46 #include "basic-block.h" 47 #include "df.h" 48 #include "target.h" 49 #include "cfgloop.h" 50 #include "tree-pass.h" 51 #include "domwalk.h" 52 #include "emit-rtl.h" 53 #include "rtl-iter.h" 54 55 56 /* This pass does simple forward propagation and simplification when an 57 operand of an insn can only come from a single def. This pass uses 58 df.c, so it is global. However, we only do limited analysis of 59 available expressions. 60 61 1) The pass tries to propagate the source of the def into the use, 62 and checks if the result is independent of the substituted value. 63 For example, the high word of a (zero_extend:DI (reg:SI M)) is always 64 zero, independent of the source register. 65 66 In particular, we propagate constants into the use site. Sometimes 67 RTL expansion did not put the constant in the same insn on purpose, 68 to satisfy a predicate, and the result will fail to be recognized; 69 but this happens rarely and in this case we can still create a 70 REG_EQUAL note. For multi-word operations, this 71 72 (set (subreg:SI (reg:DI 120) 0) (const_int 0)) 73 (set (subreg:SI (reg:DI 120) 4) (const_int -1)) 74 (set (subreg:SI (reg:DI 122) 0) 75 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0))) 76 (set (subreg:SI (reg:DI 122) 4) 77 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4))) 78 79 can be simplified to the much simpler 80 81 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119))) 82 (set (subreg:SI (reg:DI 122) 4) (const_int -1)) 83 84 This particular propagation is also effective at putting together 85 complex addressing modes. We are more aggressive inside MEMs, in 86 that all definitions are propagated if the use is in a MEM; if the 87 result is a valid memory address we check address_cost to decide 88 whether the substitution is worthwhile. 89 90 2) The pass propagates register copies. This is not as effective as 91 the copy propagation done by CSE's canon_reg, which works by walking 92 the instruction chain, it can help the other transformations. 93 94 We should consider removing this optimization, and instead reorder the 95 RTL passes, because GCSE does this transformation too. With some luck, 96 the CSE pass at the end of rest_of_handle_gcse could also go away. 97 98 3) The pass looks for paradoxical subregs that are actually unnecessary. 99 Things like this: 100 101 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0)) 102 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0)) 103 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0) 104 (subreg:SI (reg:QI 121) 0))) 105 106 are very common on machines that can only do word-sized operations. 107 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0), 108 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0), 109 we can replace the paradoxical subreg with simply (reg:WIDE M). The 110 above will simplify this to 111 112 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0)) 113 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0)) 114 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119))) 115 116 where the first two insns are now dead. 117 118 We used to use reaching definitions to find which uses have a 119 single reaching definition (sounds obvious...), but this is too 120 complex a problem in nasty testcases like PR33928. Now we use the 121 multiple definitions problem in df-problems.c. The similarity 122 between that problem and SSA form creation is taken further, in 123 that fwprop does a dominator walk to create its chains; however, 124 instead of creating a PHI function where multiple definitions meet 125 I just punt and record only singleton use-def chains, which is 126 all that is needed by fwprop. */ 127 128 129 static int num_changes; 130 131 static vec<df_ref> use_def_ref; 132 static vec<df_ref> reg_defs; 133 static vec<df_ref> reg_defs_stack; 134 135 /* The MD bitmaps are trimmed to include only live registers to cut 136 memory usage on testcases like insn-recog.c. Track live registers 137 in the basic block and do not perform forward propagation if the 138 destination is a dead pseudo occurring in a note. */ 139 static bitmap local_md; 140 static bitmap local_lr; 141 142 /* Return the only def in USE's use-def chain, or NULL if there is 143 more than one def in the chain. */ 144 145 static inline df_ref 146 get_def_for_use (df_ref use) 147 { 148 return use_def_ref[DF_REF_ID (use)]; 149 } 150 151 152 /* Update the reg_defs vector with non-partial definitions in DEF_REC. 153 TOP_FLAG says which artificials uses should be used, when DEF_REC 154 is an artificial def vector. LOCAL_MD is modified as after a 155 df_md_simulate_* function; we do more or less the same processing 156 done there, so we do not use those functions. */ 157 158 #define DF_MD_GEN_FLAGS \ 159 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER) 160 161 static void 162 process_defs (df_ref def, int top_flag) 163 { 164 for (; def; def = DF_REF_NEXT_LOC (def)) 165 { 166 df_ref curr_def = reg_defs[DF_REF_REGNO (def)]; 167 unsigned int dregno; 168 169 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag) 170 continue; 171 172 dregno = DF_REF_REGNO (def); 173 if (curr_def) 174 reg_defs_stack.safe_push (curr_def); 175 else 176 { 177 /* Do not store anything if "transitioning" from NULL to NULL. But 178 otherwise, push a special entry on the stack to tell the 179 leave_block callback that the entry in reg_defs was NULL. */ 180 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS) 181 ; 182 else 183 reg_defs_stack.safe_push (def); 184 } 185 186 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS) 187 { 188 bitmap_set_bit (local_md, dregno); 189 reg_defs[dregno] = NULL; 190 } 191 else 192 { 193 bitmap_clear_bit (local_md, dregno); 194 reg_defs[dregno] = def; 195 } 196 } 197 } 198 199 200 /* Fill the use_def_ref vector with values for the uses in USE_REC, 201 taking reaching definitions info from LOCAL_MD and REG_DEFS. 202 TOP_FLAG says which artificials uses should be used, when USE_REC 203 is an artificial use vector. */ 204 205 static void 206 process_uses (df_ref use, int top_flag) 207 { 208 for (; use; use = DF_REF_NEXT_LOC (use)) 209 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag) 210 { 211 unsigned int uregno = DF_REF_REGNO (use); 212 if (reg_defs[uregno] 213 && !bitmap_bit_p (local_md, uregno) 214 && bitmap_bit_p (local_lr, uregno)) 215 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno]; 216 } 217 } 218 219 class single_def_use_dom_walker : public dom_walker 220 { 221 public: 222 single_def_use_dom_walker (cdi_direction direction) 223 : dom_walker (direction) {} 224 virtual void before_dom_children (basic_block); 225 virtual void after_dom_children (basic_block); 226 }; 227 228 void 229 single_def_use_dom_walker::before_dom_children (basic_block bb) 230 { 231 int bb_index = bb->index; 232 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index); 233 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index); 234 rtx_insn *insn; 235 236 bitmap_copy (local_md, &md_bb_info->in); 237 bitmap_copy (local_lr, &lr_bb_info->in); 238 239 /* Push a marker for the leave_block callback. */ 240 reg_defs_stack.safe_push (NULL); 241 242 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP); 243 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP); 244 245 /* We don't call df_simulate_initialize_forwards, as it may overestimate 246 the live registers if there are unused artificial defs. We prefer 247 liveness to be underestimated. */ 248 249 FOR_BB_INSNS (bb, insn) 250 if (INSN_P (insn)) 251 { 252 unsigned int uid = INSN_UID (insn); 253 process_uses (DF_INSN_UID_USES (uid), 0); 254 process_uses (DF_INSN_UID_EQ_USES (uid), 0); 255 process_defs (DF_INSN_UID_DEFS (uid), 0); 256 df_simulate_one_insn_forwards (bb, insn, local_lr); 257 } 258 259 process_uses (df_get_artificial_uses (bb_index), 0); 260 process_defs (df_get_artificial_defs (bb_index), 0); 261 } 262 263 /* Pop the definitions created in this basic block when leaving its 264 dominated parts. */ 265 266 void 267 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED) 268 { 269 df_ref saved_def; 270 while ((saved_def = reg_defs_stack.pop ()) != NULL) 271 { 272 unsigned int dregno = DF_REF_REGNO (saved_def); 273 274 /* See also process_defs. */ 275 if (saved_def == reg_defs[dregno]) 276 reg_defs[dregno] = NULL; 277 else 278 reg_defs[dregno] = saved_def; 279 } 280 } 281 282 283 /* Build a vector holding the reaching definitions of uses reached by a 284 single dominating definition. */ 285 286 static void 287 build_single_def_use_links (void) 288 { 289 /* We use the multiple definitions problem to compute our restricted 290 use-def chains. */ 291 df_set_flags (DF_EQ_NOTES); 292 df_md_add_problem (); 293 df_note_add_problem (); 294 df_analyze (); 295 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES); 296 297 use_def_ref.create (DF_USES_TABLE_SIZE ()); 298 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ()); 299 300 reg_defs.create (max_reg_num ()); 301 reg_defs.safe_grow_cleared (max_reg_num ()); 302 303 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10); 304 local_md = BITMAP_ALLOC (NULL); 305 local_lr = BITMAP_ALLOC (NULL); 306 307 /* Walk the dominator tree looking for single reaching definitions 308 dominating the uses. This is similar to how SSA form is built. */ 309 single_def_use_dom_walker (CDI_DOMINATORS) 310 .walk (cfun->cfg->x_entry_block_ptr); 311 312 BITMAP_FREE (local_lr); 313 BITMAP_FREE (local_md); 314 reg_defs.release (); 315 reg_defs_stack.release (); 316 } 317 318 319 /* Do not try to replace constant addresses or addresses of local and 320 argument slots. These MEM expressions are made only once and inserted 321 in many instructions, as well as being used to control symbol table 322 output. It is not safe to clobber them. 323 324 There are some uncommon cases where the address is already in a register 325 for some reason, but we cannot take advantage of that because we have 326 no easy way to unshare the MEM. In addition, looking up all stack 327 addresses is costly. */ 328 329 static bool 330 can_simplify_addr (rtx addr) 331 { 332 rtx reg; 333 334 if (CONSTANT_ADDRESS_P (addr)) 335 return false; 336 337 if (GET_CODE (addr) == PLUS) 338 reg = XEXP (addr, 0); 339 else 340 reg = addr; 341 342 return (!REG_P (reg) 343 || (REGNO (reg) != FRAME_POINTER_REGNUM 344 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM 345 && REGNO (reg) != ARG_POINTER_REGNUM)); 346 } 347 348 /* Returns a canonical version of X for the address, from the point of view, 349 that all multiplications are represented as MULT instead of the multiply 350 by a power of 2 being represented as ASHIFT. 351 352 Every ASHIFT we find has been made by simplify_gen_binary and was not 353 there before, so it is not shared. So we can do this in place. */ 354 355 static void 356 canonicalize_address (rtx x) 357 { 358 for (;;) 359 switch (GET_CODE (x)) 360 { 361 case ASHIFT: 362 if (CONST_INT_P (XEXP (x, 1)) 363 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)) 364 && INTVAL (XEXP (x, 1)) >= 0) 365 { 366 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1)); 367 PUT_CODE (x, MULT); 368 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift, 369 GET_MODE (x)); 370 } 371 372 x = XEXP (x, 0); 373 break; 374 375 case PLUS: 376 if (GET_CODE (XEXP (x, 0)) == PLUS 377 || GET_CODE (XEXP (x, 0)) == ASHIFT 378 || GET_CODE (XEXP (x, 0)) == CONST) 379 canonicalize_address (XEXP (x, 0)); 380 381 x = XEXP (x, 1); 382 break; 383 384 case CONST: 385 x = XEXP (x, 0); 386 break; 387 388 default: 389 return; 390 } 391 } 392 393 /* OLD is a memory address. Return whether it is good to use NEW instead, 394 for a memory access in the given MODE. */ 395 396 static bool 397 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode, 398 addr_space_t as, bool speed) 399 { 400 int gain; 401 402 if (rtx_equal_p (old_rtx, new_rtx) 403 || !memory_address_addr_space_p (mode, new_rtx, as)) 404 return false; 405 406 /* Copy propagation is always ok. */ 407 if (REG_P (old_rtx) && REG_P (new_rtx)) 408 return true; 409 410 /* Prefer the new address if it is less expensive. */ 411 gain = (address_cost (old_rtx, mode, as, speed) 412 - address_cost (new_rtx, mode, as, speed)); 413 414 /* If the addresses have equivalent cost, prefer the new address 415 if it has the highest `set_src_cost'. That has the potential of 416 eliminating the most insns without additional costs, and it 417 is the same that cse.c used to do. */ 418 if (gain == 0) 419 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed); 420 421 return (gain > 0); 422 } 423 424 425 /* Flags for the last parameter of propagate_rtx_1. */ 426 427 enum { 428 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true; 429 if it is false, propagate_rtx_1 returns false if, for at least 430 one occurrence OLD, it failed to collapse the result to a constant. 431 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may 432 collapse to zero if replacing (reg:M B) with (reg:M A). 433 434 PR_CAN_APPEAR is disregarded inside MEMs: in that case, 435 propagate_rtx_1 just tries to make cheaper and valid memory 436 addresses. */ 437 PR_CAN_APPEAR = 1, 438 439 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement 440 outside memory addresses. This is needed because propagate_rtx_1 does 441 not do any analysis on memory; thus it is very conservative and in general 442 it will fail if non-read-only MEMs are found in the source expression. 443 444 PR_HANDLE_MEM is set when the source of the propagation was not 445 another MEM. Then, it is safe not to treat non-read-only MEMs as 446 ``opaque'' objects. */ 447 PR_HANDLE_MEM = 2, 448 449 /* Set when costs should be optimized for speed. */ 450 PR_OPTIMIZE_FOR_SPEED = 4 451 }; 452 453 454 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the 455 resulting expression. Replace *PX with a new RTL expression if an 456 occurrence of OLD was found. 457 458 This is only a wrapper around simplify-rtx.c: do not add any pattern 459 matching code here. (The sole exception is the handling of LO_SUM, but 460 that is because there is no simplify_gen_* function for LO_SUM). */ 461 462 static bool 463 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags) 464 { 465 rtx x = *px, tem = NULL_RTX, op0, op1, op2; 466 enum rtx_code code = GET_CODE (x); 467 machine_mode mode = GET_MODE (x); 468 machine_mode op_mode; 469 bool can_appear = (flags & PR_CAN_APPEAR) != 0; 470 bool valid_ops = true; 471 472 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x)) 473 { 474 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether 475 they have side effects or not). */ 476 *px = (side_effects_p (x) 477 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx) 478 : gen_rtx_SCRATCH (GET_MODE (x))); 479 return false; 480 } 481 482 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an 483 address, and we are *not* inside one. */ 484 if (x == old_rtx) 485 { 486 *px = new_rtx; 487 return can_appear; 488 } 489 490 /* If this is an expression, try recursive substitution. */ 491 switch (GET_RTX_CLASS (code)) 492 { 493 case RTX_UNARY: 494 op0 = XEXP (x, 0); 495 op_mode = GET_MODE (op0); 496 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 497 if (op0 == XEXP (x, 0)) 498 return true; 499 tem = simplify_gen_unary (code, mode, op0, op_mode); 500 break; 501 502 case RTX_BIN_ARITH: 503 case RTX_COMM_ARITH: 504 op0 = XEXP (x, 0); 505 op1 = XEXP (x, 1); 506 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 507 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 508 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) 509 return true; 510 tem = simplify_gen_binary (code, mode, op0, op1); 511 break; 512 513 case RTX_COMPARE: 514 case RTX_COMM_COMPARE: 515 op0 = XEXP (x, 0); 516 op1 = XEXP (x, 1); 517 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1); 518 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 519 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 520 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) 521 return true; 522 tem = simplify_gen_relational (code, mode, op_mode, op0, op1); 523 break; 524 525 case RTX_TERNARY: 526 case RTX_BITFIELD_OPS: 527 op0 = XEXP (x, 0); 528 op1 = XEXP (x, 1); 529 op2 = XEXP (x, 2); 530 op_mode = GET_MODE (op0); 531 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 532 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 533 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags); 534 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2)) 535 return true; 536 if (op_mode == VOIDmode) 537 op_mode = GET_MODE (op0); 538 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2); 539 break; 540 541 case RTX_EXTRA: 542 /* The only case we try to handle is a SUBREG. */ 543 if (code == SUBREG) 544 { 545 op0 = XEXP (x, 0); 546 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 547 if (op0 == XEXP (x, 0)) 548 return true; 549 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)), 550 SUBREG_BYTE (x)); 551 } 552 break; 553 554 case RTX_OBJ: 555 if (code == MEM && x != new_rtx) 556 { 557 rtx new_op0; 558 op0 = XEXP (x, 0); 559 560 /* There are some addresses that we cannot work on. */ 561 if (!can_simplify_addr (op0)) 562 return true; 563 564 op0 = new_op0 = targetm.delegitimize_address (op0); 565 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx, 566 flags | PR_CAN_APPEAR); 567 568 /* Dismiss transformation that we do not want to carry on. */ 569 if (!valid_ops 570 || new_op0 == op0 571 || !(GET_MODE (new_op0) == GET_MODE (op0) 572 || GET_MODE (new_op0) == VOIDmode)) 573 return true; 574 575 canonicalize_address (new_op0); 576 577 /* Copy propagations are always ok. Otherwise check the costs. */ 578 if (!(REG_P (old_rtx) && REG_P (new_rtx)) 579 && !should_replace_address (op0, new_op0, GET_MODE (x), 580 MEM_ADDR_SPACE (x), 581 flags & PR_OPTIMIZE_FOR_SPEED)) 582 return true; 583 584 tem = replace_equiv_address_nv (x, new_op0); 585 } 586 587 else if (code == LO_SUM) 588 { 589 op0 = XEXP (x, 0); 590 op1 = XEXP (x, 1); 591 592 /* The only simplification we do attempts to remove references to op0 593 or make it constant -- in both cases, op0's invalidity will not 594 make the result invalid. */ 595 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR); 596 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 597 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) 598 return true; 599 600 /* (lo_sum (high x) x) -> x */ 601 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1)) 602 tem = op1; 603 else 604 tem = gen_rtx_LO_SUM (mode, op0, op1); 605 606 /* OP1 is likely not a legitimate address, otherwise there would have 607 been no LO_SUM. We want it to disappear if it is invalid, return 608 false in that case. */ 609 return memory_address_p (mode, tem); 610 } 611 612 else if (code == REG) 613 { 614 if (rtx_equal_p (x, old_rtx)) 615 { 616 *px = new_rtx; 617 return can_appear; 618 } 619 } 620 break; 621 622 default: 623 break; 624 } 625 626 /* No change, no trouble. */ 627 if (tem == NULL_RTX) 628 return true; 629 630 *px = tem; 631 632 /* The replacement we made so far is valid, if all of the recursive 633 replacements were valid, or we could simplify everything to 634 a constant. */ 635 return valid_ops || can_appear || CONSTANT_P (tem); 636 } 637 638 639 /* Return true if X constains a non-constant mem. */ 640 641 static bool 642 varying_mem_p (const_rtx x) 643 { 644 subrtx_iterator::array_type array; 645 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 646 if (MEM_P (*iter) && !MEM_READONLY_P (*iter)) 647 return true; 648 return false; 649 } 650 651 652 /* Replace all occurrences of OLD in X with NEW and try to simplify the 653 resulting expression (in mode MODE). Return a new expression if it is 654 a constant, otherwise X. 655 656 Simplifications where occurrences of NEW collapse to a constant are always 657 accepted. All simplifications are accepted if NEW is a pseudo too. 658 Otherwise, we accept simplifications that have a lower or equal cost. */ 659 660 static rtx 661 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx, 662 bool speed) 663 { 664 rtx tem; 665 bool collapsed; 666 int flags; 667 668 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER) 669 return NULL_RTX; 670 671 flags = 0; 672 if (REG_P (new_rtx) 673 || CONSTANT_P (new_rtx) 674 || (GET_CODE (new_rtx) == SUBREG 675 && REG_P (SUBREG_REG (new_rtx)) 676 && (GET_MODE_SIZE (mode) 677 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx)))))) 678 flags |= PR_CAN_APPEAR; 679 if (!varying_mem_p (new_rtx)) 680 flags |= PR_HANDLE_MEM; 681 682 if (speed) 683 flags |= PR_OPTIMIZE_FOR_SPEED; 684 685 tem = x; 686 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags); 687 if (tem == x || !collapsed) 688 return NULL_RTX; 689 690 /* gen_lowpart_common will not be able to process VOIDmode entities other 691 than CONST_INTs. */ 692 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem)) 693 return NULL_RTX; 694 695 if (GET_MODE (tem) == VOIDmode) 696 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem); 697 else 698 gcc_assert (GET_MODE (tem) == mode); 699 700 return tem; 701 } 702 703 704 705 706 /* Return true if the register from reference REF is killed 707 between FROM to (but not including) TO. */ 708 709 static bool 710 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to) 711 { 712 rtx_insn *insn; 713 714 for (insn = from; insn != to; insn = NEXT_INSN (insn)) 715 { 716 df_ref def; 717 if (!INSN_P (insn)) 718 continue; 719 720 FOR_EACH_INSN_DEF (def, insn) 721 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def)) 722 return true; 723 } 724 return false; 725 } 726 727 728 /* Check if the given DEF is available in INSN. This would require full 729 computation of available expressions; we check only restricted conditions: 730 - if DEF is the sole definition of its register, go ahead; 731 - in the same basic block, we check for no definitions killing the 732 definition of DEF_INSN; 733 - if USE's basic block has DEF's basic block as the sole predecessor, 734 we check if the definition is killed after DEF_INSN or before 735 TARGET_INSN insn, in their respective basic blocks. */ 736 static bool 737 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn) 738 { 739 basic_block def_bb = BLOCK_FOR_INSN (def_insn); 740 basic_block target_bb = BLOCK_FOR_INSN (target_insn); 741 int regno; 742 df_ref def; 743 744 /* We used to have a def reaching a use that is _before_ the def, 745 with the def not dominating the use even though the use and def 746 are in the same basic block, when a register may be used 747 uninitialized in a loop. This should not happen anymore since 748 we do not use reaching definitions, but still we test for such 749 cases and assume that DEF is not available. */ 750 if (def_bb == target_bb 751 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn) 752 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb)) 753 return true; 754 755 /* Check if the reg in USE has only one definition. We already 756 know that this definition reaches use, or we wouldn't be here. 757 However, this is invalid for hard registers because if they are 758 live at the beginning of the function it does not mean that we 759 have an uninitialized access. */ 760 regno = DF_REF_REGNO (use); 761 def = DF_REG_DEF_CHAIN (regno); 762 if (def 763 && DF_REF_NEXT_REG (def) == NULL 764 && regno >= FIRST_PSEUDO_REGISTER) 765 return false; 766 767 /* Check locally if we are in the same basic block. */ 768 if (def_bb == target_bb) 769 return local_ref_killed_between_p (use, def_insn, target_insn); 770 771 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */ 772 if (single_pred_p (target_bb) 773 && single_pred (target_bb) == def_bb) 774 { 775 df_ref x; 776 777 /* See if USE is killed between DEF_INSN and the last insn in the 778 basic block containing DEF_INSN. */ 779 x = df_bb_regno_last_def_find (def_bb, regno); 780 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn)) 781 return true; 782 783 /* See if USE is killed between TARGET_INSN and the first insn in the 784 basic block containing TARGET_INSN. */ 785 x = df_bb_regno_first_def_find (target_bb, regno); 786 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn)) 787 return true; 788 789 return false; 790 } 791 792 /* Otherwise assume the worst case. */ 793 return true; 794 } 795 796 797 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This 798 would require full computation of available expressions; 799 we check only restricted conditions, see use_killed_between. */ 800 static bool 801 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn) 802 { 803 df_ref use; 804 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn); 805 rtx def_set = single_set (def_insn); 806 rtx_insn *next; 807 808 gcc_assert (def_set); 809 810 /* If target_insn comes right after def_insn, which is very common 811 for addresses, we can use a quicker test. Ignore debug insns 812 other than target insns for this. */ 813 next = NEXT_INSN (def_insn); 814 while (next && next != target_insn && DEBUG_INSN_P (next)) 815 next = NEXT_INSN (next); 816 if (next == target_insn && REG_P (SET_DEST (def_set))) 817 { 818 rtx def_reg = SET_DEST (def_set); 819 820 /* If the insn uses the reg that it defines, the substitution is 821 invalid. */ 822 FOR_EACH_INSN_INFO_USE (use, insn_info) 823 if (rtx_equal_p (DF_REF_REG (use), def_reg)) 824 return false; 825 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info) 826 if (rtx_equal_p (DF_REF_REG (use), def_reg)) 827 return false; 828 } 829 else 830 { 831 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX; 832 833 /* Look at all the uses of DEF_INSN, and see if they are not 834 killed between DEF_INSN and TARGET_INSN. */ 835 FOR_EACH_INSN_INFO_USE (use, insn_info) 836 { 837 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg)) 838 return false; 839 if (use_killed_between (use, def_insn, target_insn)) 840 return false; 841 } 842 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info) 843 { 844 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg)) 845 return false; 846 if (use_killed_between (use, def_insn, target_insn)) 847 return false; 848 } 849 } 850 851 return true; 852 } 853 854 855 static df_ref *active_defs; 856 #ifdef ENABLE_CHECKING 857 static sparseset active_defs_check; 858 #endif 859 860 /* Fill the ACTIVE_DEFS array with the use->def link for the registers 861 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK 862 too, for checking purposes. */ 863 864 static void 865 register_active_defs (df_ref use) 866 { 867 for (; use; use = DF_REF_NEXT_LOC (use)) 868 { 869 df_ref def = get_def_for_use (use); 870 int regno = DF_REF_REGNO (use); 871 872 #ifdef ENABLE_CHECKING 873 sparseset_set_bit (active_defs_check, regno); 874 #endif 875 active_defs[regno] = def; 876 } 877 } 878 879 880 /* Build the use->def links that we use to update the dataflow info 881 for new uses. Note that building the links is very cheap and if 882 it were done earlier, they could be used to rule out invalid 883 propagations (in addition to what is done in all_uses_available_at). 884 I'm not doing this yet, though. */ 885 886 static void 887 update_df_init (rtx_insn *def_insn, rtx_insn *insn) 888 { 889 #ifdef ENABLE_CHECKING 890 sparseset_clear (active_defs_check); 891 #endif 892 register_active_defs (DF_INSN_USES (def_insn)); 893 register_active_defs (DF_INSN_USES (insn)); 894 register_active_defs (DF_INSN_EQ_USES (insn)); 895 } 896 897 898 /* Update the USE_DEF_REF array for the given use, using the active definitions 899 in the ACTIVE_DEFS array to match pseudos to their def. */ 900 901 static inline void 902 update_uses (df_ref use) 903 { 904 for (; use; use = DF_REF_NEXT_LOC (use)) 905 { 906 int regno = DF_REF_REGNO (use); 907 908 /* Set up the use-def chain. */ 909 if (DF_REF_ID (use) >= (int) use_def_ref.length ()) 910 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1); 911 912 #ifdef ENABLE_CHECKING 913 gcc_assert (sparseset_bit_p (active_defs_check, regno)); 914 #endif 915 use_def_ref[DF_REF_ID (use)] = active_defs[regno]; 916 } 917 } 918 919 920 /* Update the USE_DEF_REF array for the uses in INSN. Only update note 921 uses if NOTES_ONLY is true. */ 922 923 static void 924 update_df (rtx_insn *insn, rtx note) 925 { 926 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); 927 928 if (note) 929 { 930 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE); 931 df_notes_rescan (insn); 932 } 933 else 934 { 935 df_uses_create (&PATTERN (insn), insn, 0); 936 df_insn_rescan (insn); 937 update_uses (DF_INSN_INFO_USES (insn_info)); 938 } 939 940 update_uses (DF_INSN_INFO_EQ_USES (insn_info)); 941 } 942 943 944 /* Try substituting NEW into LOC, which originated from forward propagation 945 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are 946 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the 947 new insn is not recognized. Return whether the substitution was 948 performed. */ 949 950 static bool 951 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn, 952 bool set_reg_equal) 953 { 954 rtx_insn *insn = DF_REF_INSN (use); 955 rtx set = single_set (insn); 956 rtx note = NULL_RTX; 957 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)); 958 int old_cost = 0; 959 bool ok; 960 961 update_df_init (def_insn, insn); 962 963 /* forward_propagate_subreg may be operating on an instruction with 964 multiple sets. If so, assume the cost of the new instruction is 965 not greater than the old one. */ 966 if (set) 967 old_cost = set_src_cost (SET_SRC (set), speed); 968 if (dump_file) 969 { 970 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn)); 971 print_inline_rtx (dump_file, *loc, 2); 972 fprintf (dump_file, "\n with "); 973 print_inline_rtx (dump_file, new_rtx, 2); 974 fprintf (dump_file, "\n"); 975 } 976 977 validate_unshare_change (insn, loc, new_rtx, true); 978 if (!verify_changes (0)) 979 { 980 if (dump_file) 981 fprintf (dump_file, "Changes to insn %d not recognized\n", 982 INSN_UID (insn)); 983 ok = false; 984 } 985 986 else if (DF_REF_TYPE (use) == DF_REF_REG_USE 987 && set 988 && set_src_cost (SET_SRC (set), speed) > old_cost) 989 { 990 if (dump_file) 991 fprintf (dump_file, "Changes to insn %d not profitable\n", 992 INSN_UID (insn)); 993 ok = false; 994 } 995 996 else 997 { 998 if (dump_file) 999 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn)); 1000 ok = true; 1001 } 1002 1003 if (ok) 1004 { 1005 confirm_change_group (); 1006 num_changes++; 1007 } 1008 else 1009 { 1010 cancel_changes (0); 1011 1012 /* Can also record a simplified value in a REG_EQUAL note, 1013 making a new one if one does not already exist. */ 1014 if (set_reg_equal) 1015 { 1016 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note, 1017 because the bits in there can be anything and so might not 1018 match the REG_EQUAL note content. See PR70574. */ 1019 subrtx_var_iterator::array_type array; 1020 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST) 1021 { 1022 rtx x = *iter; 1023 if (SUBREG_P (x) && paradoxical_subreg_p (x)) 1024 { 1025 set_reg_equal = false; 1026 break; 1027 } 1028 } 1029 1030 if (set_reg_equal) 1031 { 1032 if (dump_file) 1033 fprintf (dump_file, " Setting REG_EQUAL note\n"); 1034 1035 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx)); 1036 } 1037 } 1038 } 1039 1040 if ((ok || note) && !CONSTANT_P (new_rtx)) 1041 update_df (insn, note); 1042 1043 return ok; 1044 } 1045 1046 /* For the given single_set INSN, containing SRC known to be a 1047 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN 1048 is redundant due to the register being set by a LOAD_EXTEND_OP 1049 load from memory. */ 1050 1051 static bool 1052 free_load_extend (rtx src, rtx_insn *insn) 1053 { 1054 rtx reg; 1055 df_ref def, use; 1056 1057 reg = XEXP (src, 0); 1058 #ifdef LOAD_EXTEND_OP 1059 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src)) 1060 #endif 1061 return false; 1062 1063 FOR_EACH_INSN_USE (use, insn) 1064 if (!DF_REF_IS_ARTIFICIAL (use) 1065 && DF_REF_TYPE (use) == DF_REF_REG_USE 1066 && DF_REF_REG (use) == reg) 1067 break; 1068 if (!use) 1069 return false; 1070 1071 def = get_def_for_use (use); 1072 if (!def) 1073 return false; 1074 1075 if (DF_REF_IS_ARTIFICIAL (def)) 1076 return false; 1077 1078 if (NONJUMP_INSN_P (DF_REF_INSN (def))) 1079 { 1080 rtx patt = PATTERN (DF_REF_INSN (def)); 1081 1082 if (GET_CODE (patt) == SET 1083 && GET_CODE (SET_SRC (patt)) == MEM 1084 && rtx_equal_p (SET_DEST (patt), reg)) 1085 return true; 1086 } 1087 return false; 1088 } 1089 1090 /* If USE is a subreg, see if it can be replaced by a pseudo. */ 1091 1092 static bool 1093 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set) 1094 { 1095 rtx use_reg = DF_REF_REG (use); 1096 rtx_insn *use_insn; 1097 rtx src; 1098 1099 /* Only consider subregs... */ 1100 machine_mode use_mode = GET_MODE (use_reg); 1101 if (GET_CODE (use_reg) != SUBREG 1102 || !REG_P (SET_DEST (def_set))) 1103 return false; 1104 1105 /* If this is a paradoxical SUBREG... */ 1106 if (GET_MODE_SIZE (use_mode) 1107 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg)))) 1108 { 1109 /* If this is a paradoxical SUBREG, we have no idea what value the 1110 extra bits would have. However, if the operand is equivalent to 1111 a SUBREG whose operand is the same as our mode, and all the modes 1112 are within a word, we can just use the inner operand because 1113 these SUBREGs just say how to treat the register. */ 1114 use_insn = DF_REF_INSN (use); 1115 src = SET_SRC (def_set); 1116 if (GET_CODE (src) == SUBREG 1117 && REG_P (SUBREG_REG (src)) 1118 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER 1119 && GET_MODE (SUBREG_REG (src)) == use_mode 1120 && subreg_lowpart_p (src) 1121 && all_uses_available_at (def_insn, use_insn)) 1122 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src), 1123 def_insn, false); 1124 } 1125 1126 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG 1127 is the low part of the reg being extended then just use the inner 1128 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will 1129 be removed due to it matching a LOAD_EXTEND_OP load from memory, 1130 or due to the operation being a no-op when applied to registers. 1131 For example, if we have: 1132 1133 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y))) 1134 B: (... (subreg:SI (reg:DI X)) ...) 1135 1136 and mode_rep_extended says that Y is already sign-extended, 1137 the backend will typically allow A to be combined with the 1138 definition of Y or, failing that, allow A to be deleted after 1139 reload through register tying. Introducing more uses of Y 1140 prevents both optimisations. */ 1141 else if (subreg_lowpart_p (use_reg)) 1142 { 1143 use_insn = DF_REF_INSN (use); 1144 src = SET_SRC (def_set); 1145 if ((GET_CODE (src) == ZERO_EXTEND 1146 || GET_CODE (src) == SIGN_EXTEND) 1147 && REG_P (XEXP (src, 0)) 1148 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER 1149 && GET_MODE (XEXP (src, 0)) == use_mode 1150 && !free_load_extend (src, def_insn) 1151 && (targetm.mode_rep_extended (use_mode, GET_MODE (src)) 1152 != (int) GET_CODE (src)) 1153 && all_uses_available_at (def_insn, use_insn)) 1154 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0), 1155 def_insn, false); 1156 } 1157 1158 return false; 1159 } 1160 1161 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */ 1162 1163 static bool 1164 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg) 1165 { 1166 rtx_insn *use_insn = DF_REF_INSN (use); 1167 rtx src, use_pat, asm_operands, new_rtx, *loc; 1168 int speed_p, i; 1169 df_ref uses; 1170 1171 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0); 1172 1173 src = SET_SRC (def_set); 1174 use_pat = PATTERN (use_insn); 1175 1176 /* In __asm don't replace if src might need more registers than 1177 reg, as that could increase register pressure on the __asm. */ 1178 uses = DF_INSN_USES (def_insn); 1179 if (uses && DF_REF_NEXT_LOC (uses)) 1180 return false; 1181 1182 update_df_init (def_insn, use_insn); 1183 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)); 1184 asm_operands = NULL_RTX; 1185 switch (GET_CODE (use_pat)) 1186 { 1187 case ASM_OPERANDS: 1188 asm_operands = use_pat; 1189 break; 1190 case SET: 1191 if (MEM_P (SET_DEST (use_pat))) 1192 { 1193 loc = &SET_DEST (use_pat); 1194 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p); 1195 if (new_rtx) 1196 validate_unshare_change (use_insn, loc, new_rtx, true); 1197 } 1198 asm_operands = SET_SRC (use_pat); 1199 break; 1200 case PARALLEL: 1201 for (i = 0; i < XVECLEN (use_pat, 0); i++) 1202 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET) 1203 { 1204 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i)))) 1205 { 1206 loc = &SET_DEST (XVECEXP (use_pat, 0, i)); 1207 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, 1208 src, speed_p); 1209 if (new_rtx) 1210 validate_unshare_change (use_insn, loc, new_rtx, true); 1211 } 1212 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i)); 1213 } 1214 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS) 1215 asm_operands = XVECEXP (use_pat, 0, i); 1216 break; 1217 default: 1218 gcc_unreachable (); 1219 } 1220 1221 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS); 1222 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++) 1223 { 1224 loc = &ASM_OPERANDS_INPUT (asm_operands, i); 1225 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p); 1226 if (new_rtx) 1227 validate_unshare_change (use_insn, loc, new_rtx, true); 1228 } 1229 1230 if (num_changes_pending () == 0 || !apply_change_group ()) 1231 return false; 1232 1233 update_df (use_insn, NULL); 1234 num_changes++; 1235 return true; 1236 } 1237 1238 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the 1239 result. */ 1240 1241 static bool 1242 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set) 1243 { 1244 rtx_insn *use_insn = DF_REF_INSN (use); 1245 rtx use_set = single_set (use_insn); 1246 rtx src, reg, new_rtx, *loc; 1247 bool set_reg_equal; 1248 machine_mode mode; 1249 int asm_use = -1; 1250 1251 if (INSN_CODE (use_insn) < 0) 1252 asm_use = asm_noperands (PATTERN (use_insn)); 1253 1254 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn)) 1255 return false; 1256 1257 /* Do not propagate into PC, CC0, etc. */ 1258 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode) 1259 return false; 1260 1261 /* If def and use are subreg, check if they match. */ 1262 reg = DF_REF_REG (use); 1263 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG) 1264 { 1265 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg)) 1266 return false; 1267 } 1268 /* Check if the def had a subreg, but the use has the whole reg. */ 1269 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG) 1270 return false; 1271 /* Check if the use has a subreg, but the def had the whole reg. Unlike the 1272 previous case, the optimization is possible and often useful indeed. */ 1273 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set))) 1274 reg = SUBREG_REG (reg); 1275 1276 /* Make sure that we can treat REG as having the same mode as the 1277 source of DEF_SET. */ 1278 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)) 1279 return false; 1280 1281 /* Check if the substitution is valid (last, because it's the most 1282 expensive check!). */ 1283 src = SET_SRC (def_set); 1284 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn)) 1285 return false; 1286 1287 /* Check if the def is loading something from the constant pool; in this 1288 case we would undo optimization such as compress_float_constant. 1289 Still, we can set a REG_EQUAL note. */ 1290 if (MEM_P (src) && MEM_READONLY_P (src)) 1291 { 1292 rtx x = avoid_constant_pool_reference (src); 1293 if (x != src && use_set) 1294 { 1295 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); 1296 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set); 1297 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x); 1298 if (old_rtx != new_rtx) 1299 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx)); 1300 } 1301 return false; 1302 } 1303 1304 if (asm_use >= 0) 1305 return forward_propagate_asm (use, def_insn, def_set, reg); 1306 1307 /* Else try simplifying. */ 1308 1309 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE) 1310 { 1311 loc = &SET_DEST (use_set); 1312 set_reg_equal = false; 1313 } 1314 else if (!use_set) 1315 { 1316 loc = &INSN_VAR_LOCATION_LOC (use_insn); 1317 set_reg_equal = false; 1318 } 1319 else 1320 { 1321 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); 1322 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE) 1323 loc = &XEXP (note, 0); 1324 else 1325 loc = &SET_SRC (use_set); 1326 1327 /* Do not replace an existing REG_EQUAL note if the insn is not 1328 recognized. Either we're already replacing in the note, or we'll 1329 separately try plugging the definition in the note and simplifying. 1330 And only install a REQ_EQUAL note when the destination is a REG 1331 that isn't mentioned in USE_SET, as the note would be invalid 1332 otherwise. We also don't want to install a note if we are merely 1333 propagating a pseudo since verifying that this pseudo isn't dead 1334 is a pain; moreover such a note won't help anything. 1335 If the use is a paradoxical subreg, make sure we don't add a 1336 REG_EQUAL note for it, because it is not equivalent, it is one 1337 possible value for it, but we can't rely on it holding that value. 1338 See PR70574. */ 1339 set_reg_equal = (note == NULL_RTX 1340 && REG_P (SET_DEST (use_set)) 1341 && !REG_P (src) 1342 && !(GET_CODE (src) == SUBREG 1343 && REG_P (SUBREG_REG (src))) 1344 && !reg_mentioned_p (SET_DEST (use_set), 1345 SET_SRC (use_set)) 1346 && !paradoxical_subreg_p (DF_REF_REG (use))); 1347 } 1348 1349 if (GET_MODE (*loc) == VOIDmode) 1350 mode = GET_MODE (SET_DEST (use_set)); 1351 else 1352 mode = GET_MODE (*loc); 1353 1354 new_rtx = propagate_rtx (*loc, mode, reg, src, 1355 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn))); 1356 1357 if (!new_rtx) 1358 return false; 1359 1360 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal); 1361 } 1362 1363 1364 /* Given a use USE of an insn, if it has a single reaching 1365 definition, try to forward propagate it into that insn. 1366 Return true if cfg cleanup will be needed. */ 1367 1368 static bool 1369 forward_propagate_into (df_ref use) 1370 { 1371 df_ref def; 1372 rtx_insn *def_insn, *use_insn; 1373 rtx def_set; 1374 rtx parent; 1375 1376 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE) 1377 return false; 1378 if (DF_REF_IS_ARTIFICIAL (use)) 1379 return false; 1380 1381 /* Only consider uses that have a single definition. */ 1382 def = get_def_for_use (use); 1383 if (!def) 1384 return false; 1385 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE) 1386 return false; 1387 if (DF_REF_IS_ARTIFICIAL (def)) 1388 return false; 1389 1390 /* Do not propagate loop invariant definitions inside the loop. */ 1391 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father) 1392 return false; 1393 1394 /* Check if the use is still present in the insn! */ 1395 use_insn = DF_REF_INSN (use); 1396 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE) 1397 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); 1398 else 1399 parent = PATTERN (use_insn); 1400 1401 if (!reg_mentioned_p (DF_REF_REG (use), parent)) 1402 return false; 1403 1404 def_insn = DF_REF_INSN (def); 1405 if (multiple_sets (def_insn)) 1406 return false; 1407 def_set = single_set (def_insn); 1408 if (!def_set) 1409 return false; 1410 1411 /* Only try one kind of propagation. If two are possible, we'll 1412 do it on the following iterations. */ 1413 if (forward_propagate_and_simplify (use, def_insn, def_set) 1414 || forward_propagate_subreg (use, def_insn, def_set)) 1415 { 1416 if (cfun->can_throw_non_call_exceptions 1417 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX) 1418 && purge_dead_edges (DF_REF_BB (use))) 1419 return true; 1420 } 1421 return false; 1422 } 1423 1424 1425 static void 1426 fwprop_init (void) 1427 { 1428 num_changes = 0; 1429 calculate_dominance_info (CDI_DOMINATORS); 1430 1431 /* We do not always want to propagate into loops, so we have to find 1432 loops and be careful about them. Avoid CFG modifications so that 1433 we don't have to update dominance information afterwards for 1434 build_single_def_use_links. */ 1435 loop_optimizer_init (AVOID_CFG_MODIFICATIONS); 1436 1437 build_single_def_use_links (); 1438 df_set_flags (DF_DEFER_INSN_RESCAN); 1439 1440 active_defs = XNEWVEC (df_ref, max_reg_num ()); 1441 #ifdef ENABLE_CHECKING 1442 active_defs_check = sparseset_alloc (max_reg_num ()); 1443 #endif 1444 } 1445 1446 static void 1447 fwprop_done (void) 1448 { 1449 loop_optimizer_finalize (); 1450 1451 use_def_ref.release (); 1452 free (active_defs); 1453 #ifdef ENABLE_CHECKING 1454 sparseset_free (active_defs_check); 1455 #endif 1456 1457 free_dominance_info (CDI_DOMINATORS); 1458 cleanup_cfg (0); 1459 delete_trivially_dead_insns (get_insns (), max_reg_num ()); 1460 1461 if (dump_file) 1462 fprintf (dump_file, 1463 "\nNumber of successful forward propagations: %d\n\n", 1464 num_changes); 1465 } 1466 1467 1468 /* Main entry point. */ 1469 1470 static bool 1471 gate_fwprop (void) 1472 { 1473 return optimize > 0 && flag_forward_propagate; 1474 } 1475 1476 static unsigned int 1477 fwprop (void) 1478 { 1479 unsigned i; 1480 bool need_cleanup = false; 1481 1482 fwprop_init (); 1483 1484 /* Go through all the uses. df_uses_create will create new ones at the 1485 end, and we'll go through them as well. 1486 1487 Do not forward propagate addresses into loops until after unrolling. 1488 CSE did so because it was able to fix its own mess, but we are not. */ 1489 1490 for (i = 0; i < DF_USES_TABLE_SIZE (); i++) 1491 { 1492 df_ref use = DF_USES_GET (i); 1493 if (use) 1494 if (DF_REF_TYPE (use) == DF_REF_REG_USE 1495 || DF_REF_BB (use)->loop_father == NULL 1496 /* The outer most loop is not really a loop. */ 1497 || loop_outer (DF_REF_BB (use)->loop_father) == NULL) 1498 need_cleanup |= forward_propagate_into (use); 1499 } 1500 1501 fwprop_done (); 1502 if (need_cleanup) 1503 cleanup_cfg (0); 1504 return 0; 1505 } 1506 1507 namespace { 1508 1509 const pass_data pass_data_rtl_fwprop = 1510 { 1511 RTL_PASS, /* type */ 1512 "fwprop1", /* name */ 1513 OPTGROUP_NONE, /* optinfo_flags */ 1514 TV_FWPROP, /* tv_id */ 1515 0, /* properties_required */ 1516 0, /* properties_provided */ 1517 0, /* properties_destroyed */ 1518 0, /* todo_flags_start */ 1519 TODO_df_finish, /* todo_flags_finish */ 1520 }; 1521 1522 class pass_rtl_fwprop : public rtl_opt_pass 1523 { 1524 public: 1525 pass_rtl_fwprop (gcc::context *ctxt) 1526 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt) 1527 {} 1528 1529 /* opt_pass methods: */ 1530 virtual bool gate (function *) { return gate_fwprop (); } 1531 virtual unsigned int execute (function *) { return fwprop (); } 1532 1533 }; // class pass_rtl_fwprop 1534 1535 } // anon namespace 1536 1537 rtl_opt_pass * 1538 make_pass_rtl_fwprop (gcc::context *ctxt) 1539 { 1540 return new pass_rtl_fwprop (ctxt); 1541 } 1542 1543 static unsigned int 1544 fwprop_addr (void) 1545 { 1546 unsigned i; 1547 bool need_cleanup = false; 1548 1549 fwprop_init (); 1550 1551 /* Go through all the uses. df_uses_create will create new ones at the 1552 end, and we'll go through them as well. */ 1553 for (i = 0; i < DF_USES_TABLE_SIZE (); i++) 1554 { 1555 df_ref use = DF_USES_GET (i); 1556 if (use) 1557 if (DF_REF_TYPE (use) != DF_REF_REG_USE 1558 && DF_REF_BB (use)->loop_father != NULL 1559 /* The outer most loop is not really a loop. */ 1560 && loop_outer (DF_REF_BB (use)->loop_father) != NULL) 1561 need_cleanup |= forward_propagate_into (use); 1562 } 1563 1564 fwprop_done (); 1565 1566 if (need_cleanup) 1567 cleanup_cfg (0); 1568 return 0; 1569 } 1570 1571 namespace { 1572 1573 const pass_data pass_data_rtl_fwprop_addr = 1574 { 1575 RTL_PASS, /* type */ 1576 "fwprop2", /* name */ 1577 OPTGROUP_NONE, /* optinfo_flags */ 1578 TV_FWPROP, /* tv_id */ 1579 0, /* properties_required */ 1580 0, /* properties_provided */ 1581 0, /* properties_destroyed */ 1582 0, /* todo_flags_start */ 1583 TODO_df_finish, /* todo_flags_finish */ 1584 }; 1585 1586 class pass_rtl_fwprop_addr : public rtl_opt_pass 1587 { 1588 public: 1589 pass_rtl_fwprop_addr (gcc::context *ctxt) 1590 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt) 1591 {} 1592 1593 /* opt_pass methods: */ 1594 virtual bool gate (function *) { return gate_fwprop (); } 1595 virtual unsigned int execute (function *) { return fwprop_addr (); } 1596 1597 }; // class pass_rtl_fwprop_addr 1598 1599 } // anon namespace 1600 1601 rtl_opt_pass * 1602 make_pass_rtl_fwprop_addr (gcc::context *ctxt) 1603 { 1604 return new pass_rtl_fwprop_addr (ctxt); 1605 } 1606