1 /* RTL-based forward propagation pass for GNU compiler. 2 Copyright (C) 2005-2020 Free Software Foundation, Inc. 3 Contributed by Paolo Bonzini and Steven Bosscher. 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "backend.h" 25 #include "target.h" 26 #include "rtl.h" 27 #include "predict.h" 28 #include "df.h" 29 #include "memmodel.h" 30 #include "tm_p.h" 31 #include "insn-config.h" 32 #include "emit-rtl.h" 33 #include "recog.h" 34 35 #include "sparseset.h" 36 #include "cfgrtl.h" 37 #include "cfgcleanup.h" 38 #include "cfgloop.h" 39 #include "tree-pass.h" 40 #include "domwalk.h" 41 #include "rtl-iter.h" 42 43 44 /* This pass does simple forward propagation and simplification when an 45 operand of an insn can only come from a single def. This pass uses 46 df.c, so it is global. However, we only do limited analysis of 47 available expressions. 48 49 1) The pass tries to propagate the source of the def into the use, 50 and checks if the result is independent of the substituted value. 51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always 52 zero, independent of the source register. 53 54 In particular, we propagate constants into the use site. Sometimes 55 RTL expansion did not put the constant in the same insn on purpose, 56 to satisfy a predicate, and the result will fail to be recognized; 57 but this happens rarely and in this case we can still create a 58 REG_EQUAL note. For multi-word operations, this 59 60 (set (subreg:SI (reg:DI 120) 0) (const_int 0)) 61 (set (subreg:SI (reg:DI 120) 4) (const_int -1)) 62 (set (subreg:SI (reg:DI 122) 0) 63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0))) 64 (set (subreg:SI (reg:DI 122) 4) 65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4))) 66 67 can be simplified to the much simpler 68 69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119))) 70 (set (subreg:SI (reg:DI 122) 4) (const_int -1)) 71 72 This particular propagation is also effective at putting together 73 complex addressing modes. We are more aggressive inside MEMs, in 74 that all definitions are propagated if the use is in a MEM; if the 75 result is a valid memory address we check address_cost to decide 76 whether the substitution is worthwhile. 77 78 2) The pass propagates register copies. This is not as effective as 79 the copy propagation done by CSE's canon_reg, which works by walking 80 the instruction chain, it can help the other transformations. 81 82 We should consider removing this optimization, and instead reorder the 83 RTL passes, because GCSE does this transformation too. With some luck, 84 the CSE pass at the end of rest_of_handle_gcse could also go away. 85 86 3) The pass looks for paradoxical subregs that are actually unnecessary. 87 Things like this: 88 89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0)) 90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0)) 91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0) 92 (subreg:SI (reg:QI 121) 0))) 93 94 are very common on machines that can only do word-sized operations. 95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0), 96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0), 97 we can replace the paradoxical subreg with simply (reg:WIDE M). The 98 above will simplify this to 99 100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0)) 101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0)) 102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119))) 103 104 where the first two insns are now dead. 105 106 We used to use reaching definitions to find which uses have a 107 single reaching definition (sounds obvious...), but this is too 108 complex a problem in nasty testcases like PR33928. Now we use the 109 multiple definitions problem in df-problems.c. The similarity 110 between that problem and SSA form creation is taken further, in 111 that fwprop does a dominator walk to create its chains; however, 112 instead of creating a PHI function where multiple definitions meet 113 I just punt and record only singleton use-def chains, which is 114 all that is needed by fwprop. */ 115 116 117 static int num_changes; 118 119 static vec<df_ref> use_def_ref; 120 static vec<df_ref> reg_defs; 121 static vec<df_ref> reg_defs_stack; 122 123 /* The maximum number of propagations that are still allowed. If we do 124 more propagations than originally we had uses, we must have ended up 125 in a propagation loop, as in PR79405. Until the algorithm fwprop 126 uses can obviously not get into such loops we need a workaround like 127 this. */ 128 static int propagations_left; 129 130 /* The MD bitmaps are trimmed to include only live registers to cut 131 memory usage on testcases like insn-recog.c. Track live registers 132 in the basic block and do not perform forward propagation if the 133 destination is a dead pseudo occurring in a note. */ 134 static bitmap local_md; 135 static bitmap local_lr; 136 137 /* Return the only def in USE's use-def chain, or NULL if there is 138 more than one def in the chain. */ 139 140 static inline df_ref 141 get_def_for_use (df_ref use) 142 { 143 return use_def_ref[DF_REF_ID (use)]; 144 } 145 146 147 /* Update the reg_defs vector with non-partial definitions in DEF_REC. 148 TOP_FLAG says which artificials uses should be used, when DEF_REC 149 is an artificial def vector. LOCAL_MD is modified as after a 150 df_md_simulate_* function; we do more or less the same processing 151 done there, so we do not use those functions. */ 152 153 #define DF_MD_GEN_FLAGS \ 154 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER) 155 156 static void 157 process_defs (df_ref def, int top_flag) 158 { 159 for (; def; def = DF_REF_NEXT_LOC (def)) 160 { 161 df_ref curr_def = reg_defs[DF_REF_REGNO (def)]; 162 unsigned int dregno; 163 164 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag) 165 continue; 166 167 dregno = DF_REF_REGNO (def); 168 if (curr_def) 169 reg_defs_stack.safe_push (curr_def); 170 else 171 { 172 /* Do not store anything if "transitioning" from NULL to NULL. But 173 otherwise, push a special entry on the stack to tell the 174 leave_block callback that the entry in reg_defs was NULL. */ 175 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS) 176 ; 177 else 178 reg_defs_stack.safe_push (def); 179 } 180 181 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS) 182 { 183 bitmap_set_bit (local_md, dregno); 184 reg_defs[dregno] = NULL; 185 } 186 else 187 { 188 bitmap_clear_bit (local_md, dregno); 189 reg_defs[dregno] = def; 190 } 191 } 192 } 193 194 195 /* Fill the use_def_ref vector with values for the uses in USE_REC, 196 taking reaching definitions info from LOCAL_MD and REG_DEFS. 197 TOP_FLAG says which artificials uses should be used, when USE_REC 198 is an artificial use vector. */ 199 200 static void 201 process_uses (df_ref use, int top_flag) 202 { 203 for (; use; use = DF_REF_NEXT_LOC (use)) 204 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag) 205 { 206 unsigned int uregno = DF_REF_REGNO (use); 207 if (reg_defs[uregno] 208 && !bitmap_bit_p (local_md, uregno) 209 && bitmap_bit_p (local_lr, uregno)) 210 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno]; 211 } 212 } 213 214 class single_def_use_dom_walker : public dom_walker 215 { 216 public: 217 single_def_use_dom_walker (cdi_direction direction) 218 : dom_walker (direction) {} 219 virtual edge before_dom_children (basic_block); 220 virtual void after_dom_children (basic_block); 221 }; 222 223 edge 224 single_def_use_dom_walker::before_dom_children (basic_block bb) 225 { 226 int bb_index = bb->index; 227 class df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index); 228 class df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index); 229 rtx_insn *insn; 230 231 bitmap_copy (local_md, &md_bb_info->in); 232 bitmap_copy (local_lr, &lr_bb_info->in); 233 234 /* Push a marker for the leave_block callback. */ 235 reg_defs_stack.safe_push (NULL); 236 237 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP); 238 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP); 239 240 /* We don't call df_simulate_initialize_forwards, as it may overestimate 241 the live registers if there are unused artificial defs. We prefer 242 liveness to be underestimated. */ 243 244 FOR_BB_INSNS (bb, insn) 245 if (INSN_P (insn)) 246 { 247 unsigned int uid = INSN_UID (insn); 248 process_uses (DF_INSN_UID_USES (uid), 0); 249 process_uses (DF_INSN_UID_EQ_USES (uid), 0); 250 process_defs (DF_INSN_UID_DEFS (uid), 0); 251 df_simulate_one_insn_forwards (bb, insn, local_lr); 252 } 253 254 process_uses (df_get_artificial_uses (bb_index), 0); 255 process_defs (df_get_artificial_defs (bb_index), 0); 256 257 return NULL; 258 } 259 260 /* Pop the definitions created in this basic block when leaving its 261 dominated parts. */ 262 263 void 264 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED) 265 { 266 df_ref saved_def; 267 while ((saved_def = reg_defs_stack.pop ()) != NULL) 268 { 269 unsigned int dregno = DF_REF_REGNO (saved_def); 270 271 /* See also process_defs. */ 272 if (saved_def == reg_defs[dregno]) 273 reg_defs[dregno] = NULL; 274 else 275 reg_defs[dregno] = saved_def; 276 } 277 } 278 279 280 /* Build a vector holding the reaching definitions of uses reached by a 281 single dominating definition. */ 282 283 static void 284 build_single_def_use_links (void) 285 { 286 /* We use the multiple definitions problem to compute our restricted 287 use-def chains. */ 288 df_set_flags (DF_EQ_NOTES); 289 df_md_add_problem (); 290 df_note_add_problem (); 291 df_analyze (); 292 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES); 293 294 use_def_ref.create (DF_USES_TABLE_SIZE ()); 295 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ()); 296 297 reg_defs.create (max_reg_num ()); 298 reg_defs.safe_grow_cleared (max_reg_num ()); 299 300 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10); 301 local_md = BITMAP_ALLOC (NULL); 302 local_lr = BITMAP_ALLOC (NULL); 303 304 /* Walk the dominator tree looking for single reaching definitions 305 dominating the uses. This is similar to how SSA form is built. */ 306 single_def_use_dom_walker (CDI_DOMINATORS) 307 .walk (cfun->cfg->x_entry_block_ptr); 308 309 BITMAP_FREE (local_lr); 310 BITMAP_FREE (local_md); 311 reg_defs.release (); 312 reg_defs_stack.release (); 313 } 314 315 316 /* Do not try to replace constant addresses or addresses of local and 317 argument slots. These MEM expressions are made only once and inserted 318 in many instructions, as well as being used to control symbol table 319 output. It is not safe to clobber them. 320 321 There are some uncommon cases where the address is already in a register 322 for some reason, but we cannot take advantage of that because we have 323 no easy way to unshare the MEM. In addition, looking up all stack 324 addresses is costly. */ 325 326 static bool 327 can_simplify_addr (rtx addr) 328 { 329 rtx reg; 330 331 if (CONSTANT_ADDRESS_P (addr)) 332 return false; 333 334 if (GET_CODE (addr) == PLUS) 335 reg = XEXP (addr, 0); 336 else 337 reg = addr; 338 339 return (!REG_P (reg) 340 || (REGNO (reg) != FRAME_POINTER_REGNUM 341 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM 342 && REGNO (reg) != ARG_POINTER_REGNUM)); 343 } 344 345 /* Returns a canonical version of X for the address, from the point of view, 346 that all multiplications are represented as MULT instead of the multiply 347 by a power of 2 being represented as ASHIFT. 348 349 Every ASHIFT we find has been made by simplify_gen_binary and was not 350 there before, so it is not shared. So we can do this in place. */ 351 352 static void 353 canonicalize_address (rtx x) 354 { 355 for (;;) 356 switch (GET_CODE (x)) 357 { 358 case ASHIFT: 359 if (CONST_INT_P (XEXP (x, 1)) 360 && INTVAL (XEXP (x, 1)) < GET_MODE_UNIT_BITSIZE (GET_MODE (x)) 361 && INTVAL (XEXP (x, 1)) >= 0) 362 { 363 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1)); 364 PUT_CODE (x, MULT); 365 XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift, 366 GET_MODE (x)); 367 } 368 369 x = XEXP (x, 0); 370 break; 371 372 case PLUS: 373 if (GET_CODE (XEXP (x, 0)) == PLUS 374 || GET_CODE (XEXP (x, 0)) == ASHIFT 375 || GET_CODE (XEXP (x, 0)) == CONST) 376 canonicalize_address (XEXP (x, 0)); 377 378 x = XEXP (x, 1); 379 break; 380 381 case CONST: 382 x = XEXP (x, 0); 383 break; 384 385 default: 386 return; 387 } 388 } 389 390 /* OLD is a memory address. Return whether it is good to use NEW instead, 391 for a memory access in the given MODE. */ 392 393 static bool 394 should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode, 395 addr_space_t as, bool speed) 396 { 397 int gain; 398 399 if (rtx_equal_p (old_rtx, new_rtx) 400 || !memory_address_addr_space_p (mode, new_rtx, as)) 401 return false; 402 403 /* Copy propagation is always ok. */ 404 if (REG_P (old_rtx) && REG_P (new_rtx)) 405 return true; 406 407 /* Prefer the new address if it is less expensive. */ 408 gain = (address_cost (old_rtx, mode, as, speed) 409 - address_cost (new_rtx, mode, as, speed)); 410 411 /* If the addresses have equivalent cost, prefer the new address 412 if it has the highest `set_src_cost'. That has the potential of 413 eliminating the most insns without additional costs, and it 414 is the same that cse.c used to do. */ 415 if (gain == 0) 416 gain = (set_src_cost (new_rtx, VOIDmode, speed) 417 - set_src_cost (old_rtx, VOIDmode, speed)); 418 419 return (gain > 0); 420 } 421 422 423 /* Flags for the last parameter of propagate_rtx_1. */ 424 425 enum { 426 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true; 427 if it is false, propagate_rtx_1 returns false if, for at least 428 one occurrence OLD, it failed to collapse the result to a constant. 429 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may 430 collapse to zero if replacing (reg:M B) with (reg:M A). 431 432 PR_CAN_APPEAR is disregarded inside MEMs: in that case, 433 propagate_rtx_1 just tries to make cheaper and valid memory 434 addresses. */ 435 PR_CAN_APPEAR = 1, 436 437 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement 438 outside memory addresses. This is needed because propagate_rtx_1 does 439 not do any analysis on memory; thus it is very conservative and in general 440 it will fail if non-read-only MEMs are found in the source expression. 441 442 PR_HANDLE_MEM is set when the source of the propagation was not 443 another MEM. Then, it is safe not to treat non-read-only MEMs as 444 ``opaque'' objects. */ 445 PR_HANDLE_MEM = 2, 446 447 /* Set when costs should be optimized for speed. */ 448 PR_OPTIMIZE_FOR_SPEED = 4 449 }; 450 451 /* Check that X has a single def. */ 452 453 static bool 454 reg_single_def_p (rtx x) 455 { 456 if (!REG_P (x)) 457 return false; 458 459 int regno = REGNO (x); 460 return (DF_REG_DEF_COUNT (regno) == 1 461 && !bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)), regno)); 462 } 463 464 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the 465 resulting expression. Replace *PX with a new RTL expression if an 466 occurrence of OLD was found. 467 468 This is only a wrapper around simplify-rtx.c: do not add any pattern 469 matching code here. (The sole exception is the handling of LO_SUM, but 470 that is because there is no simplify_gen_* function for LO_SUM). */ 471 472 static bool 473 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags) 474 { 475 rtx x = *px, tem = NULL_RTX, op0, op1, op2; 476 enum rtx_code code = GET_CODE (x); 477 machine_mode mode = GET_MODE (x); 478 machine_mode op_mode; 479 bool can_appear = (flags & PR_CAN_APPEAR) != 0; 480 bool valid_ops = true; 481 482 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x)) 483 { 484 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether 485 they have side effects or not). */ 486 *px = (side_effects_p (x) 487 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx) 488 : gen_rtx_SCRATCH (GET_MODE (x))); 489 return false; 490 } 491 492 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an 493 address, and we are *not* inside one. */ 494 if (x == old_rtx) 495 { 496 *px = new_rtx; 497 return can_appear; 498 } 499 500 /* If this is an expression, try recursive substitution. */ 501 switch (GET_RTX_CLASS (code)) 502 { 503 case RTX_UNARY: 504 op0 = XEXP (x, 0); 505 op_mode = GET_MODE (op0); 506 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 507 if (op0 == XEXP (x, 0)) 508 return true; 509 tem = simplify_gen_unary (code, mode, op0, op_mode); 510 break; 511 512 case RTX_BIN_ARITH: 513 case RTX_COMM_ARITH: 514 op0 = XEXP (x, 0); 515 op1 = XEXP (x, 1); 516 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 517 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 518 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) 519 return true; 520 tem = simplify_gen_binary (code, mode, op0, op1); 521 break; 522 523 case RTX_COMPARE: 524 case RTX_COMM_COMPARE: 525 op0 = XEXP (x, 0); 526 op1 = XEXP (x, 1); 527 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1); 528 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 529 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 530 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) 531 return true; 532 tem = simplify_gen_relational (code, mode, op_mode, op0, op1); 533 break; 534 535 case RTX_TERNARY: 536 case RTX_BITFIELD_OPS: 537 op0 = XEXP (x, 0); 538 op1 = XEXP (x, 1); 539 op2 = XEXP (x, 2); 540 op_mode = GET_MODE (op0); 541 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 542 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 543 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags); 544 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2)) 545 return true; 546 if (op_mode == VOIDmode) 547 op_mode = GET_MODE (op0); 548 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2); 549 break; 550 551 case RTX_EXTRA: 552 /* The only case we try to handle is a SUBREG. */ 553 if (code == SUBREG) 554 { 555 op0 = XEXP (x, 0); 556 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags); 557 if (op0 == XEXP (x, 0)) 558 return true; 559 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)), 560 SUBREG_BYTE (x)); 561 } 562 563 else 564 { 565 rtvec vec; 566 rtvec newvec; 567 const char *fmt = GET_RTX_FORMAT (code); 568 rtx op; 569 570 for (int i = 0; fmt[i]; i++) 571 switch (fmt[i]) 572 { 573 case 'E': 574 vec = XVEC (x, i); 575 newvec = vec; 576 for (int j = 0; j < GET_NUM_ELEM (vec); j++) 577 { 578 op = RTVEC_ELT (vec, j); 579 valid_ops &= propagate_rtx_1 (&op, old_rtx, new_rtx, flags); 580 if (op != RTVEC_ELT (vec, j)) 581 { 582 if (newvec == vec) 583 { 584 newvec = shallow_copy_rtvec (vec); 585 if (!tem) 586 tem = shallow_copy_rtx (x); 587 XVEC (tem, i) = newvec; 588 } 589 RTVEC_ELT (newvec, j) = op; 590 } 591 } 592 break; 593 594 case 'e': 595 if (XEXP (x, i)) 596 { 597 op = XEXP (x, i); 598 valid_ops &= propagate_rtx_1 (&op, old_rtx, new_rtx, flags); 599 if (op != XEXP (x, i)) 600 { 601 if (!tem) 602 tem = shallow_copy_rtx (x); 603 XEXP (tem, i) = op; 604 } 605 } 606 break; 607 } 608 } 609 610 break; 611 612 case RTX_OBJ: 613 if (code == MEM && x != new_rtx) 614 { 615 rtx new_op0; 616 op0 = XEXP (x, 0); 617 618 /* There are some addresses that we cannot work on. */ 619 if (!can_simplify_addr (op0)) 620 return true; 621 622 op0 = new_op0 = targetm.delegitimize_address (op0); 623 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx, 624 flags | PR_CAN_APPEAR); 625 626 /* Dismiss transformation that we do not want to carry on. */ 627 if (!valid_ops 628 || new_op0 == op0 629 || !(GET_MODE (new_op0) == GET_MODE (op0) 630 || GET_MODE (new_op0) == VOIDmode)) 631 return true; 632 633 canonicalize_address (new_op0); 634 635 /* Copy propagations are always ok. Otherwise check the costs. */ 636 if (!(REG_P (old_rtx) && REG_P (new_rtx)) 637 && !should_replace_address (op0, new_op0, GET_MODE (x), 638 MEM_ADDR_SPACE (x), 639 flags & PR_OPTIMIZE_FOR_SPEED)) 640 return true; 641 642 tem = replace_equiv_address_nv (x, new_op0); 643 } 644 645 else if (code == LO_SUM) 646 { 647 op0 = XEXP (x, 0); 648 op1 = XEXP (x, 1); 649 650 /* The only simplification we do attempts to remove references to op0 651 or make it constant -- in both cases, op0's invalidity will not 652 make the result invalid. */ 653 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR); 654 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags); 655 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1)) 656 return true; 657 658 /* (lo_sum (high x) x) -> x */ 659 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1)) 660 tem = op1; 661 else 662 tem = gen_rtx_LO_SUM (mode, op0, op1); 663 664 /* OP1 is likely not a legitimate address, otherwise there would have 665 been no LO_SUM. We want it to disappear if it is invalid, return 666 false in that case. */ 667 return memory_address_p (mode, tem); 668 } 669 670 else if (code == REG) 671 { 672 if (rtx_equal_p (x, old_rtx)) 673 { 674 *px = new_rtx; 675 return can_appear; 676 } 677 } 678 break; 679 680 default: 681 break; 682 } 683 684 /* No change, no trouble. */ 685 if (tem == NULL_RTX) 686 return true; 687 688 *px = tem; 689 690 /* Allow replacements that simplify operations on a vector or complex 691 value to a component. The most prominent case is 692 (subreg ([vec_]concat ...)). */ 693 if (REG_P (tem) && !HARD_REGISTER_P (tem) 694 && (VECTOR_MODE_P (GET_MODE (new_rtx)) 695 || COMPLEX_MODE_P (GET_MODE (new_rtx))) 696 && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx))) 697 return true; 698 699 /* The replacement we made so far is valid, if all of the recursive 700 replacements were valid, or we could simplify everything to 701 a constant. */ 702 return valid_ops || can_appear || CONSTANT_P (tem); 703 } 704 705 706 /* Return true if X constains a non-constant mem. */ 707 708 static bool 709 varying_mem_p (const_rtx x) 710 { 711 subrtx_iterator::array_type array; 712 FOR_EACH_SUBRTX (iter, array, x, NONCONST) 713 if (MEM_P (*iter) && !MEM_READONLY_P (*iter)) 714 return true; 715 return false; 716 } 717 718 719 /* Replace all occurrences of OLD in X with NEW and try to simplify the 720 resulting expression (in mode MODE). Return a new expression if it is 721 a constant, otherwise X. 722 723 Simplifications where occurrences of NEW collapse to a constant are always 724 accepted. All simplifications are accepted if NEW is a pseudo too. 725 Otherwise, we accept simplifications that have a lower or equal cost. */ 726 727 static rtx 728 propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx, 729 bool speed) 730 { 731 rtx tem; 732 bool collapsed; 733 int flags; 734 735 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER) 736 return NULL_RTX; 737 738 flags = 0; 739 if (REG_P (new_rtx) 740 || CONSTANT_P (new_rtx) 741 || (GET_CODE (new_rtx) == SUBREG 742 && REG_P (SUBREG_REG (new_rtx)) 743 && !paradoxical_subreg_p (new_rtx))) 744 flags |= PR_CAN_APPEAR; 745 if (!varying_mem_p (new_rtx)) 746 flags |= PR_HANDLE_MEM; 747 748 if (speed) 749 flags |= PR_OPTIMIZE_FOR_SPEED; 750 751 tem = x; 752 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags); 753 if (tem == x || !collapsed) 754 return NULL_RTX; 755 756 /* gen_lowpart_common will not be able to process VOIDmode entities other 757 than CONST_INTs. */ 758 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem)) 759 return NULL_RTX; 760 761 if (GET_MODE (tem) == VOIDmode) 762 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem); 763 else 764 gcc_assert (GET_MODE (tem) == mode); 765 766 return tem; 767 } 768 769 770 771 772 /* Return true if the register from reference REF is killed 773 between FROM to (but not including) TO. */ 774 775 static bool 776 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to) 777 { 778 rtx_insn *insn; 779 780 for (insn = from; insn != to; insn = NEXT_INSN (insn)) 781 { 782 df_ref def; 783 if (!INSN_P (insn)) 784 continue; 785 786 FOR_EACH_INSN_DEF (def, insn) 787 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def)) 788 return true; 789 } 790 return false; 791 } 792 793 794 /* Check if USE is killed between DEF_INSN and TARGET_INSN. This would 795 require full computation of available expressions; we check only a few 796 restricted conditions: 797 - if the reg in USE has only one definition, go ahead; 798 - in the same basic block, we check for no definitions killing the use; 799 - if TARGET_INSN's basic block has DEF_INSN's basic block as its sole 800 predecessor, we check if the use is killed after DEF_INSN or before 801 TARGET_INSN insn, in their respective basic blocks. */ 802 803 static bool 804 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn) 805 { 806 basic_block def_bb = BLOCK_FOR_INSN (def_insn); 807 basic_block target_bb = BLOCK_FOR_INSN (target_insn); 808 int regno; 809 df_ref def; 810 811 /* We used to have a def reaching a use that is _before_ the def, 812 with the def not dominating the use even though the use and def 813 are in the same basic block, when a register may be used 814 uninitialized in a loop. This should not happen anymore since 815 we do not use reaching definitions, but still we test for such 816 cases and assume that DEF is not available. */ 817 if (def_bb == target_bb 818 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn) 819 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb)) 820 return true; 821 822 /* Check if the reg in USE has only one definition. We already 823 know that this definition reaches use, or we wouldn't be here. 824 However, this is invalid for hard registers because if they are 825 live at the beginning of the function it does not mean that we 826 have an uninitialized access. And we have to check for the case 827 where a register may be used uninitialized in a loop as above. */ 828 regno = DF_REF_REGNO (use); 829 def = DF_REG_DEF_CHAIN (regno); 830 if (def 831 && DF_REF_NEXT_REG (def) == NULL 832 && regno >= FIRST_PSEUDO_REGISTER 833 && (BLOCK_FOR_INSN (DF_REF_INSN (def)) == def_bb 834 ? DF_INSN_LUID (DF_REF_INSN (def)) < DF_INSN_LUID (def_insn) 835 : dominated_by_p (CDI_DOMINATORS, 836 def_bb, BLOCK_FOR_INSN (DF_REF_INSN (def))))) 837 return false; 838 839 /* Check locally if we are in the same basic block. */ 840 if (def_bb == target_bb) 841 return local_ref_killed_between_p (use, def_insn, target_insn); 842 843 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */ 844 if (single_pred_p (target_bb) 845 && single_pred (target_bb) == def_bb) 846 { 847 df_ref x; 848 849 /* See if USE is killed between DEF_INSN and the last insn in the 850 basic block containing DEF_INSN. */ 851 x = df_bb_regno_last_def_find (def_bb, regno); 852 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn)) 853 return true; 854 855 /* See if USE is killed between TARGET_INSN and the first insn in the 856 basic block containing TARGET_INSN. */ 857 x = df_bb_regno_first_def_find (target_bb, regno); 858 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn)) 859 return true; 860 861 return false; 862 } 863 864 /* Otherwise assume the worst case. */ 865 return true; 866 } 867 868 869 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This 870 would require full computation of available expressions; 871 we check only restricted conditions, see use_killed_between. */ 872 static bool 873 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn) 874 { 875 df_ref use; 876 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn); 877 rtx def_set = single_set (def_insn); 878 rtx_insn *next; 879 880 gcc_assert (def_set); 881 882 /* If target_insn comes right after def_insn, which is very common 883 for addresses, we can use a quicker test. Ignore debug insns 884 other than target insns for this. */ 885 next = NEXT_INSN (def_insn); 886 while (next && next != target_insn && DEBUG_INSN_P (next)) 887 next = NEXT_INSN (next); 888 if (next == target_insn && REG_P (SET_DEST (def_set))) 889 { 890 rtx def_reg = SET_DEST (def_set); 891 892 /* If the insn uses the reg that it defines, the substitution is 893 invalid. */ 894 FOR_EACH_INSN_INFO_USE (use, insn_info) 895 if (rtx_equal_p (DF_REF_REG (use), def_reg)) 896 return false; 897 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info) 898 if (rtx_equal_p (DF_REF_REG (use), def_reg)) 899 return false; 900 } 901 else 902 { 903 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX; 904 905 /* Look at all the uses of DEF_INSN, and see if they are not 906 killed between DEF_INSN and TARGET_INSN. */ 907 FOR_EACH_INSN_INFO_USE (use, insn_info) 908 { 909 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg)) 910 return false; 911 if (use_killed_between (use, def_insn, target_insn)) 912 return false; 913 } 914 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info) 915 { 916 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg)) 917 return false; 918 if (use_killed_between (use, def_insn, target_insn)) 919 return false; 920 } 921 } 922 923 return true; 924 } 925 926 927 static df_ref *active_defs; 928 static sparseset active_defs_check; 929 930 /* Fill the ACTIVE_DEFS array with the use->def link for the registers 931 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK 932 too, for checking purposes. */ 933 934 static void 935 register_active_defs (df_ref use) 936 { 937 for (; use; use = DF_REF_NEXT_LOC (use)) 938 { 939 df_ref def = get_def_for_use (use); 940 int regno = DF_REF_REGNO (use); 941 942 if (flag_checking) 943 sparseset_set_bit (active_defs_check, regno); 944 active_defs[regno] = def; 945 } 946 } 947 948 949 /* Build the use->def links that we use to update the dataflow info 950 for new uses. Note that building the links is very cheap and if 951 it were done earlier, they could be used to rule out invalid 952 propagations (in addition to what is done in all_uses_available_at). 953 I'm not doing this yet, though. */ 954 955 static void 956 update_df_init (rtx_insn *def_insn, rtx_insn *insn) 957 { 958 if (flag_checking) 959 sparseset_clear (active_defs_check); 960 register_active_defs (DF_INSN_USES (def_insn)); 961 register_active_defs (DF_INSN_USES (insn)); 962 register_active_defs (DF_INSN_EQ_USES (insn)); 963 } 964 965 966 /* Update the USE_DEF_REF array for the given use, using the active definitions 967 in the ACTIVE_DEFS array to match pseudos to their def. */ 968 969 static inline void 970 update_uses (df_ref use) 971 { 972 for (; use; use = DF_REF_NEXT_LOC (use)) 973 { 974 int regno = DF_REF_REGNO (use); 975 976 /* Set up the use-def chain. */ 977 if (DF_REF_ID (use) >= (int) use_def_ref.length ()) 978 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1); 979 980 if (flag_checking) 981 gcc_assert (sparseset_bit_p (active_defs_check, regno)); 982 use_def_ref[DF_REF_ID (use)] = active_defs[regno]; 983 } 984 } 985 986 987 /* Update the USE_DEF_REF array for the uses in INSN. Only update note 988 uses if NOTES_ONLY is true. */ 989 990 static void 991 update_df (rtx_insn *insn, rtx note) 992 { 993 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn); 994 995 if (note) 996 { 997 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE); 998 df_notes_rescan (insn); 999 } 1000 else 1001 { 1002 df_uses_create (&PATTERN (insn), insn, 0); 1003 df_insn_rescan (insn); 1004 update_uses (DF_INSN_INFO_USES (insn_info)); 1005 } 1006 1007 update_uses (DF_INSN_INFO_EQ_USES (insn_info)); 1008 } 1009 1010 1011 /* Try substituting NEW into LOC, which originated from forward propagation 1012 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are 1013 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the 1014 new insn is not recognized. Return whether the substitution was 1015 performed. */ 1016 1017 static bool 1018 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn, 1019 bool set_reg_equal) 1020 { 1021 rtx_insn *insn = DF_REF_INSN (use); 1022 rtx set = single_set (insn); 1023 rtx note = NULL_RTX; 1024 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)); 1025 int old_cost = 0; 1026 bool ok; 1027 1028 update_df_init (def_insn, insn); 1029 1030 /* forward_propagate_subreg may be operating on an instruction with 1031 multiple sets. If so, assume the cost of the new instruction is 1032 not greater than the old one. */ 1033 if (set) 1034 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed); 1035 if (dump_file) 1036 { 1037 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn)); 1038 print_inline_rtx (dump_file, *loc, 2); 1039 fprintf (dump_file, "\n with "); 1040 print_inline_rtx (dump_file, new_rtx, 2); 1041 fprintf (dump_file, "\n"); 1042 } 1043 1044 validate_unshare_change (insn, loc, new_rtx, true); 1045 if (!verify_changes (0)) 1046 { 1047 if (dump_file) 1048 fprintf (dump_file, "Changes to insn %d not recognized\n", 1049 INSN_UID (insn)); 1050 ok = false; 1051 } 1052 1053 else if (DF_REF_TYPE (use) == DF_REF_REG_USE 1054 && set 1055 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed) 1056 > old_cost)) 1057 { 1058 if (dump_file) 1059 fprintf (dump_file, "Changes to insn %d not profitable\n", 1060 INSN_UID (insn)); 1061 ok = false; 1062 } 1063 1064 else 1065 { 1066 if (dump_file) 1067 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn)); 1068 ok = true; 1069 } 1070 1071 if (ok) 1072 { 1073 confirm_change_group (); 1074 num_changes++; 1075 } 1076 else 1077 { 1078 cancel_changes (0); 1079 1080 /* Can also record a simplified value in a REG_EQUAL note, 1081 making a new one if one does not already exist. */ 1082 if (set_reg_equal) 1083 { 1084 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note, 1085 because the bits in there can be anything and so might not 1086 match the REG_EQUAL note content. See PR70574. */ 1087 subrtx_var_iterator::array_type array; 1088 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST) 1089 { 1090 rtx x = *iter; 1091 if (SUBREG_P (x) && paradoxical_subreg_p (x)) 1092 { 1093 set_reg_equal = false; 1094 break; 1095 } 1096 } 1097 1098 if (set_reg_equal) 1099 { 1100 if (dump_file) 1101 fprintf (dump_file, " Setting REG_EQUAL note\n"); 1102 1103 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx)); 1104 } 1105 } 1106 } 1107 1108 if ((ok || note) && !CONSTANT_P (new_rtx)) 1109 update_df (insn, note); 1110 1111 return ok; 1112 } 1113 1114 /* For the given single_set INSN, containing SRC known to be a 1115 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN 1116 is redundant due to the register being set by a LOAD_EXTEND_OP 1117 load from memory. */ 1118 1119 static bool 1120 free_load_extend (rtx src, rtx_insn *insn) 1121 { 1122 rtx reg; 1123 df_ref def, use; 1124 1125 reg = XEXP (src, 0); 1126 if (load_extend_op (GET_MODE (reg)) != GET_CODE (src)) 1127 return false; 1128 1129 FOR_EACH_INSN_USE (use, insn) 1130 if (!DF_REF_IS_ARTIFICIAL (use) 1131 && DF_REF_TYPE (use) == DF_REF_REG_USE 1132 && DF_REF_REG (use) == reg) 1133 break; 1134 if (!use) 1135 return false; 1136 1137 def = get_def_for_use (use); 1138 if (!def) 1139 return false; 1140 1141 if (DF_REF_IS_ARTIFICIAL (def)) 1142 return false; 1143 1144 if (NONJUMP_INSN_P (DF_REF_INSN (def))) 1145 { 1146 rtx patt = PATTERN (DF_REF_INSN (def)); 1147 1148 if (GET_CODE (patt) == SET 1149 && GET_CODE (SET_SRC (patt)) == MEM 1150 && rtx_equal_p (SET_DEST (patt), reg)) 1151 return true; 1152 } 1153 return false; 1154 } 1155 1156 /* If USE is a subreg, see if it can be replaced by a pseudo. */ 1157 1158 static bool 1159 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set) 1160 { 1161 rtx use_reg = DF_REF_REG (use); 1162 rtx_insn *use_insn; 1163 rtx src; 1164 scalar_int_mode int_use_mode, src_mode; 1165 1166 /* Only consider subregs... */ 1167 machine_mode use_mode = GET_MODE (use_reg); 1168 if (GET_CODE (use_reg) != SUBREG 1169 || !REG_P (SET_DEST (def_set))) 1170 return false; 1171 1172 if (paradoxical_subreg_p (use_reg)) 1173 { 1174 /* If this is a paradoxical SUBREG, we have no idea what value the 1175 extra bits would have. However, if the operand is equivalent to 1176 a SUBREG whose operand is the same as our mode, and all the modes 1177 are within a word, we can just use the inner operand because 1178 these SUBREGs just say how to treat the register. */ 1179 use_insn = DF_REF_INSN (use); 1180 src = SET_SRC (def_set); 1181 if (GET_CODE (src) == SUBREG 1182 && REG_P (SUBREG_REG (src)) 1183 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER 1184 && GET_MODE (SUBREG_REG (src)) == use_mode 1185 && subreg_lowpart_p (src) 1186 && all_uses_available_at (def_insn, use_insn)) 1187 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src), 1188 def_insn, false); 1189 } 1190 1191 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG 1192 is the low part of the reg being extended then just use the inner 1193 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will 1194 be removed due to it matching a LOAD_EXTEND_OP load from memory, 1195 or due to the operation being a no-op when applied to registers. 1196 For example, if we have: 1197 1198 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y))) 1199 B: (... (subreg:SI (reg:DI X)) ...) 1200 1201 and mode_rep_extended says that Y is already sign-extended, 1202 the backend will typically allow A to be combined with the 1203 definition of Y or, failing that, allow A to be deleted after 1204 reload through register tying. Introducing more uses of Y 1205 prevents both optimisations. */ 1206 else if (is_a <scalar_int_mode> (use_mode, &int_use_mode) 1207 && subreg_lowpart_p (use_reg)) 1208 { 1209 use_insn = DF_REF_INSN (use); 1210 src = SET_SRC (def_set); 1211 if ((GET_CODE (src) == ZERO_EXTEND 1212 || GET_CODE (src) == SIGN_EXTEND) 1213 && is_a <scalar_int_mode> (GET_MODE (src), &src_mode) 1214 && REG_P (XEXP (src, 0)) 1215 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER 1216 && GET_MODE (XEXP (src, 0)) == use_mode 1217 && !free_load_extend (src, def_insn) 1218 && (targetm.mode_rep_extended (int_use_mode, src_mode) 1219 != (int) GET_CODE (src)) 1220 && all_uses_available_at (def_insn, use_insn)) 1221 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0), 1222 def_insn, false); 1223 } 1224 1225 return false; 1226 } 1227 1228 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */ 1229 1230 static bool 1231 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg) 1232 { 1233 rtx_insn *use_insn = DF_REF_INSN (use); 1234 rtx src, use_pat, asm_operands, new_rtx, *loc; 1235 int speed_p, i; 1236 df_ref uses; 1237 1238 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0); 1239 1240 src = SET_SRC (def_set); 1241 use_pat = PATTERN (use_insn); 1242 1243 /* In __asm don't replace if src might need more registers than 1244 reg, as that could increase register pressure on the __asm. */ 1245 uses = DF_INSN_USES (def_insn); 1246 if (uses && DF_REF_NEXT_LOC (uses)) 1247 return false; 1248 1249 update_df_init (def_insn, use_insn); 1250 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)); 1251 asm_operands = NULL_RTX; 1252 switch (GET_CODE (use_pat)) 1253 { 1254 case ASM_OPERANDS: 1255 asm_operands = use_pat; 1256 break; 1257 case SET: 1258 if (MEM_P (SET_DEST (use_pat))) 1259 { 1260 loc = &SET_DEST (use_pat); 1261 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p); 1262 if (new_rtx) 1263 validate_unshare_change (use_insn, loc, new_rtx, true); 1264 } 1265 asm_operands = SET_SRC (use_pat); 1266 break; 1267 case PARALLEL: 1268 for (i = 0; i < XVECLEN (use_pat, 0); i++) 1269 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET) 1270 { 1271 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i)))) 1272 { 1273 loc = &SET_DEST (XVECEXP (use_pat, 0, i)); 1274 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, 1275 src, speed_p); 1276 if (new_rtx) 1277 validate_unshare_change (use_insn, loc, new_rtx, true); 1278 } 1279 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i)); 1280 } 1281 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS) 1282 asm_operands = XVECEXP (use_pat, 0, i); 1283 break; 1284 default: 1285 gcc_unreachable (); 1286 } 1287 1288 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS); 1289 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++) 1290 { 1291 loc = &ASM_OPERANDS_INPUT (asm_operands, i); 1292 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p); 1293 if (new_rtx) 1294 validate_unshare_change (use_insn, loc, new_rtx, true); 1295 } 1296 1297 if (num_changes_pending () == 0 || !apply_change_group ()) 1298 return false; 1299 1300 update_df (use_insn, NULL); 1301 num_changes++; 1302 return true; 1303 } 1304 1305 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the 1306 result. */ 1307 1308 static bool 1309 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set) 1310 { 1311 rtx_insn *use_insn = DF_REF_INSN (use); 1312 rtx use_set = single_set (use_insn); 1313 rtx src, reg, new_rtx, *loc; 1314 bool set_reg_equal; 1315 machine_mode mode; 1316 int asm_use = -1; 1317 1318 if (INSN_CODE (use_insn) < 0) 1319 asm_use = asm_noperands (PATTERN (use_insn)); 1320 1321 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn)) 1322 return false; 1323 1324 /* Do not propagate into PC, CC0, etc. */ 1325 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode) 1326 return false; 1327 1328 /* If def and use are subreg, check if they match. */ 1329 reg = DF_REF_REG (use); 1330 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG) 1331 { 1332 if (maybe_ne (SUBREG_BYTE (SET_DEST (def_set)), SUBREG_BYTE (reg))) 1333 return false; 1334 } 1335 /* Check if the def had a subreg, but the use has the whole reg. */ 1336 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG) 1337 return false; 1338 /* Check if the use has a subreg, but the def had the whole reg. Unlike the 1339 previous case, the optimization is possible and often useful indeed. */ 1340 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set))) 1341 reg = SUBREG_REG (reg); 1342 1343 /* Make sure that we can treat REG as having the same mode as the 1344 source of DEF_SET. */ 1345 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg)) 1346 return false; 1347 1348 /* Check if the substitution is valid (last, because it's the most 1349 expensive check!). */ 1350 src = SET_SRC (def_set); 1351 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn)) 1352 return false; 1353 1354 /* Check if the def is loading something from the constant pool; in this 1355 case we would undo optimization such as compress_float_constant. 1356 Still, we can set a REG_EQUAL note. */ 1357 if (MEM_P (src) && MEM_READONLY_P (src)) 1358 { 1359 rtx x = avoid_constant_pool_reference (src); 1360 if (x != src && use_set) 1361 { 1362 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); 1363 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set); 1364 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x); 1365 if (old_rtx != new_rtx) 1366 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx)); 1367 } 1368 return false; 1369 } 1370 1371 if (asm_use >= 0) 1372 return forward_propagate_asm (use, def_insn, def_set, reg); 1373 1374 /* Else try simplifying. */ 1375 1376 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE) 1377 { 1378 loc = &SET_DEST (use_set); 1379 set_reg_equal = false; 1380 } 1381 else if (!use_set) 1382 { 1383 loc = &INSN_VAR_LOCATION_LOC (use_insn); 1384 set_reg_equal = false; 1385 } 1386 else 1387 { 1388 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); 1389 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE) 1390 loc = &XEXP (note, 0); 1391 else 1392 loc = &SET_SRC (use_set); 1393 1394 /* Do not replace an existing REG_EQUAL note if the insn is not 1395 recognized. Either we're already replacing in the note, or we'll 1396 separately try plugging the definition in the note and simplifying. 1397 And only install a REQ_EQUAL note when the destination is a REG 1398 that isn't mentioned in USE_SET, as the note would be invalid 1399 otherwise. We also don't want to install a note if we are merely 1400 propagating a pseudo since verifying that this pseudo isn't dead 1401 is a pain; moreover such a note won't help anything. 1402 If the use is a paradoxical subreg, make sure we don't add a 1403 REG_EQUAL note for it, because it is not equivalent, it is one 1404 possible value for it, but we can't rely on it holding that value. 1405 See PR70574. */ 1406 set_reg_equal = (note == NULL_RTX 1407 && REG_P (SET_DEST (use_set)) 1408 && !REG_P (src) 1409 && !(GET_CODE (src) == SUBREG 1410 && REG_P (SUBREG_REG (src))) 1411 && !reg_mentioned_p (SET_DEST (use_set), 1412 SET_SRC (use_set)) 1413 && !paradoxical_subreg_p (DF_REF_REG (use))); 1414 } 1415 1416 if (GET_MODE (*loc) == VOIDmode) 1417 mode = GET_MODE (SET_DEST (use_set)); 1418 else 1419 mode = GET_MODE (*loc); 1420 1421 new_rtx = propagate_rtx (*loc, mode, reg, src, 1422 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn))); 1423 1424 if (!new_rtx) 1425 return false; 1426 1427 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal); 1428 } 1429 1430 1431 /* Given a use USE of an insn, if it has a single reaching 1432 definition, try to forward propagate it into that insn. 1433 Return true if cfg cleanup will be needed. 1434 REG_PROP_ONLY is true if we should only propagate register copies. */ 1435 1436 static bool 1437 forward_propagate_into (df_ref use, bool reg_prop_only = false) 1438 { 1439 df_ref def; 1440 rtx_insn *def_insn, *use_insn; 1441 rtx def_set; 1442 rtx parent; 1443 1444 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE) 1445 return false; 1446 if (DF_REF_IS_ARTIFICIAL (use)) 1447 return false; 1448 1449 /* Only consider uses that have a single definition. */ 1450 def = get_def_for_use (use); 1451 if (!def) 1452 return false; 1453 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE) 1454 return false; 1455 if (DF_REF_IS_ARTIFICIAL (def)) 1456 return false; 1457 1458 /* Check if the use is still present in the insn! */ 1459 use_insn = DF_REF_INSN (use); 1460 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE) 1461 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX); 1462 else 1463 parent = PATTERN (use_insn); 1464 1465 if (!reg_mentioned_p (DF_REF_REG (use), parent)) 1466 return false; 1467 1468 def_insn = DF_REF_INSN (def); 1469 if (multiple_sets (def_insn)) 1470 return false; 1471 def_set = single_set (def_insn); 1472 if (!def_set) 1473 return false; 1474 1475 if (reg_prop_only 1476 && (!reg_single_def_p (SET_SRC (def_set)) 1477 || !reg_single_def_p (SET_DEST (def_set)))) 1478 return false; 1479 1480 /* Allow propagations into a loop only for reg-to-reg copies, since 1481 replacing one register by another shouldn't increase the cost. */ 1482 1483 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father 1484 && (!reg_single_def_p (SET_SRC (def_set)) 1485 || !reg_single_def_p (SET_DEST (def_set)))) 1486 return false; 1487 1488 /* Only try one kind of propagation. If two are possible, we'll 1489 do it on the following iterations. */ 1490 if (forward_propagate_and_simplify (use, def_insn, def_set) 1491 || forward_propagate_subreg (use, def_insn, def_set)) 1492 { 1493 propagations_left--; 1494 1495 if (cfun->can_throw_non_call_exceptions 1496 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX) 1497 && purge_dead_edges (DF_REF_BB (use))) 1498 return true; 1499 } 1500 return false; 1501 } 1502 1503 1504 static void 1505 fwprop_init (void) 1506 { 1507 num_changes = 0; 1508 calculate_dominance_info (CDI_DOMINATORS); 1509 1510 /* We do not always want to propagate into loops, so we have to find 1511 loops and be careful about them. Avoid CFG modifications so that 1512 we don't have to update dominance information afterwards for 1513 build_single_def_use_links. */ 1514 loop_optimizer_init (AVOID_CFG_MODIFICATIONS); 1515 1516 build_single_def_use_links (); 1517 df_set_flags (DF_DEFER_INSN_RESCAN); 1518 1519 active_defs = XNEWVEC (df_ref, max_reg_num ()); 1520 if (flag_checking) 1521 active_defs_check = sparseset_alloc (max_reg_num ()); 1522 1523 propagations_left = DF_USES_TABLE_SIZE (); 1524 } 1525 1526 static void 1527 fwprop_done (void) 1528 { 1529 loop_optimizer_finalize (); 1530 1531 use_def_ref.release (); 1532 free (active_defs); 1533 if (flag_checking) 1534 sparseset_free (active_defs_check); 1535 1536 free_dominance_info (CDI_DOMINATORS); 1537 cleanup_cfg (0); 1538 delete_trivially_dead_insns (get_insns (), max_reg_num ()); 1539 1540 if (dump_file) 1541 fprintf (dump_file, 1542 "\nNumber of successful forward propagations: %d\n\n", 1543 num_changes); 1544 } 1545 1546 1547 /* Main entry point. */ 1548 1549 static bool 1550 gate_fwprop (void) 1551 { 1552 return optimize > 0 && flag_forward_propagate; 1553 } 1554 1555 static unsigned int 1556 fwprop (bool fwprop_addr_p) 1557 { 1558 unsigned i; 1559 1560 fwprop_init (); 1561 1562 /* Go through all the uses. df_uses_create will create new ones at the 1563 end, and we'll go through them as well. 1564 1565 Do not forward propagate addresses into loops until after unrolling. 1566 CSE did so because it was able to fix its own mess, but we are not. */ 1567 1568 for (i = 0; i < DF_USES_TABLE_SIZE (); i++) 1569 { 1570 if (!propagations_left) 1571 break; 1572 1573 df_ref use = DF_USES_GET (i); 1574 if (use) 1575 { 1576 if (DF_REF_TYPE (use) == DF_REF_REG_USE 1577 || DF_REF_BB (use)->loop_father == NULL 1578 /* The outer most loop is not really a loop. */ 1579 || loop_outer (DF_REF_BB (use)->loop_father) == NULL) 1580 forward_propagate_into (use, fwprop_addr_p); 1581 1582 else if (fwprop_addr_p) 1583 forward_propagate_into (use, false); 1584 } 1585 } 1586 1587 fwprop_done (); 1588 return 0; 1589 } 1590 1591 namespace { 1592 1593 const pass_data pass_data_rtl_fwprop = 1594 { 1595 RTL_PASS, /* type */ 1596 "fwprop1", /* name */ 1597 OPTGROUP_NONE, /* optinfo_flags */ 1598 TV_FWPROP, /* tv_id */ 1599 0, /* properties_required */ 1600 0, /* properties_provided */ 1601 0, /* properties_destroyed */ 1602 0, /* todo_flags_start */ 1603 TODO_df_finish, /* todo_flags_finish */ 1604 }; 1605 1606 class pass_rtl_fwprop : public rtl_opt_pass 1607 { 1608 public: 1609 pass_rtl_fwprop (gcc::context *ctxt) 1610 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt) 1611 {} 1612 1613 /* opt_pass methods: */ 1614 virtual bool gate (function *) { return gate_fwprop (); } 1615 virtual unsigned int execute (function *) { return fwprop (false); } 1616 1617 }; // class pass_rtl_fwprop 1618 1619 } // anon namespace 1620 1621 rtl_opt_pass * 1622 make_pass_rtl_fwprop (gcc::context *ctxt) 1623 { 1624 return new pass_rtl_fwprop (ctxt); 1625 } 1626 1627 namespace { 1628 1629 const pass_data pass_data_rtl_fwprop_addr = 1630 { 1631 RTL_PASS, /* type */ 1632 "fwprop2", /* name */ 1633 OPTGROUP_NONE, /* optinfo_flags */ 1634 TV_FWPROP, /* tv_id */ 1635 0, /* properties_required */ 1636 0, /* properties_provided */ 1637 0, /* properties_destroyed */ 1638 0, /* todo_flags_start */ 1639 TODO_df_finish, /* todo_flags_finish */ 1640 }; 1641 1642 class pass_rtl_fwprop_addr : public rtl_opt_pass 1643 { 1644 public: 1645 pass_rtl_fwprop_addr (gcc::context *ctxt) 1646 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt) 1647 {} 1648 1649 /* opt_pass methods: */ 1650 virtual bool gate (function *) { return gate_fwprop (); } 1651 virtual unsigned int execute (function *) { return fwprop (true); } 1652 1653 }; // class pass_rtl_fwprop_addr 1654 1655 } // anon namespace 1656 1657 rtl_opt_pass * 1658 make_pass_rtl_fwprop_addr (gcc::context *ctxt) 1659 { 1660 return new pass_rtl_fwprop_addr (ctxt); 1661 } 1662