xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/function.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Expands front end tree to back end RTL for GCC.
2    Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3    1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4    2010, 2012  Free Software Foundation, Inc.
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* This file handles the generation of rtl code from tree structure
23    at the level of the function as a whole.
24    It creates the rtl expressions for parameters and auto variables
25    and has full responsibility for allocating stack slots.
26 
27    `expand_function_start' is called at the beginning of a function,
28    before the function body is parsed, and `expand_function_end' is
29    called after parsing the body.
30 
31    Call `assign_stack_local' to allocate a stack slot for a local variable.
32    This is usually done during the RTL generation for the function body,
33    but it can also be done in the reload pass when a pseudo-register does
34    not get a hard register.  */
35 
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68 
69 /* So we can assign to cfun in this file.  */
70 #undef cfun
71 
72 #ifndef STACK_ALIGNMENT_NEEDED
73 #define STACK_ALIGNMENT_NEEDED 1
74 #endif
75 
76 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
77 
78 /* Some systems use __main in a way incompatible with its use in gcc, in these
79    cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
80    give the same symbol without quotes for an alternative entry point.  You
81    must define both, or neither.  */
82 #ifndef NAME__MAIN
83 #define NAME__MAIN "__main"
84 #endif
85 
86 /* Round a value to the lowest integer less than it that is a multiple of
87    the required alignment.  Avoid using division in case the value is
88    negative.  Assume the alignment is a power of two.  */
89 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
90 
91 /* Similar, but round to the next highest integer that meets the
92    alignment.  */
93 #define CEIL_ROUND(VALUE,ALIGN)	(((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
94 
95 /* Nonzero if function being compiled doesn't contain any calls
96    (ignoring the prologue and epilogue).  This is set prior to
97    local register allocation and is valid for the remaining
98    compiler passes.  */
99 int current_function_is_leaf;
100 
101 /* Nonzero if function being compiled doesn't modify the stack pointer
102    (ignoring the prologue and epilogue).  This is only valid after
103    pass_stack_ptr_mod has run.  */
104 int current_function_sp_is_unchanging;
105 
106 /* Nonzero if the function being compiled is a leaf function which only
107    uses leaf registers.  This is valid after reload (specifically after
108    sched2) and is useful only if the port defines LEAF_REGISTERS.  */
109 int current_function_uses_only_leaf_regs;
110 
111 /* Nonzero once virtual register instantiation has been done.
112    assign_stack_local uses frame_pointer_rtx when this is nonzero.
113    calls.c:emit_library_call_value_1 uses it to set up
114    post-instantiation libcalls.  */
115 int virtuals_instantiated;
116 
117 /* Assign unique numbers to labels generated for profiling, debugging, etc.  */
118 static GTY(()) int funcdef_no;
119 
120 /* These variables hold pointers to functions to create and destroy
121    target specific, per-function data structures.  */
122 struct machine_function * (*init_machine_status) (void);
123 
124 /* The currently compiled function.  */
125 struct function *cfun = 0;
126 
127 /* These hashes record the prologue and epilogue insns.  */
128 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
129   htab_t prologue_insn_hash;
130 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131   htab_t epilogue_insn_hash;
132 
133 
134 htab_t types_used_by_vars_hash = NULL;
135 tree types_used_by_cur_var_decl = NULL;
136 
137 /* Forward declarations.  */
138 
139 static struct temp_slot *find_temp_slot_from_address (rtx);
140 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
141 static void pad_below (struct args_size *, enum machine_mode, tree);
142 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
143 static int all_blocks (tree, tree *);
144 static tree *get_block_vector (tree, int *);
145 extern tree debug_find_var_in_block_tree (tree, tree);
146 /* We always define `record_insns' even if it's not used so that we
147    can always export `prologue_epilogue_contains'.  */
148 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
149 static bool contains (const_rtx, htab_t);
150 #ifdef HAVE_return
151 static void emit_return_into_block (basic_block);
152 #endif
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
157 
158 /* Stack of nested functions.  */
159 /* Keep track of the cfun stack.  */
160 
161 typedef struct function *function_p;
162 
163 DEF_VEC_P(function_p);
164 DEF_VEC_ALLOC_P(function_p,heap);
165 static VEC(function_p,heap) *function_context_stack;
166 
167 /* Save the current context for compilation of a nested function.
168    This is called from language-specific code.  */
169 
170 void
171 push_function_context (void)
172 {
173   if (cfun == 0)
174     allocate_struct_function (NULL, false);
175 
176   VEC_safe_push (function_p, heap, function_context_stack, cfun);
177   set_cfun (NULL);
178 }
179 
180 /* Restore the last saved context, at the end of a nested function.
181    This function is called from language-specific code.  */
182 
183 void
184 pop_function_context (void)
185 {
186   struct function *p = VEC_pop (function_p, function_context_stack);
187   set_cfun (p);
188   current_function_decl = p->decl;
189 
190   /* Reset variables that have known state during rtx generation.  */
191   virtuals_instantiated = 0;
192   generating_concat_p = 1;
193 }
194 
195 /* Clear out all parts of the state in F that can safely be discarded
196    after the function has been parsed, but not compiled, to let
197    garbage collection reclaim the memory.  */
198 
199 void
200 free_after_parsing (struct function *f)
201 {
202   f->language = 0;
203 }
204 
205 /* Clear out all parts of the state in F that can safely be discarded
206    after the function has been compiled, to let garbage collection
207    reclaim the memory.  */
208 
209 void
210 free_after_compilation (struct function *f)
211 {
212   prologue_insn_hash = NULL;
213   epilogue_insn_hash = NULL;
214 
215   if (crtl->emit.regno_pointer_align)
216     free (crtl->emit.regno_pointer_align);
217 
218   memset (crtl, 0, sizeof (struct rtl_data));
219   f->eh = NULL;
220   f->machine = NULL;
221   f->cfg = NULL;
222 
223   regno_reg_rtx = NULL;
224   insn_locators_free ();
225 }
226 
227 /* Return size needed for stack frame based on slots so far allocated.
228    This size counts from zero.  It is not rounded to PREFERRED_STACK_BOUNDARY;
229    the caller may have to do that.  */
230 
231 HOST_WIDE_INT
232 get_frame_size (void)
233 {
234   if (FRAME_GROWS_DOWNWARD)
235     return -frame_offset;
236   else
237     return frame_offset;
238 }
239 
240 /* Issue an error message and return TRUE if frame OFFSET overflows in
241    the signed target pointer arithmetics for function FUNC.  Otherwise
242    return FALSE.  */
243 
244 bool
245 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
246 {
247   unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
248 
249   if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
250 	       /* Leave room for the fixed part of the frame.  */
251 	       - 64 * UNITS_PER_WORD)
252     {
253       error_at (DECL_SOURCE_LOCATION (func),
254 		"total size of local objects too large");
255       return TRUE;
256     }
257 
258   return FALSE;
259 }
260 
261 /* Return stack slot alignment in bits for TYPE and MODE.  */
262 
263 static unsigned int
264 get_stack_local_alignment (tree type, enum machine_mode mode)
265 {
266   unsigned int alignment;
267 
268   if (mode == BLKmode)
269     alignment = BIGGEST_ALIGNMENT;
270   else
271     alignment = GET_MODE_ALIGNMENT (mode);
272 
273   /* Allow the frond-end to (possibly) increase the alignment of this
274      stack slot.  */
275   if (! type)
276     type = lang_hooks.types.type_for_mode (mode, 0);
277 
278   return STACK_SLOT_ALIGNMENT (type, mode, alignment);
279 }
280 
281 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
282    with machine mode MODE.
283 
284    ALIGN controls the amount of alignment for the address of the slot:
285    0 means according to MODE,
286    -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
287    -2 means use BITS_PER_UNIT,
288    positive specifies alignment boundary in bits.
289 
290    If REDUCE_ALIGNMENT_OK is true, it is OK to reduce alignment.
291 
292    We do not round to stack_boundary here.  */
293 
294 rtx
295 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
296 		      int align,
297 		      bool reduce_alignment_ok ATTRIBUTE_UNUSED)
298 {
299   rtx x, addr;
300   int bigend_correction = 0;
301   unsigned int alignment, alignment_in_bits;
302   int frame_off, frame_alignment, frame_phase;
303 
304   if (align == 0)
305     {
306       alignment = get_stack_local_alignment (NULL, mode);
307       alignment /= BITS_PER_UNIT;
308     }
309   else if (align == -1)
310     {
311       alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
312       size = CEIL_ROUND (size, alignment);
313     }
314   else if (align == -2)
315     alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
316   else
317     alignment = align / BITS_PER_UNIT;
318 
319   alignment_in_bits = alignment * BITS_PER_UNIT;
320 
321   if (FRAME_GROWS_DOWNWARD)
322     frame_offset -= size;
323 
324   /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT.  */
325   if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
326     {
327       alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
328       alignment = alignment_in_bits / BITS_PER_UNIT;
329     }
330 
331   if (SUPPORTS_STACK_ALIGNMENT)
332     {
333       if (crtl->stack_alignment_estimated < alignment_in_bits)
334 	{
335           if (!crtl->stack_realign_processed)
336 	    crtl->stack_alignment_estimated = alignment_in_bits;
337           else
338 	    {
339 	      /* If stack is realigned and stack alignment value
340 		 hasn't been finalized, it is OK not to increase
341 		 stack_alignment_estimated.  The bigger alignment
342 		 requirement is recorded in stack_alignment_needed
343 		 below.  */
344 	      gcc_assert (!crtl->stack_realign_finalized);
345 	      if (!crtl->stack_realign_needed)
346 		{
347 		  /* It is OK to reduce the alignment as long as the
348 		     requested size is 0 or the estimated stack
349 		     alignment >= mode alignment.  */
350 		  gcc_assert (reduce_alignment_ok
351 		              || size == 0
352 			      || (crtl->stack_alignment_estimated
353 				  >= GET_MODE_ALIGNMENT (mode)));
354 		  alignment_in_bits = crtl->stack_alignment_estimated;
355 		  alignment = alignment_in_bits / BITS_PER_UNIT;
356 		}
357 	    }
358 	}
359     }
360 
361   if (crtl->stack_alignment_needed < alignment_in_bits)
362     crtl->stack_alignment_needed = alignment_in_bits;
363   if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
364     crtl->max_used_stack_slot_alignment = alignment_in_bits;
365 
366   /* Calculate how many bytes the start of local variables is off from
367      stack alignment.  */
368   frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
369   frame_off = STARTING_FRAME_OFFSET % frame_alignment;
370   frame_phase = frame_off ? frame_alignment - frame_off : 0;
371 
372   /* Round the frame offset to the specified alignment.  The default is
373      to always honor requests to align the stack but a port may choose to
374      do its own stack alignment by defining STACK_ALIGNMENT_NEEDED.  */
375   if (STACK_ALIGNMENT_NEEDED
376       || mode != BLKmode
377       || size != 0)
378     {
379       /*  We must be careful here, since FRAME_OFFSET might be negative and
380 	  division with a negative dividend isn't as well defined as we might
381 	  like.  So we instead assume that ALIGNMENT is a power of two and
382 	  use logical operations which are unambiguous.  */
383       if (FRAME_GROWS_DOWNWARD)
384 	frame_offset
385 	  = (FLOOR_ROUND (frame_offset - frame_phase,
386 			  (unsigned HOST_WIDE_INT) alignment)
387 	     + frame_phase);
388       else
389 	frame_offset
390 	  = (CEIL_ROUND (frame_offset - frame_phase,
391 			 (unsigned HOST_WIDE_INT) alignment)
392 	     + frame_phase);
393     }
394 
395   /* On a big-endian machine, if we are allocating more space than we will use,
396      use the least significant bytes of those that are allocated.  */
397   if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
398     bigend_correction = size - GET_MODE_SIZE (mode);
399 
400   /* If we have already instantiated virtual registers, return the actual
401      address relative to the frame pointer.  */
402   if (virtuals_instantiated)
403     addr = plus_constant (frame_pointer_rtx,
404 			  trunc_int_for_mode
405 			  (frame_offset + bigend_correction
406 			   + STARTING_FRAME_OFFSET, Pmode));
407   else
408     addr = plus_constant (virtual_stack_vars_rtx,
409 			  trunc_int_for_mode
410 			  (frame_offset + bigend_correction,
411 			   Pmode));
412 
413   if (!FRAME_GROWS_DOWNWARD)
414     frame_offset += size;
415 
416   x = gen_rtx_MEM (mode, addr);
417   set_mem_align (x, alignment_in_bits);
418   MEM_NOTRAP_P (x) = 1;
419 
420   stack_slot_list
421     = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
422 
423   if (frame_offset_overflow (frame_offset, current_function_decl))
424     frame_offset = 0;
425 
426   return x;
427 }
428 
429 /* Wrap up assign_stack_local_1 with last parameter as false.  */
430 
431 rtx
432 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
433 {
434   return assign_stack_local_1 (mode, size, align, false);
435 }
436 
437 
438 /* In order to evaluate some expressions, such as function calls returning
439    structures in memory, we need to temporarily allocate stack locations.
440    We record each allocated temporary in the following structure.
441 
442    Associated with each temporary slot is a nesting level.  When we pop up
443    one level, all temporaries associated with the previous level are freed.
444    Normally, all temporaries are freed after the execution of the statement
445    in which they were created.  However, if we are inside a ({...}) grouping,
446    the result may be in a temporary and hence must be preserved.  If the
447    result could be in a temporary, we preserve it if we can determine which
448    one it is in.  If we cannot determine which temporary may contain the
449    result, all temporaries are preserved.  A temporary is preserved by
450    pretending it was allocated at the previous nesting level.
451 
452    Automatic variables are also assigned temporary slots, at the nesting
453    level where they are defined.  They are marked a "kept" so that
454    free_temp_slots will not free them.  */
455 
456 struct GTY(()) temp_slot {
457   /* Points to next temporary slot.  */
458   struct temp_slot *next;
459   /* Points to previous temporary slot.  */
460   struct temp_slot *prev;
461   /* The rtx to used to reference the slot.  */
462   rtx slot;
463   /* The size, in units, of the slot.  */
464   HOST_WIDE_INT size;
465   /* The type of the object in the slot, or zero if it doesn't correspond
466      to a type.  We use this to determine whether a slot can be reused.
467      It can be reused if objects of the type of the new slot will always
468      conflict with objects of the type of the old slot.  */
469   tree type;
470   /* The alignment (in bits) of the slot.  */
471   unsigned int align;
472   /* Nonzero if this temporary is currently in use.  */
473   char in_use;
474   /* Nonzero if this temporary has its address taken.  */
475   char addr_taken;
476   /* Nesting level at which this slot is being used.  */
477   int level;
478   /* Nonzero if this should survive a call to free_temp_slots.  */
479   int keep;
480   /* The offset of the slot from the frame_pointer, including extra space
481      for alignment.  This info is for combine_temp_slots.  */
482   HOST_WIDE_INT base_offset;
483   /* The size of the slot, including extra space for alignment.  This
484      info is for combine_temp_slots.  */
485   HOST_WIDE_INT full_size;
486 };
487 
488 /* A table of addresses that represent a stack slot.  The table is a mapping
489    from address RTXen to a temp slot.  */
490 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
491 
492 /* Entry for the above hash table.  */
493 struct GTY(()) temp_slot_address_entry {
494   hashval_t hash;
495   rtx address;
496   struct temp_slot *temp_slot;
497 };
498 
499 /* Removes temporary slot TEMP from LIST.  */
500 
501 static void
502 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
503 {
504   if (temp->next)
505     temp->next->prev = temp->prev;
506   if (temp->prev)
507     temp->prev->next = temp->next;
508   else
509     *list = temp->next;
510 
511   temp->prev = temp->next = NULL;
512 }
513 
514 /* Inserts temporary slot TEMP to LIST.  */
515 
516 static void
517 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
518 {
519   temp->next = *list;
520   if (*list)
521     (*list)->prev = temp;
522   temp->prev = NULL;
523   *list = temp;
524 }
525 
526 /* Returns the list of used temp slots at LEVEL.  */
527 
528 static struct temp_slot **
529 temp_slots_at_level (int level)
530 {
531   if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
532     VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
533 
534   return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
535 }
536 
537 /* Returns the maximal temporary slot level.  */
538 
539 static int
540 max_slot_level (void)
541 {
542   if (!used_temp_slots)
543     return -1;
544 
545   return VEC_length (temp_slot_p, used_temp_slots) - 1;
546 }
547 
548 /* Moves temporary slot TEMP to LEVEL.  */
549 
550 static void
551 move_slot_to_level (struct temp_slot *temp, int level)
552 {
553   cut_slot_from_list (temp, temp_slots_at_level (temp->level));
554   insert_slot_to_list (temp, temp_slots_at_level (level));
555   temp->level = level;
556 }
557 
558 /* Make temporary slot TEMP available.  */
559 
560 static void
561 make_slot_available (struct temp_slot *temp)
562 {
563   cut_slot_from_list (temp, temp_slots_at_level (temp->level));
564   insert_slot_to_list (temp, &avail_temp_slots);
565   temp->in_use = 0;
566   temp->level = -1;
567 }
568 
569 /* Compute the hash value for an address -> temp slot mapping.
570    The value is cached on the mapping entry.  */
571 static hashval_t
572 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
573 {
574   int do_not_record = 0;
575   return hash_rtx (t->address, GET_MODE (t->address),
576 		   &do_not_record, NULL, false);
577 }
578 
579 /* Return the hash value for an address -> temp slot mapping.  */
580 static hashval_t
581 temp_slot_address_hash (const void *p)
582 {
583   const struct temp_slot_address_entry *t;
584   t = (const struct temp_slot_address_entry *) p;
585   return t->hash;
586 }
587 
588 /* Compare two address -> temp slot mapping entries.  */
589 static int
590 temp_slot_address_eq (const void *p1, const void *p2)
591 {
592   const struct temp_slot_address_entry *t1, *t2;
593   t1 = (const struct temp_slot_address_entry *) p1;
594   t2 = (const struct temp_slot_address_entry *) p2;
595   return exp_equiv_p (t1->address, t2->address, 0, true);
596 }
597 
598 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping.  */
599 static void
600 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
601 {
602   void **slot;
603   struct temp_slot_address_entry *t = GGC_NEW (struct temp_slot_address_entry);
604   t->address = address;
605   t->temp_slot = temp_slot;
606   t->hash = temp_slot_address_compute_hash (t);
607   slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
608   *slot = t;
609 }
610 
611 /* Remove an address -> temp slot mapping entry if the temp slot is
612    not in use anymore.  Callback for remove_unused_temp_slot_addresses.  */
613 static int
614 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
615 {
616   const struct temp_slot_address_entry *t;
617   t = (const struct temp_slot_address_entry *) *slot;
618   if (! t->temp_slot->in_use)
619     *slot = NULL;
620   return 1;
621 }
622 
623 /* Remove all mappings of addresses to unused temp slots.  */
624 static void
625 remove_unused_temp_slot_addresses (void)
626 {
627   htab_traverse (temp_slot_address_table,
628 		 remove_unused_temp_slot_addresses_1,
629 		 NULL);
630 }
631 
632 /* Find the temp slot corresponding to the object at address X.  */
633 
634 static struct temp_slot *
635 find_temp_slot_from_address (rtx x)
636 {
637   struct temp_slot *p;
638   struct temp_slot_address_entry tmp, *t;
639 
640   /* First try the easy way:
641      See if X exists in the address -> temp slot mapping.  */
642   tmp.address = x;
643   tmp.temp_slot = NULL;
644   tmp.hash = temp_slot_address_compute_hash (&tmp);
645   t = (struct temp_slot_address_entry *)
646     htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
647   if (t)
648     return t->temp_slot;
649 
650   /* If we have a sum involving a register, see if it points to a temp
651      slot.  */
652   if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
653       && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
654     return p;
655   else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
656 	   && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
657     return p;
658 
659   /* Last resort: Address is a virtual stack var address.  */
660   if (GET_CODE (x) == PLUS
661       && XEXP (x, 0) == virtual_stack_vars_rtx
662       && CONST_INT_P (XEXP (x, 1)))
663     {
664       int i;
665       for (i = max_slot_level (); i >= 0; i--)
666 	for (p = *temp_slots_at_level (i); p; p = p->next)
667 	  {
668 	    if (INTVAL (XEXP (x, 1)) >= p->base_offset
669 		&& INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
670 	      return p;
671 	  }
672     }
673 
674   return NULL;
675 }
676 
677 /* Allocate a temporary stack slot and record it for possible later
678    reuse.
679 
680    MODE is the machine mode to be given to the returned rtx.
681 
682    SIZE is the size in units of the space required.  We do no rounding here
683    since assign_stack_local will do any required rounding.
684 
685    KEEP is 1 if this slot is to be retained after a call to
686    free_temp_slots.  Automatic variables for a block are allocated
687    with this flag.  KEEP values of 2 or 3 were needed respectively
688    for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
689    or for SAVE_EXPRs, but they are now unused.
690 
691    TYPE is the type that will be used for the stack slot.  */
692 
693 rtx
694 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
695 			    int keep, tree type)
696 {
697   unsigned int align;
698   struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
699   rtx slot;
700 
701   /* If SIZE is -1 it means that somebody tried to allocate a temporary
702      of a variable size.  */
703   gcc_assert (size != -1);
704 
705   /* These are now unused.  */
706   gcc_assert (keep <= 1);
707 
708   align = get_stack_local_alignment (type, mode);
709 
710   /* Try to find an available, already-allocated temporary of the proper
711      mode which meets the size and alignment requirements.  Choose the
712      smallest one with the closest alignment.
713 
714      If assign_stack_temp is called outside of the tree->rtl expansion,
715      we cannot reuse the stack slots (that may still refer to
716      VIRTUAL_STACK_VARS_REGNUM).  */
717   if (!virtuals_instantiated)
718     {
719       for (p = avail_temp_slots; p; p = p->next)
720 	{
721 	  if (p->align >= align && p->size >= size
722 	      && GET_MODE (p->slot) == mode
723 	      && objects_must_conflict_p (p->type, type)
724 	      && (best_p == 0 || best_p->size > p->size
725 		  || (best_p->size == p->size && best_p->align > p->align)))
726 	    {
727 	      if (p->align == align && p->size == size)
728 		{
729 		  selected = p;
730 		  cut_slot_from_list (selected, &avail_temp_slots);
731 		  best_p = 0;
732 		  break;
733 		}
734 	      best_p = p;
735 	    }
736 	}
737     }
738 
739   /* Make our best, if any, the one to use.  */
740   if (best_p)
741     {
742       selected = best_p;
743       cut_slot_from_list (selected, &avail_temp_slots);
744 
745       /* If there are enough aligned bytes left over, make them into a new
746 	 temp_slot so that the extra bytes don't get wasted.  Do this only
747 	 for BLKmode slots, so that we can be sure of the alignment.  */
748       if (GET_MODE (best_p->slot) == BLKmode)
749 	{
750 	  int alignment = best_p->align / BITS_PER_UNIT;
751 	  HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
752 
753 	  if (best_p->size - rounded_size >= alignment)
754 	    {
755 	      p = GGC_NEW (struct temp_slot);
756 	      p->in_use = p->addr_taken = 0;
757 	      p->size = best_p->size - rounded_size;
758 	      p->base_offset = best_p->base_offset + rounded_size;
759 	      p->full_size = best_p->full_size - rounded_size;
760 	      p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
761 	      p->align = best_p->align;
762 	      p->type = best_p->type;
763 	      insert_slot_to_list (p, &avail_temp_slots);
764 
765 	      stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
766 						   stack_slot_list);
767 
768 	      best_p->size = rounded_size;
769 	      best_p->full_size = rounded_size;
770 	    }
771 	}
772     }
773 
774   /* If we still didn't find one, make a new temporary.  */
775   if (selected == 0)
776     {
777       HOST_WIDE_INT frame_offset_old = frame_offset;
778 
779       p = GGC_NEW (struct temp_slot);
780 
781       /* We are passing an explicit alignment request to assign_stack_local.
782 	 One side effect of that is assign_stack_local will not round SIZE
783 	 to ensure the frame offset remains suitably aligned.
784 
785 	 So for requests which depended on the rounding of SIZE, we go ahead
786 	 and round it now.  We also make sure ALIGNMENT is at least
787 	 BIGGEST_ALIGNMENT.  */
788       gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
789       p->slot = assign_stack_local (mode,
790 				    (mode == BLKmode
791 				     ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
792 				     : size),
793 				    align);
794 
795       p->align = align;
796 
797       /* The following slot size computation is necessary because we don't
798 	 know the actual size of the temporary slot until assign_stack_local
799 	 has performed all the frame alignment and size rounding for the
800 	 requested temporary.  Note that extra space added for alignment
801 	 can be either above or below this stack slot depending on which
802 	 way the frame grows.  We include the extra space if and only if it
803 	 is above this slot.  */
804       if (FRAME_GROWS_DOWNWARD)
805 	p->size = frame_offset_old - frame_offset;
806       else
807 	p->size = size;
808 
809       /* Now define the fields used by combine_temp_slots.  */
810       if (FRAME_GROWS_DOWNWARD)
811 	{
812 	  p->base_offset = frame_offset;
813 	  p->full_size = frame_offset_old - frame_offset;
814 	}
815       else
816 	{
817 	  p->base_offset = frame_offset_old;
818 	  p->full_size = frame_offset - frame_offset_old;
819 	}
820 
821       selected = p;
822     }
823 
824   p = selected;
825   p->in_use = 1;
826   p->addr_taken = 0;
827   p->type = type;
828   p->level = temp_slot_level;
829   p->keep = keep;
830 
831   pp = temp_slots_at_level (p->level);
832   insert_slot_to_list (p, pp);
833   insert_temp_slot_address (XEXP (p->slot, 0), p);
834 
835   /* Create a new MEM rtx to avoid clobbering MEM flags of old slots.  */
836   slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
837   stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
838 
839   /* If we know the alias set for the memory that will be used, use
840      it.  If there's no TYPE, then we don't know anything about the
841      alias set for the memory.  */
842   set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
843   set_mem_align (slot, align);
844 
845   /* If a type is specified, set the relevant flags.  */
846   if (type != 0)
847     {
848       MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
849       MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
850 				  || TREE_CODE (type) == COMPLEX_TYPE));
851     }
852   MEM_NOTRAP_P (slot) = 1;
853 
854   return slot;
855 }
856 
857 /* Allocate a temporary stack slot and record it for possible later
858    reuse.  First three arguments are same as in preceding function.  */
859 
860 rtx
861 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
862 {
863   return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
864 }
865 
866 /* Assign a temporary.
867    If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
868    and so that should be used in error messages.  In either case, we
869    allocate of the given type.
870    KEEP is as for assign_stack_temp.
871    MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
872    it is 0 if a register is OK.
873    DONT_PROMOTE is 1 if we should not promote values in register
874    to wider modes.  */
875 
876 rtx
877 assign_temp (tree type_or_decl, int keep, int memory_required,
878 	     int dont_promote ATTRIBUTE_UNUSED)
879 {
880   tree type, decl;
881   enum machine_mode mode;
882 #ifdef PROMOTE_MODE
883   int unsignedp;
884 #endif
885 
886   if (DECL_P (type_or_decl))
887     decl = type_or_decl, type = TREE_TYPE (decl);
888   else
889     decl = NULL, type = type_or_decl;
890 
891   mode = TYPE_MODE (type);
892 #ifdef PROMOTE_MODE
893   unsignedp = TYPE_UNSIGNED (type);
894 #endif
895 
896   if (mode == BLKmode || memory_required)
897     {
898       HOST_WIDE_INT size = int_size_in_bytes (type);
899       rtx tmp;
900 
901       /* Zero sized arrays are GNU C extension.  Set size to 1 to avoid
902 	 problems with allocating the stack space.  */
903       if (size == 0)
904 	size = 1;
905 
906       /* Unfortunately, we don't yet know how to allocate variable-sized
907 	 temporaries.  However, sometimes we can find a fixed upper limit on
908 	 the size, so try that instead.  */
909       else if (size == -1)
910 	size = max_int_size_in_bytes (type);
911 
912       /* The size of the temporary may be too large to fit into an integer.  */
913       /* ??? Not sure this should happen except for user silliness, so limit
914 	 this to things that aren't compiler-generated temporaries.  The
915 	 rest of the time we'll die in assign_stack_temp_for_type.  */
916       if (decl && size == -1
917 	  && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
918 	{
919 	  error ("size of variable %q+D is too large", decl);
920 	  size = 1;
921 	}
922 
923       tmp = assign_stack_temp_for_type (mode, size, keep, type);
924       return tmp;
925     }
926 
927 #ifdef PROMOTE_MODE
928   if (! dont_promote)
929     mode = promote_mode (type, mode, &unsignedp);
930 #endif
931 
932   return gen_reg_rtx (mode);
933 }
934 
935 /* Combine temporary stack slots which are adjacent on the stack.
936 
937    This allows for better use of already allocated stack space.  This is only
938    done for BLKmode slots because we can be sure that we won't have alignment
939    problems in this case.  */
940 
941 static void
942 combine_temp_slots (void)
943 {
944   struct temp_slot *p, *q, *next, *next_q;
945   int num_slots;
946 
947   /* We can't combine slots, because the information about which slot
948      is in which alias set will be lost.  */
949   if (flag_strict_aliasing)
950     return;
951 
952   /* If there are a lot of temp slots, don't do anything unless
953      high levels of optimization.  */
954   if (! flag_expensive_optimizations)
955     for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
956       if (num_slots > 100 || (num_slots > 10 && optimize == 0))
957 	return;
958 
959   for (p = avail_temp_slots; p; p = next)
960     {
961       int delete_p = 0;
962 
963       next = p->next;
964 
965       if (GET_MODE (p->slot) != BLKmode)
966 	continue;
967 
968       for (q = p->next; q; q = next_q)
969 	{
970        	  int delete_q = 0;
971 
972 	  next_q = q->next;
973 
974 	  if (GET_MODE (q->slot) != BLKmode)
975 	    continue;
976 
977 	  if (p->base_offset + p->full_size == q->base_offset)
978 	    {
979 	      /* Q comes after P; combine Q into P.  */
980 	      p->size += q->size;
981 	      p->full_size += q->full_size;
982 	      delete_q = 1;
983 	    }
984 	  else if (q->base_offset + q->full_size == p->base_offset)
985 	    {
986 	      /* P comes after Q; combine P into Q.  */
987 	      q->size += p->size;
988 	      q->full_size += p->full_size;
989 	      delete_p = 1;
990 	      break;
991 	    }
992 	  if (delete_q)
993 	    cut_slot_from_list (q, &avail_temp_slots);
994 	}
995 
996       /* Either delete P or advance past it.  */
997       if (delete_p)
998 	cut_slot_from_list (p, &avail_temp_slots);
999     }
1000 }
1001 
1002 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1003    slot that previously was known by OLD_RTX.  */
1004 
1005 void
1006 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1007 {
1008   struct temp_slot *p;
1009 
1010   if (rtx_equal_p (old_rtx, new_rtx))
1011     return;
1012 
1013   p = find_temp_slot_from_address (old_rtx);
1014 
1015   /* If we didn't find one, see if both OLD_RTX is a PLUS.  If so, and
1016      NEW_RTX is a register, see if one operand of the PLUS is a
1017      temporary location.  If so, NEW_RTX points into it.  Otherwise,
1018      if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1019      in common between them.  If so, try a recursive call on those
1020      values.  */
1021   if (p == 0)
1022     {
1023       if (GET_CODE (old_rtx) != PLUS)
1024 	return;
1025 
1026       if (REG_P (new_rtx))
1027 	{
1028 	  update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1029 	  update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1030 	  return;
1031 	}
1032       else if (GET_CODE (new_rtx) != PLUS)
1033 	return;
1034 
1035       if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1036 	update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1037       else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1038 	update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1039       else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1040 	update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1041       else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1042 	update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1043 
1044       return;
1045     }
1046 
1047   /* Otherwise add an alias for the temp's address.  */
1048   insert_temp_slot_address (new_rtx, p);
1049 }
1050 
1051 /* If X could be a reference to a temporary slot, mark the fact that its
1052    address was taken.  */
1053 
1054 void
1055 mark_temp_addr_taken (rtx x)
1056 {
1057   struct temp_slot *p;
1058 
1059   if (x == 0)
1060     return;
1061 
1062   /* If X is not in memory or is at a constant address, it cannot be in
1063      a temporary slot.  */
1064   if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1065     return;
1066 
1067   p = find_temp_slot_from_address (XEXP (x, 0));
1068   if (p != 0)
1069     p->addr_taken = 1;
1070 }
1071 
1072 /* If X could be a reference to a temporary slot, mark that slot as
1073    belonging to the to one level higher than the current level.  If X
1074    matched one of our slots, just mark that one.  Otherwise, we can't
1075    easily predict which it is, so upgrade all of them.  Kept slots
1076    need not be touched.
1077 
1078    This is called when an ({...}) construct occurs and a statement
1079    returns a value in memory.  */
1080 
1081 void
1082 preserve_temp_slots (rtx x)
1083 {
1084   struct temp_slot *p = 0, *next;
1085 
1086   /* If there is no result, we still might have some objects whose address
1087      were taken, so we need to make sure they stay around.  */
1088   if (x == 0)
1089     {
1090       for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1091 	{
1092 	  next = p->next;
1093 
1094 	  if (p->addr_taken)
1095 	    move_slot_to_level (p, temp_slot_level - 1);
1096 	}
1097 
1098       return;
1099     }
1100 
1101   /* If X is a register that is being used as a pointer, see if we have
1102      a temporary slot we know it points to.  To be consistent with
1103      the code below, we really should preserve all non-kept slots
1104      if we can't find a match, but that seems to be much too costly.  */
1105   if (REG_P (x) && REG_POINTER (x))
1106     p = find_temp_slot_from_address (x);
1107 
1108   /* If X is not in memory or is at a constant address, it cannot be in
1109      a temporary slot, but it can contain something whose address was
1110      taken.  */
1111   if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1112     {
1113       for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1114 	{
1115 	  next = p->next;
1116 
1117 	  if (p->addr_taken)
1118 	    move_slot_to_level (p, temp_slot_level - 1);
1119 	}
1120 
1121       return;
1122     }
1123 
1124   /* First see if we can find a match.  */
1125   if (p == 0)
1126     p = find_temp_slot_from_address (XEXP (x, 0));
1127 
1128   if (p != 0)
1129     {
1130       /* Move everything at our level whose address was taken to our new
1131 	 level in case we used its address.  */
1132       struct temp_slot *q;
1133 
1134       if (p->level == temp_slot_level)
1135 	{
1136 	  for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1137 	    {
1138 	      next = q->next;
1139 
1140 	      if (p != q && q->addr_taken)
1141 		move_slot_to_level (q, temp_slot_level - 1);
1142 	    }
1143 
1144 	  move_slot_to_level (p, temp_slot_level - 1);
1145 	  p->addr_taken = 0;
1146 	}
1147       return;
1148     }
1149 
1150   /* Otherwise, preserve all non-kept slots at this level.  */
1151   for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1152     {
1153       next = p->next;
1154 
1155       if (!p->keep)
1156 	move_slot_to_level (p, temp_slot_level - 1);
1157     }
1158 }
1159 
1160 /* Free all temporaries used so far.  This is normally called at the
1161    end of generating code for a statement.  */
1162 
1163 void
1164 free_temp_slots (void)
1165 {
1166   struct temp_slot *p, *next;
1167   bool some_available = false;
1168 
1169   for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1170     {
1171       next = p->next;
1172 
1173       if (!p->keep)
1174 	{
1175 	  make_slot_available (p);
1176 	  some_available = true;
1177 	}
1178     }
1179 
1180   if (some_available)
1181     {
1182       remove_unused_temp_slot_addresses ();
1183       combine_temp_slots ();
1184     }
1185 }
1186 
1187 /* Push deeper into the nesting level for stack temporaries.  */
1188 
1189 void
1190 push_temp_slots (void)
1191 {
1192   temp_slot_level++;
1193 }
1194 
1195 /* Pop a temporary nesting level.  All slots in use in the current level
1196    are freed.  */
1197 
1198 void
1199 pop_temp_slots (void)
1200 {
1201   struct temp_slot *p, *next;
1202   bool some_available = false;
1203 
1204   for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1205     {
1206       next = p->next;
1207       make_slot_available (p);
1208       some_available = true;
1209     }
1210 
1211   if (some_available)
1212     {
1213       remove_unused_temp_slot_addresses ();
1214       combine_temp_slots ();
1215     }
1216 
1217   temp_slot_level--;
1218 }
1219 
1220 /* Initialize temporary slots.  */
1221 
1222 void
1223 init_temp_slots (void)
1224 {
1225   /* We have not allocated any temporaries yet.  */
1226   avail_temp_slots = 0;
1227   used_temp_slots = 0;
1228   temp_slot_level = 0;
1229 
1230   /* Set up the table to map addresses to temp slots.  */
1231   if (! temp_slot_address_table)
1232     temp_slot_address_table = htab_create_ggc (32,
1233 					       temp_slot_address_hash,
1234 					       temp_slot_address_eq,
1235 					       NULL);
1236   else
1237     htab_empty (temp_slot_address_table);
1238 }
1239 
1240 /* These routines are responsible for converting virtual register references
1241    to the actual hard register references once RTL generation is complete.
1242 
1243    The following four variables are used for communication between the
1244    routines.  They contain the offsets of the virtual registers from their
1245    respective hard registers.  */
1246 
1247 static int in_arg_offset;
1248 static int var_offset;
1249 static int dynamic_offset;
1250 static int out_arg_offset;
1251 static int cfa_offset;
1252 
1253 /* In most machines, the stack pointer register is equivalent to the bottom
1254    of the stack.  */
1255 
1256 #ifndef STACK_POINTER_OFFSET
1257 #define STACK_POINTER_OFFSET	0
1258 #endif
1259 
1260 /* If not defined, pick an appropriate default for the offset of dynamically
1261    allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1262    REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE.  */
1263 
1264 #ifndef STACK_DYNAMIC_OFFSET
1265 
1266 /* The bottom of the stack points to the actual arguments.  If
1267    REG_PARM_STACK_SPACE is defined, this includes the space for the register
1268    parameters.  However, if OUTGOING_REG_PARM_STACK space is not defined,
1269    stack space for register parameters is not pushed by the caller, but
1270    rather part of the fixed stack areas and hence not included in
1271    `crtl->outgoing_args_size'.  Nevertheless, we must allow
1272    for it when allocating stack dynamic objects.  */
1273 
1274 #if defined(REG_PARM_STACK_SPACE)
1275 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
1276 ((ACCUMULATE_OUTGOING_ARGS						      \
1277   ? (crtl->outgoing_args_size				      \
1278      + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1279 					       : REG_PARM_STACK_SPACE (FNDECL))) \
1280   : 0) + (STACK_POINTER_OFFSET))
1281 #else
1282 #define STACK_DYNAMIC_OFFSET(FNDECL)	\
1283 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0)	      \
1284  + (STACK_POINTER_OFFSET))
1285 #endif
1286 #endif
1287 
1288 
1289 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1290    is a virtual register, return the equivalent hard register and set the
1291    offset indirectly through the pointer.  Otherwise, return 0.  */
1292 
1293 static rtx
1294 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1295 {
1296   rtx new_rtx;
1297   HOST_WIDE_INT offset;
1298 
1299   if (x == virtual_incoming_args_rtx)
1300     {
1301       if (stack_realign_drap)
1302         {
1303 	  /* Replace virtual_incoming_args_rtx with internal arg
1304 	     pointer if DRAP is used to realign stack.  */
1305           new_rtx = crtl->args.internal_arg_pointer;
1306           offset = 0;
1307         }
1308       else
1309         new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1310     }
1311   else if (x == virtual_stack_vars_rtx)
1312     new_rtx = frame_pointer_rtx, offset = var_offset;
1313   else if (x == virtual_stack_dynamic_rtx)
1314     new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1315   else if (x == virtual_outgoing_args_rtx)
1316     new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1317   else if (x == virtual_cfa_rtx)
1318     {
1319 #ifdef FRAME_POINTER_CFA_OFFSET
1320       new_rtx = frame_pointer_rtx;
1321 #else
1322       new_rtx = arg_pointer_rtx;
1323 #endif
1324       offset = cfa_offset;
1325     }
1326   else
1327     return NULL_RTX;
1328 
1329   *poffset = offset;
1330   return new_rtx;
1331 }
1332 
1333 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1334    Instantiate any virtual registers present inside of *LOC.  The expression
1335    is simplified, as much as possible, but is not to be considered "valid"
1336    in any sense implied by the target.  If any change is made, set CHANGED
1337    to true.  */
1338 
1339 static int
1340 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1341 {
1342   HOST_WIDE_INT offset;
1343   bool *changed = (bool *) data;
1344   rtx x, new_rtx;
1345 
1346   x = *loc;
1347   if (x == 0)
1348     return 0;
1349 
1350   switch (GET_CODE (x))
1351     {
1352     case REG:
1353       new_rtx = instantiate_new_reg (x, &offset);
1354       if (new_rtx)
1355 	{
1356 	  *loc = plus_constant (new_rtx, offset);
1357 	  if (changed)
1358 	    *changed = true;
1359 	}
1360       return -1;
1361 
1362     case PLUS:
1363       new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1364       if (new_rtx)
1365 	{
1366 	  new_rtx = plus_constant (new_rtx, offset);
1367 	  *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1368 	  if (changed)
1369 	    *changed = true;
1370 	  return -1;
1371 	}
1372 
1373       /* FIXME -- from old code */
1374 	  /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1375 	     we can commute the PLUS and SUBREG because pointers into the
1376 	     frame are well-behaved.  */
1377       break;
1378 
1379     default:
1380       break;
1381     }
1382 
1383   return 0;
1384 }
1385 
1386 /* A subroutine of instantiate_virtual_regs_in_insn.  Return true if X
1387    matches the predicate for insn CODE operand OPERAND.  */
1388 
1389 static int
1390 safe_insn_predicate (int code, int operand, rtx x)
1391 {
1392   const struct insn_operand_data *op_data;
1393 
1394   if (code < 0)
1395     return true;
1396 
1397   op_data = &insn_data[code].operand[operand];
1398   if (op_data->predicate == NULL)
1399     return true;
1400 
1401   return op_data->predicate (x, op_data->mode);
1402 }
1403 
1404 /* A subroutine of instantiate_virtual_regs.  Instantiate any virtual
1405    registers present inside of insn.  The result will be a valid insn.  */
1406 
1407 static void
1408 instantiate_virtual_regs_in_insn (rtx insn)
1409 {
1410   HOST_WIDE_INT offset;
1411   int insn_code, i;
1412   bool any_change = false;
1413   rtx set, new_rtx, x, seq;
1414 
1415   /* There are some special cases to be handled first.  */
1416   set = single_set (insn);
1417   if (set)
1418     {
1419       /* We're allowed to assign to a virtual register.  This is interpreted
1420 	 to mean that the underlying register gets assigned the inverse
1421 	 transformation.  This is used, for example, in the handling of
1422 	 non-local gotos.  */
1423       new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1424       if (new_rtx)
1425 	{
1426 	  start_sequence ();
1427 
1428 	  for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1429 	  x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1430 				   GEN_INT (-offset));
1431 	  x = force_operand (x, new_rtx);
1432 	  if (x != new_rtx)
1433 	    emit_move_insn (new_rtx, x);
1434 
1435 	  seq = get_insns ();
1436 	  end_sequence ();
1437 
1438 	  emit_insn_before (seq, insn);
1439 	  delete_insn (insn);
1440 	  return;
1441 	}
1442 
1443       /* Handle a straight copy from a virtual register by generating a
1444 	 new add insn.  The difference between this and falling through
1445 	 to the generic case is avoiding a new pseudo and eliminating a
1446 	 move insn in the initial rtl stream.  */
1447       new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1448       if (new_rtx && offset != 0
1449 	  && REG_P (SET_DEST (set))
1450 	  && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1451 	{
1452 	  start_sequence ();
1453 
1454 	  x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1455 				   new_rtx, GEN_INT (offset), SET_DEST (set),
1456 				   1, OPTAB_LIB_WIDEN);
1457 	  if (x != SET_DEST (set))
1458 	    emit_move_insn (SET_DEST (set), x);
1459 
1460 	  seq = get_insns ();
1461 	  end_sequence ();
1462 
1463 	  emit_insn_before (seq, insn);
1464 	  delete_insn (insn);
1465 	  return;
1466 	}
1467 
1468       extract_insn (insn);
1469       insn_code = INSN_CODE (insn);
1470 
1471       /* Handle a plus involving a virtual register by determining if the
1472 	 operands remain valid if they're modified in place.  */
1473       if (GET_CODE (SET_SRC (set)) == PLUS
1474 	  && recog_data.n_operands >= 3
1475 	  && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1476 	  && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1477 	  && CONST_INT_P (recog_data.operand[2])
1478 	  && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1479 	{
1480 	  offset += INTVAL (recog_data.operand[2]);
1481 
1482 	  /* If the sum is zero, then replace with a plain move.  */
1483 	  if (offset == 0
1484 	      && REG_P (SET_DEST (set))
1485 	      && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1486 	    {
1487 	      start_sequence ();
1488 	      emit_move_insn (SET_DEST (set), new_rtx);
1489 	      seq = get_insns ();
1490 	      end_sequence ();
1491 
1492 	      emit_insn_before (seq, insn);
1493 	      delete_insn (insn);
1494 	      return;
1495 	    }
1496 
1497 	  x = gen_int_mode (offset, recog_data.operand_mode[2]);
1498 
1499 	  /* Using validate_change and apply_change_group here leaves
1500 	     recog_data in an invalid state.  Since we know exactly what
1501 	     we want to check, do those two by hand.  */
1502 	  if (safe_insn_predicate (insn_code, 1, new_rtx)
1503 	      && safe_insn_predicate (insn_code, 2, x))
1504 	    {
1505 	      *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1506 	      *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1507 	      any_change = true;
1508 
1509 	      /* Fall through into the regular operand fixup loop in
1510 		 order to take care of operands other than 1 and 2.  */
1511 	    }
1512 	}
1513     }
1514   else
1515     {
1516       extract_insn (insn);
1517       insn_code = INSN_CODE (insn);
1518     }
1519 
1520   /* In the general case, we expect virtual registers to appear only in
1521      operands, and then only as either bare registers or inside memories.  */
1522   for (i = 0; i < recog_data.n_operands; ++i)
1523     {
1524       x = recog_data.operand[i];
1525       switch (GET_CODE (x))
1526 	{
1527 	case MEM:
1528 	  {
1529 	    rtx addr = XEXP (x, 0);
1530 	    bool changed = false;
1531 
1532 	    for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1533 	    if (!changed)
1534 	      continue;
1535 
1536 	    start_sequence ();
1537 	    x = replace_equiv_address (x, addr);
1538 	    /* It may happen that the address with the virtual reg
1539 	       was valid (e.g. based on the virtual stack reg, which might
1540 	       be acceptable to the predicates with all offsets), whereas
1541 	       the address now isn't anymore, for instance when the address
1542 	       is still offsetted, but the base reg isn't virtual-stack-reg
1543 	       anymore.  Below we would do a force_reg on the whole operand,
1544 	       but this insn might actually only accept memory.  Hence,
1545 	       before doing that last resort, try to reload the address into
1546 	       a register, so this operand stays a MEM.  */
1547 	    if (!safe_insn_predicate (insn_code, i, x))
1548 	      {
1549 		addr = force_reg (GET_MODE (addr), addr);
1550 		x = replace_equiv_address (x, addr);
1551 	      }
1552 	    seq = get_insns ();
1553 	    end_sequence ();
1554 	    if (seq)
1555 	      emit_insn_before (seq, insn);
1556 	  }
1557 	  break;
1558 
1559 	case REG:
1560 	  new_rtx = instantiate_new_reg (x, &offset);
1561 	  if (new_rtx == NULL)
1562 	    continue;
1563 	  if (offset == 0)
1564 	    x = new_rtx;
1565 	  else
1566 	    {
1567 	      start_sequence ();
1568 
1569 	      /* Careful, special mode predicates may have stuff in
1570 		 insn_data[insn_code].operand[i].mode that isn't useful
1571 		 to us for computing a new value.  */
1572 	      /* ??? Recognize address_operand and/or "p" constraints
1573 		 to see if (plus new offset) is a valid before we put
1574 		 this through expand_simple_binop.  */
1575 	      x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1576 				       GEN_INT (offset), NULL_RTX,
1577 				       1, OPTAB_LIB_WIDEN);
1578 	      seq = get_insns ();
1579 	      end_sequence ();
1580 	      emit_insn_before (seq, insn);
1581 	    }
1582 	  break;
1583 
1584 	case SUBREG:
1585 	  new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1586 	  if (new_rtx == NULL)
1587 	    continue;
1588 	  if (offset != 0)
1589 	    {
1590 	      start_sequence ();
1591 	      new_rtx = expand_simple_binop (GET_MODE (new_rtx), PLUS, new_rtx,
1592 					 GEN_INT (offset), NULL_RTX,
1593 					 1, OPTAB_LIB_WIDEN);
1594 	      seq = get_insns ();
1595 	      end_sequence ();
1596 	      emit_insn_before (seq, insn);
1597 	    }
1598 	  x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1599 				   GET_MODE (new_rtx), SUBREG_BYTE (x));
1600 	  gcc_assert (x);
1601 	  break;
1602 
1603 	default:
1604 	  continue;
1605 	}
1606 
1607       /* At this point, X contains the new value for the operand.
1608 	 Validate the new value vs the insn predicate.  Note that
1609 	 asm insns will have insn_code -1 here.  */
1610       if (!safe_insn_predicate (insn_code, i, x))
1611 	{
1612 	  start_sequence ();
1613 	  if (REG_P (x))
1614 	    {
1615 	      gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1616 	      x = copy_to_reg (x);
1617 	    }
1618 	  else
1619 	    x = force_reg (insn_data[insn_code].operand[i].mode, x);
1620 	  seq = get_insns ();
1621 	  end_sequence ();
1622 	  if (seq)
1623 	    emit_insn_before (seq, insn);
1624 	}
1625 
1626       *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1627       any_change = true;
1628     }
1629 
1630   if (any_change)
1631     {
1632       /* Propagate operand changes into the duplicates.  */
1633       for (i = 0; i < recog_data.n_dups; ++i)
1634 	*recog_data.dup_loc[i]
1635 	  = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1636 
1637       /* Force re-recognition of the instruction for validation.  */
1638       INSN_CODE (insn) = -1;
1639     }
1640 
1641   if (asm_noperands (PATTERN (insn)) >= 0)
1642     {
1643       if (!check_asm_operands (PATTERN (insn)))
1644 	{
1645 	  error_for_asm (insn, "impossible constraint in %<asm%>");
1646 	  delete_insn_and_edges (insn);
1647 	}
1648     }
1649   else
1650     {
1651       if (recog_memoized (insn) < 0)
1652 	fatal_insn_not_found (insn);
1653     }
1654 }
1655 
1656 /* Subroutine of instantiate_decls.  Given RTL representing a decl,
1657    do any instantiation required.  */
1658 
1659 void
1660 instantiate_decl_rtl (rtx x)
1661 {
1662   rtx addr;
1663 
1664   if (x == 0)
1665     return;
1666 
1667   /* If this is a CONCAT, recurse for the pieces.  */
1668   if (GET_CODE (x) == CONCAT)
1669     {
1670       instantiate_decl_rtl (XEXP (x, 0));
1671       instantiate_decl_rtl (XEXP (x, 1));
1672       return;
1673     }
1674 
1675   /* If this is not a MEM, no need to do anything.  Similarly if the
1676      address is a constant or a register that is not a virtual register.  */
1677   if (!MEM_P (x))
1678     return;
1679 
1680   addr = XEXP (x, 0);
1681   if (CONSTANT_P (addr)
1682       || (REG_P (addr)
1683 	  && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1684 	      || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1685     return;
1686 
1687   for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1688 }
1689 
1690 /* Helper for instantiate_decls called via walk_tree: Process all decls
1691    in the given DECL_VALUE_EXPR.  */
1692 
1693 static tree
1694 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1695 {
1696   tree t = *tp;
1697   if (! EXPR_P (t))
1698     {
1699       *walk_subtrees = 0;
1700       if (DECL_P (t) && DECL_RTL_SET_P (t))
1701 	instantiate_decl_rtl (DECL_RTL (t));
1702     }
1703   return NULL;
1704 }
1705 
1706 /* Subroutine of instantiate_decls: Process all decls in the given
1707    BLOCK node and all its subblocks.  */
1708 
1709 static void
1710 instantiate_decls_1 (tree let)
1711 {
1712   tree t;
1713 
1714   for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1715     {
1716       if (DECL_RTL_SET_P (t))
1717 	instantiate_decl_rtl (DECL_RTL (t));
1718       if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1719 	{
1720 	  tree v = DECL_VALUE_EXPR (t);
1721 	  walk_tree (&v, instantiate_expr, NULL, NULL);
1722 	}
1723     }
1724 
1725   /* Process all subblocks.  */
1726   for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1727     instantiate_decls_1 (t);
1728 }
1729 
1730 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1731    all virtual registers in their DECL_RTL's.  */
1732 
1733 static void
1734 instantiate_decls (tree fndecl)
1735 {
1736   tree decl, t, next;
1737 
1738   /* Process all parameters of the function.  */
1739   for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1740     {
1741       instantiate_decl_rtl (DECL_RTL (decl));
1742       instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1743       if (DECL_HAS_VALUE_EXPR_P (decl))
1744 	{
1745 	  tree v = DECL_VALUE_EXPR (decl);
1746 	  walk_tree (&v, instantiate_expr, NULL, NULL);
1747 	}
1748     }
1749 
1750   /* Now process all variables defined in the function or its subblocks.  */
1751   instantiate_decls_1 (DECL_INITIAL (fndecl));
1752 
1753   t = cfun->local_decls;
1754   cfun->local_decls = NULL_TREE;
1755   for (; t; t = next)
1756     {
1757       next = TREE_CHAIN (t);
1758       decl = TREE_VALUE (t);
1759       if (DECL_RTL_SET_P (decl))
1760 	instantiate_decl_rtl (DECL_RTL (decl));
1761       ggc_free (t);
1762     }
1763 }
1764 
1765 /* Pass through the INSNS of function FNDECL and convert virtual register
1766    references to hard register references.  */
1767 
1768 static unsigned int
1769 instantiate_virtual_regs (void)
1770 {
1771   rtx insn;
1772 
1773   /* Compute the offsets to use for this function.  */
1774   in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1775   var_offset = STARTING_FRAME_OFFSET;
1776   dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1777   out_arg_offset = STACK_POINTER_OFFSET;
1778 #ifdef FRAME_POINTER_CFA_OFFSET
1779   cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1780 #else
1781   cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1782 #endif
1783 
1784   /* Initialize recognition, indicating that volatile is OK.  */
1785   init_recog ();
1786 
1787   /* Scan through all the insns, instantiating every virtual register still
1788      present.  */
1789   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1790     if (INSN_P (insn))
1791       {
1792 	/* These patterns in the instruction stream can never be recognized.
1793 	   Fortunately, they shouldn't contain virtual registers either.  */
1794 	if (GET_CODE (PATTERN (insn)) == USE
1795 	    || GET_CODE (PATTERN (insn)) == CLOBBER
1796 	    || GET_CODE (PATTERN (insn)) == ADDR_VEC
1797 	    || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1798 	    || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1799 	  continue;
1800 	else if (DEBUG_INSN_P (insn))
1801 	  for_each_rtx (&INSN_VAR_LOCATION (insn),
1802 			instantiate_virtual_regs_in_rtx, NULL);
1803 	else
1804 	  instantiate_virtual_regs_in_insn (insn);
1805 
1806 	if (INSN_DELETED_P (insn))
1807 	  continue;
1808 
1809 	for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1810 
1811 	/* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE.  */
1812 	if (CALL_P (insn))
1813 	  for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1814 			instantiate_virtual_regs_in_rtx, NULL);
1815       }
1816 
1817   /* Instantiate the virtual registers in the DECLs for debugging purposes.  */
1818   instantiate_decls (current_function_decl);
1819 
1820   targetm.instantiate_decls ();
1821 
1822   /* Indicate that, from now on, assign_stack_local should use
1823      frame_pointer_rtx.  */
1824   virtuals_instantiated = 1;
1825   return 0;
1826 }
1827 
1828 struct rtl_opt_pass pass_instantiate_virtual_regs =
1829 {
1830  {
1831   RTL_PASS,
1832   "vregs",                              /* name */
1833   NULL,                                 /* gate */
1834   instantiate_virtual_regs,             /* execute */
1835   NULL,                                 /* sub */
1836   NULL,                                 /* next */
1837   0,                                    /* static_pass_number */
1838   TV_NONE,                              /* tv_id */
1839   0,                                    /* properties_required */
1840   0,                                    /* properties_provided */
1841   0,                                    /* properties_destroyed */
1842   0,                                    /* todo_flags_start */
1843   TODO_dump_func                        /* todo_flags_finish */
1844  }
1845 };
1846 
1847 
1848 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1849    This means a type for which function calls must pass an address to the
1850    function or get an address back from the function.
1851    EXP may be a type node or an expression (whose type is tested).  */
1852 
1853 int
1854 aggregate_value_p (const_tree exp, const_tree fntype)
1855 {
1856   int i, regno, nregs;
1857   rtx reg;
1858 
1859   const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1860 
1861   /* DECL node associated with FNTYPE when relevant, which we might need to
1862      check for by-invisible-reference returns, typically for CALL_EXPR input
1863      EXPressions.  */
1864   const_tree fndecl = NULL_TREE;
1865 
1866   if (fntype)
1867     switch (TREE_CODE (fntype))
1868       {
1869       case CALL_EXPR:
1870 	fndecl = get_callee_fndecl (fntype);
1871 	fntype = (fndecl
1872 		  ? TREE_TYPE (fndecl)
1873 		  : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
1874 	break;
1875       case FUNCTION_DECL:
1876 	fndecl = fntype;
1877 	fntype = TREE_TYPE (fndecl);
1878 	break;
1879       case FUNCTION_TYPE:
1880       case METHOD_TYPE:
1881         break;
1882       case IDENTIFIER_NODE:
1883 	fntype = 0;
1884 	break;
1885       default:
1886 	/* We don't expect other rtl types here.  */
1887 	gcc_unreachable ();
1888       }
1889 
1890   if (TREE_CODE (type) == VOID_TYPE)
1891     return 0;
1892 
1893   /* If a record should be passed the same as its first (and only) member
1894      don't pass it as an aggregate.  */
1895   if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
1896     return aggregate_value_p (first_field (type), fntype);
1897 
1898   /* If the front end has decided that this needs to be passed by
1899      reference, do so.  */
1900   if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1901       && DECL_BY_REFERENCE (exp))
1902     return 1;
1903 
1904   /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1905      called function RESULT_DECL, meaning the function returns in memory by
1906      invisible reference.  This check lets front-ends not set TREE_ADDRESSABLE
1907      on the function type, which used to be the way to request such a return
1908      mechanism but might now be causing troubles at gimplification time if
1909      temporaries with the function type need to be created.  */
1910   if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1911       && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1912     return 1;
1913 
1914   if (targetm.calls.return_in_memory (type, fntype))
1915     return 1;
1916   /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1917      and thus can't be returned in registers.  */
1918   if (TREE_ADDRESSABLE (type))
1919     return 1;
1920   if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1921     return 1;
1922   /* Make sure we have suitable call-clobbered regs to return
1923      the value in; if not, we must return it in memory.  */
1924   reg = hard_function_value (type, 0, fntype, 0);
1925 
1926   /* If we have something other than a REG (e.g. a PARALLEL), then assume
1927      it is OK.  */
1928   if (!REG_P (reg))
1929     return 0;
1930 
1931   regno = REGNO (reg);
1932   nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1933   for (i = 0; i < nregs; i++)
1934     if (! call_used_regs[regno + i])
1935       return 1;
1936   return 0;
1937 }
1938 
1939 /* Return true if we should assign DECL a pseudo register; false if it
1940    should live on the local stack.  */
1941 
1942 bool
1943 use_register_for_decl (const_tree decl)
1944 {
1945   if (!targetm.calls.allocate_stack_slots_for_args())
1946     return true;
1947 
1948   /* Honor volatile.  */
1949   if (TREE_SIDE_EFFECTS (decl))
1950     return false;
1951 
1952   /* Honor addressability.  */
1953   if (TREE_ADDRESSABLE (decl))
1954     return false;
1955 
1956   /* Only register-like things go in registers.  */
1957   if (DECL_MODE (decl) == BLKmode)
1958     return false;
1959 
1960   /* If -ffloat-store specified, don't put explicit float variables
1961      into registers.  */
1962   /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1963      propagates values across these stores, and it probably shouldn't.  */
1964   if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1965     return false;
1966 
1967   /* If we're not interested in tracking debugging information for
1968      this decl, then we can certainly put it in a register.  */
1969   if (DECL_IGNORED_P (decl))
1970     return true;
1971 
1972   if (optimize)
1973     return true;
1974 
1975   if (!DECL_REGISTER (decl))
1976     return false;
1977 
1978   switch (TREE_CODE (TREE_TYPE (decl)))
1979     {
1980     case RECORD_TYPE:
1981     case UNION_TYPE:
1982     case QUAL_UNION_TYPE:
1983       /* When not optimizing, disregard register keyword for variables with
1984 	 types containing methods, otherwise the methods won't be callable
1985 	 from the debugger.  */
1986       if (TYPE_METHODS (TREE_TYPE (decl)))
1987 	return false;
1988       break;
1989     default:
1990       break;
1991     }
1992 
1993   return true;
1994 }
1995 
1996 /* Return true if TYPE should be passed by invisible reference.  */
1997 
1998 bool
1999 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2000 		   tree type, bool named_arg)
2001 {
2002   if (type)
2003     {
2004       /* If this type contains non-trivial constructors, then it is
2005 	 forbidden for the middle-end to create any new copies.  */
2006       if (TREE_ADDRESSABLE (type))
2007 	return true;
2008 
2009       /* GCC post 3.4 passes *all* variable sized types by reference.  */
2010       if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2011 	return true;
2012 
2013       /* If a record type should be passed the same as its first (and only)
2014 	 member, use the type and mode of that member.  */
2015       if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2016 	{
2017 	  type = TREE_TYPE (first_field (type));
2018 	  mode = TYPE_MODE (type);
2019 	}
2020     }
2021 
2022   return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2023 }
2024 
2025 /* Return true if TYPE, which is passed by reference, should be callee
2026    copied instead of caller copied.  */
2027 
2028 bool
2029 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2030 			 tree type, bool named_arg)
2031 {
2032   if (type && TREE_ADDRESSABLE (type))
2033     return false;
2034   return targetm.calls.callee_copies (ca, mode, type, named_arg);
2035 }
2036 
2037 /* Structures to communicate between the subroutines of assign_parms.
2038    The first holds data persistent across all parameters, the second
2039    is cleared out for each parameter.  */
2040 
2041 struct assign_parm_data_all
2042 {
2043   CUMULATIVE_ARGS args_so_far;
2044   struct args_size stack_args_size;
2045   tree function_result_decl;
2046   tree orig_fnargs;
2047   rtx first_conversion_insn;
2048   rtx last_conversion_insn;
2049   HOST_WIDE_INT pretend_args_size;
2050   HOST_WIDE_INT extra_pretend_bytes;
2051   int reg_parm_stack_space;
2052 };
2053 
2054 struct assign_parm_data_one
2055 {
2056   tree nominal_type;
2057   tree passed_type;
2058   rtx entry_parm;
2059   rtx stack_parm;
2060   enum machine_mode nominal_mode;
2061   enum machine_mode passed_mode;
2062   enum machine_mode promoted_mode;
2063   struct locate_and_pad_arg_data locate;
2064   int partial;
2065   BOOL_BITFIELD named_arg : 1;
2066   BOOL_BITFIELD passed_pointer : 1;
2067   BOOL_BITFIELD on_stack : 1;
2068   BOOL_BITFIELD loaded_in_reg : 1;
2069 };
2070 
2071 /* A subroutine of assign_parms.  Initialize ALL.  */
2072 
2073 static void
2074 assign_parms_initialize_all (struct assign_parm_data_all *all)
2075 {
2076   tree fntype;
2077 
2078   memset (all, 0, sizeof (*all));
2079 
2080   fntype = TREE_TYPE (current_function_decl);
2081 
2082 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2083   INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2084 #else
2085   INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2086 			current_function_decl, -1);
2087 #endif
2088 
2089 #ifdef REG_PARM_STACK_SPACE
2090   all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2091 #endif
2092 }
2093 
2094 /* If ARGS contains entries with complex types, split the entry into two
2095    entries of the component type.  Return a new list of substitutions are
2096    needed, else the old list.  */
2097 
2098 static void
2099 split_complex_args (VEC(tree, heap) **args)
2100 {
2101   unsigned i;
2102   tree p;
2103 
2104   for (i = 0; VEC_iterate (tree, *args, i, p); ++i)
2105     {
2106       tree type = TREE_TYPE (p);
2107       if (TREE_CODE (type) == COMPLEX_TYPE
2108 	  && targetm.calls.split_complex_arg (type))
2109 	{
2110 	  tree decl;
2111 	  tree subtype = TREE_TYPE (type);
2112 	  bool addressable = TREE_ADDRESSABLE (p);
2113 
2114 	  /* Rewrite the PARM_DECL's type with its component.  */
2115 	  p = copy_node (p);
2116 	  TREE_TYPE (p) = subtype;
2117 	  DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2118 	  DECL_MODE (p) = VOIDmode;
2119 	  DECL_SIZE (p) = NULL;
2120 	  DECL_SIZE_UNIT (p) = NULL;
2121 	  /* If this arg must go in memory, put it in a pseudo here.
2122 	     We can't allow it to go in memory as per normal parms,
2123 	     because the usual place might not have the imag part
2124 	     adjacent to the real part.  */
2125 	  DECL_ARTIFICIAL (p) = addressable;
2126 	  DECL_IGNORED_P (p) = addressable;
2127 	  TREE_ADDRESSABLE (p) = 0;
2128 	  layout_decl (p, 0);
2129 	  VEC_replace (tree, *args, i, p);
2130 
2131 	  /* Build a second synthetic decl.  */
2132 	  decl = build_decl (EXPR_LOCATION (p),
2133 			     PARM_DECL, NULL_TREE, subtype);
2134 	  DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2135 	  DECL_ARTIFICIAL (decl) = addressable;
2136 	  DECL_IGNORED_P (decl) = addressable;
2137 	  layout_decl (decl, 0);
2138 	  VEC_safe_insert (tree, heap, *args, ++i, decl);
2139 	}
2140     }
2141 }
2142 
2143 /* A subroutine of assign_parms.  Adjust the parameter list to incorporate
2144    the hidden struct return argument, and (abi willing) complex args.
2145    Return the new parameter list.  */
2146 
2147 static VEC(tree, heap) *
2148 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2149 {
2150   tree fndecl = current_function_decl;
2151   tree fntype = TREE_TYPE (fndecl);
2152   VEC(tree, heap) *fnargs = NULL;
2153   tree arg;
2154 
2155   for (arg = DECL_ARGUMENTS (fndecl); arg; arg = TREE_CHAIN (arg))
2156     VEC_safe_push (tree, heap, fnargs, arg);
2157 
2158   all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2159 
2160   /* If struct value address is treated as the first argument, make it so.  */
2161   if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2162       && ! cfun->returns_pcc_struct
2163       && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2164     {
2165       tree type = build_pointer_type (TREE_TYPE (fntype));
2166       tree decl;
2167 
2168       decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2169 			 PARM_DECL, NULL_TREE, type);
2170       DECL_ARG_TYPE (decl) = type;
2171       DECL_ARTIFICIAL (decl) = 1;
2172       DECL_IGNORED_P (decl) = 1;
2173 
2174       TREE_CHAIN (decl) = all->orig_fnargs;
2175       all->orig_fnargs = decl;
2176       VEC_safe_insert (tree, heap, fnargs, 0, decl);
2177 
2178       all->function_result_decl = decl;
2179     }
2180 
2181   /* If the target wants to split complex arguments into scalars, do so.  */
2182   if (targetm.calls.split_complex_arg)
2183     split_complex_args (&fnargs);
2184 
2185   return fnargs;
2186 }
2187 
2188 /* A subroutine of assign_parms.  Examine PARM and pull out type and mode
2189    data for the parameter.  Incorporate ABI specifics such as pass-by-
2190    reference and type promotion.  */
2191 
2192 static void
2193 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2194 			     struct assign_parm_data_one *data)
2195 {
2196   tree nominal_type, passed_type;
2197   enum machine_mode nominal_mode, passed_mode, promoted_mode;
2198   int unsignedp;
2199 
2200   memset (data, 0, sizeof (*data));
2201 
2202   /* NAMED_ARG is a misnomer.  We really mean 'non-variadic'. */
2203   if (!cfun->stdarg)
2204     data->named_arg = 1;  /* No variadic parms.  */
2205   else if (TREE_CHAIN (parm))
2206     data->named_arg = 1;  /* Not the last non-variadic parm. */
2207   else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2208     data->named_arg = 1;  /* Only variadic ones are unnamed.  */
2209   else
2210     data->named_arg = 0;  /* Treat as variadic.  */
2211 
2212   nominal_type = TREE_TYPE (parm);
2213   passed_type = DECL_ARG_TYPE (parm);
2214 
2215   /* Look out for errors propagating this far.  Also, if the parameter's
2216      type is void then its value doesn't matter.  */
2217   if (TREE_TYPE (parm) == error_mark_node
2218       /* This can happen after weird syntax errors
2219 	 or if an enum type is defined among the parms.  */
2220       || TREE_CODE (parm) != PARM_DECL
2221       || passed_type == NULL
2222       || VOID_TYPE_P (nominal_type))
2223     {
2224       nominal_type = passed_type = void_type_node;
2225       nominal_mode = passed_mode = promoted_mode = VOIDmode;
2226       goto egress;
2227     }
2228 
2229   /* Find mode of arg as it is passed, and mode of arg as it should be
2230      during execution of this function.  */
2231   passed_mode = TYPE_MODE (passed_type);
2232   nominal_mode = TYPE_MODE (nominal_type);
2233 
2234   /* If the parm is to be passed as a transparent union or record, use the
2235      type of the first field for the tests below.  We have already verified
2236      that the modes are the same.  */
2237   if ((TREE_CODE (passed_type) == UNION_TYPE
2238        || TREE_CODE (passed_type) == RECORD_TYPE)
2239       && TYPE_TRANSPARENT_AGGR (passed_type))
2240     passed_type = TREE_TYPE (first_field (passed_type));
2241 
2242   /* See if this arg was passed by invisible reference.  */
2243   if (pass_by_reference (&all->args_so_far, passed_mode,
2244 			 passed_type, data->named_arg))
2245     {
2246       passed_type = nominal_type = build_pointer_type (passed_type);
2247       data->passed_pointer = true;
2248       passed_mode = nominal_mode = Pmode;
2249     }
2250 
2251   /* Find mode as it is passed by the ABI.  */
2252   unsignedp = TYPE_UNSIGNED (passed_type);
2253   promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2254 				         TREE_TYPE (current_function_decl), 0);
2255 
2256  egress:
2257   data->nominal_type = nominal_type;
2258   data->passed_type = passed_type;
2259   data->nominal_mode = nominal_mode;
2260   data->passed_mode = passed_mode;
2261   data->promoted_mode = promoted_mode;
2262 }
2263 
2264 /* A subroutine of assign_parms.  Invoke setup_incoming_varargs.  */
2265 
2266 static void
2267 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2268 			    struct assign_parm_data_one *data, bool no_rtl)
2269 {
2270   int varargs_pretend_bytes = 0;
2271 
2272   targetm.calls.setup_incoming_varargs (&all->args_so_far,
2273 					data->promoted_mode,
2274 					data->passed_type,
2275 					&varargs_pretend_bytes, no_rtl);
2276 
2277   /* If the back-end has requested extra stack space, record how much is
2278      needed.  Do not change pretend_args_size otherwise since it may be
2279      nonzero from an earlier partial argument.  */
2280   if (varargs_pretend_bytes > 0)
2281     all->pretend_args_size = varargs_pretend_bytes;
2282 }
2283 
2284 /* A subroutine of assign_parms.  Set DATA->ENTRY_PARM corresponding to
2285    the incoming location of the current parameter.  */
2286 
2287 static void
2288 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2289 			    struct assign_parm_data_one *data)
2290 {
2291   HOST_WIDE_INT pretend_bytes = 0;
2292   rtx entry_parm;
2293   bool in_regs;
2294 
2295   if (data->promoted_mode == VOIDmode)
2296     {
2297       data->entry_parm = data->stack_parm = const0_rtx;
2298       return;
2299     }
2300 
2301 #ifdef FUNCTION_INCOMING_ARG
2302   entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2303 				      data->passed_type, data->named_arg);
2304 #else
2305   entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2306 			     data->passed_type, data->named_arg);
2307 #endif
2308 
2309   if (entry_parm == 0)
2310     data->promoted_mode = data->passed_mode;
2311 
2312   /* Determine parm's home in the stack, in case it arrives in the stack
2313      or we should pretend it did.  Compute the stack position and rtx where
2314      the argument arrives and its size.
2315 
2316      There is one complexity here:  If this was a parameter that would
2317      have been passed in registers, but wasn't only because it is
2318      __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2319      it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2320      In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2321      as it was the previous time.  */
2322   in_regs = entry_parm != 0;
2323 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2324   in_regs = true;
2325 #endif
2326   if (!in_regs && !data->named_arg)
2327     {
2328       if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2329 	{
2330 	  rtx tem;
2331 #ifdef FUNCTION_INCOMING_ARG
2332 	  tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2333 				       data->passed_type, true);
2334 #else
2335 	  tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2336 			      data->passed_type, true);
2337 #endif
2338 	  in_regs = tem != NULL;
2339 	}
2340     }
2341 
2342   /* If this parameter was passed both in registers and in the stack, use
2343      the copy on the stack.  */
2344   if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2345 					data->passed_type))
2346     entry_parm = 0;
2347 
2348   if (entry_parm)
2349     {
2350       int partial;
2351 
2352       partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2353 						 data->promoted_mode,
2354 						 data->passed_type,
2355 						 data->named_arg);
2356       data->partial = partial;
2357 
2358       /* The caller might already have allocated stack space for the
2359 	 register parameters.  */
2360       if (partial != 0 && all->reg_parm_stack_space == 0)
2361 	{
2362 	  /* Part of this argument is passed in registers and part
2363 	     is passed on the stack.  Ask the prologue code to extend
2364 	     the stack part so that we can recreate the full value.
2365 
2366 	     PRETEND_BYTES is the size of the registers we need to store.
2367 	     CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2368 	     stack space that the prologue should allocate.
2369 
2370 	     Internally, gcc assumes that the argument pointer is aligned
2371 	     to STACK_BOUNDARY bits.  This is used both for alignment
2372 	     optimizations (see init_emit) and to locate arguments that are
2373 	     aligned to more than PARM_BOUNDARY bits.  We must preserve this
2374 	     invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2375 	     a stack boundary.  */
2376 
2377 	  /* We assume at most one partial arg, and it must be the first
2378 	     argument on the stack.  */
2379 	  gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2380 
2381 	  pretend_bytes = partial;
2382 	  all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2383 
2384 	  /* We want to align relative to the actual stack pointer, so
2385 	     don't include this in the stack size until later.  */
2386 	  all->extra_pretend_bytes = all->pretend_args_size;
2387 	}
2388     }
2389 
2390   locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2391 		       entry_parm ? data->partial : 0, current_function_decl,
2392 		       &all->stack_args_size, &data->locate);
2393 
2394   /* Update parm_stack_boundary if this parameter is passed in the
2395      stack.  */
2396   if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2397     crtl->parm_stack_boundary = data->locate.boundary;
2398 
2399   /* Adjust offsets to include the pretend args.  */
2400   pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2401   data->locate.slot_offset.constant += pretend_bytes;
2402   data->locate.offset.constant += pretend_bytes;
2403 
2404   data->entry_parm = entry_parm;
2405 }
2406 
2407 /* A subroutine of assign_parms.  If there is actually space on the stack
2408    for this parm, count it in stack_args_size and return true.  */
2409 
2410 static bool
2411 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2412 			   struct assign_parm_data_one *data)
2413 {
2414   /* Trivially true if we've no incoming register.  */
2415   if (data->entry_parm == NULL)
2416     ;
2417   /* Also true if we're partially in registers and partially not,
2418      since we've arranged to drop the entire argument on the stack.  */
2419   else if (data->partial != 0)
2420     ;
2421   /* Also true if the target says that it's passed in both registers
2422      and on the stack.  */
2423   else if (GET_CODE (data->entry_parm) == PARALLEL
2424 	   && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2425     ;
2426   /* Also true if the target says that there's stack allocated for
2427      all register parameters.  */
2428   else if (all->reg_parm_stack_space > 0)
2429     ;
2430   /* Otherwise, no, this parameter has no ABI defined stack slot.  */
2431   else
2432     return false;
2433 
2434   all->stack_args_size.constant += data->locate.size.constant;
2435   if (data->locate.size.var)
2436     ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2437 
2438   return true;
2439 }
2440 
2441 /* A subroutine of assign_parms.  Given that this parameter is allocated
2442    stack space by the ABI, find it.  */
2443 
2444 static void
2445 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2446 {
2447   rtx offset_rtx, stack_parm;
2448   unsigned int align, boundary;
2449 
2450   /* If we're passing this arg using a reg, make its stack home the
2451      aligned stack slot.  */
2452   if (data->entry_parm)
2453     offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2454   else
2455     offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2456 
2457   stack_parm = crtl->args.internal_arg_pointer;
2458   if (offset_rtx != const0_rtx)
2459     stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2460   stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2461 
2462   if (!data->passed_pointer)
2463     {
2464       set_mem_attributes (stack_parm, parm, 1);
2465       /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2466 	 while promoted mode's size is needed.  */
2467       if (data->promoted_mode != BLKmode
2468 	  && data->promoted_mode != DECL_MODE (parm))
2469 	{
2470 	  set_mem_size (stack_parm,
2471 			GEN_INT (GET_MODE_SIZE (data->promoted_mode)));
2472 	  if (MEM_EXPR (stack_parm) && MEM_OFFSET (stack_parm))
2473 	    {
2474 	      int offset = subreg_lowpart_offset (DECL_MODE (parm),
2475 						  data->promoted_mode);
2476 	      if (offset)
2477 		set_mem_offset (stack_parm,
2478 				plus_constant (MEM_OFFSET (stack_parm),
2479 					       -offset));
2480 	    }
2481 	}
2482     }
2483 
2484   boundary = data->locate.boundary;
2485   align = BITS_PER_UNIT;
2486 
2487   /* If we're padding upward, we know that the alignment of the slot
2488      is FUNCTION_ARG_BOUNDARY.  If we're using slot_offset, we're
2489      intentionally forcing upward padding.  Otherwise we have to come
2490      up with a guess at the alignment based on OFFSET_RTX.  */
2491   if (data->locate.where_pad != downward || data->entry_parm)
2492     align = boundary;
2493   else if (CONST_INT_P (offset_rtx))
2494     {
2495       align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2496       align = align & -align;
2497     }
2498   set_mem_align (stack_parm, align);
2499 
2500   if (data->entry_parm)
2501     set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2502 
2503   data->stack_parm = stack_parm;
2504 }
2505 
2506 /* A subroutine of assign_parms.  Adjust DATA->ENTRY_RTL such that it's
2507    always valid and contiguous.  */
2508 
2509 static void
2510 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2511 {
2512   rtx entry_parm = data->entry_parm;
2513   rtx stack_parm = data->stack_parm;
2514 
2515   /* If this parm was passed part in regs and part in memory, pretend it
2516      arrived entirely in memory by pushing the register-part onto the stack.
2517      In the special case of a DImode or DFmode that is split, we could put
2518      it together in a pseudoreg directly, but for now that's not worth
2519      bothering with.  */
2520   if (data->partial != 0)
2521     {
2522       /* Handle calls that pass values in multiple non-contiguous
2523 	 locations.  The Irix 6 ABI has examples of this.  */
2524       if (GET_CODE (entry_parm) == PARALLEL)
2525 	emit_group_store (validize_mem (stack_parm), entry_parm,
2526 			  data->passed_type,
2527 			  int_size_in_bytes (data->passed_type));
2528       else
2529 	{
2530 	  gcc_assert (data->partial % UNITS_PER_WORD == 0);
2531 	  move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2532 			       data->partial / UNITS_PER_WORD);
2533 	}
2534 
2535       entry_parm = stack_parm;
2536     }
2537 
2538   /* If we didn't decide this parm came in a register, by default it came
2539      on the stack.  */
2540   else if (entry_parm == NULL)
2541     entry_parm = stack_parm;
2542 
2543   /* When an argument is passed in multiple locations, we can't make use
2544      of this information, but we can save some copying if the whole argument
2545      is passed in a single register.  */
2546   else if (GET_CODE (entry_parm) == PARALLEL
2547 	   && data->nominal_mode != BLKmode
2548 	   && data->passed_mode != BLKmode)
2549     {
2550       size_t i, len = XVECLEN (entry_parm, 0);
2551 
2552       for (i = 0; i < len; i++)
2553 	if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2554 	    && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2555 	    && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2556 		== data->passed_mode)
2557 	    && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2558 	  {
2559 	    entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2560 	    break;
2561 	  }
2562     }
2563 
2564   data->entry_parm = entry_parm;
2565 }
2566 
2567 /* A subroutine of assign_parms.  Reconstitute any values which were
2568    passed in multiple registers and would fit in a single register.  */
2569 
2570 static void
2571 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2572 {
2573   rtx entry_parm = data->entry_parm;
2574 
2575   /* Convert the PARALLEL to a REG of the same mode as the parallel.
2576      This can be done with register operations rather than on the
2577      stack, even if we will store the reconstituted parameter on the
2578      stack later.  */
2579   if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2580     {
2581       rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2582       emit_group_store (parmreg, entry_parm, data->passed_type,
2583 			GET_MODE_SIZE (GET_MODE (entry_parm)));
2584       entry_parm = parmreg;
2585     }
2586 
2587   data->entry_parm = entry_parm;
2588 }
2589 
2590 /* A subroutine of assign_parms.  Adjust DATA->STACK_RTL such that it's
2591    always valid and properly aligned.  */
2592 
2593 static void
2594 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2595 {
2596   rtx stack_parm = data->stack_parm;
2597 
2598   /* If we can't trust the parm stack slot to be aligned enough for its
2599      ultimate type, don't use that slot after entry.  We'll make another
2600      stack slot, if we need one.  */
2601   if (stack_parm
2602       && ((STRICT_ALIGNMENT
2603 	   && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2604 	  || (data->nominal_type
2605 	      && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2606 	      && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2607     stack_parm = NULL;
2608 
2609   /* If parm was passed in memory, and we need to convert it on entry,
2610      don't store it back in that same slot.  */
2611   else if (data->entry_parm == stack_parm
2612 	   && data->nominal_mode != BLKmode
2613 	   && data->nominal_mode != data->passed_mode)
2614     stack_parm = NULL;
2615 
2616   /* If stack protection is in effect for this function, don't leave any
2617      pointers in their passed stack slots.  */
2618   else if (crtl->stack_protect_guard
2619 	   && (flag_stack_protect == 2
2620 	       || data->passed_pointer
2621 	       || POINTER_TYPE_P (data->nominal_type)))
2622     stack_parm = NULL;
2623 
2624   data->stack_parm = stack_parm;
2625 }
2626 
2627 /* A subroutine of assign_parms.  Return true if the current parameter
2628    should be stored as a BLKmode in the current frame.  */
2629 
2630 static bool
2631 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2632 {
2633   if (data->nominal_mode == BLKmode)
2634     return true;
2635   if (GET_MODE (data->entry_parm) == BLKmode)
2636     return true;
2637 
2638 #ifdef BLOCK_REG_PADDING
2639   /* Only assign_parm_setup_block knows how to deal with register arguments
2640      that are padded at the least significant end.  */
2641   if (REG_P (data->entry_parm)
2642       && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2643       && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2644 	  == (BYTES_BIG_ENDIAN ? upward : downward)))
2645     return true;
2646 #endif
2647 
2648   return false;
2649 }
2650 
2651 /* A subroutine of assign_parms.  Arrange for the parameter to be
2652    present and valid in DATA->STACK_RTL.  */
2653 
2654 static void
2655 assign_parm_setup_block (struct assign_parm_data_all *all,
2656 			 tree parm, struct assign_parm_data_one *data)
2657 {
2658   rtx entry_parm = data->entry_parm;
2659   rtx stack_parm = data->stack_parm;
2660   HOST_WIDE_INT size;
2661   HOST_WIDE_INT size_stored;
2662 
2663   if (GET_CODE (entry_parm) == PARALLEL)
2664     entry_parm = emit_group_move_into_temps (entry_parm);
2665 
2666   size = int_size_in_bytes (data->passed_type);
2667   size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2668   if (stack_parm == 0)
2669     {
2670       DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2671       stack_parm = assign_stack_local (BLKmode, size_stored,
2672 				       DECL_ALIGN (parm));
2673       if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2674 	PUT_MODE (stack_parm, GET_MODE (entry_parm));
2675       set_mem_attributes (stack_parm, parm, 1);
2676     }
2677 
2678   /* If a BLKmode arrives in registers, copy it to a stack slot.  Handle
2679      calls that pass values in multiple non-contiguous locations.  */
2680   if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2681     {
2682       rtx mem;
2683 
2684       /* Note that we will be storing an integral number of words.
2685 	 So we have to be careful to ensure that we allocate an
2686 	 integral number of words.  We do this above when we call
2687 	 assign_stack_local if space was not allocated in the argument
2688 	 list.  If it was, this will not work if PARM_BOUNDARY is not
2689 	 a multiple of BITS_PER_WORD.  It isn't clear how to fix this
2690 	 if it becomes a problem.  Exception is when BLKmode arrives
2691 	 with arguments not conforming to word_mode.  */
2692 
2693       if (data->stack_parm == 0)
2694 	;
2695       else if (GET_CODE (entry_parm) == PARALLEL)
2696 	;
2697       else
2698 	gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2699 
2700       mem = validize_mem (stack_parm);
2701 
2702       /* Handle values in multiple non-contiguous locations.  */
2703       if (GET_CODE (entry_parm) == PARALLEL)
2704 	{
2705 	  push_to_sequence2 (all->first_conversion_insn,
2706 			     all->last_conversion_insn);
2707 	  emit_group_store (mem, entry_parm, data->passed_type, size);
2708 	  all->first_conversion_insn = get_insns ();
2709 	  all->last_conversion_insn = get_last_insn ();
2710 	  end_sequence ();
2711 	}
2712 
2713       else if (size == 0)
2714 	;
2715 
2716       /* If SIZE is that of a mode no bigger than a word, just use
2717 	 that mode's store operation.  */
2718       else if (size <= UNITS_PER_WORD)
2719 	{
2720 	  enum machine_mode mode
2721 	    = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2722 
2723 	  if (mode != BLKmode
2724 #ifdef BLOCK_REG_PADDING
2725 	      && (size == UNITS_PER_WORD
2726 		  || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2727 		      != (BYTES_BIG_ENDIAN ? upward : downward)))
2728 #endif
2729 	      )
2730 	    {
2731 	      rtx reg;
2732 
2733 	      /* We are really truncating a word_mode value containing
2734 		 SIZE bytes into a value of mode MODE.  If such an
2735 		 operation requires no actual instructions, we can refer
2736 		 to the value directly in mode MODE, otherwise we must
2737 		 start with the register in word_mode and explicitly
2738 		 convert it.  */
2739 	      if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2740 		reg = gen_rtx_REG (mode, REGNO (entry_parm));
2741 	      else
2742 		{
2743 		  reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2744 		  reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2745 		}
2746 	      emit_move_insn (change_address (mem, mode, 0), reg);
2747 	    }
2748 
2749 	  /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2750 	     machine must be aligned to the left before storing
2751 	     to memory.  Note that the previous test doesn't
2752 	     handle all cases (e.g. SIZE == 3).  */
2753 	  else if (size != UNITS_PER_WORD
2754 #ifdef BLOCK_REG_PADDING
2755 		   && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2756 		       == downward)
2757 #else
2758 		   && BYTES_BIG_ENDIAN
2759 #endif
2760 		   )
2761 	    {
2762 	      rtx tem, x;
2763 	      int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2764 	      rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2765 
2766 	      x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2767 				build_int_cst (NULL_TREE, by),
2768 				NULL_RTX, 1);
2769 	      tem = change_address (mem, word_mode, 0);
2770 	      emit_move_insn (tem, x);
2771 	    }
2772 	  else
2773 	    move_block_from_reg (REGNO (entry_parm), mem,
2774 				 size_stored / UNITS_PER_WORD);
2775 	}
2776       else
2777 	move_block_from_reg (REGNO (entry_parm), mem,
2778 			     size_stored / UNITS_PER_WORD);
2779     }
2780   else if (data->stack_parm == 0)
2781     {
2782       push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2783       emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2784 		       BLOCK_OP_NORMAL);
2785       all->first_conversion_insn = get_insns ();
2786       all->last_conversion_insn = get_last_insn ();
2787       end_sequence ();
2788     }
2789 
2790   data->stack_parm = stack_parm;
2791   SET_DECL_RTL (parm, stack_parm);
2792 }
2793 
2794 /* A subroutine of assign_parms.  Allocate a pseudo to hold the current
2795    parameter.  Get it there.  Perform all ABI specified conversions.  */
2796 
2797 static void
2798 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2799 		       struct assign_parm_data_one *data)
2800 {
2801   rtx parmreg;
2802   enum machine_mode promoted_nominal_mode;
2803   int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2804   bool did_conversion = false;
2805 
2806   /* Store the parm in a pseudoregister during the function, but we may
2807      need to do it in a wider mode.  Using 2 here makes the result
2808      consistent with promote_decl_mode and thus expand_expr_real_1.  */
2809   promoted_nominal_mode
2810     = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2811 			     TREE_TYPE (current_function_decl), 2);
2812 
2813   parmreg = gen_reg_rtx (promoted_nominal_mode);
2814 
2815   if (!DECL_ARTIFICIAL (parm))
2816     mark_user_reg (parmreg);
2817 
2818   /* If this was an item that we received a pointer to,
2819      set DECL_RTL appropriately.  */
2820   if (data->passed_pointer)
2821     {
2822       rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2823       set_mem_attributes (x, parm, 1);
2824       SET_DECL_RTL (parm, x);
2825     }
2826   else
2827     SET_DECL_RTL (parm, parmreg);
2828 
2829   assign_parm_remove_parallels (data);
2830 
2831   /* Copy the value into the register, thus bridging between
2832      assign_parm_find_data_types and expand_expr_real_1.  */
2833   if (data->nominal_mode != data->passed_mode
2834       || promoted_nominal_mode != data->promoted_mode)
2835     {
2836       int save_tree_used;
2837 
2838       /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2839 	 mode, by the caller.  We now have to convert it to
2840 	 NOMINAL_MODE, if different.  However, PARMREG may be in
2841 	 a different mode than NOMINAL_MODE if it is being stored
2842 	 promoted.
2843 
2844 	 If ENTRY_PARM is a hard register, it might be in a register
2845 	 not valid for operating in its mode (e.g., an odd-numbered
2846 	 register for a DFmode).  In that case, moves are the only
2847 	 thing valid, so we can't do a convert from there.  This
2848 	 occurs when the calling sequence allow such misaligned
2849 	 usages.
2850 
2851 	 In addition, the conversion may involve a call, which could
2852 	 clobber parameters which haven't been copied to pseudo
2853 	 registers yet.  Therefore, we must first copy the parm to
2854 	 a pseudo reg here, and save the conversion until after all
2855 	 parameters have been moved.  */
2856 
2857       rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2858 
2859       emit_move_insn (tempreg, validize_mem (data->entry_parm));
2860 
2861       push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2862       tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2863 
2864       if (GET_CODE (tempreg) == SUBREG
2865 	  && GET_MODE (tempreg) == data->nominal_mode
2866 	  && REG_P (SUBREG_REG (tempreg))
2867 	  && data->nominal_mode == data->passed_mode
2868 	  && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2869 	  && GET_MODE_SIZE (GET_MODE (tempreg))
2870 	     < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2871 	{
2872 	  /* The argument is already sign/zero extended, so note it
2873 	     into the subreg.  */
2874 	  SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2875 	  SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2876 	}
2877 
2878       /* TREE_USED gets set erroneously during expand_assignment.  */
2879       save_tree_used = TREE_USED (parm);
2880       expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2881       TREE_USED (parm) = save_tree_used;
2882       all->first_conversion_insn = get_insns ();
2883       all->last_conversion_insn = get_last_insn ();
2884       end_sequence ();
2885 
2886       did_conversion = true;
2887     }
2888   else
2889     emit_move_insn (parmreg, validize_mem (data->entry_parm));
2890 
2891   /* If we were passed a pointer but the actual value can safely live
2892      in a register, put it in one.  */
2893   if (data->passed_pointer
2894       && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2895       /* If by-reference argument was promoted, demote it.  */
2896       && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2897 	  || use_register_for_decl (parm)))
2898     {
2899       /* We can't use nominal_mode, because it will have been set to
2900 	 Pmode above.  We must use the actual mode of the parm.  */
2901       parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2902       mark_user_reg (parmreg);
2903 
2904       if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2905 	{
2906 	  rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2907 	  int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2908 
2909 	  push_to_sequence2 (all->first_conversion_insn,
2910 			     all->last_conversion_insn);
2911 	  emit_move_insn (tempreg, DECL_RTL (parm));
2912 	  tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2913 	  emit_move_insn (parmreg, tempreg);
2914 	  all->first_conversion_insn = get_insns ();
2915 	  all->last_conversion_insn = get_last_insn ();
2916 	  end_sequence ();
2917 
2918 	  did_conversion = true;
2919 	}
2920       else
2921 	emit_move_insn (parmreg, DECL_RTL (parm));
2922 
2923       SET_DECL_RTL (parm, parmreg);
2924 
2925       /* STACK_PARM is the pointer, not the parm, and PARMREG is
2926 	 now the parm.  */
2927       data->stack_parm = NULL;
2928     }
2929 
2930   /* Mark the register as eliminable if we did no conversion and it was
2931      copied from memory at a fixed offset, and the arg pointer was not
2932      copied to a pseudo-reg.  If the arg pointer is a pseudo reg or the
2933      offset formed an invalid address, such memory-equivalences as we
2934      make here would screw up life analysis for it.  */
2935   if (data->nominal_mode == data->passed_mode
2936       && !did_conversion
2937       && data->stack_parm != 0
2938       && MEM_P (data->stack_parm)
2939       && data->locate.offset.var == 0
2940       && reg_mentioned_p (virtual_incoming_args_rtx,
2941 			  XEXP (data->stack_parm, 0)))
2942     {
2943       rtx linsn = get_last_insn ();
2944       rtx sinsn, set;
2945 
2946       /* Mark complex types separately.  */
2947       if (GET_CODE (parmreg) == CONCAT)
2948 	{
2949 	  enum machine_mode submode
2950 	    = GET_MODE_INNER (GET_MODE (parmreg));
2951 	  int regnor = REGNO (XEXP (parmreg, 0));
2952 	  int regnoi = REGNO (XEXP (parmreg, 1));
2953 	  rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2954 	  rtx stacki = adjust_address_nv (data->stack_parm, submode,
2955 					  GET_MODE_SIZE (submode));
2956 
2957 	  /* Scan backwards for the set of the real and
2958 	     imaginary parts.  */
2959 	  for (sinsn = linsn; sinsn != 0;
2960 	       sinsn = prev_nonnote_insn (sinsn))
2961 	    {
2962 	      set = single_set (sinsn);
2963 	      if (set == 0)
2964 		continue;
2965 
2966 	      if (SET_DEST (set) == regno_reg_rtx [regnoi])
2967 		set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2968 	      else if (SET_DEST (set) == regno_reg_rtx [regnor])
2969 		set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2970 	    }
2971 	}
2972       else if ((set = single_set (linsn)) != 0
2973 	       && SET_DEST (set) == parmreg)
2974 	set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2975     }
2976 
2977   /* For pointer data type, suggest pointer register.  */
2978   if (POINTER_TYPE_P (TREE_TYPE (parm)))
2979     mark_reg_pointer (parmreg,
2980 		      TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2981 }
2982 
2983 /* A subroutine of assign_parms.  Allocate stack space to hold the current
2984    parameter.  Get it there.  Perform all ABI specified conversions.  */
2985 
2986 static void
2987 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2988 		         struct assign_parm_data_one *data)
2989 {
2990   /* Value must be stored in the stack slot STACK_PARM during function
2991      execution.  */
2992   bool to_conversion = false;
2993 
2994   assign_parm_remove_parallels (data);
2995 
2996   if (data->promoted_mode != data->nominal_mode)
2997     {
2998       /* Conversion is required.  */
2999       rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3000 
3001       emit_move_insn (tempreg, validize_mem (data->entry_parm));
3002 
3003       push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3004       to_conversion = true;
3005 
3006       data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3007 					  TYPE_UNSIGNED (TREE_TYPE (parm)));
3008 
3009       if (data->stack_parm)
3010 	{
3011 	  int offset = subreg_lowpart_offset (data->nominal_mode,
3012 					      GET_MODE (data->stack_parm));
3013 	  /* ??? This may need a big-endian conversion on sparc64.  */
3014 	  data->stack_parm
3015 	    = adjust_address (data->stack_parm, data->nominal_mode, 0);
3016 	  if (offset && MEM_OFFSET (data->stack_parm))
3017 	    set_mem_offset (data->stack_parm,
3018 			    plus_constant (MEM_OFFSET (data->stack_parm),
3019 					   offset));
3020 	}
3021     }
3022 
3023   if (data->entry_parm != data->stack_parm)
3024     {
3025       rtx src, dest;
3026 
3027       if (data->stack_parm == 0)
3028 	{
3029 	  int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3030 					    GET_MODE (data->entry_parm),
3031 					    TYPE_ALIGN (data->passed_type));
3032 	  data->stack_parm
3033 	    = assign_stack_local (GET_MODE (data->entry_parm),
3034 				  GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3035 				  align);
3036 	  set_mem_attributes (data->stack_parm, parm, 1);
3037 	}
3038 
3039       dest = validize_mem (data->stack_parm);
3040       src = validize_mem (data->entry_parm);
3041 
3042       if (MEM_P (src))
3043 	{
3044 	  /* Use a block move to handle potentially misaligned entry_parm.  */
3045 	  if (!to_conversion)
3046 	    push_to_sequence2 (all->first_conversion_insn,
3047 			       all->last_conversion_insn);
3048 	  to_conversion = true;
3049 
3050 	  emit_block_move (dest, src,
3051 			   GEN_INT (int_size_in_bytes (data->passed_type)),
3052 			   BLOCK_OP_NORMAL);
3053 	}
3054       else
3055 	emit_move_insn (dest, src);
3056     }
3057 
3058   if (to_conversion)
3059     {
3060       all->first_conversion_insn = get_insns ();
3061       all->last_conversion_insn = get_last_insn ();
3062       end_sequence ();
3063     }
3064 
3065   SET_DECL_RTL (parm, data->stack_parm);
3066 }
3067 
3068 /* A subroutine of assign_parms.  If the ABI splits complex arguments, then
3069    undo the frobbing that we did in assign_parms_augmented_arg_list.  */
3070 
3071 static void
3072 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3073 			      VEC(tree, heap) *fnargs)
3074 {
3075   tree parm;
3076   tree orig_fnargs = all->orig_fnargs;
3077   unsigned i = 0;
3078 
3079   for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3080     {
3081       if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3082 	  && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3083 	{
3084 	  rtx tmp, real, imag;
3085 	  enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3086 
3087 	  real = DECL_RTL (VEC_index (tree, fnargs, i));
3088 	  imag = DECL_RTL (VEC_index (tree, fnargs, i + 1));
3089 	  if (inner != GET_MODE (real))
3090 	    {
3091 	      real = gen_lowpart_SUBREG (inner, real);
3092 	      imag = gen_lowpart_SUBREG (inner, imag);
3093 	    }
3094 
3095 	  if (TREE_ADDRESSABLE (parm))
3096 	    {
3097 	      rtx rmem, imem;
3098 	      HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3099 	      int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3100 						DECL_MODE (parm),
3101 						TYPE_ALIGN (TREE_TYPE (parm)));
3102 
3103 	      /* split_complex_arg put the real and imag parts in
3104 		 pseudos.  Move them to memory.  */
3105 	      tmp = assign_stack_local (DECL_MODE (parm), size, align);
3106 	      set_mem_attributes (tmp, parm, 1);
3107 	      rmem = adjust_address_nv (tmp, inner, 0);
3108 	      imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3109 	      push_to_sequence2 (all->first_conversion_insn,
3110 				 all->last_conversion_insn);
3111 	      emit_move_insn (rmem, real);
3112 	      emit_move_insn (imem, imag);
3113 	      all->first_conversion_insn = get_insns ();
3114 	      all->last_conversion_insn = get_last_insn ();
3115 	      end_sequence ();
3116 	    }
3117 	  else
3118 	    tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3119 	  SET_DECL_RTL (parm, tmp);
3120 
3121 	  real = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i));
3122 	  imag = DECL_INCOMING_RTL (VEC_index (tree, fnargs, i + 1));
3123 	  if (inner != GET_MODE (real))
3124 	    {
3125 	      real = gen_lowpart_SUBREG (inner, real);
3126 	      imag = gen_lowpart_SUBREG (inner, imag);
3127 	    }
3128 	  tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3129 	  set_decl_incoming_rtl (parm, tmp, false);
3130 	  i++;
3131 	}
3132     }
3133 }
3134 
3135 /* Assign RTL expressions to the function's parameters.  This may involve
3136    copying them into registers and using those registers as the DECL_RTL.  */
3137 
3138 static void
3139 assign_parms (tree fndecl)
3140 {
3141   struct assign_parm_data_all all;
3142   tree parm;
3143   VEC(tree, heap) *fnargs;
3144   unsigned i;
3145 
3146   crtl->args.internal_arg_pointer
3147     = targetm.calls.internal_arg_pointer ();
3148 
3149   assign_parms_initialize_all (&all);
3150   fnargs = assign_parms_augmented_arg_list (&all);
3151 
3152   for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3153     {
3154       struct assign_parm_data_one data;
3155 
3156       /* Extract the type of PARM; adjust it according to ABI.  */
3157       assign_parm_find_data_types (&all, parm, &data);
3158 
3159       /* Early out for errors and void parameters.  */
3160       if (data.passed_mode == VOIDmode)
3161 	{
3162 	  SET_DECL_RTL (parm, const0_rtx);
3163 	  DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3164 	  continue;
3165 	}
3166 
3167       /* Estimate stack alignment from parameter alignment.  */
3168       if (SUPPORTS_STACK_ALIGNMENT)
3169         {
3170           unsigned int align = FUNCTION_ARG_BOUNDARY (data.promoted_mode,
3171 						      data.passed_type);
3172 	  align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3173 				     align);
3174 	  if (TYPE_ALIGN (data.nominal_type) > align)
3175 	    align = MINIMUM_ALIGNMENT (data.nominal_type,
3176 				       TYPE_MODE (data.nominal_type),
3177 				       TYPE_ALIGN (data.nominal_type));
3178 	  if (crtl->stack_alignment_estimated < align)
3179 	    {
3180 	      gcc_assert (!crtl->stack_realign_processed);
3181 	      crtl->stack_alignment_estimated = align;
3182 	    }
3183 	}
3184 
3185       if (cfun->stdarg && !TREE_CHAIN (parm))
3186 	assign_parms_setup_varargs (&all, &data, false);
3187 
3188       /* Find out where the parameter arrives in this function.  */
3189       assign_parm_find_entry_rtl (&all, &data);
3190 
3191       /* Find out where stack space for this parameter might be.  */
3192       if (assign_parm_is_stack_parm (&all, &data))
3193 	{
3194 	  assign_parm_find_stack_rtl (parm, &data);
3195 	  assign_parm_adjust_entry_rtl (&data);
3196 	}
3197 
3198       /* Record permanently how this parm was passed.  */
3199       set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3200 
3201       /* Update info on where next arg arrives in registers.  */
3202       FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3203 			    data.passed_type, data.named_arg);
3204 
3205       assign_parm_adjust_stack_rtl (&data);
3206 
3207       if (assign_parm_setup_block_p (&data))
3208 	assign_parm_setup_block (&all, parm, &data);
3209       else if (data.passed_pointer || use_register_for_decl (parm))
3210 	assign_parm_setup_reg (&all, parm, &data);
3211       else
3212 	assign_parm_setup_stack (&all, parm, &data);
3213     }
3214 
3215   if (targetm.calls.split_complex_arg)
3216     assign_parms_unsplit_complex (&all, fnargs);
3217 
3218   VEC_free (tree, heap, fnargs);
3219 
3220   /* Output all parameter conversion instructions (possibly including calls)
3221      now that all parameters have been copied out of hard registers.  */
3222   emit_insn (all.first_conversion_insn);
3223 
3224   /* Estimate reload stack alignment from scalar return mode.  */
3225   if (SUPPORTS_STACK_ALIGNMENT)
3226     {
3227       if (DECL_RESULT (fndecl))
3228 	{
3229 	  tree type = TREE_TYPE (DECL_RESULT (fndecl));
3230 	  enum machine_mode mode = TYPE_MODE (type);
3231 
3232 	  if (mode != BLKmode
3233 	      && mode != VOIDmode
3234 	      && !AGGREGATE_TYPE_P (type))
3235 	    {
3236 	      unsigned int align = GET_MODE_ALIGNMENT (mode);
3237 	      if (crtl->stack_alignment_estimated < align)
3238 		{
3239 		  gcc_assert (!crtl->stack_realign_processed);
3240 		  crtl->stack_alignment_estimated = align;
3241 		}
3242 	    }
3243 	}
3244     }
3245 
3246   /* If we are receiving a struct value address as the first argument, set up
3247      the RTL for the function result. As this might require code to convert
3248      the transmitted address to Pmode, we do this here to ensure that possible
3249      preliminary conversions of the address have been emitted already.  */
3250   if (all.function_result_decl)
3251     {
3252       tree result = DECL_RESULT (current_function_decl);
3253       rtx addr = DECL_RTL (all.function_result_decl);
3254       rtx x;
3255 
3256       if (DECL_BY_REFERENCE (result))
3257 	x = addr;
3258       else
3259 	{
3260 	  addr = convert_memory_address (Pmode, addr);
3261 	  x = gen_rtx_MEM (DECL_MODE (result), addr);
3262 	  set_mem_attributes (x, result, 1);
3263 	}
3264       SET_DECL_RTL (result, x);
3265     }
3266 
3267   /* We have aligned all the args, so add space for the pretend args.  */
3268   crtl->args.pretend_args_size = all.pretend_args_size;
3269   all.stack_args_size.constant += all.extra_pretend_bytes;
3270   crtl->args.size = all.stack_args_size.constant;
3271 
3272   /* Adjust function incoming argument size for alignment and
3273      minimum length.  */
3274 
3275 #ifdef REG_PARM_STACK_SPACE
3276   crtl->args.size = MAX (crtl->args.size,
3277 				    REG_PARM_STACK_SPACE (fndecl));
3278 #endif
3279 
3280   crtl->args.size = CEIL_ROUND (crtl->args.size,
3281 					   PARM_BOUNDARY / BITS_PER_UNIT);
3282 
3283 #ifdef ARGS_GROW_DOWNWARD
3284   crtl->args.arg_offset_rtx
3285     = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3286        : expand_expr (size_diffop (all.stack_args_size.var,
3287 				   size_int (-all.stack_args_size.constant)),
3288 		      NULL_RTX, VOIDmode, EXPAND_NORMAL));
3289 #else
3290   crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3291 #endif
3292 
3293   /* See how many bytes, if any, of its args a function should try to pop
3294      on return.  */
3295 
3296   crtl->args.pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3297 						 crtl->args.size);
3298 
3299   /* For stdarg.h function, save info about
3300      regs and stack space used by the named args.  */
3301 
3302   crtl->args.info = all.args_so_far;
3303 
3304   /* Set the rtx used for the function return value.  Put this in its
3305      own variable so any optimizers that need this information don't have
3306      to include tree.h.  Do this here so it gets done when an inlined
3307      function gets output.  */
3308 
3309   crtl->return_rtx
3310     = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3311        ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3312 
3313   /* If scalar return value was computed in a pseudo-reg, or was a named
3314      return value that got dumped to the stack, copy that to the hard
3315      return register.  */
3316   if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3317     {
3318       tree decl_result = DECL_RESULT (fndecl);
3319       rtx decl_rtl = DECL_RTL (decl_result);
3320 
3321       if (REG_P (decl_rtl)
3322 	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3323 	  : DECL_REGISTER (decl_result))
3324 	{
3325 	  rtx real_decl_rtl;
3326 
3327 	  real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3328 							fndecl, true);
3329 	  REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3330 	  /* The delay slot scheduler assumes that crtl->return_rtx
3331 	     holds the hard register containing the return value, not a
3332 	     temporary pseudo.  */
3333 	  crtl->return_rtx = real_decl_rtl;
3334 	}
3335     }
3336 }
3337 
3338 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3339    For all seen types, gimplify their sizes.  */
3340 
3341 static tree
3342 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3343 {
3344   tree t = *tp;
3345 
3346   *walk_subtrees = 0;
3347   if (TYPE_P (t))
3348     {
3349       if (POINTER_TYPE_P (t))
3350 	*walk_subtrees = 1;
3351       else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3352 	       && !TYPE_SIZES_GIMPLIFIED (t))
3353 	{
3354 	  gimplify_type_sizes (t, (gimple_seq *) data);
3355 	  *walk_subtrees = 1;
3356 	}
3357     }
3358 
3359   return NULL;
3360 }
3361 
3362 /* Gimplify the parameter list for current_function_decl.  This involves
3363    evaluating SAVE_EXPRs of variable sized parameters and generating code
3364    to implement callee-copies reference parameters.  Returns a sequence of
3365    statements to add to the beginning of the function.  */
3366 
3367 gimple_seq
3368 gimplify_parameters (void)
3369 {
3370   struct assign_parm_data_all all;
3371   tree parm;
3372   gimple_seq stmts = NULL;
3373   VEC(tree, heap) *fnargs;
3374   unsigned i;
3375 
3376   assign_parms_initialize_all (&all);
3377   fnargs = assign_parms_augmented_arg_list (&all);
3378 
3379   for (i = 0; VEC_iterate (tree, fnargs, i, parm); ++i)
3380     {
3381       struct assign_parm_data_one data;
3382 
3383       /* Extract the type of PARM; adjust it according to ABI.  */
3384       assign_parm_find_data_types (&all, parm, &data);
3385 
3386       /* Early out for errors and void parameters.  */
3387       if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3388 	continue;
3389 
3390       /* Update info on where next arg arrives in registers.  */
3391       FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3392 			    data.passed_type, data.named_arg);
3393 
3394       /* ??? Once upon a time variable_size stuffed parameter list
3395 	 SAVE_EXPRs (amongst others) onto a pending sizes list.  This
3396 	 turned out to be less than manageable in the gimple world.
3397 	 Now we have to hunt them down ourselves.  */
3398       walk_tree_without_duplicates (&data.passed_type,
3399 				    gimplify_parm_type, &stmts);
3400 
3401       if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3402 	{
3403 	  gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3404 	  gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3405 	}
3406 
3407       if (data.passed_pointer)
3408 	{
3409           tree type = TREE_TYPE (data.passed_type);
3410 	  if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3411 				       type, data.named_arg))
3412 	    {
3413 	      tree local, t;
3414 
3415 	      /* For constant-sized objects, this is trivial; for
3416 		 variable-sized objects, we have to play games.  */
3417 	      if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3418 		  && !(flag_stack_check == GENERIC_STACK_CHECK
3419 		       && compare_tree_int (DECL_SIZE_UNIT (parm),
3420 					    STACK_CHECK_MAX_VAR_SIZE) > 0))
3421 		{
3422 		  local = create_tmp_var (type, get_name (parm));
3423 		  DECL_IGNORED_P (local) = 0;
3424 		  /* If PARM was addressable, move that flag over
3425 		     to the local copy, as its address will be taken,
3426 		     not the PARMs.  Keep the parms address taken
3427 		     as we'll query that flag during gimplification.  */
3428 		  if (TREE_ADDRESSABLE (parm))
3429 		    TREE_ADDRESSABLE (local) = 1;
3430 		}
3431 	      else
3432 		{
3433 		  tree ptr_type, addr;
3434 
3435 		  ptr_type = build_pointer_type (type);
3436 		  addr = create_tmp_var (ptr_type, get_name (parm));
3437 		  DECL_IGNORED_P (addr) = 0;
3438 		  local = build_fold_indirect_ref (addr);
3439 
3440 		  t = built_in_decls[BUILT_IN_ALLOCA];
3441 		  t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3442 		  t = fold_convert (ptr_type, t);
3443 		  t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3444 		  gimplify_and_add (t, &stmts);
3445 		}
3446 
3447 	      gimplify_assign (local, parm, &stmts);
3448 
3449 	      SET_DECL_VALUE_EXPR (parm, local);
3450 	      DECL_HAS_VALUE_EXPR_P (parm) = 1;
3451 	    }
3452 	}
3453     }
3454 
3455   VEC_free (tree, heap, fnargs);
3456 
3457   return stmts;
3458 }
3459 
3460 /* Compute the size and offset from the start of the stacked arguments for a
3461    parm passed in mode PASSED_MODE and with type TYPE.
3462 
3463    INITIAL_OFFSET_PTR points to the current offset into the stacked
3464    arguments.
3465 
3466    The starting offset and size for this parm are returned in
3467    LOCATE->OFFSET and LOCATE->SIZE, respectively.  When IN_REGS is
3468    nonzero, the offset is that of stack slot, which is returned in
3469    LOCATE->SLOT_OFFSET.  LOCATE->ALIGNMENT_PAD is the amount of
3470    padding required from the initial offset ptr to the stack slot.
3471 
3472    IN_REGS is nonzero if the argument will be passed in registers.  It will
3473    never be set if REG_PARM_STACK_SPACE is not defined.
3474 
3475    FNDECL is the function in which the argument was defined.
3476 
3477    There are two types of rounding that are done.  The first, controlled by
3478    FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3479    list to be aligned to the specific boundary (in bits).  This rounding
3480    affects the initial and starting offsets, but not the argument size.
3481 
3482    The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3483    optionally rounds the size of the parm to PARM_BOUNDARY.  The
3484    initial offset is not affected by this rounding, while the size always
3485    is and the starting offset may be.  */
3486 
3487 /*  LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3488     INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3489     callers pass in the total size of args so far as
3490     INITIAL_OFFSET_PTR.  LOCATE->SIZE is always positive.  */
3491 
3492 void
3493 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3494 		     int partial, tree fndecl ATTRIBUTE_UNUSED,
3495 		     struct args_size *initial_offset_ptr,
3496 		     struct locate_and_pad_arg_data *locate)
3497 {
3498   tree sizetree;
3499   enum direction where_pad;
3500   unsigned int boundary;
3501   int reg_parm_stack_space = 0;
3502   int part_size_in_regs;
3503 
3504 #ifdef REG_PARM_STACK_SPACE
3505   reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3506 
3507   /* If we have found a stack parm before we reach the end of the
3508      area reserved for registers, skip that area.  */
3509   if (! in_regs)
3510     {
3511       if (reg_parm_stack_space > 0)
3512 	{
3513 	  if (initial_offset_ptr->var)
3514 	    {
3515 	      initial_offset_ptr->var
3516 		= size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3517 			      ssize_int (reg_parm_stack_space));
3518 	      initial_offset_ptr->constant = 0;
3519 	    }
3520 	  else if (initial_offset_ptr->constant < reg_parm_stack_space)
3521 	    initial_offset_ptr->constant = reg_parm_stack_space;
3522 	}
3523     }
3524 #endif /* REG_PARM_STACK_SPACE */
3525 
3526   part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3527 
3528   sizetree
3529     = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3530   where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3531   boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3532   locate->where_pad = where_pad;
3533 
3534   /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT.  */
3535   if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3536     boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3537 
3538   locate->boundary = boundary;
3539 
3540   if (SUPPORTS_STACK_ALIGNMENT)
3541     {
3542       /* stack_alignment_estimated can't change after stack has been
3543 	 realigned.  */
3544       if (crtl->stack_alignment_estimated < boundary)
3545         {
3546           if (!crtl->stack_realign_processed)
3547 	    crtl->stack_alignment_estimated = boundary;
3548 	  else
3549 	    {
3550 	      /* If stack is realigned and stack alignment value
3551 		 hasn't been finalized, it is OK not to increase
3552 		 stack_alignment_estimated.  The bigger alignment
3553 		 requirement is recorded in stack_alignment_needed
3554 		 below.  */
3555 	      gcc_assert (!crtl->stack_realign_finalized
3556 			  && crtl->stack_realign_needed);
3557 	    }
3558 	}
3559     }
3560 
3561   /* Remember if the outgoing parameter requires extra alignment on the
3562      calling function side.  */
3563   if (crtl->stack_alignment_needed < boundary)
3564     crtl->stack_alignment_needed = boundary;
3565   if (crtl->preferred_stack_boundary < boundary)
3566     crtl->preferred_stack_boundary = boundary;
3567 
3568 #ifdef ARGS_GROW_DOWNWARD
3569   locate->slot_offset.constant = -initial_offset_ptr->constant;
3570   if (initial_offset_ptr->var)
3571     locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3572 					  initial_offset_ptr->var);
3573 
3574   {
3575     tree s2 = sizetree;
3576     if (where_pad != none
3577 	&& (!host_integerp (sizetree, 1)
3578 	    || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3579       s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3580     SUB_PARM_SIZE (locate->slot_offset, s2);
3581   }
3582 
3583   locate->slot_offset.constant += part_size_in_regs;
3584 
3585   if (!in_regs
3586 #ifdef REG_PARM_STACK_SPACE
3587       || REG_PARM_STACK_SPACE (fndecl) > 0
3588 #endif
3589      )
3590     pad_to_arg_alignment (&locate->slot_offset, boundary,
3591 			  &locate->alignment_pad);
3592 
3593   locate->size.constant = (-initial_offset_ptr->constant
3594 			   - locate->slot_offset.constant);
3595   if (initial_offset_ptr->var)
3596     locate->size.var = size_binop (MINUS_EXPR,
3597 				   size_binop (MINUS_EXPR,
3598 					       ssize_int (0),
3599 					       initial_offset_ptr->var),
3600 				   locate->slot_offset.var);
3601 
3602   /* Pad_below needs the pre-rounded size to know how much to pad
3603      below.  */
3604   locate->offset = locate->slot_offset;
3605   if (where_pad == downward)
3606     pad_below (&locate->offset, passed_mode, sizetree);
3607 
3608 #else /* !ARGS_GROW_DOWNWARD */
3609   if (!in_regs
3610 #ifdef REG_PARM_STACK_SPACE
3611       || REG_PARM_STACK_SPACE (fndecl) > 0
3612 #endif
3613       )
3614     pad_to_arg_alignment (initial_offset_ptr, boundary,
3615 			  &locate->alignment_pad);
3616   locate->slot_offset = *initial_offset_ptr;
3617 
3618 #ifdef PUSH_ROUNDING
3619   if (passed_mode != BLKmode)
3620     sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3621 #endif
3622 
3623   /* Pad_below needs the pre-rounded size to know how much to pad below
3624      so this must be done before rounding up.  */
3625   locate->offset = locate->slot_offset;
3626   if (where_pad == downward)
3627     pad_below (&locate->offset, passed_mode, sizetree);
3628 
3629   if (where_pad != none
3630       && (!host_integerp (sizetree, 1)
3631 	  || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3632     sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3633 
3634   ADD_PARM_SIZE (locate->size, sizetree);
3635 
3636   locate->size.constant -= part_size_in_regs;
3637 #endif /* ARGS_GROW_DOWNWARD */
3638 
3639 #ifdef FUNCTION_ARG_OFFSET
3640   locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3641 #endif
3642 }
3643 
3644 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3645    BOUNDARY is measured in bits, but must be a multiple of a storage unit.  */
3646 
3647 static void
3648 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3649 		      struct args_size *alignment_pad)
3650 {
3651   tree save_var = NULL_TREE;
3652   HOST_WIDE_INT save_constant = 0;
3653   int boundary_in_bytes = boundary / BITS_PER_UNIT;
3654   HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3655 
3656 #ifdef SPARC_STACK_BOUNDARY_HACK
3657   /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3658      the real alignment of %sp.  However, when it does this, the
3659      alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY.  */
3660   if (SPARC_STACK_BOUNDARY_HACK)
3661     sp_offset = 0;
3662 #endif
3663 
3664   if (boundary > PARM_BOUNDARY)
3665     {
3666       save_var = offset_ptr->var;
3667       save_constant = offset_ptr->constant;
3668     }
3669 
3670   alignment_pad->var = NULL_TREE;
3671   alignment_pad->constant = 0;
3672 
3673   if (boundary > BITS_PER_UNIT)
3674     {
3675       if (offset_ptr->var)
3676 	{
3677 	  tree sp_offset_tree = ssize_int (sp_offset);
3678 	  tree offset = size_binop (PLUS_EXPR,
3679 				    ARGS_SIZE_TREE (*offset_ptr),
3680 				    sp_offset_tree);
3681 #ifdef ARGS_GROW_DOWNWARD
3682 	  tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3683 #else
3684 	  tree rounded = round_up   (offset, boundary / BITS_PER_UNIT);
3685 #endif
3686 
3687 	  offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3688 	  /* ARGS_SIZE_TREE includes constant term.  */
3689 	  offset_ptr->constant = 0;
3690 	  if (boundary > PARM_BOUNDARY)
3691 	    alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3692 					     save_var);
3693 	}
3694       else
3695 	{
3696 	  offset_ptr->constant = -sp_offset +
3697 #ifdef ARGS_GROW_DOWNWARD
3698 	    FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3699 #else
3700 	    CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3701 #endif
3702 	    if (boundary > PARM_BOUNDARY)
3703 	      alignment_pad->constant = offset_ptr->constant - save_constant;
3704 	}
3705     }
3706 }
3707 
3708 static void
3709 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3710 {
3711   if (passed_mode != BLKmode)
3712     {
3713       if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3714 	offset_ptr->constant
3715 	  += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3716 	       / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3717 	      - GET_MODE_SIZE (passed_mode));
3718     }
3719   else
3720     {
3721       if (TREE_CODE (sizetree) != INTEGER_CST
3722 	  || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3723 	{
3724 	  /* Round the size up to multiple of PARM_BOUNDARY bits.  */
3725 	  tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3726 	  /* Add it in.  */
3727 	  ADD_PARM_SIZE (*offset_ptr, s2);
3728 	  SUB_PARM_SIZE (*offset_ptr, sizetree);
3729 	}
3730     }
3731 }
3732 
3733 
3734 /* True if register REGNO was alive at a place where `setjmp' was
3735    called and was set more than once or is an argument.  Such regs may
3736    be clobbered by `longjmp'.  */
3737 
3738 static bool
3739 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3740 {
3741   /* There appear to be cases where some local vars never reach the
3742      backend but have bogus regnos.  */
3743   if (regno >= max_reg_num ())
3744     return false;
3745 
3746   return ((REG_N_SETS (regno) > 1
3747 	   || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3748 	  && REGNO_REG_SET_P (setjmp_crosses, regno));
3749 }
3750 
3751 /* Walk the tree of blocks describing the binding levels within a
3752    function and warn about variables the might be killed by setjmp or
3753    vfork.  This is done after calling flow_analysis before register
3754    allocation since that will clobber the pseudo-regs to hard
3755    regs.  */
3756 
3757 static void
3758 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3759 {
3760   tree decl, sub;
3761 
3762   for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3763     {
3764       if (TREE_CODE (decl) == VAR_DECL
3765 	  && DECL_RTL_SET_P (decl)
3766 	  && REG_P (DECL_RTL (decl))
3767 	  && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3768 	warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3769                  " %<longjmp%> or %<vfork%>", decl);
3770     }
3771 
3772   for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3773     setjmp_vars_warning (setjmp_crosses, sub);
3774 }
3775 
3776 /* Do the appropriate part of setjmp_vars_warning
3777    but for arguments instead of local variables.  */
3778 
3779 static void
3780 setjmp_args_warning (bitmap setjmp_crosses)
3781 {
3782   tree decl;
3783   for (decl = DECL_ARGUMENTS (current_function_decl);
3784        decl; decl = TREE_CHAIN (decl))
3785     if (DECL_RTL (decl) != 0
3786 	&& REG_P (DECL_RTL (decl))
3787 	&& regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3788       warning (OPT_Wclobbered,
3789                "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3790 	       decl);
3791 }
3792 
3793 /* Generate warning messages for variables live across setjmp.  */
3794 
3795 void
3796 generate_setjmp_warnings (void)
3797 {
3798   bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3799 
3800   if (n_basic_blocks == NUM_FIXED_BLOCKS
3801       || bitmap_empty_p (setjmp_crosses))
3802     return;
3803 
3804   setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3805   setjmp_args_warning (setjmp_crosses);
3806 }
3807 
3808 
3809 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3810    and create duplicate blocks.  */
3811 /* ??? Need an option to either create block fragments or to create
3812    abstract origin duplicates of a source block.  It really depends
3813    on what optimization has been performed.  */
3814 
3815 void
3816 reorder_blocks (void)
3817 {
3818   tree block = DECL_INITIAL (current_function_decl);
3819   VEC(tree,heap) *block_stack;
3820 
3821   if (block == NULL_TREE)
3822     return;
3823 
3824   block_stack = VEC_alloc (tree, heap, 10);
3825 
3826   /* Reset the TREE_ASM_WRITTEN bit for all blocks.  */
3827   clear_block_marks (block);
3828 
3829   /* Prune the old trees away, so that they don't get in the way.  */
3830   BLOCK_SUBBLOCKS (block) = NULL_TREE;
3831   BLOCK_CHAIN (block) = NULL_TREE;
3832 
3833   /* Recreate the block tree from the note nesting.  */
3834   reorder_blocks_1 (get_insns (), block, &block_stack);
3835   BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3836 
3837   VEC_free (tree, heap, block_stack);
3838 }
3839 
3840 /* Helper function for reorder_blocks.  Reset TREE_ASM_WRITTEN.  */
3841 
3842 void
3843 clear_block_marks (tree block)
3844 {
3845   while (block)
3846     {
3847       TREE_ASM_WRITTEN (block) = 0;
3848       clear_block_marks (BLOCK_SUBBLOCKS (block));
3849       block = BLOCK_CHAIN (block);
3850     }
3851 }
3852 
3853 static void
3854 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3855 {
3856   rtx insn;
3857 
3858   for (insn = insns; insn; insn = NEXT_INSN (insn))
3859     {
3860       if (NOTE_P (insn))
3861 	{
3862 	  if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3863 	    {
3864 	      tree block = NOTE_BLOCK (insn);
3865 	      tree origin;
3866 
3867 	      origin = (BLOCK_FRAGMENT_ORIGIN (block)
3868 			? BLOCK_FRAGMENT_ORIGIN (block)
3869 			: block);
3870 
3871 	      /* If we have seen this block before, that means it now
3872 		 spans multiple address regions.  Create a new fragment.  */
3873 	      if (TREE_ASM_WRITTEN (block))
3874 		{
3875 		  tree new_block = copy_node (block);
3876 
3877 		  BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3878 		  BLOCK_FRAGMENT_CHAIN (new_block)
3879 		    = BLOCK_FRAGMENT_CHAIN (origin);
3880 		  BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3881 
3882 		  NOTE_BLOCK (insn) = new_block;
3883 		  block = new_block;
3884 		}
3885 
3886 	      BLOCK_SUBBLOCKS (block) = 0;
3887 	      TREE_ASM_WRITTEN (block) = 1;
3888 	      /* When there's only one block for the entire function,
3889 		 current_block == block and we mustn't do this, it
3890 		 will cause infinite recursion.  */
3891 	      if (block != current_block)
3892 		{
3893 		  if (block != origin)
3894 		    gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3895 
3896 		  BLOCK_SUPERCONTEXT (block) = current_block;
3897 		  BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3898 		  BLOCK_SUBBLOCKS (current_block) = block;
3899 		  current_block = origin;
3900 		}
3901 	      VEC_safe_push (tree, heap, *p_block_stack, block);
3902 	    }
3903 	  else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3904 	    {
3905 	      NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3906 	      BLOCK_SUBBLOCKS (current_block)
3907 		= blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3908 	      current_block = BLOCK_SUPERCONTEXT (current_block);
3909 	    }
3910 	}
3911     }
3912 }
3913 
3914 /* Reverse the order of elements in the chain T of blocks,
3915    and return the new head of the chain (old last element).  */
3916 
3917 tree
3918 blocks_nreverse (tree t)
3919 {
3920   tree prev = 0, decl, next;
3921   for (decl = t; decl; decl = next)
3922     {
3923       next = BLOCK_CHAIN (decl);
3924       BLOCK_CHAIN (decl) = prev;
3925       prev = decl;
3926     }
3927   return prev;
3928 }
3929 
3930 /* Count the subblocks of the list starting with BLOCK.  If VECTOR is
3931    non-NULL, list them all into VECTOR, in a depth-first preorder
3932    traversal of the block tree.  Also clear TREE_ASM_WRITTEN in all
3933    blocks.  */
3934 
3935 static int
3936 all_blocks (tree block, tree *vector)
3937 {
3938   int n_blocks = 0;
3939 
3940   while (block)
3941     {
3942       TREE_ASM_WRITTEN (block) = 0;
3943 
3944       /* Record this block.  */
3945       if (vector)
3946 	vector[n_blocks] = block;
3947 
3948       ++n_blocks;
3949 
3950       /* Record the subblocks, and their subblocks...  */
3951       n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3952 			      vector ? vector + n_blocks : 0);
3953       block = BLOCK_CHAIN (block);
3954     }
3955 
3956   return n_blocks;
3957 }
3958 
3959 /* Return a vector containing all the blocks rooted at BLOCK.  The
3960    number of elements in the vector is stored in N_BLOCKS_P.  The
3961    vector is dynamically allocated; it is the caller's responsibility
3962    to call `free' on the pointer returned.  */
3963 
3964 static tree *
3965 get_block_vector (tree block, int *n_blocks_p)
3966 {
3967   tree *block_vector;
3968 
3969   *n_blocks_p = all_blocks (block, NULL);
3970   block_vector = XNEWVEC (tree, *n_blocks_p);
3971   all_blocks (block, block_vector);
3972 
3973   return block_vector;
3974 }
3975 
3976 static GTY(()) int next_block_index = 2;
3977 
3978 /* Set BLOCK_NUMBER for all the blocks in FN.  */
3979 
3980 void
3981 number_blocks (tree fn)
3982 {
3983   int i;
3984   int n_blocks;
3985   tree *block_vector;
3986 
3987   /* For SDB and XCOFF debugging output, we start numbering the blocks
3988      from 1 within each function, rather than keeping a running
3989      count.  */
3990 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3991   if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3992     next_block_index = 1;
3993 #endif
3994 
3995   block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3996 
3997   /* The top-level BLOCK isn't numbered at all.  */
3998   for (i = 1; i < n_blocks; ++i)
3999     /* We number the blocks from two.  */
4000     BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4001 
4002   free (block_vector);
4003 
4004   return;
4005 }
4006 
4007 /* If VAR is present in a subblock of BLOCK, return the subblock.  */
4008 
4009 tree
4010 debug_find_var_in_block_tree (tree var, tree block)
4011 {
4012   tree t;
4013 
4014   for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4015     if (t == var)
4016       return block;
4017 
4018   for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4019     {
4020       tree ret = debug_find_var_in_block_tree (var, t);
4021       if (ret)
4022 	return ret;
4023     }
4024 
4025   return NULL_TREE;
4026 }
4027 
4028 /* Keep track of whether we're in a dummy function context.  If we are,
4029    we don't want to invoke the set_current_function hook, because we'll
4030    get into trouble if the hook calls target_reinit () recursively or
4031    when the initial initialization is not yet complete.  */
4032 
4033 static bool in_dummy_function;
4034 
4035 /* Invoke the target hook when setting cfun.  Update the optimization options
4036    if the function uses different options than the default.  */
4037 
4038 static void
4039 invoke_set_current_function_hook (tree fndecl)
4040 {
4041   if (!in_dummy_function)
4042     {
4043       tree opts = ((fndecl)
4044 		   ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4045 		   : optimization_default_node);
4046 
4047       if (!opts)
4048 	opts = optimization_default_node;
4049 
4050       /* Change optimization options if needed.  */
4051       if (optimization_current_node != opts)
4052 	{
4053 	  optimization_current_node = opts;
4054 	  cl_optimization_restore (TREE_OPTIMIZATION (opts));
4055 	}
4056 
4057       targetm.set_current_function (fndecl);
4058     }
4059 }
4060 
4061 /* cfun should never be set directly; use this function.  */
4062 
4063 void
4064 set_cfun (struct function *new_cfun)
4065 {
4066   if (cfun != new_cfun)
4067     {
4068       cfun = new_cfun;
4069       invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4070     }
4071 }
4072 
4073 /* Initialized with NOGC, making this poisonous to the garbage collector.  */
4074 
4075 static VEC(function_p,heap) *cfun_stack;
4076 
4077 /* Push the current cfun onto the stack, and set cfun to new_cfun.  */
4078 
4079 void
4080 push_cfun (struct function *new_cfun)
4081 {
4082   VEC_safe_push (function_p, heap, cfun_stack, cfun);
4083   set_cfun (new_cfun);
4084 }
4085 
4086 /* Pop cfun from the stack.  */
4087 
4088 void
4089 pop_cfun (void)
4090 {
4091   struct function *new_cfun = VEC_pop (function_p, cfun_stack);
4092   set_cfun (new_cfun);
4093 }
4094 
4095 /* Return value of funcdef and increase it.  */
4096 int
4097 get_next_funcdef_no (void)
4098 {
4099   return funcdef_no++;
4100 }
4101 
4102 /* Allocate a function structure for FNDECL and set its contents
4103    to the defaults.  Set cfun to the newly-allocated object.
4104    Some of the helper functions invoked during initialization assume
4105    that cfun has already been set.  Therefore, assign the new object
4106    directly into cfun and invoke the back end hook explicitly at the
4107    very end, rather than initializing a temporary and calling set_cfun
4108    on it.
4109 
4110    ABSTRACT_P is true if this is a function that will never be seen by
4111    the middle-end.  Such functions are front-end concepts (like C++
4112    function templates) that do not correspond directly to functions
4113    placed in object files.  */
4114 
4115 void
4116 allocate_struct_function (tree fndecl, bool abstract_p)
4117 {
4118   tree result;
4119   tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4120 
4121   cfun = GGC_CNEW (struct function);
4122 
4123   cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
4124 
4125   init_eh_for_function ();
4126 
4127   if (init_machine_status)
4128     cfun->machine = (*init_machine_status) ();
4129 
4130 #ifdef OVERRIDE_ABI_FORMAT
4131   OVERRIDE_ABI_FORMAT (fndecl);
4132 #endif
4133 
4134   invoke_set_current_function_hook (fndecl);
4135 
4136   if (fndecl != NULL_TREE)
4137     {
4138       DECL_STRUCT_FUNCTION (fndecl) = cfun;
4139       cfun->decl = fndecl;
4140       current_function_funcdef_no = get_next_funcdef_no ();
4141 
4142       result = DECL_RESULT (fndecl);
4143       if (!abstract_p && aggregate_value_p (result, fndecl))
4144 	{
4145 #ifdef PCC_STATIC_STRUCT_RETURN
4146 	  cfun->returns_pcc_struct = 1;
4147 #endif
4148 	  cfun->returns_struct = 1;
4149 	}
4150 
4151       cfun->stdarg
4152 	= (fntype
4153 	   && TYPE_ARG_TYPES (fntype) != 0
4154 	   && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4155 	       != void_type_node));
4156 
4157       /* Assume all registers in stdarg functions need to be saved.  */
4158       cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4159       cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4160     }
4161 }
4162 
4163 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4164    instead of just setting it.  */
4165 
4166 void
4167 push_struct_function (tree fndecl)
4168 {
4169   VEC_safe_push (function_p, heap, cfun_stack, cfun);
4170   allocate_struct_function (fndecl, false);
4171 }
4172 
4173 /* Reset cfun, and other non-struct-function variables to defaults as
4174    appropriate for emitting rtl at the start of a function.  */
4175 
4176 static void
4177 prepare_function_start (void)
4178 {
4179   gcc_assert (!crtl->emit.x_last_insn);
4180   init_temp_slots ();
4181   init_emit ();
4182   init_varasm_status ();
4183   init_expr ();
4184   default_rtl_profile ();
4185 
4186   cse_not_expected = ! optimize;
4187 
4188   /* Caller save not needed yet.  */
4189   caller_save_needed = 0;
4190 
4191   /* We haven't done register allocation yet.  */
4192   reg_renumber = 0;
4193 
4194   /* Indicate that we have not instantiated virtual registers yet.  */
4195   virtuals_instantiated = 0;
4196 
4197   /* Indicate that we want CONCATs now.  */
4198   generating_concat_p = 1;
4199 
4200   /* Indicate we have no need of a frame pointer yet.  */
4201   frame_pointer_needed = 0;
4202 }
4203 
4204 /* Initialize the rtl expansion mechanism so that we can do simple things
4205    like generate sequences.  This is used to provide a context during global
4206    initialization of some passes.  You must call expand_dummy_function_end
4207    to exit this context.  */
4208 
4209 void
4210 init_dummy_function_start (void)
4211 {
4212   gcc_assert (!in_dummy_function);
4213   in_dummy_function = true;
4214   push_struct_function (NULL_TREE);
4215   prepare_function_start ();
4216 }
4217 
4218 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4219    and initialize static variables for generating RTL for the statements
4220    of the function.  */
4221 
4222 void
4223 init_function_start (tree subr)
4224 {
4225   if (subr && DECL_STRUCT_FUNCTION (subr))
4226     set_cfun (DECL_STRUCT_FUNCTION (subr));
4227   else
4228     allocate_struct_function (subr, false);
4229   prepare_function_start ();
4230 
4231   /* Warn if this value is an aggregate type,
4232      regardless of which calling convention we are using for it.  */
4233   if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4234     warning (OPT_Waggregate_return, "function returns an aggregate");
4235 }
4236 
4237 /* Make sure all values used by the optimization passes have sane defaults.  */
4238 unsigned int
4239 init_function_for_compilation (void)
4240 {
4241   reg_renumber = 0;
4242   return 0;
4243 }
4244 
4245 struct rtl_opt_pass pass_init_function =
4246 {
4247  {
4248   RTL_PASS,
4249   "*init_function",                     /* name */
4250   NULL,                                 /* gate */
4251   init_function_for_compilation,        /* execute */
4252   NULL,                                 /* sub */
4253   NULL,                                 /* next */
4254   0,                                    /* static_pass_number */
4255   TV_NONE,                              /* tv_id */
4256   0,                                    /* properties_required */
4257   0,                                    /* properties_provided */
4258   0,                                    /* properties_destroyed */
4259   0,                                    /* todo_flags_start */
4260   0                                     /* todo_flags_finish */
4261  }
4262 };
4263 
4264 
4265 void
4266 expand_main_function (void)
4267 {
4268 #if (defined(INVOKE__main)				\
4269      || (!defined(HAS_INIT_SECTION)			\
4270 	 && !defined(INIT_SECTION_ASM_OP)		\
4271 	 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4272   emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4273 #endif
4274 }
4275 
4276 /* Expand code to initialize the stack_protect_guard.  This is invoked at
4277    the beginning of a function to be protected.  */
4278 
4279 #ifndef HAVE_stack_protect_set
4280 # define HAVE_stack_protect_set		0
4281 # define gen_stack_protect_set(x,y)	(gcc_unreachable (), NULL_RTX)
4282 #endif
4283 
4284 void
4285 stack_protect_prologue (void)
4286 {
4287   tree guard_decl = targetm.stack_protect_guard ();
4288   rtx x, y;
4289 
4290   x = expand_normal (crtl->stack_protect_guard);
4291   y = expand_normal (guard_decl);
4292 
4293   /* Allow the target to copy from Y to X without leaking Y into a
4294      register.  */
4295   if (HAVE_stack_protect_set)
4296     {
4297       rtx insn = gen_stack_protect_set (x, y);
4298       if (insn)
4299 	{
4300 	  emit_insn (insn);
4301 	  return;
4302 	}
4303     }
4304 
4305   /* Otherwise do a straight move.  */
4306   emit_move_insn (x, y);
4307 }
4308 
4309 /* Expand code to verify the stack_protect_guard.  This is invoked at
4310    the end of a function to be protected.  */
4311 
4312 #ifndef HAVE_stack_protect_test
4313 # define HAVE_stack_protect_test		0
4314 # define gen_stack_protect_test(x, y, z)	(gcc_unreachable (), NULL_RTX)
4315 #endif
4316 
4317 void
4318 stack_protect_epilogue (void)
4319 {
4320   tree guard_decl = targetm.stack_protect_guard ();
4321   rtx label = gen_label_rtx ();
4322   rtx x, y, tmp;
4323 
4324   x = expand_normal (crtl->stack_protect_guard);
4325   y = expand_normal (guard_decl);
4326 
4327   /* Allow the target to compare Y with X without leaking either into
4328      a register.  */
4329   switch (HAVE_stack_protect_test != 0)
4330     {
4331     case 1:
4332       tmp = gen_stack_protect_test (x, y, label);
4333       if (tmp)
4334 	{
4335 	  emit_insn (tmp);
4336 	  break;
4337 	}
4338       /* FALLTHRU */
4339 
4340     default:
4341       emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4342       break;
4343     }
4344 
4345   /* The noreturn predictor has been moved to the tree level.  The rtl-level
4346      predictors estimate this branch about 20%, which isn't enough to get
4347      things moved out of line.  Since this is the only extant case of adding
4348      a noreturn function at the rtl level, it doesn't seem worth doing ought
4349      except adding the prediction by hand.  */
4350   tmp = get_last_insn ();
4351   if (JUMP_P (tmp))
4352     predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4353 
4354   expand_expr_stmt (targetm.stack_protect_fail ());
4355   emit_label (label);
4356 }
4357 
4358 /* Start the RTL for a new function, and set variables used for
4359    emitting RTL.
4360    SUBR is the FUNCTION_DECL node.
4361    PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4362    the function's parameters, which must be run at any return statement.  */
4363 
4364 void
4365 expand_function_start (tree subr)
4366 {
4367   /* Make sure volatile mem refs aren't considered
4368      valid operands of arithmetic insns.  */
4369   init_recog_no_volatile ();
4370 
4371   crtl->profile
4372     = (profile_flag
4373        && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4374 
4375   crtl->limit_stack
4376     = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4377 
4378   /* Make the label for return statements to jump to.  Do not special
4379      case machines with special return instructions -- they will be
4380      handled later during jump, ifcvt, or epilogue creation.  */
4381   return_label = gen_label_rtx ();
4382 
4383   /* Initialize rtx used to return the value.  */
4384   /* Do this before assign_parms so that we copy the struct value address
4385      before any library calls that assign parms might generate.  */
4386 
4387   /* Decide whether to return the value in memory or in a register.  */
4388   if (aggregate_value_p (DECL_RESULT (subr), subr))
4389     {
4390       /* Returning something that won't go in a register.  */
4391       rtx value_address = 0;
4392 
4393 #ifdef PCC_STATIC_STRUCT_RETURN
4394       if (cfun->returns_pcc_struct)
4395 	{
4396 	  int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4397 	  value_address = assemble_static_space (size);
4398 	}
4399       else
4400 #endif
4401 	{
4402 	  rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4403 	  /* Expect to be passed the address of a place to store the value.
4404 	     If it is passed as an argument, assign_parms will take care of
4405 	     it.  */
4406 	  if (sv)
4407 	    {
4408 	      value_address = gen_reg_rtx (Pmode);
4409 	      emit_move_insn (value_address, sv);
4410 	    }
4411 	}
4412       if (value_address)
4413 	{
4414 	  rtx x = value_address;
4415 	  if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4416 	    {
4417 	      x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4418 	      set_mem_attributes (x, DECL_RESULT (subr), 1);
4419 	    }
4420 	  SET_DECL_RTL (DECL_RESULT (subr), x);
4421 	}
4422     }
4423   else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4424     /* If return mode is void, this decl rtl should not be used.  */
4425     SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4426   else
4427     {
4428       /* Compute the return values into a pseudo reg, which we will copy
4429 	 into the true return register after the cleanups are done.  */
4430       tree return_type = TREE_TYPE (DECL_RESULT (subr));
4431       if (TYPE_MODE (return_type) != BLKmode
4432 	  && targetm.calls.return_in_msb (return_type))
4433 	/* expand_function_end will insert the appropriate padding in
4434 	   this case.  Use the return value's natural (unpadded) mode
4435 	   within the function proper.  */
4436 	SET_DECL_RTL (DECL_RESULT (subr),
4437 		      gen_reg_rtx (TYPE_MODE (return_type)));
4438       else
4439 	{
4440 	  /* In order to figure out what mode to use for the pseudo, we
4441 	     figure out what the mode of the eventual return register will
4442 	     actually be, and use that.  */
4443 	  rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4444 
4445 	  /* Structures that are returned in registers are not
4446 	     aggregate_value_p, so we may see a PARALLEL or a REG.  */
4447 	  if (REG_P (hard_reg))
4448 	    SET_DECL_RTL (DECL_RESULT (subr),
4449 			  gen_reg_rtx (GET_MODE (hard_reg)));
4450 	  else
4451 	    {
4452 	      gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4453 	      SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4454 	    }
4455 	}
4456 
4457       /* Set DECL_REGISTER flag so that expand_function_end will copy the
4458 	 result to the real return register(s).  */
4459       DECL_REGISTER (DECL_RESULT (subr)) = 1;
4460     }
4461 
4462   /* Initialize rtx for parameters and local variables.
4463      In some cases this requires emitting insns.  */
4464   assign_parms (subr);
4465 
4466   /* If function gets a static chain arg, store it.  */
4467   if (cfun->static_chain_decl)
4468     {
4469       tree parm = cfun->static_chain_decl;
4470       rtx local, chain, insn;
4471 
4472       local = gen_reg_rtx (Pmode);
4473       chain = targetm.calls.static_chain (current_function_decl, true);
4474 
4475       set_decl_incoming_rtl (parm, chain, false);
4476       SET_DECL_RTL (parm, local);
4477       mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4478 
4479       insn = emit_move_insn (local, chain);
4480 
4481       /* Mark the register as eliminable, similar to parameters.  */
4482       if (MEM_P (chain)
4483 	  && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4484 	set_unique_reg_note (insn, REG_EQUIV, chain);
4485     }
4486 
4487   /* If the function receives a non-local goto, then store the
4488      bits we need to restore the frame pointer.  */
4489   if (cfun->nonlocal_goto_save_area)
4490     {
4491       tree t_save;
4492       rtx r_save;
4493 
4494       /* ??? We need to do this save early.  Unfortunately here is
4495 	 before the frame variable gets declared.  Help out...  */
4496       tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4497       if (!DECL_RTL_SET_P (var))
4498 	expand_decl (var);
4499 
4500       t_save = build4 (ARRAY_REF, ptr_type_node,
4501 		       cfun->nonlocal_goto_save_area,
4502 		       integer_zero_node, NULL_TREE, NULL_TREE);
4503       r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4504       r_save = convert_memory_address (Pmode, r_save);
4505 
4506       emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4507       update_nonlocal_goto_save_area ();
4508     }
4509 
4510   /* The following was moved from init_function_start.
4511      The move is supposed to make sdb output more accurate.  */
4512   /* Indicate the beginning of the function body,
4513      as opposed to parm setup.  */
4514   emit_note (NOTE_INSN_FUNCTION_BEG);
4515 
4516   gcc_assert (NOTE_P (get_last_insn ()));
4517 
4518   parm_birth_insn = get_last_insn ();
4519 
4520   if (crtl->profile)
4521     {
4522 #ifdef PROFILE_HOOK
4523       PROFILE_HOOK (current_function_funcdef_no);
4524 #endif
4525     }
4526 
4527   /* After the display initializations is where the stack checking
4528      probe should go.  */
4529   if(flag_stack_check)
4530     stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4531 
4532   /* Make sure there is a line number after the function entry setup code.  */
4533   force_next_line_note ();
4534 }
4535 
4536 /* Undo the effects of init_dummy_function_start.  */
4537 void
4538 expand_dummy_function_end (void)
4539 {
4540   gcc_assert (in_dummy_function);
4541 
4542   /* End any sequences that failed to be closed due to syntax errors.  */
4543   while (in_sequence_p ())
4544     end_sequence ();
4545 
4546   /* Outside function body, can't compute type's actual size
4547      until next function's body starts.  */
4548 
4549   free_after_parsing (cfun);
4550   free_after_compilation (cfun);
4551   pop_cfun ();
4552   in_dummy_function = false;
4553 }
4554 
4555 /* Call DOIT for each hard register used as a return value from
4556    the current function.  */
4557 
4558 void
4559 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4560 {
4561   rtx outgoing = crtl->return_rtx;
4562 
4563   if (! outgoing)
4564     return;
4565 
4566   if (REG_P (outgoing))
4567     (*doit) (outgoing, arg);
4568   else if (GET_CODE (outgoing) == PARALLEL)
4569     {
4570       int i;
4571 
4572       for (i = 0; i < XVECLEN (outgoing, 0); i++)
4573 	{
4574 	  rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4575 
4576 	  if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4577 	    (*doit) (x, arg);
4578 	}
4579     }
4580 }
4581 
4582 static void
4583 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4584 {
4585   emit_clobber (reg);
4586 }
4587 
4588 void
4589 clobber_return_register (void)
4590 {
4591   diddle_return_value (do_clobber_return_reg, NULL);
4592 
4593   /* In case we do use pseudo to return value, clobber it too.  */
4594   if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4595     {
4596       tree decl_result = DECL_RESULT (current_function_decl);
4597       rtx decl_rtl = DECL_RTL (decl_result);
4598       if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4599 	{
4600 	  do_clobber_return_reg (decl_rtl, NULL);
4601 	}
4602     }
4603 }
4604 
4605 static void
4606 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4607 {
4608   emit_use (reg);
4609 }
4610 
4611 static void
4612 use_return_register (void)
4613 {
4614   diddle_return_value (do_use_return_reg, NULL);
4615 }
4616 
4617 /* Possibly warn about unused parameters.  */
4618 void
4619 do_warn_unused_parameter (tree fn)
4620 {
4621   tree decl;
4622 
4623   for (decl = DECL_ARGUMENTS (fn);
4624        decl; decl = TREE_CHAIN (decl))
4625     if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4626 	&& DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4627 	&& !TREE_NO_WARNING (decl))
4628       warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4629 }
4630 
4631 static GTY(()) rtx initial_trampoline;
4632 
4633 /* Generate RTL for the end of the current function.  */
4634 
4635 void
4636 expand_function_end (void)
4637 {
4638   rtx clobber_after;
4639 
4640   /* If arg_pointer_save_area was referenced only from a nested
4641      function, we will not have initialized it yet.  Do that now.  */
4642   if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4643     get_arg_pointer_save_area ();
4644 
4645   /* If we are doing generic stack checking and this function makes calls,
4646      do a stack probe at the start of the function to ensure we have enough
4647      space for another stack frame.  */
4648   if (flag_stack_check == GENERIC_STACK_CHECK)
4649     {
4650       rtx insn, seq;
4651 
4652       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4653 	if (CALL_P (insn))
4654 	  {
4655 	    rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4656 	    start_sequence ();
4657 	    if (STACK_CHECK_MOVING_SP)
4658 	      anti_adjust_stack_and_probe (max_frame_size, true);
4659 	    else
4660 	      probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4661 	    seq = get_insns ();
4662 	    end_sequence ();
4663 	    emit_insn_before (seq, stack_check_probe_note);
4664 	    break;
4665 	  }
4666     }
4667 
4668   /* End any sequences that failed to be closed due to syntax errors.  */
4669   while (in_sequence_p ())
4670     end_sequence ();
4671 
4672   clear_pending_stack_adjust ();
4673   do_pending_stack_adjust ();
4674 
4675   /* Output a linenumber for the end of the function.
4676      SDB depends on this.  */
4677   force_next_line_note ();
4678   set_curr_insn_source_location (input_location);
4679 
4680   /* Before the return label (if any), clobber the return
4681      registers so that they are not propagated live to the rest of
4682      the function.  This can only happen with functions that drop
4683      through; if there had been a return statement, there would
4684      have either been a return rtx, or a jump to the return label.
4685 
4686      We delay actual code generation after the current_function_value_rtx
4687      is computed.  */
4688   clobber_after = get_last_insn ();
4689 
4690   /* Output the label for the actual return from the function.  */
4691   emit_label (return_label);
4692 
4693   if (USING_SJLJ_EXCEPTIONS)
4694     {
4695       /* Let except.c know where it should emit the call to unregister
4696 	 the function context for sjlj exceptions.  */
4697       if (flag_exceptions)
4698 	sjlj_emit_function_exit_after (get_last_insn ());
4699     }
4700   else
4701     {
4702       /* We want to ensure that instructions that may trap are not
4703 	 moved into the epilogue by scheduling, because we don't
4704 	 always emit unwind information for the epilogue.  */
4705       if (flag_non_call_exceptions)
4706 	emit_insn (gen_blockage ());
4707     }
4708 
4709   /* If this is an implementation of throw, do what's necessary to
4710      communicate between __builtin_eh_return and the epilogue.  */
4711   expand_eh_return ();
4712 
4713   /* If scalar return value was computed in a pseudo-reg, or was a named
4714      return value that got dumped to the stack, copy that to the hard
4715      return register.  */
4716   if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4717     {
4718       tree decl_result = DECL_RESULT (current_function_decl);
4719       rtx decl_rtl = DECL_RTL (decl_result);
4720 
4721       if (REG_P (decl_rtl)
4722 	  ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4723 	  : DECL_REGISTER (decl_result))
4724 	{
4725 	  rtx real_decl_rtl = crtl->return_rtx;
4726 
4727 	  /* This should be set in assign_parms.  */
4728 	  gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4729 
4730 	  /* If this is a BLKmode structure being returned in registers,
4731 	     then use the mode computed in expand_return.  Note that if
4732 	     decl_rtl is memory, then its mode may have been changed,
4733 	     but that crtl->return_rtx has not.  */
4734 	  if (GET_MODE (real_decl_rtl) == BLKmode)
4735 	    PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4736 
4737 	  /* If a non-BLKmode return value should be padded at the least
4738 	     significant end of the register, shift it left by the appropriate
4739 	     amount.  BLKmode results are handled using the group load/store
4740 	     machinery.  */
4741 	  if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4742 	      && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4743 	    {
4744 	      emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4745 					   REGNO (real_decl_rtl)),
4746 			      decl_rtl);
4747 	      shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4748 	    }
4749 	  /* If a named return value dumped decl_return to memory, then
4750 	     we may need to re-do the PROMOTE_MODE signed/unsigned
4751 	     extension.  */
4752 	  else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4753 	    {
4754 	      int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4755 	      promote_function_mode (TREE_TYPE (decl_result),
4756 				     GET_MODE (decl_rtl), &unsignedp,
4757 				     TREE_TYPE (current_function_decl), 1);
4758 
4759 	      convert_move (real_decl_rtl, decl_rtl, unsignedp);
4760 	    }
4761 	  else if (GET_CODE (real_decl_rtl) == PARALLEL)
4762 	    {
4763 	      /* If expand_function_start has created a PARALLEL for decl_rtl,
4764 		 move the result to the real return registers.  Otherwise, do
4765 		 a group load from decl_rtl for a named return.  */
4766 	      if (GET_CODE (decl_rtl) == PARALLEL)
4767 		emit_group_move (real_decl_rtl, decl_rtl);
4768 	      else
4769 		emit_group_load (real_decl_rtl, decl_rtl,
4770 				 TREE_TYPE (decl_result),
4771 				 int_size_in_bytes (TREE_TYPE (decl_result)));
4772 	    }
4773 	  /* In the case of complex integer modes smaller than a word, we'll
4774 	     need to generate some non-trivial bitfield insertions.  Do that
4775 	     on a pseudo and not the hard register.  */
4776 	  else if (GET_CODE (decl_rtl) == CONCAT
4777 		   && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4778 		   && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4779 	    {
4780 	      int old_generating_concat_p;
4781 	      rtx tmp;
4782 
4783 	      old_generating_concat_p = generating_concat_p;
4784 	      generating_concat_p = 0;
4785 	      tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4786 	      generating_concat_p = old_generating_concat_p;
4787 
4788 	      emit_move_insn (tmp, decl_rtl);
4789 	      emit_move_insn (real_decl_rtl, tmp);
4790 	    }
4791 	  else
4792 	    emit_move_insn (real_decl_rtl, decl_rtl);
4793 	}
4794     }
4795 
4796   /* If returning a structure, arrange to return the address of the value
4797      in a place where debuggers expect to find it.
4798 
4799      If returning a structure PCC style,
4800      the caller also depends on this value.
4801      And cfun->returns_pcc_struct is not necessarily set.  */
4802   if (cfun->returns_struct
4803       || cfun->returns_pcc_struct)
4804     {
4805       rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4806       tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4807       rtx outgoing;
4808 
4809       if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4810 	type = TREE_TYPE (type);
4811       else
4812 	value_address = XEXP (value_address, 0);
4813 
4814       outgoing = targetm.calls.function_value (build_pointer_type (type),
4815 					       current_function_decl, true);
4816 
4817       /* Mark this as a function return value so integrate will delete the
4818 	 assignment and USE below when inlining this function.  */
4819       REG_FUNCTION_VALUE_P (outgoing) = 1;
4820 
4821       /* The address may be ptr_mode and OUTGOING may be Pmode.  */
4822       value_address = convert_memory_address (GET_MODE (outgoing),
4823 					      value_address);
4824 
4825       emit_move_insn (outgoing, value_address);
4826 
4827       /* Show return register used to hold result (in this case the address
4828 	 of the result.  */
4829       crtl->return_rtx = outgoing;
4830     }
4831 
4832   /* Emit the actual code to clobber return register.  */
4833   {
4834     rtx seq;
4835 
4836     start_sequence ();
4837     clobber_return_register ();
4838     seq = get_insns ();
4839     end_sequence ();
4840 
4841     emit_insn_after (seq, clobber_after);
4842   }
4843 
4844   /* Output the label for the naked return from the function.  */
4845   if (naked_return_label)
4846     emit_label (naked_return_label);
4847 
4848   /* @@@ This is a kludge.  We want to ensure that instructions that
4849      may trap are not moved into the epilogue by scheduling, because
4850      we don't always emit unwind information for the epilogue.  */
4851   if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4852     emit_insn (gen_blockage ());
4853 
4854   /* If stack protection is enabled for this function, check the guard.  */
4855   if (crtl->stack_protect_guard)
4856     stack_protect_epilogue ();
4857 
4858   /* If we had calls to alloca, and this machine needs
4859      an accurate stack pointer to exit the function,
4860      insert some code to save and restore the stack pointer.  */
4861   if (! EXIT_IGNORE_STACK
4862       && cfun->calls_alloca)
4863     {
4864       rtx tem = 0;
4865 
4866       emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4867       emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4868     }
4869 
4870   /* ??? This should no longer be necessary since stupid is no longer with
4871      us, but there are some parts of the compiler (eg reload_combine, and
4872      sh mach_dep_reorg) that still try and compute their own lifetime info
4873      instead of using the general framework.  */
4874   use_return_register ();
4875 }
4876 
4877 rtx
4878 get_arg_pointer_save_area (void)
4879 {
4880   rtx ret = arg_pointer_save_area;
4881 
4882   if (! ret)
4883     {
4884       ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4885       arg_pointer_save_area = ret;
4886     }
4887 
4888   if (! crtl->arg_pointer_save_area_init)
4889     {
4890       rtx seq;
4891 
4892       /* Save the arg pointer at the beginning of the function.  The
4893 	 generated stack slot may not be a valid memory address, so we
4894 	 have to check it and fix it if necessary.  */
4895       start_sequence ();
4896       emit_move_insn (validize_mem (ret),
4897                       crtl->args.internal_arg_pointer);
4898       seq = get_insns ();
4899       end_sequence ();
4900 
4901       push_topmost_sequence ();
4902       emit_insn_after (seq, entry_of_function ());
4903       pop_topmost_sequence ();
4904     }
4905 
4906   return ret;
4907 }
4908 
4909 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
4910    for the first time.  */
4911 
4912 static void
4913 record_insns (rtx insns, rtx end, htab_t *hashp)
4914 {
4915   rtx tmp;
4916   htab_t hash = *hashp;
4917 
4918   if (hash == NULL)
4919     *hashp = hash
4920       = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
4921 
4922   for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
4923     {
4924       void **slot = htab_find_slot (hash, tmp, INSERT);
4925       gcc_assert (*slot == NULL);
4926       *slot = tmp;
4927     }
4928 }
4929 
4930 /* INSN has been duplicated as COPY, as part of duping a basic block.
4931    If INSN is an epilogue insn, then record COPY as epilogue as well.  */
4932 
4933 void
4934 maybe_copy_epilogue_insn (rtx insn, rtx copy)
4935 {
4936   void **slot;
4937 
4938   if (epilogue_insn_hash == NULL
4939       || htab_find (epilogue_insn_hash, insn) == NULL)
4940     return;
4941 
4942   slot = htab_find_slot (epilogue_insn_hash, copy, INSERT);
4943   gcc_assert (*slot == NULL);
4944   *slot = copy;
4945 }
4946 
4947 /* Set the locator of the insn chain starting at INSN to LOC.  */
4948 static void
4949 set_insn_locators (rtx insn, int loc)
4950 {
4951   while (insn != NULL_RTX)
4952     {
4953       if (INSN_P (insn))
4954 	INSN_LOCATOR (insn) = loc;
4955       insn = NEXT_INSN (insn);
4956     }
4957 }
4958 
4959 /* Determine if any INSNs in HASH are, or are part of, INSN.  Because
4960    we can be running after reorg, SEQUENCE rtl is possible.  */
4961 
4962 static bool
4963 contains (const_rtx insn, htab_t hash)
4964 {
4965   if (hash == NULL)
4966     return false;
4967 
4968   if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4969     {
4970       int i;
4971       for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4972 	if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
4973 	  return true;
4974       return false;
4975     }
4976 
4977   return htab_find (hash, insn) != NULL;
4978 }
4979 
4980 int
4981 prologue_epilogue_contains (const_rtx insn)
4982 {
4983   if (contains (insn, prologue_insn_hash))
4984     return 1;
4985   if (contains (insn, epilogue_insn_hash))
4986     return 1;
4987   return 0;
4988 }
4989 
4990 #ifdef HAVE_return
4991 /* Insert gen_return at the end of block BB.  This also means updating
4992    block_for_insn appropriately.  */
4993 
4994 static void
4995 emit_return_into_block (basic_block bb)
4996 {
4997   emit_jump_insn_after (gen_return (), BB_END (bb));
4998 }
4999 #endif /* HAVE_return */
5000 
5001 /* Generate the prologue and epilogue RTL if the machine supports it.  Thread
5002    this into place with notes indicating where the prologue ends and where
5003    the epilogue begins.  Update the basic block information when possible.  */
5004 
5005 static void
5006 thread_prologue_and_epilogue_insns (void)
5007 {
5008   int inserted = 0;
5009   edge e;
5010 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5011   rtx seq;
5012 #endif
5013 #if defined (HAVE_epilogue) || defined(HAVE_return)
5014   rtx epilogue_end = NULL_RTX;
5015 #endif
5016   edge_iterator ei;
5017 
5018   rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5019 #ifdef HAVE_prologue
5020   if (HAVE_prologue)
5021     {
5022       start_sequence ();
5023       seq = gen_prologue ();
5024       emit_insn (seq);
5025 
5026       /* Insert an explicit USE for the frame pointer
5027          if the profiling is on and the frame pointer is required.  */
5028       if (crtl->profile && frame_pointer_needed)
5029 	emit_use (hard_frame_pointer_rtx);
5030 
5031       /* Retain a map of the prologue insns.  */
5032       record_insns (seq, NULL, &prologue_insn_hash);
5033       emit_note (NOTE_INSN_PROLOGUE_END);
5034 
5035 #ifndef PROFILE_BEFORE_PROLOGUE
5036       /* Ensure that instructions are not moved into the prologue when
5037 	 profiling is on.  The call to the profiling routine can be
5038 	 emitted within the live range of a call-clobbered register.  */
5039       if (crtl->profile)
5040         emit_insn (gen_blockage ());
5041 #endif
5042 
5043       seq = get_insns ();
5044       end_sequence ();
5045       set_insn_locators (seq, prologue_locator);
5046 
5047       /* Can't deal with multiple successors of the entry block
5048          at the moment.  Function should always have at least one
5049          entry point.  */
5050       gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5051 
5052       insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5053       inserted = 1;
5054     }
5055 #endif
5056 
5057   /* If the exit block has no non-fake predecessors, we don't need
5058      an epilogue.  */
5059   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5060     if ((e->flags & EDGE_FAKE) == 0)
5061       break;
5062   if (e == NULL)
5063     goto epilogue_done;
5064 
5065   rtl_profile_for_bb (EXIT_BLOCK_PTR);
5066 #ifdef HAVE_return
5067   if (optimize && HAVE_return)
5068     {
5069       /* If we're allowed to generate a simple return instruction,
5070 	 then by definition we don't need a full epilogue.  Examine
5071 	 the block that falls through to EXIT.   If it does not
5072 	 contain any code, examine its predecessors and try to
5073 	 emit (conditional) return instructions.  */
5074 
5075       basic_block last;
5076       rtx label;
5077 
5078       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5079 	if (e->flags & EDGE_FALLTHRU)
5080 	  break;
5081       if (e == NULL)
5082 	goto epilogue_done;
5083       last = e->src;
5084 
5085       /* Verify that there are no active instructions in the last block.  */
5086       label = BB_END (last);
5087       while (label && !LABEL_P (label))
5088 	{
5089 	  if (active_insn_p (label))
5090 	    break;
5091 	  label = PREV_INSN (label);
5092 	}
5093 
5094       if (BB_HEAD (last) == label && LABEL_P (label))
5095 	{
5096 	  edge_iterator ei2;
5097 
5098 	  for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5099 	    {
5100 	      basic_block bb = e->src;
5101 	      rtx jump;
5102 
5103 	      if (bb == ENTRY_BLOCK_PTR)
5104 		{
5105 		  ei_next (&ei2);
5106 		  continue;
5107 		}
5108 
5109 	      jump = BB_END (bb);
5110 	      if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5111 		{
5112 		  ei_next (&ei2);
5113 		  continue;
5114 		}
5115 
5116 	      /* If we have an unconditional jump, we can replace that
5117 		 with a simple return instruction.  */
5118 	      if (simplejump_p (jump))
5119 		{
5120 		  emit_return_into_block (bb);
5121 		  delete_insn (jump);
5122 		}
5123 
5124 	      /* If we have a conditional jump, we can try to replace
5125 		 that with a conditional return instruction.  */
5126 	      else if (condjump_p (jump))
5127 		{
5128 		  if (! redirect_jump (jump, 0, 0))
5129 		    {
5130 		      ei_next (&ei2);
5131 		      continue;
5132 		    }
5133 
5134 		  /* If this block has only one successor, it both jumps
5135 		     and falls through to the fallthru block, so we can't
5136 		     delete the edge.  */
5137 		  if (single_succ_p (bb))
5138 		    {
5139 		      ei_next (&ei2);
5140 		      continue;
5141 		    }
5142 		}
5143 	      else
5144 		{
5145 		  ei_next (&ei2);
5146 		  continue;
5147 		}
5148 
5149 	      /* Fix up the CFG for the successful change we just made.  */
5150 	      redirect_edge_succ (e, EXIT_BLOCK_PTR);
5151 	    }
5152 
5153 	  /* Emit a return insn for the exit fallthru block.  Whether
5154 	     this is still reachable will be determined later.  */
5155 
5156 	  emit_barrier_after (BB_END (last));
5157 	  emit_return_into_block (last);
5158 	  epilogue_end = BB_END (last);
5159 	  single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5160 	  goto epilogue_done;
5161 	}
5162     }
5163 #endif
5164 
5165   /* A small fib -- epilogue is not yet completed, but we wish to re-use
5166      this marker for the splits of EH_RETURN patterns, and nothing else
5167      uses the flag in the meantime.  */
5168   epilogue_completed = 1;
5169 
5170 #ifdef HAVE_eh_return
5171   /* Find non-fallthru edges that end with EH_RETURN instructions.  On
5172      some targets, these get split to a special version of the epilogue
5173      code.  In order to be able to properly annotate these with unwind
5174      info, try to split them now.  If we get a valid split, drop an
5175      EPILOGUE_BEG note and mark the insns as epilogue insns.  */
5176   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5177     {
5178       rtx prev, last, trial;
5179 
5180       if (e->flags & EDGE_FALLTHRU)
5181 	continue;
5182       last = BB_END (e->src);
5183       if (!eh_returnjump_p (last))
5184 	continue;
5185 
5186       prev = PREV_INSN (last);
5187       trial = try_split (PATTERN (last), last, 1);
5188       if (trial == last)
5189 	continue;
5190 
5191       record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5192       emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5193     }
5194 #endif
5195 
5196   /* Find the edge that falls through to EXIT.  Other edges may exist
5197      due to RETURN instructions, but those don't need epilogues.
5198      There really shouldn't be a mixture -- either all should have
5199      been converted or none, however...  */
5200 
5201   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5202     if (e->flags & EDGE_FALLTHRU)
5203       break;
5204   if (e == NULL)
5205     goto epilogue_done;
5206 
5207 #ifdef HAVE_epilogue
5208   if (HAVE_epilogue)
5209     {
5210       start_sequence ();
5211       epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5212       seq = gen_epilogue ();
5213       emit_jump_insn (seq);
5214 
5215       /* Retain a map of the epilogue insns.  */
5216       record_insns (seq, NULL, &epilogue_insn_hash);
5217       set_insn_locators (seq, epilogue_locator);
5218 
5219       seq = get_insns ();
5220       end_sequence ();
5221 
5222       insert_insn_on_edge (seq, e);
5223       inserted = 1;
5224     }
5225   else
5226 #endif
5227     {
5228       basic_block cur_bb;
5229 
5230       if (! next_active_insn (BB_END (e->src)))
5231 	goto epilogue_done;
5232       /* We have a fall-through edge to the exit block, the source is not
5233          at the end of the function, and there will be an assembler epilogue
5234          at the end of the function.
5235          We can't use force_nonfallthru here, because that would try to
5236          use return.  Inserting a jump 'by hand' is extremely messy, so
5237 	 we take advantage of cfg_layout_finalize using
5238 	fixup_fallthru_exit_predecessor.  */
5239       cfg_layout_initialize (0);
5240       FOR_EACH_BB (cur_bb)
5241 	if (cur_bb->index >= NUM_FIXED_BLOCKS
5242 	    && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5243 	  cur_bb->aux = cur_bb->next_bb;
5244       cfg_layout_finalize ();
5245     }
5246 epilogue_done:
5247   default_rtl_profile ();
5248 
5249   if (inserted)
5250     {
5251       commit_edge_insertions ();
5252 
5253       /* The epilogue insns we inserted may cause the exit edge to no longer
5254 	 be fallthru.  */
5255       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5256 	{
5257 	  if (((e->flags & EDGE_FALLTHRU) != 0)
5258 	      && returnjump_p (BB_END (e->src)))
5259 	    e->flags &= ~EDGE_FALLTHRU;
5260 	}
5261     }
5262 
5263 #ifdef HAVE_sibcall_epilogue
5264   /* Emit sibling epilogues before any sibling call sites.  */
5265   for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5266     {
5267       basic_block bb = e->src;
5268       rtx insn = BB_END (bb);
5269 
5270       if (!CALL_P (insn)
5271 	  || ! SIBLING_CALL_P (insn))
5272 	{
5273 	  ei_next (&ei);
5274 	  continue;
5275 	}
5276 
5277       start_sequence ();
5278       emit_note (NOTE_INSN_EPILOGUE_BEG);
5279       emit_insn (gen_sibcall_epilogue ());
5280       seq = get_insns ();
5281       end_sequence ();
5282 
5283       /* Retain a map of the epilogue insns.  Used in life analysis to
5284 	 avoid getting rid of sibcall epilogue insns.  Do this before we
5285 	 actually emit the sequence.  */
5286       record_insns (seq, NULL, &epilogue_insn_hash);
5287       set_insn_locators (seq, epilogue_locator);
5288 
5289       emit_insn_before (seq, insn);
5290       ei_next (&ei);
5291     }
5292 #endif
5293 
5294 #ifdef HAVE_epilogue
5295   if (epilogue_end)
5296     {
5297       rtx insn, next;
5298 
5299       /* Similarly, move any line notes that appear after the epilogue.
5300          There is no need, however, to be quite so anal about the existence
5301 	 of such a note.  Also possibly move
5302 	 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5303 	 info generation.  */
5304       for (insn = epilogue_end; insn; insn = next)
5305 	{
5306 	  next = NEXT_INSN (insn);
5307 	  if (NOTE_P (insn)
5308 	      && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5309 	    reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5310 	}
5311     }
5312 #endif
5313 
5314   /* Threading the prologue and epilogue changes the artificial refs
5315      in the entry and exit blocks.  */
5316   epilogue_completed = 1;
5317   df_update_entry_exit_and_calls ();
5318 }
5319 
5320 /* Reposition the prologue-end and epilogue-begin notes after
5321    instruction scheduling.  */
5322 
5323 void
5324 reposition_prologue_and_epilogue_notes (void)
5325 {
5326 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5327     || defined (HAVE_sibcall_epilogue)
5328   /* Since the hash table is created on demand, the fact that it is
5329      non-null is a signal that it is non-empty.  */
5330   if (prologue_insn_hash != NULL)
5331     {
5332       size_t len = htab_elements (prologue_insn_hash);
5333       rtx insn, last = NULL, note = NULL;
5334 
5335       /* Scan from the beginning until we reach the last prologue insn.  */
5336       /* ??? While we do have the CFG intact, there are two problems:
5337 	 (1) The prologue can contain loops (typically probing the stack),
5338 	     which means that the end of the prologue isn't in the first bb.
5339 	 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb.  */
5340       for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5341 	{
5342 	  if (NOTE_P (insn))
5343 	    {
5344 	      if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5345 		note = insn;
5346 	    }
5347 	  else if (contains (insn, prologue_insn_hash))
5348 	    {
5349 	      last = insn;
5350 	      if (--len == 0)
5351 		break;
5352 	    }
5353 	}
5354 
5355       if (last)
5356 	{
5357 	  if (note == NULL)
5358 	    {
5359 	      /* Scan forward looking for the PROLOGUE_END note.  It should
5360 		 be right at the beginning of the block, possibly with other
5361 		 insn notes that got moved there.  */
5362 	      for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5363 		{
5364 		  if (NOTE_P (note)
5365 		      && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5366 		    break;
5367 		}
5368 	    }
5369 
5370 	  /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note.  */
5371 	  if (LABEL_P (last))
5372 	    last = NEXT_INSN (last);
5373 	  reorder_insns (note, note, last);
5374 	}
5375     }
5376 
5377   if (epilogue_insn_hash != NULL)
5378     {
5379       edge_iterator ei;
5380       edge e;
5381 
5382       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5383 	{
5384 	  rtx insn, first = NULL, note = NULL;
5385 	  basic_block bb = e->src;
5386 
5387 	  /* Scan from the beginning until we reach the first epilogue insn. */
5388 	  FOR_BB_INSNS (bb, insn)
5389 	    {
5390 	      if (NOTE_P (insn))
5391 		{
5392 		  if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5393 		    {
5394 		      note = insn;
5395 		      if (first != NULL)
5396 			break;
5397 		    }
5398 		}
5399 	      else if (first == NULL && contains (insn, epilogue_insn_hash))
5400 		{
5401 		  first = insn;
5402 		  if (note != NULL)
5403 		    break;
5404 		}
5405 	    }
5406 
5407 	  if (note)
5408 	    {
5409 	      /* If the function has a single basic block, and no real
5410 		 epilogue insns (e.g. sibcall with no cleanup), the
5411 		 epilogue note can get scheduled before the prologue
5412 		 note.  If we have frame related prologue insns, having
5413 		 them scanned during the epilogue will result in a crash.
5414 		 In this case re-order the epilogue note to just before
5415 		 the last insn in the block.  */
5416 	      if (first == NULL)
5417 		first = BB_END (bb);
5418 
5419 	      if (PREV_INSN (first) != note)
5420 		reorder_insns (note, note, PREV_INSN (first));
5421 	    }
5422 	}
5423     }
5424 #endif /* HAVE_prologue or HAVE_epilogue */
5425 }
5426 
5427 /* Returns the name of the current function.  */
5428 const char *
5429 current_function_name (void)
5430 {
5431   if (cfun == NULL)
5432     return "<none>";
5433   return lang_hooks.decl_printable_name (cfun->decl, 2);
5434 }
5435 
5436 
5437 static unsigned int
5438 rest_of_handle_check_leaf_regs (void)
5439 {
5440 #ifdef LEAF_REGISTERS
5441   current_function_uses_only_leaf_regs
5442     = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5443 #endif
5444   return 0;
5445 }
5446 
5447 /* Insert a TYPE into the used types hash table of CFUN.  */
5448 
5449 static void
5450 used_types_insert_helper (tree type, struct function *func)
5451 {
5452   if (type != NULL && func != NULL)
5453     {
5454       void **slot;
5455 
5456       if (func->used_types_hash == NULL)
5457 	func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5458 						 htab_eq_pointer, NULL);
5459       slot = htab_find_slot (func->used_types_hash, type, INSERT);
5460       if (*slot == NULL)
5461 	*slot = type;
5462     }
5463 }
5464 
5465 /* Given a type, insert it into the used hash table in cfun.  */
5466 void
5467 used_types_insert (tree t)
5468 {
5469   while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5470     if (TYPE_NAME (t))
5471       break;
5472     else
5473       t = TREE_TYPE (t);
5474   if (TYPE_NAME (t) == NULL_TREE
5475       || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
5476     t = TYPE_MAIN_VARIANT (t);
5477   if (debug_info_level > DINFO_LEVEL_NONE)
5478     {
5479       if (cfun)
5480 	used_types_insert_helper (t, cfun);
5481       else
5482 	/* So this might be a type referenced by a global variable.
5483 	   Record that type so that we can later decide to emit its debug
5484 	   information.  */
5485 	types_used_by_cur_var_decl =
5486 	  tree_cons (t, NULL, types_used_by_cur_var_decl);
5487 
5488     }
5489 }
5490 
5491 /* Helper to Hash a struct types_used_by_vars_entry.  */
5492 
5493 static hashval_t
5494 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
5495 {
5496   gcc_assert (entry && entry->var_decl && entry->type);
5497 
5498   return iterative_hash_object (entry->type,
5499 				iterative_hash_object (entry->var_decl, 0));
5500 }
5501 
5502 /* Hash function of the types_used_by_vars_entry hash table.  */
5503 
5504 hashval_t
5505 types_used_by_vars_do_hash (const void *x)
5506 {
5507   const struct types_used_by_vars_entry *entry =
5508     (const struct types_used_by_vars_entry *) x;
5509 
5510   return hash_types_used_by_vars_entry (entry);
5511 }
5512 
5513 /*Equality function of the types_used_by_vars_entry hash table.  */
5514 
5515 int
5516 types_used_by_vars_eq (const void *x1, const void *x2)
5517 {
5518   const struct types_used_by_vars_entry *e1 =
5519     (const struct types_used_by_vars_entry *) x1;
5520   const struct types_used_by_vars_entry *e2 =
5521     (const struct types_used_by_vars_entry *)x2;
5522 
5523   return (e1->var_decl == e2->var_decl && e1->type == e2->type);
5524 }
5525 
5526 /* Inserts an entry into the types_used_by_vars_hash hash table. */
5527 
5528 void
5529 types_used_by_var_decl_insert (tree type, tree var_decl)
5530 {
5531   if (type != NULL && var_decl != NULL)
5532     {
5533       void **slot;
5534       struct types_used_by_vars_entry e;
5535       e.var_decl = var_decl;
5536       e.type = type;
5537       if (types_used_by_vars_hash == NULL)
5538 	types_used_by_vars_hash =
5539 	  htab_create_ggc (37, types_used_by_vars_do_hash,
5540 			   types_used_by_vars_eq, NULL);
5541       slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
5542 				       hash_types_used_by_vars_entry (&e), INSERT);
5543       if (*slot == NULL)
5544 	{
5545 	  struct types_used_by_vars_entry *entry;
5546 	  entry = (struct types_used_by_vars_entry*) ggc_alloc
5547 		    (sizeof (struct types_used_by_vars_entry));
5548 	  entry->type = type;
5549 	  entry->var_decl = var_decl;
5550 	  *slot = entry;
5551 	}
5552     }
5553 }
5554 
5555 struct rtl_opt_pass pass_leaf_regs =
5556 {
5557  {
5558   RTL_PASS,
5559   "*leaf_regs",                         /* name */
5560   NULL,                                 /* gate */
5561   rest_of_handle_check_leaf_regs,       /* execute */
5562   NULL,                                 /* sub */
5563   NULL,                                 /* next */
5564   0,                                    /* static_pass_number */
5565   TV_NONE,                              /* tv_id */
5566   0,                                    /* properties_required */
5567   0,                                    /* properties_provided */
5568   0,                                    /* properties_destroyed */
5569   0,                                    /* todo_flags_start */
5570   0                                     /* todo_flags_finish */
5571  }
5572 };
5573 
5574 static unsigned int
5575 rest_of_handle_thread_prologue_and_epilogue (void)
5576 {
5577   if (optimize)
5578     cleanup_cfg (CLEANUP_EXPENSIVE);
5579   /* On some machines, the prologue and epilogue code, or parts thereof,
5580      can be represented as RTL.  Doing so lets us schedule insns between
5581      it and the rest of the code and also allows delayed branch
5582      scheduling to operate in the epilogue.  */
5583 
5584   thread_prologue_and_epilogue_insns ();
5585   return 0;
5586 }
5587 
5588 struct rtl_opt_pass pass_thread_prologue_and_epilogue =
5589 {
5590  {
5591   RTL_PASS,
5592   "pro_and_epilogue",                   /* name */
5593   NULL,                                 /* gate */
5594   rest_of_handle_thread_prologue_and_epilogue, /* execute */
5595   NULL,                                 /* sub */
5596   NULL,                                 /* next */
5597   0,                                    /* static_pass_number */
5598   TV_THREAD_PROLOGUE_AND_EPILOGUE,      /* tv_id */
5599   0,                                    /* properties_required */
5600   0,                                    /* properties_provided */
5601   0,                                    /* properties_destroyed */
5602   TODO_verify_flow,                     /* todo_flags_start */
5603   TODO_dump_func |
5604   TODO_df_verify |
5605   TODO_df_finish | TODO_verify_rtl_sharing |
5606   TODO_ggc_collect                      /* todo_flags_finish */
5607  }
5608 };
5609 
5610 
5611 /* This mini-pass fixes fall-out from SSA in asm statements that have
5612    in-out constraints.  Say you start with
5613 
5614      orig = inout;
5615      asm ("": "+mr" (inout));
5616      use (orig);
5617 
5618    which is transformed very early to use explicit output and match operands:
5619 
5620      orig = inout;
5621      asm ("": "=mr" (inout) : "0" (inout));
5622      use (orig);
5623 
5624    Or, after SSA and copyprop,
5625 
5626      asm ("": "=mr" (inout_2) : "0" (inout_1));
5627      use (inout_1);
5628 
5629    Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5630    they represent two separate values, so they will get different pseudo
5631    registers during expansion.  Then, since the two operands need to match
5632    per the constraints, but use different pseudo registers, reload can
5633    only register a reload for these operands.  But reloads can only be
5634    satisfied by hardregs, not by memory, so we need a register for this
5635    reload, just because we are presented with non-matching operands.
5636    So, even though we allow memory for this operand, no memory can be
5637    used for it, just because the two operands don't match.  This can
5638    cause reload failures on register-starved targets.
5639 
5640    So it's a symptom of reload not being able to use memory for reloads
5641    or, alternatively it's also a symptom of both operands not coming into
5642    reload as matching (in which case the pseudo could go to memory just
5643    fine, as the alternative allows it, and no reload would be necessary).
5644    We fix the latter problem here, by transforming
5645 
5646      asm ("": "=mr" (inout_2) : "0" (inout_1));
5647 
5648    back to
5649 
5650      inout_2 = inout_1;
5651      asm ("": "=mr" (inout_2) : "0" (inout_2));  */
5652 
5653 static void
5654 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5655 {
5656   int i;
5657   bool changed = false;
5658   rtx op = SET_SRC (p_sets[0]);
5659   int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5660   rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5661   bool *output_matched = XALLOCAVEC (bool, noutputs);
5662 
5663   memset (output_matched, 0, noutputs * sizeof (bool));
5664   for (i = 0; i < ninputs; i++)
5665     {
5666       rtx input, output, insns;
5667       const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5668       char *end;
5669       int match, j;
5670 
5671       if (*constraint == '%')
5672 	constraint++;
5673 
5674       match = strtoul (constraint, &end, 10);
5675       if (end == constraint)
5676 	continue;
5677 
5678       gcc_assert (match < noutputs);
5679       output = SET_DEST (p_sets[match]);
5680       input = RTVEC_ELT (inputs, i);
5681       /* Only do the transformation for pseudos.  */
5682       if (! REG_P (output)
5683 	  || rtx_equal_p (output, input)
5684 	  || (GET_MODE (input) != VOIDmode
5685 	      && GET_MODE (input) != GET_MODE (output)))
5686 	continue;
5687 
5688       /* We can't do anything if the output is also used as input,
5689 	 as we're going to overwrite it.  */
5690       for (j = 0; j < ninputs; j++)
5691         if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5692 	  break;
5693       if (j != ninputs)
5694 	continue;
5695 
5696       /* Avoid changing the same input several times.  For
5697 	 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
5698 	 only change in once (to out1), rather than changing it
5699 	 first to out1 and afterwards to out2.  */
5700       if (i > 0)
5701 	{
5702 	  for (j = 0; j < noutputs; j++)
5703 	    if (output_matched[j] && input == SET_DEST (p_sets[j]))
5704 	      break;
5705 	  if (j != noutputs)
5706 	    continue;
5707 	}
5708       output_matched[match] = true;
5709 
5710       start_sequence ();
5711       emit_move_insn (output, input);
5712       insns = get_insns ();
5713       end_sequence ();
5714       emit_insn_before (insns, insn);
5715 
5716       /* Now replace all mentions of the input with output.  We can't
5717 	 just replace the occurrence in inputs[i], as the register might
5718 	 also be used in some other input (or even in an address of an
5719 	 output), which would mean possibly increasing the number of
5720 	 inputs by one (namely 'output' in addition), which might pose
5721 	 a too complicated problem for reload to solve.  E.g. this situation:
5722 
5723 	   asm ("" : "=r" (output), "=m" (input) : "0" (input))
5724 
5725 	 Here 'input' is used in two occurrences as input (once for the
5726 	 input operand, once for the address in the second output operand).
5727 	 If we would replace only the occurrence of the input operand (to
5728 	 make the matching) we would be left with this:
5729 
5730 	   output = input
5731 	   asm ("" : "=r" (output), "=m" (input) : "0" (output))
5732 
5733 	 Now we suddenly have two different input values (containing the same
5734 	 value, but different pseudos) where we formerly had only one.
5735 	 With more complicated asms this might lead to reload failures
5736 	 which wouldn't have happen without this pass.  So, iterate over
5737 	 all operands and replace all occurrences of the register used.  */
5738       for (j = 0; j < noutputs; j++)
5739 	if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5740 	    && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5741 	  SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5742 					      input, output);
5743       for (j = 0; j < ninputs; j++)
5744 	if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5745 	  RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5746 					       input, output);
5747 
5748       changed = true;
5749     }
5750 
5751   if (changed)
5752     df_insn_rescan (insn);
5753 }
5754 
5755 static unsigned
5756 rest_of_match_asm_constraints (void)
5757 {
5758   basic_block bb;
5759   rtx insn, pat, *p_sets;
5760   int noutputs;
5761 
5762   if (!crtl->has_asm_statement)
5763     return 0;
5764 
5765   df_set_flags (DF_DEFER_INSN_RESCAN);
5766   FOR_EACH_BB (bb)
5767     {
5768       FOR_BB_INSNS (bb, insn)
5769 	{
5770 	  if (!INSN_P (insn))
5771 	    continue;
5772 
5773 	  pat = PATTERN (insn);
5774 	  if (GET_CODE (pat) == PARALLEL)
5775 	    p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5776 	  else if (GET_CODE (pat) == SET)
5777 	    p_sets = &PATTERN (insn), noutputs = 1;
5778 	  else
5779 	    continue;
5780 
5781 	  if (GET_CODE (*p_sets) == SET
5782 	      && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5783 	    match_asm_constraints_1 (insn, p_sets, noutputs);
5784 	 }
5785     }
5786 
5787   return TODO_df_finish;
5788 }
5789 
5790 struct rtl_opt_pass pass_match_asm_constraints =
5791 {
5792  {
5793   RTL_PASS,
5794   "asmcons",				/* name */
5795   NULL,					/* gate */
5796   rest_of_match_asm_constraints,	/* execute */
5797   NULL,                                 /* sub */
5798   NULL,                                 /* next */
5799   0,                                    /* static_pass_number */
5800   TV_NONE,				/* tv_id */
5801   0,                                    /* properties_required */
5802   0,                                    /* properties_provided */
5803   0,                                    /* properties_destroyed */
5804   0,					/* todo_flags_start */
5805   TODO_dump_func                       /* todo_flags_finish */
5806  }
5807 };
5808 
5809 
5810 #include "gt-function.h"
5811