1 /* Expands front end tree to back end RTL for GCC. 2 Copyright (C) 1987-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This file handles the generation of rtl code from tree structure 21 at the level of the function as a whole. 22 It creates the rtl expressions for parameters and auto variables 23 and has full responsibility for allocating stack slots. 24 25 `expand_function_start' is called at the beginning of a function, 26 before the function body is parsed, and `expand_function_end' is 27 called after parsing the body. 28 29 Call `assign_stack_local' to allocate a stack slot for a local variable. 30 This is usually done during the RTL generation for the function body, 31 but it can also be done in the reload pass when a pseudo-register does 32 not get a hard register. */ 33 34 #include "config.h" 35 #include "system.h" 36 #include "coretypes.h" 37 #include "backend.h" 38 #include "target.h" 39 #include "rtl.h" 40 #include "tree.h" 41 #include "gimple-expr.h" 42 #include "cfghooks.h" 43 #include "df.h" 44 #include "memmodel.h" 45 #include "tm_p.h" 46 #include "stringpool.h" 47 #include "expmed.h" 48 #include "optabs.h" 49 #include "regs.h" 50 #include "emit-rtl.h" 51 #include "recog.h" 52 #include "rtl-error.h" 53 #include "alias.h" 54 #include "fold-const.h" 55 #include "stor-layout.h" 56 #include "varasm.h" 57 #include "except.h" 58 #include "dojump.h" 59 #include "explow.h" 60 #include "calls.h" 61 #include "expr.h" 62 #include "optabs-tree.h" 63 #include "output.h" 64 #include "langhooks.h" 65 #include "common/common-target.h" 66 #include "gimplify.h" 67 #include "tree-pass.h" 68 #include "cfgrtl.h" 69 #include "cfganal.h" 70 #include "cfgbuild.h" 71 #include "cfgcleanup.h" 72 #include "cfgexpand.h" 73 #include "shrink-wrap.h" 74 #include "toplev.h" 75 #include "rtl-iter.h" 76 #include "tree-dfa.h" 77 #include "tree-ssa.h" 78 #include "stringpool.h" 79 #include "attribs.h" 80 #include "gimple.h" 81 #include "options.h" 82 #include "function-abi.h" 83 84 /* So we can assign to cfun in this file. */ 85 #undef cfun 86 87 #ifndef STACK_ALIGNMENT_NEEDED 88 #define STACK_ALIGNMENT_NEEDED 1 89 #endif 90 91 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) 92 93 /* Round a value to the lowest integer less than it that is a multiple of 94 the required alignment. Avoid using division in case the value is 95 negative. Assume the alignment is a power of two. */ 96 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1)) 97 98 /* Similar, but round to the next highest integer that meets the 99 alignment. */ 100 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) 101 102 /* Nonzero once virtual register instantiation has been done. 103 assign_stack_local uses frame_pointer_rtx when this is nonzero. 104 calls.c:emit_library_call_value_1 uses it to set up 105 post-instantiation libcalls. */ 106 int virtuals_instantiated; 107 108 /* Assign unique numbers to labels generated for profiling, debugging, etc. */ 109 static GTY(()) int funcdef_no; 110 111 /* These variables hold pointers to functions to create and destroy 112 target specific, per-function data structures. */ 113 struct machine_function * (*init_machine_status) (void); 114 115 /* The currently compiled function. */ 116 struct function *cfun = 0; 117 118 /* These hashes record the prologue and epilogue insns. */ 119 120 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def> 121 { 122 static hashval_t hash (rtx x) { return htab_hash_pointer (x); } 123 static bool equal (rtx a, rtx b) { return a == b; } 124 }; 125 126 static GTY((cache)) 127 hash_table<insn_cache_hasher> *prologue_insn_hash; 128 static GTY((cache)) 129 hash_table<insn_cache_hasher> *epilogue_insn_hash; 130 131 132 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL; 133 vec<tree, va_gc> *types_used_by_cur_var_decl; 134 135 /* Forward declarations. */ 136 137 static class temp_slot *find_temp_slot_from_address (rtx); 138 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *); 139 static void pad_below (struct args_size *, machine_mode, tree); 140 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *); 141 static int all_blocks (tree, tree *); 142 static tree *get_block_vector (tree, int *); 143 extern tree debug_find_var_in_block_tree (tree, tree); 144 /* We always define `record_insns' even if it's not used so that we 145 can always export `prologue_epilogue_contains'. */ 146 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **) 147 ATTRIBUTE_UNUSED; 148 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *); 149 static void prepare_function_start (void); 150 static void do_clobber_return_reg (rtx, void *); 151 static void do_use_return_reg (rtx, void *); 152 153 154 /* Stack of nested functions. */ 155 /* Keep track of the cfun stack. */ 156 157 static vec<function *> function_context_stack; 158 159 /* Save the current context for compilation of a nested function. 160 This is called from language-specific code. */ 161 162 void 163 push_function_context (void) 164 { 165 if (cfun == 0) 166 allocate_struct_function (NULL, false); 167 168 function_context_stack.safe_push (cfun); 169 set_cfun (NULL); 170 } 171 172 /* Restore the last saved context, at the end of a nested function. 173 This function is called from language-specific code. */ 174 175 void 176 pop_function_context (void) 177 { 178 struct function *p = function_context_stack.pop (); 179 set_cfun (p); 180 current_function_decl = p->decl; 181 182 /* Reset variables that have known state during rtx generation. */ 183 virtuals_instantiated = 0; 184 generating_concat_p = 1; 185 } 186 187 /* Clear out all parts of the state in F that can safely be discarded 188 after the function has been parsed, but not compiled, to let 189 garbage collection reclaim the memory. */ 190 191 void 192 free_after_parsing (struct function *f) 193 { 194 f->language = 0; 195 } 196 197 /* Clear out all parts of the state in F that can safely be discarded 198 after the function has been compiled, to let garbage collection 199 reclaim the memory. */ 200 201 void 202 free_after_compilation (struct function *f) 203 { 204 prologue_insn_hash = NULL; 205 epilogue_insn_hash = NULL; 206 207 free (crtl->emit.regno_pointer_align); 208 209 memset (crtl, 0, sizeof (struct rtl_data)); 210 f->eh = NULL; 211 f->machine = NULL; 212 f->cfg = NULL; 213 f->curr_properties &= ~PROP_cfg; 214 215 regno_reg_rtx = NULL; 216 } 217 218 /* Return size needed for stack frame based on slots so far allocated. 219 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; 220 the caller may have to do that. */ 221 222 poly_int64 223 get_frame_size (void) 224 { 225 if (FRAME_GROWS_DOWNWARD) 226 return -frame_offset; 227 else 228 return frame_offset; 229 } 230 231 /* Issue an error message and return TRUE if frame OFFSET overflows in 232 the signed target pointer arithmetics for function FUNC. Otherwise 233 return FALSE. */ 234 235 bool 236 frame_offset_overflow (poly_int64 offset, tree func) 237 { 238 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset; 239 unsigned HOST_WIDE_INT limit 240 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1)) 241 /* Leave room for the fixed part of the frame. */ 242 - 64 * UNITS_PER_WORD); 243 244 if (!coeffs_in_range_p (size, 0U, limit)) 245 { 246 unsigned HOST_WIDE_INT hwisize; 247 if (size.is_constant (&hwisize)) 248 error_at (DECL_SOURCE_LOCATION (func), 249 "total size of local objects %wu exceeds maximum %wu", 250 hwisize, limit); 251 else 252 error_at (DECL_SOURCE_LOCATION (func), 253 "total size of local objects exceeds maximum %wu", 254 limit); 255 return true; 256 } 257 258 return false; 259 } 260 261 /* Return the minimum spill slot alignment for a register of mode MODE. */ 262 263 unsigned int 264 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED) 265 { 266 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode)); 267 } 268 269 /* Return stack slot alignment in bits for TYPE and MODE. */ 270 271 static unsigned int 272 get_stack_local_alignment (tree type, machine_mode mode) 273 { 274 unsigned int alignment; 275 276 if (mode == BLKmode) 277 alignment = BIGGEST_ALIGNMENT; 278 else 279 alignment = GET_MODE_ALIGNMENT (mode); 280 281 /* Allow the frond-end to (possibly) increase the alignment of this 282 stack slot. */ 283 if (! type) 284 type = lang_hooks.types.type_for_mode (mode, 0); 285 286 return STACK_SLOT_ALIGNMENT (type, mode, alignment); 287 } 288 289 /* Determine whether it is possible to fit a stack slot of size SIZE and 290 alignment ALIGNMENT into an area in the stack frame that starts at 291 frame offset START and has a length of LENGTH. If so, store the frame 292 offset to be used for the stack slot in *POFFSET and return true; 293 return false otherwise. This function will extend the frame size when 294 given a start/length pair that lies at the end of the frame. */ 295 296 static bool 297 try_fit_stack_local (poly_int64 start, poly_int64 length, 298 poly_int64 size, unsigned int alignment, 299 poly_int64_pod *poffset) 300 { 301 poly_int64 this_frame_offset; 302 int frame_off, frame_alignment, frame_phase; 303 304 /* Calculate how many bytes the start of local variables is off from 305 stack alignment. */ 306 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; 307 frame_off = targetm.starting_frame_offset () % frame_alignment; 308 frame_phase = frame_off ? frame_alignment - frame_off : 0; 309 310 /* Round the frame offset to the specified alignment. */ 311 312 if (FRAME_GROWS_DOWNWARD) 313 this_frame_offset 314 = (aligned_lower_bound (start + length - size - frame_phase, alignment) 315 + frame_phase); 316 else 317 this_frame_offset 318 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase; 319 320 /* See if it fits. If this space is at the edge of the frame, 321 consider extending the frame to make it fit. Our caller relies on 322 this when allocating a new slot. */ 323 if (maybe_lt (this_frame_offset, start)) 324 { 325 if (known_eq (frame_offset, start)) 326 frame_offset = this_frame_offset; 327 else 328 return false; 329 } 330 else if (maybe_gt (this_frame_offset + size, start + length)) 331 { 332 if (known_eq (frame_offset, start + length)) 333 frame_offset = this_frame_offset + size; 334 else 335 return false; 336 } 337 338 *poffset = this_frame_offset; 339 return true; 340 } 341 342 /* Create a new frame_space structure describing free space in the stack 343 frame beginning at START and ending at END, and chain it into the 344 function's frame_space_list. */ 345 346 static void 347 add_frame_space (poly_int64 start, poly_int64 end) 348 { 349 class frame_space *space = ggc_alloc<frame_space> (); 350 space->next = crtl->frame_space_list; 351 crtl->frame_space_list = space; 352 space->start = start; 353 space->length = end - start; 354 } 355 356 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it 357 with machine mode MODE. 358 359 ALIGN controls the amount of alignment for the address of the slot: 360 0 means according to MODE, 361 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that, 362 -2 means use BITS_PER_UNIT, 363 positive specifies alignment boundary in bits. 364 365 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce 366 alignment and ASLK_RECORD_PAD bit set if we should remember 367 extra space we allocated for alignment purposes. When we are 368 called from assign_stack_temp_for_type, it is not set so we don't 369 track the same stack slot in two independent lists. 370 371 We do not round to stack_boundary here. */ 372 373 rtx 374 assign_stack_local_1 (machine_mode mode, poly_int64 size, 375 int align, int kind) 376 { 377 rtx x, addr; 378 poly_int64 bigend_correction = 0; 379 poly_int64 slot_offset = 0, old_frame_offset; 380 unsigned int alignment, alignment_in_bits; 381 382 if (align == 0) 383 { 384 alignment = get_stack_local_alignment (NULL, mode); 385 alignment /= BITS_PER_UNIT; 386 } 387 else if (align == -1) 388 { 389 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT; 390 size = aligned_upper_bound (size, alignment); 391 } 392 else if (align == -2) 393 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */ 394 else 395 alignment = align / BITS_PER_UNIT; 396 397 alignment_in_bits = alignment * BITS_PER_UNIT; 398 399 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */ 400 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT) 401 { 402 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT; 403 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT; 404 } 405 406 if (SUPPORTS_STACK_ALIGNMENT) 407 { 408 if (crtl->stack_alignment_estimated < alignment_in_bits) 409 { 410 if (!crtl->stack_realign_processed) 411 crtl->stack_alignment_estimated = alignment_in_bits; 412 else 413 { 414 /* If stack is realigned and stack alignment value 415 hasn't been finalized, it is OK not to increase 416 stack_alignment_estimated. The bigger alignment 417 requirement is recorded in stack_alignment_needed 418 below. */ 419 gcc_assert (!crtl->stack_realign_finalized); 420 if (!crtl->stack_realign_needed) 421 { 422 /* It is OK to reduce the alignment as long as the 423 requested size is 0 or the estimated stack 424 alignment >= mode alignment. */ 425 gcc_assert ((kind & ASLK_REDUCE_ALIGN) 426 || known_eq (size, 0) 427 || (crtl->stack_alignment_estimated 428 >= GET_MODE_ALIGNMENT (mode))); 429 alignment_in_bits = crtl->stack_alignment_estimated; 430 alignment = alignment_in_bits / BITS_PER_UNIT; 431 } 432 } 433 } 434 } 435 436 if (crtl->stack_alignment_needed < alignment_in_bits) 437 crtl->stack_alignment_needed = alignment_in_bits; 438 if (crtl->max_used_stack_slot_alignment < alignment_in_bits) 439 crtl->max_used_stack_slot_alignment = alignment_in_bits; 440 441 if (mode != BLKmode || maybe_ne (size, 0)) 442 { 443 if (kind & ASLK_RECORD_PAD) 444 { 445 class frame_space **psp; 446 447 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next) 448 { 449 class frame_space *space = *psp; 450 if (!try_fit_stack_local (space->start, space->length, size, 451 alignment, &slot_offset)) 452 continue; 453 *psp = space->next; 454 if (known_gt (slot_offset, space->start)) 455 add_frame_space (space->start, slot_offset); 456 if (known_lt (slot_offset + size, space->start + space->length)) 457 add_frame_space (slot_offset + size, 458 space->start + space->length); 459 goto found_space; 460 } 461 } 462 } 463 else if (!STACK_ALIGNMENT_NEEDED) 464 { 465 slot_offset = frame_offset; 466 goto found_space; 467 } 468 469 old_frame_offset = frame_offset; 470 471 if (FRAME_GROWS_DOWNWARD) 472 { 473 frame_offset -= size; 474 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset); 475 476 if (kind & ASLK_RECORD_PAD) 477 { 478 if (known_gt (slot_offset, frame_offset)) 479 add_frame_space (frame_offset, slot_offset); 480 if (known_lt (slot_offset + size, old_frame_offset)) 481 add_frame_space (slot_offset + size, old_frame_offset); 482 } 483 } 484 else 485 { 486 frame_offset += size; 487 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset); 488 489 if (kind & ASLK_RECORD_PAD) 490 { 491 if (known_gt (slot_offset, old_frame_offset)) 492 add_frame_space (old_frame_offset, slot_offset); 493 if (known_lt (slot_offset + size, frame_offset)) 494 add_frame_space (slot_offset + size, frame_offset); 495 } 496 } 497 498 found_space: 499 /* On a big-endian machine, if we are allocating more space than we will use, 500 use the least significant bytes of those that are allocated. */ 501 if (mode != BLKmode) 502 { 503 /* The slot size can sometimes be smaller than the mode size; 504 e.g. the rs6000 port allocates slots with a vector mode 505 that have the size of only one element. However, the slot 506 size must always be ordered wrt to the mode size, in the 507 same way as for a subreg. */ 508 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size)); 509 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size)) 510 bigend_correction = size - GET_MODE_SIZE (mode); 511 } 512 513 /* If we have already instantiated virtual registers, return the actual 514 address relative to the frame pointer. */ 515 if (virtuals_instantiated) 516 addr = plus_constant (Pmode, frame_pointer_rtx, 517 trunc_int_for_mode 518 (slot_offset + bigend_correction 519 + targetm.starting_frame_offset (), Pmode)); 520 else 521 addr = plus_constant (Pmode, virtual_stack_vars_rtx, 522 trunc_int_for_mode 523 (slot_offset + bigend_correction, 524 Pmode)); 525 526 x = gen_rtx_MEM (mode, addr); 527 set_mem_align (x, alignment_in_bits); 528 MEM_NOTRAP_P (x) = 1; 529 530 vec_safe_push (stack_slot_list, x); 531 532 if (frame_offset_overflow (frame_offset, current_function_decl)) 533 frame_offset = 0; 534 535 return x; 536 } 537 538 /* Wrap up assign_stack_local_1 with last parameter as false. */ 539 540 rtx 541 assign_stack_local (machine_mode mode, poly_int64 size, int align) 542 { 543 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD); 544 } 545 546 /* In order to evaluate some expressions, such as function calls returning 547 structures in memory, we need to temporarily allocate stack locations. 548 We record each allocated temporary in the following structure. 549 550 Associated with each temporary slot is a nesting level. When we pop up 551 one level, all temporaries associated with the previous level are freed. 552 Normally, all temporaries are freed after the execution of the statement 553 in which they were created. However, if we are inside a ({...}) grouping, 554 the result may be in a temporary and hence must be preserved. If the 555 result could be in a temporary, we preserve it if we can determine which 556 one it is in. If we cannot determine which temporary may contain the 557 result, all temporaries are preserved. A temporary is preserved by 558 pretending it was allocated at the previous nesting level. */ 559 560 class GTY(()) temp_slot { 561 public: 562 /* Points to next temporary slot. */ 563 class temp_slot *next; 564 /* Points to previous temporary slot. */ 565 class temp_slot *prev; 566 /* The rtx to used to reference the slot. */ 567 rtx slot; 568 /* The size, in units, of the slot. */ 569 poly_int64 size; 570 /* The type of the object in the slot, or zero if it doesn't correspond 571 to a type. We use this to determine whether a slot can be reused. 572 It can be reused if objects of the type of the new slot will always 573 conflict with objects of the type of the old slot. */ 574 tree type; 575 /* The alignment (in bits) of the slot. */ 576 unsigned int align; 577 /* Nonzero if this temporary is currently in use. */ 578 char in_use; 579 /* Nesting level at which this slot is being used. */ 580 int level; 581 /* The offset of the slot from the frame_pointer, including extra space 582 for alignment. This info is for combine_temp_slots. */ 583 poly_int64 base_offset; 584 /* The size of the slot, including extra space for alignment. This 585 info is for combine_temp_slots. */ 586 poly_int64 full_size; 587 }; 588 589 /* Entry for the below hash table. */ 590 struct GTY((for_user)) temp_slot_address_entry { 591 hashval_t hash; 592 rtx address; 593 class temp_slot *temp_slot; 594 }; 595 596 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry> 597 { 598 static hashval_t hash (temp_slot_address_entry *); 599 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *); 600 }; 601 602 /* A table of addresses that represent a stack slot. The table is a mapping 603 from address RTXen to a temp slot. */ 604 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table; 605 static size_t n_temp_slots_in_use; 606 607 /* Removes temporary slot TEMP from LIST. */ 608 609 static void 610 cut_slot_from_list (class temp_slot *temp, class temp_slot **list) 611 { 612 if (temp->next) 613 temp->next->prev = temp->prev; 614 if (temp->prev) 615 temp->prev->next = temp->next; 616 else 617 *list = temp->next; 618 619 temp->prev = temp->next = NULL; 620 } 621 622 /* Inserts temporary slot TEMP to LIST. */ 623 624 static void 625 insert_slot_to_list (class temp_slot *temp, class temp_slot **list) 626 { 627 temp->next = *list; 628 if (*list) 629 (*list)->prev = temp; 630 temp->prev = NULL; 631 *list = temp; 632 } 633 634 /* Returns the list of used temp slots at LEVEL. */ 635 636 static class temp_slot ** 637 temp_slots_at_level (int level) 638 { 639 if (level >= (int) vec_safe_length (used_temp_slots)) 640 vec_safe_grow_cleared (used_temp_slots, level + 1); 641 642 return &(*used_temp_slots)[level]; 643 } 644 645 /* Returns the maximal temporary slot level. */ 646 647 static int 648 max_slot_level (void) 649 { 650 if (!used_temp_slots) 651 return -1; 652 653 return used_temp_slots->length () - 1; 654 } 655 656 /* Moves temporary slot TEMP to LEVEL. */ 657 658 static void 659 move_slot_to_level (class temp_slot *temp, int level) 660 { 661 cut_slot_from_list (temp, temp_slots_at_level (temp->level)); 662 insert_slot_to_list (temp, temp_slots_at_level (level)); 663 temp->level = level; 664 } 665 666 /* Make temporary slot TEMP available. */ 667 668 static void 669 make_slot_available (class temp_slot *temp) 670 { 671 cut_slot_from_list (temp, temp_slots_at_level (temp->level)); 672 insert_slot_to_list (temp, &avail_temp_slots); 673 temp->in_use = 0; 674 temp->level = -1; 675 n_temp_slots_in_use--; 676 } 677 678 /* Compute the hash value for an address -> temp slot mapping. 679 The value is cached on the mapping entry. */ 680 static hashval_t 681 temp_slot_address_compute_hash (struct temp_slot_address_entry *t) 682 { 683 int do_not_record = 0; 684 return hash_rtx (t->address, GET_MODE (t->address), 685 &do_not_record, NULL, false); 686 } 687 688 /* Return the hash value for an address -> temp slot mapping. */ 689 hashval_t 690 temp_address_hasher::hash (temp_slot_address_entry *t) 691 { 692 return t->hash; 693 } 694 695 /* Compare two address -> temp slot mapping entries. */ 696 bool 697 temp_address_hasher::equal (temp_slot_address_entry *t1, 698 temp_slot_address_entry *t2) 699 { 700 return exp_equiv_p (t1->address, t2->address, 0, true); 701 } 702 703 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */ 704 static void 705 insert_temp_slot_address (rtx address, class temp_slot *temp_slot) 706 { 707 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> (); 708 t->address = copy_rtx (address); 709 t->temp_slot = temp_slot; 710 t->hash = temp_slot_address_compute_hash (t); 711 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t; 712 } 713 714 /* Remove an address -> temp slot mapping entry if the temp slot is 715 not in use anymore. Callback for remove_unused_temp_slot_addresses. */ 716 int 717 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *) 718 { 719 const struct temp_slot_address_entry *t = *slot; 720 if (! t->temp_slot->in_use) 721 temp_slot_address_table->clear_slot (slot); 722 return 1; 723 } 724 725 /* Remove all mappings of addresses to unused temp slots. */ 726 static void 727 remove_unused_temp_slot_addresses (void) 728 { 729 /* Use quicker clearing if there aren't any active temp slots. */ 730 if (n_temp_slots_in_use) 731 temp_slot_address_table->traverse 732 <void *, remove_unused_temp_slot_addresses_1> (NULL); 733 else 734 temp_slot_address_table->empty (); 735 } 736 737 /* Find the temp slot corresponding to the object at address X. */ 738 739 static class temp_slot * 740 find_temp_slot_from_address (rtx x) 741 { 742 class temp_slot *p; 743 struct temp_slot_address_entry tmp, *t; 744 745 /* First try the easy way: 746 See if X exists in the address -> temp slot mapping. */ 747 tmp.address = x; 748 tmp.temp_slot = NULL; 749 tmp.hash = temp_slot_address_compute_hash (&tmp); 750 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash); 751 if (t) 752 return t->temp_slot; 753 754 /* If we have a sum involving a register, see if it points to a temp 755 slot. */ 756 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) 757 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0) 758 return p; 759 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1)) 760 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0) 761 return p; 762 763 /* Last resort: Address is a virtual stack var address. */ 764 poly_int64 offset; 765 if (strip_offset (x, &offset) == virtual_stack_vars_rtx) 766 { 767 int i; 768 for (i = max_slot_level (); i >= 0; i--) 769 for (p = *temp_slots_at_level (i); p; p = p->next) 770 if (known_in_range_p (offset, p->base_offset, p->full_size)) 771 return p; 772 } 773 774 return NULL; 775 } 776 777 /* Allocate a temporary stack slot and record it for possible later 778 reuse. 779 780 MODE is the machine mode to be given to the returned rtx. 781 782 SIZE is the size in units of the space required. We do no rounding here 783 since assign_stack_local will do any required rounding. 784 785 TYPE is the type that will be used for the stack slot. */ 786 787 rtx 788 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type) 789 { 790 unsigned int align; 791 class temp_slot *p, *best_p = 0, *selected = NULL, **pp; 792 rtx slot; 793 794 gcc_assert (known_size_p (size)); 795 796 align = get_stack_local_alignment (type, mode); 797 798 /* Try to find an available, already-allocated temporary of the proper 799 mode which meets the size and alignment requirements. Choose the 800 smallest one with the closest alignment. 801 802 If assign_stack_temp is called outside of the tree->rtl expansion, 803 we cannot reuse the stack slots (that may still refer to 804 VIRTUAL_STACK_VARS_REGNUM). */ 805 if (!virtuals_instantiated) 806 { 807 for (p = avail_temp_slots; p; p = p->next) 808 { 809 if (p->align >= align 810 && known_ge (p->size, size) 811 && GET_MODE (p->slot) == mode 812 && objects_must_conflict_p (p->type, type) 813 && (best_p == 0 814 || (known_eq (best_p->size, p->size) 815 ? best_p->align > p->align 816 : known_ge (best_p->size, p->size)))) 817 { 818 if (p->align == align && known_eq (p->size, size)) 819 { 820 selected = p; 821 cut_slot_from_list (selected, &avail_temp_slots); 822 best_p = 0; 823 break; 824 } 825 best_p = p; 826 } 827 } 828 } 829 830 /* Make our best, if any, the one to use. */ 831 if (best_p) 832 { 833 selected = best_p; 834 cut_slot_from_list (selected, &avail_temp_slots); 835 836 /* If there are enough aligned bytes left over, make them into a new 837 temp_slot so that the extra bytes don't get wasted. Do this only 838 for BLKmode slots, so that we can be sure of the alignment. */ 839 if (GET_MODE (best_p->slot) == BLKmode) 840 { 841 int alignment = best_p->align / BITS_PER_UNIT; 842 poly_int64 rounded_size = aligned_upper_bound (size, alignment); 843 844 if (known_ge (best_p->size - rounded_size, alignment)) 845 { 846 p = ggc_alloc<temp_slot> (); 847 p->in_use = 0; 848 p->size = best_p->size - rounded_size; 849 p->base_offset = best_p->base_offset + rounded_size; 850 p->full_size = best_p->full_size - rounded_size; 851 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size); 852 p->align = best_p->align; 853 p->type = best_p->type; 854 insert_slot_to_list (p, &avail_temp_slots); 855 856 vec_safe_push (stack_slot_list, p->slot); 857 858 best_p->size = rounded_size; 859 best_p->full_size = rounded_size; 860 } 861 } 862 } 863 864 /* If we still didn't find one, make a new temporary. */ 865 if (selected == 0) 866 { 867 poly_int64 frame_offset_old = frame_offset; 868 869 p = ggc_alloc<temp_slot> (); 870 871 /* We are passing an explicit alignment request to assign_stack_local. 872 One side effect of that is assign_stack_local will not round SIZE 873 to ensure the frame offset remains suitably aligned. 874 875 So for requests which depended on the rounding of SIZE, we go ahead 876 and round it now. We also make sure ALIGNMENT is at least 877 BIGGEST_ALIGNMENT. */ 878 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT); 879 p->slot = assign_stack_local_1 (mode, 880 (mode == BLKmode 881 ? aligned_upper_bound (size, 882 (int) align 883 / BITS_PER_UNIT) 884 : size), 885 align, 0); 886 887 p->align = align; 888 889 /* The following slot size computation is necessary because we don't 890 know the actual size of the temporary slot until assign_stack_local 891 has performed all the frame alignment and size rounding for the 892 requested temporary. Note that extra space added for alignment 893 can be either above or below this stack slot depending on which 894 way the frame grows. We include the extra space if and only if it 895 is above this slot. */ 896 if (FRAME_GROWS_DOWNWARD) 897 p->size = frame_offset_old - frame_offset; 898 else 899 p->size = size; 900 901 /* Now define the fields used by combine_temp_slots. */ 902 if (FRAME_GROWS_DOWNWARD) 903 { 904 p->base_offset = frame_offset; 905 p->full_size = frame_offset_old - frame_offset; 906 } 907 else 908 { 909 p->base_offset = frame_offset_old; 910 p->full_size = frame_offset - frame_offset_old; 911 } 912 913 selected = p; 914 } 915 916 p = selected; 917 p->in_use = 1; 918 p->type = type; 919 p->level = temp_slot_level; 920 n_temp_slots_in_use++; 921 922 pp = temp_slots_at_level (p->level); 923 insert_slot_to_list (p, pp); 924 insert_temp_slot_address (XEXP (p->slot, 0), p); 925 926 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */ 927 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0)); 928 vec_safe_push (stack_slot_list, slot); 929 930 /* If we know the alias set for the memory that will be used, use 931 it. If there's no TYPE, then we don't know anything about the 932 alias set for the memory. */ 933 set_mem_alias_set (slot, type ? get_alias_set (type) : 0); 934 set_mem_align (slot, align); 935 936 /* If a type is specified, set the relevant flags. */ 937 if (type != 0) 938 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type); 939 MEM_NOTRAP_P (slot) = 1; 940 941 return slot; 942 } 943 944 /* Allocate a temporary stack slot and record it for possible later 945 reuse. First two arguments are same as in preceding function. */ 946 947 rtx 948 assign_stack_temp (machine_mode mode, poly_int64 size) 949 { 950 return assign_stack_temp_for_type (mode, size, NULL_TREE); 951 } 952 953 /* Assign a temporary. 954 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl 955 and so that should be used in error messages. In either case, we 956 allocate of the given type. 957 MEMORY_REQUIRED is 1 if the result must be addressable stack memory; 958 it is 0 if a register is OK. 959 DONT_PROMOTE is 1 if we should not promote values in register 960 to wider modes. */ 961 962 rtx 963 assign_temp (tree type_or_decl, int memory_required, 964 int dont_promote ATTRIBUTE_UNUSED) 965 { 966 tree type, decl; 967 machine_mode mode; 968 #ifdef PROMOTE_MODE 969 int unsignedp; 970 #endif 971 972 if (DECL_P (type_or_decl)) 973 decl = type_or_decl, type = TREE_TYPE (decl); 974 else 975 decl = NULL, type = type_or_decl; 976 977 mode = TYPE_MODE (type); 978 #ifdef PROMOTE_MODE 979 unsignedp = TYPE_UNSIGNED (type); 980 #endif 981 982 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front 983 end. See also create_tmp_var for the gimplification-time check. */ 984 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type)); 985 986 if (mode == BLKmode || memory_required) 987 { 988 poly_int64 size; 989 rtx tmp; 990 991 /* Unfortunately, we don't yet know how to allocate variable-sized 992 temporaries. However, sometimes we can find a fixed upper limit on 993 the size, so try that instead. */ 994 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size)) 995 size = max_int_size_in_bytes (type); 996 997 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid 998 problems with allocating the stack space. */ 999 if (known_eq (size, 0)) 1000 size = 1; 1001 1002 /* The size of the temporary may be too large to fit into an integer. */ 1003 /* ??? Not sure this should happen except for user silliness, so limit 1004 this to things that aren't compiler-generated temporaries. The 1005 rest of the time we'll die in assign_stack_temp_for_type. */ 1006 if (decl 1007 && !known_size_p (size) 1008 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST) 1009 { 1010 error ("size of variable %q+D is too large", decl); 1011 size = 1; 1012 } 1013 1014 tmp = assign_stack_temp_for_type (mode, size, type); 1015 return tmp; 1016 } 1017 1018 #ifdef PROMOTE_MODE 1019 if (! dont_promote) 1020 mode = promote_mode (type, mode, &unsignedp); 1021 #endif 1022 1023 return gen_reg_rtx (mode); 1024 } 1025 1026 /* Combine temporary stack slots which are adjacent on the stack. 1027 1028 This allows for better use of already allocated stack space. This is only 1029 done for BLKmode slots because we can be sure that we won't have alignment 1030 problems in this case. */ 1031 1032 static void 1033 combine_temp_slots (void) 1034 { 1035 class temp_slot *p, *q, *next, *next_q; 1036 int num_slots; 1037 1038 /* We can't combine slots, because the information about which slot 1039 is in which alias set will be lost. */ 1040 if (flag_strict_aliasing) 1041 return; 1042 1043 /* If there are a lot of temp slots, don't do anything unless 1044 high levels of optimization. */ 1045 if (! flag_expensive_optimizations) 1046 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++) 1047 if (num_slots > 100 || (num_slots > 10 && optimize == 0)) 1048 return; 1049 1050 for (p = avail_temp_slots; p; p = next) 1051 { 1052 int delete_p = 0; 1053 1054 next = p->next; 1055 1056 if (GET_MODE (p->slot) != BLKmode) 1057 continue; 1058 1059 for (q = p->next; q; q = next_q) 1060 { 1061 int delete_q = 0; 1062 1063 next_q = q->next; 1064 1065 if (GET_MODE (q->slot) != BLKmode) 1066 continue; 1067 1068 if (known_eq (p->base_offset + p->full_size, q->base_offset)) 1069 { 1070 /* Q comes after P; combine Q into P. */ 1071 p->size += q->size; 1072 p->full_size += q->full_size; 1073 delete_q = 1; 1074 } 1075 else if (known_eq (q->base_offset + q->full_size, p->base_offset)) 1076 { 1077 /* P comes after Q; combine P into Q. */ 1078 q->size += p->size; 1079 q->full_size += p->full_size; 1080 delete_p = 1; 1081 break; 1082 } 1083 if (delete_q) 1084 cut_slot_from_list (q, &avail_temp_slots); 1085 } 1086 1087 /* Either delete P or advance past it. */ 1088 if (delete_p) 1089 cut_slot_from_list (p, &avail_temp_slots); 1090 } 1091 } 1092 1093 /* Indicate that NEW_RTX is an alternate way of referring to the temp 1094 slot that previously was known by OLD_RTX. */ 1095 1096 void 1097 update_temp_slot_address (rtx old_rtx, rtx new_rtx) 1098 { 1099 class temp_slot *p; 1100 1101 if (rtx_equal_p (old_rtx, new_rtx)) 1102 return; 1103 1104 p = find_temp_slot_from_address (old_rtx); 1105 1106 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and 1107 NEW_RTX is a register, see if one operand of the PLUS is a 1108 temporary location. If so, NEW_RTX points into it. Otherwise, 1109 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register 1110 in common between them. If so, try a recursive call on those 1111 values. */ 1112 if (p == 0) 1113 { 1114 if (GET_CODE (old_rtx) != PLUS) 1115 return; 1116 1117 if (REG_P (new_rtx)) 1118 { 1119 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx); 1120 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx); 1121 return; 1122 } 1123 else if (GET_CODE (new_rtx) != PLUS) 1124 return; 1125 1126 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0))) 1127 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1)); 1128 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0))) 1129 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1)); 1130 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1))) 1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0)); 1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1))) 1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0)); 1134 1135 return; 1136 } 1137 1138 /* Otherwise add an alias for the temp's address. */ 1139 insert_temp_slot_address (new_rtx, p); 1140 } 1141 1142 /* If X could be a reference to a temporary slot, mark that slot as 1143 belonging to the to one level higher than the current level. If X 1144 matched one of our slots, just mark that one. Otherwise, we can't 1145 easily predict which it is, so upgrade all of them. 1146 1147 This is called when an ({...}) construct occurs and a statement 1148 returns a value in memory. */ 1149 1150 void 1151 preserve_temp_slots (rtx x) 1152 { 1153 class temp_slot *p = 0, *next; 1154 1155 if (x == 0) 1156 return; 1157 1158 /* If X is a register that is being used as a pointer, see if we have 1159 a temporary slot we know it points to. */ 1160 if (REG_P (x) && REG_POINTER (x)) 1161 p = find_temp_slot_from_address (x); 1162 1163 /* If X is not in memory or is at a constant address, it cannot be in 1164 a temporary slot. */ 1165 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))) 1166 return; 1167 1168 /* First see if we can find a match. */ 1169 if (p == 0) 1170 p = find_temp_slot_from_address (XEXP (x, 0)); 1171 1172 if (p != 0) 1173 { 1174 if (p->level == temp_slot_level) 1175 move_slot_to_level (p, temp_slot_level - 1); 1176 return; 1177 } 1178 1179 /* Otherwise, preserve all non-kept slots at this level. */ 1180 for (p = *temp_slots_at_level (temp_slot_level); p; p = next) 1181 { 1182 next = p->next; 1183 move_slot_to_level (p, temp_slot_level - 1); 1184 } 1185 } 1186 1187 /* Free all temporaries used so far. This is normally called at the 1188 end of generating code for a statement. */ 1189 1190 void 1191 free_temp_slots (void) 1192 { 1193 class temp_slot *p, *next; 1194 bool some_available = false; 1195 1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next) 1197 { 1198 next = p->next; 1199 make_slot_available (p); 1200 some_available = true; 1201 } 1202 1203 if (some_available) 1204 { 1205 remove_unused_temp_slot_addresses (); 1206 combine_temp_slots (); 1207 } 1208 } 1209 1210 /* Push deeper into the nesting level for stack temporaries. */ 1211 1212 void 1213 push_temp_slots (void) 1214 { 1215 temp_slot_level++; 1216 } 1217 1218 /* Pop a temporary nesting level. All slots in use in the current level 1219 are freed. */ 1220 1221 void 1222 pop_temp_slots (void) 1223 { 1224 free_temp_slots (); 1225 temp_slot_level--; 1226 } 1227 1228 /* Initialize temporary slots. */ 1229 1230 void 1231 init_temp_slots (void) 1232 { 1233 /* We have not allocated any temporaries yet. */ 1234 avail_temp_slots = 0; 1235 vec_alloc (used_temp_slots, 0); 1236 temp_slot_level = 0; 1237 n_temp_slots_in_use = 0; 1238 1239 /* Set up the table to map addresses to temp slots. */ 1240 if (! temp_slot_address_table) 1241 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32); 1242 else 1243 temp_slot_address_table->empty (); 1244 } 1245 1246 /* Functions and data structures to keep track of the values hard regs 1247 had at the start of the function. */ 1248 1249 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val, 1250 and has_hard_reg_initial_val.. */ 1251 struct GTY(()) initial_value_pair { 1252 rtx hard_reg; 1253 rtx pseudo; 1254 }; 1255 /* ??? This could be a VEC but there is currently no way to define an 1256 opaque VEC type. This could be worked around by defining struct 1257 initial_value_pair in function.h. */ 1258 struct GTY(()) initial_value_struct { 1259 int num_entries; 1260 int max_entries; 1261 initial_value_pair * GTY ((length ("%h.num_entries"))) entries; 1262 }; 1263 1264 /* If a pseudo represents an initial hard reg (or expression), return 1265 it, else return NULL_RTX. */ 1266 1267 rtx 1268 get_hard_reg_initial_reg (rtx reg) 1269 { 1270 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1271 int i; 1272 1273 if (ivs == 0) 1274 return NULL_RTX; 1275 1276 for (i = 0; i < ivs->num_entries; i++) 1277 if (rtx_equal_p (ivs->entries[i].pseudo, reg)) 1278 return ivs->entries[i].hard_reg; 1279 1280 return NULL_RTX; 1281 } 1282 1283 /* Make sure that there's a pseudo register of mode MODE that stores the 1284 initial value of hard register REGNO. Return an rtx for such a pseudo. */ 1285 1286 rtx 1287 get_hard_reg_initial_val (machine_mode mode, unsigned int regno) 1288 { 1289 struct initial_value_struct *ivs; 1290 rtx rv; 1291 1292 rv = has_hard_reg_initial_val (mode, regno); 1293 if (rv) 1294 return rv; 1295 1296 ivs = crtl->hard_reg_initial_vals; 1297 if (ivs == 0) 1298 { 1299 ivs = ggc_alloc<initial_value_struct> (); 1300 ivs->num_entries = 0; 1301 ivs->max_entries = 5; 1302 ivs->entries = ggc_vec_alloc<initial_value_pair> (5); 1303 crtl->hard_reg_initial_vals = ivs; 1304 } 1305 1306 if (ivs->num_entries >= ivs->max_entries) 1307 { 1308 ivs->max_entries += 5; 1309 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries, 1310 ivs->max_entries); 1311 } 1312 1313 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno); 1314 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode); 1315 1316 return ivs->entries[ivs->num_entries++].pseudo; 1317 } 1318 1319 /* See if get_hard_reg_initial_val has been used to create a pseudo 1320 for the initial value of hard register REGNO in mode MODE. Return 1321 the associated pseudo if so, otherwise return NULL. */ 1322 1323 rtx 1324 has_hard_reg_initial_val (machine_mode mode, unsigned int regno) 1325 { 1326 struct initial_value_struct *ivs; 1327 int i; 1328 1329 ivs = crtl->hard_reg_initial_vals; 1330 if (ivs != 0) 1331 for (i = 0; i < ivs->num_entries; i++) 1332 if (GET_MODE (ivs->entries[i].hard_reg) == mode 1333 && REGNO (ivs->entries[i].hard_reg) == regno) 1334 return ivs->entries[i].pseudo; 1335 1336 return NULL_RTX; 1337 } 1338 1339 unsigned int 1340 emit_initial_value_sets (void) 1341 { 1342 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1343 int i; 1344 rtx_insn *seq; 1345 1346 if (ivs == 0) 1347 return 0; 1348 1349 start_sequence (); 1350 for (i = 0; i < ivs->num_entries; i++) 1351 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg); 1352 seq = get_insns (); 1353 end_sequence (); 1354 1355 emit_insn_at_entry (seq); 1356 return 0; 1357 } 1358 1359 /* Return the hardreg-pseudoreg initial values pair entry I and 1360 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */ 1361 bool 1362 initial_value_entry (int i, rtx *hreg, rtx *preg) 1363 { 1364 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1365 if (!ivs || i >= ivs->num_entries) 1366 return false; 1367 1368 *hreg = ivs->entries[i].hard_reg; 1369 *preg = ivs->entries[i].pseudo; 1370 return true; 1371 } 1372 1373 /* These routines are responsible for converting virtual register references 1374 to the actual hard register references once RTL generation is complete. 1375 1376 The following four variables are used for communication between the 1377 routines. They contain the offsets of the virtual registers from their 1378 respective hard registers. */ 1379 1380 static poly_int64 in_arg_offset; 1381 static poly_int64 var_offset; 1382 static poly_int64 dynamic_offset; 1383 static poly_int64 out_arg_offset; 1384 static poly_int64 cfa_offset; 1385 1386 /* In most machines, the stack pointer register is equivalent to the bottom 1387 of the stack. */ 1388 1389 #ifndef STACK_POINTER_OFFSET 1390 #define STACK_POINTER_OFFSET 0 1391 #endif 1392 1393 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE) 1394 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE 1395 #endif 1396 1397 /* If not defined, pick an appropriate default for the offset of dynamically 1398 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS, 1399 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */ 1400 1401 #ifndef STACK_DYNAMIC_OFFSET 1402 1403 /* The bottom of the stack points to the actual arguments. If 1404 REG_PARM_STACK_SPACE is defined, this includes the space for the register 1405 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined, 1406 stack space for register parameters is not pushed by the caller, but 1407 rather part of the fixed stack areas and hence not included in 1408 `crtl->outgoing_args_size'. Nevertheless, we must allow 1409 for it when allocating stack dynamic objects. */ 1410 1411 #ifdef INCOMING_REG_PARM_STACK_SPACE 1412 #define STACK_DYNAMIC_OFFSET(FNDECL) \ 1413 ((ACCUMULATE_OUTGOING_ARGS \ 1414 ? (crtl->outgoing_args_size \ 1415 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \ 1416 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \ 1417 : 0) + (STACK_POINTER_OFFSET)) 1418 #else 1419 #define STACK_DYNAMIC_OFFSET(FNDECL) \ 1420 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \ 1421 + (STACK_POINTER_OFFSET)) 1422 #endif 1423 #endif 1424 1425 1426 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX 1427 is a virtual register, return the equivalent hard register and set the 1428 offset indirectly through the pointer. Otherwise, return 0. */ 1429 1430 static rtx 1431 instantiate_new_reg (rtx x, poly_int64_pod *poffset) 1432 { 1433 rtx new_rtx; 1434 poly_int64 offset; 1435 1436 if (x == virtual_incoming_args_rtx) 1437 { 1438 if (stack_realign_drap) 1439 { 1440 /* Replace virtual_incoming_args_rtx with internal arg 1441 pointer if DRAP is used to realign stack. */ 1442 new_rtx = crtl->args.internal_arg_pointer; 1443 offset = 0; 1444 } 1445 else 1446 new_rtx = arg_pointer_rtx, offset = in_arg_offset; 1447 } 1448 else if (x == virtual_stack_vars_rtx) 1449 new_rtx = frame_pointer_rtx, offset = var_offset; 1450 else if (x == virtual_stack_dynamic_rtx) 1451 new_rtx = stack_pointer_rtx, offset = dynamic_offset; 1452 else if (x == virtual_outgoing_args_rtx) 1453 new_rtx = stack_pointer_rtx, offset = out_arg_offset; 1454 else if (x == virtual_cfa_rtx) 1455 { 1456 #ifdef FRAME_POINTER_CFA_OFFSET 1457 new_rtx = frame_pointer_rtx; 1458 #else 1459 new_rtx = arg_pointer_rtx; 1460 #endif 1461 offset = cfa_offset; 1462 } 1463 else if (x == virtual_preferred_stack_boundary_rtx) 1464 { 1465 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT); 1466 offset = 0; 1467 } 1468 else 1469 return NULL_RTX; 1470 1471 *poffset = offset; 1472 return new_rtx; 1473 } 1474 1475 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual 1476 registers present inside of *LOC. The expression is simplified, 1477 as much as possible, but is not to be considered "valid" in any sense 1478 implied by the target. Return true if any change is made. */ 1479 1480 static bool 1481 instantiate_virtual_regs_in_rtx (rtx *loc) 1482 { 1483 if (!*loc) 1484 return false; 1485 bool changed = false; 1486 subrtx_ptr_iterator::array_type array; 1487 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) 1488 { 1489 rtx *loc = *iter; 1490 if (rtx x = *loc) 1491 { 1492 rtx new_rtx; 1493 poly_int64 offset; 1494 switch (GET_CODE (x)) 1495 { 1496 case REG: 1497 new_rtx = instantiate_new_reg (x, &offset); 1498 if (new_rtx) 1499 { 1500 *loc = plus_constant (GET_MODE (x), new_rtx, offset); 1501 changed = true; 1502 } 1503 iter.skip_subrtxes (); 1504 break; 1505 1506 case PLUS: 1507 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset); 1508 if (new_rtx) 1509 { 1510 XEXP (x, 0) = new_rtx; 1511 *loc = plus_constant (GET_MODE (x), x, offset, true); 1512 changed = true; 1513 iter.skip_subrtxes (); 1514 break; 1515 } 1516 1517 /* FIXME -- from old code */ 1518 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know 1519 we can commute the PLUS and SUBREG because pointers into the 1520 frame are well-behaved. */ 1521 break; 1522 1523 default: 1524 break; 1525 } 1526 } 1527 } 1528 return changed; 1529 } 1530 1531 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X 1532 matches the predicate for insn CODE operand OPERAND. */ 1533 1534 static int 1535 safe_insn_predicate (int code, int operand, rtx x) 1536 { 1537 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x); 1538 } 1539 1540 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual 1541 registers present inside of insn. The result will be a valid insn. */ 1542 1543 static void 1544 instantiate_virtual_regs_in_insn (rtx_insn *insn) 1545 { 1546 poly_int64 offset; 1547 int insn_code, i; 1548 bool any_change = false; 1549 rtx set, new_rtx, x; 1550 rtx_insn *seq; 1551 1552 /* There are some special cases to be handled first. */ 1553 set = single_set (insn); 1554 if (set) 1555 { 1556 /* We're allowed to assign to a virtual register. This is interpreted 1557 to mean that the underlying register gets assigned the inverse 1558 transformation. This is used, for example, in the handling of 1559 non-local gotos. */ 1560 new_rtx = instantiate_new_reg (SET_DEST (set), &offset); 1561 if (new_rtx) 1562 { 1563 start_sequence (); 1564 1565 instantiate_virtual_regs_in_rtx (&SET_SRC (set)); 1566 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set), 1567 gen_int_mode (-offset, GET_MODE (new_rtx))); 1568 x = force_operand (x, new_rtx); 1569 if (x != new_rtx) 1570 emit_move_insn (new_rtx, x); 1571 1572 seq = get_insns (); 1573 end_sequence (); 1574 1575 emit_insn_before (seq, insn); 1576 delete_insn (insn); 1577 return; 1578 } 1579 1580 /* Handle a straight copy from a virtual register by generating a 1581 new add insn. The difference between this and falling through 1582 to the generic case is avoiding a new pseudo and eliminating a 1583 move insn in the initial rtl stream. */ 1584 new_rtx = instantiate_new_reg (SET_SRC (set), &offset); 1585 if (new_rtx 1586 && maybe_ne (offset, 0) 1587 && REG_P (SET_DEST (set)) 1588 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) 1589 { 1590 start_sequence (); 1591 1592 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx, 1593 gen_int_mode (offset, 1594 GET_MODE (SET_DEST (set))), 1595 SET_DEST (set), 1, OPTAB_LIB_WIDEN); 1596 if (x != SET_DEST (set)) 1597 emit_move_insn (SET_DEST (set), x); 1598 1599 seq = get_insns (); 1600 end_sequence (); 1601 1602 emit_insn_before (seq, insn); 1603 delete_insn (insn); 1604 return; 1605 } 1606 1607 extract_insn (insn); 1608 insn_code = INSN_CODE (insn); 1609 1610 /* Handle a plus involving a virtual register by determining if the 1611 operands remain valid if they're modified in place. */ 1612 poly_int64 delta; 1613 if (GET_CODE (SET_SRC (set)) == PLUS 1614 && recog_data.n_operands >= 3 1615 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0) 1616 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1) 1617 && poly_int_rtx_p (recog_data.operand[2], &delta) 1618 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset))) 1619 { 1620 offset += delta; 1621 1622 /* If the sum is zero, then replace with a plain move. */ 1623 if (known_eq (offset, 0) 1624 && REG_P (SET_DEST (set)) 1625 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) 1626 { 1627 start_sequence (); 1628 emit_move_insn (SET_DEST (set), new_rtx); 1629 seq = get_insns (); 1630 end_sequence (); 1631 1632 emit_insn_before (seq, insn); 1633 delete_insn (insn); 1634 return; 1635 } 1636 1637 x = gen_int_mode (offset, recog_data.operand_mode[2]); 1638 1639 /* Using validate_change and apply_change_group here leaves 1640 recog_data in an invalid state. Since we know exactly what 1641 we want to check, do those two by hand. */ 1642 if (safe_insn_predicate (insn_code, 1, new_rtx) 1643 && safe_insn_predicate (insn_code, 2, x)) 1644 { 1645 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx; 1646 *recog_data.operand_loc[2] = recog_data.operand[2] = x; 1647 any_change = true; 1648 1649 /* Fall through into the regular operand fixup loop in 1650 order to take care of operands other than 1 and 2. */ 1651 } 1652 } 1653 } 1654 else 1655 { 1656 extract_insn (insn); 1657 insn_code = INSN_CODE (insn); 1658 } 1659 1660 /* In the general case, we expect virtual registers to appear only in 1661 operands, and then only as either bare registers or inside memories. */ 1662 for (i = 0; i < recog_data.n_operands; ++i) 1663 { 1664 x = recog_data.operand[i]; 1665 switch (GET_CODE (x)) 1666 { 1667 case MEM: 1668 { 1669 rtx addr = XEXP (x, 0); 1670 1671 if (!instantiate_virtual_regs_in_rtx (&addr)) 1672 continue; 1673 1674 start_sequence (); 1675 x = replace_equiv_address (x, addr, true); 1676 /* It may happen that the address with the virtual reg 1677 was valid (e.g. based on the virtual stack reg, which might 1678 be acceptable to the predicates with all offsets), whereas 1679 the address now isn't anymore, for instance when the address 1680 is still offsetted, but the base reg isn't virtual-stack-reg 1681 anymore. Below we would do a force_reg on the whole operand, 1682 but this insn might actually only accept memory. Hence, 1683 before doing that last resort, try to reload the address into 1684 a register, so this operand stays a MEM. */ 1685 if (!safe_insn_predicate (insn_code, i, x)) 1686 { 1687 addr = force_reg (GET_MODE (addr), addr); 1688 x = replace_equiv_address (x, addr, true); 1689 } 1690 seq = get_insns (); 1691 end_sequence (); 1692 if (seq) 1693 emit_insn_before (seq, insn); 1694 } 1695 break; 1696 1697 case REG: 1698 new_rtx = instantiate_new_reg (x, &offset); 1699 if (new_rtx == NULL) 1700 continue; 1701 if (known_eq (offset, 0)) 1702 x = new_rtx; 1703 else 1704 { 1705 start_sequence (); 1706 1707 /* Careful, special mode predicates may have stuff in 1708 insn_data[insn_code].operand[i].mode that isn't useful 1709 to us for computing a new value. */ 1710 /* ??? Recognize address_operand and/or "p" constraints 1711 to see if (plus new offset) is a valid before we put 1712 this through expand_simple_binop. */ 1713 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx, 1714 gen_int_mode (offset, GET_MODE (x)), 1715 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1716 seq = get_insns (); 1717 end_sequence (); 1718 emit_insn_before (seq, insn); 1719 } 1720 break; 1721 1722 case SUBREG: 1723 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset); 1724 if (new_rtx == NULL) 1725 continue; 1726 if (maybe_ne (offset, 0)) 1727 { 1728 start_sequence (); 1729 new_rtx = expand_simple_binop 1730 (GET_MODE (new_rtx), PLUS, new_rtx, 1731 gen_int_mode (offset, GET_MODE (new_rtx)), 1732 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1733 seq = get_insns (); 1734 end_sequence (); 1735 emit_insn_before (seq, insn); 1736 } 1737 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx, 1738 GET_MODE (new_rtx), SUBREG_BYTE (x)); 1739 gcc_assert (x); 1740 break; 1741 1742 default: 1743 continue; 1744 } 1745 1746 /* At this point, X contains the new value for the operand. 1747 Validate the new value vs the insn predicate. Note that 1748 asm insns will have insn_code -1 here. */ 1749 if (!safe_insn_predicate (insn_code, i, x)) 1750 { 1751 start_sequence (); 1752 if (REG_P (x)) 1753 { 1754 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER); 1755 x = copy_to_reg (x); 1756 } 1757 else 1758 x = force_reg (insn_data[insn_code].operand[i].mode, x); 1759 seq = get_insns (); 1760 end_sequence (); 1761 if (seq) 1762 emit_insn_before (seq, insn); 1763 } 1764 1765 *recog_data.operand_loc[i] = recog_data.operand[i] = x; 1766 any_change = true; 1767 } 1768 1769 if (any_change) 1770 { 1771 /* Propagate operand changes into the duplicates. */ 1772 for (i = 0; i < recog_data.n_dups; ++i) 1773 *recog_data.dup_loc[i] 1774 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]); 1775 1776 /* Force re-recognition of the instruction for validation. */ 1777 INSN_CODE (insn) = -1; 1778 } 1779 1780 if (asm_noperands (PATTERN (insn)) >= 0) 1781 { 1782 if (!check_asm_operands (PATTERN (insn))) 1783 { 1784 error_for_asm (insn, "impossible constraint in %<asm%>"); 1785 /* For asm goto, instead of fixing up all the edges 1786 just clear the template and clear input operands 1787 (asm goto doesn't have any output operands). */ 1788 if (JUMP_P (insn)) 1789 { 1790 rtx asm_op = extract_asm_operands (PATTERN (insn)); 1791 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup (""); 1792 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0); 1793 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0); 1794 } 1795 else 1796 delete_insn (insn); 1797 } 1798 } 1799 else 1800 { 1801 if (recog_memoized (insn) < 0) 1802 fatal_insn_not_found (insn); 1803 } 1804 } 1805 1806 /* Subroutine of instantiate_decls. Given RTL representing a decl, 1807 do any instantiation required. */ 1808 1809 void 1810 instantiate_decl_rtl (rtx x) 1811 { 1812 rtx addr; 1813 1814 if (x == 0) 1815 return; 1816 1817 /* If this is a CONCAT, recurse for the pieces. */ 1818 if (GET_CODE (x) == CONCAT) 1819 { 1820 instantiate_decl_rtl (XEXP (x, 0)); 1821 instantiate_decl_rtl (XEXP (x, 1)); 1822 return; 1823 } 1824 1825 /* If this is not a MEM, no need to do anything. Similarly if the 1826 address is a constant or a register that is not a virtual register. */ 1827 if (!MEM_P (x)) 1828 return; 1829 1830 addr = XEXP (x, 0); 1831 if (CONSTANT_P (addr) 1832 || (REG_P (addr) 1833 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER 1834 || REGNO (addr) > LAST_VIRTUAL_REGISTER))) 1835 return; 1836 1837 instantiate_virtual_regs_in_rtx (&XEXP (x, 0)); 1838 } 1839 1840 /* Helper for instantiate_decls called via walk_tree: Process all decls 1841 in the given DECL_VALUE_EXPR. */ 1842 1843 static tree 1844 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) 1845 { 1846 tree t = *tp; 1847 if (! EXPR_P (t)) 1848 { 1849 *walk_subtrees = 0; 1850 if (DECL_P (t)) 1851 { 1852 if (DECL_RTL_SET_P (t)) 1853 instantiate_decl_rtl (DECL_RTL (t)); 1854 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t) 1855 && DECL_INCOMING_RTL (t)) 1856 instantiate_decl_rtl (DECL_INCOMING_RTL (t)); 1857 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL) 1858 && DECL_HAS_VALUE_EXPR_P (t)) 1859 { 1860 tree v = DECL_VALUE_EXPR (t); 1861 walk_tree (&v, instantiate_expr, NULL, NULL); 1862 } 1863 } 1864 } 1865 return NULL; 1866 } 1867 1868 /* Subroutine of instantiate_decls: Process all decls in the given 1869 BLOCK node and all its subblocks. */ 1870 1871 static void 1872 instantiate_decls_1 (tree let) 1873 { 1874 tree t; 1875 1876 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t)) 1877 { 1878 if (DECL_RTL_SET_P (t)) 1879 instantiate_decl_rtl (DECL_RTL (t)); 1880 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t)) 1881 { 1882 tree v = DECL_VALUE_EXPR (t); 1883 walk_tree (&v, instantiate_expr, NULL, NULL); 1884 } 1885 } 1886 1887 /* Process all subblocks. */ 1888 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t)) 1889 instantiate_decls_1 (t); 1890 } 1891 1892 /* Scan all decls in FNDECL (both variables and parameters) and instantiate 1893 all virtual registers in their DECL_RTL's. */ 1894 1895 static void 1896 instantiate_decls (tree fndecl) 1897 { 1898 tree decl; 1899 unsigned ix; 1900 1901 /* Process all parameters of the function. */ 1902 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl)) 1903 { 1904 instantiate_decl_rtl (DECL_RTL (decl)); 1905 instantiate_decl_rtl (DECL_INCOMING_RTL (decl)); 1906 if (DECL_HAS_VALUE_EXPR_P (decl)) 1907 { 1908 tree v = DECL_VALUE_EXPR (decl); 1909 walk_tree (&v, instantiate_expr, NULL, NULL); 1910 } 1911 } 1912 1913 if ((decl = DECL_RESULT (fndecl)) 1914 && TREE_CODE (decl) == RESULT_DECL) 1915 { 1916 if (DECL_RTL_SET_P (decl)) 1917 instantiate_decl_rtl (DECL_RTL (decl)); 1918 if (DECL_HAS_VALUE_EXPR_P (decl)) 1919 { 1920 tree v = DECL_VALUE_EXPR (decl); 1921 walk_tree (&v, instantiate_expr, NULL, NULL); 1922 } 1923 } 1924 1925 /* Process the saved static chain if it exists. */ 1926 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl; 1927 if (decl && DECL_HAS_VALUE_EXPR_P (decl)) 1928 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl))); 1929 1930 /* Now process all variables defined in the function or its subblocks. */ 1931 if (DECL_INITIAL (fndecl)) 1932 instantiate_decls_1 (DECL_INITIAL (fndecl)); 1933 1934 FOR_EACH_LOCAL_DECL (cfun, ix, decl) 1935 if (DECL_RTL_SET_P (decl)) 1936 instantiate_decl_rtl (DECL_RTL (decl)); 1937 vec_free (cfun->local_decls); 1938 } 1939 1940 /* Pass through the INSNS of function FNDECL and convert virtual register 1941 references to hard register references. */ 1942 1943 static unsigned int 1944 instantiate_virtual_regs (void) 1945 { 1946 rtx_insn *insn; 1947 1948 /* Compute the offsets to use for this function. */ 1949 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl); 1950 var_offset = targetm.starting_frame_offset (); 1951 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl); 1952 out_arg_offset = STACK_POINTER_OFFSET; 1953 #ifdef FRAME_POINTER_CFA_OFFSET 1954 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl); 1955 #else 1956 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl); 1957 #endif 1958 1959 /* Initialize recognition, indicating that volatile is OK. */ 1960 init_recog (); 1961 1962 /* Scan through all the insns, instantiating every virtual register still 1963 present. */ 1964 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 1965 if (INSN_P (insn)) 1966 { 1967 /* These patterns in the instruction stream can never be recognized. 1968 Fortunately, they shouldn't contain virtual registers either. */ 1969 if (GET_CODE (PATTERN (insn)) == USE 1970 || GET_CODE (PATTERN (insn)) == CLOBBER 1971 || GET_CODE (PATTERN (insn)) == ASM_INPUT 1972 || DEBUG_MARKER_INSN_P (insn)) 1973 continue; 1974 else if (DEBUG_BIND_INSN_P (insn)) 1975 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn)); 1976 else 1977 instantiate_virtual_regs_in_insn (insn); 1978 1979 if (insn->deleted ()) 1980 continue; 1981 1982 instantiate_virtual_regs_in_rtx (®_NOTES (insn)); 1983 1984 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */ 1985 if (CALL_P (insn)) 1986 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn)); 1987 } 1988 1989 /* Instantiate the virtual registers in the DECLs for debugging purposes. */ 1990 instantiate_decls (current_function_decl); 1991 1992 targetm.instantiate_decls (); 1993 1994 /* Indicate that, from now on, assign_stack_local should use 1995 frame_pointer_rtx. */ 1996 virtuals_instantiated = 1; 1997 1998 return 0; 1999 } 2000 2001 namespace { 2002 2003 const pass_data pass_data_instantiate_virtual_regs = 2004 { 2005 RTL_PASS, /* type */ 2006 "vregs", /* name */ 2007 OPTGROUP_NONE, /* optinfo_flags */ 2008 TV_NONE, /* tv_id */ 2009 0, /* properties_required */ 2010 0, /* properties_provided */ 2011 0, /* properties_destroyed */ 2012 0, /* todo_flags_start */ 2013 0, /* todo_flags_finish */ 2014 }; 2015 2016 class pass_instantiate_virtual_regs : public rtl_opt_pass 2017 { 2018 public: 2019 pass_instantiate_virtual_regs (gcc::context *ctxt) 2020 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt) 2021 {} 2022 2023 /* opt_pass methods: */ 2024 virtual unsigned int execute (function *) 2025 { 2026 return instantiate_virtual_regs (); 2027 } 2028 2029 }; // class pass_instantiate_virtual_regs 2030 2031 } // anon namespace 2032 2033 rtl_opt_pass * 2034 make_pass_instantiate_virtual_regs (gcc::context *ctxt) 2035 { 2036 return new pass_instantiate_virtual_regs (ctxt); 2037 } 2038 2039 2040 /* Return 1 if EXP is an aggregate type (or a value with aggregate type). 2041 This means a type for which function calls must pass an address to the 2042 function or get an address back from the function. 2043 EXP may be a type node or an expression (whose type is tested). */ 2044 2045 int 2046 aggregate_value_p (const_tree exp, const_tree fntype) 2047 { 2048 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp); 2049 int i, regno, nregs; 2050 rtx reg; 2051 2052 if (fntype) 2053 switch (TREE_CODE (fntype)) 2054 { 2055 case CALL_EXPR: 2056 { 2057 tree fndecl = get_callee_fndecl (fntype); 2058 if (fndecl) 2059 fntype = TREE_TYPE (fndecl); 2060 else if (CALL_EXPR_FN (fntype)) 2061 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))); 2062 else 2063 /* For internal functions, assume nothing needs to be 2064 returned in memory. */ 2065 return 0; 2066 } 2067 break; 2068 case FUNCTION_DECL: 2069 fntype = TREE_TYPE (fntype); 2070 break; 2071 case FUNCTION_TYPE: 2072 case METHOD_TYPE: 2073 break; 2074 case IDENTIFIER_NODE: 2075 fntype = NULL_TREE; 2076 break; 2077 default: 2078 /* We don't expect other tree types here. */ 2079 gcc_unreachable (); 2080 } 2081 2082 if (VOID_TYPE_P (type)) 2083 return 0; 2084 2085 /* If a record should be passed the same as its first (and only) member 2086 don't pass it as an aggregate. */ 2087 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type)) 2088 return aggregate_value_p (first_field (type), fntype); 2089 2090 /* If the front end has decided that this needs to be passed by 2091 reference, do so. */ 2092 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL) 2093 && DECL_BY_REFERENCE (exp)) 2094 return 1; 2095 2096 /* Function types that are TREE_ADDRESSABLE force return in memory. */ 2097 if (fntype && TREE_ADDRESSABLE (fntype)) 2098 return 1; 2099 2100 /* Types that are TREE_ADDRESSABLE must be constructed in memory, 2101 and thus can't be returned in registers. */ 2102 if (TREE_ADDRESSABLE (type)) 2103 return 1; 2104 2105 if (TYPE_EMPTY_P (type)) 2106 return 0; 2107 2108 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type)) 2109 return 1; 2110 2111 if (targetm.calls.return_in_memory (type, fntype)) 2112 return 1; 2113 2114 /* Make sure we have suitable call-clobbered regs to return 2115 the value in; if not, we must return it in memory. */ 2116 reg = hard_function_value (type, 0, fntype, 0); 2117 2118 /* If we have something other than a REG (e.g. a PARALLEL), then assume 2119 it is OK. */ 2120 if (!REG_P (reg)) 2121 return 0; 2122 2123 /* Use the default ABI if the type of the function isn't known. 2124 The scheme for handling interoperability between different ABIs 2125 requires us to be able to tell when we're calling a function with 2126 a nondefault ABI. */ 2127 const predefined_function_abi &abi = (fntype 2128 ? fntype_abi (fntype) 2129 : default_function_abi); 2130 regno = REGNO (reg); 2131 nregs = hard_regno_nregs (regno, TYPE_MODE (type)); 2132 for (i = 0; i < nregs; i++) 2133 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i)) 2134 return 1; 2135 2136 return 0; 2137 } 2138 2139 /* Return true if we should assign DECL a pseudo register; false if it 2140 should live on the local stack. */ 2141 2142 bool 2143 use_register_for_decl (const_tree decl) 2144 { 2145 if (TREE_CODE (decl) == SSA_NAME) 2146 { 2147 /* We often try to use the SSA_NAME, instead of its underlying 2148 decl, to get type information and guide decisions, to avoid 2149 differences of behavior between anonymous and named 2150 variables, but in this one case we have to go for the actual 2151 variable if there is one. The main reason is that, at least 2152 at -O0, we want to place user variables on the stack, but we 2153 don't mind using pseudos for anonymous or ignored temps. 2154 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs 2155 should go in pseudos, whereas their corresponding variables 2156 might have to go on the stack. So, disregarding the decl 2157 here would negatively impact debug info at -O0, enable 2158 coalescing between SSA_NAMEs that ought to get different 2159 stack/pseudo assignments, and get the incoming argument 2160 processing thoroughly confused by PARM_DECLs expected to live 2161 in stack slots but assigned to pseudos. */ 2162 if (!SSA_NAME_VAR (decl)) 2163 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode 2164 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))); 2165 2166 decl = SSA_NAME_VAR (decl); 2167 } 2168 2169 /* Honor volatile. */ 2170 if (TREE_SIDE_EFFECTS (decl)) 2171 return false; 2172 2173 /* Honor addressability. */ 2174 if (TREE_ADDRESSABLE (decl)) 2175 return false; 2176 2177 /* RESULT_DECLs are a bit special in that they're assigned without 2178 regard to use_register_for_decl, but we generally only store in 2179 them. If we coalesce their SSA NAMEs, we'd better return a 2180 result that matches the assignment in expand_function_start. */ 2181 if (TREE_CODE (decl) == RESULT_DECL) 2182 { 2183 /* If it's not an aggregate, we're going to use a REG or a 2184 PARALLEL containing a REG. */ 2185 if (!aggregate_value_p (decl, current_function_decl)) 2186 return true; 2187 2188 /* If expand_function_start determines the return value, we'll 2189 use MEM if it's not by reference. */ 2190 if (cfun->returns_pcc_struct 2191 || (targetm.calls.struct_value_rtx 2192 (TREE_TYPE (current_function_decl), 1))) 2193 return DECL_BY_REFERENCE (decl); 2194 2195 /* Otherwise, we're taking an extra all.function_result_decl 2196 argument. It's set up in assign_parms_augmented_arg_list, 2197 under the (negated) conditions above, and then it's used to 2198 set up the RESULT_DECL rtl in assign_params, after looping 2199 over all parameters. Now, if the RESULT_DECL is not by 2200 reference, we'll use a MEM either way. */ 2201 if (!DECL_BY_REFERENCE (decl)) 2202 return false; 2203 2204 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take 2205 the function_result_decl's assignment. Since it's a pointer, 2206 we can short-circuit a number of the tests below, and we must 2207 duplicat e them because we don't have the 2208 function_result_decl to test. */ 2209 if (!targetm.calls.allocate_stack_slots_for_args ()) 2210 return true; 2211 /* We don't set DECL_IGNORED_P for the function_result_decl. */ 2212 if (optimize) 2213 return true; 2214 /* We don't set DECL_REGISTER for the function_result_decl. */ 2215 return false; 2216 } 2217 2218 /* Only register-like things go in registers. */ 2219 if (DECL_MODE (decl) == BLKmode) 2220 return false; 2221 2222 /* If -ffloat-store specified, don't put explicit float variables 2223 into registers. */ 2224 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa 2225 propagates values across these stores, and it probably shouldn't. */ 2226 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))) 2227 return false; 2228 2229 if (!targetm.calls.allocate_stack_slots_for_args ()) 2230 return true; 2231 2232 /* If we're not interested in tracking debugging information for 2233 this decl, then we can certainly put it in a register. */ 2234 if (DECL_IGNORED_P (decl)) 2235 return true; 2236 2237 if (optimize) 2238 return true; 2239 2240 if (!DECL_REGISTER (decl)) 2241 return false; 2242 2243 /* When not optimizing, disregard register keyword for types that 2244 could have methods, otherwise the methods won't be callable from 2245 the debugger. */ 2246 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl))) 2247 return false; 2248 2249 return true; 2250 } 2251 2252 /* Structures to communicate between the subroutines of assign_parms. 2253 The first holds data persistent across all parameters, the second 2254 is cleared out for each parameter. */ 2255 2256 struct assign_parm_data_all 2257 { 2258 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS 2259 should become a job of the target or otherwise encapsulated. */ 2260 CUMULATIVE_ARGS args_so_far_v; 2261 cumulative_args_t args_so_far; 2262 struct args_size stack_args_size; 2263 tree function_result_decl; 2264 tree orig_fnargs; 2265 rtx_insn *first_conversion_insn; 2266 rtx_insn *last_conversion_insn; 2267 HOST_WIDE_INT pretend_args_size; 2268 HOST_WIDE_INT extra_pretend_bytes; 2269 int reg_parm_stack_space; 2270 }; 2271 2272 struct assign_parm_data_one 2273 { 2274 tree nominal_type; 2275 function_arg_info arg; 2276 rtx entry_parm; 2277 rtx stack_parm; 2278 machine_mode nominal_mode; 2279 machine_mode passed_mode; 2280 struct locate_and_pad_arg_data locate; 2281 int partial; 2282 }; 2283 2284 /* A subroutine of assign_parms. Initialize ALL. */ 2285 2286 static void 2287 assign_parms_initialize_all (struct assign_parm_data_all *all) 2288 { 2289 tree fntype ATTRIBUTE_UNUSED; 2290 2291 memset (all, 0, sizeof (*all)); 2292 2293 fntype = TREE_TYPE (current_function_decl); 2294 2295 #ifdef INIT_CUMULATIVE_INCOMING_ARGS 2296 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX); 2297 #else 2298 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX, 2299 current_function_decl, -1); 2300 #endif 2301 all->args_so_far = pack_cumulative_args (&all->args_so_far_v); 2302 2303 #ifdef INCOMING_REG_PARM_STACK_SPACE 2304 all->reg_parm_stack_space 2305 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl); 2306 #endif 2307 } 2308 2309 /* If ARGS contains entries with complex types, split the entry into two 2310 entries of the component type. Return a new list of substitutions are 2311 needed, else the old list. */ 2312 2313 static void 2314 split_complex_args (vec<tree> *args) 2315 { 2316 unsigned i; 2317 tree p; 2318 2319 FOR_EACH_VEC_ELT (*args, i, p) 2320 { 2321 tree type = TREE_TYPE (p); 2322 if (TREE_CODE (type) == COMPLEX_TYPE 2323 && targetm.calls.split_complex_arg (type)) 2324 { 2325 tree decl; 2326 tree subtype = TREE_TYPE (type); 2327 bool addressable = TREE_ADDRESSABLE (p); 2328 2329 /* Rewrite the PARM_DECL's type with its component. */ 2330 p = copy_node (p); 2331 TREE_TYPE (p) = subtype; 2332 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p)); 2333 SET_DECL_MODE (p, VOIDmode); 2334 DECL_SIZE (p) = NULL; 2335 DECL_SIZE_UNIT (p) = NULL; 2336 /* If this arg must go in memory, put it in a pseudo here. 2337 We can't allow it to go in memory as per normal parms, 2338 because the usual place might not have the imag part 2339 adjacent to the real part. */ 2340 DECL_ARTIFICIAL (p) = addressable; 2341 DECL_IGNORED_P (p) = addressable; 2342 TREE_ADDRESSABLE (p) = 0; 2343 layout_decl (p, 0); 2344 (*args)[i] = p; 2345 2346 /* Build a second synthetic decl. */ 2347 decl = build_decl (EXPR_LOCATION (p), 2348 PARM_DECL, NULL_TREE, subtype); 2349 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p); 2350 DECL_ARTIFICIAL (decl) = addressable; 2351 DECL_IGNORED_P (decl) = addressable; 2352 layout_decl (decl, 0); 2353 args->safe_insert (++i, decl); 2354 } 2355 } 2356 } 2357 2358 /* A subroutine of assign_parms. Adjust the parameter list to incorporate 2359 the hidden struct return argument, and (abi willing) complex args. 2360 Return the new parameter list. */ 2361 2362 static vec<tree> 2363 assign_parms_augmented_arg_list (struct assign_parm_data_all *all) 2364 { 2365 tree fndecl = current_function_decl; 2366 tree fntype = TREE_TYPE (fndecl); 2367 vec<tree> fnargs = vNULL; 2368 tree arg; 2369 2370 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg)) 2371 fnargs.safe_push (arg); 2372 2373 all->orig_fnargs = DECL_ARGUMENTS (fndecl); 2374 2375 /* If struct value address is treated as the first argument, make it so. */ 2376 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) 2377 && ! cfun->returns_pcc_struct 2378 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) 2379 { 2380 tree type = build_pointer_type (TREE_TYPE (fntype)); 2381 tree decl; 2382 2383 decl = build_decl (DECL_SOURCE_LOCATION (fndecl), 2384 PARM_DECL, get_identifier (".result_ptr"), type); 2385 DECL_ARG_TYPE (decl) = type; 2386 DECL_ARTIFICIAL (decl) = 1; 2387 DECL_NAMELESS (decl) = 1; 2388 TREE_CONSTANT (decl) = 1; 2389 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this 2390 changes, the end of the RESULT_DECL handling block in 2391 use_register_for_decl must be adjusted to match. */ 2392 2393 DECL_CHAIN (decl) = all->orig_fnargs; 2394 all->orig_fnargs = decl; 2395 fnargs.safe_insert (0, decl); 2396 2397 all->function_result_decl = decl; 2398 } 2399 2400 /* If the target wants to split complex arguments into scalars, do so. */ 2401 if (targetm.calls.split_complex_arg) 2402 split_complex_args (&fnargs); 2403 2404 return fnargs; 2405 } 2406 2407 /* A subroutine of assign_parms. Examine PARM and pull out type and mode 2408 data for the parameter. Incorporate ABI specifics such as pass-by- 2409 reference and type promotion. */ 2410 2411 static void 2412 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm, 2413 struct assign_parm_data_one *data) 2414 { 2415 int unsignedp; 2416 2417 #ifndef BROKEN_VALUE_INITIALIZATION 2418 *data = assign_parm_data_one (); 2419 #else 2420 /* Old versions of GCC used to miscompile the above by only initializing 2421 the members with explicit constructors and copying garbage 2422 to the other members. */ 2423 assign_parm_data_one zero_data = {}; 2424 *data = zero_data; 2425 #endif 2426 2427 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */ 2428 if (!cfun->stdarg) 2429 data->arg.named = 1; /* No variadic parms. */ 2430 else if (DECL_CHAIN (parm)) 2431 data->arg.named = 1; /* Not the last non-variadic parm. */ 2432 else if (targetm.calls.strict_argument_naming (all->args_so_far)) 2433 data->arg.named = 1; /* Only variadic ones are unnamed. */ 2434 else 2435 data->arg.named = 0; /* Treat as variadic. */ 2436 2437 data->nominal_type = TREE_TYPE (parm); 2438 data->arg.type = DECL_ARG_TYPE (parm); 2439 2440 /* Look out for errors propagating this far. Also, if the parameter's 2441 type is void then its value doesn't matter. */ 2442 if (TREE_TYPE (parm) == error_mark_node 2443 /* This can happen after weird syntax errors 2444 or if an enum type is defined among the parms. */ 2445 || TREE_CODE (parm) != PARM_DECL 2446 || data->arg.type == NULL 2447 || VOID_TYPE_P (data->nominal_type)) 2448 { 2449 data->nominal_type = data->arg.type = void_type_node; 2450 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode; 2451 return; 2452 } 2453 2454 /* Find mode of arg as it is passed, and mode of arg as it should be 2455 during execution of this function. */ 2456 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type); 2457 data->nominal_mode = TYPE_MODE (data->nominal_type); 2458 2459 /* If the parm is to be passed as a transparent union or record, use the 2460 type of the first field for the tests below. We have already verified 2461 that the modes are the same. */ 2462 if (RECORD_OR_UNION_TYPE_P (data->arg.type) 2463 && TYPE_TRANSPARENT_AGGR (data->arg.type)) 2464 data->arg.type = TREE_TYPE (first_field (data->arg.type)); 2465 2466 /* See if this arg was passed by invisible reference. */ 2467 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg)) 2468 { 2469 data->nominal_type = data->arg.type; 2470 data->passed_mode = data->nominal_mode = data->arg.mode; 2471 } 2472 2473 /* Find mode as it is passed by the ABI. */ 2474 unsignedp = TYPE_UNSIGNED (data->arg.type); 2475 data->arg.mode 2476 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp, 2477 TREE_TYPE (current_function_decl), 0); 2478 } 2479 2480 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */ 2481 2482 static void 2483 assign_parms_setup_varargs (struct assign_parm_data_all *all, 2484 struct assign_parm_data_one *data, bool no_rtl) 2485 { 2486 int varargs_pretend_bytes = 0; 2487 2488 function_arg_info last_named_arg = data->arg; 2489 last_named_arg.named = true; 2490 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg, 2491 &varargs_pretend_bytes, no_rtl); 2492 2493 /* If the back-end has requested extra stack space, record how much is 2494 needed. Do not change pretend_args_size otherwise since it may be 2495 nonzero from an earlier partial argument. */ 2496 if (varargs_pretend_bytes > 0) 2497 all->pretend_args_size = varargs_pretend_bytes; 2498 } 2499 2500 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to 2501 the incoming location of the current parameter. */ 2502 2503 static void 2504 assign_parm_find_entry_rtl (struct assign_parm_data_all *all, 2505 struct assign_parm_data_one *data) 2506 { 2507 HOST_WIDE_INT pretend_bytes = 0; 2508 rtx entry_parm; 2509 bool in_regs; 2510 2511 if (data->arg.mode == VOIDmode) 2512 { 2513 data->entry_parm = data->stack_parm = const0_rtx; 2514 return; 2515 } 2516 2517 targetm.calls.warn_parameter_passing_abi (all->args_so_far, 2518 data->arg.type); 2519 2520 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far, 2521 data->arg); 2522 if (entry_parm == 0) 2523 data->arg.mode = data->passed_mode; 2524 2525 /* Determine parm's home in the stack, in case it arrives in the stack 2526 or we should pretend it did. Compute the stack position and rtx where 2527 the argument arrives and its size. 2528 2529 There is one complexity here: If this was a parameter that would 2530 have been passed in registers, but wasn't only because it is 2531 __builtin_va_alist, we want locate_and_pad_parm to treat it as if 2532 it came in a register so that REG_PARM_STACK_SPACE isn't skipped. 2533 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 2534 as it was the previous time. */ 2535 in_regs = (entry_parm != 0); 2536 #ifdef STACK_PARMS_IN_REG_PARM_AREA 2537 in_regs = true; 2538 #endif 2539 if (!in_regs && !data->arg.named) 2540 { 2541 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far)) 2542 { 2543 rtx tem; 2544 function_arg_info named_arg = data->arg; 2545 named_arg.named = true; 2546 tem = targetm.calls.function_incoming_arg (all->args_so_far, 2547 named_arg); 2548 in_regs = tem != NULL; 2549 } 2550 } 2551 2552 /* If this parameter was passed both in registers and in the stack, use 2553 the copy on the stack. */ 2554 if (targetm.calls.must_pass_in_stack (data->arg)) 2555 entry_parm = 0; 2556 2557 if (entry_parm) 2558 { 2559 int partial; 2560 2561 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg); 2562 data->partial = partial; 2563 2564 /* The caller might already have allocated stack space for the 2565 register parameters. */ 2566 if (partial != 0 && all->reg_parm_stack_space == 0) 2567 { 2568 /* Part of this argument is passed in registers and part 2569 is passed on the stack. Ask the prologue code to extend 2570 the stack part so that we can recreate the full value. 2571 2572 PRETEND_BYTES is the size of the registers we need to store. 2573 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra 2574 stack space that the prologue should allocate. 2575 2576 Internally, gcc assumes that the argument pointer is aligned 2577 to STACK_BOUNDARY bits. This is used both for alignment 2578 optimizations (see init_emit) and to locate arguments that are 2579 aligned to more than PARM_BOUNDARY bits. We must preserve this 2580 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to 2581 a stack boundary. */ 2582 2583 /* We assume at most one partial arg, and it must be the first 2584 argument on the stack. */ 2585 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size); 2586 2587 pretend_bytes = partial; 2588 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES); 2589 2590 /* We want to align relative to the actual stack pointer, so 2591 don't include this in the stack size until later. */ 2592 all->extra_pretend_bytes = all->pretend_args_size; 2593 } 2594 } 2595 2596 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs, 2597 all->reg_parm_stack_space, 2598 entry_parm ? data->partial : 0, current_function_decl, 2599 &all->stack_args_size, &data->locate); 2600 2601 /* Update parm_stack_boundary if this parameter is passed in the 2602 stack. */ 2603 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary) 2604 crtl->parm_stack_boundary = data->locate.boundary; 2605 2606 /* Adjust offsets to include the pretend args. */ 2607 pretend_bytes = all->extra_pretend_bytes - pretend_bytes; 2608 data->locate.slot_offset.constant += pretend_bytes; 2609 data->locate.offset.constant += pretend_bytes; 2610 2611 data->entry_parm = entry_parm; 2612 } 2613 2614 /* A subroutine of assign_parms. If there is actually space on the stack 2615 for this parm, count it in stack_args_size and return true. */ 2616 2617 static bool 2618 assign_parm_is_stack_parm (struct assign_parm_data_all *all, 2619 struct assign_parm_data_one *data) 2620 { 2621 /* Trivially true if we've no incoming register. */ 2622 if (data->entry_parm == NULL) 2623 ; 2624 /* Also true if we're partially in registers and partially not, 2625 since we've arranged to drop the entire argument on the stack. */ 2626 else if (data->partial != 0) 2627 ; 2628 /* Also true if the target says that it's passed in both registers 2629 and on the stack. */ 2630 else if (GET_CODE (data->entry_parm) == PARALLEL 2631 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX) 2632 ; 2633 /* Also true if the target says that there's stack allocated for 2634 all register parameters. */ 2635 else if (all->reg_parm_stack_space > 0) 2636 ; 2637 /* Otherwise, no, this parameter has no ABI defined stack slot. */ 2638 else 2639 return false; 2640 2641 all->stack_args_size.constant += data->locate.size.constant; 2642 if (data->locate.size.var) 2643 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var); 2644 2645 return true; 2646 } 2647 2648 /* A subroutine of assign_parms. Given that this parameter is allocated 2649 stack space by the ABI, find it. */ 2650 2651 static void 2652 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data) 2653 { 2654 rtx offset_rtx, stack_parm; 2655 unsigned int align, boundary; 2656 2657 /* If we're passing this arg using a reg, make its stack home the 2658 aligned stack slot. */ 2659 if (data->entry_parm) 2660 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset); 2661 else 2662 offset_rtx = ARGS_SIZE_RTX (data->locate.offset); 2663 2664 stack_parm = crtl->args.internal_arg_pointer; 2665 if (offset_rtx != const0_rtx) 2666 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx); 2667 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm); 2668 2669 if (!data->arg.pass_by_reference) 2670 { 2671 set_mem_attributes (stack_parm, parm, 1); 2672 /* set_mem_attributes could set MEM_SIZE to the passed mode's size, 2673 while promoted mode's size is needed. */ 2674 if (data->arg.mode != BLKmode 2675 && data->arg.mode != DECL_MODE (parm)) 2676 { 2677 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode)); 2678 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm)) 2679 { 2680 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm), 2681 data->arg.mode); 2682 if (maybe_ne (offset, 0)) 2683 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset); 2684 } 2685 } 2686 } 2687 2688 boundary = data->locate.boundary; 2689 align = BITS_PER_UNIT; 2690 2691 /* If we're padding upward, we know that the alignment of the slot 2692 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're 2693 intentionally forcing upward padding. Otherwise we have to come 2694 up with a guess at the alignment based on OFFSET_RTX. */ 2695 poly_int64 offset; 2696 if (data->locate.where_pad == PAD_NONE || data->entry_parm) 2697 align = boundary; 2698 else if (data->locate.where_pad == PAD_UPWARD) 2699 { 2700 align = boundary; 2701 /* If the argument offset is actually more aligned than the nominal 2702 stack slot boundary, take advantage of that excess alignment. 2703 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */ 2704 if (poly_int_rtx_p (offset_rtx, &offset) 2705 && known_eq (STACK_POINTER_OFFSET, 0)) 2706 { 2707 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT; 2708 if (offset_align == 0 || offset_align > STACK_BOUNDARY) 2709 offset_align = STACK_BOUNDARY; 2710 align = MAX (align, offset_align); 2711 } 2712 } 2713 else if (poly_int_rtx_p (offset_rtx, &offset)) 2714 { 2715 align = least_bit_hwi (boundary); 2716 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT; 2717 if (offset_align != 0) 2718 align = MIN (align, offset_align); 2719 } 2720 set_mem_align (stack_parm, align); 2721 2722 if (data->entry_parm) 2723 set_reg_attrs_for_parm (data->entry_parm, stack_parm); 2724 2725 data->stack_parm = stack_parm; 2726 } 2727 2728 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's 2729 always valid and contiguous. */ 2730 2731 static void 2732 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data) 2733 { 2734 rtx entry_parm = data->entry_parm; 2735 rtx stack_parm = data->stack_parm; 2736 2737 /* If this parm was passed part in regs and part in memory, pretend it 2738 arrived entirely in memory by pushing the register-part onto the stack. 2739 In the special case of a DImode or DFmode that is split, we could put 2740 it together in a pseudoreg directly, but for now that's not worth 2741 bothering with. */ 2742 if (data->partial != 0) 2743 { 2744 /* Handle calls that pass values in multiple non-contiguous 2745 locations. The Irix 6 ABI has examples of this. */ 2746 if (GET_CODE (entry_parm) == PARALLEL) 2747 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm, 2748 data->arg.type, int_size_in_bytes (data->arg.type)); 2749 else 2750 { 2751 gcc_assert (data->partial % UNITS_PER_WORD == 0); 2752 move_block_from_reg (REGNO (entry_parm), 2753 validize_mem (copy_rtx (stack_parm)), 2754 data->partial / UNITS_PER_WORD); 2755 } 2756 2757 entry_parm = stack_parm; 2758 } 2759 2760 /* If we didn't decide this parm came in a register, by default it came 2761 on the stack. */ 2762 else if (entry_parm == NULL) 2763 entry_parm = stack_parm; 2764 2765 /* When an argument is passed in multiple locations, we can't make use 2766 of this information, but we can save some copying if the whole argument 2767 is passed in a single register. */ 2768 else if (GET_CODE (entry_parm) == PARALLEL 2769 && data->nominal_mode != BLKmode 2770 && data->passed_mode != BLKmode) 2771 { 2772 size_t i, len = XVECLEN (entry_parm, 0); 2773 2774 for (i = 0; i < len; i++) 2775 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX 2776 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0)) 2777 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) 2778 == data->passed_mode) 2779 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) 2780 { 2781 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); 2782 break; 2783 } 2784 } 2785 2786 data->entry_parm = entry_parm; 2787 } 2788 2789 /* A subroutine of assign_parms. Reconstitute any values which were 2790 passed in multiple registers and would fit in a single register. */ 2791 2792 static void 2793 assign_parm_remove_parallels (struct assign_parm_data_one *data) 2794 { 2795 rtx entry_parm = data->entry_parm; 2796 2797 /* Convert the PARALLEL to a REG of the same mode as the parallel. 2798 This can be done with register operations rather than on the 2799 stack, even if we will store the reconstituted parameter on the 2800 stack later. */ 2801 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode) 2802 { 2803 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm)); 2804 emit_group_store (parmreg, entry_parm, data->arg.type, 2805 GET_MODE_SIZE (GET_MODE (entry_parm))); 2806 entry_parm = parmreg; 2807 } 2808 2809 data->entry_parm = entry_parm; 2810 } 2811 2812 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's 2813 always valid and properly aligned. */ 2814 2815 static void 2816 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data) 2817 { 2818 rtx stack_parm = data->stack_parm; 2819 2820 /* If we can't trust the parm stack slot to be aligned enough for its 2821 ultimate type, don't use that slot after entry. We'll make another 2822 stack slot, if we need one. */ 2823 if (stack_parm 2824 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm) 2825 && ((optab_handler (movmisalign_optab, data->nominal_mode) 2826 != CODE_FOR_nothing) 2827 || targetm.slow_unaligned_access (data->nominal_mode, 2828 MEM_ALIGN (stack_parm)))) 2829 || (data->nominal_type 2830 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm) 2831 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY))) 2832 stack_parm = NULL; 2833 2834 /* If parm was passed in memory, and we need to convert it on entry, 2835 don't store it back in that same slot. */ 2836 else if (data->entry_parm == stack_parm 2837 && data->nominal_mode != BLKmode 2838 && data->nominal_mode != data->passed_mode) 2839 stack_parm = NULL; 2840 2841 /* If stack protection is in effect for this function, don't leave any 2842 pointers in their passed stack slots. */ 2843 else if (crtl->stack_protect_guard 2844 && (flag_stack_protect == 2 2845 || data->arg.pass_by_reference 2846 || POINTER_TYPE_P (data->nominal_type))) 2847 stack_parm = NULL; 2848 2849 data->stack_parm = stack_parm; 2850 } 2851 2852 /* A subroutine of assign_parms. Return true if the current parameter 2853 should be stored as a BLKmode in the current frame. */ 2854 2855 static bool 2856 assign_parm_setup_block_p (struct assign_parm_data_one *data) 2857 { 2858 if (data->nominal_mode == BLKmode) 2859 return true; 2860 if (GET_MODE (data->entry_parm) == BLKmode) 2861 return true; 2862 2863 #ifdef BLOCK_REG_PADDING 2864 /* Only assign_parm_setup_block knows how to deal with register arguments 2865 that are padded at the least significant end. */ 2866 if (REG_P (data->entry_parm) 2867 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD) 2868 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1) 2869 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))) 2870 return true; 2871 #endif 2872 2873 return false; 2874 } 2875 2876 /* A subroutine of assign_parms. Arrange for the parameter to be 2877 present and valid in DATA->STACK_RTL. */ 2878 2879 static void 2880 assign_parm_setup_block (struct assign_parm_data_all *all, 2881 tree parm, struct assign_parm_data_one *data) 2882 { 2883 rtx entry_parm = data->entry_parm; 2884 rtx stack_parm = data->stack_parm; 2885 rtx target_reg = NULL_RTX; 2886 bool in_conversion_seq = false; 2887 HOST_WIDE_INT size; 2888 HOST_WIDE_INT size_stored; 2889 2890 if (GET_CODE (entry_parm) == PARALLEL) 2891 entry_parm = emit_group_move_into_temps (entry_parm); 2892 2893 /* If we want the parameter in a pseudo, don't use a stack slot. */ 2894 if (is_gimple_reg (parm) && use_register_for_decl (parm)) 2895 { 2896 tree def = ssa_default_def (cfun, parm); 2897 gcc_assert (def); 2898 machine_mode mode = promote_ssa_mode (def, NULL); 2899 rtx reg = gen_reg_rtx (mode); 2900 if (GET_CODE (reg) != CONCAT) 2901 stack_parm = reg; 2902 else 2903 { 2904 target_reg = reg; 2905 /* Avoid allocating a stack slot, if there isn't one 2906 preallocated by the ABI. It might seem like we should 2907 always prefer a pseudo, but converting between 2908 floating-point and integer modes goes through the stack 2909 on various machines, so it's better to use the reserved 2910 stack slot than to risk wasting it and allocating more 2911 for the conversion. */ 2912 if (stack_parm == NULL_RTX) 2913 { 2914 int save = generating_concat_p; 2915 generating_concat_p = 0; 2916 stack_parm = gen_reg_rtx (mode); 2917 generating_concat_p = save; 2918 } 2919 } 2920 data->stack_parm = NULL; 2921 } 2922 2923 size = int_size_in_bytes (data->arg.type); 2924 size_stored = CEIL_ROUND (size, UNITS_PER_WORD); 2925 if (stack_parm == 0) 2926 { 2927 HOST_WIDE_INT parm_align 2928 = (STRICT_ALIGNMENT 2929 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm)); 2930 2931 SET_DECL_ALIGN (parm, parm_align); 2932 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT) 2933 { 2934 rtx allocsize = gen_int_mode (size_stored, Pmode); 2935 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL); 2936 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize), 2937 MAX_SUPPORTED_STACK_ALIGNMENT); 2938 rtx addr = align_dynamic_address (XEXP (stack_parm, 0), 2939 DECL_ALIGN (parm)); 2940 mark_reg_pointer (addr, DECL_ALIGN (parm)); 2941 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr); 2942 MEM_NOTRAP_P (stack_parm) = 1; 2943 } 2944 else 2945 stack_parm = assign_stack_local (BLKmode, size_stored, 2946 DECL_ALIGN (parm)); 2947 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size)) 2948 PUT_MODE (stack_parm, GET_MODE (entry_parm)); 2949 set_mem_attributes (stack_parm, parm, 1); 2950 } 2951 2952 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle 2953 calls that pass values in multiple non-contiguous locations. */ 2954 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL) 2955 { 2956 rtx mem; 2957 2958 /* Note that we will be storing an integral number of words. 2959 So we have to be careful to ensure that we allocate an 2960 integral number of words. We do this above when we call 2961 assign_stack_local if space was not allocated in the argument 2962 list. If it was, this will not work if PARM_BOUNDARY is not 2963 a multiple of BITS_PER_WORD. It isn't clear how to fix this 2964 if it becomes a problem. Exception is when BLKmode arrives 2965 with arguments not conforming to word_mode. */ 2966 2967 if (data->stack_parm == 0) 2968 ; 2969 else if (GET_CODE (entry_parm) == PARALLEL) 2970 ; 2971 else 2972 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD)); 2973 2974 mem = validize_mem (copy_rtx (stack_parm)); 2975 2976 /* Handle values in multiple non-contiguous locations. */ 2977 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem)) 2978 emit_group_store (mem, entry_parm, data->arg.type, size); 2979 else if (GET_CODE (entry_parm) == PARALLEL) 2980 { 2981 push_to_sequence2 (all->first_conversion_insn, 2982 all->last_conversion_insn); 2983 emit_group_store (mem, entry_parm, data->arg.type, size); 2984 all->first_conversion_insn = get_insns (); 2985 all->last_conversion_insn = get_last_insn (); 2986 end_sequence (); 2987 in_conversion_seq = true; 2988 } 2989 2990 else if (size == 0) 2991 ; 2992 2993 /* If SIZE is that of a mode no bigger than a word, just use 2994 that mode's store operation. */ 2995 else if (size <= UNITS_PER_WORD) 2996 { 2997 unsigned int bits = size * BITS_PER_UNIT; 2998 machine_mode mode = int_mode_for_size (bits, 0).else_blk (); 2999 3000 if (mode != BLKmode 3001 #ifdef BLOCK_REG_PADDING 3002 && (size == UNITS_PER_WORD 3003 || (BLOCK_REG_PADDING (mode, data->arg.type, 1) 3004 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))) 3005 #endif 3006 ) 3007 { 3008 rtx reg; 3009 3010 /* We are really truncating a word_mode value containing 3011 SIZE bytes into a value of mode MODE. If such an 3012 operation requires no actual instructions, we can refer 3013 to the value directly in mode MODE, otherwise we must 3014 start with the register in word_mode and explicitly 3015 convert it. */ 3016 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT, 3017 BITS_PER_WORD)) 3018 reg = gen_rtx_REG (mode, REGNO (entry_parm)); 3019 else 3020 { 3021 reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3022 reg = convert_to_mode (mode, copy_to_reg (reg), 1); 3023 } 3024 emit_move_insn (change_address (mem, mode, 0), reg); 3025 } 3026 3027 #ifdef BLOCK_REG_PADDING 3028 /* Storing the register in memory as a full word, as 3029 move_block_from_reg below would do, and then using the 3030 MEM in a smaller mode, has the effect of shifting right 3031 if BYTES_BIG_ENDIAN. If we're bypassing memory, the 3032 shifting must be explicit. */ 3033 else if (!MEM_P (mem)) 3034 { 3035 rtx x; 3036 3037 /* If the assert below fails, we should have taken the 3038 mode != BLKmode path above, unless we have downward 3039 padding of smaller-than-word arguments on a machine 3040 with little-endian bytes, which would likely require 3041 additional changes to work correctly. */ 3042 gcc_checking_assert (BYTES_BIG_ENDIAN 3043 && (BLOCK_REG_PADDING (mode, 3044 data->arg.type, 1) 3045 == PAD_UPWARD)); 3046 3047 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; 3048 3049 x = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3050 x = expand_shift (RSHIFT_EXPR, word_mode, x, by, 3051 NULL_RTX, 1); 3052 x = force_reg (word_mode, x); 3053 x = gen_lowpart_SUBREG (GET_MODE (mem), x); 3054 3055 emit_move_insn (mem, x); 3056 } 3057 #endif 3058 3059 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN 3060 machine must be aligned to the left before storing 3061 to memory. Note that the previous test doesn't 3062 handle all cases (e.g. SIZE == 3). */ 3063 else if (size != UNITS_PER_WORD 3064 #ifdef BLOCK_REG_PADDING 3065 && (BLOCK_REG_PADDING (mode, data->arg.type, 1) 3066 == PAD_DOWNWARD) 3067 #else 3068 && BYTES_BIG_ENDIAN 3069 #endif 3070 ) 3071 { 3072 rtx tem, x; 3073 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; 3074 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3075 3076 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1); 3077 tem = change_address (mem, word_mode, 0); 3078 emit_move_insn (tem, x); 3079 } 3080 else 3081 move_block_from_reg (REGNO (entry_parm), mem, 3082 size_stored / UNITS_PER_WORD); 3083 } 3084 else if (!MEM_P (mem)) 3085 { 3086 gcc_checking_assert (size > UNITS_PER_WORD); 3087 #ifdef BLOCK_REG_PADDING 3088 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem), 3089 data->arg.type, 0) 3090 == PAD_UPWARD); 3091 #endif 3092 emit_move_insn (mem, entry_parm); 3093 } 3094 else 3095 move_block_from_reg (REGNO (entry_parm), mem, 3096 size_stored / UNITS_PER_WORD); 3097 } 3098 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type)) 3099 { 3100 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3101 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size), 3102 BLOCK_OP_NORMAL); 3103 all->first_conversion_insn = get_insns (); 3104 all->last_conversion_insn = get_last_insn (); 3105 end_sequence (); 3106 in_conversion_seq = true; 3107 } 3108 3109 if (target_reg) 3110 { 3111 if (!in_conversion_seq) 3112 emit_move_insn (target_reg, stack_parm); 3113 else 3114 { 3115 push_to_sequence2 (all->first_conversion_insn, 3116 all->last_conversion_insn); 3117 emit_move_insn (target_reg, stack_parm); 3118 all->first_conversion_insn = get_insns (); 3119 all->last_conversion_insn = get_last_insn (); 3120 end_sequence (); 3121 } 3122 stack_parm = target_reg; 3123 } 3124 3125 data->stack_parm = stack_parm; 3126 set_parm_rtl (parm, stack_parm); 3127 } 3128 3129 /* A subroutine of assign_parms. Allocate a pseudo to hold the current 3130 parameter. Get it there. Perform all ABI specified conversions. */ 3131 3132 static void 3133 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm, 3134 struct assign_parm_data_one *data) 3135 { 3136 rtx parmreg, validated_mem; 3137 rtx equiv_stack_parm; 3138 machine_mode promoted_nominal_mode; 3139 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm)); 3140 bool did_conversion = false; 3141 bool need_conversion, moved; 3142 enum insn_code icode; 3143 rtx rtl; 3144 3145 /* Store the parm in a pseudoregister during the function, but we may 3146 need to do it in a wider mode. Using 2 here makes the result 3147 consistent with promote_decl_mode and thus expand_expr_real_1. */ 3148 promoted_nominal_mode 3149 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp, 3150 TREE_TYPE (current_function_decl), 2); 3151 3152 parmreg = gen_reg_rtx (promoted_nominal_mode); 3153 if (!DECL_ARTIFICIAL (parm)) 3154 mark_user_reg (parmreg); 3155 3156 /* If this was an item that we received a pointer to, 3157 set rtl appropriately. */ 3158 if (data->arg.pass_by_reference) 3159 { 3160 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg); 3161 set_mem_attributes (rtl, parm, 1); 3162 } 3163 else 3164 rtl = parmreg; 3165 3166 assign_parm_remove_parallels (data); 3167 3168 /* Copy the value into the register, thus bridging between 3169 assign_parm_find_data_types and expand_expr_real_1. */ 3170 3171 equiv_stack_parm = data->stack_parm; 3172 validated_mem = validize_mem (copy_rtx (data->entry_parm)); 3173 3174 need_conversion = (data->nominal_mode != data->passed_mode 3175 || promoted_nominal_mode != data->arg.mode); 3176 moved = false; 3177 3178 if (need_conversion 3179 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT 3180 && data->nominal_mode == data->passed_mode 3181 && data->nominal_mode == GET_MODE (data->entry_parm)) 3182 { 3183 /* ENTRY_PARM has been converted to PROMOTED_MODE, its 3184 mode, by the caller. We now have to convert it to 3185 NOMINAL_MODE, if different. However, PARMREG may be in 3186 a different mode than NOMINAL_MODE if it is being stored 3187 promoted. 3188 3189 If ENTRY_PARM is a hard register, it might be in a register 3190 not valid for operating in its mode (e.g., an odd-numbered 3191 register for a DFmode). In that case, moves are the only 3192 thing valid, so we can't do a convert from there. This 3193 occurs when the calling sequence allow such misaligned 3194 usages. 3195 3196 In addition, the conversion may involve a call, which could 3197 clobber parameters which haven't been copied to pseudo 3198 registers yet. 3199 3200 First, we try to emit an insn which performs the necessary 3201 conversion. We verify that this insn does not clobber any 3202 hard registers. */ 3203 3204 rtx op0, op1; 3205 3206 icode = can_extend_p (promoted_nominal_mode, data->passed_mode, 3207 unsignedp); 3208 3209 op0 = parmreg; 3210 op1 = validated_mem; 3211 if (icode != CODE_FOR_nothing 3212 && insn_operand_matches (icode, 0, op0) 3213 && insn_operand_matches (icode, 1, op1)) 3214 { 3215 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND; 3216 rtx_insn *insn, *insns; 3217 rtx t = op1; 3218 HARD_REG_SET hardregs; 3219 3220 start_sequence (); 3221 /* If op1 is a hard register that is likely spilled, first 3222 force it into a pseudo, otherwise combiner might extend 3223 its lifetime too much. */ 3224 if (GET_CODE (t) == SUBREG) 3225 t = SUBREG_REG (t); 3226 if (REG_P (t) 3227 && HARD_REGISTER_P (t) 3228 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t)) 3229 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t)))) 3230 { 3231 t = gen_reg_rtx (GET_MODE (op1)); 3232 emit_move_insn (t, op1); 3233 } 3234 else 3235 t = op1; 3236 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode, 3237 data->passed_mode, unsignedp); 3238 emit_insn (pat); 3239 insns = get_insns (); 3240 3241 moved = true; 3242 CLEAR_HARD_REG_SET (hardregs); 3243 for (insn = insns; insn && moved; insn = NEXT_INSN (insn)) 3244 { 3245 if (INSN_P (insn)) 3246 note_stores (insn, record_hard_reg_sets, &hardregs); 3247 if (!hard_reg_set_empty_p (hardregs)) 3248 moved = false; 3249 } 3250 3251 end_sequence (); 3252 3253 if (moved) 3254 { 3255 emit_insn (insns); 3256 if (equiv_stack_parm != NULL_RTX) 3257 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg), 3258 equiv_stack_parm); 3259 } 3260 } 3261 } 3262 3263 if (moved) 3264 /* Nothing to do. */ 3265 ; 3266 else if (need_conversion) 3267 { 3268 /* We did not have an insn to convert directly, or the sequence 3269 generated appeared unsafe. We must first copy the parm to a 3270 pseudo reg, and save the conversion until after all 3271 parameters have been moved. */ 3272 3273 int save_tree_used; 3274 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); 3275 3276 emit_move_insn (tempreg, validated_mem); 3277 3278 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3279 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp); 3280 3281 if (partial_subreg_p (tempreg) 3282 && GET_MODE (tempreg) == data->nominal_mode 3283 && REG_P (SUBREG_REG (tempreg)) 3284 && data->nominal_mode == data->passed_mode 3285 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)) 3286 { 3287 /* The argument is already sign/zero extended, so note it 3288 into the subreg. */ 3289 SUBREG_PROMOTED_VAR_P (tempreg) = 1; 3290 SUBREG_PROMOTED_SET (tempreg, unsignedp); 3291 } 3292 3293 /* TREE_USED gets set erroneously during expand_assignment. */ 3294 save_tree_used = TREE_USED (parm); 3295 SET_DECL_RTL (parm, rtl); 3296 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false); 3297 SET_DECL_RTL (parm, NULL_RTX); 3298 TREE_USED (parm) = save_tree_used; 3299 all->first_conversion_insn = get_insns (); 3300 all->last_conversion_insn = get_last_insn (); 3301 end_sequence (); 3302 3303 did_conversion = true; 3304 } 3305 else if (MEM_P (data->entry_parm) 3306 && GET_MODE_ALIGNMENT (promoted_nominal_mode) 3307 > MEM_ALIGN (data->entry_parm) 3308 && (((icode = optab_handler (movmisalign_optab, 3309 promoted_nominal_mode)) 3310 != CODE_FOR_nothing) 3311 || targetm.slow_unaligned_access (promoted_nominal_mode, 3312 MEM_ALIGN (data->entry_parm)))) 3313 { 3314 if (icode != CODE_FOR_nothing) 3315 emit_insn (GEN_FCN (icode) (parmreg, validated_mem)); 3316 else 3317 rtl = parmreg = extract_bit_field (validated_mem, 3318 GET_MODE_BITSIZE (promoted_nominal_mode), 0, 3319 unsignedp, parmreg, 3320 promoted_nominal_mode, VOIDmode, false, NULL); 3321 } 3322 else 3323 emit_move_insn (parmreg, validated_mem); 3324 3325 /* If we were passed a pointer but the actual value can safely live 3326 in a register, retrieve it and use it directly. */ 3327 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode) 3328 { 3329 /* We can't use nominal_mode, because it will have been set to 3330 Pmode above. We must use the actual mode of the parm. */ 3331 if (use_register_for_decl (parm)) 3332 { 3333 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); 3334 mark_user_reg (parmreg); 3335 } 3336 else 3337 { 3338 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), 3339 TYPE_MODE (TREE_TYPE (parm)), 3340 TYPE_ALIGN (TREE_TYPE (parm))); 3341 parmreg 3342 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)), 3343 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))), 3344 align); 3345 set_mem_attributes (parmreg, parm, 1); 3346 } 3347 3348 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for 3349 the debug info in case it is not legitimate. */ 3350 if (GET_MODE (parmreg) != GET_MODE (rtl)) 3351 { 3352 rtx tempreg = gen_reg_rtx (GET_MODE (rtl)); 3353 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm)); 3354 3355 push_to_sequence2 (all->first_conversion_insn, 3356 all->last_conversion_insn); 3357 emit_move_insn (tempreg, rtl); 3358 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p); 3359 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, 3360 tempreg); 3361 all->first_conversion_insn = get_insns (); 3362 all->last_conversion_insn = get_last_insn (); 3363 end_sequence (); 3364 3365 did_conversion = true; 3366 } 3367 else 3368 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl); 3369 3370 rtl = parmreg; 3371 3372 /* STACK_PARM is the pointer, not the parm, and PARMREG is 3373 now the parm. */ 3374 data->stack_parm = NULL; 3375 } 3376 3377 set_parm_rtl (parm, rtl); 3378 3379 /* Mark the register as eliminable if we did no conversion and it was 3380 copied from memory at a fixed offset, and the arg pointer was not 3381 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the 3382 offset formed an invalid address, such memory-equivalences as we 3383 make here would screw up life analysis for it. */ 3384 if (data->nominal_mode == data->passed_mode 3385 && !did_conversion 3386 && data->stack_parm != 0 3387 && MEM_P (data->stack_parm) 3388 && data->locate.offset.var == 0 3389 && reg_mentioned_p (virtual_incoming_args_rtx, 3390 XEXP (data->stack_parm, 0))) 3391 { 3392 rtx_insn *linsn = get_last_insn (); 3393 rtx_insn *sinsn; 3394 rtx set; 3395 3396 /* Mark complex types separately. */ 3397 if (GET_CODE (parmreg) == CONCAT) 3398 { 3399 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg)); 3400 int regnor = REGNO (XEXP (parmreg, 0)); 3401 int regnoi = REGNO (XEXP (parmreg, 1)); 3402 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0); 3403 rtx stacki = adjust_address_nv (data->stack_parm, submode, 3404 GET_MODE_SIZE (submode)); 3405 3406 /* Scan backwards for the set of the real and 3407 imaginary parts. */ 3408 for (sinsn = linsn; sinsn != 0; 3409 sinsn = prev_nonnote_insn (sinsn)) 3410 { 3411 set = single_set (sinsn); 3412 if (set == 0) 3413 continue; 3414 3415 if (SET_DEST (set) == regno_reg_rtx [regnoi]) 3416 set_unique_reg_note (sinsn, REG_EQUIV, stacki); 3417 else if (SET_DEST (set) == regno_reg_rtx [regnor]) 3418 set_unique_reg_note (sinsn, REG_EQUIV, stackr); 3419 } 3420 } 3421 else 3422 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg); 3423 } 3424 3425 /* For pointer data type, suggest pointer register. */ 3426 if (POINTER_TYPE_P (TREE_TYPE (parm))) 3427 mark_reg_pointer (parmreg, 3428 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); 3429 } 3430 3431 /* A subroutine of assign_parms. Allocate stack space to hold the current 3432 parameter. Get it there. Perform all ABI specified conversions. */ 3433 3434 static void 3435 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm, 3436 struct assign_parm_data_one *data) 3437 { 3438 /* Value must be stored in the stack slot STACK_PARM during function 3439 execution. */ 3440 bool to_conversion = false; 3441 3442 assign_parm_remove_parallels (data); 3443 3444 if (data->arg.mode != data->nominal_mode) 3445 { 3446 /* Conversion is required. */ 3447 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); 3448 3449 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm))); 3450 3451 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3452 to_conversion = true; 3453 3454 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg, 3455 TYPE_UNSIGNED (TREE_TYPE (parm))); 3456 3457 if (data->stack_parm) 3458 { 3459 poly_int64 offset 3460 = subreg_lowpart_offset (data->nominal_mode, 3461 GET_MODE (data->stack_parm)); 3462 /* ??? This may need a big-endian conversion on sparc64. */ 3463 data->stack_parm 3464 = adjust_address (data->stack_parm, data->nominal_mode, 0); 3465 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm)) 3466 set_mem_offset (data->stack_parm, 3467 MEM_OFFSET (data->stack_parm) + offset); 3468 } 3469 } 3470 3471 if (data->entry_parm != data->stack_parm) 3472 { 3473 rtx src, dest; 3474 3475 if (data->stack_parm == 0) 3476 { 3477 int align = STACK_SLOT_ALIGNMENT (data->arg.type, 3478 GET_MODE (data->entry_parm), 3479 TYPE_ALIGN (data->arg.type)); 3480 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm)) 3481 && ((optab_handler (movmisalign_optab, 3482 GET_MODE (data->entry_parm)) 3483 != CODE_FOR_nothing) 3484 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm), 3485 align))) 3486 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm)); 3487 data->stack_parm 3488 = assign_stack_local (GET_MODE (data->entry_parm), 3489 GET_MODE_SIZE (GET_MODE (data->entry_parm)), 3490 align); 3491 align = MEM_ALIGN (data->stack_parm); 3492 set_mem_attributes (data->stack_parm, parm, 1); 3493 set_mem_align (data->stack_parm, align); 3494 } 3495 3496 dest = validize_mem (copy_rtx (data->stack_parm)); 3497 src = validize_mem (copy_rtx (data->entry_parm)); 3498 3499 if (TYPE_EMPTY_P (data->arg.type)) 3500 /* Empty types don't really need to be copied. */; 3501 else if (MEM_P (src)) 3502 { 3503 /* Use a block move to handle potentially misaligned entry_parm. */ 3504 if (!to_conversion) 3505 push_to_sequence2 (all->first_conversion_insn, 3506 all->last_conversion_insn); 3507 to_conversion = true; 3508 3509 emit_block_move (dest, src, 3510 GEN_INT (int_size_in_bytes (data->arg.type)), 3511 BLOCK_OP_NORMAL); 3512 } 3513 else 3514 { 3515 if (!REG_P (src)) 3516 src = force_reg (GET_MODE (src), src); 3517 emit_move_insn (dest, src); 3518 } 3519 } 3520 3521 if (to_conversion) 3522 { 3523 all->first_conversion_insn = get_insns (); 3524 all->last_conversion_insn = get_last_insn (); 3525 end_sequence (); 3526 } 3527 3528 set_parm_rtl (parm, data->stack_parm); 3529 } 3530 3531 /* A subroutine of assign_parms. If the ABI splits complex arguments, then 3532 undo the frobbing that we did in assign_parms_augmented_arg_list. */ 3533 3534 static void 3535 assign_parms_unsplit_complex (struct assign_parm_data_all *all, 3536 vec<tree> fnargs) 3537 { 3538 tree parm; 3539 tree orig_fnargs = all->orig_fnargs; 3540 unsigned i = 0; 3541 3542 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i) 3543 { 3544 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE 3545 && targetm.calls.split_complex_arg (TREE_TYPE (parm))) 3546 { 3547 rtx tmp, real, imag; 3548 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm)); 3549 3550 real = DECL_RTL (fnargs[i]); 3551 imag = DECL_RTL (fnargs[i + 1]); 3552 if (inner != GET_MODE (real)) 3553 { 3554 real = gen_lowpart_SUBREG (inner, real); 3555 imag = gen_lowpart_SUBREG (inner, imag); 3556 } 3557 3558 if (TREE_ADDRESSABLE (parm)) 3559 { 3560 rtx rmem, imem; 3561 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm)); 3562 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), 3563 DECL_MODE (parm), 3564 TYPE_ALIGN (TREE_TYPE (parm))); 3565 3566 /* split_complex_arg put the real and imag parts in 3567 pseudos. Move them to memory. */ 3568 tmp = assign_stack_local (DECL_MODE (parm), size, align); 3569 set_mem_attributes (tmp, parm, 1); 3570 rmem = adjust_address_nv (tmp, inner, 0); 3571 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner)); 3572 push_to_sequence2 (all->first_conversion_insn, 3573 all->last_conversion_insn); 3574 emit_move_insn (rmem, real); 3575 emit_move_insn (imem, imag); 3576 all->first_conversion_insn = get_insns (); 3577 all->last_conversion_insn = get_last_insn (); 3578 end_sequence (); 3579 } 3580 else 3581 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); 3582 set_parm_rtl (parm, tmp); 3583 3584 real = DECL_INCOMING_RTL (fnargs[i]); 3585 imag = DECL_INCOMING_RTL (fnargs[i + 1]); 3586 if (inner != GET_MODE (real)) 3587 { 3588 real = gen_lowpart_SUBREG (inner, real); 3589 imag = gen_lowpart_SUBREG (inner, imag); 3590 } 3591 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); 3592 set_decl_incoming_rtl (parm, tmp, false); 3593 i++; 3594 } 3595 } 3596 } 3597 3598 /* Assign RTL expressions to the function's parameters. This may involve 3599 copying them into registers and using those registers as the DECL_RTL. */ 3600 3601 static void 3602 assign_parms (tree fndecl) 3603 { 3604 struct assign_parm_data_all all; 3605 tree parm; 3606 vec<tree> fnargs; 3607 unsigned i; 3608 3609 crtl->args.internal_arg_pointer 3610 = targetm.calls.internal_arg_pointer (); 3611 3612 assign_parms_initialize_all (&all); 3613 fnargs = assign_parms_augmented_arg_list (&all); 3614 3615 FOR_EACH_VEC_ELT (fnargs, i, parm) 3616 { 3617 struct assign_parm_data_one data; 3618 3619 /* Extract the type of PARM; adjust it according to ABI. */ 3620 assign_parm_find_data_types (&all, parm, &data); 3621 3622 /* Early out for errors and void parameters. */ 3623 if (data.passed_mode == VOIDmode) 3624 { 3625 SET_DECL_RTL (parm, const0_rtx); 3626 DECL_INCOMING_RTL (parm) = DECL_RTL (parm); 3627 continue; 3628 } 3629 3630 /* Estimate stack alignment from parameter alignment. */ 3631 if (SUPPORTS_STACK_ALIGNMENT) 3632 { 3633 unsigned int align 3634 = targetm.calls.function_arg_boundary (data.arg.mode, 3635 data.arg.type); 3636 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align); 3637 if (TYPE_ALIGN (data.nominal_type) > align) 3638 align = MINIMUM_ALIGNMENT (data.nominal_type, 3639 TYPE_MODE (data.nominal_type), 3640 TYPE_ALIGN (data.nominal_type)); 3641 if (crtl->stack_alignment_estimated < align) 3642 { 3643 gcc_assert (!crtl->stack_realign_processed); 3644 crtl->stack_alignment_estimated = align; 3645 } 3646 } 3647 3648 /* Find out where the parameter arrives in this function. */ 3649 assign_parm_find_entry_rtl (&all, &data); 3650 3651 /* Find out where stack space for this parameter might be. */ 3652 if (assign_parm_is_stack_parm (&all, &data)) 3653 { 3654 assign_parm_find_stack_rtl (parm, &data); 3655 assign_parm_adjust_entry_rtl (&data); 3656 /* For arguments that occupy no space in the parameter 3657 passing area, have non-zero size and have address taken, 3658 force creation of a stack slot so that they have distinct 3659 address from other parameters. */ 3660 if (TYPE_EMPTY_P (data.arg.type) 3661 && TREE_ADDRESSABLE (parm) 3662 && data.entry_parm == data.stack_parm 3663 && MEM_P (data.entry_parm) 3664 && int_size_in_bytes (data.arg.type)) 3665 data.stack_parm = NULL_RTX; 3666 } 3667 /* Record permanently how this parm was passed. */ 3668 if (data.arg.pass_by_reference) 3669 { 3670 rtx incoming_rtl 3671 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)), 3672 data.entry_parm); 3673 set_decl_incoming_rtl (parm, incoming_rtl, true); 3674 } 3675 else 3676 set_decl_incoming_rtl (parm, data.entry_parm, false); 3677 3678 assign_parm_adjust_stack_rtl (&data); 3679 3680 if (assign_parm_setup_block_p (&data)) 3681 assign_parm_setup_block (&all, parm, &data); 3682 else if (data.arg.pass_by_reference || use_register_for_decl (parm)) 3683 assign_parm_setup_reg (&all, parm, &data); 3684 else 3685 assign_parm_setup_stack (&all, parm, &data); 3686 3687 if (cfun->stdarg && !DECL_CHAIN (parm)) 3688 assign_parms_setup_varargs (&all, &data, false); 3689 3690 /* Update info on where next arg arrives in registers. */ 3691 targetm.calls.function_arg_advance (all.args_so_far, data.arg); 3692 } 3693 3694 if (targetm.calls.split_complex_arg) 3695 assign_parms_unsplit_complex (&all, fnargs); 3696 3697 fnargs.release (); 3698 3699 /* Output all parameter conversion instructions (possibly including calls) 3700 now that all parameters have been copied out of hard registers. */ 3701 emit_insn (all.first_conversion_insn); 3702 3703 /* Estimate reload stack alignment from scalar return mode. */ 3704 if (SUPPORTS_STACK_ALIGNMENT) 3705 { 3706 if (DECL_RESULT (fndecl)) 3707 { 3708 tree type = TREE_TYPE (DECL_RESULT (fndecl)); 3709 machine_mode mode = TYPE_MODE (type); 3710 3711 if (mode != BLKmode 3712 && mode != VOIDmode 3713 && !AGGREGATE_TYPE_P (type)) 3714 { 3715 unsigned int align = GET_MODE_ALIGNMENT (mode); 3716 if (crtl->stack_alignment_estimated < align) 3717 { 3718 gcc_assert (!crtl->stack_realign_processed); 3719 crtl->stack_alignment_estimated = align; 3720 } 3721 } 3722 } 3723 } 3724 3725 /* If we are receiving a struct value address as the first argument, set up 3726 the RTL for the function result. As this might require code to convert 3727 the transmitted address to Pmode, we do this here to ensure that possible 3728 preliminary conversions of the address have been emitted already. */ 3729 if (all.function_result_decl) 3730 { 3731 tree result = DECL_RESULT (current_function_decl); 3732 rtx addr = DECL_RTL (all.function_result_decl); 3733 rtx x; 3734 3735 if (DECL_BY_REFERENCE (result)) 3736 { 3737 SET_DECL_VALUE_EXPR (result, all.function_result_decl); 3738 x = addr; 3739 } 3740 else 3741 { 3742 SET_DECL_VALUE_EXPR (result, 3743 build1 (INDIRECT_REF, TREE_TYPE (result), 3744 all.function_result_decl)); 3745 addr = convert_memory_address (Pmode, addr); 3746 x = gen_rtx_MEM (DECL_MODE (result), addr); 3747 set_mem_attributes (x, result, 1); 3748 } 3749 3750 DECL_HAS_VALUE_EXPR_P (result) = 1; 3751 3752 set_parm_rtl (result, x); 3753 } 3754 3755 /* We have aligned all the args, so add space for the pretend args. */ 3756 crtl->args.pretend_args_size = all.pretend_args_size; 3757 all.stack_args_size.constant += all.extra_pretend_bytes; 3758 crtl->args.size = all.stack_args_size.constant; 3759 3760 /* Adjust function incoming argument size for alignment and 3761 minimum length. */ 3762 3763 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space); 3764 crtl->args.size = aligned_upper_bound (crtl->args.size, 3765 PARM_BOUNDARY / BITS_PER_UNIT); 3766 3767 if (ARGS_GROW_DOWNWARD) 3768 { 3769 crtl->args.arg_offset_rtx 3770 = (all.stack_args_size.var == 0 3771 ? gen_int_mode (-all.stack_args_size.constant, Pmode) 3772 : expand_expr (size_diffop (all.stack_args_size.var, 3773 size_int (-all.stack_args_size.constant)), 3774 NULL_RTX, VOIDmode, EXPAND_NORMAL)); 3775 } 3776 else 3777 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size); 3778 3779 /* See how many bytes, if any, of its args a function should try to pop 3780 on return. */ 3781 3782 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl, 3783 TREE_TYPE (fndecl), 3784 crtl->args.size); 3785 3786 /* For stdarg.h function, save info about 3787 regs and stack space used by the named args. */ 3788 3789 crtl->args.info = all.args_so_far_v; 3790 3791 /* Set the rtx used for the function return value. Put this in its 3792 own variable so any optimizers that need this information don't have 3793 to include tree.h. Do this here so it gets done when an inlined 3794 function gets output. */ 3795 3796 crtl->return_rtx 3797 = (DECL_RTL_SET_P (DECL_RESULT (fndecl)) 3798 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX); 3799 3800 /* If scalar return value was computed in a pseudo-reg, or was a named 3801 return value that got dumped to the stack, copy that to the hard 3802 return register. */ 3803 if (DECL_RTL_SET_P (DECL_RESULT (fndecl))) 3804 { 3805 tree decl_result = DECL_RESULT (fndecl); 3806 rtx decl_rtl = DECL_RTL (decl_result); 3807 3808 if (REG_P (decl_rtl) 3809 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER 3810 : DECL_REGISTER (decl_result)) 3811 { 3812 rtx real_decl_rtl; 3813 3814 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result), 3815 fndecl, true); 3816 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1; 3817 /* The delay slot scheduler assumes that crtl->return_rtx 3818 holds the hard register containing the return value, not a 3819 temporary pseudo. */ 3820 crtl->return_rtx = real_decl_rtl; 3821 } 3822 } 3823 } 3824 3825 /* A subroutine of gimplify_parameters, invoked via walk_tree. 3826 For all seen types, gimplify their sizes. */ 3827 3828 static tree 3829 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data) 3830 { 3831 tree t = *tp; 3832 3833 *walk_subtrees = 0; 3834 if (TYPE_P (t)) 3835 { 3836 if (POINTER_TYPE_P (t)) 3837 *walk_subtrees = 1; 3838 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t)) 3839 && !TYPE_SIZES_GIMPLIFIED (t)) 3840 { 3841 gimplify_type_sizes (t, (gimple_seq *) data); 3842 *walk_subtrees = 1; 3843 } 3844 } 3845 3846 return NULL; 3847 } 3848 3849 /* Gimplify the parameter list for current_function_decl. This involves 3850 evaluating SAVE_EXPRs of variable sized parameters and generating code 3851 to implement callee-copies reference parameters. Returns a sequence of 3852 statements to add to the beginning of the function. */ 3853 3854 gimple_seq 3855 gimplify_parameters (gimple_seq *cleanup) 3856 { 3857 struct assign_parm_data_all all; 3858 tree parm; 3859 gimple_seq stmts = NULL; 3860 vec<tree> fnargs; 3861 unsigned i; 3862 3863 assign_parms_initialize_all (&all); 3864 fnargs = assign_parms_augmented_arg_list (&all); 3865 3866 FOR_EACH_VEC_ELT (fnargs, i, parm) 3867 { 3868 struct assign_parm_data_one data; 3869 3870 /* Extract the type of PARM; adjust it according to ABI. */ 3871 assign_parm_find_data_types (&all, parm, &data); 3872 3873 /* Early out for errors and void parameters. */ 3874 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL) 3875 continue; 3876 3877 /* Update info on where next arg arrives in registers. */ 3878 targetm.calls.function_arg_advance (all.args_so_far, data.arg); 3879 3880 /* ??? Once upon a time variable_size stuffed parameter list 3881 SAVE_EXPRs (amongst others) onto a pending sizes list. This 3882 turned out to be less than manageable in the gimple world. 3883 Now we have to hunt them down ourselves. */ 3884 walk_tree_without_duplicates (&data.arg.type, 3885 gimplify_parm_type, &stmts); 3886 3887 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST) 3888 { 3889 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts); 3890 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts); 3891 } 3892 3893 if (data.arg.pass_by_reference) 3894 { 3895 tree type = TREE_TYPE (data.arg.type); 3896 function_arg_info orig_arg (type, data.arg.named); 3897 if (reference_callee_copied (&all.args_so_far_v, orig_arg)) 3898 { 3899 tree local, t; 3900 3901 /* For constant-sized objects, this is trivial; for 3902 variable-sized objects, we have to play games. */ 3903 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST 3904 && !(flag_stack_check == GENERIC_STACK_CHECK 3905 && compare_tree_int (DECL_SIZE_UNIT (parm), 3906 STACK_CHECK_MAX_VAR_SIZE) > 0)) 3907 { 3908 local = create_tmp_var (type, get_name (parm)); 3909 DECL_IGNORED_P (local) = 0; 3910 /* If PARM was addressable, move that flag over 3911 to the local copy, as its address will be taken, 3912 not the PARMs. Keep the parms address taken 3913 as we'll query that flag during gimplification. */ 3914 if (TREE_ADDRESSABLE (parm)) 3915 TREE_ADDRESSABLE (local) = 1; 3916 else if (TREE_CODE (type) == COMPLEX_TYPE 3917 || TREE_CODE (type) == VECTOR_TYPE) 3918 DECL_GIMPLE_REG_P (local) = 1; 3919 3920 if (!is_gimple_reg (local) 3921 && flag_stack_reuse != SR_NONE) 3922 { 3923 tree clobber = build_clobber (type); 3924 gimple *clobber_stmt; 3925 clobber_stmt = gimple_build_assign (local, clobber); 3926 gimple_seq_add_stmt (cleanup, clobber_stmt); 3927 } 3928 } 3929 else 3930 { 3931 tree ptr_type, addr; 3932 3933 ptr_type = build_pointer_type (type); 3934 addr = create_tmp_reg (ptr_type, get_name (parm)); 3935 DECL_IGNORED_P (addr) = 0; 3936 local = build_fold_indirect_ref (addr); 3937 3938 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm), 3939 DECL_ALIGN (parm), 3940 max_int_size_in_bytes (type)); 3941 /* The call has been built for a variable-sized object. */ 3942 CALL_ALLOCA_FOR_VAR_P (t) = 1; 3943 t = fold_convert (ptr_type, t); 3944 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t); 3945 gimplify_and_add (t, &stmts); 3946 } 3947 3948 gimplify_assign (local, parm, &stmts); 3949 3950 SET_DECL_VALUE_EXPR (parm, local); 3951 DECL_HAS_VALUE_EXPR_P (parm) = 1; 3952 } 3953 } 3954 } 3955 3956 fnargs.release (); 3957 3958 return stmts; 3959 } 3960 3961 /* Compute the size and offset from the start of the stacked arguments for a 3962 parm passed in mode PASSED_MODE and with type TYPE. 3963 3964 INITIAL_OFFSET_PTR points to the current offset into the stacked 3965 arguments. 3966 3967 The starting offset and size for this parm are returned in 3968 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is 3969 nonzero, the offset is that of stack slot, which is returned in 3970 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of 3971 padding required from the initial offset ptr to the stack slot. 3972 3973 IN_REGS is nonzero if the argument will be passed in registers. It will 3974 never be set if REG_PARM_STACK_SPACE is not defined. 3975 3976 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved 3977 for arguments which are passed in registers. 3978 3979 FNDECL is the function in which the argument was defined. 3980 3981 There are two types of rounding that are done. The first, controlled by 3982 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the 3983 argument list to be aligned to the specific boundary (in bits). This 3984 rounding affects the initial and starting offsets, but not the argument 3985 size. 3986 3987 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY, 3988 optionally rounds the size of the parm to PARM_BOUNDARY. The 3989 initial offset is not affected by this rounding, while the size always 3990 is and the starting offset may be. */ 3991 3992 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case; 3993 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's 3994 callers pass in the total size of args so far as 3995 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */ 3996 3997 void 3998 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs, 3999 int reg_parm_stack_space, int partial, 4000 tree fndecl ATTRIBUTE_UNUSED, 4001 struct args_size *initial_offset_ptr, 4002 struct locate_and_pad_arg_data *locate) 4003 { 4004 tree sizetree; 4005 pad_direction where_pad; 4006 unsigned int boundary, round_boundary; 4007 int part_size_in_regs; 4008 4009 /* If we have found a stack parm before we reach the end of the 4010 area reserved for registers, skip that area. */ 4011 if (! in_regs) 4012 { 4013 if (reg_parm_stack_space > 0) 4014 { 4015 if (initial_offset_ptr->var 4016 || !ordered_p (initial_offset_ptr->constant, 4017 reg_parm_stack_space)) 4018 { 4019 initial_offset_ptr->var 4020 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr), 4021 ssize_int (reg_parm_stack_space)); 4022 initial_offset_ptr->constant = 0; 4023 } 4024 else 4025 initial_offset_ptr->constant 4026 = ordered_max (initial_offset_ptr->constant, 4027 reg_parm_stack_space); 4028 } 4029 } 4030 4031 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0); 4032 4033 sizetree = (type 4034 ? arg_size_in_bytes (type) 4035 : size_int (GET_MODE_SIZE (passed_mode))); 4036 where_pad = targetm.calls.function_arg_padding (passed_mode, type); 4037 boundary = targetm.calls.function_arg_boundary (passed_mode, type); 4038 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode, 4039 type); 4040 locate->where_pad = where_pad; 4041 4042 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */ 4043 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT) 4044 boundary = MAX_SUPPORTED_STACK_ALIGNMENT; 4045 4046 locate->boundary = boundary; 4047 4048 if (SUPPORTS_STACK_ALIGNMENT) 4049 { 4050 /* stack_alignment_estimated can't change after stack has been 4051 realigned. */ 4052 if (crtl->stack_alignment_estimated < boundary) 4053 { 4054 if (!crtl->stack_realign_processed) 4055 crtl->stack_alignment_estimated = boundary; 4056 else 4057 { 4058 /* If stack is realigned and stack alignment value 4059 hasn't been finalized, it is OK not to increase 4060 stack_alignment_estimated. The bigger alignment 4061 requirement is recorded in stack_alignment_needed 4062 below. */ 4063 gcc_assert (!crtl->stack_realign_finalized 4064 && crtl->stack_realign_needed); 4065 } 4066 } 4067 } 4068 4069 if (ARGS_GROW_DOWNWARD) 4070 { 4071 locate->slot_offset.constant = -initial_offset_ptr->constant; 4072 if (initial_offset_ptr->var) 4073 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0), 4074 initial_offset_ptr->var); 4075 4076 { 4077 tree s2 = sizetree; 4078 if (where_pad != PAD_NONE 4079 && (!tree_fits_uhwi_p (sizetree) 4080 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) 4081 s2 = round_up (s2, round_boundary / BITS_PER_UNIT); 4082 SUB_PARM_SIZE (locate->slot_offset, s2); 4083 } 4084 4085 locate->slot_offset.constant += part_size_in_regs; 4086 4087 if (!in_regs || reg_parm_stack_space > 0) 4088 pad_to_arg_alignment (&locate->slot_offset, boundary, 4089 &locate->alignment_pad); 4090 4091 locate->size.constant = (-initial_offset_ptr->constant 4092 - locate->slot_offset.constant); 4093 if (initial_offset_ptr->var) 4094 locate->size.var = size_binop (MINUS_EXPR, 4095 size_binop (MINUS_EXPR, 4096 ssize_int (0), 4097 initial_offset_ptr->var), 4098 locate->slot_offset.var); 4099 4100 /* Pad_below needs the pre-rounded size to know how much to pad 4101 below. */ 4102 locate->offset = locate->slot_offset; 4103 if (where_pad == PAD_DOWNWARD) 4104 pad_below (&locate->offset, passed_mode, sizetree); 4105 4106 } 4107 else 4108 { 4109 if (!in_regs || reg_parm_stack_space > 0) 4110 pad_to_arg_alignment (initial_offset_ptr, boundary, 4111 &locate->alignment_pad); 4112 locate->slot_offset = *initial_offset_ptr; 4113 4114 #ifdef PUSH_ROUNDING 4115 if (passed_mode != BLKmode) 4116 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree))); 4117 #endif 4118 4119 /* Pad_below needs the pre-rounded size to know how much to pad below 4120 so this must be done before rounding up. */ 4121 locate->offset = locate->slot_offset; 4122 if (where_pad == PAD_DOWNWARD) 4123 pad_below (&locate->offset, passed_mode, sizetree); 4124 4125 if (where_pad != PAD_NONE 4126 && (!tree_fits_uhwi_p (sizetree) 4127 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) 4128 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT); 4129 4130 ADD_PARM_SIZE (locate->size, sizetree); 4131 4132 locate->size.constant -= part_size_in_regs; 4133 } 4134 4135 locate->offset.constant 4136 += targetm.calls.function_arg_offset (passed_mode, type); 4137 } 4138 4139 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY. 4140 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */ 4141 4142 static void 4143 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary, 4144 struct args_size *alignment_pad) 4145 { 4146 tree save_var = NULL_TREE; 4147 poly_int64 save_constant = 0; 4148 int boundary_in_bytes = boundary / BITS_PER_UNIT; 4149 poly_int64 sp_offset = STACK_POINTER_OFFSET; 4150 4151 #ifdef SPARC_STACK_BOUNDARY_HACK 4152 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than 4153 the real alignment of %sp. However, when it does this, the 4154 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ 4155 if (SPARC_STACK_BOUNDARY_HACK) 4156 sp_offset = 0; 4157 #endif 4158 4159 if (boundary > PARM_BOUNDARY) 4160 { 4161 save_var = offset_ptr->var; 4162 save_constant = offset_ptr->constant; 4163 } 4164 4165 alignment_pad->var = NULL_TREE; 4166 alignment_pad->constant = 0; 4167 4168 if (boundary > BITS_PER_UNIT) 4169 { 4170 int misalign; 4171 if (offset_ptr->var 4172 || !known_misalignment (offset_ptr->constant + sp_offset, 4173 boundary_in_bytes, &misalign)) 4174 { 4175 tree sp_offset_tree = ssize_int (sp_offset); 4176 tree offset = size_binop (PLUS_EXPR, 4177 ARGS_SIZE_TREE (*offset_ptr), 4178 sp_offset_tree); 4179 tree rounded; 4180 if (ARGS_GROW_DOWNWARD) 4181 rounded = round_down (offset, boundary / BITS_PER_UNIT); 4182 else 4183 rounded = round_up (offset, boundary / BITS_PER_UNIT); 4184 4185 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree); 4186 /* ARGS_SIZE_TREE includes constant term. */ 4187 offset_ptr->constant = 0; 4188 if (boundary > PARM_BOUNDARY) 4189 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var, 4190 save_var); 4191 } 4192 else 4193 { 4194 if (ARGS_GROW_DOWNWARD) 4195 offset_ptr->constant -= misalign; 4196 else 4197 offset_ptr->constant += -misalign & (boundary_in_bytes - 1); 4198 4199 if (boundary > PARM_BOUNDARY) 4200 alignment_pad->constant = offset_ptr->constant - save_constant; 4201 } 4202 } 4203 } 4204 4205 static void 4206 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree) 4207 { 4208 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT; 4209 int misalign; 4210 if (passed_mode != BLKmode 4211 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign)) 4212 offset_ptr->constant += -misalign & (align - 1); 4213 else 4214 { 4215 if (TREE_CODE (sizetree) != INTEGER_CST 4216 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0) 4217 { 4218 /* Round the size up to multiple of PARM_BOUNDARY bits. */ 4219 tree s2 = round_up (sizetree, align); 4220 /* Add it in. */ 4221 ADD_PARM_SIZE (*offset_ptr, s2); 4222 SUB_PARM_SIZE (*offset_ptr, sizetree); 4223 } 4224 } 4225 } 4226 4227 4228 /* True if register REGNO was alive at a place where `setjmp' was 4229 called and was set more than once or is an argument. Such regs may 4230 be clobbered by `longjmp'. */ 4231 4232 static bool 4233 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno) 4234 { 4235 /* There appear to be cases where some local vars never reach the 4236 backend but have bogus regnos. */ 4237 if (regno >= max_reg_num ()) 4238 return false; 4239 4240 return ((REG_N_SETS (regno) > 1 4241 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 4242 regno)) 4243 && REGNO_REG_SET_P (setjmp_crosses, regno)); 4244 } 4245 4246 /* Walk the tree of blocks describing the binding levels within a 4247 function and warn about variables the might be killed by setjmp or 4248 vfork. This is done after calling flow_analysis before register 4249 allocation since that will clobber the pseudo-regs to hard 4250 regs. */ 4251 4252 static void 4253 setjmp_vars_warning (bitmap setjmp_crosses, tree block) 4254 { 4255 tree decl, sub; 4256 4257 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl)) 4258 { 4259 if (VAR_P (decl) 4260 && DECL_RTL_SET_P (decl) 4261 && REG_P (DECL_RTL (decl)) 4262 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) 4263 warning (OPT_Wclobbered, "variable %q+D might be clobbered by" 4264 " %<longjmp%> or %<vfork%>", decl); 4265 } 4266 4267 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub)) 4268 setjmp_vars_warning (setjmp_crosses, sub); 4269 } 4270 4271 /* Do the appropriate part of setjmp_vars_warning 4272 but for arguments instead of local variables. */ 4273 4274 static void 4275 setjmp_args_warning (bitmap setjmp_crosses) 4276 { 4277 tree decl; 4278 for (decl = DECL_ARGUMENTS (current_function_decl); 4279 decl; decl = DECL_CHAIN (decl)) 4280 if (DECL_RTL (decl) != 0 4281 && REG_P (DECL_RTL (decl)) 4282 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) 4283 warning (OPT_Wclobbered, 4284 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>", 4285 decl); 4286 } 4287 4288 /* Generate warning messages for variables live across setjmp. */ 4289 4290 void 4291 generate_setjmp_warnings (void) 4292 { 4293 bitmap setjmp_crosses = regstat_get_setjmp_crosses (); 4294 4295 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS 4296 || bitmap_empty_p (setjmp_crosses)) 4297 return; 4298 4299 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl)); 4300 setjmp_args_warning (setjmp_crosses); 4301 } 4302 4303 4304 /* Reverse the order of elements in the fragment chain T of blocks, 4305 and return the new head of the chain (old last element). 4306 In addition to that clear BLOCK_SAME_RANGE flags when needed 4307 and adjust BLOCK_SUPERCONTEXT from the super fragment to 4308 its super fragment origin. */ 4309 4310 static tree 4311 block_fragments_nreverse (tree t) 4312 { 4313 tree prev = 0, block, next, prev_super = 0; 4314 tree super = BLOCK_SUPERCONTEXT (t); 4315 if (BLOCK_FRAGMENT_ORIGIN (super)) 4316 super = BLOCK_FRAGMENT_ORIGIN (super); 4317 for (block = t; block; block = next) 4318 { 4319 next = BLOCK_FRAGMENT_CHAIN (block); 4320 BLOCK_FRAGMENT_CHAIN (block) = prev; 4321 if ((prev && !BLOCK_SAME_RANGE (prev)) 4322 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block)) 4323 != prev_super)) 4324 BLOCK_SAME_RANGE (block) = 0; 4325 prev_super = BLOCK_SUPERCONTEXT (block); 4326 BLOCK_SUPERCONTEXT (block) = super; 4327 prev = block; 4328 } 4329 t = BLOCK_FRAGMENT_ORIGIN (t); 4330 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t)) 4331 != prev_super) 4332 BLOCK_SAME_RANGE (t) = 0; 4333 BLOCK_SUPERCONTEXT (t) = super; 4334 return prev; 4335 } 4336 4337 /* Reverse the order of elements in the chain T of blocks, 4338 and return the new head of the chain (old last element). 4339 Also do the same on subblocks and reverse the order of elements 4340 in BLOCK_FRAGMENT_CHAIN as well. */ 4341 4342 static tree 4343 blocks_nreverse_all (tree t) 4344 { 4345 tree prev = 0, block, next; 4346 for (block = t; block; block = next) 4347 { 4348 next = BLOCK_CHAIN (block); 4349 BLOCK_CHAIN (block) = prev; 4350 if (BLOCK_FRAGMENT_CHAIN (block) 4351 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE) 4352 { 4353 BLOCK_FRAGMENT_CHAIN (block) 4354 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block)); 4355 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block))) 4356 BLOCK_SAME_RANGE (block) = 0; 4357 } 4358 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); 4359 prev = block; 4360 } 4361 return prev; 4362 } 4363 4364 4365 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END}, 4366 and create duplicate blocks. */ 4367 /* ??? Need an option to either create block fragments or to create 4368 abstract origin duplicates of a source block. It really depends 4369 on what optimization has been performed. */ 4370 4371 void 4372 reorder_blocks (void) 4373 { 4374 tree block = DECL_INITIAL (current_function_decl); 4375 4376 if (block == NULL_TREE) 4377 return; 4378 4379 auto_vec<tree, 10> block_stack; 4380 4381 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */ 4382 clear_block_marks (block); 4383 4384 /* Prune the old trees away, so that they don't get in the way. */ 4385 BLOCK_SUBBLOCKS (block) = NULL_TREE; 4386 BLOCK_CHAIN (block) = NULL_TREE; 4387 4388 /* Recreate the block tree from the note nesting. */ 4389 reorder_blocks_1 (get_insns (), block, &block_stack); 4390 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); 4391 } 4392 4393 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */ 4394 4395 void 4396 clear_block_marks (tree block) 4397 { 4398 while (block) 4399 { 4400 TREE_ASM_WRITTEN (block) = 0; 4401 clear_block_marks (BLOCK_SUBBLOCKS (block)); 4402 block = BLOCK_CHAIN (block); 4403 } 4404 } 4405 4406 static void 4407 reorder_blocks_1 (rtx_insn *insns, tree current_block, 4408 vec<tree> *p_block_stack) 4409 { 4410 rtx_insn *insn; 4411 tree prev_beg = NULL_TREE, prev_end = NULL_TREE; 4412 4413 for (insn = insns; insn; insn = NEXT_INSN (insn)) 4414 { 4415 if (NOTE_P (insn)) 4416 { 4417 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG) 4418 { 4419 tree block = NOTE_BLOCK (insn); 4420 tree origin; 4421 4422 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE); 4423 origin = block; 4424 4425 if (prev_end) 4426 BLOCK_SAME_RANGE (prev_end) = 0; 4427 prev_end = NULL_TREE; 4428 4429 /* If we have seen this block before, that means it now 4430 spans multiple address regions. Create a new fragment. */ 4431 if (TREE_ASM_WRITTEN (block)) 4432 { 4433 tree new_block = copy_node (block); 4434 4435 BLOCK_SAME_RANGE (new_block) = 0; 4436 BLOCK_FRAGMENT_ORIGIN (new_block) = origin; 4437 BLOCK_FRAGMENT_CHAIN (new_block) 4438 = BLOCK_FRAGMENT_CHAIN (origin); 4439 BLOCK_FRAGMENT_CHAIN (origin) = new_block; 4440 4441 NOTE_BLOCK (insn) = new_block; 4442 block = new_block; 4443 } 4444 4445 if (prev_beg == current_block && prev_beg) 4446 BLOCK_SAME_RANGE (block) = 1; 4447 4448 prev_beg = origin; 4449 4450 BLOCK_SUBBLOCKS (block) = 0; 4451 TREE_ASM_WRITTEN (block) = 1; 4452 /* When there's only one block for the entire function, 4453 current_block == block and we mustn't do this, it 4454 will cause infinite recursion. */ 4455 if (block != current_block) 4456 { 4457 tree super; 4458 if (block != origin) 4459 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block 4460 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT 4461 (origin)) 4462 == current_block); 4463 if (p_block_stack->is_empty ()) 4464 super = current_block; 4465 else 4466 { 4467 super = p_block_stack->last (); 4468 gcc_assert (super == current_block 4469 || BLOCK_FRAGMENT_ORIGIN (super) 4470 == current_block); 4471 } 4472 BLOCK_SUPERCONTEXT (block) = super; 4473 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); 4474 BLOCK_SUBBLOCKS (current_block) = block; 4475 current_block = origin; 4476 } 4477 p_block_stack->safe_push (block); 4478 } 4479 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END) 4480 { 4481 NOTE_BLOCK (insn) = p_block_stack->pop (); 4482 current_block = BLOCK_SUPERCONTEXT (current_block); 4483 if (BLOCK_FRAGMENT_ORIGIN (current_block)) 4484 current_block = BLOCK_FRAGMENT_ORIGIN (current_block); 4485 prev_beg = NULL_TREE; 4486 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn)) 4487 ? NOTE_BLOCK (insn) : NULL_TREE; 4488 } 4489 } 4490 else 4491 { 4492 prev_beg = NULL_TREE; 4493 if (prev_end) 4494 BLOCK_SAME_RANGE (prev_end) = 0; 4495 prev_end = NULL_TREE; 4496 } 4497 } 4498 } 4499 4500 /* Reverse the order of elements in the chain T of blocks, 4501 and return the new head of the chain (old last element). */ 4502 4503 tree 4504 blocks_nreverse (tree t) 4505 { 4506 tree prev = 0, block, next; 4507 for (block = t; block; block = next) 4508 { 4509 next = BLOCK_CHAIN (block); 4510 BLOCK_CHAIN (block) = prev; 4511 prev = block; 4512 } 4513 return prev; 4514 } 4515 4516 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN) 4517 by modifying the last node in chain 1 to point to chain 2. */ 4518 4519 tree 4520 block_chainon (tree op1, tree op2) 4521 { 4522 tree t1; 4523 4524 if (!op1) 4525 return op2; 4526 if (!op2) 4527 return op1; 4528 4529 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1)) 4530 continue; 4531 BLOCK_CHAIN (t1) = op2; 4532 4533 #ifdef ENABLE_TREE_CHECKING 4534 { 4535 tree t2; 4536 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2)) 4537 gcc_assert (t2 != t1); 4538 } 4539 #endif 4540 4541 return op1; 4542 } 4543 4544 /* Count the subblocks of the list starting with BLOCK. If VECTOR is 4545 non-NULL, list them all into VECTOR, in a depth-first preorder 4546 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all 4547 blocks. */ 4548 4549 static int 4550 all_blocks (tree block, tree *vector) 4551 { 4552 int n_blocks = 0; 4553 4554 while (block) 4555 { 4556 TREE_ASM_WRITTEN (block) = 0; 4557 4558 /* Record this block. */ 4559 if (vector) 4560 vector[n_blocks] = block; 4561 4562 ++n_blocks; 4563 4564 /* Record the subblocks, and their subblocks... */ 4565 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block), 4566 vector ? vector + n_blocks : 0); 4567 block = BLOCK_CHAIN (block); 4568 } 4569 4570 return n_blocks; 4571 } 4572 4573 /* Return a vector containing all the blocks rooted at BLOCK. The 4574 number of elements in the vector is stored in N_BLOCKS_P. The 4575 vector is dynamically allocated; it is the caller's responsibility 4576 to call `free' on the pointer returned. */ 4577 4578 static tree * 4579 get_block_vector (tree block, int *n_blocks_p) 4580 { 4581 tree *block_vector; 4582 4583 *n_blocks_p = all_blocks (block, NULL); 4584 block_vector = XNEWVEC (tree, *n_blocks_p); 4585 all_blocks (block, block_vector); 4586 4587 return block_vector; 4588 } 4589 4590 static GTY(()) int next_block_index = 2; 4591 4592 /* Set BLOCK_NUMBER for all the blocks in FN. */ 4593 4594 void 4595 number_blocks (tree fn) 4596 { 4597 int i; 4598 int n_blocks; 4599 tree *block_vector; 4600 4601 /* For XCOFF debugging output, we start numbering the blocks 4602 from 1 within each function, rather than keeping a running 4603 count. */ 4604 #if defined (XCOFF_DEBUGGING_INFO) 4605 if (write_symbols == XCOFF_DEBUG) 4606 next_block_index = 1; 4607 #endif 4608 4609 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks); 4610 4611 /* The top-level BLOCK isn't numbered at all. */ 4612 for (i = 1; i < n_blocks; ++i) 4613 /* We number the blocks from two. */ 4614 BLOCK_NUMBER (block_vector[i]) = next_block_index++; 4615 4616 free (block_vector); 4617 4618 return; 4619 } 4620 4621 /* If VAR is present in a subblock of BLOCK, return the subblock. */ 4622 4623 DEBUG_FUNCTION tree 4624 debug_find_var_in_block_tree (tree var, tree block) 4625 { 4626 tree t; 4627 4628 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) 4629 if (t == var) 4630 return block; 4631 4632 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t)) 4633 { 4634 tree ret = debug_find_var_in_block_tree (var, t); 4635 if (ret) 4636 return ret; 4637 } 4638 4639 return NULL_TREE; 4640 } 4641 4642 /* Keep track of whether we're in a dummy function context. If we are, 4643 we don't want to invoke the set_current_function hook, because we'll 4644 get into trouble if the hook calls target_reinit () recursively or 4645 when the initial initialization is not yet complete. */ 4646 4647 static bool in_dummy_function; 4648 4649 /* Invoke the target hook when setting cfun. Update the optimization options 4650 if the function uses different options than the default. */ 4651 4652 static void 4653 invoke_set_current_function_hook (tree fndecl) 4654 { 4655 if (!in_dummy_function) 4656 { 4657 tree opts = ((fndecl) 4658 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) 4659 : optimization_default_node); 4660 4661 if (!opts) 4662 opts = optimization_default_node; 4663 4664 /* Change optimization options if needed. */ 4665 if (optimization_current_node != opts) 4666 { 4667 optimization_current_node = opts; 4668 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts)); 4669 } 4670 4671 targetm.set_current_function (fndecl); 4672 this_fn_optabs = this_target_optabs; 4673 4674 /* Initialize global alignment variables after op. */ 4675 parse_alignment_opts (); 4676 4677 if (opts != optimization_default_node) 4678 { 4679 init_tree_optimization_optabs (opts); 4680 if (TREE_OPTIMIZATION_OPTABS (opts)) 4681 this_fn_optabs = (struct target_optabs *) 4682 TREE_OPTIMIZATION_OPTABS (opts); 4683 } 4684 } 4685 } 4686 4687 /* cfun should never be set directly; use this function. */ 4688 4689 void 4690 set_cfun (struct function *new_cfun, bool force) 4691 { 4692 if (cfun != new_cfun || force) 4693 { 4694 cfun = new_cfun; 4695 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE); 4696 redirect_edge_var_map_empty (); 4697 } 4698 } 4699 4700 /* Initialized with NOGC, making this poisonous to the garbage collector. */ 4701 4702 static vec<function *> cfun_stack; 4703 4704 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set 4705 current_function_decl accordingly. */ 4706 4707 void 4708 push_cfun (struct function *new_cfun) 4709 { 4710 gcc_assert ((!cfun && !current_function_decl) 4711 || (cfun && current_function_decl == cfun->decl)); 4712 cfun_stack.safe_push (cfun); 4713 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; 4714 set_cfun (new_cfun); 4715 } 4716 4717 /* Pop cfun from the stack. Also set current_function_decl accordingly. */ 4718 4719 void 4720 pop_cfun (void) 4721 { 4722 struct function *new_cfun = cfun_stack.pop (); 4723 /* When in_dummy_function, we do have a cfun but current_function_decl is 4724 NULL. We also allow pushing NULL cfun and subsequently changing 4725 current_function_decl to something else and have both restored by 4726 pop_cfun. */ 4727 gcc_checking_assert (in_dummy_function 4728 || !cfun 4729 || current_function_decl == cfun->decl); 4730 set_cfun (new_cfun); 4731 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; 4732 } 4733 4734 /* Return value of funcdef and increase it. */ 4735 int 4736 get_next_funcdef_no (void) 4737 { 4738 return funcdef_no++; 4739 } 4740 4741 /* Return value of funcdef. */ 4742 int 4743 get_last_funcdef_no (void) 4744 { 4745 return funcdef_no; 4746 } 4747 4748 /* Allocate and initialize the stack usage info data structure for the 4749 current function. */ 4750 static void 4751 allocate_stack_usage_info (void) 4752 { 4753 gcc_assert (!cfun->su); 4754 cfun->su = ggc_cleared_alloc<stack_usage> (); 4755 cfun->su->static_stack_size = -1; 4756 } 4757 4758 /* Allocate a function structure for FNDECL and set its contents 4759 to the defaults. Set cfun to the newly-allocated object. 4760 Some of the helper functions invoked during initialization assume 4761 that cfun has already been set. Therefore, assign the new object 4762 directly into cfun and invoke the back end hook explicitly at the 4763 very end, rather than initializing a temporary and calling set_cfun 4764 on it. 4765 4766 ABSTRACT_P is true if this is a function that will never be seen by 4767 the middle-end. Such functions are front-end concepts (like C++ 4768 function templates) that do not correspond directly to functions 4769 placed in object files. */ 4770 4771 void 4772 allocate_struct_function (tree fndecl, bool abstract_p) 4773 { 4774 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE; 4775 4776 cfun = ggc_cleared_alloc<function> (); 4777 4778 init_eh_for_function (); 4779 4780 if (init_machine_status) 4781 cfun->machine = (*init_machine_status) (); 4782 4783 #ifdef OVERRIDE_ABI_FORMAT 4784 OVERRIDE_ABI_FORMAT (fndecl); 4785 #endif 4786 4787 if (fndecl != NULL_TREE) 4788 { 4789 DECL_STRUCT_FUNCTION (fndecl) = cfun; 4790 cfun->decl = fndecl; 4791 current_function_funcdef_no = get_next_funcdef_no (); 4792 } 4793 4794 invoke_set_current_function_hook (fndecl); 4795 4796 if (fndecl != NULL_TREE) 4797 { 4798 tree result = DECL_RESULT (fndecl); 4799 4800 if (!abstract_p) 4801 { 4802 /* Now that we have activated any function-specific attributes 4803 that might affect layout, particularly vector modes, relayout 4804 each of the parameters and the result. */ 4805 relayout_decl (result); 4806 for (tree parm = DECL_ARGUMENTS (fndecl); parm; 4807 parm = DECL_CHAIN (parm)) 4808 relayout_decl (parm); 4809 4810 /* Similarly relayout the function decl. */ 4811 targetm.target_option.relayout_function (fndecl); 4812 } 4813 4814 if (!abstract_p && aggregate_value_p (result, fndecl)) 4815 { 4816 #ifdef PCC_STATIC_STRUCT_RETURN 4817 cfun->returns_pcc_struct = 1; 4818 #endif 4819 cfun->returns_struct = 1; 4820 } 4821 4822 cfun->stdarg = stdarg_p (fntype); 4823 4824 /* Assume all registers in stdarg functions need to be saved. */ 4825 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE; 4826 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE; 4827 4828 /* ??? This could be set on a per-function basis by the front-end 4829 but is this worth the hassle? */ 4830 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions; 4831 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions; 4832 4833 if (!profile_flag && !flag_instrument_function_entry_exit) 4834 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1; 4835 4836 if (flag_callgraph_info) 4837 allocate_stack_usage_info (); 4838 } 4839 4840 /* Don't enable begin stmt markers if var-tracking at assignments is 4841 disabled. The markers make little sense without the variable 4842 binding annotations among them. */ 4843 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt 4844 && MAY_HAVE_DEBUG_MARKER_STMTS; 4845 } 4846 4847 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL 4848 instead of just setting it. */ 4849 4850 void 4851 push_struct_function (tree fndecl, bool abstract_p) 4852 { 4853 /* When in_dummy_function we might be in the middle of a pop_cfun and 4854 current_function_decl and cfun may not match. */ 4855 gcc_assert (in_dummy_function 4856 || (!cfun && !current_function_decl) 4857 || (cfun && current_function_decl == cfun->decl)); 4858 cfun_stack.safe_push (cfun); 4859 current_function_decl = fndecl; 4860 allocate_struct_function (fndecl, abstract_p); 4861 } 4862 4863 /* Reset crtl and other non-struct-function variables to defaults as 4864 appropriate for emitting rtl at the start of a function. */ 4865 4866 static void 4867 prepare_function_start (void) 4868 { 4869 gcc_assert (!get_last_insn ()); 4870 4871 if (in_dummy_function) 4872 crtl->abi = &default_function_abi; 4873 else 4874 crtl->abi = &fndecl_abi (cfun->decl).base_abi (); 4875 4876 init_temp_slots (); 4877 init_emit (); 4878 init_varasm_status (); 4879 init_expr (); 4880 default_rtl_profile (); 4881 4882 if (flag_stack_usage_info && !flag_callgraph_info) 4883 allocate_stack_usage_info (); 4884 4885 cse_not_expected = ! optimize; 4886 4887 /* Caller save not needed yet. */ 4888 caller_save_needed = 0; 4889 4890 /* We haven't done register allocation yet. */ 4891 reg_renumber = 0; 4892 4893 /* Indicate that we have not instantiated virtual registers yet. */ 4894 virtuals_instantiated = 0; 4895 4896 /* Indicate that we want CONCATs now. */ 4897 generating_concat_p = 1; 4898 4899 /* Indicate we have no need of a frame pointer yet. */ 4900 frame_pointer_needed = 0; 4901 } 4902 4903 void 4904 push_dummy_function (bool with_decl) 4905 { 4906 tree fn_decl, fn_type, fn_result_decl; 4907 4908 gcc_assert (!in_dummy_function); 4909 in_dummy_function = true; 4910 4911 if (with_decl) 4912 { 4913 fn_type = build_function_type_list (void_type_node, NULL_TREE); 4914 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE, 4915 fn_type); 4916 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL, 4917 NULL_TREE, void_type_node); 4918 DECL_RESULT (fn_decl) = fn_result_decl; 4919 DECL_ARTIFICIAL (fn_decl) = 1; 4920 tree fn_name = get_identifier (" "); 4921 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name); 4922 } 4923 else 4924 fn_decl = NULL_TREE; 4925 4926 push_struct_function (fn_decl); 4927 } 4928 4929 /* Initialize the rtl expansion mechanism so that we can do simple things 4930 like generate sequences. This is used to provide a context during global 4931 initialization of some passes. You must call expand_dummy_function_end 4932 to exit this context. */ 4933 4934 void 4935 init_dummy_function_start (void) 4936 { 4937 push_dummy_function (false); 4938 prepare_function_start (); 4939 } 4940 4941 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node) 4942 and initialize static variables for generating RTL for the statements 4943 of the function. */ 4944 4945 void 4946 init_function_start (tree subr) 4947 { 4948 /* Initialize backend, if needed. */ 4949 initialize_rtl (); 4950 4951 prepare_function_start (); 4952 decide_function_section (subr); 4953 4954 /* Warn if this value is an aggregate type, 4955 regardless of which calling convention we are using for it. */ 4956 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) 4957 warning (OPT_Waggregate_return, "function returns an aggregate"); 4958 } 4959 4960 /* Expand code to verify the stack_protect_guard. This is invoked at 4961 the end of a function to be protected. */ 4962 4963 void 4964 stack_protect_epilogue (void) 4965 { 4966 tree guard_decl = crtl->stack_protect_guard_decl; 4967 rtx_code_label *label = gen_label_rtx (); 4968 rtx x, y; 4969 rtx_insn *seq = NULL; 4970 4971 x = expand_normal (crtl->stack_protect_guard); 4972 4973 if (targetm.have_stack_protect_combined_test () && guard_decl) 4974 { 4975 gcc_assert (DECL_P (guard_decl)); 4976 y = DECL_RTL (guard_decl); 4977 /* Allow the target to compute address of Y and compare it with X without 4978 leaking Y into a register. This combined address + compare pattern 4979 allows the target to prevent spilling of any intermediate results by 4980 splitting it after register allocator. */ 4981 seq = targetm.gen_stack_protect_combined_test (x, y, label); 4982 } 4983 else 4984 { 4985 if (guard_decl) 4986 y = expand_normal (guard_decl); 4987 else 4988 y = const0_rtx; 4989 4990 /* Allow the target to compare Y with X without leaking either into 4991 a register. */ 4992 if (targetm.have_stack_protect_test ()) 4993 seq = targetm.gen_stack_protect_test (x, y, label); 4994 } 4995 4996 if (seq) 4997 emit_insn (seq); 4998 else 4999 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label); 5000 5001 /* The noreturn predictor has been moved to the tree level. The rtl-level 5002 predictors estimate this branch about 20%, which isn't enough to get 5003 things moved out of line. Since this is the only extant case of adding 5004 a noreturn function at the rtl level, it doesn't seem worth doing ought 5005 except adding the prediction by hand. */ 5006 rtx_insn *tmp = get_last_insn (); 5007 if (JUMP_P (tmp)) 5008 predict_insn_def (tmp, PRED_NORETURN, TAKEN); 5009 5010 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true); 5011 free_temp_slots (); 5012 emit_label (label); 5013 } 5014 5015 /* Start the RTL for a new function, and set variables used for 5016 emitting RTL. 5017 SUBR is the FUNCTION_DECL node. 5018 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with 5019 the function's parameters, which must be run at any return statement. */ 5020 5021 bool currently_expanding_function_start; 5022 void 5023 expand_function_start (tree subr) 5024 { 5025 currently_expanding_function_start = true; 5026 5027 /* Make sure volatile mem refs aren't considered 5028 valid operands of arithmetic insns. */ 5029 init_recog_no_volatile (); 5030 5031 crtl->profile 5032 = (profile_flag 5033 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); 5034 5035 crtl->limit_stack 5036 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr)); 5037 5038 /* Make the label for return statements to jump to. Do not special 5039 case machines with special return instructions -- they will be 5040 handled later during jump, ifcvt, or epilogue creation. */ 5041 return_label = gen_label_rtx (); 5042 5043 /* Initialize rtx used to return the value. */ 5044 /* Do this before assign_parms so that we copy the struct value address 5045 before any library calls that assign parms might generate. */ 5046 5047 /* Decide whether to return the value in memory or in a register. */ 5048 tree res = DECL_RESULT (subr); 5049 if (aggregate_value_p (res, subr)) 5050 { 5051 /* Returning something that won't go in a register. */ 5052 rtx value_address = 0; 5053 5054 #ifdef PCC_STATIC_STRUCT_RETURN 5055 if (cfun->returns_pcc_struct) 5056 { 5057 int size = int_size_in_bytes (TREE_TYPE (res)); 5058 value_address = assemble_static_space (size); 5059 } 5060 else 5061 #endif 5062 { 5063 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2); 5064 /* Expect to be passed the address of a place to store the value. 5065 If it is passed as an argument, assign_parms will take care of 5066 it. */ 5067 if (sv) 5068 { 5069 value_address = gen_reg_rtx (Pmode); 5070 emit_move_insn (value_address, sv); 5071 } 5072 } 5073 if (value_address) 5074 { 5075 rtx x = value_address; 5076 if (!DECL_BY_REFERENCE (res)) 5077 { 5078 x = gen_rtx_MEM (DECL_MODE (res), x); 5079 set_mem_attributes (x, res, 1); 5080 } 5081 set_parm_rtl (res, x); 5082 } 5083 } 5084 else if (DECL_MODE (res) == VOIDmode) 5085 /* If return mode is void, this decl rtl should not be used. */ 5086 set_parm_rtl (res, NULL_RTX); 5087 else 5088 { 5089 /* Compute the return values into a pseudo reg, which we will copy 5090 into the true return register after the cleanups are done. */ 5091 tree return_type = TREE_TYPE (res); 5092 5093 /* If we may coalesce this result, make sure it has the expected mode 5094 in case it was promoted. But we need not bother about BLKmode. */ 5095 machine_mode promoted_mode 5096 = flag_tree_coalesce_vars && is_gimple_reg (res) 5097 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL) 5098 : BLKmode; 5099 5100 if (promoted_mode != BLKmode) 5101 set_parm_rtl (res, gen_reg_rtx (promoted_mode)); 5102 else if (TYPE_MODE (return_type) != BLKmode 5103 && targetm.calls.return_in_msb (return_type)) 5104 /* expand_function_end will insert the appropriate padding in 5105 this case. Use the return value's natural (unpadded) mode 5106 within the function proper. */ 5107 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type))); 5108 else 5109 { 5110 /* In order to figure out what mode to use for the pseudo, we 5111 figure out what the mode of the eventual return register will 5112 actually be, and use that. */ 5113 rtx hard_reg = hard_function_value (return_type, subr, 0, 1); 5114 5115 /* Structures that are returned in registers are not 5116 aggregate_value_p, so we may see a PARALLEL or a REG. */ 5117 if (REG_P (hard_reg)) 5118 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg))); 5119 else 5120 { 5121 gcc_assert (GET_CODE (hard_reg) == PARALLEL); 5122 set_parm_rtl (res, gen_group_rtx (hard_reg)); 5123 } 5124 } 5125 5126 /* Set DECL_REGISTER flag so that expand_function_end will copy the 5127 result to the real return register(s). */ 5128 DECL_REGISTER (res) = 1; 5129 } 5130 5131 /* Initialize rtx for parameters and local variables. 5132 In some cases this requires emitting insns. */ 5133 assign_parms (subr); 5134 5135 /* If function gets a static chain arg, store it. */ 5136 if (cfun->static_chain_decl) 5137 { 5138 tree parm = cfun->static_chain_decl; 5139 rtx local, chain; 5140 rtx_insn *insn; 5141 int unsignedp; 5142 5143 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp)); 5144 chain = targetm.calls.static_chain (current_function_decl, true); 5145 5146 set_decl_incoming_rtl (parm, chain, false); 5147 set_parm_rtl (parm, local); 5148 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); 5149 5150 if (GET_MODE (local) != GET_MODE (chain)) 5151 { 5152 convert_move (local, chain, unsignedp); 5153 insn = get_last_insn (); 5154 } 5155 else 5156 insn = emit_move_insn (local, chain); 5157 5158 /* Mark the register as eliminable, similar to parameters. */ 5159 if (MEM_P (chain) 5160 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0))) 5161 set_dst_reg_note (insn, REG_EQUIV, chain, local); 5162 5163 /* If we aren't optimizing, save the static chain onto the stack. */ 5164 if (!optimize) 5165 { 5166 tree saved_static_chain_decl 5167 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL, 5168 DECL_NAME (parm), TREE_TYPE (parm)); 5169 rtx saved_static_chain_rtx 5170 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); 5171 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx); 5172 emit_move_insn (saved_static_chain_rtx, chain); 5173 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl); 5174 DECL_HAS_VALUE_EXPR_P (parm) = 1; 5175 } 5176 } 5177 5178 /* The following was moved from init_function_start. 5179 The move was supposed to make sdb output more accurate. */ 5180 /* Indicate the beginning of the function body, 5181 as opposed to parm setup. */ 5182 emit_note (NOTE_INSN_FUNCTION_BEG); 5183 5184 gcc_assert (NOTE_P (get_last_insn ())); 5185 5186 parm_birth_insn = get_last_insn (); 5187 5188 /* If the function receives a non-local goto, then store the 5189 bits we need to restore the frame pointer. */ 5190 if (cfun->nonlocal_goto_save_area) 5191 { 5192 tree t_save; 5193 rtx r_save; 5194 5195 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0); 5196 gcc_assert (DECL_RTL_SET_P (var)); 5197 5198 t_save = build4 (ARRAY_REF, 5199 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)), 5200 cfun->nonlocal_goto_save_area, 5201 integer_zero_node, NULL_TREE, NULL_TREE); 5202 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); 5203 gcc_assert (GET_MODE (r_save) == Pmode); 5204 5205 emit_move_insn (r_save, hard_frame_pointer_rtx); 5206 update_nonlocal_goto_save_area (); 5207 } 5208 5209 if (crtl->profile) 5210 { 5211 #ifdef PROFILE_HOOK 5212 PROFILE_HOOK (current_function_funcdef_no); 5213 #endif 5214 } 5215 5216 /* If we are doing generic stack checking, the probe should go here. */ 5217 if (flag_stack_check == GENERIC_STACK_CHECK) 5218 stack_check_probe_note = emit_note (NOTE_INSN_DELETED); 5219 5220 currently_expanding_function_start = false; 5221 } 5222 5223 void 5224 pop_dummy_function (void) 5225 { 5226 pop_cfun (); 5227 in_dummy_function = false; 5228 } 5229 5230 /* Undo the effects of init_dummy_function_start. */ 5231 void 5232 expand_dummy_function_end (void) 5233 { 5234 gcc_assert (in_dummy_function); 5235 5236 /* End any sequences that failed to be closed due to syntax errors. */ 5237 while (in_sequence_p ()) 5238 end_sequence (); 5239 5240 /* Outside function body, can't compute type's actual size 5241 until next function's body starts. */ 5242 5243 free_after_parsing (cfun); 5244 free_after_compilation (cfun); 5245 pop_dummy_function (); 5246 } 5247 5248 /* Helper for diddle_return_value. */ 5249 5250 void 5251 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing) 5252 { 5253 if (! outgoing) 5254 return; 5255 5256 if (REG_P (outgoing)) 5257 (*doit) (outgoing, arg); 5258 else if (GET_CODE (outgoing) == PARALLEL) 5259 { 5260 int i; 5261 5262 for (i = 0; i < XVECLEN (outgoing, 0); i++) 5263 { 5264 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0); 5265 5266 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 5267 (*doit) (x, arg); 5268 } 5269 } 5270 } 5271 5272 /* Call DOIT for each hard register used as a return value from 5273 the current function. */ 5274 5275 void 5276 diddle_return_value (void (*doit) (rtx, void *), void *arg) 5277 { 5278 diddle_return_value_1 (doit, arg, crtl->return_rtx); 5279 } 5280 5281 static void 5282 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) 5283 { 5284 emit_clobber (reg); 5285 } 5286 5287 void 5288 clobber_return_register (void) 5289 { 5290 diddle_return_value (do_clobber_return_reg, NULL); 5291 5292 /* In case we do use pseudo to return value, clobber it too. */ 5293 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) 5294 { 5295 tree decl_result = DECL_RESULT (current_function_decl); 5296 rtx decl_rtl = DECL_RTL (decl_result); 5297 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER) 5298 { 5299 do_clobber_return_reg (decl_rtl, NULL); 5300 } 5301 } 5302 } 5303 5304 static void 5305 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) 5306 { 5307 emit_use (reg); 5308 } 5309 5310 static void 5311 use_return_register (void) 5312 { 5313 diddle_return_value (do_use_return_reg, NULL); 5314 } 5315 5316 /* Generate RTL for the end of the current function. */ 5317 5318 void 5319 expand_function_end (void) 5320 { 5321 /* If arg_pointer_save_area was referenced only from a nested 5322 function, we will not have initialized it yet. Do that now. */ 5323 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init) 5324 get_arg_pointer_save_area (); 5325 5326 /* If we are doing generic stack checking and this function makes calls, 5327 do a stack probe at the start of the function to ensure we have enough 5328 space for another stack frame. */ 5329 if (flag_stack_check == GENERIC_STACK_CHECK) 5330 { 5331 rtx_insn *insn, *seq; 5332 5333 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 5334 if (CALL_P (insn)) 5335 { 5336 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE); 5337 start_sequence (); 5338 if (STACK_CHECK_MOVING_SP) 5339 anti_adjust_stack_and_probe (max_frame_size, true); 5340 else 5341 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size); 5342 seq = get_insns (); 5343 end_sequence (); 5344 set_insn_locations (seq, prologue_location); 5345 emit_insn_before (seq, stack_check_probe_note); 5346 break; 5347 } 5348 } 5349 5350 /* End any sequences that failed to be closed due to syntax errors. */ 5351 while (in_sequence_p ()) 5352 end_sequence (); 5353 5354 clear_pending_stack_adjust (); 5355 do_pending_stack_adjust (); 5356 5357 /* Output a linenumber for the end of the function. 5358 SDB depended on this. */ 5359 set_curr_insn_location (input_location); 5360 5361 /* Before the return label (if any), clobber the return 5362 registers so that they are not propagated live to the rest of 5363 the function. This can only happen with functions that drop 5364 through; if there had been a return statement, there would 5365 have either been a return rtx, or a jump to the return label. 5366 5367 We delay actual code generation after the current_function_value_rtx 5368 is computed. */ 5369 rtx_insn *clobber_after = get_last_insn (); 5370 5371 /* Output the label for the actual return from the function. */ 5372 emit_label (return_label); 5373 5374 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ) 5375 { 5376 /* Let except.c know where it should emit the call to unregister 5377 the function context for sjlj exceptions. */ 5378 if (flag_exceptions) 5379 sjlj_emit_function_exit_after (get_last_insn ()); 5380 } 5381 5382 /* If this is an implementation of throw, do what's necessary to 5383 communicate between __builtin_eh_return and the epilogue. */ 5384 expand_eh_return (); 5385 5386 /* If stack protection is enabled for this function, check the guard. */ 5387 if (crtl->stack_protect_guard 5388 && targetm.stack_protect_runtime_enabled_p () 5389 && naked_return_label == NULL_RTX) 5390 stack_protect_epilogue (); 5391 5392 /* If scalar return value was computed in a pseudo-reg, or was a named 5393 return value that got dumped to the stack, copy that to the hard 5394 return register. */ 5395 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) 5396 { 5397 tree decl_result = DECL_RESULT (current_function_decl); 5398 rtx decl_rtl = DECL_RTL (decl_result); 5399 5400 if (REG_P (decl_rtl) 5401 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER 5402 : DECL_REGISTER (decl_result)) 5403 { 5404 rtx real_decl_rtl = crtl->return_rtx; 5405 complex_mode cmode; 5406 5407 /* This should be set in assign_parms. */ 5408 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl)); 5409 5410 /* If this is a BLKmode structure being returned in registers, 5411 then use the mode computed in expand_return. Note that if 5412 decl_rtl is memory, then its mode may have been changed, 5413 but that crtl->return_rtx has not. */ 5414 if (GET_MODE (real_decl_rtl) == BLKmode) 5415 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl)); 5416 5417 /* If a non-BLKmode return value should be padded at the least 5418 significant end of the register, shift it left by the appropriate 5419 amount. BLKmode results are handled using the group load/store 5420 machinery. */ 5421 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode 5422 && REG_P (real_decl_rtl) 5423 && targetm.calls.return_in_msb (TREE_TYPE (decl_result))) 5424 { 5425 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl), 5426 REGNO (real_decl_rtl)), 5427 decl_rtl); 5428 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl); 5429 } 5430 else if (GET_CODE (real_decl_rtl) == PARALLEL) 5431 { 5432 /* If expand_function_start has created a PARALLEL for decl_rtl, 5433 move the result to the real return registers. Otherwise, do 5434 a group load from decl_rtl for a named return. */ 5435 if (GET_CODE (decl_rtl) == PARALLEL) 5436 emit_group_move (real_decl_rtl, decl_rtl); 5437 else 5438 emit_group_load (real_decl_rtl, decl_rtl, 5439 TREE_TYPE (decl_result), 5440 int_size_in_bytes (TREE_TYPE (decl_result))); 5441 } 5442 /* In the case of complex integer modes smaller than a word, we'll 5443 need to generate some non-trivial bitfield insertions. Do that 5444 on a pseudo and not the hard register. */ 5445 else if (GET_CODE (decl_rtl) == CONCAT 5446 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode) 5447 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD) 5448 { 5449 int old_generating_concat_p; 5450 rtx tmp; 5451 5452 old_generating_concat_p = generating_concat_p; 5453 generating_concat_p = 0; 5454 tmp = gen_reg_rtx (GET_MODE (decl_rtl)); 5455 generating_concat_p = old_generating_concat_p; 5456 5457 emit_move_insn (tmp, decl_rtl); 5458 emit_move_insn (real_decl_rtl, tmp); 5459 } 5460 /* If a named return value dumped decl_return to memory, then 5461 we may need to re-do the PROMOTE_MODE signed/unsigned 5462 extension. */ 5463 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl)) 5464 { 5465 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result)); 5466 promote_function_mode (TREE_TYPE (decl_result), 5467 GET_MODE (decl_rtl), &unsignedp, 5468 TREE_TYPE (current_function_decl), 1); 5469 5470 convert_move (real_decl_rtl, decl_rtl, unsignedp); 5471 } 5472 else 5473 emit_move_insn (real_decl_rtl, decl_rtl); 5474 } 5475 } 5476 5477 /* If returning a structure, arrange to return the address of the value 5478 in a place where debuggers expect to find it. 5479 5480 If returning a structure PCC style, 5481 the caller also depends on this value. 5482 And cfun->returns_pcc_struct is not necessarily set. */ 5483 if ((cfun->returns_struct || cfun->returns_pcc_struct) 5484 && !targetm.calls.omit_struct_return_reg) 5485 { 5486 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl)); 5487 tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); 5488 rtx outgoing; 5489 5490 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))) 5491 type = TREE_TYPE (type); 5492 else 5493 value_address = XEXP (value_address, 0); 5494 5495 outgoing = targetm.calls.function_value (build_pointer_type (type), 5496 current_function_decl, true); 5497 5498 /* Mark this as a function return value so integrate will delete the 5499 assignment and USE below when inlining this function. */ 5500 REG_FUNCTION_VALUE_P (outgoing) = 1; 5501 5502 /* The address may be ptr_mode and OUTGOING may be Pmode. */ 5503 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing)); 5504 value_address = convert_memory_address (mode, value_address); 5505 5506 emit_move_insn (outgoing, value_address); 5507 5508 /* Show return register used to hold result (in this case the address 5509 of the result. */ 5510 crtl->return_rtx = outgoing; 5511 } 5512 5513 /* Emit the actual code to clobber return register. Don't emit 5514 it if clobber_after is a barrier, then the previous basic block 5515 certainly doesn't fall thru into the exit block. */ 5516 if (!BARRIER_P (clobber_after)) 5517 { 5518 start_sequence (); 5519 clobber_return_register (); 5520 rtx_insn *seq = get_insns (); 5521 end_sequence (); 5522 5523 emit_insn_after (seq, clobber_after); 5524 } 5525 5526 /* Output the label for the naked return from the function. */ 5527 if (naked_return_label) 5528 emit_label (naked_return_label); 5529 5530 /* @@@ This is a kludge. We want to ensure that instructions that 5531 may trap are not moved into the epilogue by scheduling, because 5532 we don't always emit unwind information for the epilogue. */ 5533 if (cfun->can_throw_non_call_exceptions 5534 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ) 5535 emit_insn (gen_blockage ()); 5536 5537 /* If stack protection is enabled for this function, check the guard. */ 5538 if (crtl->stack_protect_guard 5539 && targetm.stack_protect_runtime_enabled_p () 5540 && naked_return_label) 5541 stack_protect_epilogue (); 5542 5543 /* If we had calls to alloca, and this machine needs 5544 an accurate stack pointer to exit the function, 5545 insert some code to save and restore the stack pointer. */ 5546 if (! EXIT_IGNORE_STACK 5547 && cfun->calls_alloca) 5548 { 5549 rtx tem = 0; 5550 5551 start_sequence (); 5552 emit_stack_save (SAVE_FUNCTION, &tem); 5553 rtx_insn *seq = get_insns (); 5554 end_sequence (); 5555 emit_insn_before (seq, parm_birth_insn); 5556 5557 emit_stack_restore (SAVE_FUNCTION, tem); 5558 } 5559 5560 /* ??? This should no longer be necessary since stupid is no longer with 5561 us, but there are some parts of the compiler (eg reload_combine, and 5562 sh mach_dep_reorg) that still try and compute their own lifetime info 5563 instead of using the general framework. */ 5564 use_return_register (); 5565 } 5566 5567 rtx 5568 get_arg_pointer_save_area (void) 5569 { 5570 rtx ret = arg_pointer_save_area; 5571 5572 if (! ret) 5573 { 5574 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); 5575 arg_pointer_save_area = ret; 5576 } 5577 5578 if (! crtl->arg_pointer_save_area_init) 5579 { 5580 /* Save the arg pointer at the beginning of the function. The 5581 generated stack slot may not be a valid memory address, so we 5582 have to check it and fix it if necessary. */ 5583 start_sequence (); 5584 emit_move_insn (validize_mem (copy_rtx (ret)), 5585 crtl->args.internal_arg_pointer); 5586 rtx_insn *seq = get_insns (); 5587 end_sequence (); 5588 5589 push_topmost_sequence (); 5590 emit_insn_after (seq, entry_of_function ()); 5591 pop_topmost_sequence (); 5592 5593 crtl->arg_pointer_save_area_init = true; 5594 } 5595 5596 return ret; 5597 } 5598 5599 5600 /* If debugging dumps are requested, dump information about how the 5601 target handled -fstack-check=clash for the prologue. 5602 5603 PROBES describes what if any probes were emitted. 5604 5605 RESIDUALS indicates if the prologue had any residual allocation 5606 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */ 5607 5608 void 5609 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals) 5610 { 5611 if (!dump_file) 5612 return; 5613 5614 switch (probes) 5615 { 5616 case NO_PROBE_NO_FRAME: 5617 fprintf (dump_file, 5618 "Stack clash no probe no stack adjustment in prologue.\n"); 5619 break; 5620 case NO_PROBE_SMALL_FRAME: 5621 fprintf (dump_file, 5622 "Stack clash no probe small stack adjustment in prologue.\n"); 5623 break; 5624 case PROBE_INLINE: 5625 fprintf (dump_file, "Stack clash inline probes in prologue.\n"); 5626 break; 5627 case PROBE_LOOP: 5628 fprintf (dump_file, "Stack clash probe loop in prologue.\n"); 5629 break; 5630 } 5631 5632 if (residuals) 5633 fprintf (dump_file, "Stack clash residual allocation in prologue.\n"); 5634 else 5635 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n"); 5636 5637 if (frame_pointer_needed) 5638 fprintf (dump_file, "Stack clash frame pointer needed.\n"); 5639 else 5640 fprintf (dump_file, "Stack clash no frame pointer needed.\n"); 5641 5642 if (TREE_THIS_VOLATILE (cfun->decl)) 5643 fprintf (dump_file, 5644 "Stack clash noreturn prologue, assuming no implicit" 5645 " probes in caller.\n"); 5646 else 5647 fprintf (dump_file, 5648 "Stack clash not noreturn prologue.\n"); 5649 } 5650 5651 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP 5652 for the first time. */ 5653 5654 static void 5655 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp) 5656 { 5657 rtx_insn *tmp; 5658 hash_table<insn_cache_hasher> *hash = *hashp; 5659 5660 if (hash == NULL) 5661 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17); 5662 5663 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp)) 5664 { 5665 rtx *slot = hash->find_slot (tmp, INSERT); 5666 gcc_assert (*slot == NULL); 5667 *slot = tmp; 5668 } 5669 } 5670 5671 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a 5672 basic block, splitting or peepholes. If INSN is a prologue or epilogue 5673 insn, then record COPY as well. */ 5674 5675 void 5676 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy) 5677 { 5678 hash_table<insn_cache_hasher> *hash; 5679 rtx *slot; 5680 5681 hash = epilogue_insn_hash; 5682 if (!hash || !hash->find (insn)) 5683 { 5684 hash = prologue_insn_hash; 5685 if (!hash || !hash->find (insn)) 5686 return; 5687 } 5688 5689 slot = hash->find_slot (copy, INSERT); 5690 gcc_assert (*slot == NULL); 5691 *slot = copy; 5692 } 5693 5694 /* Determine if any INSNs in HASH are, or are part of, INSN. Because 5695 we can be running after reorg, SEQUENCE rtl is possible. */ 5696 5697 static bool 5698 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash) 5699 { 5700 if (hash == NULL) 5701 return false; 5702 5703 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 5704 { 5705 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn)); 5706 int i; 5707 for (i = seq->len () - 1; i >= 0; i--) 5708 if (hash->find (seq->element (i))) 5709 return true; 5710 return false; 5711 } 5712 5713 return hash->find (const_cast<rtx_insn *> (insn)) != NULL; 5714 } 5715 5716 int 5717 prologue_contains (const rtx_insn *insn) 5718 { 5719 return contains (insn, prologue_insn_hash); 5720 } 5721 5722 int 5723 epilogue_contains (const rtx_insn *insn) 5724 { 5725 return contains (insn, epilogue_insn_hash); 5726 } 5727 5728 int 5729 prologue_epilogue_contains (const rtx_insn *insn) 5730 { 5731 if (contains (insn, prologue_insn_hash)) 5732 return 1; 5733 if (contains (insn, epilogue_insn_hash)) 5734 return 1; 5735 return 0; 5736 } 5737 5738 void 5739 record_prologue_seq (rtx_insn *seq) 5740 { 5741 record_insns (seq, NULL, &prologue_insn_hash); 5742 } 5743 5744 void 5745 record_epilogue_seq (rtx_insn *seq) 5746 { 5747 record_insns (seq, NULL, &epilogue_insn_hash); 5748 } 5749 5750 /* Set JUMP_LABEL for a return insn. */ 5751 5752 void 5753 set_return_jump_label (rtx_insn *returnjump) 5754 { 5755 rtx pat = PATTERN (returnjump); 5756 if (GET_CODE (pat) == PARALLEL) 5757 pat = XVECEXP (pat, 0, 0); 5758 if (ANY_RETURN_P (pat)) 5759 JUMP_LABEL (returnjump) = pat; 5760 else 5761 JUMP_LABEL (returnjump) = ret_rtx; 5762 } 5763 5764 /* Return a sequence to be used as the split prologue for the current 5765 function, or NULL. */ 5766 5767 static rtx_insn * 5768 make_split_prologue_seq (void) 5769 { 5770 if (!flag_split_stack 5771 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))) 5772 return NULL; 5773 5774 start_sequence (); 5775 emit_insn (targetm.gen_split_stack_prologue ()); 5776 rtx_insn *seq = get_insns (); 5777 end_sequence (); 5778 5779 record_insns (seq, NULL, &prologue_insn_hash); 5780 set_insn_locations (seq, prologue_location); 5781 5782 return seq; 5783 } 5784 5785 /* Return a sequence to be used as the prologue for the current function, 5786 or NULL. */ 5787 5788 static rtx_insn * 5789 make_prologue_seq (void) 5790 { 5791 if (!targetm.have_prologue ()) 5792 return NULL; 5793 5794 start_sequence (); 5795 rtx_insn *seq = targetm.gen_prologue (); 5796 emit_insn (seq); 5797 5798 /* Insert an explicit USE for the frame pointer 5799 if the profiling is on and the frame pointer is required. */ 5800 if (crtl->profile && frame_pointer_needed) 5801 emit_use (hard_frame_pointer_rtx); 5802 5803 /* Retain a map of the prologue insns. */ 5804 record_insns (seq, NULL, &prologue_insn_hash); 5805 emit_note (NOTE_INSN_PROLOGUE_END); 5806 5807 /* Ensure that instructions are not moved into the prologue when 5808 profiling is on. The call to the profiling routine can be 5809 emitted within the live range of a call-clobbered register. */ 5810 if (!targetm.profile_before_prologue () && crtl->profile) 5811 emit_insn (gen_blockage ()); 5812 5813 seq = get_insns (); 5814 end_sequence (); 5815 set_insn_locations (seq, prologue_location); 5816 5817 return seq; 5818 } 5819 5820 /* Return a sequence to be used as the epilogue for the current function, 5821 or NULL. */ 5822 5823 static rtx_insn * 5824 make_epilogue_seq (void) 5825 { 5826 if (!targetm.have_epilogue ()) 5827 return NULL; 5828 5829 start_sequence (); 5830 emit_note (NOTE_INSN_EPILOGUE_BEG); 5831 rtx_insn *seq = targetm.gen_epilogue (); 5832 if (seq) 5833 emit_jump_insn (seq); 5834 5835 /* Retain a map of the epilogue insns. */ 5836 record_insns (seq, NULL, &epilogue_insn_hash); 5837 set_insn_locations (seq, epilogue_location); 5838 5839 seq = get_insns (); 5840 rtx_insn *returnjump = get_last_insn (); 5841 end_sequence (); 5842 5843 if (JUMP_P (returnjump)) 5844 set_return_jump_label (returnjump); 5845 5846 return seq; 5847 } 5848 5849 5850 /* Generate the prologue and epilogue RTL if the machine supports it. Thread 5851 this into place with notes indicating where the prologue ends and where 5852 the epilogue begins. Update the basic block information when possible. 5853 5854 Notes on epilogue placement: 5855 There are several kinds of edges to the exit block: 5856 * a single fallthru edge from LAST_BB 5857 * possibly, edges from blocks containing sibcalls 5858 * possibly, fake edges from infinite loops 5859 5860 The epilogue is always emitted on the fallthru edge from the last basic 5861 block in the function, LAST_BB, into the exit block. 5862 5863 If LAST_BB is empty except for a label, it is the target of every 5864 other basic block in the function that ends in a return. If a 5865 target has a return or simple_return pattern (possibly with 5866 conditional variants), these basic blocks can be changed so that a 5867 return insn is emitted into them, and their target is adjusted to 5868 the real exit block. 5869 5870 Notes on shrink wrapping: We implement a fairly conservative 5871 version of shrink-wrapping rather than the textbook one. We only 5872 generate a single prologue and a single epilogue. This is 5873 sufficient to catch a number of interesting cases involving early 5874 exits. 5875 5876 First, we identify the blocks that require the prologue to occur before 5877 them. These are the ones that modify a call-saved register, or reference 5878 any of the stack or frame pointer registers. To simplify things, we then 5879 mark everything reachable from these blocks as also requiring a prologue. 5880 This takes care of loops automatically, and avoids the need to examine 5881 whether MEMs reference the frame, since it is sufficient to check for 5882 occurrences of the stack or frame pointer. 5883 5884 We then compute the set of blocks for which the need for a prologue 5885 is anticipatable (borrowing terminology from the shrink-wrapping 5886 description in Muchnick's book). These are the blocks which either 5887 require a prologue themselves, or those that have only successors 5888 where the prologue is anticipatable. The prologue needs to be 5889 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1 5890 is not. For the moment, we ensure that only one such edge exists. 5891 5892 The epilogue is placed as described above, but we make a 5893 distinction between inserting return and simple_return patterns 5894 when modifying other blocks that end in a return. Blocks that end 5895 in a sibcall omit the sibcall_epilogue if the block is not in 5896 ANTIC. */ 5897 5898 void 5899 thread_prologue_and_epilogue_insns (void) 5900 { 5901 df_analyze (); 5902 5903 /* Can't deal with multiple successors of the entry block at the 5904 moment. Function should always have at least one entry 5905 point. */ 5906 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))); 5907 5908 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 5909 edge orig_entry_edge = entry_edge; 5910 5911 rtx_insn *split_prologue_seq = make_split_prologue_seq (); 5912 rtx_insn *prologue_seq = make_prologue_seq (); 5913 rtx_insn *epilogue_seq = make_epilogue_seq (); 5914 5915 /* Try to perform a kind of shrink-wrapping, making sure the 5916 prologue/epilogue is emitted only around those parts of the 5917 function that require it. */ 5918 try_shrink_wrapping (&entry_edge, prologue_seq); 5919 5920 /* If the target can handle splitting the prologue/epilogue into separate 5921 components, try to shrink-wrap these components separately. */ 5922 try_shrink_wrapping_separate (entry_edge->dest); 5923 5924 /* If that did anything for any component we now need the generate the 5925 "main" prologue again. Because some targets require some of these 5926 to be called in a specific order (i386 requires the split prologue 5927 to be first, for example), we create all three sequences again here. 5928 If this does not work for some target, that target should not enable 5929 separate shrink-wrapping. */ 5930 if (crtl->shrink_wrapped_separate) 5931 { 5932 split_prologue_seq = make_split_prologue_seq (); 5933 prologue_seq = make_prologue_seq (); 5934 epilogue_seq = make_epilogue_seq (); 5935 } 5936 5937 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)); 5938 5939 /* A small fib -- epilogue is not yet completed, but we wish to re-use 5940 this marker for the splits of EH_RETURN patterns, and nothing else 5941 uses the flag in the meantime. */ 5942 epilogue_completed = 1; 5943 5944 /* Find non-fallthru edges that end with EH_RETURN instructions. On 5945 some targets, these get split to a special version of the epilogue 5946 code. In order to be able to properly annotate these with unwind 5947 info, try to split them now. If we get a valid split, drop an 5948 EPILOGUE_BEG note and mark the insns as epilogue insns. */ 5949 edge e; 5950 edge_iterator ei; 5951 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 5952 { 5953 rtx_insn *prev, *last, *trial; 5954 5955 if (e->flags & EDGE_FALLTHRU) 5956 continue; 5957 last = BB_END (e->src); 5958 if (!eh_returnjump_p (last)) 5959 continue; 5960 5961 prev = PREV_INSN (last); 5962 trial = try_split (PATTERN (last), last, 1); 5963 if (trial == last) 5964 continue; 5965 5966 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash); 5967 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev); 5968 } 5969 5970 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); 5971 5972 if (exit_fallthru_edge) 5973 { 5974 if (epilogue_seq) 5975 { 5976 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge); 5977 commit_edge_insertions (); 5978 5979 /* The epilogue insns we inserted may cause the exit edge to no longer 5980 be fallthru. */ 5981 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 5982 { 5983 if (((e->flags & EDGE_FALLTHRU) != 0) 5984 && returnjump_p (BB_END (e->src))) 5985 e->flags &= ~EDGE_FALLTHRU; 5986 } 5987 } 5988 else if (next_active_insn (BB_END (exit_fallthru_edge->src))) 5989 { 5990 /* We have a fall-through edge to the exit block, the source is not 5991 at the end of the function, and there will be an assembler epilogue 5992 at the end of the function. 5993 We can't use force_nonfallthru here, because that would try to 5994 use return. Inserting a jump 'by hand' is extremely messy, so 5995 we take advantage of cfg_layout_finalize using 5996 fixup_fallthru_exit_predecessor. */ 5997 cfg_layout_initialize (0); 5998 basic_block cur_bb; 5999 FOR_EACH_BB_FN (cur_bb, cfun) 6000 if (cur_bb->index >= NUM_FIXED_BLOCKS 6001 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS) 6002 cur_bb->aux = cur_bb->next_bb; 6003 cfg_layout_finalize (); 6004 } 6005 } 6006 6007 /* Insert the prologue. */ 6008 6009 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 6010 6011 if (split_prologue_seq || prologue_seq) 6012 { 6013 rtx_insn *split_prologue_insn = split_prologue_seq; 6014 if (split_prologue_seq) 6015 { 6016 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn)) 6017 split_prologue_insn = NEXT_INSN (split_prologue_insn); 6018 insert_insn_on_edge (split_prologue_seq, orig_entry_edge); 6019 } 6020 6021 rtx_insn *prologue_insn = prologue_seq; 6022 if (prologue_seq) 6023 { 6024 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn)) 6025 prologue_insn = NEXT_INSN (prologue_insn); 6026 insert_insn_on_edge (prologue_seq, entry_edge); 6027 } 6028 6029 commit_edge_insertions (); 6030 6031 /* Look for basic blocks within the prologue insns. */ 6032 if (split_prologue_insn 6033 && BLOCK_FOR_INSN (split_prologue_insn) == NULL) 6034 split_prologue_insn = NULL; 6035 if (prologue_insn 6036 && BLOCK_FOR_INSN (prologue_insn) == NULL) 6037 prologue_insn = NULL; 6038 if (split_prologue_insn || prologue_insn) 6039 { 6040 auto_sbitmap blocks (last_basic_block_for_fn (cfun)); 6041 bitmap_clear (blocks); 6042 if (split_prologue_insn) 6043 bitmap_set_bit (blocks, 6044 BLOCK_FOR_INSN (split_prologue_insn)->index); 6045 if (prologue_insn) 6046 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index); 6047 find_many_sub_basic_blocks (blocks); 6048 } 6049 } 6050 6051 default_rtl_profile (); 6052 6053 /* Emit sibling epilogues before any sibling call sites. */ 6054 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); 6055 (e = ei_safe_edge (ei)); 6056 ei_next (&ei)) 6057 { 6058 /* Skip those already handled, the ones that run without prologue. */ 6059 if (e->flags & EDGE_IGNORE) 6060 { 6061 e->flags &= ~EDGE_IGNORE; 6062 continue; 6063 } 6064 6065 rtx_insn *insn = BB_END (e->src); 6066 6067 if (!(CALL_P (insn) && SIBLING_CALL_P (insn))) 6068 continue; 6069 6070 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ()) 6071 { 6072 start_sequence (); 6073 emit_note (NOTE_INSN_EPILOGUE_BEG); 6074 emit_insn (ep_seq); 6075 rtx_insn *seq = get_insns (); 6076 end_sequence (); 6077 6078 /* Retain a map of the epilogue insns. Used in life analysis to 6079 avoid getting rid of sibcall epilogue insns. Do this before we 6080 actually emit the sequence. */ 6081 record_insns (seq, NULL, &epilogue_insn_hash); 6082 set_insn_locations (seq, epilogue_location); 6083 6084 emit_insn_before (seq, insn); 6085 } 6086 } 6087 6088 if (epilogue_seq) 6089 { 6090 rtx_insn *insn, *next; 6091 6092 /* Similarly, move any line notes that appear after the epilogue. 6093 There is no need, however, to be quite so anal about the existence 6094 of such a note. Also possibly move 6095 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug 6096 info generation. */ 6097 for (insn = epilogue_seq; insn; insn = next) 6098 { 6099 next = NEXT_INSN (insn); 6100 if (NOTE_P (insn) 6101 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)) 6102 reorder_insns (insn, insn, PREV_INSN (epilogue_seq)); 6103 } 6104 } 6105 6106 /* Threading the prologue and epilogue changes the artificial refs 6107 in the entry and exit blocks. */ 6108 epilogue_completed = 1; 6109 df_update_entry_exit_and_calls (); 6110 } 6111 6112 /* Reposition the prologue-end and epilogue-begin notes after 6113 instruction scheduling. */ 6114 6115 void 6116 reposition_prologue_and_epilogue_notes (void) 6117 { 6118 if (!targetm.have_prologue () 6119 && !targetm.have_epilogue () 6120 && !targetm.have_sibcall_epilogue ()) 6121 return; 6122 6123 /* Since the hash table is created on demand, the fact that it is 6124 non-null is a signal that it is non-empty. */ 6125 if (prologue_insn_hash != NULL) 6126 { 6127 size_t len = prologue_insn_hash->elements (); 6128 rtx_insn *insn, *last = NULL, *note = NULL; 6129 6130 /* Scan from the beginning until we reach the last prologue insn. */ 6131 /* ??? While we do have the CFG intact, there are two problems: 6132 (1) The prologue can contain loops (typically probing the stack), 6133 which means that the end of the prologue isn't in the first bb. 6134 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */ 6135 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 6136 { 6137 if (NOTE_P (insn)) 6138 { 6139 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END) 6140 note = insn; 6141 } 6142 else if (contains (insn, prologue_insn_hash)) 6143 { 6144 last = insn; 6145 if (--len == 0) 6146 break; 6147 } 6148 } 6149 6150 if (last) 6151 { 6152 if (note == NULL) 6153 { 6154 /* Scan forward looking for the PROLOGUE_END note. It should 6155 be right at the beginning of the block, possibly with other 6156 insn notes that got moved there. */ 6157 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note)) 6158 { 6159 if (NOTE_P (note) 6160 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END) 6161 break; 6162 } 6163 } 6164 6165 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */ 6166 if (LABEL_P (last)) 6167 last = NEXT_INSN (last); 6168 reorder_insns (note, note, last); 6169 } 6170 } 6171 6172 if (epilogue_insn_hash != NULL) 6173 { 6174 edge_iterator ei; 6175 edge e; 6176 6177 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 6178 { 6179 rtx_insn *insn, *first = NULL, *note = NULL; 6180 basic_block bb = e->src; 6181 6182 /* Scan from the beginning until we reach the first epilogue insn. */ 6183 FOR_BB_INSNS (bb, insn) 6184 { 6185 if (NOTE_P (insn)) 6186 { 6187 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG) 6188 { 6189 note = insn; 6190 if (first != NULL) 6191 break; 6192 } 6193 } 6194 else if (first == NULL && contains (insn, epilogue_insn_hash)) 6195 { 6196 first = insn; 6197 if (note != NULL) 6198 break; 6199 } 6200 } 6201 6202 if (note) 6203 { 6204 /* If the function has a single basic block, and no real 6205 epilogue insns (e.g. sibcall with no cleanup), the 6206 epilogue note can get scheduled before the prologue 6207 note. If we have frame related prologue insns, having 6208 them scanned during the epilogue will result in a crash. 6209 In this case re-order the epilogue note to just before 6210 the last insn in the block. */ 6211 if (first == NULL) 6212 first = BB_END (bb); 6213 6214 if (PREV_INSN (first) != note) 6215 reorder_insns (note, note, PREV_INSN (first)); 6216 } 6217 } 6218 } 6219 } 6220 6221 /* Returns the name of function declared by FNDECL. */ 6222 const char * 6223 fndecl_name (tree fndecl) 6224 { 6225 if (fndecl == NULL) 6226 return "(nofn)"; 6227 return lang_hooks.decl_printable_name (fndecl, 1); 6228 } 6229 6230 /* Returns the name of function FN. */ 6231 const char * 6232 function_name (struct function *fn) 6233 { 6234 tree fndecl = (fn == NULL) ? NULL : fn->decl; 6235 return fndecl_name (fndecl); 6236 } 6237 6238 /* Returns the name of the current function. */ 6239 const char * 6240 current_function_name (void) 6241 { 6242 return function_name (cfun); 6243 } 6244 6245 6246 static unsigned int 6247 rest_of_handle_check_leaf_regs (void) 6248 { 6249 #ifdef LEAF_REGISTERS 6250 crtl->uses_only_leaf_regs 6251 = optimize > 0 && only_leaf_regs_used () && leaf_function_p (); 6252 #endif 6253 return 0; 6254 } 6255 6256 /* Insert a TYPE into the used types hash table of CFUN. */ 6257 6258 static void 6259 used_types_insert_helper (tree type, struct function *func) 6260 { 6261 if (type != NULL && func != NULL) 6262 { 6263 if (func->used_types_hash == NULL) 6264 func->used_types_hash = hash_set<tree>::create_ggc (37); 6265 6266 func->used_types_hash->add (type); 6267 } 6268 } 6269 6270 /* Given a type, insert it into the used hash table in cfun. */ 6271 void 6272 used_types_insert (tree t) 6273 { 6274 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE) 6275 if (TYPE_NAME (t)) 6276 break; 6277 else 6278 t = TREE_TYPE (t); 6279 if (TREE_CODE (t) == ERROR_MARK) 6280 return; 6281 if (TYPE_NAME (t) == NULL_TREE 6282 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t))) 6283 t = TYPE_MAIN_VARIANT (t); 6284 if (debug_info_level > DINFO_LEVEL_NONE) 6285 { 6286 if (cfun) 6287 used_types_insert_helper (t, cfun); 6288 else 6289 { 6290 /* So this might be a type referenced by a global variable. 6291 Record that type so that we can later decide to emit its 6292 debug information. */ 6293 vec_safe_push (types_used_by_cur_var_decl, t); 6294 } 6295 } 6296 } 6297 6298 /* Helper to Hash a struct types_used_by_vars_entry. */ 6299 6300 static hashval_t 6301 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry) 6302 { 6303 gcc_assert (entry && entry->var_decl && entry->type); 6304 6305 return iterative_hash_object (entry->type, 6306 iterative_hash_object (entry->var_decl, 0)); 6307 } 6308 6309 /* Hash function of the types_used_by_vars_entry hash table. */ 6310 6311 hashval_t 6312 used_type_hasher::hash (types_used_by_vars_entry *entry) 6313 { 6314 return hash_types_used_by_vars_entry (entry); 6315 } 6316 6317 /*Equality function of the types_used_by_vars_entry hash table. */ 6318 6319 bool 6320 used_type_hasher::equal (types_used_by_vars_entry *e1, 6321 types_used_by_vars_entry *e2) 6322 { 6323 return (e1->var_decl == e2->var_decl && e1->type == e2->type); 6324 } 6325 6326 /* Inserts an entry into the types_used_by_vars_hash hash table. */ 6327 6328 void 6329 types_used_by_var_decl_insert (tree type, tree var_decl) 6330 { 6331 if (type != NULL && var_decl != NULL) 6332 { 6333 types_used_by_vars_entry **slot; 6334 struct types_used_by_vars_entry e; 6335 e.var_decl = var_decl; 6336 e.type = type; 6337 if (types_used_by_vars_hash == NULL) 6338 types_used_by_vars_hash 6339 = hash_table<used_type_hasher>::create_ggc (37); 6340 6341 slot = types_used_by_vars_hash->find_slot (&e, INSERT); 6342 if (*slot == NULL) 6343 { 6344 struct types_used_by_vars_entry *entry; 6345 entry = ggc_alloc<types_used_by_vars_entry> (); 6346 entry->type = type; 6347 entry->var_decl = var_decl; 6348 *slot = entry; 6349 } 6350 } 6351 } 6352 6353 namespace { 6354 6355 const pass_data pass_data_leaf_regs = 6356 { 6357 RTL_PASS, /* type */ 6358 "*leaf_regs", /* name */ 6359 OPTGROUP_NONE, /* optinfo_flags */ 6360 TV_NONE, /* tv_id */ 6361 0, /* properties_required */ 6362 0, /* properties_provided */ 6363 0, /* properties_destroyed */ 6364 0, /* todo_flags_start */ 6365 0, /* todo_flags_finish */ 6366 }; 6367 6368 class pass_leaf_regs : public rtl_opt_pass 6369 { 6370 public: 6371 pass_leaf_regs (gcc::context *ctxt) 6372 : rtl_opt_pass (pass_data_leaf_regs, ctxt) 6373 {} 6374 6375 /* opt_pass methods: */ 6376 virtual unsigned int execute (function *) 6377 { 6378 return rest_of_handle_check_leaf_regs (); 6379 } 6380 6381 }; // class pass_leaf_regs 6382 6383 } // anon namespace 6384 6385 rtl_opt_pass * 6386 make_pass_leaf_regs (gcc::context *ctxt) 6387 { 6388 return new pass_leaf_regs (ctxt); 6389 } 6390 6391 static unsigned int 6392 rest_of_handle_thread_prologue_and_epilogue (void) 6393 { 6394 /* prepare_shrink_wrap is sensitive to the block structure of the control 6395 flow graph, so clean it up first. */ 6396 if (optimize) 6397 cleanup_cfg (0); 6398 6399 /* On some machines, the prologue and epilogue code, or parts thereof, 6400 can be represented as RTL. Doing so lets us schedule insns between 6401 it and the rest of the code and also allows delayed branch 6402 scheduling to operate in the epilogue. */ 6403 thread_prologue_and_epilogue_insns (); 6404 6405 /* Some non-cold blocks may now be only reachable from cold blocks. 6406 Fix that up. */ 6407 fixup_partitions (); 6408 6409 /* Shrink-wrapping can result in unreachable edges in the epilogue, 6410 see PR57320. */ 6411 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0); 6412 6413 /* The stack usage info is finalized during prologue expansion. */ 6414 if (flag_stack_usage_info || flag_callgraph_info) 6415 output_stack_usage (); 6416 6417 return 0; 6418 } 6419 6420 /* Record a final call to CALLEE at LOCATION. */ 6421 6422 void 6423 record_final_call (tree callee, location_t location) 6424 { 6425 struct callinfo_callee datum = { location, callee }; 6426 vec_safe_push (cfun->su->callees, datum); 6427 } 6428 6429 /* Record a dynamic allocation made for DECL_OR_EXP. */ 6430 6431 void 6432 record_dynamic_alloc (tree decl_or_exp) 6433 { 6434 struct callinfo_dalloc datum; 6435 6436 if (DECL_P (decl_or_exp)) 6437 { 6438 datum.location = DECL_SOURCE_LOCATION (decl_or_exp); 6439 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2); 6440 const char *dot = strrchr (name, '.'); 6441 if (dot) 6442 name = dot + 1; 6443 datum.name = ggc_strdup (name); 6444 } 6445 else 6446 { 6447 datum.location = EXPR_LOCATION (decl_or_exp); 6448 datum.name = NULL; 6449 } 6450 6451 vec_safe_push (cfun->su->dallocs, datum); 6452 } 6453 6454 namespace { 6455 6456 const pass_data pass_data_thread_prologue_and_epilogue = 6457 { 6458 RTL_PASS, /* type */ 6459 "pro_and_epilogue", /* name */ 6460 OPTGROUP_NONE, /* optinfo_flags */ 6461 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */ 6462 0, /* properties_required */ 6463 0, /* properties_provided */ 6464 0, /* properties_destroyed */ 6465 0, /* todo_flags_start */ 6466 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */ 6467 }; 6468 6469 class pass_thread_prologue_and_epilogue : public rtl_opt_pass 6470 { 6471 public: 6472 pass_thread_prologue_and_epilogue (gcc::context *ctxt) 6473 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt) 6474 {} 6475 6476 /* opt_pass methods: */ 6477 virtual unsigned int execute (function *) 6478 { 6479 return rest_of_handle_thread_prologue_and_epilogue (); 6480 } 6481 6482 }; // class pass_thread_prologue_and_epilogue 6483 6484 } // anon namespace 6485 6486 rtl_opt_pass * 6487 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt) 6488 { 6489 return new pass_thread_prologue_and_epilogue (ctxt); 6490 } 6491 6492 6493 /* If CONSTRAINT is a matching constraint, then return its number. 6494 Otherwise, return -1. */ 6495 6496 static int 6497 matching_constraint_num (const char *constraint) 6498 { 6499 if (*constraint == '%') 6500 constraint++; 6501 6502 if (IN_RANGE (*constraint, '0', '9')) 6503 return strtoul (constraint, NULL, 10); 6504 6505 return -1; 6506 } 6507 6508 /* This mini-pass fixes fall-out from SSA in asm statements that have 6509 in-out constraints. Say you start with 6510 6511 orig = inout; 6512 asm ("": "+mr" (inout)); 6513 use (orig); 6514 6515 which is transformed very early to use explicit output and match operands: 6516 6517 orig = inout; 6518 asm ("": "=mr" (inout) : "0" (inout)); 6519 use (orig); 6520 6521 Or, after SSA and copyprop, 6522 6523 asm ("": "=mr" (inout_2) : "0" (inout_1)); 6524 use (inout_1); 6525 6526 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as 6527 they represent two separate values, so they will get different pseudo 6528 registers during expansion. Then, since the two operands need to match 6529 per the constraints, but use different pseudo registers, reload can 6530 only register a reload for these operands. But reloads can only be 6531 satisfied by hardregs, not by memory, so we need a register for this 6532 reload, just because we are presented with non-matching operands. 6533 So, even though we allow memory for this operand, no memory can be 6534 used for it, just because the two operands don't match. This can 6535 cause reload failures on register-starved targets. 6536 6537 So it's a symptom of reload not being able to use memory for reloads 6538 or, alternatively it's also a symptom of both operands not coming into 6539 reload as matching (in which case the pseudo could go to memory just 6540 fine, as the alternative allows it, and no reload would be necessary). 6541 We fix the latter problem here, by transforming 6542 6543 asm ("": "=mr" (inout_2) : "0" (inout_1)); 6544 6545 back to 6546 6547 inout_2 = inout_1; 6548 asm ("": "=mr" (inout_2) : "0" (inout_2)); */ 6549 6550 static void 6551 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs) 6552 { 6553 int i; 6554 bool changed = false; 6555 rtx op = SET_SRC (p_sets[0]); 6556 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op); 6557 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op); 6558 bool *output_matched = XALLOCAVEC (bool, noutputs); 6559 6560 memset (output_matched, 0, noutputs * sizeof (bool)); 6561 for (i = 0; i < ninputs; i++) 6562 { 6563 rtx input, output; 6564 rtx_insn *insns; 6565 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i); 6566 int match, j; 6567 6568 match = matching_constraint_num (constraint); 6569 if (match < 0) 6570 continue; 6571 6572 gcc_assert (match < noutputs); 6573 output = SET_DEST (p_sets[match]); 6574 input = RTVEC_ELT (inputs, i); 6575 /* Only do the transformation for pseudos. */ 6576 if (! REG_P (output) 6577 || rtx_equal_p (output, input) 6578 || !(REG_P (input) || SUBREG_P (input) 6579 || MEM_P (input) || CONSTANT_P (input)) 6580 || !general_operand (input, GET_MODE (output))) 6581 continue; 6582 6583 /* We can't do anything if the output is also used as input, 6584 as we're going to overwrite it. */ 6585 for (j = 0; j < ninputs; j++) 6586 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j))) 6587 break; 6588 if (j != ninputs) 6589 continue; 6590 6591 /* Avoid changing the same input several times. For 6592 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in)); 6593 only change it once (to out1), rather than changing it 6594 first to out1 and afterwards to out2. */ 6595 if (i > 0) 6596 { 6597 for (j = 0; j < noutputs; j++) 6598 if (output_matched[j] && input == SET_DEST (p_sets[j])) 6599 break; 6600 if (j != noutputs) 6601 continue; 6602 } 6603 output_matched[match] = true; 6604 6605 start_sequence (); 6606 emit_move_insn (output, copy_rtx (input)); 6607 insns = get_insns (); 6608 end_sequence (); 6609 emit_insn_before (insns, insn); 6610 6611 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match])); 6612 bool early_clobber_p = strchr (constraint, '&') != NULL; 6613 6614 /* Now replace all mentions of the input with output. We can't 6615 just replace the occurrence in inputs[i], as the register might 6616 also be used in some other input (or even in an address of an 6617 output), which would mean possibly increasing the number of 6618 inputs by one (namely 'output' in addition), which might pose 6619 a too complicated problem for reload to solve. E.g. this situation: 6620 6621 asm ("" : "=r" (output), "=m" (input) : "0" (input)) 6622 6623 Here 'input' is used in two occurrences as input (once for the 6624 input operand, once for the address in the second output operand). 6625 If we would replace only the occurrence of the input operand (to 6626 make the matching) we would be left with this: 6627 6628 output = input 6629 asm ("" : "=r" (output), "=m" (input) : "0" (output)) 6630 6631 Now we suddenly have two different input values (containing the same 6632 value, but different pseudos) where we formerly had only one. 6633 With more complicated asms this might lead to reload failures 6634 which wouldn't have happen without this pass. So, iterate over 6635 all operands and replace all occurrences of the register used. 6636 6637 However, if one or more of the 'input' uses have a non-matching 6638 constraint and the matched output operand is an early clobber 6639 operand, then do not replace the input operand, since by definition 6640 it conflicts with the output operand and cannot share the same 6641 register. See PR89313 for details. */ 6642 6643 for (j = 0; j < noutputs; j++) 6644 if (!rtx_equal_p (SET_DEST (p_sets[j]), input) 6645 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j]))) 6646 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]), 6647 input, output); 6648 for (j = 0; j < ninputs; j++) 6649 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j))) 6650 { 6651 if (!early_clobber_p 6652 || match == matching_constraint_num 6653 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j))) 6654 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j), 6655 input, output); 6656 } 6657 6658 changed = true; 6659 } 6660 6661 if (changed) 6662 df_insn_rescan (insn); 6663 } 6664 6665 /* Add the decl D to the local_decls list of FUN. */ 6666 6667 void 6668 add_local_decl (struct function *fun, tree d) 6669 { 6670 gcc_assert (VAR_P (d)); 6671 vec_safe_push (fun->local_decls, d); 6672 } 6673 6674 namespace { 6675 6676 const pass_data pass_data_match_asm_constraints = 6677 { 6678 RTL_PASS, /* type */ 6679 "asmcons", /* name */ 6680 OPTGROUP_NONE, /* optinfo_flags */ 6681 TV_NONE, /* tv_id */ 6682 0, /* properties_required */ 6683 0, /* properties_provided */ 6684 0, /* properties_destroyed */ 6685 0, /* todo_flags_start */ 6686 0, /* todo_flags_finish */ 6687 }; 6688 6689 class pass_match_asm_constraints : public rtl_opt_pass 6690 { 6691 public: 6692 pass_match_asm_constraints (gcc::context *ctxt) 6693 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt) 6694 {} 6695 6696 /* opt_pass methods: */ 6697 virtual unsigned int execute (function *); 6698 6699 }; // class pass_match_asm_constraints 6700 6701 unsigned 6702 pass_match_asm_constraints::execute (function *fun) 6703 { 6704 basic_block bb; 6705 rtx_insn *insn; 6706 rtx pat, *p_sets; 6707 int noutputs; 6708 6709 if (!crtl->has_asm_statement) 6710 return 0; 6711 6712 df_set_flags (DF_DEFER_INSN_RESCAN); 6713 FOR_EACH_BB_FN (bb, fun) 6714 { 6715 FOR_BB_INSNS (bb, insn) 6716 { 6717 if (!INSN_P (insn)) 6718 continue; 6719 6720 pat = PATTERN (insn); 6721 if (GET_CODE (pat) == PARALLEL) 6722 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0); 6723 else if (GET_CODE (pat) == SET) 6724 p_sets = &PATTERN (insn), noutputs = 1; 6725 else 6726 continue; 6727 6728 if (GET_CODE (*p_sets) == SET 6729 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS) 6730 match_asm_constraints_1 (insn, p_sets, noutputs); 6731 } 6732 } 6733 6734 return TODO_df_finish; 6735 } 6736 6737 } // anon namespace 6738 6739 rtl_opt_pass * 6740 make_pass_match_asm_constraints (gcc::context *ctxt) 6741 { 6742 return new pass_match_asm_constraints (ctxt); 6743 } 6744 6745 6746 #include "gt-function.h" 6747