1 /* Expands front end tree to back end RTL for GCC. 2 Copyright (C) 1987-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This file handles the generation of rtl code from tree structure 21 at the level of the function as a whole. 22 It creates the rtl expressions for parameters and auto variables 23 and has full responsibility for allocating stack slots. 24 25 `expand_function_start' is called at the beginning of a function, 26 before the function body is parsed, and `expand_function_end' is 27 called after parsing the body. 28 29 Call `assign_stack_local' to allocate a stack slot for a local variable. 30 This is usually done during the RTL generation for the function body, 31 but it can also be done in the reload pass when a pseudo-register does 32 not get a hard register. */ 33 34 #include "config.h" 35 #include "system.h" 36 #include "coretypes.h" 37 #include "backend.h" 38 #include "target.h" 39 #include "rtl.h" 40 #include "tree.h" 41 #include "gimple-expr.h" 42 #include "cfghooks.h" 43 #include "df.h" 44 #include "memmodel.h" 45 #include "tm_p.h" 46 #include "stringpool.h" 47 #include "expmed.h" 48 #include "optabs.h" 49 #include "regs.h" 50 #include "emit-rtl.h" 51 #include "recog.h" 52 #include "rtl-error.h" 53 #include "alias.h" 54 #include "fold-const.h" 55 #include "stor-layout.h" 56 #include "varasm.h" 57 #include "except.h" 58 #include "dojump.h" 59 #include "explow.h" 60 #include "calls.h" 61 #include "expr.h" 62 #include "optabs-tree.h" 63 #include "output.h" 64 #include "langhooks.h" 65 #include "common/common-target.h" 66 #include "gimplify.h" 67 #include "tree-pass.h" 68 #include "cfgrtl.h" 69 #include "cfganal.h" 70 #include "cfgbuild.h" 71 #include "cfgcleanup.h" 72 #include "cfgexpand.h" 73 #include "shrink-wrap.h" 74 #include "toplev.h" 75 #include "rtl-iter.h" 76 #include "tree-dfa.h" 77 #include "tree-ssa.h" 78 #include "stringpool.h" 79 #include "attribs.h" 80 #include "gimple.h" 81 #include "options.h" 82 #include "function-abi.h" 83 84 /* So we can assign to cfun in this file. */ 85 #undef cfun 86 87 #ifndef STACK_ALIGNMENT_NEEDED 88 #define STACK_ALIGNMENT_NEEDED 1 89 #endif 90 91 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT) 92 93 /* Round a value to the lowest integer less than it that is a multiple of 94 the required alignment. Avoid using division in case the value is 95 negative. Assume the alignment is a power of two. */ 96 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1)) 97 98 /* Similar, but round to the next highest integer that meets the 99 alignment. */ 100 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1)) 101 102 /* Nonzero once virtual register instantiation has been done. 103 assign_stack_local uses frame_pointer_rtx when this is nonzero. 104 calls.c:emit_library_call_value_1 uses it to set up 105 post-instantiation libcalls. */ 106 int virtuals_instantiated; 107 108 /* Assign unique numbers to labels generated for profiling, debugging, etc. */ 109 static GTY(()) int funcdef_no; 110 111 /* These variables hold pointers to functions to create and destroy 112 target specific, per-function data structures. */ 113 struct machine_function * (*init_machine_status) (void); 114 115 /* The currently compiled function. */ 116 struct function *cfun = 0; 117 118 /* These hashes record the prologue and epilogue insns. */ 119 120 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def> 121 { 122 static hashval_t hash (rtx x) { return htab_hash_pointer (x); } 123 static bool equal (rtx a, rtx b) { return a == b; } 124 }; 125 126 static GTY((cache)) 127 hash_table<insn_cache_hasher> *prologue_insn_hash; 128 static GTY((cache)) 129 hash_table<insn_cache_hasher> *epilogue_insn_hash; 130 131 132 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL; 133 vec<tree, va_gc> *types_used_by_cur_var_decl; 134 135 /* Forward declarations. */ 136 137 static class temp_slot *find_temp_slot_from_address (rtx); 138 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *); 139 static void pad_below (struct args_size *, machine_mode, tree); 140 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *); 141 static int all_blocks (tree, tree *); 142 static tree *get_block_vector (tree, int *); 143 extern tree debug_find_var_in_block_tree (tree, tree); 144 /* We always define `record_insns' even if it's not used so that we 145 can always export `prologue_epilogue_contains'. */ 146 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **) 147 ATTRIBUTE_UNUSED; 148 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *); 149 static void prepare_function_start (void); 150 static void do_clobber_return_reg (rtx, void *); 151 static void do_use_return_reg (rtx, void *); 152 153 154 /* Stack of nested functions. */ 155 /* Keep track of the cfun stack. */ 156 157 static vec<function *> function_context_stack; 158 159 /* Save the current context for compilation of a nested function. 160 This is called from language-specific code. */ 161 162 void 163 push_function_context (void) 164 { 165 if (cfun == 0) 166 allocate_struct_function (NULL, false); 167 168 function_context_stack.safe_push (cfun); 169 set_cfun (NULL); 170 } 171 172 /* Restore the last saved context, at the end of a nested function. 173 This function is called from language-specific code. */ 174 175 void 176 pop_function_context (void) 177 { 178 struct function *p = function_context_stack.pop (); 179 set_cfun (p); 180 current_function_decl = p->decl; 181 182 /* Reset variables that have known state during rtx generation. */ 183 virtuals_instantiated = 0; 184 generating_concat_p = 1; 185 } 186 187 /* Clear out all parts of the state in F that can safely be discarded 188 after the function has been parsed, but not compiled, to let 189 garbage collection reclaim the memory. */ 190 191 void 192 free_after_parsing (struct function *f) 193 { 194 f->language = 0; 195 } 196 197 /* Clear out all parts of the state in F that can safely be discarded 198 after the function has been compiled, to let garbage collection 199 reclaim the memory. */ 200 201 void 202 free_after_compilation (struct function *f) 203 { 204 prologue_insn_hash = NULL; 205 epilogue_insn_hash = NULL; 206 207 free (crtl->emit.regno_pointer_align); 208 209 memset (crtl, 0, sizeof (struct rtl_data)); 210 f->eh = NULL; 211 f->machine = NULL; 212 f->cfg = NULL; 213 f->curr_properties &= ~PROP_cfg; 214 215 regno_reg_rtx = NULL; 216 } 217 218 /* Return size needed for stack frame based on slots so far allocated. 219 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY; 220 the caller may have to do that. */ 221 222 poly_int64 223 get_frame_size (void) 224 { 225 if (FRAME_GROWS_DOWNWARD) 226 return -frame_offset; 227 else 228 return frame_offset; 229 } 230 231 /* Issue an error message and return TRUE if frame OFFSET overflows in 232 the signed target pointer arithmetics for function FUNC. Otherwise 233 return FALSE. */ 234 235 bool 236 frame_offset_overflow (poly_int64 offset, tree func) 237 { 238 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset; 239 unsigned HOST_WIDE_INT limit 240 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1)) 241 /* Leave room for the fixed part of the frame. */ 242 - 64 * UNITS_PER_WORD); 243 244 if (!coeffs_in_range_p (size, 0U, limit)) 245 { 246 unsigned HOST_WIDE_INT hwisize; 247 if (size.is_constant (&hwisize)) 248 error_at (DECL_SOURCE_LOCATION (func), 249 "total size of local objects %wu exceeds maximum %wu", 250 hwisize, limit); 251 else 252 error_at (DECL_SOURCE_LOCATION (func), 253 "total size of local objects exceeds maximum %wu", 254 limit); 255 return true; 256 } 257 258 return false; 259 } 260 261 /* Return the minimum spill slot alignment for a register of mode MODE. */ 262 263 unsigned int 264 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED) 265 { 266 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode)); 267 } 268 269 /* Return stack slot alignment in bits for TYPE and MODE. */ 270 271 static unsigned int 272 get_stack_local_alignment (tree type, machine_mode mode) 273 { 274 unsigned int alignment; 275 276 if (mode == BLKmode) 277 alignment = BIGGEST_ALIGNMENT; 278 else 279 alignment = GET_MODE_ALIGNMENT (mode); 280 281 /* Allow the frond-end to (possibly) increase the alignment of this 282 stack slot. */ 283 if (! type) 284 type = lang_hooks.types.type_for_mode (mode, 0); 285 286 return STACK_SLOT_ALIGNMENT (type, mode, alignment); 287 } 288 289 /* Determine whether it is possible to fit a stack slot of size SIZE and 290 alignment ALIGNMENT into an area in the stack frame that starts at 291 frame offset START and has a length of LENGTH. If so, store the frame 292 offset to be used for the stack slot in *POFFSET and return true; 293 return false otherwise. This function will extend the frame size when 294 given a start/length pair that lies at the end of the frame. */ 295 296 static bool 297 try_fit_stack_local (poly_int64 start, poly_int64 length, 298 poly_int64 size, unsigned int alignment, 299 poly_int64_pod *poffset) 300 { 301 poly_int64 this_frame_offset; 302 int frame_off, frame_alignment, frame_phase; 303 304 /* Calculate how many bytes the start of local variables is off from 305 stack alignment. */ 306 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT; 307 frame_off = targetm.starting_frame_offset () % frame_alignment; 308 frame_phase = frame_off ? frame_alignment - frame_off : 0; 309 310 /* Round the frame offset to the specified alignment. */ 311 312 if (FRAME_GROWS_DOWNWARD) 313 this_frame_offset 314 = (aligned_lower_bound (start + length - size - frame_phase, alignment) 315 + frame_phase); 316 else 317 this_frame_offset 318 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase; 319 320 /* See if it fits. If this space is at the edge of the frame, 321 consider extending the frame to make it fit. Our caller relies on 322 this when allocating a new slot. */ 323 if (maybe_lt (this_frame_offset, start)) 324 { 325 if (known_eq (frame_offset, start)) 326 frame_offset = this_frame_offset; 327 else 328 return false; 329 } 330 else if (maybe_gt (this_frame_offset + size, start + length)) 331 { 332 if (known_eq (frame_offset, start + length)) 333 frame_offset = this_frame_offset + size; 334 else 335 return false; 336 } 337 338 *poffset = this_frame_offset; 339 return true; 340 } 341 342 /* Create a new frame_space structure describing free space in the stack 343 frame beginning at START and ending at END, and chain it into the 344 function's frame_space_list. */ 345 346 static void 347 add_frame_space (poly_int64 start, poly_int64 end) 348 { 349 class frame_space *space = ggc_alloc<frame_space> (); 350 space->next = crtl->frame_space_list; 351 crtl->frame_space_list = space; 352 space->start = start; 353 space->length = end - start; 354 } 355 356 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it 357 with machine mode MODE. 358 359 ALIGN controls the amount of alignment for the address of the slot: 360 0 means according to MODE, 361 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that, 362 -2 means use BITS_PER_UNIT, 363 positive specifies alignment boundary in bits. 364 365 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce 366 alignment and ASLK_RECORD_PAD bit set if we should remember 367 extra space we allocated for alignment purposes. When we are 368 called from assign_stack_temp_for_type, it is not set so we don't 369 track the same stack slot in two independent lists. 370 371 We do not round to stack_boundary here. */ 372 373 rtx 374 assign_stack_local_1 (machine_mode mode, poly_int64 size, 375 int align, int kind) 376 { 377 rtx x, addr; 378 poly_int64 bigend_correction = 0; 379 poly_int64 slot_offset = 0, old_frame_offset; 380 unsigned int alignment, alignment_in_bits; 381 382 if (align == 0) 383 { 384 alignment = get_stack_local_alignment (NULL, mode); 385 alignment /= BITS_PER_UNIT; 386 } 387 else if (align == -1) 388 { 389 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT; 390 size = aligned_upper_bound (size, alignment); 391 } 392 else if (align == -2) 393 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */ 394 else 395 alignment = align / BITS_PER_UNIT; 396 397 alignment_in_bits = alignment * BITS_PER_UNIT; 398 399 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */ 400 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT) 401 { 402 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT; 403 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT; 404 } 405 406 if (SUPPORTS_STACK_ALIGNMENT) 407 { 408 if (crtl->stack_alignment_estimated < alignment_in_bits) 409 { 410 if (!crtl->stack_realign_processed) 411 crtl->stack_alignment_estimated = alignment_in_bits; 412 else 413 { 414 /* If stack is realigned and stack alignment value 415 hasn't been finalized, it is OK not to increase 416 stack_alignment_estimated. The bigger alignment 417 requirement is recorded in stack_alignment_needed 418 below. */ 419 gcc_assert (!crtl->stack_realign_finalized); 420 if (!crtl->stack_realign_needed) 421 { 422 /* It is OK to reduce the alignment as long as the 423 requested size is 0 or the estimated stack 424 alignment >= mode alignment. */ 425 gcc_assert ((kind & ASLK_REDUCE_ALIGN) 426 || known_eq (size, 0) 427 || (crtl->stack_alignment_estimated 428 >= GET_MODE_ALIGNMENT (mode))); 429 alignment_in_bits = crtl->stack_alignment_estimated; 430 alignment = alignment_in_bits / BITS_PER_UNIT; 431 } 432 } 433 } 434 } 435 436 if (crtl->stack_alignment_needed < alignment_in_bits) 437 crtl->stack_alignment_needed = alignment_in_bits; 438 if (crtl->max_used_stack_slot_alignment < alignment_in_bits) 439 crtl->max_used_stack_slot_alignment = alignment_in_bits; 440 441 if (mode != BLKmode || maybe_ne (size, 0)) 442 { 443 if (kind & ASLK_RECORD_PAD) 444 { 445 class frame_space **psp; 446 447 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next) 448 { 449 class frame_space *space = *psp; 450 if (!try_fit_stack_local (space->start, space->length, size, 451 alignment, &slot_offset)) 452 continue; 453 *psp = space->next; 454 if (known_gt (slot_offset, space->start)) 455 add_frame_space (space->start, slot_offset); 456 if (known_lt (slot_offset + size, space->start + space->length)) 457 add_frame_space (slot_offset + size, 458 space->start + space->length); 459 goto found_space; 460 } 461 } 462 } 463 else if (!STACK_ALIGNMENT_NEEDED) 464 { 465 slot_offset = frame_offset; 466 goto found_space; 467 } 468 469 old_frame_offset = frame_offset; 470 471 if (FRAME_GROWS_DOWNWARD) 472 { 473 frame_offset -= size; 474 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset); 475 476 if (kind & ASLK_RECORD_PAD) 477 { 478 if (known_gt (slot_offset, frame_offset)) 479 add_frame_space (frame_offset, slot_offset); 480 if (known_lt (slot_offset + size, old_frame_offset)) 481 add_frame_space (slot_offset + size, old_frame_offset); 482 } 483 } 484 else 485 { 486 frame_offset += size; 487 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset); 488 489 if (kind & ASLK_RECORD_PAD) 490 { 491 if (known_gt (slot_offset, old_frame_offset)) 492 add_frame_space (old_frame_offset, slot_offset); 493 if (known_lt (slot_offset + size, frame_offset)) 494 add_frame_space (slot_offset + size, frame_offset); 495 } 496 } 497 498 found_space: 499 /* On a big-endian machine, if we are allocating more space than we will use, 500 use the least significant bytes of those that are allocated. */ 501 if (mode != BLKmode) 502 { 503 /* The slot size can sometimes be smaller than the mode size; 504 e.g. the rs6000 port allocates slots with a vector mode 505 that have the size of only one element. However, the slot 506 size must always be ordered wrt to the mode size, in the 507 same way as for a subreg. */ 508 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size)); 509 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size)) 510 bigend_correction = size - GET_MODE_SIZE (mode); 511 } 512 513 /* If we have already instantiated virtual registers, return the actual 514 address relative to the frame pointer. */ 515 if (virtuals_instantiated) 516 addr = plus_constant (Pmode, frame_pointer_rtx, 517 trunc_int_for_mode 518 (slot_offset + bigend_correction 519 + targetm.starting_frame_offset (), Pmode)); 520 else 521 addr = plus_constant (Pmode, virtual_stack_vars_rtx, 522 trunc_int_for_mode 523 (slot_offset + bigend_correction, 524 Pmode)); 525 526 x = gen_rtx_MEM (mode, addr); 527 set_mem_align (x, alignment_in_bits); 528 MEM_NOTRAP_P (x) = 1; 529 530 vec_safe_push (stack_slot_list, x); 531 532 if (frame_offset_overflow (frame_offset, current_function_decl)) 533 frame_offset = 0; 534 535 return x; 536 } 537 538 /* Wrap up assign_stack_local_1 with last parameter as false. */ 539 540 rtx 541 assign_stack_local (machine_mode mode, poly_int64 size, int align) 542 { 543 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD); 544 } 545 546 /* In order to evaluate some expressions, such as function calls returning 547 structures in memory, we need to temporarily allocate stack locations. 548 We record each allocated temporary in the following structure. 549 550 Associated with each temporary slot is a nesting level. When we pop up 551 one level, all temporaries associated with the previous level are freed. 552 Normally, all temporaries are freed after the execution of the statement 553 in which they were created. However, if we are inside a ({...}) grouping, 554 the result may be in a temporary and hence must be preserved. If the 555 result could be in a temporary, we preserve it if we can determine which 556 one it is in. If we cannot determine which temporary may contain the 557 result, all temporaries are preserved. A temporary is preserved by 558 pretending it was allocated at the previous nesting level. */ 559 560 class GTY(()) temp_slot { 561 public: 562 /* Points to next temporary slot. */ 563 class temp_slot *next; 564 /* Points to previous temporary slot. */ 565 class temp_slot *prev; 566 /* The rtx to used to reference the slot. */ 567 rtx slot; 568 /* The size, in units, of the slot. */ 569 poly_int64 size; 570 /* The type of the object in the slot, or zero if it doesn't correspond 571 to a type. We use this to determine whether a slot can be reused. 572 It can be reused if objects of the type of the new slot will always 573 conflict with objects of the type of the old slot. */ 574 tree type; 575 /* The alignment (in bits) of the slot. */ 576 unsigned int align; 577 /* Nonzero if this temporary is currently in use. */ 578 char in_use; 579 /* Nesting level at which this slot is being used. */ 580 int level; 581 /* The offset of the slot from the frame_pointer, including extra space 582 for alignment. This info is for combine_temp_slots. */ 583 poly_int64 base_offset; 584 /* The size of the slot, including extra space for alignment. This 585 info is for combine_temp_slots. */ 586 poly_int64 full_size; 587 }; 588 589 /* Entry for the below hash table. */ 590 struct GTY((for_user)) temp_slot_address_entry { 591 hashval_t hash; 592 rtx address; 593 class temp_slot *temp_slot; 594 }; 595 596 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry> 597 { 598 static hashval_t hash (temp_slot_address_entry *); 599 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *); 600 }; 601 602 /* A table of addresses that represent a stack slot. The table is a mapping 603 from address RTXen to a temp slot. */ 604 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table; 605 static size_t n_temp_slots_in_use; 606 607 /* Removes temporary slot TEMP from LIST. */ 608 609 static void 610 cut_slot_from_list (class temp_slot *temp, class temp_slot **list) 611 { 612 if (temp->next) 613 temp->next->prev = temp->prev; 614 if (temp->prev) 615 temp->prev->next = temp->next; 616 else 617 *list = temp->next; 618 619 temp->prev = temp->next = NULL; 620 } 621 622 /* Inserts temporary slot TEMP to LIST. */ 623 624 static void 625 insert_slot_to_list (class temp_slot *temp, class temp_slot **list) 626 { 627 temp->next = *list; 628 if (*list) 629 (*list)->prev = temp; 630 temp->prev = NULL; 631 *list = temp; 632 } 633 634 /* Returns the list of used temp slots at LEVEL. */ 635 636 static class temp_slot ** 637 temp_slots_at_level (int level) 638 { 639 if (level >= (int) vec_safe_length (used_temp_slots)) 640 vec_safe_grow_cleared (used_temp_slots, level + 1); 641 642 return &(*used_temp_slots)[level]; 643 } 644 645 /* Returns the maximal temporary slot level. */ 646 647 static int 648 max_slot_level (void) 649 { 650 if (!used_temp_slots) 651 return -1; 652 653 return used_temp_slots->length () - 1; 654 } 655 656 /* Moves temporary slot TEMP to LEVEL. */ 657 658 static void 659 move_slot_to_level (class temp_slot *temp, int level) 660 { 661 cut_slot_from_list (temp, temp_slots_at_level (temp->level)); 662 insert_slot_to_list (temp, temp_slots_at_level (level)); 663 temp->level = level; 664 } 665 666 /* Make temporary slot TEMP available. */ 667 668 static void 669 make_slot_available (class temp_slot *temp) 670 { 671 cut_slot_from_list (temp, temp_slots_at_level (temp->level)); 672 insert_slot_to_list (temp, &avail_temp_slots); 673 temp->in_use = 0; 674 temp->level = -1; 675 n_temp_slots_in_use--; 676 } 677 678 /* Compute the hash value for an address -> temp slot mapping. 679 The value is cached on the mapping entry. */ 680 static hashval_t 681 temp_slot_address_compute_hash (struct temp_slot_address_entry *t) 682 { 683 int do_not_record = 0; 684 return hash_rtx (t->address, GET_MODE (t->address), 685 &do_not_record, NULL, false); 686 } 687 688 /* Return the hash value for an address -> temp slot mapping. */ 689 hashval_t 690 temp_address_hasher::hash (temp_slot_address_entry *t) 691 { 692 return t->hash; 693 } 694 695 /* Compare two address -> temp slot mapping entries. */ 696 bool 697 temp_address_hasher::equal (temp_slot_address_entry *t1, 698 temp_slot_address_entry *t2) 699 { 700 return exp_equiv_p (t1->address, t2->address, 0, true); 701 } 702 703 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */ 704 static void 705 insert_temp_slot_address (rtx address, class temp_slot *temp_slot) 706 { 707 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> (); 708 t->address = copy_rtx (address); 709 t->temp_slot = temp_slot; 710 t->hash = temp_slot_address_compute_hash (t); 711 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t; 712 } 713 714 /* Remove an address -> temp slot mapping entry if the temp slot is 715 not in use anymore. Callback for remove_unused_temp_slot_addresses. */ 716 int 717 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *) 718 { 719 const struct temp_slot_address_entry *t = *slot; 720 if (! t->temp_slot->in_use) 721 temp_slot_address_table->clear_slot (slot); 722 return 1; 723 } 724 725 /* Remove all mappings of addresses to unused temp slots. */ 726 static void 727 remove_unused_temp_slot_addresses (void) 728 { 729 /* Use quicker clearing if there aren't any active temp slots. */ 730 if (n_temp_slots_in_use) 731 temp_slot_address_table->traverse 732 <void *, remove_unused_temp_slot_addresses_1> (NULL); 733 else 734 temp_slot_address_table->empty (); 735 } 736 737 /* Find the temp slot corresponding to the object at address X. */ 738 739 static class temp_slot * 740 find_temp_slot_from_address (rtx x) 741 { 742 class temp_slot *p; 743 struct temp_slot_address_entry tmp, *t; 744 745 /* First try the easy way: 746 See if X exists in the address -> temp slot mapping. */ 747 tmp.address = x; 748 tmp.temp_slot = NULL; 749 tmp.hash = temp_slot_address_compute_hash (&tmp); 750 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash); 751 if (t) 752 return t->temp_slot; 753 754 /* If we have a sum involving a register, see if it points to a temp 755 slot. */ 756 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0)) 757 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0) 758 return p; 759 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1)) 760 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0) 761 return p; 762 763 /* Last resort: Address is a virtual stack var address. */ 764 poly_int64 offset; 765 if (strip_offset (x, &offset) == virtual_stack_vars_rtx) 766 { 767 int i; 768 for (i = max_slot_level (); i >= 0; i--) 769 for (p = *temp_slots_at_level (i); p; p = p->next) 770 if (known_in_range_p (offset, p->base_offset, p->full_size)) 771 return p; 772 } 773 774 return NULL; 775 } 776 777 /* Allocate a temporary stack slot and record it for possible later 778 reuse. 779 780 MODE is the machine mode to be given to the returned rtx. 781 782 SIZE is the size in units of the space required. We do no rounding here 783 since assign_stack_local will do any required rounding. 784 785 TYPE is the type that will be used for the stack slot. */ 786 787 rtx 788 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type) 789 { 790 unsigned int align; 791 class temp_slot *p, *best_p = 0, *selected = NULL, **pp; 792 rtx slot; 793 794 gcc_assert (known_size_p (size)); 795 796 align = get_stack_local_alignment (type, mode); 797 798 /* Try to find an available, already-allocated temporary of the proper 799 mode which meets the size and alignment requirements. Choose the 800 smallest one with the closest alignment. 801 802 If assign_stack_temp is called outside of the tree->rtl expansion, 803 we cannot reuse the stack slots (that may still refer to 804 VIRTUAL_STACK_VARS_REGNUM). */ 805 if (!virtuals_instantiated) 806 { 807 for (p = avail_temp_slots; p; p = p->next) 808 { 809 if (p->align >= align 810 && known_ge (p->size, size) 811 && GET_MODE (p->slot) == mode 812 && objects_must_conflict_p (p->type, type) 813 && (best_p == 0 814 || (known_eq (best_p->size, p->size) 815 ? best_p->align > p->align 816 : known_ge (best_p->size, p->size)))) 817 { 818 if (p->align == align && known_eq (p->size, size)) 819 { 820 selected = p; 821 cut_slot_from_list (selected, &avail_temp_slots); 822 best_p = 0; 823 break; 824 } 825 best_p = p; 826 } 827 } 828 } 829 830 /* Make our best, if any, the one to use. */ 831 if (best_p) 832 { 833 selected = best_p; 834 cut_slot_from_list (selected, &avail_temp_slots); 835 836 /* If there are enough aligned bytes left over, make them into a new 837 temp_slot so that the extra bytes don't get wasted. Do this only 838 for BLKmode slots, so that we can be sure of the alignment. */ 839 if (GET_MODE (best_p->slot) == BLKmode) 840 { 841 int alignment = best_p->align / BITS_PER_UNIT; 842 poly_int64 rounded_size = aligned_upper_bound (size, alignment); 843 844 if (known_ge (best_p->size - rounded_size, alignment)) 845 { 846 p = ggc_alloc<temp_slot> (); 847 p->in_use = 0; 848 p->size = best_p->size - rounded_size; 849 p->base_offset = best_p->base_offset + rounded_size; 850 p->full_size = best_p->full_size - rounded_size; 851 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size); 852 p->align = best_p->align; 853 p->type = best_p->type; 854 insert_slot_to_list (p, &avail_temp_slots); 855 856 vec_safe_push (stack_slot_list, p->slot); 857 858 best_p->size = rounded_size; 859 best_p->full_size = rounded_size; 860 } 861 } 862 } 863 864 /* If we still didn't find one, make a new temporary. */ 865 if (selected == 0) 866 { 867 poly_int64 frame_offset_old = frame_offset; 868 869 p = ggc_alloc<temp_slot> (); 870 871 /* We are passing an explicit alignment request to assign_stack_local. 872 One side effect of that is assign_stack_local will not round SIZE 873 to ensure the frame offset remains suitably aligned. 874 875 So for requests which depended on the rounding of SIZE, we go ahead 876 and round it now. We also make sure ALIGNMENT is at least 877 BIGGEST_ALIGNMENT. */ 878 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT); 879 p->slot = assign_stack_local_1 (mode, 880 (mode == BLKmode 881 ? aligned_upper_bound (size, 882 (int) align 883 / BITS_PER_UNIT) 884 : size), 885 align, 0); 886 887 p->align = align; 888 889 /* The following slot size computation is necessary because we don't 890 know the actual size of the temporary slot until assign_stack_local 891 has performed all the frame alignment and size rounding for the 892 requested temporary. Note that extra space added for alignment 893 can be either above or below this stack slot depending on which 894 way the frame grows. We include the extra space if and only if it 895 is above this slot. */ 896 if (FRAME_GROWS_DOWNWARD) 897 p->size = frame_offset_old - frame_offset; 898 else 899 p->size = size; 900 901 /* Now define the fields used by combine_temp_slots. */ 902 if (FRAME_GROWS_DOWNWARD) 903 { 904 p->base_offset = frame_offset; 905 p->full_size = frame_offset_old - frame_offset; 906 } 907 else 908 { 909 p->base_offset = frame_offset_old; 910 p->full_size = frame_offset - frame_offset_old; 911 } 912 913 selected = p; 914 } 915 916 p = selected; 917 p->in_use = 1; 918 p->type = type; 919 p->level = temp_slot_level; 920 n_temp_slots_in_use++; 921 922 pp = temp_slots_at_level (p->level); 923 insert_slot_to_list (p, pp); 924 insert_temp_slot_address (XEXP (p->slot, 0), p); 925 926 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */ 927 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0)); 928 vec_safe_push (stack_slot_list, slot); 929 930 /* If we know the alias set for the memory that will be used, use 931 it. If there's no TYPE, then we don't know anything about the 932 alias set for the memory. */ 933 set_mem_alias_set (slot, type ? get_alias_set (type) : 0); 934 set_mem_align (slot, align); 935 936 /* If a type is specified, set the relevant flags. */ 937 if (type != 0) 938 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type); 939 MEM_NOTRAP_P (slot) = 1; 940 941 return slot; 942 } 943 944 /* Allocate a temporary stack slot and record it for possible later 945 reuse. First two arguments are same as in preceding function. */ 946 947 rtx 948 assign_stack_temp (machine_mode mode, poly_int64 size) 949 { 950 return assign_stack_temp_for_type (mode, size, NULL_TREE); 951 } 952 953 /* Assign a temporary. 954 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl 955 and so that should be used in error messages. In either case, we 956 allocate of the given type. 957 MEMORY_REQUIRED is 1 if the result must be addressable stack memory; 958 it is 0 if a register is OK. 959 DONT_PROMOTE is 1 if we should not promote values in register 960 to wider modes. */ 961 962 rtx 963 assign_temp (tree type_or_decl, int memory_required, 964 int dont_promote ATTRIBUTE_UNUSED) 965 { 966 tree type, decl; 967 machine_mode mode; 968 #ifdef PROMOTE_MODE 969 int unsignedp; 970 #endif 971 972 if (DECL_P (type_or_decl)) 973 decl = type_or_decl, type = TREE_TYPE (decl); 974 else 975 decl = NULL, type = type_or_decl; 976 977 mode = TYPE_MODE (type); 978 #ifdef PROMOTE_MODE 979 unsignedp = TYPE_UNSIGNED (type); 980 #endif 981 982 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front 983 end. See also create_tmp_var for the gimplification-time check. */ 984 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type)); 985 986 if (mode == BLKmode || memory_required) 987 { 988 poly_int64 size; 989 rtx tmp; 990 991 /* Unfortunately, we don't yet know how to allocate variable-sized 992 temporaries. However, sometimes we can find a fixed upper limit on 993 the size, so try that instead. */ 994 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size)) 995 size = max_int_size_in_bytes (type); 996 997 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid 998 problems with allocating the stack space. */ 999 if (known_eq (size, 0)) 1000 size = 1; 1001 1002 /* The size of the temporary may be too large to fit into an integer. */ 1003 /* ??? Not sure this should happen except for user silliness, so limit 1004 this to things that aren't compiler-generated temporaries. The 1005 rest of the time we'll die in assign_stack_temp_for_type. */ 1006 if (decl 1007 && !known_size_p (size) 1008 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST) 1009 { 1010 error ("size of variable %q+D is too large", decl); 1011 size = 1; 1012 } 1013 1014 tmp = assign_stack_temp_for_type (mode, size, type); 1015 return tmp; 1016 } 1017 1018 #ifdef PROMOTE_MODE 1019 if (! dont_promote) 1020 mode = promote_mode (type, mode, &unsignedp); 1021 #endif 1022 1023 return gen_reg_rtx (mode); 1024 } 1025 1026 /* Combine temporary stack slots which are adjacent on the stack. 1027 1028 This allows for better use of already allocated stack space. This is only 1029 done for BLKmode slots because we can be sure that we won't have alignment 1030 problems in this case. */ 1031 1032 static void 1033 combine_temp_slots (void) 1034 { 1035 class temp_slot *p, *q, *next, *next_q; 1036 int num_slots; 1037 1038 /* We can't combine slots, because the information about which slot 1039 is in which alias set will be lost. */ 1040 if (flag_strict_aliasing) 1041 return; 1042 1043 /* If there are a lot of temp slots, don't do anything unless 1044 high levels of optimization. */ 1045 if (! flag_expensive_optimizations) 1046 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++) 1047 if (num_slots > 100 || (num_slots > 10 && optimize == 0)) 1048 return; 1049 1050 for (p = avail_temp_slots; p; p = next) 1051 { 1052 int delete_p = 0; 1053 1054 next = p->next; 1055 1056 if (GET_MODE (p->slot) != BLKmode) 1057 continue; 1058 1059 for (q = p->next; q; q = next_q) 1060 { 1061 int delete_q = 0; 1062 1063 next_q = q->next; 1064 1065 if (GET_MODE (q->slot) != BLKmode) 1066 continue; 1067 1068 if (known_eq (p->base_offset + p->full_size, q->base_offset)) 1069 { 1070 /* Q comes after P; combine Q into P. */ 1071 p->size += q->size; 1072 p->full_size += q->full_size; 1073 delete_q = 1; 1074 } 1075 else if (known_eq (q->base_offset + q->full_size, p->base_offset)) 1076 { 1077 /* P comes after Q; combine P into Q. */ 1078 q->size += p->size; 1079 q->full_size += p->full_size; 1080 delete_p = 1; 1081 break; 1082 } 1083 if (delete_q) 1084 cut_slot_from_list (q, &avail_temp_slots); 1085 } 1086 1087 /* Either delete P or advance past it. */ 1088 if (delete_p) 1089 cut_slot_from_list (p, &avail_temp_slots); 1090 } 1091 } 1092 1093 /* Indicate that NEW_RTX is an alternate way of referring to the temp 1094 slot that previously was known by OLD_RTX. */ 1095 1096 void 1097 update_temp_slot_address (rtx old_rtx, rtx new_rtx) 1098 { 1099 class temp_slot *p; 1100 1101 if (rtx_equal_p (old_rtx, new_rtx)) 1102 return; 1103 1104 p = find_temp_slot_from_address (old_rtx); 1105 1106 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and 1107 NEW_RTX is a register, see if one operand of the PLUS is a 1108 temporary location. If so, NEW_RTX points into it. Otherwise, 1109 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register 1110 in common between them. If so, try a recursive call on those 1111 values. */ 1112 if (p == 0) 1113 { 1114 if (GET_CODE (old_rtx) != PLUS) 1115 return; 1116 1117 if (REG_P (new_rtx)) 1118 { 1119 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx); 1120 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx); 1121 return; 1122 } 1123 else if (GET_CODE (new_rtx) != PLUS) 1124 return; 1125 1126 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0))) 1127 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1)); 1128 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0))) 1129 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1)); 1130 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1))) 1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0)); 1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1))) 1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0)); 1134 1135 return; 1136 } 1137 1138 /* Otherwise add an alias for the temp's address. */ 1139 insert_temp_slot_address (new_rtx, p); 1140 } 1141 1142 /* If X could be a reference to a temporary slot, mark that slot as 1143 belonging to the to one level higher than the current level. If X 1144 matched one of our slots, just mark that one. Otherwise, we can't 1145 easily predict which it is, so upgrade all of them. 1146 1147 This is called when an ({...}) construct occurs and a statement 1148 returns a value in memory. */ 1149 1150 void 1151 preserve_temp_slots (rtx x) 1152 { 1153 class temp_slot *p = 0, *next; 1154 1155 if (x == 0) 1156 return; 1157 1158 /* If X is a register that is being used as a pointer, see if we have 1159 a temporary slot we know it points to. */ 1160 if (REG_P (x) && REG_POINTER (x)) 1161 p = find_temp_slot_from_address (x); 1162 1163 /* If X is not in memory or is at a constant address, it cannot be in 1164 a temporary slot. */ 1165 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))) 1166 return; 1167 1168 /* First see if we can find a match. */ 1169 if (p == 0) 1170 p = find_temp_slot_from_address (XEXP (x, 0)); 1171 1172 if (p != 0) 1173 { 1174 if (p->level == temp_slot_level) 1175 move_slot_to_level (p, temp_slot_level - 1); 1176 return; 1177 } 1178 1179 /* Otherwise, preserve all non-kept slots at this level. */ 1180 for (p = *temp_slots_at_level (temp_slot_level); p; p = next) 1181 { 1182 next = p->next; 1183 move_slot_to_level (p, temp_slot_level - 1); 1184 } 1185 } 1186 1187 /* Free all temporaries used so far. This is normally called at the 1188 end of generating code for a statement. */ 1189 1190 void 1191 free_temp_slots (void) 1192 { 1193 class temp_slot *p, *next; 1194 bool some_available = false; 1195 1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next) 1197 { 1198 next = p->next; 1199 make_slot_available (p); 1200 some_available = true; 1201 } 1202 1203 if (some_available) 1204 { 1205 remove_unused_temp_slot_addresses (); 1206 combine_temp_slots (); 1207 } 1208 } 1209 1210 /* Push deeper into the nesting level for stack temporaries. */ 1211 1212 void 1213 push_temp_slots (void) 1214 { 1215 temp_slot_level++; 1216 } 1217 1218 /* Pop a temporary nesting level. All slots in use in the current level 1219 are freed. */ 1220 1221 void 1222 pop_temp_slots (void) 1223 { 1224 free_temp_slots (); 1225 temp_slot_level--; 1226 } 1227 1228 /* Initialize temporary slots. */ 1229 1230 void 1231 init_temp_slots (void) 1232 { 1233 /* We have not allocated any temporaries yet. */ 1234 avail_temp_slots = 0; 1235 vec_alloc (used_temp_slots, 0); 1236 temp_slot_level = 0; 1237 n_temp_slots_in_use = 0; 1238 1239 /* Set up the table to map addresses to temp slots. */ 1240 if (! temp_slot_address_table) 1241 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32); 1242 else 1243 temp_slot_address_table->empty (); 1244 } 1245 1246 /* Functions and data structures to keep track of the values hard regs 1247 had at the start of the function. */ 1248 1249 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val, 1250 and has_hard_reg_initial_val.. */ 1251 struct GTY(()) initial_value_pair { 1252 rtx hard_reg; 1253 rtx pseudo; 1254 }; 1255 /* ??? This could be a VEC but there is currently no way to define an 1256 opaque VEC type. This could be worked around by defining struct 1257 initial_value_pair in function.h. */ 1258 struct GTY(()) initial_value_struct { 1259 int num_entries; 1260 int max_entries; 1261 initial_value_pair * GTY ((length ("%h.num_entries"))) entries; 1262 }; 1263 1264 /* If a pseudo represents an initial hard reg (or expression), return 1265 it, else return NULL_RTX. */ 1266 1267 rtx 1268 get_hard_reg_initial_reg (rtx reg) 1269 { 1270 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1271 int i; 1272 1273 if (ivs == 0) 1274 return NULL_RTX; 1275 1276 for (i = 0; i < ivs->num_entries; i++) 1277 if (rtx_equal_p (ivs->entries[i].pseudo, reg)) 1278 return ivs->entries[i].hard_reg; 1279 1280 return NULL_RTX; 1281 } 1282 1283 /* Make sure that there's a pseudo register of mode MODE that stores the 1284 initial value of hard register REGNO. Return an rtx for such a pseudo. */ 1285 1286 rtx 1287 get_hard_reg_initial_val (machine_mode mode, unsigned int regno) 1288 { 1289 struct initial_value_struct *ivs; 1290 rtx rv; 1291 1292 rv = has_hard_reg_initial_val (mode, regno); 1293 if (rv) 1294 return rv; 1295 1296 ivs = crtl->hard_reg_initial_vals; 1297 if (ivs == 0) 1298 { 1299 ivs = ggc_alloc<initial_value_struct> (); 1300 ivs->num_entries = 0; 1301 ivs->max_entries = 5; 1302 ivs->entries = ggc_vec_alloc<initial_value_pair> (5); 1303 crtl->hard_reg_initial_vals = ivs; 1304 } 1305 1306 if (ivs->num_entries >= ivs->max_entries) 1307 { 1308 ivs->max_entries += 5; 1309 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries, 1310 ivs->max_entries); 1311 } 1312 1313 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno); 1314 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode); 1315 1316 return ivs->entries[ivs->num_entries++].pseudo; 1317 } 1318 1319 /* See if get_hard_reg_initial_val has been used to create a pseudo 1320 for the initial value of hard register REGNO in mode MODE. Return 1321 the associated pseudo if so, otherwise return NULL. */ 1322 1323 rtx 1324 has_hard_reg_initial_val (machine_mode mode, unsigned int regno) 1325 { 1326 struct initial_value_struct *ivs; 1327 int i; 1328 1329 ivs = crtl->hard_reg_initial_vals; 1330 if (ivs != 0) 1331 for (i = 0; i < ivs->num_entries; i++) 1332 if (GET_MODE (ivs->entries[i].hard_reg) == mode 1333 && REGNO (ivs->entries[i].hard_reg) == regno) 1334 return ivs->entries[i].pseudo; 1335 1336 return NULL_RTX; 1337 } 1338 1339 unsigned int 1340 emit_initial_value_sets (void) 1341 { 1342 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1343 int i; 1344 rtx_insn *seq; 1345 1346 if (ivs == 0) 1347 return 0; 1348 1349 start_sequence (); 1350 for (i = 0; i < ivs->num_entries; i++) 1351 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg); 1352 seq = get_insns (); 1353 end_sequence (); 1354 1355 emit_insn_at_entry (seq); 1356 return 0; 1357 } 1358 1359 /* Return the hardreg-pseudoreg initial values pair entry I and 1360 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */ 1361 bool 1362 initial_value_entry (int i, rtx *hreg, rtx *preg) 1363 { 1364 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals; 1365 if (!ivs || i >= ivs->num_entries) 1366 return false; 1367 1368 *hreg = ivs->entries[i].hard_reg; 1369 *preg = ivs->entries[i].pseudo; 1370 return true; 1371 } 1372 1373 /* These routines are responsible for converting virtual register references 1374 to the actual hard register references once RTL generation is complete. 1375 1376 The following four variables are used for communication between the 1377 routines. They contain the offsets of the virtual registers from their 1378 respective hard registers. */ 1379 1380 static poly_int64 in_arg_offset; 1381 static poly_int64 var_offset; 1382 static poly_int64 dynamic_offset; 1383 static poly_int64 out_arg_offset; 1384 static poly_int64 cfa_offset; 1385 1386 /* In most machines, the stack pointer register is equivalent to the bottom 1387 of the stack. */ 1388 1389 #ifndef STACK_POINTER_OFFSET 1390 #define STACK_POINTER_OFFSET 0 1391 #endif 1392 1393 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE) 1394 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE 1395 #endif 1396 1397 /* If not defined, pick an appropriate default for the offset of dynamically 1398 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS, 1399 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */ 1400 1401 #ifndef STACK_DYNAMIC_OFFSET 1402 1403 /* The bottom of the stack points to the actual arguments. If 1404 REG_PARM_STACK_SPACE is defined, this includes the space for the register 1405 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined, 1406 stack space for register parameters is not pushed by the caller, but 1407 rather part of the fixed stack areas and hence not included in 1408 `crtl->outgoing_args_size'. Nevertheless, we must allow 1409 for it when allocating stack dynamic objects. */ 1410 1411 #ifdef INCOMING_REG_PARM_STACK_SPACE 1412 #define STACK_DYNAMIC_OFFSET(FNDECL) \ 1413 ((ACCUMULATE_OUTGOING_ARGS \ 1414 ? (crtl->outgoing_args_size \ 1415 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \ 1416 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \ 1417 : 0) + (STACK_POINTER_OFFSET)) 1418 #else 1419 #define STACK_DYNAMIC_OFFSET(FNDECL) \ 1420 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \ 1421 + (STACK_POINTER_OFFSET)) 1422 #endif 1423 #endif 1424 1425 1426 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX 1427 is a virtual register, return the equivalent hard register and set the 1428 offset indirectly through the pointer. Otherwise, return 0. */ 1429 1430 static rtx 1431 instantiate_new_reg (rtx x, poly_int64_pod *poffset) 1432 { 1433 rtx new_rtx; 1434 poly_int64 offset; 1435 1436 if (x == virtual_incoming_args_rtx) 1437 { 1438 if (stack_realign_drap) 1439 { 1440 /* Replace virtual_incoming_args_rtx with internal arg 1441 pointer if DRAP is used to realign stack. */ 1442 new_rtx = crtl->args.internal_arg_pointer; 1443 offset = 0; 1444 } 1445 else 1446 new_rtx = arg_pointer_rtx, offset = in_arg_offset; 1447 } 1448 else if (x == virtual_stack_vars_rtx) 1449 new_rtx = frame_pointer_rtx, offset = var_offset; 1450 else if (x == virtual_stack_dynamic_rtx) 1451 new_rtx = stack_pointer_rtx, offset = dynamic_offset; 1452 else if (x == virtual_outgoing_args_rtx) 1453 new_rtx = stack_pointer_rtx, offset = out_arg_offset; 1454 else if (x == virtual_cfa_rtx) 1455 { 1456 #ifdef FRAME_POINTER_CFA_OFFSET 1457 new_rtx = frame_pointer_rtx; 1458 #else 1459 new_rtx = arg_pointer_rtx; 1460 #endif 1461 offset = cfa_offset; 1462 } 1463 else if (x == virtual_preferred_stack_boundary_rtx) 1464 { 1465 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT); 1466 offset = 0; 1467 } 1468 else 1469 return NULL_RTX; 1470 1471 *poffset = offset; 1472 return new_rtx; 1473 } 1474 1475 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual 1476 registers present inside of *LOC. The expression is simplified, 1477 as much as possible, but is not to be considered "valid" in any sense 1478 implied by the target. Return true if any change is made. */ 1479 1480 static bool 1481 instantiate_virtual_regs_in_rtx (rtx *loc) 1482 { 1483 if (!*loc) 1484 return false; 1485 bool changed = false; 1486 subrtx_ptr_iterator::array_type array; 1487 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST) 1488 { 1489 rtx *loc = *iter; 1490 if (rtx x = *loc) 1491 { 1492 rtx new_rtx; 1493 poly_int64 offset; 1494 switch (GET_CODE (x)) 1495 { 1496 case REG: 1497 new_rtx = instantiate_new_reg (x, &offset); 1498 if (new_rtx) 1499 { 1500 *loc = plus_constant (GET_MODE (x), new_rtx, offset); 1501 changed = true; 1502 } 1503 iter.skip_subrtxes (); 1504 break; 1505 1506 case PLUS: 1507 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset); 1508 if (new_rtx) 1509 { 1510 XEXP (x, 0) = new_rtx; 1511 *loc = plus_constant (GET_MODE (x), x, offset, true); 1512 changed = true; 1513 iter.skip_subrtxes (); 1514 break; 1515 } 1516 1517 /* FIXME -- from old code */ 1518 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know 1519 we can commute the PLUS and SUBREG because pointers into the 1520 frame are well-behaved. */ 1521 break; 1522 1523 default: 1524 break; 1525 } 1526 } 1527 } 1528 return changed; 1529 } 1530 1531 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X 1532 matches the predicate for insn CODE operand OPERAND. */ 1533 1534 static int 1535 safe_insn_predicate (int code, int operand, rtx x) 1536 { 1537 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x); 1538 } 1539 1540 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual 1541 registers present inside of insn. The result will be a valid insn. */ 1542 1543 static void 1544 instantiate_virtual_regs_in_insn (rtx_insn *insn) 1545 { 1546 poly_int64 offset; 1547 int insn_code, i; 1548 bool any_change = false; 1549 rtx set, new_rtx, x; 1550 rtx_insn *seq; 1551 1552 /* There are some special cases to be handled first. */ 1553 set = single_set (insn); 1554 if (set) 1555 { 1556 /* We're allowed to assign to a virtual register. This is interpreted 1557 to mean that the underlying register gets assigned the inverse 1558 transformation. This is used, for example, in the handling of 1559 non-local gotos. */ 1560 new_rtx = instantiate_new_reg (SET_DEST (set), &offset); 1561 if (new_rtx) 1562 { 1563 start_sequence (); 1564 1565 instantiate_virtual_regs_in_rtx (&SET_SRC (set)); 1566 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set), 1567 gen_int_mode (-offset, GET_MODE (new_rtx))); 1568 x = force_operand (x, new_rtx); 1569 if (x != new_rtx) 1570 emit_move_insn (new_rtx, x); 1571 1572 seq = get_insns (); 1573 end_sequence (); 1574 1575 emit_insn_before (seq, insn); 1576 delete_insn (insn); 1577 return; 1578 } 1579 1580 /* Handle a straight copy from a virtual register by generating a 1581 new add insn. The difference between this and falling through 1582 to the generic case is avoiding a new pseudo and eliminating a 1583 move insn in the initial rtl stream. */ 1584 new_rtx = instantiate_new_reg (SET_SRC (set), &offset); 1585 if (new_rtx 1586 && maybe_ne (offset, 0) 1587 && REG_P (SET_DEST (set)) 1588 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) 1589 { 1590 start_sequence (); 1591 1592 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx, 1593 gen_int_mode (offset, 1594 GET_MODE (SET_DEST (set))), 1595 SET_DEST (set), 1, OPTAB_LIB_WIDEN); 1596 if (x != SET_DEST (set)) 1597 emit_move_insn (SET_DEST (set), x); 1598 1599 seq = get_insns (); 1600 end_sequence (); 1601 1602 emit_insn_before (seq, insn); 1603 delete_insn (insn); 1604 return; 1605 } 1606 1607 extract_insn (insn); 1608 insn_code = INSN_CODE (insn); 1609 1610 /* Handle a plus involving a virtual register by determining if the 1611 operands remain valid if they're modified in place. */ 1612 poly_int64 delta; 1613 if (GET_CODE (SET_SRC (set)) == PLUS 1614 && recog_data.n_operands >= 3 1615 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0) 1616 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1) 1617 && poly_int_rtx_p (recog_data.operand[2], &delta) 1618 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset))) 1619 { 1620 offset += delta; 1621 1622 /* If the sum is zero, then replace with a plain move. */ 1623 if (known_eq (offset, 0) 1624 && REG_P (SET_DEST (set)) 1625 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER) 1626 { 1627 start_sequence (); 1628 emit_move_insn (SET_DEST (set), new_rtx); 1629 seq = get_insns (); 1630 end_sequence (); 1631 1632 emit_insn_before (seq, insn); 1633 delete_insn (insn); 1634 return; 1635 } 1636 1637 x = gen_int_mode (offset, recog_data.operand_mode[2]); 1638 1639 /* Using validate_change and apply_change_group here leaves 1640 recog_data in an invalid state. Since we know exactly what 1641 we want to check, do those two by hand. */ 1642 if (safe_insn_predicate (insn_code, 1, new_rtx) 1643 && safe_insn_predicate (insn_code, 2, x)) 1644 { 1645 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx; 1646 *recog_data.operand_loc[2] = recog_data.operand[2] = x; 1647 any_change = true; 1648 1649 /* Fall through into the regular operand fixup loop in 1650 order to take care of operands other than 1 and 2. */ 1651 } 1652 } 1653 } 1654 else 1655 { 1656 extract_insn (insn); 1657 insn_code = INSN_CODE (insn); 1658 } 1659 1660 /* In the general case, we expect virtual registers to appear only in 1661 operands, and then only as either bare registers or inside memories. */ 1662 for (i = 0; i < recog_data.n_operands; ++i) 1663 { 1664 x = recog_data.operand[i]; 1665 switch (GET_CODE (x)) 1666 { 1667 case MEM: 1668 { 1669 rtx addr = XEXP (x, 0); 1670 1671 if (!instantiate_virtual_regs_in_rtx (&addr)) 1672 continue; 1673 1674 start_sequence (); 1675 x = replace_equiv_address (x, addr, true); 1676 /* It may happen that the address with the virtual reg 1677 was valid (e.g. based on the virtual stack reg, which might 1678 be acceptable to the predicates with all offsets), whereas 1679 the address now isn't anymore, for instance when the address 1680 is still offsetted, but the base reg isn't virtual-stack-reg 1681 anymore. Below we would do a force_reg on the whole operand, 1682 but this insn might actually only accept memory. Hence, 1683 before doing that last resort, try to reload the address into 1684 a register, so this operand stays a MEM. */ 1685 if (!safe_insn_predicate (insn_code, i, x)) 1686 { 1687 addr = force_reg (GET_MODE (addr), addr); 1688 x = replace_equiv_address (x, addr, true); 1689 } 1690 seq = get_insns (); 1691 end_sequence (); 1692 if (seq) 1693 emit_insn_before (seq, insn); 1694 } 1695 break; 1696 1697 case REG: 1698 new_rtx = instantiate_new_reg (x, &offset); 1699 if (new_rtx == NULL) 1700 continue; 1701 if (known_eq (offset, 0)) 1702 x = new_rtx; 1703 else 1704 { 1705 start_sequence (); 1706 1707 /* Careful, special mode predicates may have stuff in 1708 insn_data[insn_code].operand[i].mode that isn't useful 1709 to us for computing a new value. */ 1710 /* ??? Recognize address_operand and/or "p" constraints 1711 to see if (plus new offset) is a valid before we put 1712 this through expand_simple_binop. */ 1713 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx, 1714 gen_int_mode (offset, GET_MODE (x)), 1715 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1716 seq = get_insns (); 1717 end_sequence (); 1718 emit_insn_before (seq, insn); 1719 } 1720 break; 1721 1722 case SUBREG: 1723 #ifdef NB_FIX_VAX_BACKEND 1724 if (MEM_P (XEXP (x, 0))) 1725 { 1726 /* convert a subreg of a MEMORY operand into a 1727 register operand */ 1728 rtx mx = XEXP (x, 0); /* memory operand */ 1729 rtx addr = XEXP (mx, 0); 1730 instantiate_virtual_regs_in_rtx (&addr); 1731 start_sequence (); 1732 mx = replace_equiv_address (mx, addr, true); 1733 addr = force_reg (GET_MODE (addr), addr); 1734 mx = replace_equiv_address (mx, addr, true); 1735 seq = get_insns (); 1736 end_sequence (); 1737 if (seq) 1738 emit_insn_before (seq, insn); 1739 1740 /* generate a new subreg expression */ 1741 x = gen_rtx_SUBREG (GET_MODE (x), mx, SUBREG_BYTE (x)); 1742 } 1743 #endif 1744 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset); 1745 if (new_rtx == NULL) 1746 continue; 1747 if (maybe_ne (offset, 0)) 1748 { 1749 start_sequence (); 1750 new_rtx = expand_simple_binop 1751 (GET_MODE (new_rtx), PLUS, new_rtx, 1752 gen_int_mode (offset, GET_MODE (new_rtx)), 1753 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1754 seq = get_insns (); 1755 end_sequence (); 1756 emit_insn_before (seq, insn); 1757 } 1758 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx, 1759 GET_MODE (new_rtx), SUBREG_BYTE (x)); 1760 gcc_assert (x); 1761 break; 1762 1763 default: 1764 continue; 1765 } 1766 1767 /* At this point, X contains the new value for the operand. 1768 Validate the new value vs the insn predicate. Note that 1769 asm insns will have insn_code -1 here. */ 1770 if (!safe_insn_predicate (insn_code, i, x)) 1771 { 1772 start_sequence (); 1773 if (REG_P (x)) 1774 { 1775 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER); 1776 x = copy_to_reg (x); 1777 } 1778 else 1779 x = force_reg (insn_data[insn_code].operand[i].mode, x); 1780 seq = get_insns (); 1781 end_sequence (); 1782 if (seq) 1783 emit_insn_before (seq, insn); 1784 } 1785 1786 *recog_data.operand_loc[i] = recog_data.operand[i] = x; 1787 any_change = true; 1788 } 1789 1790 if (any_change) 1791 { 1792 /* Propagate operand changes into the duplicates. */ 1793 for (i = 0; i < recog_data.n_dups; ++i) 1794 *recog_data.dup_loc[i] 1795 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]); 1796 1797 /* Force re-recognition of the instruction for validation. */ 1798 INSN_CODE (insn) = -1; 1799 } 1800 1801 if (asm_noperands (PATTERN (insn)) >= 0) 1802 { 1803 if (!check_asm_operands (PATTERN (insn))) 1804 { 1805 error_for_asm (insn, "impossible constraint in %<asm%>"); 1806 /* For asm goto, instead of fixing up all the edges 1807 just clear the template and clear input operands 1808 (asm goto doesn't have any output operands). */ 1809 if (JUMP_P (insn)) 1810 { 1811 rtx asm_op = extract_asm_operands (PATTERN (insn)); 1812 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup (""); 1813 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0); 1814 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0); 1815 } 1816 else 1817 delete_insn (insn); 1818 } 1819 } 1820 else 1821 { 1822 if (recog_memoized (insn) < 0) 1823 fatal_insn_not_found (insn); 1824 } 1825 } 1826 1827 /* Subroutine of instantiate_decls. Given RTL representing a decl, 1828 do any instantiation required. */ 1829 1830 void 1831 instantiate_decl_rtl (rtx x) 1832 { 1833 rtx addr; 1834 1835 if (x == 0) 1836 return; 1837 1838 /* If this is a CONCAT, recurse for the pieces. */ 1839 if (GET_CODE (x) == CONCAT) 1840 { 1841 instantiate_decl_rtl (XEXP (x, 0)); 1842 instantiate_decl_rtl (XEXP (x, 1)); 1843 return; 1844 } 1845 1846 #ifdef NB_FIX_VAX_BACKEND 1847 /* If this is a SUBREG, recurse for the pieces */ 1848 if (GET_CODE (x) == SUBREG) 1849 { 1850 instantiate_decl_rtl (XEXP (x, 0)); 1851 return; 1852 } 1853 #endif 1854 1855 /* If this is not a MEM, no need to do anything. Similarly if the 1856 address is a constant or a register that is not a virtual register. */ 1857 if (!MEM_P (x)) 1858 return; 1859 1860 addr = XEXP (x, 0); 1861 if (CONSTANT_P (addr) 1862 || (REG_P (addr) 1863 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER 1864 || REGNO (addr) > LAST_VIRTUAL_REGISTER))) 1865 return; 1866 1867 instantiate_virtual_regs_in_rtx (&XEXP (x, 0)); 1868 } 1869 1870 /* Helper for instantiate_decls called via walk_tree: Process all decls 1871 in the given DECL_VALUE_EXPR. */ 1872 1873 static tree 1874 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED) 1875 { 1876 tree t = *tp; 1877 if (! EXPR_P (t)) 1878 { 1879 *walk_subtrees = 0; 1880 if (DECL_P (t)) 1881 { 1882 if (DECL_RTL_SET_P (t)) 1883 instantiate_decl_rtl (DECL_RTL (t)); 1884 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t) 1885 && DECL_INCOMING_RTL (t)) 1886 instantiate_decl_rtl (DECL_INCOMING_RTL (t)); 1887 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL) 1888 && DECL_HAS_VALUE_EXPR_P (t)) 1889 { 1890 tree v = DECL_VALUE_EXPR (t); 1891 walk_tree (&v, instantiate_expr, NULL, NULL); 1892 } 1893 } 1894 } 1895 return NULL; 1896 } 1897 1898 /* Subroutine of instantiate_decls: Process all decls in the given 1899 BLOCK node and all its subblocks. */ 1900 1901 static void 1902 instantiate_decls_1 (tree let) 1903 { 1904 tree t; 1905 1906 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t)) 1907 { 1908 if (DECL_RTL_SET_P (t)) 1909 instantiate_decl_rtl (DECL_RTL (t)); 1910 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t)) 1911 { 1912 tree v = DECL_VALUE_EXPR (t); 1913 walk_tree (&v, instantiate_expr, NULL, NULL); 1914 } 1915 } 1916 1917 /* Process all subblocks. */ 1918 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t)) 1919 instantiate_decls_1 (t); 1920 } 1921 1922 /* Scan all decls in FNDECL (both variables and parameters) and instantiate 1923 all virtual registers in their DECL_RTL's. */ 1924 1925 static void 1926 instantiate_decls (tree fndecl) 1927 { 1928 tree decl; 1929 unsigned ix; 1930 1931 /* Process all parameters of the function. */ 1932 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl)) 1933 { 1934 instantiate_decl_rtl (DECL_RTL (decl)); 1935 instantiate_decl_rtl (DECL_INCOMING_RTL (decl)); 1936 if (DECL_HAS_VALUE_EXPR_P (decl)) 1937 { 1938 tree v = DECL_VALUE_EXPR (decl); 1939 walk_tree (&v, instantiate_expr, NULL, NULL); 1940 } 1941 } 1942 1943 if ((decl = DECL_RESULT (fndecl)) 1944 && TREE_CODE (decl) == RESULT_DECL) 1945 { 1946 if (DECL_RTL_SET_P (decl)) 1947 instantiate_decl_rtl (DECL_RTL (decl)); 1948 if (DECL_HAS_VALUE_EXPR_P (decl)) 1949 { 1950 tree v = DECL_VALUE_EXPR (decl); 1951 walk_tree (&v, instantiate_expr, NULL, NULL); 1952 } 1953 } 1954 1955 /* Process the saved static chain if it exists. */ 1956 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl; 1957 if (decl && DECL_HAS_VALUE_EXPR_P (decl)) 1958 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl))); 1959 1960 /* Now process all variables defined in the function or its subblocks. */ 1961 if (DECL_INITIAL (fndecl)) 1962 instantiate_decls_1 (DECL_INITIAL (fndecl)); 1963 1964 FOR_EACH_LOCAL_DECL (cfun, ix, decl) 1965 if (DECL_RTL_SET_P (decl)) 1966 instantiate_decl_rtl (DECL_RTL (decl)); 1967 vec_free (cfun->local_decls); 1968 } 1969 1970 /* Pass through the INSNS of function FNDECL and convert virtual register 1971 references to hard register references. */ 1972 1973 static unsigned int 1974 instantiate_virtual_regs (void) 1975 { 1976 rtx_insn *insn; 1977 1978 /* Compute the offsets to use for this function. */ 1979 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl); 1980 var_offset = targetm.starting_frame_offset (); 1981 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl); 1982 out_arg_offset = STACK_POINTER_OFFSET; 1983 #ifdef FRAME_POINTER_CFA_OFFSET 1984 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl); 1985 #else 1986 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl); 1987 #endif 1988 1989 /* Initialize recognition, indicating that volatile is OK. */ 1990 init_recog (); 1991 1992 /* Scan through all the insns, instantiating every virtual register still 1993 present. */ 1994 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 1995 if (INSN_P (insn)) 1996 { 1997 /* These patterns in the instruction stream can never be recognized. 1998 Fortunately, they shouldn't contain virtual registers either. */ 1999 if (GET_CODE (PATTERN (insn)) == USE 2000 || GET_CODE (PATTERN (insn)) == CLOBBER 2001 || GET_CODE (PATTERN (insn)) == ASM_INPUT 2002 || DEBUG_MARKER_INSN_P (insn)) 2003 continue; 2004 else if (DEBUG_BIND_INSN_P (insn)) 2005 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn)); 2006 else 2007 instantiate_virtual_regs_in_insn (insn); 2008 2009 if (insn->deleted ()) 2010 continue; 2011 2012 instantiate_virtual_regs_in_rtx (®_NOTES (insn)); 2013 2014 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */ 2015 if (CALL_P (insn)) 2016 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn)); 2017 } 2018 2019 /* Instantiate the virtual registers in the DECLs for debugging purposes. */ 2020 instantiate_decls (current_function_decl); 2021 2022 targetm.instantiate_decls (); 2023 2024 /* Indicate that, from now on, assign_stack_local should use 2025 frame_pointer_rtx. */ 2026 virtuals_instantiated = 1; 2027 2028 return 0; 2029 } 2030 2031 namespace { 2032 2033 const pass_data pass_data_instantiate_virtual_regs = 2034 { 2035 RTL_PASS, /* type */ 2036 "vregs", /* name */ 2037 OPTGROUP_NONE, /* optinfo_flags */ 2038 TV_NONE, /* tv_id */ 2039 0, /* properties_required */ 2040 0, /* properties_provided */ 2041 0, /* properties_destroyed */ 2042 0, /* todo_flags_start */ 2043 0, /* todo_flags_finish */ 2044 }; 2045 2046 class pass_instantiate_virtual_regs : public rtl_opt_pass 2047 { 2048 public: 2049 pass_instantiate_virtual_regs (gcc::context *ctxt) 2050 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt) 2051 {} 2052 2053 /* opt_pass methods: */ 2054 virtual unsigned int execute (function *) 2055 { 2056 return instantiate_virtual_regs (); 2057 } 2058 2059 }; // class pass_instantiate_virtual_regs 2060 2061 } // anon namespace 2062 2063 rtl_opt_pass * 2064 make_pass_instantiate_virtual_regs (gcc::context *ctxt) 2065 { 2066 return new pass_instantiate_virtual_regs (ctxt); 2067 } 2068 2069 2070 /* Return 1 if EXP is an aggregate type (or a value with aggregate type). 2071 This means a type for which function calls must pass an address to the 2072 function or get an address back from the function. 2073 EXP may be a type node or an expression (whose type is tested). */ 2074 2075 int 2076 aggregate_value_p (const_tree exp, const_tree fntype) 2077 { 2078 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp); 2079 int i, regno, nregs; 2080 rtx reg; 2081 2082 if (fntype) 2083 switch (TREE_CODE (fntype)) 2084 { 2085 case CALL_EXPR: 2086 { 2087 tree fndecl = get_callee_fndecl (fntype); 2088 if (fndecl) 2089 fntype = TREE_TYPE (fndecl); 2090 else if (CALL_EXPR_FN (fntype)) 2091 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))); 2092 else 2093 /* For internal functions, assume nothing needs to be 2094 returned in memory. */ 2095 return 0; 2096 } 2097 break; 2098 case FUNCTION_DECL: 2099 fntype = TREE_TYPE (fntype); 2100 break; 2101 case FUNCTION_TYPE: 2102 case METHOD_TYPE: 2103 break; 2104 case IDENTIFIER_NODE: 2105 fntype = NULL_TREE; 2106 break; 2107 default: 2108 /* We don't expect other tree types here. */ 2109 gcc_unreachable (); 2110 } 2111 2112 if (VOID_TYPE_P (type)) 2113 return 0; 2114 2115 /* If a record should be passed the same as its first (and only) member 2116 don't pass it as an aggregate. */ 2117 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type)) 2118 return aggregate_value_p (first_field (type), fntype); 2119 2120 /* If the front end has decided that this needs to be passed by 2121 reference, do so. */ 2122 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL) 2123 && DECL_BY_REFERENCE (exp)) 2124 return 1; 2125 2126 /* Function types that are TREE_ADDRESSABLE force return in memory. */ 2127 if (fntype && TREE_ADDRESSABLE (fntype)) 2128 return 1; 2129 2130 /* Types that are TREE_ADDRESSABLE must be constructed in memory, 2131 and thus can't be returned in registers. */ 2132 if (TREE_ADDRESSABLE (type)) 2133 return 1; 2134 2135 if (TYPE_EMPTY_P (type)) 2136 return 0; 2137 2138 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type)) 2139 return 1; 2140 2141 if (targetm.calls.return_in_memory (type, fntype)) 2142 return 1; 2143 2144 /* Make sure we have suitable call-clobbered regs to return 2145 the value in; if not, we must return it in memory. */ 2146 reg = hard_function_value (type, 0, fntype, 0); 2147 2148 /* If we have something other than a REG (e.g. a PARALLEL), then assume 2149 it is OK. */ 2150 if (!REG_P (reg)) 2151 return 0; 2152 2153 /* Use the default ABI if the type of the function isn't known. 2154 The scheme for handling interoperability between different ABIs 2155 requires us to be able to tell when we're calling a function with 2156 a nondefault ABI. */ 2157 const predefined_function_abi &abi = (fntype 2158 ? fntype_abi (fntype) 2159 : default_function_abi); 2160 regno = REGNO (reg); 2161 nregs = hard_regno_nregs (regno, TYPE_MODE (type)); 2162 for (i = 0; i < nregs; i++) 2163 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i)) 2164 return 1; 2165 2166 return 0; 2167 } 2168 2169 /* Return true if we should assign DECL a pseudo register; false if it 2170 should live on the local stack. */ 2171 2172 bool 2173 use_register_for_decl (const_tree decl) 2174 { 2175 if (TREE_CODE (decl) == SSA_NAME) 2176 { 2177 /* We often try to use the SSA_NAME, instead of its underlying 2178 decl, to get type information and guide decisions, to avoid 2179 differences of behavior between anonymous and named 2180 variables, but in this one case we have to go for the actual 2181 variable if there is one. The main reason is that, at least 2182 at -O0, we want to place user variables on the stack, but we 2183 don't mind using pseudos for anonymous or ignored temps. 2184 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs 2185 should go in pseudos, whereas their corresponding variables 2186 might have to go on the stack. So, disregarding the decl 2187 here would negatively impact debug info at -O0, enable 2188 coalescing between SSA_NAMEs that ought to get different 2189 stack/pseudo assignments, and get the incoming argument 2190 processing thoroughly confused by PARM_DECLs expected to live 2191 in stack slots but assigned to pseudos. */ 2192 if (!SSA_NAME_VAR (decl)) 2193 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode 2194 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))); 2195 2196 decl = SSA_NAME_VAR (decl); 2197 } 2198 2199 /* Honor volatile. */ 2200 if (TREE_SIDE_EFFECTS (decl)) 2201 return false; 2202 2203 /* Honor addressability. */ 2204 if (TREE_ADDRESSABLE (decl)) 2205 return false; 2206 2207 /* RESULT_DECLs are a bit special in that they're assigned without 2208 regard to use_register_for_decl, but we generally only store in 2209 them. If we coalesce their SSA NAMEs, we'd better return a 2210 result that matches the assignment in expand_function_start. */ 2211 if (TREE_CODE (decl) == RESULT_DECL) 2212 { 2213 /* If it's not an aggregate, we're going to use a REG or a 2214 PARALLEL containing a REG. */ 2215 if (!aggregate_value_p (decl, current_function_decl)) 2216 return true; 2217 2218 /* If expand_function_start determines the return value, we'll 2219 use MEM if it's not by reference. */ 2220 if (cfun->returns_pcc_struct 2221 || (targetm.calls.struct_value_rtx 2222 (TREE_TYPE (current_function_decl), 1))) 2223 return DECL_BY_REFERENCE (decl); 2224 2225 /* Otherwise, we're taking an extra all.function_result_decl 2226 argument. It's set up in assign_parms_augmented_arg_list, 2227 under the (negated) conditions above, and then it's used to 2228 set up the RESULT_DECL rtl in assign_params, after looping 2229 over all parameters. Now, if the RESULT_DECL is not by 2230 reference, we'll use a MEM either way. */ 2231 if (!DECL_BY_REFERENCE (decl)) 2232 return false; 2233 2234 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take 2235 the function_result_decl's assignment. Since it's a pointer, 2236 we can short-circuit a number of the tests below, and we must 2237 duplicat e them because we don't have the 2238 function_result_decl to test. */ 2239 if (!targetm.calls.allocate_stack_slots_for_args ()) 2240 return true; 2241 /* We don't set DECL_IGNORED_P for the function_result_decl. */ 2242 if (optimize) 2243 return true; 2244 /* We don't set DECL_REGISTER for the function_result_decl. */ 2245 return false; 2246 } 2247 2248 /* Only register-like things go in registers. */ 2249 if (DECL_MODE (decl) == BLKmode) 2250 return false; 2251 2252 /* If -ffloat-store specified, don't put explicit float variables 2253 into registers. */ 2254 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa 2255 propagates values across these stores, and it probably shouldn't. */ 2256 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl))) 2257 return false; 2258 2259 if (!targetm.calls.allocate_stack_slots_for_args ()) 2260 return true; 2261 2262 /* If we're not interested in tracking debugging information for 2263 this decl, then we can certainly put it in a register. */ 2264 if (DECL_IGNORED_P (decl)) 2265 return true; 2266 2267 if (optimize) 2268 return true; 2269 2270 if (!DECL_REGISTER (decl)) 2271 return false; 2272 2273 /* When not optimizing, disregard register keyword for types that 2274 could have methods, otherwise the methods won't be callable from 2275 the debugger. */ 2276 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl))) 2277 return false; 2278 2279 return true; 2280 } 2281 2282 /* Structures to communicate between the subroutines of assign_parms. 2283 The first holds data persistent across all parameters, the second 2284 is cleared out for each parameter. */ 2285 2286 struct assign_parm_data_all 2287 { 2288 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS 2289 should become a job of the target or otherwise encapsulated. */ 2290 CUMULATIVE_ARGS args_so_far_v; 2291 cumulative_args_t args_so_far; 2292 struct args_size stack_args_size; 2293 tree function_result_decl; 2294 tree orig_fnargs; 2295 rtx_insn *first_conversion_insn; 2296 rtx_insn *last_conversion_insn; 2297 HOST_WIDE_INT pretend_args_size; 2298 HOST_WIDE_INT extra_pretend_bytes; 2299 int reg_parm_stack_space; 2300 }; 2301 2302 struct assign_parm_data_one 2303 { 2304 tree nominal_type; 2305 function_arg_info arg; 2306 rtx entry_parm; 2307 rtx stack_parm; 2308 machine_mode nominal_mode; 2309 machine_mode passed_mode; 2310 struct locate_and_pad_arg_data locate; 2311 int partial; 2312 }; 2313 2314 /* A subroutine of assign_parms. Initialize ALL. */ 2315 2316 static void 2317 assign_parms_initialize_all (struct assign_parm_data_all *all) 2318 { 2319 tree fntype ATTRIBUTE_UNUSED; 2320 2321 memset (all, 0, sizeof (*all)); 2322 2323 fntype = TREE_TYPE (current_function_decl); 2324 2325 #ifdef INIT_CUMULATIVE_INCOMING_ARGS 2326 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX); 2327 #else 2328 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX, 2329 current_function_decl, -1); 2330 #endif 2331 all->args_so_far = pack_cumulative_args (&all->args_so_far_v); 2332 2333 #ifdef INCOMING_REG_PARM_STACK_SPACE 2334 all->reg_parm_stack_space 2335 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl); 2336 #endif 2337 } 2338 2339 /* If ARGS contains entries with complex types, split the entry into two 2340 entries of the component type. Return a new list of substitutions are 2341 needed, else the old list. */ 2342 2343 static void 2344 split_complex_args (vec<tree> *args) 2345 { 2346 unsigned i; 2347 tree p; 2348 2349 FOR_EACH_VEC_ELT (*args, i, p) 2350 { 2351 tree type = TREE_TYPE (p); 2352 if (TREE_CODE (type) == COMPLEX_TYPE 2353 && targetm.calls.split_complex_arg (type)) 2354 { 2355 tree decl; 2356 tree subtype = TREE_TYPE (type); 2357 bool addressable = TREE_ADDRESSABLE (p); 2358 2359 /* Rewrite the PARM_DECL's type with its component. */ 2360 p = copy_node (p); 2361 TREE_TYPE (p) = subtype; 2362 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p)); 2363 SET_DECL_MODE (p, VOIDmode); 2364 DECL_SIZE (p) = NULL; 2365 DECL_SIZE_UNIT (p) = NULL; 2366 /* If this arg must go in memory, put it in a pseudo here. 2367 We can't allow it to go in memory as per normal parms, 2368 because the usual place might not have the imag part 2369 adjacent to the real part. */ 2370 DECL_ARTIFICIAL (p) = addressable; 2371 DECL_IGNORED_P (p) = addressable; 2372 TREE_ADDRESSABLE (p) = 0; 2373 layout_decl (p, 0); 2374 (*args)[i] = p; 2375 2376 /* Build a second synthetic decl. */ 2377 decl = build_decl (EXPR_LOCATION (p), 2378 PARM_DECL, NULL_TREE, subtype); 2379 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p); 2380 DECL_ARTIFICIAL (decl) = addressable; 2381 DECL_IGNORED_P (decl) = addressable; 2382 layout_decl (decl, 0); 2383 args->safe_insert (++i, decl); 2384 } 2385 } 2386 } 2387 2388 /* A subroutine of assign_parms. Adjust the parameter list to incorporate 2389 the hidden struct return argument, and (abi willing) complex args. 2390 Return the new parameter list. */ 2391 2392 static vec<tree> 2393 assign_parms_augmented_arg_list (struct assign_parm_data_all *all) 2394 { 2395 tree fndecl = current_function_decl; 2396 tree fntype = TREE_TYPE (fndecl); 2397 vec<tree> fnargs = vNULL; 2398 tree arg; 2399 2400 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg)) 2401 fnargs.safe_push (arg); 2402 2403 all->orig_fnargs = DECL_ARGUMENTS (fndecl); 2404 2405 /* If struct value address is treated as the first argument, make it so. */ 2406 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl) 2407 && ! cfun->returns_pcc_struct 2408 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0) 2409 { 2410 tree type = build_pointer_type (TREE_TYPE (fntype)); 2411 tree decl; 2412 2413 decl = build_decl (DECL_SOURCE_LOCATION (fndecl), 2414 PARM_DECL, get_identifier (".result_ptr"), type); 2415 DECL_ARG_TYPE (decl) = type; 2416 DECL_ARTIFICIAL (decl) = 1; 2417 DECL_NAMELESS (decl) = 1; 2418 TREE_CONSTANT (decl) = 1; 2419 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this 2420 changes, the end of the RESULT_DECL handling block in 2421 use_register_for_decl must be adjusted to match. */ 2422 2423 DECL_CHAIN (decl) = all->orig_fnargs; 2424 all->orig_fnargs = decl; 2425 fnargs.safe_insert (0, decl); 2426 2427 all->function_result_decl = decl; 2428 } 2429 2430 /* If the target wants to split complex arguments into scalars, do so. */ 2431 if (targetm.calls.split_complex_arg) 2432 split_complex_args (&fnargs); 2433 2434 return fnargs; 2435 } 2436 2437 /* A subroutine of assign_parms. Examine PARM and pull out type and mode 2438 data for the parameter. Incorporate ABI specifics such as pass-by- 2439 reference and type promotion. */ 2440 2441 static void 2442 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm, 2443 struct assign_parm_data_one *data) 2444 { 2445 int unsignedp; 2446 2447 #ifndef BROKEN_VALUE_INITIALIZATION 2448 *data = assign_parm_data_one (); 2449 #else 2450 /* Old versions of GCC used to miscompile the above by only initializing 2451 the members with explicit constructors and copying garbage 2452 to the other members. */ 2453 assign_parm_data_one zero_data = {}; 2454 *data = zero_data; 2455 #endif 2456 2457 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */ 2458 if (!cfun->stdarg) 2459 data->arg.named = 1; /* No variadic parms. */ 2460 else if (DECL_CHAIN (parm)) 2461 data->arg.named = 1; /* Not the last non-variadic parm. */ 2462 else if (targetm.calls.strict_argument_naming (all->args_so_far)) 2463 data->arg.named = 1; /* Only variadic ones are unnamed. */ 2464 else 2465 data->arg.named = 0; /* Treat as variadic. */ 2466 2467 data->nominal_type = TREE_TYPE (parm); 2468 data->arg.type = DECL_ARG_TYPE (parm); 2469 2470 /* Look out for errors propagating this far. Also, if the parameter's 2471 type is void then its value doesn't matter. */ 2472 if (TREE_TYPE (parm) == error_mark_node 2473 /* This can happen after weird syntax errors 2474 or if an enum type is defined among the parms. */ 2475 || TREE_CODE (parm) != PARM_DECL 2476 || data->arg.type == NULL 2477 || VOID_TYPE_P (data->nominal_type)) 2478 { 2479 data->nominal_type = data->arg.type = void_type_node; 2480 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode; 2481 return; 2482 } 2483 2484 /* Find mode of arg as it is passed, and mode of arg as it should be 2485 during execution of this function. */ 2486 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type); 2487 data->nominal_mode = TYPE_MODE (data->nominal_type); 2488 2489 /* If the parm is to be passed as a transparent union or record, use the 2490 type of the first field for the tests below. We have already verified 2491 that the modes are the same. */ 2492 if (RECORD_OR_UNION_TYPE_P (data->arg.type) 2493 && TYPE_TRANSPARENT_AGGR (data->arg.type)) 2494 data->arg.type = TREE_TYPE (first_field (data->arg.type)); 2495 2496 /* See if this arg was passed by invisible reference. */ 2497 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg)) 2498 { 2499 data->nominal_type = data->arg.type; 2500 data->passed_mode = data->nominal_mode = data->arg.mode; 2501 } 2502 2503 /* Find mode as it is passed by the ABI. */ 2504 unsignedp = TYPE_UNSIGNED (data->arg.type); 2505 data->arg.mode 2506 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp, 2507 TREE_TYPE (current_function_decl), 0); 2508 } 2509 2510 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */ 2511 2512 static void 2513 assign_parms_setup_varargs (struct assign_parm_data_all *all, 2514 struct assign_parm_data_one *data, bool no_rtl) 2515 { 2516 int varargs_pretend_bytes = 0; 2517 2518 function_arg_info last_named_arg = data->arg; 2519 last_named_arg.named = true; 2520 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg, 2521 &varargs_pretend_bytes, no_rtl); 2522 2523 /* If the back-end has requested extra stack space, record how much is 2524 needed. Do not change pretend_args_size otherwise since it may be 2525 nonzero from an earlier partial argument. */ 2526 if (varargs_pretend_bytes > 0) 2527 all->pretend_args_size = varargs_pretend_bytes; 2528 } 2529 2530 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to 2531 the incoming location of the current parameter. */ 2532 2533 static void 2534 assign_parm_find_entry_rtl (struct assign_parm_data_all *all, 2535 struct assign_parm_data_one *data) 2536 { 2537 HOST_WIDE_INT pretend_bytes = 0; 2538 rtx entry_parm; 2539 bool in_regs; 2540 2541 if (data->arg.mode == VOIDmode) 2542 { 2543 data->entry_parm = data->stack_parm = const0_rtx; 2544 return; 2545 } 2546 2547 targetm.calls.warn_parameter_passing_abi (all->args_so_far, 2548 data->arg.type); 2549 2550 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far, 2551 data->arg); 2552 if (entry_parm == 0) 2553 data->arg.mode = data->passed_mode; 2554 2555 /* Determine parm's home in the stack, in case it arrives in the stack 2556 or we should pretend it did. Compute the stack position and rtx where 2557 the argument arrives and its size. 2558 2559 There is one complexity here: If this was a parameter that would 2560 have been passed in registers, but wasn't only because it is 2561 __builtin_va_alist, we want locate_and_pad_parm to treat it as if 2562 it came in a register so that REG_PARM_STACK_SPACE isn't skipped. 2563 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0 2564 as it was the previous time. */ 2565 in_regs = (entry_parm != 0); 2566 #ifdef STACK_PARMS_IN_REG_PARM_AREA 2567 in_regs = true; 2568 #endif 2569 if (!in_regs && !data->arg.named) 2570 { 2571 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far)) 2572 { 2573 rtx tem; 2574 function_arg_info named_arg = data->arg; 2575 named_arg.named = true; 2576 tem = targetm.calls.function_incoming_arg (all->args_so_far, 2577 named_arg); 2578 in_regs = tem != NULL; 2579 } 2580 } 2581 2582 /* If this parameter was passed both in registers and in the stack, use 2583 the copy on the stack. */ 2584 if (targetm.calls.must_pass_in_stack (data->arg)) 2585 entry_parm = 0; 2586 2587 if (entry_parm) 2588 { 2589 int partial; 2590 2591 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg); 2592 data->partial = partial; 2593 2594 /* The caller might already have allocated stack space for the 2595 register parameters. */ 2596 if (partial != 0 && all->reg_parm_stack_space == 0) 2597 { 2598 /* Part of this argument is passed in registers and part 2599 is passed on the stack. Ask the prologue code to extend 2600 the stack part so that we can recreate the full value. 2601 2602 PRETEND_BYTES is the size of the registers we need to store. 2603 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra 2604 stack space that the prologue should allocate. 2605 2606 Internally, gcc assumes that the argument pointer is aligned 2607 to STACK_BOUNDARY bits. This is used both for alignment 2608 optimizations (see init_emit) and to locate arguments that are 2609 aligned to more than PARM_BOUNDARY bits. We must preserve this 2610 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to 2611 a stack boundary. */ 2612 2613 /* We assume at most one partial arg, and it must be the first 2614 argument on the stack. */ 2615 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size); 2616 2617 pretend_bytes = partial; 2618 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES); 2619 2620 /* We want to align relative to the actual stack pointer, so 2621 don't include this in the stack size until later. */ 2622 all->extra_pretend_bytes = all->pretend_args_size; 2623 } 2624 } 2625 2626 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs, 2627 all->reg_parm_stack_space, 2628 entry_parm ? data->partial : 0, current_function_decl, 2629 &all->stack_args_size, &data->locate); 2630 2631 /* Update parm_stack_boundary if this parameter is passed in the 2632 stack. */ 2633 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary) 2634 crtl->parm_stack_boundary = data->locate.boundary; 2635 2636 /* Adjust offsets to include the pretend args. */ 2637 pretend_bytes = all->extra_pretend_bytes - pretend_bytes; 2638 data->locate.slot_offset.constant += pretend_bytes; 2639 data->locate.offset.constant += pretend_bytes; 2640 2641 data->entry_parm = entry_parm; 2642 } 2643 2644 /* A subroutine of assign_parms. If there is actually space on the stack 2645 for this parm, count it in stack_args_size and return true. */ 2646 2647 static bool 2648 assign_parm_is_stack_parm (struct assign_parm_data_all *all, 2649 struct assign_parm_data_one *data) 2650 { 2651 /* Trivially true if we've no incoming register. */ 2652 if (data->entry_parm == NULL) 2653 ; 2654 /* Also true if we're partially in registers and partially not, 2655 since we've arranged to drop the entire argument on the stack. */ 2656 else if (data->partial != 0) 2657 ; 2658 /* Also true if the target says that it's passed in both registers 2659 and on the stack. */ 2660 else if (GET_CODE (data->entry_parm) == PARALLEL 2661 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX) 2662 ; 2663 /* Also true if the target says that there's stack allocated for 2664 all register parameters. */ 2665 else if (all->reg_parm_stack_space > 0) 2666 ; 2667 /* Otherwise, no, this parameter has no ABI defined stack slot. */ 2668 else 2669 return false; 2670 2671 all->stack_args_size.constant += data->locate.size.constant; 2672 if (data->locate.size.var) 2673 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var); 2674 2675 return true; 2676 } 2677 2678 /* A subroutine of assign_parms. Given that this parameter is allocated 2679 stack space by the ABI, find it. */ 2680 2681 static void 2682 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data) 2683 { 2684 rtx offset_rtx, stack_parm; 2685 unsigned int align, boundary; 2686 2687 /* If we're passing this arg using a reg, make its stack home the 2688 aligned stack slot. */ 2689 if (data->entry_parm) 2690 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset); 2691 else 2692 offset_rtx = ARGS_SIZE_RTX (data->locate.offset); 2693 2694 stack_parm = crtl->args.internal_arg_pointer; 2695 if (offset_rtx != const0_rtx) 2696 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx); 2697 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm); 2698 2699 if (!data->arg.pass_by_reference) 2700 { 2701 set_mem_attributes (stack_parm, parm, 1); 2702 /* set_mem_attributes could set MEM_SIZE to the passed mode's size, 2703 while promoted mode's size is needed. */ 2704 if (data->arg.mode != BLKmode 2705 && data->arg.mode != DECL_MODE (parm)) 2706 { 2707 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode)); 2708 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm)) 2709 { 2710 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm), 2711 data->arg.mode); 2712 if (maybe_ne (offset, 0)) 2713 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset); 2714 } 2715 } 2716 } 2717 2718 boundary = data->locate.boundary; 2719 align = BITS_PER_UNIT; 2720 2721 /* If we're padding upward, we know that the alignment of the slot 2722 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're 2723 intentionally forcing upward padding. Otherwise we have to come 2724 up with a guess at the alignment based on OFFSET_RTX. */ 2725 poly_int64 offset; 2726 if (data->locate.where_pad == PAD_NONE || data->entry_parm) 2727 align = boundary; 2728 else if (data->locate.where_pad == PAD_UPWARD) 2729 { 2730 align = boundary; 2731 /* If the argument offset is actually more aligned than the nominal 2732 stack slot boundary, take advantage of that excess alignment. 2733 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */ 2734 if (poly_int_rtx_p (offset_rtx, &offset) 2735 && known_eq (STACK_POINTER_OFFSET, 0)) 2736 { 2737 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT; 2738 if (offset_align == 0 || offset_align > STACK_BOUNDARY) 2739 offset_align = STACK_BOUNDARY; 2740 align = MAX (align, offset_align); 2741 } 2742 } 2743 else if (poly_int_rtx_p (offset_rtx, &offset)) 2744 { 2745 align = least_bit_hwi (boundary); 2746 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT; 2747 if (offset_align != 0) 2748 align = MIN (align, offset_align); 2749 } 2750 set_mem_align (stack_parm, align); 2751 2752 if (data->entry_parm) 2753 set_reg_attrs_for_parm (data->entry_parm, stack_parm); 2754 2755 data->stack_parm = stack_parm; 2756 } 2757 2758 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's 2759 always valid and contiguous. */ 2760 2761 static void 2762 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data) 2763 { 2764 rtx entry_parm = data->entry_parm; 2765 rtx stack_parm = data->stack_parm; 2766 2767 /* If this parm was passed part in regs and part in memory, pretend it 2768 arrived entirely in memory by pushing the register-part onto the stack. 2769 In the special case of a DImode or DFmode that is split, we could put 2770 it together in a pseudoreg directly, but for now that's not worth 2771 bothering with. */ 2772 if (data->partial != 0) 2773 { 2774 /* Handle calls that pass values in multiple non-contiguous 2775 locations. The Irix 6 ABI has examples of this. */ 2776 if (GET_CODE (entry_parm) == PARALLEL) 2777 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm, 2778 data->arg.type, int_size_in_bytes (data->arg.type)); 2779 else 2780 { 2781 gcc_assert (data->partial % UNITS_PER_WORD == 0); 2782 move_block_from_reg (REGNO (entry_parm), 2783 validize_mem (copy_rtx (stack_parm)), 2784 data->partial / UNITS_PER_WORD); 2785 } 2786 2787 entry_parm = stack_parm; 2788 } 2789 2790 /* If we didn't decide this parm came in a register, by default it came 2791 on the stack. */ 2792 else if (entry_parm == NULL) 2793 entry_parm = stack_parm; 2794 2795 /* When an argument is passed in multiple locations, we can't make use 2796 of this information, but we can save some copying if the whole argument 2797 is passed in a single register. */ 2798 else if (GET_CODE (entry_parm) == PARALLEL 2799 && data->nominal_mode != BLKmode 2800 && data->passed_mode != BLKmode) 2801 { 2802 size_t i, len = XVECLEN (entry_parm, 0); 2803 2804 for (i = 0; i < len; i++) 2805 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX 2806 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0)) 2807 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) 2808 == data->passed_mode) 2809 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0) 2810 { 2811 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0); 2812 break; 2813 } 2814 } 2815 2816 data->entry_parm = entry_parm; 2817 } 2818 2819 /* A subroutine of assign_parms. Reconstitute any values which were 2820 passed in multiple registers and would fit in a single register. */ 2821 2822 static void 2823 assign_parm_remove_parallels (struct assign_parm_data_one *data) 2824 { 2825 rtx entry_parm = data->entry_parm; 2826 2827 /* Convert the PARALLEL to a REG of the same mode as the parallel. 2828 This can be done with register operations rather than on the 2829 stack, even if we will store the reconstituted parameter on the 2830 stack later. */ 2831 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode) 2832 { 2833 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm)); 2834 emit_group_store (parmreg, entry_parm, data->arg.type, 2835 GET_MODE_SIZE (GET_MODE (entry_parm))); 2836 entry_parm = parmreg; 2837 } 2838 2839 data->entry_parm = entry_parm; 2840 } 2841 2842 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's 2843 always valid and properly aligned. */ 2844 2845 static void 2846 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data) 2847 { 2848 rtx stack_parm = data->stack_parm; 2849 2850 /* If we can't trust the parm stack slot to be aligned enough for its 2851 ultimate type, don't use that slot after entry. We'll make another 2852 stack slot, if we need one. */ 2853 if (stack_parm 2854 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm) 2855 && ((optab_handler (movmisalign_optab, data->nominal_mode) 2856 != CODE_FOR_nothing) 2857 || targetm.slow_unaligned_access (data->nominal_mode, 2858 MEM_ALIGN (stack_parm)))) 2859 || (data->nominal_type 2860 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm) 2861 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY))) 2862 stack_parm = NULL; 2863 2864 /* If parm was passed in memory, and we need to convert it on entry, 2865 don't store it back in that same slot. */ 2866 else if (data->entry_parm == stack_parm 2867 && data->nominal_mode != BLKmode 2868 && data->nominal_mode != data->passed_mode) 2869 stack_parm = NULL; 2870 2871 /* If stack protection is in effect for this function, don't leave any 2872 pointers in their passed stack slots. */ 2873 else if (crtl->stack_protect_guard 2874 && (flag_stack_protect == 2 2875 || data->arg.pass_by_reference 2876 || POINTER_TYPE_P (data->nominal_type))) 2877 stack_parm = NULL; 2878 2879 data->stack_parm = stack_parm; 2880 } 2881 2882 /* A subroutine of assign_parms. Return true if the current parameter 2883 should be stored as a BLKmode in the current frame. */ 2884 2885 static bool 2886 assign_parm_setup_block_p (struct assign_parm_data_one *data) 2887 { 2888 if (data->nominal_mode == BLKmode) 2889 return true; 2890 if (GET_MODE (data->entry_parm) == BLKmode) 2891 return true; 2892 2893 #ifdef BLOCK_REG_PADDING 2894 /* Only assign_parm_setup_block knows how to deal with register arguments 2895 that are padded at the least significant end. */ 2896 if (REG_P (data->entry_parm) 2897 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD) 2898 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1) 2899 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))) 2900 return true; 2901 #endif 2902 2903 return false; 2904 } 2905 2906 /* A subroutine of assign_parms. Arrange for the parameter to be 2907 present and valid in DATA->STACK_RTL. */ 2908 2909 static void 2910 assign_parm_setup_block (struct assign_parm_data_all *all, 2911 tree parm, struct assign_parm_data_one *data) 2912 { 2913 rtx entry_parm = data->entry_parm; 2914 rtx stack_parm = data->stack_parm; 2915 rtx target_reg = NULL_RTX; 2916 bool in_conversion_seq = false; 2917 HOST_WIDE_INT size; 2918 HOST_WIDE_INT size_stored; 2919 2920 if (GET_CODE (entry_parm) == PARALLEL) 2921 entry_parm = emit_group_move_into_temps (entry_parm); 2922 2923 /* If we want the parameter in a pseudo, don't use a stack slot. */ 2924 if (is_gimple_reg (parm) && use_register_for_decl (parm)) 2925 { 2926 tree def = ssa_default_def (cfun, parm); 2927 gcc_assert (def); 2928 machine_mode mode = promote_ssa_mode (def, NULL); 2929 rtx reg = gen_reg_rtx (mode); 2930 if (GET_CODE (reg) != CONCAT) 2931 stack_parm = reg; 2932 else 2933 { 2934 target_reg = reg; 2935 /* Avoid allocating a stack slot, if there isn't one 2936 preallocated by the ABI. It might seem like we should 2937 always prefer a pseudo, but converting between 2938 floating-point and integer modes goes through the stack 2939 on various machines, so it's better to use the reserved 2940 stack slot than to risk wasting it and allocating more 2941 for the conversion. */ 2942 if (stack_parm == NULL_RTX) 2943 { 2944 int save = generating_concat_p; 2945 generating_concat_p = 0; 2946 stack_parm = gen_reg_rtx (mode); 2947 generating_concat_p = save; 2948 } 2949 } 2950 data->stack_parm = NULL; 2951 } 2952 2953 size = int_size_in_bytes (data->arg.type); 2954 size_stored = CEIL_ROUND (size, UNITS_PER_WORD); 2955 if (stack_parm == 0) 2956 { 2957 HOST_WIDE_INT parm_align 2958 = (STRICT_ALIGNMENT 2959 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm)); 2960 2961 SET_DECL_ALIGN (parm, parm_align); 2962 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT) 2963 { 2964 rtx allocsize = gen_int_mode (size_stored, Pmode); 2965 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL); 2966 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize), 2967 MAX_SUPPORTED_STACK_ALIGNMENT); 2968 rtx addr = align_dynamic_address (XEXP (stack_parm, 0), 2969 DECL_ALIGN (parm)); 2970 mark_reg_pointer (addr, DECL_ALIGN (parm)); 2971 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr); 2972 MEM_NOTRAP_P (stack_parm) = 1; 2973 } 2974 else 2975 stack_parm = assign_stack_local (BLKmode, size_stored, 2976 DECL_ALIGN (parm)); 2977 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size)) 2978 PUT_MODE (stack_parm, GET_MODE (entry_parm)); 2979 set_mem_attributes (stack_parm, parm, 1); 2980 } 2981 2982 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle 2983 calls that pass values in multiple non-contiguous locations. */ 2984 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL) 2985 { 2986 rtx mem; 2987 2988 /* Note that we will be storing an integral number of words. 2989 So we have to be careful to ensure that we allocate an 2990 integral number of words. We do this above when we call 2991 assign_stack_local if space was not allocated in the argument 2992 list. If it was, this will not work if PARM_BOUNDARY is not 2993 a multiple of BITS_PER_WORD. It isn't clear how to fix this 2994 if it becomes a problem. Exception is when BLKmode arrives 2995 with arguments not conforming to word_mode. */ 2996 2997 if (data->stack_parm == 0) 2998 ; 2999 else if (GET_CODE (entry_parm) == PARALLEL) 3000 ; 3001 else 3002 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD)); 3003 3004 mem = validize_mem (copy_rtx (stack_parm)); 3005 3006 /* Handle values in multiple non-contiguous locations. */ 3007 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem)) 3008 emit_group_store (mem, entry_parm, data->arg.type, size); 3009 else if (GET_CODE (entry_parm) == PARALLEL) 3010 { 3011 push_to_sequence2 (all->first_conversion_insn, 3012 all->last_conversion_insn); 3013 emit_group_store (mem, entry_parm, data->arg.type, size); 3014 all->first_conversion_insn = get_insns (); 3015 all->last_conversion_insn = get_last_insn (); 3016 end_sequence (); 3017 in_conversion_seq = true; 3018 } 3019 3020 else if (size == 0) 3021 ; 3022 3023 /* If SIZE is that of a mode no bigger than a word, just use 3024 that mode's store operation. */ 3025 else if (size <= UNITS_PER_WORD) 3026 { 3027 unsigned int bits = size * BITS_PER_UNIT; 3028 machine_mode mode = int_mode_for_size (bits, 0).else_blk (); 3029 3030 if (mode != BLKmode 3031 #ifdef BLOCK_REG_PADDING 3032 && (size == UNITS_PER_WORD 3033 || (BLOCK_REG_PADDING (mode, data->arg.type, 1) 3034 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD))) 3035 #endif 3036 ) 3037 { 3038 rtx reg; 3039 3040 /* We are really truncating a word_mode value containing 3041 SIZE bytes into a value of mode MODE. If such an 3042 operation requires no actual instructions, we can refer 3043 to the value directly in mode MODE, otherwise we must 3044 start with the register in word_mode and explicitly 3045 convert it. */ 3046 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT, 3047 BITS_PER_WORD)) 3048 reg = gen_rtx_REG (mode, REGNO (entry_parm)); 3049 else 3050 { 3051 reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3052 reg = convert_to_mode (mode, copy_to_reg (reg), 1); 3053 } 3054 emit_move_insn (change_address (mem, mode, 0), reg); 3055 } 3056 3057 #ifdef BLOCK_REG_PADDING 3058 /* Storing the register in memory as a full word, as 3059 move_block_from_reg below would do, and then using the 3060 MEM in a smaller mode, has the effect of shifting right 3061 if BYTES_BIG_ENDIAN. If we're bypassing memory, the 3062 shifting must be explicit. */ 3063 else if (!MEM_P (mem)) 3064 { 3065 rtx x; 3066 3067 /* If the assert below fails, we should have taken the 3068 mode != BLKmode path above, unless we have downward 3069 padding of smaller-than-word arguments on a machine 3070 with little-endian bytes, which would likely require 3071 additional changes to work correctly. */ 3072 gcc_checking_assert (BYTES_BIG_ENDIAN 3073 && (BLOCK_REG_PADDING (mode, 3074 data->arg.type, 1) 3075 == PAD_UPWARD)); 3076 3077 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; 3078 3079 x = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3080 x = expand_shift (RSHIFT_EXPR, word_mode, x, by, 3081 NULL_RTX, 1); 3082 x = force_reg (word_mode, x); 3083 x = gen_lowpart_SUBREG (GET_MODE (mem), x); 3084 3085 emit_move_insn (mem, x); 3086 } 3087 #endif 3088 3089 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN 3090 machine must be aligned to the left before storing 3091 to memory. Note that the previous test doesn't 3092 handle all cases (e.g. SIZE == 3). */ 3093 else if (size != UNITS_PER_WORD 3094 #ifdef BLOCK_REG_PADDING 3095 && (BLOCK_REG_PADDING (mode, data->arg.type, 1) 3096 == PAD_DOWNWARD) 3097 #else 3098 && BYTES_BIG_ENDIAN 3099 #endif 3100 ) 3101 { 3102 rtx tem, x; 3103 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT; 3104 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm)); 3105 3106 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1); 3107 tem = change_address (mem, word_mode, 0); 3108 emit_move_insn (tem, x); 3109 } 3110 else 3111 move_block_from_reg (REGNO (entry_parm), mem, 3112 size_stored / UNITS_PER_WORD); 3113 } 3114 else if (!MEM_P (mem)) 3115 { 3116 gcc_checking_assert (size > UNITS_PER_WORD); 3117 #ifdef BLOCK_REG_PADDING 3118 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem), 3119 data->arg.type, 0) 3120 == PAD_UPWARD); 3121 #endif 3122 emit_move_insn (mem, entry_parm); 3123 } 3124 else 3125 move_block_from_reg (REGNO (entry_parm), mem, 3126 size_stored / UNITS_PER_WORD); 3127 } 3128 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type)) 3129 { 3130 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3131 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size), 3132 BLOCK_OP_NORMAL); 3133 all->first_conversion_insn = get_insns (); 3134 all->last_conversion_insn = get_last_insn (); 3135 end_sequence (); 3136 in_conversion_seq = true; 3137 } 3138 3139 if (target_reg) 3140 { 3141 if (!in_conversion_seq) 3142 emit_move_insn (target_reg, stack_parm); 3143 else 3144 { 3145 push_to_sequence2 (all->first_conversion_insn, 3146 all->last_conversion_insn); 3147 emit_move_insn (target_reg, stack_parm); 3148 all->first_conversion_insn = get_insns (); 3149 all->last_conversion_insn = get_last_insn (); 3150 end_sequence (); 3151 } 3152 stack_parm = target_reg; 3153 } 3154 3155 data->stack_parm = stack_parm; 3156 set_parm_rtl (parm, stack_parm); 3157 } 3158 3159 /* A subroutine of assign_parms. Allocate a pseudo to hold the current 3160 parameter. Get it there. Perform all ABI specified conversions. */ 3161 3162 static void 3163 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm, 3164 struct assign_parm_data_one *data) 3165 { 3166 rtx parmreg, validated_mem; 3167 rtx equiv_stack_parm; 3168 machine_mode promoted_nominal_mode; 3169 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm)); 3170 bool did_conversion = false; 3171 bool need_conversion, moved; 3172 enum insn_code icode; 3173 rtx rtl; 3174 3175 /* Store the parm in a pseudoregister during the function, but we may 3176 need to do it in a wider mode. Using 2 here makes the result 3177 consistent with promote_decl_mode and thus expand_expr_real_1. */ 3178 promoted_nominal_mode 3179 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp, 3180 TREE_TYPE (current_function_decl), 2); 3181 3182 parmreg = gen_reg_rtx (promoted_nominal_mode); 3183 if (!DECL_ARTIFICIAL (parm)) 3184 mark_user_reg (parmreg); 3185 3186 /* If this was an item that we received a pointer to, 3187 set rtl appropriately. */ 3188 if (data->arg.pass_by_reference) 3189 { 3190 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg); 3191 set_mem_attributes (rtl, parm, 1); 3192 } 3193 else 3194 rtl = parmreg; 3195 3196 assign_parm_remove_parallels (data); 3197 3198 /* Copy the value into the register, thus bridging between 3199 assign_parm_find_data_types and expand_expr_real_1. */ 3200 3201 equiv_stack_parm = data->stack_parm; 3202 validated_mem = validize_mem (copy_rtx (data->entry_parm)); 3203 3204 need_conversion = (data->nominal_mode != data->passed_mode 3205 || promoted_nominal_mode != data->arg.mode); 3206 moved = false; 3207 3208 if (need_conversion 3209 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT 3210 && data->nominal_mode == data->passed_mode 3211 && data->nominal_mode == GET_MODE (data->entry_parm)) 3212 { 3213 /* ENTRY_PARM has been converted to PROMOTED_MODE, its 3214 mode, by the caller. We now have to convert it to 3215 NOMINAL_MODE, if different. However, PARMREG may be in 3216 a different mode than NOMINAL_MODE if it is being stored 3217 promoted. 3218 3219 If ENTRY_PARM is a hard register, it might be in a register 3220 not valid for operating in its mode (e.g., an odd-numbered 3221 register for a DFmode). In that case, moves are the only 3222 thing valid, so we can't do a convert from there. This 3223 occurs when the calling sequence allow such misaligned 3224 usages. 3225 3226 In addition, the conversion may involve a call, which could 3227 clobber parameters which haven't been copied to pseudo 3228 registers yet. 3229 3230 First, we try to emit an insn which performs the necessary 3231 conversion. We verify that this insn does not clobber any 3232 hard registers. */ 3233 3234 rtx op0, op1; 3235 3236 icode = can_extend_p (promoted_nominal_mode, data->passed_mode, 3237 unsignedp); 3238 3239 op0 = parmreg; 3240 op1 = validated_mem; 3241 if (icode != CODE_FOR_nothing 3242 && insn_operand_matches (icode, 0, op0) 3243 && insn_operand_matches (icode, 1, op1)) 3244 { 3245 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND; 3246 rtx_insn *insn, *insns; 3247 rtx t = op1; 3248 HARD_REG_SET hardregs; 3249 3250 start_sequence (); 3251 /* If op1 is a hard register that is likely spilled, first 3252 force it into a pseudo, otherwise combiner might extend 3253 its lifetime too much. */ 3254 if (GET_CODE (t) == SUBREG) 3255 t = SUBREG_REG (t); 3256 if (REG_P (t) 3257 && HARD_REGISTER_P (t) 3258 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t)) 3259 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t)))) 3260 { 3261 t = gen_reg_rtx (GET_MODE (op1)); 3262 emit_move_insn (t, op1); 3263 } 3264 else 3265 t = op1; 3266 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode, 3267 data->passed_mode, unsignedp); 3268 emit_insn (pat); 3269 insns = get_insns (); 3270 3271 moved = true; 3272 CLEAR_HARD_REG_SET (hardregs); 3273 for (insn = insns; insn && moved; insn = NEXT_INSN (insn)) 3274 { 3275 if (INSN_P (insn)) 3276 note_stores (insn, record_hard_reg_sets, &hardregs); 3277 if (!hard_reg_set_empty_p (hardregs)) 3278 moved = false; 3279 } 3280 3281 end_sequence (); 3282 3283 if (moved) 3284 { 3285 emit_insn (insns); 3286 if (equiv_stack_parm != NULL_RTX) 3287 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg), 3288 equiv_stack_parm); 3289 } 3290 } 3291 } 3292 3293 if (moved) 3294 /* Nothing to do. */ 3295 ; 3296 else if (need_conversion) 3297 { 3298 /* We did not have an insn to convert directly, or the sequence 3299 generated appeared unsafe. We must first copy the parm to a 3300 pseudo reg, and save the conversion until after all 3301 parameters have been moved. */ 3302 3303 int save_tree_used; 3304 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); 3305 3306 emit_move_insn (tempreg, validated_mem); 3307 3308 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3309 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp); 3310 3311 if (partial_subreg_p (tempreg) 3312 && GET_MODE (tempreg) == data->nominal_mode 3313 && REG_P (SUBREG_REG (tempreg)) 3314 && data->nominal_mode == data->passed_mode 3315 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)) 3316 { 3317 /* The argument is already sign/zero extended, so note it 3318 into the subreg. */ 3319 SUBREG_PROMOTED_VAR_P (tempreg) = 1; 3320 SUBREG_PROMOTED_SET (tempreg, unsignedp); 3321 } 3322 3323 /* TREE_USED gets set erroneously during expand_assignment. */ 3324 save_tree_used = TREE_USED (parm); 3325 SET_DECL_RTL (parm, rtl); 3326 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false); 3327 SET_DECL_RTL (parm, NULL_RTX); 3328 TREE_USED (parm) = save_tree_used; 3329 all->first_conversion_insn = get_insns (); 3330 all->last_conversion_insn = get_last_insn (); 3331 end_sequence (); 3332 3333 did_conversion = true; 3334 } 3335 else if (MEM_P (data->entry_parm) 3336 && GET_MODE_ALIGNMENT (promoted_nominal_mode) 3337 > MEM_ALIGN (data->entry_parm) 3338 && (((icode = optab_handler (movmisalign_optab, 3339 promoted_nominal_mode)) 3340 != CODE_FOR_nothing) 3341 || targetm.slow_unaligned_access (promoted_nominal_mode, 3342 MEM_ALIGN (data->entry_parm)))) 3343 { 3344 if (icode != CODE_FOR_nothing) 3345 emit_insn (GEN_FCN (icode) (parmreg, validated_mem)); 3346 else 3347 rtl = parmreg = extract_bit_field (validated_mem, 3348 GET_MODE_BITSIZE (promoted_nominal_mode), 0, 3349 unsignedp, parmreg, 3350 promoted_nominal_mode, VOIDmode, false, NULL); 3351 } 3352 else 3353 emit_move_insn (parmreg, validated_mem); 3354 3355 /* If we were passed a pointer but the actual value can safely live 3356 in a register, retrieve it and use it directly. */ 3357 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode) 3358 { 3359 /* We can't use nominal_mode, because it will have been set to 3360 Pmode above. We must use the actual mode of the parm. */ 3361 if (use_register_for_decl (parm)) 3362 { 3363 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm))); 3364 mark_user_reg (parmreg); 3365 } 3366 else 3367 { 3368 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), 3369 TYPE_MODE (TREE_TYPE (parm)), 3370 TYPE_ALIGN (TREE_TYPE (parm))); 3371 parmreg 3372 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)), 3373 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))), 3374 align); 3375 set_mem_attributes (parmreg, parm, 1); 3376 } 3377 3378 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for 3379 the debug info in case it is not legitimate. */ 3380 if (GET_MODE (parmreg) != GET_MODE (rtl)) 3381 { 3382 rtx tempreg = gen_reg_rtx (GET_MODE (rtl)); 3383 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm)); 3384 3385 push_to_sequence2 (all->first_conversion_insn, 3386 all->last_conversion_insn); 3387 emit_move_insn (tempreg, rtl); 3388 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p); 3389 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, 3390 tempreg); 3391 all->first_conversion_insn = get_insns (); 3392 all->last_conversion_insn = get_last_insn (); 3393 end_sequence (); 3394 3395 did_conversion = true; 3396 } 3397 else 3398 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl); 3399 3400 rtl = parmreg; 3401 3402 /* STACK_PARM is the pointer, not the parm, and PARMREG is 3403 now the parm. */ 3404 data->stack_parm = NULL; 3405 } 3406 3407 set_parm_rtl (parm, rtl); 3408 3409 /* Mark the register as eliminable if we did no conversion and it was 3410 copied from memory at a fixed offset, and the arg pointer was not 3411 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the 3412 offset formed an invalid address, such memory-equivalences as we 3413 make here would screw up life analysis for it. */ 3414 if (data->nominal_mode == data->passed_mode 3415 && !did_conversion 3416 && data->stack_parm != 0 3417 && MEM_P (data->stack_parm) 3418 && data->locate.offset.var == 0 3419 && reg_mentioned_p (virtual_incoming_args_rtx, 3420 XEXP (data->stack_parm, 0))) 3421 { 3422 rtx_insn *linsn = get_last_insn (); 3423 rtx_insn *sinsn; 3424 rtx set; 3425 3426 /* Mark complex types separately. */ 3427 if (GET_CODE (parmreg) == CONCAT) 3428 { 3429 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg)); 3430 int regnor = REGNO (XEXP (parmreg, 0)); 3431 int regnoi = REGNO (XEXP (parmreg, 1)); 3432 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0); 3433 rtx stacki = adjust_address_nv (data->stack_parm, submode, 3434 GET_MODE_SIZE (submode)); 3435 3436 /* Scan backwards for the set of the real and 3437 imaginary parts. */ 3438 for (sinsn = linsn; sinsn != 0; 3439 sinsn = prev_nonnote_insn (sinsn)) 3440 { 3441 set = single_set (sinsn); 3442 if (set == 0) 3443 continue; 3444 3445 if (SET_DEST (set) == regno_reg_rtx [regnoi]) 3446 set_unique_reg_note (sinsn, REG_EQUIV, stacki); 3447 else if (SET_DEST (set) == regno_reg_rtx [regnor]) 3448 set_unique_reg_note (sinsn, REG_EQUIV, stackr); 3449 } 3450 } 3451 else 3452 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg); 3453 } 3454 3455 /* For pointer data type, suggest pointer register. */ 3456 if (POINTER_TYPE_P (TREE_TYPE (parm))) 3457 mark_reg_pointer (parmreg, 3458 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); 3459 } 3460 3461 /* A subroutine of assign_parms. Allocate stack space to hold the current 3462 parameter. Get it there. Perform all ABI specified conversions. */ 3463 3464 static void 3465 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm, 3466 struct assign_parm_data_one *data) 3467 { 3468 /* Value must be stored in the stack slot STACK_PARM during function 3469 execution. */ 3470 bool to_conversion = false; 3471 3472 assign_parm_remove_parallels (data); 3473 3474 if (data->arg.mode != data->nominal_mode) 3475 { 3476 /* Conversion is required. */ 3477 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm)); 3478 3479 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm))); 3480 3481 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn); 3482 to_conversion = true; 3483 3484 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg, 3485 TYPE_UNSIGNED (TREE_TYPE (parm))); 3486 3487 if (data->stack_parm) 3488 { 3489 poly_int64 offset 3490 = subreg_lowpart_offset (data->nominal_mode, 3491 GET_MODE (data->stack_parm)); 3492 /* ??? This may need a big-endian conversion on sparc64. */ 3493 data->stack_parm 3494 = adjust_address (data->stack_parm, data->nominal_mode, 0); 3495 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm)) 3496 set_mem_offset (data->stack_parm, 3497 MEM_OFFSET (data->stack_parm) + offset); 3498 } 3499 } 3500 3501 if (data->entry_parm != data->stack_parm) 3502 { 3503 rtx src, dest; 3504 3505 if (data->stack_parm == 0) 3506 { 3507 int align = STACK_SLOT_ALIGNMENT (data->arg.type, 3508 GET_MODE (data->entry_parm), 3509 TYPE_ALIGN (data->arg.type)); 3510 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm)) 3511 && ((optab_handler (movmisalign_optab, 3512 GET_MODE (data->entry_parm)) 3513 != CODE_FOR_nothing) 3514 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm), 3515 align))) 3516 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm)); 3517 data->stack_parm 3518 = assign_stack_local (GET_MODE (data->entry_parm), 3519 GET_MODE_SIZE (GET_MODE (data->entry_parm)), 3520 align); 3521 align = MEM_ALIGN (data->stack_parm); 3522 set_mem_attributes (data->stack_parm, parm, 1); 3523 set_mem_align (data->stack_parm, align); 3524 } 3525 3526 dest = validize_mem (copy_rtx (data->stack_parm)); 3527 src = validize_mem (copy_rtx (data->entry_parm)); 3528 3529 if (TYPE_EMPTY_P (data->arg.type)) 3530 /* Empty types don't really need to be copied. */; 3531 else if (MEM_P (src)) 3532 { 3533 /* Use a block move to handle potentially misaligned entry_parm. */ 3534 if (!to_conversion) 3535 push_to_sequence2 (all->first_conversion_insn, 3536 all->last_conversion_insn); 3537 to_conversion = true; 3538 3539 emit_block_move (dest, src, 3540 GEN_INT (int_size_in_bytes (data->arg.type)), 3541 BLOCK_OP_NORMAL); 3542 } 3543 else 3544 { 3545 if (!REG_P (src)) 3546 src = force_reg (GET_MODE (src), src); 3547 emit_move_insn (dest, src); 3548 } 3549 } 3550 3551 if (to_conversion) 3552 { 3553 all->first_conversion_insn = get_insns (); 3554 all->last_conversion_insn = get_last_insn (); 3555 end_sequence (); 3556 } 3557 3558 set_parm_rtl (parm, data->stack_parm); 3559 } 3560 3561 /* A subroutine of assign_parms. If the ABI splits complex arguments, then 3562 undo the frobbing that we did in assign_parms_augmented_arg_list. */ 3563 3564 static void 3565 assign_parms_unsplit_complex (struct assign_parm_data_all *all, 3566 vec<tree> fnargs) 3567 { 3568 tree parm; 3569 tree orig_fnargs = all->orig_fnargs; 3570 unsigned i = 0; 3571 3572 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i) 3573 { 3574 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE 3575 && targetm.calls.split_complex_arg (TREE_TYPE (parm))) 3576 { 3577 rtx tmp, real, imag; 3578 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm)); 3579 3580 real = DECL_RTL (fnargs[i]); 3581 imag = DECL_RTL (fnargs[i + 1]); 3582 if (inner != GET_MODE (real)) 3583 { 3584 real = gen_lowpart_SUBREG (inner, real); 3585 imag = gen_lowpart_SUBREG (inner, imag); 3586 } 3587 3588 if (TREE_ADDRESSABLE (parm)) 3589 { 3590 rtx rmem, imem; 3591 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm)); 3592 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm), 3593 DECL_MODE (parm), 3594 TYPE_ALIGN (TREE_TYPE (parm))); 3595 3596 /* split_complex_arg put the real and imag parts in 3597 pseudos. Move them to memory. */ 3598 tmp = assign_stack_local (DECL_MODE (parm), size, align); 3599 set_mem_attributes (tmp, parm, 1); 3600 rmem = adjust_address_nv (tmp, inner, 0); 3601 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner)); 3602 push_to_sequence2 (all->first_conversion_insn, 3603 all->last_conversion_insn); 3604 emit_move_insn (rmem, real); 3605 emit_move_insn (imem, imag); 3606 all->first_conversion_insn = get_insns (); 3607 all->last_conversion_insn = get_last_insn (); 3608 end_sequence (); 3609 } 3610 else 3611 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); 3612 set_parm_rtl (parm, tmp); 3613 3614 real = DECL_INCOMING_RTL (fnargs[i]); 3615 imag = DECL_INCOMING_RTL (fnargs[i + 1]); 3616 if (inner != GET_MODE (real)) 3617 { 3618 real = gen_lowpart_SUBREG (inner, real); 3619 imag = gen_lowpart_SUBREG (inner, imag); 3620 } 3621 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag); 3622 set_decl_incoming_rtl (parm, tmp, false); 3623 i++; 3624 } 3625 } 3626 } 3627 3628 /* Assign RTL expressions to the function's parameters. This may involve 3629 copying them into registers and using those registers as the DECL_RTL. */ 3630 3631 static void 3632 assign_parms (tree fndecl) 3633 { 3634 struct assign_parm_data_all all; 3635 tree parm; 3636 vec<tree> fnargs; 3637 unsigned i; 3638 3639 crtl->args.internal_arg_pointer 3640 = targetm.calls.internal_arg_pointer (); 3641 3642 assign_parms_initialize_all (&all); 3643 fnargs = assign_parms_augmented_arg_list (&all); 3644 3645 FOR_EACH_VEC_ELT (fnargs, i, parm) 3646 { 3647 struct assign_parm_data_one data; 3648 3649 /* Extract the type of PARM; adjust it according to ABI. */ 3650 assign_parm_find_data_types (&all, parm, &data); 3651 3652 /* Early out for errors and void parameters. */ 3653 if (data.passed_mode == VOIDmode) 3654 { 3655 SET_DECL_RTL (parm, const0_rtx); 3656 DECL_INCOMING_RTL (parm) = DECL_RTL (parm); 3657 continue; 3658 } 3659 3660 /* Estimate stack alignment from parameter alignment. */ 3661 if (SUPPORTS_STACK_ALIGNMENT) 3662 { 3663 unsigned int align 3664 = targetm.calls.function_arg_boundary (data.arg.mode, 3665 data.arg.type); 3666 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align); 3667 if (TYPE_ALIGN (data.nominal_type) > align) 3668 align = MINIMUM_ALIGNMENT (data.nominal_type, 3669 TYPE_MODE (data.nominal_type), 3670 TYPE_ALIGN (data.nominal_type)); 3671 if (crtl->stack_alignment_estimated < align) 3672 { 3673 gcc_assert (!crtl->stack_realign_processed); 3674 crtl->stack_alignment_estimated = align; 3675 } 3676 } 3677 3678 /* Find out where the parameter arrives in this function. */ 3679 assign_parm_find_entry_rtl (&all, &data); 3680 3681 /* Find out where stack space for this parameter might be. */ 3682 if (assign_parm_is_stack_parm (&all, &data)) 3683 { 3684 assign_parm_find_stack_rtl (parm, &data); 3685 assign_parm_adjust_entry_rtl (&data); 3686 /* For arguments that occupy no space in the parameter 3687 passing area, have non-zero size and have address taken, 3688 force creation of a stack slot so that they have distinct 3689 address from other parameters. */ 3690 if (TYPE_EMPTY_P (data.arg.type) 3691 && TREE_ADDRESSABLE (parm) 3692 && data.entry_parm == data.stack_parm 3693 && MEM_P (data.entry_parm) 3694 && int_size_in_bytes (data.arg.type)) 3695 data.stack_parm = NULL_RTX; 3696 } 3697 /* Record permanently how this parm was passed. */ 3698 if (data.arg.pass_by_reference) 3699 { 3700 rtx incoming_rtl 3701 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)), 3702 data.entry_parm); 3703 set_decl_incoming_rtl (parm, incoming_rtl, true); 3704 } 3705 else 3706 set_decl_incoming_rtl (parm, data.entry_parm, false); 3707 3708 assign_parm_adjust_stack_rtl (&data); 3709 3710 if (assign_parm_setup_block_p (&data)) 3711 assign_parm_setup_block (&all, parm, &data); 3712 else if (data.arg.pass_by_reference || use_register_for_decl (parm)) 3713 assign_parm_setup_reg (&all, parm, &data); 3714 else 3715 assign_parm_setup_stack (&all, parm, &data); 3716 3717 if (cfun->stdarg && !DECL_CHAIN (parm)) 3718 assign_parms_setup_varargs (&all, &data, false); 3719 3720 /* Update info on where next arg arrives in registers. */ 3721 targetm.calls.function_arg_advance (all.args_so_far, data.arg); 3722 } 3723 3724 if (targetm.calls.split_complex_arg) 3725 assign_parms_unsplit_complex (&all, fnargs); 3726 3727 fnargs.release (); 3728 3729 /* Output all parameter conversion instructions (possibly including calls) 3730 now that all parameters have been copied out of hard registers. */ 3731 emit_insn (all.first_conversion_insn); 3732 3733 /* Estimate reload stack alignment from scalar return mode. */ 3734 if (SUPPORTS_STACK_ALIGNMENT) 3735 { 3736 if (DECL_RESULT (fndecl)) 3737 { 3738 tree type = TREE_TYPE (DECL_RESULT (fndecl)); 3739 machine_mode mode = TYPE_MODE (type); 3740 3741 if (mode != BLKmode 3742 && mode != VOIDmode 3743 && !AGGREGATE_TYPE_P (type)) 3744 { 3745 unsigned int align = GET_MODE_ALIGNMENT (mode); 3746 if (crtl->stack_alignment_estimated < align) 3747 { 3748 gcc_assert (!crtl->stack_realign_processed); 3749 crtl->stack_alignment_estimated = align; 3750 } 3751 } 3752 } 3753 } 3754 3755 /* If we are receiving a struct value address as the first argument, set up 3756 the RTL for the function result. As this might require code to convert 3757 the transmitted address to Pmode, we do this here to ensure that possible 3758 preliminary conversions of the address have been emitted already. */ 3759 if (all.function_result_decl) 3760 { 3761 tree result = DECL_RESULT (current_function_decl); 3762 rtx addr = DECL_RTL (all.function_result_decl); 3763 rtx x; 3764 3765 if (DECL_BY_REFERENCE (result)) 3766 { 3767 SET_DECL_VALUE_EXPR (result, all.function_result_decl); 3768 x = addr; 3769 } 3770 else 3771 { 3772 SET_DECL_VALUE_EXPR (result, 3773 build1 (INDIRECT_REF, TREE_TYPE (result), 3774 all.function_result_decl)); 3775 addr = convert_memory_address (Pmode, addr); 3776 x = gen_rtx_MEM (DECL_MODE (result), addr); 3777 set_mem_attributes (x, result, 1); 3778 } 3779 3780 DECL_HAS_VALUE_EXPR_P (result) = 1; 3781 3782 set_parm_rtl (result, x); 3783 } 3784 3785 /* We have aligned all the args, so add space for the pretend args. */ 3786 crtl->args.pretend_args_size = all.pretend_args_size; 3787 all.stack_args_size.constant += all.extra_pretend_bytes; 3788 crtl->args.size = all.stack_args_size.constant; 3789 3790 /* Adjust function incoming argument size for alignment and 3791 minimum length. */ 3792 3793 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space); 3794 crtl->args.size = aligned_upper_bound (crtl->args.size, 3795 PARM_BOUNDARY / BITS_PER_UNIT); 3796 3797 if (ARGS_GROW_DOWNWARD) 3798 { 3799 crtl->args.arg_offset_rtx 3800 = (all.stack_args_size.var == 0 3801 ? gen_int_mode (-all.stack_args_size.constant, Pmode) 3802 : expand_expr (size_diffop (all.stack_args_size.var, 3803 size_int (-all.stack_args_size.constant)), 3804 NULL_RTX, VOIDmode, EXPAND_NORMAL)); 3805 } 3806 else 3807 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size); 3808 3809 /* See how many bytes, if any, of its args a function should try to pop 3810 on return. */ 3811 3812 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl, 3813 TREE_TYPE (fndecl), 3814 crtl->args.size); 3815 3816 /* For stdarg.h function, save info about 3817 regs and stack space used by the named args. */ 3818 3819 crtl->args.info = all.args_so_far_v; 3820 3821 /* Set the rtx used for the function return value. Put this in its 3822 own variable so any optimizers that need this information don't have 3823 to include tree.h. Do this here so it gets done when an inlined 3824 function gets output. */ 3825 3826 crtl->return_rtx 3827 = (DECL_RTL_SET_P (DECL_RESULT (fndecl)) 3828 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX); 3829 3830 /* If scalar return value was computed in a pseudo-reg, or was a named 3831 return value that got dumped to the stack, copy that to the hard 3832 return register. */ 3833 if (DECL_RTL_SET_P (DECL_RESULT (fndecl))) 3834 { 3835 tree decl_result = DECL_RESULT (fndecl); 3836 rtx decl_rtl = DECL_RTL (decl_result); 3837 3838 if (REG_P (decl_rtl) 3839 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER 3840 : DECL_REGISTER (decl_result)) 3841 { 3842 rtx real_decl_rtl; 3843 3844 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result), 3845 fndecl, true); 3846 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1; 3847 /* The delay slot scheduler assumes that crtl->return_rtx 3848 holds the hard register containing the return value, not a 3849 temporary pseudo. */ 3850 crtl->return_rtx = real_decl_rtl; 3851 } 3852 } 3853 } 3854 3855 /* A subroutine of gimplify_parameters, invoked via walk_tree. 3856 For all seen types, gimplify their sizes. */ 3857 3858 static tree 3859 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data) 3860 { 3861 tree t = *tp; 3862 3863 *walk_subtrees = 0; 3864 if (TYPE_P (t)) 3865 { 3866 if (POINTER_TYPE_P (t)) 3867 *walk_subtrees = 1; 3868 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t)) 3869 && !TYPE_SIZES_GIMPLIFIED (t)) 3870 { 3871 gimplify_type_sizes (t, (gimple_seq *) data); 3872 *walk_subtrees = 1; 3873 } 3874 } 3875 3876 return NULL; 3877 } 3878 3879 /* Gimplify the parameter list for current_function_decl. This involves 3880 evaluating SAVE_EXPRs of variable sized parameters and generating code 3881 to implement callee-copies reference parameters. Returns a sequence of 3882 statements to add to the beginning of the function. */ 3883 3884 gimple_seq 3885 gimplify_parameters (gimple_seq *cleanup) 3886 { 3887 struct assign_parm_data_all all; 3888 tree parm; 3889 gimple_seq stmts = NULL; 3890 vec<tree> fnargs; 3891 unsigned i; 3892 3893 assign_parms_initialize_all (&all); 3894 fnargs = assign_parms_augmented_arg_list (&all); 3895 3896 FOR_EACH_VEC_ELT (fnargs, i, parm) 3897 { 3898 struct assign_parm_data_one data; 3899 3900 /* Extract the type of PARM; adjust it according to ABI. */ 3901 assign_parm_find_data_types (&all, parm, &data); 3902 3903 /* Early out for errors and void parameters. */ 3904 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL) 3905 continue; 3906 3907 /* Update info on where next arg arrives in registers. */ 3908 targetm.calls.function_arg_advance (all.args_so_far, data.arg); 3909 3910 /* ??? Once upon a time variable_size stuffed parameter list 3911 SAVE_EXPRs (amongst others) onto a pending sizes list. This 3912 turned out to be less than manageable in the gimple world. 3913 Now we have to hunt them down ourselves. */ 3914 walk_tree_without_duplicates (&data.arg.type, 3915 gimplify_parm_type, &stmts); 3916 3917 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST) 3918 { 3919 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts); 3920 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts); 3921 } 3922 3923 if (data.arg.pass_by_reference) 3924 { 3925 tree type = TREE_TYPE (data.arg.type); 3926 function_arg_info orig_arg (type, data.arg.named); 3927 if (reference_callee_copied (&all.args_so_far_v, orig_arg)) 3928 { 3929 tree local, t; 3930 3931 /* For constant-sized objects, this is trivial; for 3932 variable-sized objects, we have to play games. */ 3933 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST 3934 && !(flag_stack_check == GENERIC_STACK_CHECK 3935 && compare_tree_int (DECL_SIZE_UNIT (parm), 3936 STACK_CHECK_MAX_VAR_SIZE) > 0)) 3937 { 3938 local = create_tmp_var (type, get_name (parm)); 3939 DECL_IGNORED_P (local) = 0; 3940 /* If PARM was addressable, move that flag over 3941 to the local copy, as its address will be taken, 3942 not the PARMs. Keep the parms address taken 3943 as we'll query that flag during gimplification. */ 3944 if (TREE_ADDRESSABLE (parm)) 3945 TREE_ADDRESSABLE (local) = 1; 3946 else if (TREE_CODE (type) == COMPLEX_TYPE 3947 || TREE_CODE (type) == VECTOR_TYPE) 3948 DECL_GIMPLE_REG_P (local) = 1; 3949 3950 if (!is_gimple_reg (local) 3951 && flag_stack_reuse != SR_NONE) 3952 { 3953 tree clobber = build_clobber (type); 3954 gimple *clobber_stmt; 3955 clobber_stmt = gimple_build_assign (local, clobber); 3956 gimple_seq_add_stmt (cleanup, clobber_stmt); 3957 } 3958 } 3959 else 3960 { 3961 tree ptr_type, addr; 3962 3963 ptr_type = build_pointer_type (type); 3964 addr = create_tmp_reg (ptr_type, get_name (parm)); 3965 DECL_IGNORED_P (addr) = 0; 3966 local = build_fold_indirect_ref (addr); 3967 3968 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm), 3969 DECL_ALIGN (parm), 3970 max_int_size_in_bytes (type)); 3971 /* The call has been built for a variable-sized object. */ 3972 CALL_ALLOCA_FOR_VAR_P (t) = 1; 3973 t = fold_convert (ptr_type, t); 3974 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t); 3975 gimplify_and_add (t, &stmts); 3976 } 3977 3978 gimplify_assign (local, parm, &stmts); 3979 3980 SET_DECL_VALUE_EXPR (parm, local); 3981 DECL_HAS_VALUE_EXPR_P (parm) = 1; 3982 } 3983 } 3984 } 3985 3986 fnargs.release (); 3987 3988 return stmts; 3989 } 3990 3991 /* Compute the size and offset from the start of the stacked arguments for a 3992 parm passed in mode PASSED_MODE and with type TYPE. 3993 3994 INITIAL_OFFSET_PTR points to the current offset into the stacked 3995 arguments. 3996 3997 The starting offset and size for this parm are returned in 3998 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is 3999 nonzero, the offset is that of stack slot, which is returned in 4000 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of 4001 padding required from the initial offset ptr to the stack slot. 4002 4003 IN_REGS is nonzero if the argument will be passed in registers. It will 4004 never be set if REG_PARM_STACK_SPACE is not defined. 4005 4006 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved 4007 for arguments which are passed in registers. 4008 4009 FNDECL is the function in which the argument was defined. 4010 4011 There are two types of rounding that are done. The first, controlled by 4012 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the 4013 argument list to be aligned to the specific boundary (in bits). This 4014 rounding affects the initial and starting offsets, but not the argument 4015 size. 4016 4017 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY, 4018 optionally rounds the size of the parm to PARM_BOUNDARY. The 4019 initial offset is not affected by this rounding, while the size always 4020 is and the starting offset may be. */ 4021 4022 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case; 4023 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's 4024 callers pass in the total size of args so far as 4025 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */ 4026 4027 void 4028 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs, 4029 int reg_parm_stack_space, int partial, 4030 tree fndecl ATTRIBUTE_UNUSED, 4031 struct args_size *initial_offset_ptr, 4032 struct locate_and_pad_arg_data *locate) 4033 { 4034 tree sizetree; 4035 pad_direction where_pad; 4036 unsigned int boundary, round_boundary; 4037 int part_size_in_regs; 4038 4039 /* If we have found a stack parm before we reach the end of the 4040 area reserved for registers, skip that area. */ 4041 if (! in_regs) 4042 { 4043 if (reg_parm_stack_space > 0) 4044 { 4045 if (initial_offset_ptr->var 4046 || !ordered_p (initial_offset_ptr->constant, 4047 reg_parm_stack_space)) 4048 { 4049 initial_offset_ptr->var 4050 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr), 4051 ssize_int (reg_parm_stack_space)); 4052 initial_offset_ptr->constant = 0; 4053 } 4054 else 4055 initial_offset_ptr->constant 4056 = ordered_max (initial_offset_ptr->constant, 4057 reg_parm_stack_space); 4058 } 4059 } 4060 4061 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0); 4062 4063 sizetree = (type 4064 ? arg_size_in_bytes (type) 4065 : size_int (GET_MODE_SIZE (passed_mode))); 4066 where_pad = targetm.calls.function_arg_padding (passed_mode, type); 4067 boundary = targetm.calls.function_arg_boundary (passed_mode, type); 4068 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode, 4069 type); 4070 locate->where_pad = where_pad; 4071 4072 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */ 4073 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT) 4074 boundary = MAX_SUPPORTED_STACK_ALIGNMENT; 4075 4076 locate->boundary = boundary; 4077 4078 if (SUPPORTS_STACK_ALIGNMENT) 4079 { 4080 /* stack_alignment_estimated can't change after stack has been 4081 realigned. */ 4082 if (crtl->stack_alignment_estimated < boundary) 4083 { 4084 if (!crtl->stack_realign_processed) 4085 crtl->stack_alignment_estimated = boundary; 4086 else 4087 { 4088 /* If stack is realigned and stack alignment value 4089 hasn't been finalized, it is OK not to increase 4090 stack_alignment_estimated. The bigger alignment 4091 requirement is recorded in stack_alignment_needed 4092 below. */ 4093 gcc_assert (!crtl->stack_realign_finalized 4094 && crtl->stack_realign_needed); 4095 } 4096 } 4097 } 4098 4099 if (ARGS_GROW_DOWNWARD) 4100 { 4101 locate->slot_offset.constant = -initial_offset_ptr->constant; 4102 if (initial_offset_ptr->var) 4103 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0), 4104 initial_offset_ptr->var); 4105 4106 { 4107 tree s2 = sizetree; 4108 if (where_pad != PAD_NONE 4109 && (!tree_fits_uhwi_p (sizetree) 4110 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) 4111 s2 = round_up (s2, round_boundary / BITS_PER_UNIT); 4112 SUB_PARM_SIZE (locate->slot_offset, s2); 4113 } 4114 4115 locate->slot_offset.constant += part_size_in_regs; 4116 4117 if (!in_regs || reg_parm_stack_space > 0) 4118 pad_to_arg_alignment (&locate->slot_offset, boundary, 4119 &locate->alignment_pad); 4120 4121 locate->size.constant = (-initial_offset_ptr->constant 4122 - locate->slot_offset.constant); 4123 if (initial_offset_ptr->var) 4124 locate->size.var = size_binop (MINUS_EXPR, 4125 size_binop (MINUS_EXPR, 4126 ssize_int (0), 4127 initial_offset_ptr->var), 4128 locate->slot_offset.var); 4129 4130 /* Pad_below needs the pre-rounded size to know how much to pad 4131 below. */ 4132 locate->offset = locate->slot_offset; 4133 if (where_pad == PAD_DOWNWARD) 4134 pad_below (&locate->offset, passed_mode, sizetree); 4135 4136 } 4137 else 4138 { 4139 if (!in_regs || reg_parm_stack_space > 0) 4140 pad_to_arg_alignment (initial_offset_ptr, boundary, 4141 &locate->alignment_pad); 4142 locate->slot_offset = *initial_offset_ptr; 4143 4144 #ifdef PUSH_ROUNDING 4145 if (passed_mode != BLKmode) 4146 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree))); 4147 #endif 4148 4149 /* Pad_below needs the pre-rounded size to know how much to pad below 4150 so this must be done before rounding up. */ 4151 locate->offset = locate->slot_offset; 4152 if (where_pad == PAD_DOWNWARD) 4153 pad_below (&locate->offset, passed_mode, sizetree); 4154 4155 if (where_pad != PAD_NONE 4156 && (!tree_fits_uhwi_p (sizetree) 4157 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary)) 4158 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT); 4159 4160 ADD_PARM_SIZE (locate->size, sizetree); 4161 4162 locate->size.constant -= part_size_in_regs; 4163 } 4164 4165 locate->offset.constant 4166 += targetm.calls.function_arg_offset (passed_mode, type); 4167 } 4168 4169 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY. 4170 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */ 4171 4172 static void 4173 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary, 4174 struct args_size *alignment_pad) 4175 { 4176 tree save_var = NULL_TREE; 4177 poly_int64 save_constant = 0; 4178 int boundary_in_bytes = boundary / BITS_PER_UNIT; 4179 poly_int64 sp_offset = STACK_POINTER_OFFSET; 4180 4181 #ifdef SPARC_STACK_BOUNDARY_HACK 4182 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than 4183 the real alignment of %sp. However, when it does this, the 4184 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */ 4185 if (SPARC_STACK_BOUNDARY_HACK) 4186 sp_offset = 0; 4187 #endif 4188 4189 if (boundary > PARM_BOUNDARY) 4190 { 4191 save_var = offset_ptr->var; 4192 save_constant = offset_ptr->constant; 4193 } 4194 4195 alignment_pad->var = NULL_TREE; 4196 alignment_pad->constant = 0; 4197 4198 if (boundary > BITS_PER_UNIT) 4199 { 4200 int misalign; 4201 if (offset_ptr->var 4202 || !known_misalignment (offset_ptr->constant + sp_offset, 4203 boundary_in_bytes, &misalign)) 4204 { 4205 tree sp_offset_tree = ssize_int (sp_offset); 4206 tree offset = size_binop (PLUS_EXPR, 4207 ARGS_SIZE_TREE (*offset_ptr), 4208 sp_offset_tree); 4209 tree rounded; 4210 if (ARGS_GROW_DOWNWARD) 4211 rounded = round_down (offset, boundary / BITS_PER_UNIT); 4212 else 4213 rounded = round_up (offset, boundary / BITS_PER_UNIT); 4214 4215 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree); 4216 /* ARGS_SIZE_TREE includes constant term. */ 4217 offset_ptr->constant = 0; 4218 if (boundary > PARM_BOUNDARY) 4219 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var, 4220 save_var); 4221 } 4222 else 4223 { 4224 if (ARGS_GROW_DOWNWARD) 4225 offset_ptr->constant -= misalign; 4226 else 4227 offset_ptr->constant += -misalign & (boundary_in_bytes - 1); 4228 4229 if (boundary > PARM_BOUNDARY) 4230 alignment_pad->constant = offset_ptr->constant - save_constant; 4231 } 4232 } 4233 } 4234 4235 static void 4236 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree) 4237 { 4238 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT; 4239 int misalign; 4240 if (passed_mode != BLKmode 4241 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign)) 4242 offset_ptr->constant += -misalign & (align - 1); 4243 else 4244 { 4245 if (TREE_CODE (sizetree) != INTEGER_CST 4246 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0) 4247 { 4248 /* Round the size up to multiple of PARM_BOUNDARY bits. */ 4249 tree s2 = round_up (sizetree, align); 4250 /* Add it in. */ 4251 ADD_PARM_SIZE (*offset_ptr, s2); 4252 SUB_PARM_SIZE (*offset_ptr, sizetree); 4253 } 4254 } 4255 } 4256 4257 4258 /* True if register REGNO was alive at a place where `setjmp' was 4259 called and was set more than once or is an argument. Such regs may 4260 be clobbered by `longjmp'. */ 4261 4262 static bool 4263 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno) 4264 { 4265 /* There appear to be cases where some local vars never reach the 4266 backend but have bogus regnos. */ 4267 if (regno >= max_reg_num ()) 4268 return false; 4269 4270 return ((REG_N_SETS (regno) > 1 4271 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)), 4272 regno)) 4273 && REGNO_REG_SET_P (setjmp_crosses, regno)); 4274 } 4275 4276 /* Walk the tree of blocks describing the binding levels within a 4277 function and warn about variables the might be killed by setjmp or 4278 vfork. This is done after calling flow_analysis before register 4279 allocation since that will clobber the pseudo-regs to hard 4280 regs. */ 4281 4282 static void 4283 setjmp_vars_warning (bitmap setjmp_crosses, tree block) 4284 { 4285 tree decl, sub; 4286 4287 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl)) 4288 { 4289 if (VAR_P (decl) 4290 && DECL_RTL_SET_P (decl) 4291 && REG_P (DECL_RTL (decl)) 4292 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) 4293 warning (OPT_Wclobbered, "variable %q+D might be clobbered by" 4294 " %<longjmp%> or %<vfork%>", decl); 4295 } 4296 4297 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub)) 4298 setjmp_vars_warning (setjmp_crosses, sub); 4299 } 4300 4301 /* Do the appropriate part of setjmp_vars_warning 4302 but for arguments instead of local variables. */ 4303 4304 static void 4305 setjmp_args_warning (bitmap setjmp_crosses) 4306 { 4307 tree decl; 4308 for (decl = DECL_ARGUMENTS (current_function_decl); 4309 decl; decl = DECL_CHAIN (decl)) 4310 if (DECL_RTL (decl) != 0 4311 && REG_P (DECL_RTL (decl)) 4312 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl)))) 4313 warning (OPT_Wclobbered, 4314 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>", 4315 decl); 4316 } 4317 4318 /* Generate warning messages for variables live across setjmp. */ 4319 4320 void 4321 generate_setjmp_warnings (void) 4322 { 4323 bitmap setjmp_crosses = regstat_get_setjmp_crosses (); 4324 4325 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS 4326 || bitmap_empty_p (setjmp_crosses)) 4327 return; 4328 4329 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl)); 4330 setjmp_args_warning (setjmp_crosses); 4331 } 4332 4333 4334 /* Reverse the order of elements in the fragment chain T of blocks, 4335 and return the new head of the chain (old last element). 4336 In addition to that clear BLOCK_SAME_RANGE flags when needed 4337 and adjust BLOCK_SUPERCONTEXT from the super fragment to 4338 its super fragment origin. */ 4339 4340 static tree 4341 block_fragments_nreverse (tree t) 4342 { 4343 tree prev = 0, block, next, prev_super = 0; 4344 tree super = BLOCK_SUPERCONTEXT (t); 4345 if (BLOCK_FRAGMENT_ORIGIN (super)) 4346 super = BLOCK_FRAGMENT_ORIGIN (super); 4347 for (block = t; block; block = next) 4348 { 4349 next = BLOCK_FRAGMENT_CHAIN (block); 4350 BLOCK_FRAGMENT_CHAIN (block) = prev; 4351 if ((prev && !BLOCK_SAME_RANGE (prev)) 4352 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block)) 4353 != prev_super)) 4354 BLOCK_SAME_RANGE (block) = 0; 4355 prev_super = BLOCK_SUPERCONTEXT (block); 4356 BLOCK_SUPERCONTEXT (block) = super; 4357 prev = block; 4358 } 4359 t = BLOCK_FRAGMENT_ORIGIN (t); 4360 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t)) 4361 != prev_super) 4362 BLOCK_SAME_RANGE (t) = 0; 4363 BLOCK_SUPERCONTEXT (t) = super; 4364 return prev; 4365 } 4366 4367 /* Reverse the order of elements in the chain T of blocks, 4368 and return the new head of the chain (old last element). 4369 Also do the same on subblocks and reverse the order of elements 4370 in BLOCK_FRAGMENT_CHAIN as well. */ 4371 4372 static tree 4373 blocks_nreverse_all (tree t) 4374 { 4375 tree prev = 0, block, next; 4376 for (block = t; block; block = next) 4377 { 4378 next = BLOCK_CHAIN (block); 4379 BLOCK_CHAIN (block) = prev; 4380 if (BLOCK_FRAGMENT_CHAIN (block) 4381 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE) 4382 { 4383 BLOCK_FRAGMENT_CHAIN (block) 4384 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block)); 4385 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block))) 4386 BLOCK_SAME_RANGE (block) = 0; 4387 } 4388 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); 4389 prev = block; 4390 } 4391 return prev; 4392 } 4393 4394 4395 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END}, 4396 and create duplicate blocks. */ 4397 /* ??? Need an option to either create block fragments or to create 4398 abstract origin duplicates of a source block. It really depends 4399 on what optimization has been performed. */ 4400 4401 void 4402 reorder_blocks (void) 4403 { 4404 tree block = DECL_INITIAL (current_function_decl); 4405 4406 if (block == NULL_TREE) 4407 return; 4408 4409 auto_vec<tree, 10> block_stack; 4410 4411 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */ 4412 clear_block_marks (block); 4413 4414 /* Prune the old trees away, so that they don't get in the way. */ 4415 BLOCK_SUBBLOCKS (block) = NULL_TREE; 4416 BLOCK_CHAIN (block) = NULL_TREE; 4417 4418 /* Recreate the block tree from the note nesting. */ 4419 reorder_blocks_1 (get_insns (), block, &block_stack); 4420 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block)); 4421 } 4422 4423 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */ 4424 4425 void 4426 clear_block_marks (tree block) 4427 { 4428 while (block) 4429 { 4430 TREE_ASM_WRITTEN (block) = 0; 4431 clear_block_marks (BLOCK_SUBBLOCKS (block)); 4432 block = BLOCK_CHAIN (block); 4433 } 4434 } 4435 4436 static void 4437 reorder_blocks_1 (rtx_insn *insns, tree current_block, 4438 vec<tree> *p_block_stack) 4439 { 4440 rtx_insn *insn; 4441 tree prev_beg = NULL_TREE, prev_end = NULL_TREE; 4442 4443 for (insn = insns; insn; insn = NEXT_INSN (insn)) 4444 { 4445 if (NOTE_P (insn)) 4446 { 4447 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG) 4448 { 4449 tree block = NOTE_BLOCK (insn); 4450 tree origin; 4451 4452 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE); 4453 origin = block; 4454 4455 if (prev_end) 4456 BLOCK_SAME_RANGE (prev_end) = 0; 4457 prev_end = NULL_TREE; 4458 4459 /* If we have seen this block before, that means it now 4460 spans multiple address regions. Create a new fragment. */ 4461 if (TREE_ASM_WRITTEN (block)) 4462 { 4463 tree new_block = copy_node (block); 4464 4465 BLOCK_SAME_RANGE (new_block) = 0; 4466 BLOCK_FRAGMENT_ORIGIN (new_block) = origin; 4467 BLOCK_FRAGMENT_CHAIN (new_block) 4468 = BLOCK_FRAGMENT_CHAIN (origin); 4469 BLOCK_FRAGMENT_CHAIN (origin) = new_block; 4470 4471 NOTE_BLOCK (insn) = new_block; 4472 block = new_block; 4473 } 4474 4475 if (prev_beg == current_block && prev_beg) 4476 BLOCK_SAME_RANGE (block) = 1; 4477 4478 prev_beg = origin; 4479 4480 BLOCK_SUBBLOCKS (block) = 0; 4481 TREE_ASM_WRITTEN (block) = 1; 4482 /* When there's only one block for the entire function, 4483 current_block == block and we mustn't do this, it 4484 will cause infinite recursion. */ 4485 if (block != current_block) 4486 { 4487 tree super; 4488 if (block != origin) 4489 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block 4490 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT 4491 (origin)) 4492 == current_block); 4493 if (p_block_stack->is_empty ()) 4494 super = current_block; 4495 else 4496 { 4497 super = p_block_stack->last (); 4498 gcc_assert (super == current_block 4499 || BLOCK_FRAGMENT_ORIGIN (super) 4500 == current_block); 4501 } 4502 BLOCK_SUPERCONTEXT (block) = super; 4503 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block); 4504 BLOCK_SUBBLOCKS (current_block) = block; 4505 current_block = origin; 4506 } 4507 p_block_stack->safe_push (block); 4508 } 4509 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END) 4510 { 4511 NOTE_BLOCK (insn) = p_block_stack->pop (); 4512 current_block = BLOCK_SUPERCONTEXT (current_block); 4513 if (BLOCK_FRAGMENT_ORIGIN (current_block)) 4514 current_block = BLOCK_FRAGMENT_ORIGIN (current_block); 4515 prev_beg = NULL_TREE; 4516 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn)) 4517 ? NOTE_BLOCK (insn) : NULL_TREE; 4518 } 4519 } 4520 else 4521 { 4522 prev_beg = NULL_TREE; 4523 if (prev_end) 4524 BLOCK_SAME_RANGE (prev_end) = 0; 4525 prev_end = NULL_TREE; 4526 } 4527 } 4528 } 4529 4530 /* Reverse the order of elements in the chain T of blocks, 4531 and return the new head of the chain (old last element). */ 4532 4533 tree 4534 blocks_nreverse (tree t) 4535 { 4536 tree prev = 0, block, next; 4537 for (block = t; block; block = next) 4538 { 4539 next = BLOCK_CHAIN (block); 4540 BLOCK_CHAIN (block) = prev; 4541 prev = block; 4542 } 4543 return prev; 4544 } 4545 4546 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN) 4547 by modifying the last node in chain 1 to point to chain 2. */ 4548 4549 tree 4550 block_chainon (tree op1, tree op2) 4551 { 4552 tree t1; 4553 4554 if (!op1) 4555 return op2; 4556 if (!op2) 4557 return op1; 4558 4559 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1)) 4560 continue; 4561 BLOCK_CHAIN (t1) = op2; 4562 4563 #ifdef ENABLE_TREE_CHECKING 4564 { 4565 tree t2; 4566 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2)) 4567 gcc_assert (t2 != t1); 4568 } 4569 #endif 4570 4571 return op1; 4572 } 4573 4574 /* Count the subblocks of the list starting with BLOCK. If VECTOR is 4575 non-NULL, list them all into VECTOR, in a depth-first preorder 4576 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all 4577 blocks. */ 4578 4579 static int 4580 all_blocks (tree block, tree *vector) 4581 { 4582 int n_blocks = 0; 4583 4584 while (block) 4585 { 4586 TREE_ASM_WRITTEN (block) = 0; 4587 4588 /* Record this block. */ 4589 if (vector) 4590 vector[n_blocks] = block; 4591 4592 ++n_blocks; 4593 4594 /* Record the subblocks, and their subblocks... */ 4595 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block), 4596 vector ? vector + n_blocks : 0); 4597 block = BLOCK_CHAIN (block); 4598 } 4599 4600 return n_blocks; 4601 } 4602 4603 /* Return a vector containing all the blocks rooted at BLOCK. The 4604 number of elements in the vector is stored in N_BLOCKS_P. The 4605 vector is dynamically allocated; it is the caller's responsibility 4606 to call `free' on the pointer returned. */ 4607 4608 static tree * 4609 get_block_vector (tree block, int *n_blocks_p) 4610 { 4611 tree *block_vector; 4612 4613 *n_blocks_p = all_blocks (block, NULL); 4614 block_vector = XNEWVEC (tree, *n_blocks_p); 4615 all_blocks (block, block_vector); 4616 4617 return block_vector; 4618 } 4619 4620 static GTY(()) int next_block_index = 2; 4621 4622 /* Set BLOCK_NUMBER for all the blocks in FN. */ 4623 4624 void 4625 number_blocks (tree fn) 4626 { 4627 int i; 4628 int n_blocks; 4629 tree *block_vector; 4630 4631 /* For XCOFF debugging output, we start numbering the blocks 4632 from 1 within each function, rather than keeping a running 4633 count. */ 4634 #if defined (XCOFF_DEBUGGING_INFO) 4635 if (write_symbols == XCOFF_DEBUG) 4636 next_block_index = 1; 4637 #endif 4638 4639 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks); 4640 4641 /* The top-level BLOCK isn't numbered at all. */ 4642 for (i = 1; i < n_blocks; ++i) 4643 /* We number the blocks from two. */ 4644 BLOCK_NUMBER (block_vector[i]) = next_block_index++; 4645 4646 free (block_vector); 4647 4648 return; 4649 } 4650 4651 /* If VAR is present in a subblock of BLOCK, return the subblock. */ 4652 4653 DEBUG_FUNCTION tree 4654 debug_find_var_in_block_tree (tree var, tree block) 4655 { 4656 tree t; 4657 4658 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t)) 4659 if (t == var) 4660 return block; 4661 4662 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t)) 4663 { 4664 tree ret = debug_find_var_in_block_tree (var, t); 4665 if (ret) 4666 return ret; 4667 } 4668 4669 return NULL_TREE; 4670 } 4671 4672 /* Keep track of whether we're in a dummy function context. If we are, 4673 we don't want to invoke the set_current_function hook, because we'll 4674 get into trouble if the hook calls target_reinit () recursively or 4675 when the initial initialization is not yet complete. */ 4676 4677 static bool in_dummy_function; 4678 4679 /* Invoke the target hook when setting cfun. Update the optimization options 4680 if the function uses different options than the default. */ 4681 4682 static void 4683 invoke_set_current_function_hook (tree fndecl) 4684 { 4685 if (!in_dummy_function) 4686 { 4687 tree opts = ((fndecl) 4688 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl) 4689 : optimization_default_node); 4690 4691 if (!opts) 4692 opts = optimization_default_node; 4693 4694 /* Change optimization options if needed. */ 4695 if (optimization_current_node != opts) 4696 { 4697 optimization_current_node = opts; 4698 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts)); 4699 } 4700 4701 targetm.set_current_function (fndecl); 4702 this_fn_optabs = this_target_optabs; 4703 4704 /* Initialize global alignment variables after op. */ 4705 parse_alignment_opts (); 4706 4707 if (opts != optimization_default_node) 4708 { 4709 init_tree_optimization_optabs (opts); 4710 if (TREE_OPTIMIZATION_OPTABS (opts)) 4711 this_fn_optabs = (struct target_optabs *) 4712 TREE_OPTIMIZATION_OPTABS (opts); 4713 } 4714 } 4715 } 4716 4717 /* cfun should never be set directly; use this function. */ 4718 4719 void 4720 set_cfun (struct function *new_cfun, bool force) 4721 { 4722 if (cfun != new_cfun || force) 4723 { 4724 cfun = new_cfun; 4725 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE); 4726 redirect_edge_var_map_empty (); 4727 } 4728 } 4729 4730 /* Initialized with NOGC, making this poisonous to the garbage collector. */ 4731 4732 static vec<function *> cfun_stack; 4733 4734 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set 4735 current_function_decl accordingly. */ 4736 4737 void 4738 push_cfun (struct function *new_cfun) 4739 { 4740 gcc_assert ((!cfun && !current_function_decl) 4741 || (cfun && current_function_decl == cfun->decl)); 4742 cfun_stack.safe_push (cfun); 4743 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; 4744 set_cfun (new_cfun); 4745 } 4746 4747 /* Pop cfun from the stack. Also set current_function_decl accordingly. */ 4748 4749 void 4750 pop_cfun (void) 4751 { 4752 struct function *new_cfun = cfun_stack.pop (); 4753 /* When in_dummy_function, we do have a cfun but current_function_decl is 4754 NULL. We also allow pushing NULL cfun and subsequently changing 4755 current_function_decl to something else and have both restored by 4756 pop_cfun. */ 4757 gcc_checking_assert (in_dummy_function 4758 || !cfun 4759 || current_function_decl == cfun->decl); 4760 set_cfun (new_cfun); 4761 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE; 4762 } 4763 4764 /* Return value of funcdef and increase it. */ 4765 int 4766 get_next_funcdef_no (void) 4767 { 4768 return funcdef_no++; 4769 } 4770 4771 /* Return value of funcdef. */ 4772 int 4773 get_last_funcdef_no (void) 4774 { 4775 return funcdef_no; 4776 } 4777 4778 /* Allocate and initialize the stack usage info data structure for the 4779 current function. */ 4780 static void 4781 allocate_stack_usage_info (void) 4782 { 4783 gcc_assert (!cfun->su); 4784 cfun->su = ggc_cleared_alloc<stack_usage> (); 4785 cfun->su->static_stack_size = -1; 4786 } 4787 4788 /* Allocate a function structure for FNDECL and set its contents 4789 to the defaults. Set cfun to the newly-allocated object. 4790 Some of the helper functions invoked during initialization assume 4791 that cfun has already been set. Therefore, assign the new object 4792 directly into cfun and invoke the back end hook explicitly at the 4793 very end, rather than initializing a temporary and calling set_cfun 4794 on it. 4795 4796 ABSTRACT_P is true if this is a function that will never be seen by 4797 the middle-end. Such functions are front-end concepts (like C++ 4798 function templates) that do not correspond directly to functions 4799 placed in object files. */ 4800 4801 void 4802 allocate_struct_function (tree fndecl, bool abstract_p) 4803 { 4804 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE; 4805 4806 cfun = ggc_cleared_alloc<function> (); 4807 4808 init_eh_for_function (); 4809 4810 if (init_machine_status) 4811 cfun->machine = (*init_machine_status) (); 4812 4813 #ifdef OVERRIDE_ABI_FORMAT 4814 OVERRIDE_ABI_FORMAT (fndecl); 4815 #endif 4816 4817 if (fndecl != NULL_TREE) 4818 { 4819 DECL_STRUCT_FUNCTION (fndecl) = cfun; 4820 cfun->decl = fndecl; 4821 current_function_funcdef_no = get_next_funcdef_no (); 4822 } 4823 4824 invoke_set_current_function_hook (fndecl); 4825 4826 if (fndecl != NULL_TREE) 4827 { 4828 tree result = DECL_RESULT (fndecl); 4829 4830 if (!abstract_p) 4831 { 4832 /* Now that we have activated any function-specific attributes 4833 that might affect layout, particularly vector modes, relayout 4834 each of the parameters and the result. */ 4835 relayout_decl (result); 4836 for (tree parm = DECL_ARGUMENTS (fndecl); parm; 4837 parm = DECL_CHAIN (parm)) 4838 relayout_decl (parm); 4839 4840 /* Similarly relayout the function decl. */ 4841 targetm.target_option.relayout_function (fndecl); 4842 } 4843 4844 if (!abstract_p && aggregate_value_p (result, fndecl)) 4845 { 4846 #ifdef PCC_STATIC_STRUCT_RETURN 4847 cfun->returns_pcc_struct = 1; 4848 #endif 4849 cfun->returns_struct = 1; 4850 } 4851 4852 cfun->stdarg = stdarg_p (fntype); 4853 4854 /* Assume all registers in stdarg functions need to be saved. */ 4855 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE; 4856 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE; 4857 4858 /* ??? This could be set on a per-function basis by the front-end 4859 but is this worth the hassle? */ 4860 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions; 4861 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions; 4862 4863 if (!profile_flag && !flag_instrument_function_entry_exit) 4864 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1; 4865 4866 if (flag_callgraph_info) 4867 allocate_stack_usage_info (); 4868 } 4869 4870 /* Don't enable begin stmt markers if var-tracking at assignments is 4871 disabled. The markers make little sense without the variable 4872 binding annotations among them. */ 4873 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt 4874 && MAY_HAVE_DEBUG_MARKER_STMTS; 4875 } 4876 4877 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL 4878 instead of just setting it. */ 4879 4880 void 4881 push_struct_function (tree fndecl, bool abstract_p) 4882 { 4883 /* When in_dummy_function we might be in the middle of a pop_cfun and 4884 current_function_decl and cfun may not match. */ 4885 gcc_assert (in_dummy_function 4886 || (!cfun && !current_function_decl) 4887 || (cfun && current_function_decl == cfun->decl)); 4888 cfun_stack.safe_push (cfun); 4889 current_function_decl = fndecl; 4890 allocate_struct_function (fndecl, abstract_p); 4891 } 4892 4893 /* Reset crtl and other non-struct-function variables to defaults as 4894 appropriate for emitting rtl at the start of a function. */ 4895 4896 static void 4897 prepare_function_start (void) 4898 { 4899 gcc_assert (!get_last_insn ()); 4900 4901 if (in_dummy_function) 4902 crtl->abi = &default_function_abi; 4903 else 4904 crtl->abi = &fndecl_abi (cfun->decl).base_abi (); 4905 4906 init_temp_slots (); 4907 init_emit (); 4908 init_varasm_status (); 4909 init_expr (); 4910 default_rtl_profile (); 4911 4912 if (flag_stack_usage_info && !flag_callgraph_info) 4913 allocate_stack_usage_info (); 4914 4915 cse_not_expected = ! optimize; 4916 4917 /* Caller save not needed yet. */ 4918 caller_save_needed = 0; 4919 4920 /* We haven't done register allocation yet. */ 4921 reg_renumber = 0; 4922 4923 /* Indicate that we have not instantiated virtual registers yet. */ 4924 virtuals_instantiated = 0; 4925 4926 /* Indicate that we want CONCATs now. */ 4927 generating_concat_p = 1; 4928 4929 /* Indicate we have no need of a frame pointer yet. */ 4930 frame_pointer_needed = 0; 4931 } 4932 4933 void 4934 push_dummy_function (bool with_decl) 4935 { 4936 tree fn_decl, fn_type, fn_result_decl; 4937 4938 gcc_assert (!in_dummy_function); 4939 in_dummy_function = true; 4940 4941 if (with_decl) 4942 { 4943 fn_type = build_function_type_list (void_type_node, NULL_TREE); 4944 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE, 4945 fn_type); 4946 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL, 4947 NULL_TREE, void_type_node); 4948 DECL_RESULT (fn_decl) = fn_result_decl; 4949 DECL_ARTIFICIAL (fn_decl) = 1; 4950 tree fn_name = get_identifier (" "); 4951 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name); 4952 } 4953 else 4954 fn_decl = NULL_TREE; 4955 4956 push_struct_function (fn_decl); 4957 } 4958 4959 /* Initialize the rtl expansion mechanism so that we can do simple things 4960 like generate sequences. This is used to provide a context during global 4961 initialization of some passes. You must call expand_dummy_function_end 4962 to exit this context. */ 4963 4964 void 4965 init_dummy_function_start (void) 4966 { 4967 push_dummy_function (false); 4968 prepare_function_start (); 4969 } 4970 4971 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node) 4972 and initialize static variables for generating RTL for the statements 4973 of the function. */ 4974 4975 void 4976 init_function_start (tree subr) 4977 { 4978 /* Initialize backend, if needed. */ 4979 initialize_rtl (); 4980 4981 prepare_function_start (); 4982 decide_function_section (subr); 4983 4984 /* Warn if this value is an aggregate type, 4985 regardless of which calling convention we are using for it. */ 4986 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr)))) 4987 warning (OPT_Waggregate_return, "function returns an aggregate"); 4988 } 4989 4990 /* Expand code to verify the stack_protect_guard. This is invoked at 4991 the end of a function to be protected. */ 4992 4993 void 4994 stack_protect_epilogue (void) 4995 { 4996 tree guard_decl = crtl->stack_protect_guard_decl; 4997 rtx_code_label *label = gen_label_rtx (); 4998 rtx x, y; 4999 rtx_insn *seq = NULL; 5000 5001 x = expand_normal (crtl->stack_protect_guard); 5002 5003 if (targetm.have_stack_protect_combined_test () && guard_decl) 5004 { 5005 gcc_assert (DECL_P (guard_decl)); 5006 y = DECL_RTL (guard_decl); 5007 /* Allow the target to compute address of Y and compare it with X without 5008 leaking Y into a register. This combined address + compare pattern 5009 allows the target to prevent spilling of any intermediate results by 5010 splitting it after register allocator. */ 5011 seq = targetm.gen_stack_protect_combined_test (x, y, label); 5012 } 5013 else 5014 { 5015 if (guard_decl) 5016 y = expand_normal (guard_decl); 5017 else 5018 y = const0_rtx; 5019 5020 /* Allow the target to compare Y with X without leaking either into 5021 a register. */ 5022 if (targetm.have_stack_protect_test ()) 5023 seq = targetm.gen_stack_protect_test (x, y, label); 5024 } 5025 5026 if (seq) 5027 emit_insn (seq); 5028 else 5029 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label); 5030 5031 /* The noreturn predictor has been moved to the tree level. The rtl-level 5032 predictors estimate this branch about 20%, which isn't enough to get 5033 things moved out of line. Since this is the only extant case of adding 5034 a noreturn function at the rtl level, it doesn't seem worth doing ought 5035 except adding the prediction by hand. */ 5036 rtx_insn *tmp = get_last_insn (); 5037 if (JUMP_P (tmp)) 5038 predict_insn_def (tmp, PRED_NORETURN, TAKEN); 5039 5040 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true); 5041 free_temp_slots (); 5042 emit_label (label); 5043 } 5044 5045 /* Start the RTL for a new function, and set variables used for 5046 emitting RTL. 5047 SUBR is the FUNCTION_DECL node. 5048 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with 5049 the function's parameters, which must be run at any return statement. */ 5050 5051 bool currently_expanding_function_start; 5052 void 5053 expand_function_start (tree subr) 5054 { 5055 currently_expanding_function_start = true; 5056 5057 /* Make sure volatile mem refs aren't considered 5058 valid operands of arithmetic insns. */ 5059 init_recog_no_volatile (); 5060 5061 crtl->profile 5062 = (profile_flag 5063 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr)); 5064 5065 crtl->limit_stack 5066 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr)); 5067 5068 /* Make the label for return statements to jump to. Do not special 5069 case machines with special return instructions -- they will be 5070 handled later during jump, ifcvt, or epilogue creation. */ 5071 return_label = gen_label_rtx (); 5072 5073 /* Initialize rtx used to return the value. */ 5074 /* Do this before assign_parms so that we copy the struct value address 5075 before any library calls that assign parms might generate. */ 5076 5077 /* Decide whether to return the value in memory or in a register. */ 5078 tree res = DECL_RESULT (subr); 5079 if (aggregate_value_p (res, subr)) 5080 { 5081 /* Returning something that won't go in a register. */ 5082 rtx value_address = 0; 5083 5084 #ifdef PCC_STATIC_STRUCT_RETURN 5085 if (cfun->returns_pcc_struct) 5086 { 5087 int size = int_size_in_bytes (TREE_TYPE (res)); 5088 value_address = assemble_static_space (size); 5089 } 5090 else 5091 #endif 5092 { 5093 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2); 5094 /* Expect to be passed the address of a place to store the value. 5095 If it is passed as an argument, assign_parms will take care of 5096 it. */ 5097 if (sv) 5098 { 5099 value_address = gen_reg_rtx (Pmode); 5100 emit_move_insn (value_address, sv); 5101 } 5102 } 5103 if (value_address) 5104 { 5105 rtx x = value_address; 5106 if (!DECL_BY_REFERENCE (res)) 5107 { 5108 x = gen_rtx_MEM (DECL_MODE (res), x); 5109 set_mem_attributes (x, res, 1); 5110 } 5111 set_parm_rtl (res, x); 5112 } 5113 } 5114 else if (DECL_MODE (res) == VOIDmode) 5115 /* If return mode is void, this decl rtl should not be used. */ 5116 set_parm_rtl (res, NULL_RTX); 5117 else 5118 { 5119 /* Compute the return values into a pseudo reg, which we will copy 5120 into the true return register after the cleanups are done. */ 5121 tree return_type = TREE_TYPE (res); 5122 5123 /* If we may coalesce this result, make sure it has the expected mode 5124 in case it was promoted. But we need not bother about BLKmode. */ 5125 machine_mode promoted_mode 5126 = flag_tree_coalesce_vars && is_gimple_reg (res) 5127 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL) 5128 : BLKmode; 5129 5130 if (promoted_mode != BLKmode) 5131 set_parm_rtl (res, gen_reg_rtx (promoted_mode)); 5132 else if (TYPE_MODE (return_type) != BLKmode 5133 && targetm.calls.return_in_msb (return_type)) 5134 /* expand_function_end will insert the appropriate padding in 5135 this case. Use the return value's natural (unpadded) mode 5136 within the function proper. */ 5137 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type))); 5138 else 5139 { 5140 /* In order to figure out what mode to use for the pseudo, we 5141 figure out what the mode of the eventual return register will 5142 actually be, and use that. */ 5143 rtx hard_reg = hard_function_value (return_type, subr, 0, 1); 5144 5145 /* Structures that are returned in registers are not 5146 aggregate_value_p, so we may see a PARALLEL or a REG. */ 5147 if (REG_P (hard_reg)) 5148 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg))); 5149 else 5150 { 5151 gcc_assert (GET_CODE (hard_reg) == PARALLEL); 5152 set_parm_rtl (res, gen_group_rtx (hard_reg)); 5153 } 5154 } 5155 5156 /* Set DECL_REGISTER flag so that expand_function_end will copy the 5157 result to the real return register(s). */ 5158 DECL_REGISTER (res) = 1; 5159 } 5160 5161 /* Initialize rtx for parameters and local variables. 5162 In some cases this requires emitting insns. */ 5163 assign_parms (subr); 5164 5165 /* If function gets a static chain arg, store it. */ 5166 if (cfun->static_chain_decl) 5167 { 5168 tree parm = cfun->static_chain_decl; 5169 rtx local, chain; 5170 rtx_insn *insn; 5171 int unsignedp; 5172 5173 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp)); 5174 chain = targetm.calls.static_chain (current_function_decl, true); 5175 5176 set_decl_incoming_rtl (parm, chain, false); 5177 set_parm_rtl (parm, local); 5178 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm)))); 5179 5180 if (GET_MODE (local) != GET_MODE (chain)) 5181 { 5182 convert_move (local, chain, unsignedp); 5183 insn = get_last_insn (); 5184 } 5185 else 5186 insn = emit_move_insn (local, chain); 5187 5188 /* Mark the register as eliminable, similar to parameters. */ 5189 if (MEM_P (chain) 5190 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0))) 5191 set_dst_reg_note (insn, REG_EQUIV, chain, local); 5192 5193 /* If we aren't optimizing, save the static chain onto the stack. */ 5194 if (!optimize) 5195 { 5196 tree saved_static_chain_decl 5197 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL, 5198 DECL_NAME (parm), TREE_TYPE (parm)); 5199 rtx saved_static_chain_rtx 5200 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); 5201 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx); 5202 emit_move_insn (saved_static_chain_rtx, chain); 5203 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl); 5204 DECL_HAS_VALUE_EXPR_P (parm) = 1; 5205 } 5206 } 5207 5208 /* The following was moved from init_function_start. 5209 The move was supposed to make sdb output more accurate. */ 5210 /* Indicate the beginning of the function body, 5211 as opposed to parm setup. */ 5212 emit_note (NOTE_INSN_FUNCTION_BEG); 5213 5214 gcc_assert (NOTE_P (get_last_insn ())); 5215 5216 parm_birth_insn = get_last_insn (); 5217 5218 /* If the function receives a non-local goto, then store the 5219 bits we need to restore the frame pointer. */ 5220 if (cfun->nonlocal_goto_save_area) 5221 { 5222 tree t_save; 5223 rtx r_save; 5224 5225 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0); 5226 gcc_assert (DECL_RTL_SET_P (var)); 5227 5228 t_save = build4 (ARRAY_REF, 5229 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)), 5230 cfun->nonlocal_goto_save_area, 5231 integer_zero_node, NULL_TREE, NULL_TREE); 5232 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); 5233 gcc_assert (GET_MODE (r_save) == Pmode); 5234 5235 emit_move_insn (r_save, hard_frame_pointer_rtx); 5236 update_nonlocal_goto_save_area (); 5237 } 5238 5239 if (crtl->profile) 5240 { 5241 #ifdef PROFILE_HOOK 5242 PROFILE_HOOK (current_function_funcdef_no); 5243 #endif 5244 } 5245 5246 /* If we are doing generic stack checking, the probe should go here. */ 5247 if (flag_stack_check == GENERIC_STACK_CHECK) 5248 stack_check_probe_note = emit_note (NOTE_INSN_DELETED); 5249 5250 currently_expanding_function_start = false; 5251 } 5252 5253 void 5254 pop_dummy_function (void) 5255 { 5256 pop_cfun (); 5257 in_dummy_function = false; 5258 } 5259 5260 /* Undo the effects of init_dummy_function_start. */ 5261 void 5262 expand_dummy_function_end (void) 5263 { 5264 gcc_assert (in_dummy_function); 5265 5266 /* End any sequences that failed to be closed due to syntax errors. */ 5267 while (in_sequence_p ()) 5268 end_sequence (); 5269 5270 /* Outside function body, can't compute type's actual size 5271 until next function's body starts. */ 5272 5273 free_after_parsing (cfun); 5274 free_after_compilation (cfun); 5275 pop_dummy_function (); 5276 } 5277 5278 /* Helper for diddle_return_value. */ 5279 5280 void 5281 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing) 5282 { 5283 if (! outgoing) 5284 return; 5285 5286 if (REG_P (outgoing)) 5287 (*doit) (outgoing, arg); 5288 else if (GET_CODE (outgoing) == PARALLEL) 5289 { 5290 int i; 5291 5292 for (i = 0; i < XVECLEN (outgoing, 0); i++) 5293 { 5294 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0); 5295 5296 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER) 5297 (*doit) (x, arg); 5298 } 5299 } 5300 } 5301 5302 /* Call DOIT for each hard register used as a return value from 5303 the current function. */ 5304 5305 void 5306 diddle_return_value (void (*doit) (rtx, void *), void *arg) 5307 { 5308 diddle_return_value_1 (doit, arg, crtl->return_rtx); 5309 } 5310 5311 static void 5312 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) 5313 { 5314 emit_clobber (reg); 5315 } 5316 5317 void 5318 clobber_return_register (void) 5319 { 5320 diddle_return_value (do_clobber_return_reg, NULL); 5321 5322 /* In case we do use pseudo to return value, clobber it too. */ 5323 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) 5324 { 5325 tree decl_result = DECL_RESULT (current_function_decl); 5326 rtx decl_rtl = DECL_RTL (decl_result); 5327 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER) 5328 { 5329 do_clobber_return_reg (decl_rtl, NULL); 5330 } 5331 } 5332 } 5333 5334 static void 5335 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED) 5336 { 5337 emit_use (reg); 5338 } 5339 5340 static void 5341 use_return_register (void) 5342 { 5343 diddle_return_value (do_use_return_reg, NULL); 5344 } 5345 5346 /* Generate RTL for the end of the current function. */ 5347 5348 void 5349 expand_function_end (void) 5350 { 5351 /* If arg_pointer_save_area was referenced only from a nested 5352 function, we will not have initialized it yet. Do that now. */ 5353 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init) 5354 get_arg_pointer_save_area (); 5355 5356 /* If we are doing generic stack checking and this function makes calls, 5357 do a stack probe at the start of the function to ensure we have enough 5358 space for another stack frame. */ 5359 if (flag_stack_check == GENERIC_STACK_CHECK) 5360 { 5361 rtx_insn *insn, *seq; 5362 5363 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 5364 if (CALL_P (insn)) 5365 { 5366 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE); 5367 start_sequence (); 5368 if (STACK_CHECK_MOVING_SP) 5369 anti_adjust_stack_and_probe (max_frame_size, true); 5370 else 5371 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size); 5372 seq = get_insns (); 5373 end_sequence (); 5374 set_insn_locations (seq, prologue_location); 5375 emit_insn_before (seq, stack_check_probe_note); 5376 break; 5377 } 5378 } 5379 5380 /* End any sequences that failed to be closed due to syntax errors. */ 5381 while (in_sequence_p ()) 5382 end_sequence (); 5383 5384 clear_pending_stack_adjust (); 5385 do_pending_stack_adjust (); 5386 5387 /* Output a linenumber for the end of the function. 5388 SDB depended on this. */ 5389 set_curr_insn_location (input_location); 5390 5391 /* Before the return label (if any), clobber the return 5392 registers so that they are not propagated live to the rest of 5393 the function. This can only happen with functions that drop 5394 through; if there had been a return statement, there would 5395 have either been a return rtx, or a jump to the return label. 5396 5397 We delay actual code generation after the current_function_value_rtx 5398 is computed. */ 5399 rtx_insn *clobber_after = get_last_insn (); 5400 5401 /* Output the label for the actual return from the function. */ 5402 emit_label (return_label); 5403 5404 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ) 5405 { 5406 /* Let except.c know where it should emit the call to unregister 5407 the function context for sjlj exceptions. */ 5408 if (flag_exceptions) 5409 sjlj_emit_function_exit_after (get_last_insn ()); 5410 } 5411 5412 /* If this is an implementation of throw, do what's necessary to 5413 communicate between __builtin_eh_return and the epilogue. */ 5414 expand_eh_return (); 5415 5416 /* If stack protection is enabled for this function, check the guard. */ 5417 if (crtl->stack_protect_guard 5418 && targetm.stack_protect_runtime_enabled_p () 5419 && naked_return_label == NULL_RTX) 5420 stack_protect_epilogue (); 5421 5422 /* If scalar return value was computed in a pseudo-reg, or was a named 5423 return value that got dumped to the stack, copy that to the hard 5424 return register. */ 5425 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl))) 5426 { 5427 tree decl_result = DECL_RESULT (current_function_decl); 5428 rtx decl_rtl = DECL_RTL (decl_result); 5429 5430 if (REG_P (decl_rtl) 5431 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER 5432 : DECL_REGISTER (decl_result)) 5433 { 5434 rtx real_decl_rtl = crtl->return_rtx; 5435 complex_mode cmode; 5436 5437 /* This should be set in assign_parms. */ 5438 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl)); 5439 5440 /* If this is a BLKmode structure being returned in registers, 5441 then use the mode computed in expand_return. Note that if 5442 decl_rtl is memory, then its mode may have been changed, 5443 but that crtl->return_rtx has not. */ 5444 if (GET_MODE (real_decl_rtl) == BLKmode) 5445 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl)); 5446 5447 /* If a non-BLKmode return value should be padded at the least 5448 significant end of the register, shift it left by the appropriate 5449 amount. BLKmode results are handled using the group load/store 5450 machinery. */ 5451 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode 5452 && REG_P (real_decl_rtl) 5453 && targetm.calls.return_in_msb (TREE_TYPE (decl_result))) 5454 { 5455 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl), 5456 REGNO (real_decl_rtl)), 5457 decl_rtl); 5458 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl); 5459 } 5460 else if (GET_CODE (real_decl_rtl) == PARALLEL) 5461 { 5462 /* If expand_function_start has created a PARALLEL for decl_rtl, 5463 move the result to the real return registers. Otherwise, do 5464 a group load from decl_rtl for a named return. */ 5465 if (GET_CODE (decl_rtl) == PARALLEL) 5466 emit_group_move (real_decl_rtl, decl_rtl); 5467 else 5468 emit_group_load (real_decl_rtl, decl_rtl, 5469 TREE_TYPE (decl_result), 5470 int_size_in_bytes (TREE_TYPE (decl_result))); 5471 } 5472 /* In the case of complex integer modes smaller than a word, we'll 5473 need to generate some non-trivial bitfield insertions. Do that 5474 on a pseudo and not the hard register. */ 5475 else if (GET_CODE (decl_rtl) == CONCAT 5476 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode) 5477 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD) 5478 { 5479 int old_generating_concat_p; 5480 rtx tmp; 5481 5482 old_generating_concat_p = generating_concat_p; 5483 generating_concat_p = 0; 5484 tmp = gen_reg_rtx (GET_MODE (decl_rtl)); 5485 generating_concat_p = old_generating_concat_p; 5486 5487 emit_move_insn (tmp, decl_rtl); 5488 emit_move_insn (real_decl_rtl, tmp); 5489 } 5490 /* If a named return value dumped decl_return to memory, then 5491 we may need to re-do the PROMOTE_MODE signed/unsigned 5492 extension. */ 5493 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl)) 5494 { 5495 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result)); 5496 promote_function_mode (TREE_TYPE (decl_result), 5497 GET_MODE (decl_rtl), &unsignedp, 5498 TREE_TYPE (current_function_decl), 1); 5499 5500 convert_move (real_decl_rtl, decl_rtl, unsignedp); 5501 } 5502 else 5503 emit_move_insn (real_decl_rtl, decl_rtl); 5504 } 5505 } 5506 5507 /* If returning a structure, arrange to return the address of the value 5508 in a place where debuggers expect to find it. 5509 5510 If returning a structure PCC style, 5511 the caller also depends on this value. 5512 And cfun->returns_pcc_struct is not necessarily set. */ 5513 if ((cfun->returns_struct || cfun->returns_pcc_struct) 5514 && !targetm.calls.omit_struct_return_reg) 5515 { 5516 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl)); 5517 tree type = TREE_TYPE (DECL_RESULT (current_function_decl)); 5518 rtx outgoing; 5519 5520 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))) 5521 type = TREE_TYPE (type); 5522 else 5523 value_address = XEXP (value_address, 0); 5524 5525 outgoing = targetm.calls.function_value (build_pointer_type (type), 5526 current_function_decl, true); 5527 5528 /* Mark this as a function return value so integrate will delete the 5529 assignment and USE below when inlining this function. */ 5530 REG_FUNCTION_VALUE_P (outgoing) = 1; 5531 5532 /* The address may be ptr_mode and OUTGOING may be Pmode. */ 5533 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing)); 5534 value_address = convert_memory_address (mode, value_address); 5535 5536 emit_move_insn (outgoing, value_address); 5537 5538 /* Show return register used to hold result (in this case the address 5539 of the result. */ 5540 crtl->return_rtx = outgoing; 5541 } 5542 5543 /* Emit the actual code to clobber return register. Don't emit 5544 it if clobber_after is a barrier, then the previous basic block 5545 certainly doesn't fall thru into the exit block. */ 5546 if (!BARRIER_P (clobber_after)) 5547 { 5548 start_sequence (); 5549 clobber_return_register (); 5550 rtx_insn *seq = get_insns (); 5551 end_sequence (); 5552 5553 emit_insn_after (seq, clobber_after); 5554 } 5555 5556 /* Output the label for the naked return from the function. */ 5557 if (naked_return_label) 5558 emit_label (naked_return_label); 5559 5560 /* @@@ This is a kludge. We want to ensure that instructions that 5561 may trap are not moved into the epilogue by scheduling, because 5562 we don't always emit unwind information for the epilogue. */ 5563 if (cfun->can_throw_non_call_exceptions 5564 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ) 5565 emit_insn (gen_blockage ()); 5566 5567 /* If stack protection is enabled for this function, check the guard. */ 5568 if (crtl->stack_protect_guard 5569 && targetm.stack_protect_runtime_enabled_p () 5570 && naked_return_label) 5571 stack_protect_epilogue (); 5572 5573 /* If we had calls to alloca, and this machine needs 5574 an accurate stack pointer to exit the function, 5575 insert some code to save and restore the stack pointer. */ 5576 if (! EXIT_IGNORE_STACK 5577 && cfun->calls_alloca) 5578 { 5579 rtx tem = 0; 5580 5581 start_sequence (); 5582 emit_stack_save (SAVE_FUNCTION, &tem); 5583 rtx_insn *seq = get_insns (); 5584 end_sequence (); 5585 emit_insn_before (seq, parm_birth_insn); 5586 5587 emit_stack_restore (SAVE_FUNCTION, tem); 5588 } 5589 5590 /* ??? This should no longer be necessary since stupid is no longer with 5591 us, but there are some parts of the compiler (eg reload_combine, and 5592 sh mach_dep_reorg) that still try and compute their own lifetime info 5593 instead of using the general framework. */ 5594 use_return_register (); 5595 } 5596 5597 rtx 5598 get_arg_pointer_save_area (void) 5599 { 5600 rtx ret = arg_pointer_save_area; 5601 5602 if (! ret) 5603 { 5604 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0); 5605 arg_pointer_save_area = ret; 5606 } 5607 5608 if (! crtl->arg_pointer_save_area_init) 5609 { 5610 /* Save the arg pointer at the beginning of the function. The 5611 generated stack slot may not be a valid memory address, so we 5612 have to check it and fix it if necessary. */ 5613 start_sequence (); 5614 emit_move_insn (validize_mem (copy_rtx (ret)), 5615 crtl->args.internal_arg_pointer); 5616 rtx_insn *seq = get_insns (); 5617 end_sequence (); 5618 5619 push_topmost_sequence (); 5620 emit_insn_after (seq, entry_of_function ()); 5621 pop_topmost_sequence (); 5622 5623 crtl->arg_pointer_save_area_init = true; 5624 } 5625 5626 return ret; 5627 } 5628 5629 5630 /* If debugging dumps are requested, dump information about how the 5631 target handled -fstack-check=clash for the prologue. 5632 5633 PROBES describes what if any probes were emitted. 5634 5635 RESIDUALS indicates if the prologue had any residual allocation 5636 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */ 5637 5638 void 5639 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals) 5640 { 5641 if (!dump_file) 5642 return; 5643 5644 switch (probes) 5645 { 5646 case NO_PROBE_NO_FRAME: 5647 fprintf (dump_file, 5648 "Stack clash no probe no stack adjustment in prologue.\n"); 5649 break; 5650 case NO_PROBE_SMALL_FRAME: 5651 fprintf (dump_file, 5652 "Stack clash no probe small stack adjustment in prologue.\n"); 5653 break; 5654 case PROBE_INLINE: 5655 fprintf (dump_file, "Stack clash inline probes in prologue.\n"); 5656 break; 5657 case PROBE_LOOP: 5658 fprintf (dump_file, "Stack clash probe loop in prologue.\n"); 5659 break; 5660 } 5661 5662 if (residuals) 5663 fprintf (dump_file, "Stack clash residual allocation in prologue.\n"); 5664 else 5665 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n"); 5666 5667 if (frame_pointer_needed) 5668 fprintf (dump_file, "Stack clash frame pointer needed.\n"); 5669 else 5670 fprintf (dump_file, "Stack clash no frame pointer needed.\n"); 5671 5672 if (TREE_THIS_VOLATILE (cfun->decl)) 5673 fprintf (dump_file, 5674 "Stack clash noreturn prologue, assuming no implicit" 5675 " probes in caller.\n"); 5676 else 5677 fprintf (dump_file, 5678 "Stack clash not noreturn prologue.\n"); 5679 } 5680 5681 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP 5682 for the first time. */ 5683 5684 static void 5685 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp) 5686 { 5687 rtx_insn *tmp; 5688 hash_table<insn_cache_hasher> *hash = *hashp; 5689 5690 if (hash == NULL) 5691 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17); 5692 5693 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp)) 5694 { 5695 rtx *slot = hash->find_slot (tmp, INSERT); 5696 gcc_assert (*slot == NULL); 5697 *slot = tmp; 5698 } 5699 } 5700 5701 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a 5702 basic block, splitting or peepholes. If INSN is a prologue or epilogue 5703 insn, then record COPY as well. */ 5704 5705 void 5706 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy) 5707 { 5708 hash_table<insn_cache_hasher> *hash; 5709 rtx *slot; 5710 5711 hash = epilogue_insn_hash; 5712 if (!hash || !hash->find (insn)) 5713 { 5714 hash = prologue_insn_hash; 5715 if (!hash || !hash->find (insn)) 5716 return; 5717 } 5718 5719 slot = hash->find_slot (copy, INSERT); 5720 gcc_assert (*slot == NULL); 5721 *slot = copy; 5722 } 5723 5724 /* Determine if any INSNs in HASH are, or are part of, INSN. Because 5725 we can be running after reorg, SEQUENCE rtl is possible. */ 5726 5727 static bool 5728 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash) 5729 { 5730 if (hash == NULL) 5731 return false; 5732 5733 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 5734 { 5735 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn)); 5736 int i; 5737 for (i = seq->len () - 1; i >= 0; i--) 5738 if (hash->find (seq->element (i))) 5739 return true; 5740 return false; 5741 } 5742 5743 return hash->find (const_cast<rtx_insn *> (insn)) != NULL; 5744 } 5745 5746 int 5747 prologue_contains (const rtx_insn *insn) 5748 { 5749 return contains (insn, prologue_insn_hash); 5750 } 5751 5752 int 5753 epilogue_contains (const rtx_insn *insn) 5754 { 5755 return contains (insn, epilogue_insn_hash); 5756 } 5757 5758 int 5759 prologue_epilogue_contains (const rtx_insn *insn) 5760 { 5761 if (contains (insn, prologue_insn_hash)) 5762 return 1; 5763 if (contains (insn, epilogue_insn_hash)) 5764 return 1; 5765 return 0; 5766 } 5767 5768 void 5769 record_prologue_seq (rtx_insn *seq) 5770 { 5771 record_insns (seq, NULL, &prologue_insn_hash); 5772 } 5773 5774 void 5775 record_epilogue_seq (rtx_insn *seq) 5776 { 5777 record_insns (seq, NULL, &epilogue_insn_hash); 5778 } 5779 5780 /* Set JUMP_LABEL for a return insn. */ 5781 5782 void 5783 set_return_jump_label (rtx_insn *returnjump) 5784 { 5785 rtx pat = PATTERN (returnjump); 5786 if (GET_CODE (pat) == PARALLEL) 5787 pat = XVECEXP (pat, 0, 0); 5788 if (ANY_RETURN_P (pat)) 5789 JUMP_LABEL (returnjump) = pat; 5790 else 5791 JUMP_LABEL (returnjump) = ret_rtx; 5792 } 5793 5794 /* Return a sequence to be used as the split prologue for the current 5795 function, or NULL. */ 5796 5797 static rtx_insn * 5798 make_split_prologue_seq (void) 5799 { 5800 if (!flag_split_stack 5801 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))) 5802 return NULL; 5803 5804 start_sequence (); 5805 emit_insn (targetm.gen_split_stack_prologue ()); 5806 rtx_insn *seq = get_insns (); 5807 end_sequence (); 5808 5809 record_insns (seq, NULL, &prologue_insn_hash); 5810 set_insn_locations (seq, prologue_location); 5811 5812 return seq; 5813 } 5814 5815 /* Return a sequence to be used as the prologue for the current function, 5816 or NULL. */ 5817 5818 static rtx_insn * 5819 make_prologue_seq (void) 5820 { 5821 if (!targetm.have_prologue ()) 5822 return NULL; 5823 5824 start_sequence (); 5825 rtx_insn *seq = targetm.gen_prologue (); 5826 emit_insn (seq); 5827 5828 /* Insert an explicit USE for the frame pointer 5829 if the profiling is on and the frame pointer is required. */ 5830 if (crtl->profile && frame_pointer_needed) 5831 emit_use (hard_frame_pointer_rtx); 5832 5833 /* Retain a map of the prologue insns. */ 5834 record_insns (seq, NULL, &prologue_insn_hash); 5835 emit_note (NOTE_INSN_PROLOGUE_END); 5836 5837 /* Ensure that instructions are not moved into the prologue when 5838 profiling is on. The call to the profiling routine can be 5839 emitted within the live range of a call-clobbered register. */ 5840 if (!targetm.profile_before_prologue () && crtl->profile) 5841 emit_insn (gen_blockage ()); 5842 5843 seq = get_insns (); 5844 end_sequence (); 5845 set_insn_locations (seq, prologue_location); 5846 5847 return seq; 5848 } 5849 5850 /* Return a sequence to be used as the epilogue for the current function, 5851 or NULL. */ 5852 5853 static rtx_insn * 5854 make_epilogue_seq (void) 5855 { 5856 if (!targetm.have_epilogue ()) 5857 return NULL; 5858 5859 start_sequence (); 5860 emit_note (NOTE_INSN_EPILOGUE_BEG); 5861 rtx_insn *seq = targetm.gen_epilogue (); 5862 if (seq) 5863 emit_jump_insn (seq); 5864 5865 /* Retain a map of the epilogue insns. */ 5866 record_insns (seq, NULL, &epilogue_insn_hash); 5867 set_insn_locations (seq, epilogue_location); 5868 5869 seq = get_insns (); 5870 rtx_insn *returnjump = get_last_insn (); 5871 end_sequence (); 5872 5873 if (JUMP_P (returnjump)) 5874 set_return_jump_label (returnjump); 5875 5876 return seq; 5877 } 5878 5879 5880 /* Generate the prologue and epilogue RTL if the machine supports it. Thread 5881 this into place with notes indicating where the prologue ends and where 5882 the epilogue begins. Update the basic block information when possible. 5883 5884 Notes on epilogue placement: 5885 There are several kinds of edges to the exit block: 5886 * a single fallthru edge from LAST_BB 5887 * possibly, edges from blocks containing sibcalls 5888 * possibly, fake edges from infinite loops 5889 5890 The epilogue is always emitted on the fallthru edge from the last basic 5891 block in the function, LAST_BB, into the exit block. 5892 5893 If LAST_BB is empty except for a label, it is the target of every 5894 other basic block in the function that ends in a return. If a 5895 target has a return or simple_return pattern (possibly with 5896 conditional variants), these basic blocks can be changed so that a 5897 return insn is emitted into them, and their target is adjusted to 5898 the real exit block. 5899 5900 Notes on shrink wrapping: We implement a fairly conservative 5901 version of shrink-wrapping rather than the textbook one. We only 5902 generate a single prologue and a single epilogue. This is 5903 sufficient to catch a number of interesting cases involving early 5904 exits. 5905 5906 First, we identify the blocks that require the prologue to occur before 5907 them. These are the ones that modify a call-saved register, or reference 5908 any of the stack or frame pointer registers. To simplify things, we then 5909 mark everything reachable from these blocks as also requiring a prologue. 5910 This takes care of loops automatically, and avoids the need to examine 5911 whether MEMs reference the frame, since it is sufficient to check for 5912 occurrences of the stack or frame pointer. 5913 5914 We then compute the set of blocks for which the need for a prologue 5915 is anticipatable (borrowing terminology from the shrink-wrapping 5916 description in Muchnick's book). These are the blocks which either 5917 require a prologue themselves, or those that have only successors 5918 where the prologue is anticipatable. The prologue needs to be 5919 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1 5920 is not. For the moment, we ensure that only one such edge exists. 5921 5922 The epilogue is placed as described above, but we make a 5923 distinction between inserting return and simple_return patterns 5924 when modifying other blocks that end in a return. Blocks that end 5925 in a sibcall omit the sibcall_epilogue if the block is not in 5926 ANTIC. */ 5927 5928 void 5929 thread_prologue_and_epilogue_insns (void) 5930 { 5931 df_analyze (); 5932 5933 /* Can't deal with multiple successors of the entry block at the 5934 moment. Function should always have at least one entry 5935 point. */ 5936 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun))); 5937 5938 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 5939 edge orig_entry_edge = entry_edge; 5940 5941 rtx_insn *split_prologue_seq = make_split_prologue_seq (); 5942 rtx_insn *prologue_seq = make_prologue_seq (); 5943 rtx_insn *epilogue_seq = make_epilogue_seq (); 5944 5945 /* Try to perform a kind of shrink-wrapping, making sure the 5946 prologue/epilogue is emitted only around those parts of the 5947 function that require it. */ 5948 try_shrink_wrapping (&entry_edge, prologue_seq); 5949 5950 /* If the target can handle splitting the prologue/epilogue into separate 5951 components, try to shrink-wrap these components separately. */ 5952 try_shrink_wrapping_separate (entry_edge->dest); 5953 5954 /* If that did anything for any component we now need the generate the 5955 "main" prologue again. Because some targets require some of these 5956 to be called in a specific order (i386 requires the split prologue 5957 to be first, for example), we create all three sequences again here. 5958 If this does not work for some target, that target should not enable 5959 separate shrink-wrapping. */ 5960 if (crtl->shrink_wrapped_separate) 5961 { 5962 split_prologue_seq = make_split_prologue_seq (); 5963 prologue_seq = make_prologue_seq (); 5964 epilogue_seq = make_epilogue_seq (); 5965 } 5966 5967 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)); 5968 5969 /* A small fib -- epilogue is not yet completed, but we wish to re-use 5970 this marker for the splits of EH_RETURN patterns, and nothing else 5971 uses the flag in the meantime. */ 5972 epilogue_completed = 1; 5973 5974 /* Find non-fallthru edges that end with EH_RETURN instructions. On 5975 some targets, these get split to a special version of the epilogue 5976 code. In order to be able to properly annotate these with unwind 5977 info, try to split them now. If we get a valid split, drop an 5978 EPILOGUE_BEG note and mark the insns as epilogue insns. */ 5979 edge e; 5980 edge_iterator ei; 5981 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 5982 { 5983 rtx_insn *prev, *last, *trial; 5984 5985 if (e->flags & EDGE_FALLTHRU) 5986 continue; 5987 last = BB_END (e->src); 5988 if (!eh_returnjump_p (last)) 5989 continue; 5990 5991 prev = PREV_INSN (last); 5992 trial = try_split (PATTERN (last), last, 1); 5993 if (trial == last) 5994 continue; 5995 5996 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash); 5997 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev); 5998 } 5999 6000 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); 6001 6002 if (exit_fallthru_edge) 6003 { 6004 if (epilogue_seq) 6005 { 6006 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge); 6007 commit_edge_insertions (); 6008 6009 /* The epilogue insns we inserted may cause the exit edge to no longer 6010 be fallthru. */ 6011 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 6012 { 6013 if (((e->flags & EDGE_FALLTHRU) != 0) 6014 && returnjump_p (BB_END (e->src))) 6015 e->flags &= ~EDGE_FALLTHRU; 6016 } 6017 } 6018 else if (next_active_insn (BB_END (exit_fallthru_edge->src))) 6019 { 6020 /* We have a fall-through edge to the exit block, the source is not 6021 at the end of the function, and there will be an assembler epilogue 6022 at the end of the function. 6023 We can't use force_nonfallthru here, because that would try to 6024 use return. Inserting a jump 'by hand' is extremely messy, so 6025 we take advantage of cfg_layout_finalize using 6026 fixup_fallthru_exit_predecessor. */ 6027 cfg_layout_initialize (0); 6028 basic_block cur_bb; 6029 FOR_EACH_BB_FN (cur_bb, cfun) 6030 if (cur_bb->index >= NUM_FIXED_BLOCKS 6031 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS) 6032 cur_bb->aux = cur_bb->next_bb; 6033 cfg_layout_finalize (); 6034 } 6035 } 6036 6037 /* Insert the prologue. */ 6038 6039 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun)); 6040 6041 if (split_prologue_seq || prologue_seq) 6042 { 6043 rtx_insn *split_prologue_insn = split_prologue_seq; 6044 if (split_prologue_seq) 6045 { 6046 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn)) 6047 split_prologue_insn = NEXT_INSN (split_prologue_insn); 6048 insert_insn_on_edge (split_prologue_seq, orig_entry_edge); 6049 } 6050 6051 rtx_insn *prologue_insn = prologue_seq; 6052 if (prologue_seq) 6053 { 6054 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn)) 6055 prologue_insn = NEXT_INSN (prologue_insn); 6056 insert_insn_on_edge (prologue_seq, entry_edge); 6057 } 6058 6059 commit_edge_insertions (); 6060 6061 /* Look for basic blocks within the prologue insns. */ 6062 if (split_prologue_insn 6063 && BLOCK_FOR_INSN (split_prologue_insn) == NULL) 6064 split_prologue_insn = NULL; 6065 if (prologue_insn 6066 && BLOCK_FOR_INSN (prologue_insn) == NULL) 6067 prologue_insn = NULL; 6068 if (split_prologue_insn || prologue_insn) 6069 { 6070 auto_sbitmap blocks (last_basic_block_for_fn (cfun)); 6071 bitmap_clear (blocks); 6072 if (split_prologue_insn) 6073 bitmap_set_bit (blocks, 6074 BLOCK_FOR_INSN (split_prologue_insn)->index); 6075 if (prologue_insn) 6076 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index); 6077 find_many_sub_basic_blocks (blocks); 6078 } 6079 } 6080 6081 default_rtl_profile (); 6082 6083 /* Emit sibling epilogues before any sibling call sites. */ 6084 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); 6085 (e = ei_safe_edge (ei)); 6086 ei_next (&ei)) 6087 { 6088 /* Skip those already handled, the ones that run without prologue. */ 6089 if (e->flags & EDGE_IGNORE) 6090 { 6091 e->flags &= ~EDGE_IGNORE; 6092 continue; 6093 } 6094 6095 rtx_insn *insn = BB_END (e->src); 6096 6097 if (!(CALL_P (insn) && SIBLING_CALL_P (insn))) 6098 continue; 6099 6100 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ()) 6101 { 6102 start_sequence (); 6103 emit_note (NOTE_INSN_EPILOGUE_BEG); 6104 emit_insn (ep_seq); 6105 rtx_insn *seq = get_insns (); 6106 end_sequence (); 6107 6108 /* Retain a map of the epilogue insns. Used in life analysis to 6109 avoid getting rid of sibcall epilogue insns. Do this before we 6110 actually emit the sequence. */ 6111 record_insns (seq, NULL, &epilogue_insn_hash); 6112 set_insn_locations (seq, epilogue_location); 6113 6114 emit_insn_before (seq, insn); 6115 } 6116 } 6117 6118 if (epilogue_seq) 6119 { 6120 rtx_insn *insn, *next; 6121 6122 /* Similarly, move any line notes that appear after the epilogue. 6123 There is no need, however, to be quite so anal about the existence 6124 of such a note. Also possibly move 6125 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug 6126 info generation. */ 6127 for (insn = epilogue_seq; insn; insn = next) 6128 { 6129 next = NEXT_INSN (insn); 6130 if (NOTE_P (insn) 6131 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)) 6132 reorder_insns (insn, insn, PREV_INSN (epilogue_seq)); 6133 } 6134 } 6135 6136 /* Threading the prologue and epilogue changes the artificial refs 6137 in the entry and exit blocks. */ 6138 epilogue_completed = 1; 6139 df_update_entry_exit_and_calls (); 6140 } 6141 6142 /* Reposition the prologue-end and epilogue-begin notes after 6143 instruction scheduling. */ 6144 6145 void 6146 reposition_prologue_and_epilogue_notes (void) 6147 { 6148 if (!targetm.have_prologue () 6149 && !targetm.have_epilogue () 6150 && !targetm.have_sibcall_epilogue ()) 6151 return; 6152 6153 /* Since the hash table is created on demand, the fact that it is 6154 non-null is a signal that it is non-empty. */ 6155 if (prologue_insn_hash != NULL) 6156 { 6157 size_t len = prologue_insn_hash->elements (); 6158 rtx_insn *insn, *last = NULL, *note = NULL; 6159 6160 /* Scan from the beginning until we reach the last prologue insn. */ 6161 /* ??? While we do have the CFG intact, there are two problems: 6162 (1) The prologue can contain loops (typically probing the stack), 6163 which means that the end of the prologue isn't in the first bb. 6164 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */ 6165 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 6166 { 6167 if (NOTE_P (insn)) 6168 { 6169 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END) 6170 note = insn; 6171 } 6172 else if (contains (insn, prologue_insn_hash)) 6173 { 6174 last = insn; 6175 if (--len == 0) 6176 break; 6177 } 6178 } 6179 6180 if (last) 6181 { 6182 if (note == NULL) 6183 { 6184 /* Scan forward looking for the PROLOGUE_END note. It should 6185 be right at the beginning of the block, possibly with other 6186 insn notes that got moved there. */ 6187 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note)) 6188 { 6189 if (NOTE_P (note) 6190 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END) 6191 break; 6192 } 6193 } 6194 6195 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */ 6196 if (LABEL_P (last)) 6197 last = NEXT_INSN (last); 6198 reorder_insns (note, note, last); 6199 } 6200 } 6201 6202 if (epilogue_insn_hash != NULL) 6203 { 6204 edge_iterator ei; 6205 edge e; 6206 6207 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) 6208 { 6209 rtx_insn *insn, *first = NULL, *note = NULL; 6210 basic_block bb = e->src; 6211 6212 /* Scan from the beginning until we reach the first epilogue insn. */ 6213 FOR_BB_INSNS (bb, insn) 6214 { 6215 if (NOTE_P (insn)) 6216 { 6217 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG) 6218 { 6219 note = insn; 6220 if (first != NULL) 6221 break; 6222 } 6223 } 6224 else if (first == NULL && contains (insn, epilogue_insn_hash)) 6225 { 6226 first = insn; 6227 if (note != NULL) 6228 break; 6229 } 6230 } 6231 6232 if (note) 6233 { 6234 /* If the function has a single basic block, and no real 6235 epilogue insns (e.g. sibcall with no cleanup), the 6236 epilogue note can get scheduled before the prologue 6237 note. If we have frame related prologue insns, having 6238 them scanned during the epilogue will result in a crash. 6239 In this case re-order the epilogue note to just before 6240 the last insn in the block. */ 6241 if (first == NULL) 6242 first = BB_END (bb); 6243 6244 if (PREV_INSN (first) != note) 6245 reorder_insns (note, note, PREV_INSN (first)); 6246 } 6247 } 6248 } 6249 } 6250 6251 /* Returns the name of function declared by FNDECL. */ 6252 const char * 6253 fndecl_name (tree fndecl) 6254 { 6255 if (fndecl == NULL) 6256 return "(nofn)"; 6257 return lang_hooks.decl_printable_name (fndecl, 1); 6258 } 6259 6260 /* Returns the name of function FN. */ 6261 const char * 6262 function_name (struct function *fn) 6263 { 6264 tree fndecl = (fn == NULL) ? NULL : fn->decl; 6265 return fndecl_name (fndecl); 6266 } 6267 6268 /* Returns the name of the current function. */ 6269 const char * 6270 current_function_name (void) 6271 { 6272 return function_name (cfun); 6273 } 6274 6275 6276 static unsigned int 6277 rest_of_handle_check_leaf_regs (void) 6278 { 6279 #ifdef LEAF_REGISTERS 6280 crtl->uses_only_leaf_regs 6281 = optimize > 0 && only_leaf_regs_used () && leaf_function_p (); 6282 #endif 6283 return 0; 6284 } 6285 6286 /* Insert a TYPE into the used types hash table of CFUN. */ 6287 6288 static void 6289 used_types_insert_helper (tree type, struct function *func) 6290 { 6291 if (type != NULL && func != NULL) 6292 { 6293 if (func->used_types_hash == NULL) 6294 func->used_types_hash = hash_set<tree>::create_ggc (37); 6295 6296 func->used_types_hash->add (type); 6297 } 6298 } 6299 6300 /* Given a type, insert it into the used hash table in cfun. */ 6301 void 6302 used_types_insert (tree t) 6303 { 6304 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE) 6305 if (TYPE_NAME (t)) 6306 break; 6307 else 6308 t = TREE_TYPE (t); 6309 if (TREE_CODE (t) == ERROR_MARK) 6310 return; 6311 if (TYPE_NAME (t) == NULL_TREE 6312 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t))) 6313 t = TYPE_MAIN_VARIANT (t); 6314 if (debug_info_level > DINFO_LEVEL_NONE) 6315 { 6316 if (cfun) 6317 used_types_insert_helper (t, cfun); 6318 else 6319 { 6320 /* So this might be a type referenced by a global variable. 6321 Record that type so that we can later decide to emit its 6322 debug information. */ 6323 vec_safe_push (types_used_by_cur_var_decl, t); 6324 } 6325 } 6326 } 6327 6328 /* Helper to Hash a struct types_used_by_vars_entry. */ 6329 6330 static hashval_t 6331 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry) 6332 { 6333 gcc_assert (entry && entry->var_decl && entry->type); 6334 6335 return iterative_hash_object (entry->type, 6336 iterative_hash_object (entry->var_decl, 0)); 6337 } 6338 6339 /* Hash function of the types_used_by_vars_entry hash table. */ 6340 6341 hashval_t 6342 used_type_hasher::hash (types_used_by_vars_entry *entry) 6343 { 6344 return hash_types_used_by_vars_entry (entry); 6345 } 6346 6347 /*Equality function of the types_used_by_vars_entry hash table. */ 6348 6349 bool 6350 used_type_hasher::equal (types_used_by_vars_entry *e1, 6351 types_used_by_vars_entry *e2) 6352 { 6353 return (e1->var_decl == e2->var_decl && e1->type == e2->type); 6354 } 6355 6356 /* Inserts an entry into the types_used_by_vars_hash hash table. */ 6357 6358 void 6359 types_used_by_var_decl_insert (tree type, tree var_decl) 6360 { 6361 if (type != NULL && var_decl != NULL) 6362 { 6363 types_used_by_vars_entry **slot; 6364 struct types_used_by_vars_entry e; 6365 e.var_decl = var_decl; 6366 e.type = type; 6367 if (types_used_by_vars_hash == NULL) 6368 types_used_by_vars_hash 6369 = hash_table<used_type_hasher>::create_ggc (37); 6370 6371 slot = types_used_by_vars_hash->find_slot (&e, INSERT); 6372 if (*slot == NULL) 6373 { 6374 struct types_used_by_vars_entry *entry; 6375 entry = ggc_alloc<types_used_by_vars_entry> (); 6376 entry->type = type; 6377 entry->var_decl = var_decl; 6378 *slot = entry; 6379 } 6380 } 6381 } 6382 6383 namespace { 6384 6385 const pass_data pass_data_leaf_regs = 6386 { 6387 RTL_PASS, /* type */ 6388 "*leaf_regs", /* name */ 6389 OPTGROUP_NONE, /* optinfo_flags */ 6390 TV_NONE, /* tv_id */ 6391 0, /* properties_required */ 6392 0, /* properties_provided */ 6393 0, /* properties_destroyed */ 6394 0, /* todo_flags_start */ 6395 0, /* todo_flags_finish */ 6396 }; 6397 6398 class pass_leaf_regs : public rtl_opt_pass 6399 { 6400 public: 6401 pass_leaf_regs (gcc::context *ctxt) 6402 : rtl_opt_pass (pass_data_leaf_regs, ctxt) 6403 {} 6404 6405 /* opt_pass methods: */ 6406 virtual unsigned int execute (function *) 6407 { 6408 return rest_of_handle_check_leaf_regs (); 6409 } 6410 6411 }; // class pass_leaf_regs 6412 6413 } // anon namespace 6414 6415 rtl_opt_pass * 6416 make_pass_leaf_regs (gcc::context *ctxt) 6417 { 6418 return new pass_leaf_regs (ctxt); 6419 } 6420 6421 static unsigned int 6422 rest_of_handle_thread_prologue_and_epilogue (void) 6423 { 6424 /* prepare_shrink_wrap is sensitive to the block structure of the control 6425 flow graph, so clean it up first. */ 6426 if (optimize) 6427 cleanup_cfg (0); 6428 6429 /* On some machines, the prologue and epilogue code, or parts thereof, 6430 can be represented as RTL. Doing so lets us schedule insns between 6431 it and the rest of the code and also allows delayed branch 6432 scheduling to operate in the epilogue. */ 6433 thread_prologue_and_epilogue_insns (); 6434 6435 /* Some non-cold blocks may now be only reachable from cold blocks. 6436 Fix that up. */ 6437 fixup_partitions (); 6438 6439 /* Shrink-wrapping can result in unreachable edges in the epilogue, 6440 see PR57320. */ 6441 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0); 6442 6443 /* The stack usage info is finalized during prologue expansion. */ 6444 if (flag_stack_usage_info || flag_callgraph_info) 6445 output_stack_usage (); 6446 6447 return 0; 6448 } 6449 6450 /* Record a final call to CALLEE at LOCATION. */ 6451 6452 void 6453 record_final_call (tree callee, location_t location) 6454 { 6455 struct callinfo_callee datum = { location, callee }; 6456 vec_safe_push (cfun->su->callees, datum); 6457 } 6458 6459 /* Record a dynamic allocation made for DECL_OR_EXP. */ 6460 6461 void 6462 record_dynamic_alloc (tree decl_or_exp) 6463 { 6464 struct callinfo_dalloc datum; 6465 6466 if (DECL_P (decl_or_exp)) 6467 { 6468 datum.location = DECL_SOURCE_LOCATION (decl_or_exp); 6469 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2); 6470 const char *dot = strrchr (name, '.'); 6471 if (dot) 6472 name = dot + 1; 6473 datum.name = ggc_strdup (name); 6474 } 6475 else 6476 { 6477 datum.location = EXPR_LOCATION (decl_or_exp); 6478 datum.name = NULL; 6479 } 6480 6481 vec_safe_push (cfun->su->dallocs, datum); 6482 } 6483 6484 namespace { 6485 6486 const pass_data pass_data_thread_prologue_and_epilogue = 6487 { 6488 RTL_PASS, /* type */ 6489 "pro_and_epilogue", /* name */ 6490 OPTGROUP_NONE, /* optinfo_flags */ 6491 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */ 6492 0, /* properties_required */ 6493 0, /* properties_provided */ 6494 0, /* properties_destroyed */ 6495 0, /* todo_flags_start */ 6496 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */ 6497 }; 6498 6499 class pass_thread_prologue_and_epilogue : public rtl_opt_pass 6500 { 6501 public: 6502 pass_thread_prologue_and_epilogue (gcc::context *ctxt) 6503 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt) 6504 {} 6505 6506 /* opt_pass methods: */ 6507 virtual unsigned int execute (function *) 6508 { 6509 return rest_of_handle_thread_prologue_and_epilogue (); 6510 } 6511 6512 }; // class pass_thread_prologue_and_epilogue 6513 6514 } // anon namespace 6515 6516 rtl_opt_pass * 6517 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt) 6518 { 6519 return new pass_thread_prologue_and_epilogue (ctxt); 6520 } 6521 6522 6523 /* If CONSTRAINT is a matching constraint, then return its number. 6524 Otherwise, return -1. */ 6525 6526 static int 6527 matching_constraint_num (const char *constraint) 6528 { 6529 if (*constraint == '%') 6530 constraint++; 6531 6532 if (IN_RANGE (*constraint, '0', '9')) 6533 return strtoul (constraint, NULL, 10); 6534 6535 return -1; 6536 } 6537 6538 /* This mini-pass fixes fall-out from SSA in asm statements that have 6539 in-out constraints. Say you start with 6540 6541 orig = inout; 6542 asm ("": "+mr" (inout)); 6543 use (orig); 6544 6545 which is transformed very early to use explicit output and match operands: 6546 6547 orig = inout; 6548 asm ("": "=mr" (inout) : "0" (inout)); 6549 use (orig); 6550 6551 Or, after SSA and copyprop, 6552 6553 asm ("": "=mr" (inout_2) : "0" (inout_1)); 6554 use (inout_1); 6555 6556 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as 6557 they represent two separate values, so they will get different pseudo 6558 registers during expansion. Then, since the two operands need to match 6559 per the constraints, but use different pseudo registers, reload can 6560 only register a reload for these operands. But reloads can only be 6561 satisfied by hardregs, not by memory, so we need a register for this 6562 reload, just because we are presented with non-matching operands. 6563 So, even though we allow memory for this operand, no memory can be 6564 used for it, just because the two operands don't match. This can 6565 cause reload failures on register-starved targets. 6566 6567 So it's a symptom of reload not being able to use memory for reloads 6568 or, alternatively it's also a symptom of both operands not coming into 6569 reload as matching (in which case the pseudo could go to memory just 6570 fine, as the alternative allows it, and no reload would be necessary). 6571 We fix the latter problem here, by transforming 6572 6573 asm ("": "=mr" (inout_2) : "0" (inout_1)); 6574 6575 back to 6576 6577 inout_2 = inout_1; 6578 asm ("": "=mr" (inout_2) : "0" (inout_2)); */ 6579 6580 static void 6581 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs) 6582 { 6583 int i; 6584 bool changed = false; 6585 rtx op = SET_SRC (p_sets[0]); 6586 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op); 6587 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op); 6588 bool *output_matched = XALLOCAVEC (bool, noutputs); 6589 6590 memset (output_matched, 0, noutputs * sizeof (bool)); 6591 for (i = 0; i < ninputs; i++) 6592 { 6593 rtx input, output; 6594 rtx_insn *insns; 6595 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i); 6596 int match, j; 6597 6598 match = matching_constraint_num (constraint); 6599 if (match < 0) 6600 continue; 6601 6602 gcc_assert (match < noutputs); 6603 output = SET_DEST (p_sets[match]); 6604 input = RTVEC_ELT (inputs, i); 6605 /* Only do the transformation for pseudos. */ 6606 if (! REG_P (output) 6607 || rtx_equal_p (output, input) 6608 || !(REG_P (input) || SUBREG_P (input) 6609 || MEM_P (input) || CONSTANT_P (input)) 6610 || !general_operand (input, GET_MODE (output))) 6611 continue; 6612 6613 /* We can't do anything if the output is also used as input, 6614 as we're going to overwrite it. */ 6615 for (j = 0; j < ninputs; j++) 6616 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j))) 6617 break; 6618 if (j != ninputs) 6619 continue; 6620 6621 /* Avoid changing the same input several times. For 6622 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in)); 6623 only change it once (to out1), rather than changing it 6624 first to out1 and afterwards to out2. */ 6625 if (i > 0) 6626 { 6627 for (j = 0; j < noutputs; j++) 6628 if (output_matched[j] && input == SET_DEST (p_sets[j])) 6629 break; 6630 if (j != noutputs) 6631 continue; 6632 } 6633 output_matched[match] = true; 6634 6635 start_sequence (); 6636 emit_move_insn (output, copy_rtx (input)); 6637 insns = get_insns (); 6638 end_sequence (); 6639 emit_insn_before (insns, insn); 6640 6641 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match])); 6642 bool early_clobber_p = strchr (constraint, '&') != NULL; 6643 6644 /* Now replace all mentions of the input with output. We can't 6645 just replace the occurrence in inputs[i], as the register might 6646 also be used in some other input (or even in an address of an 6647 output), which would mean possibly increasing the number of 6648 inputs by one (namely 'output' in addition), which might pose 6649 a too complicated problem for reload to solve. E.g. this situation: 6650 6651 asm ("" : "=r" (output), "=m" (input) : "0" (input)) 6652 6653 Here 'input' is used in two occurrences as input (once for the 6654 input operand, once for the address in the second output operand). 6655 If we would replace only the occurrence of the input operand (to 6656 make the matching) we would be left with this: 6657 6658 output = input 6659 asm ("" : "=r" (output), "=m" (input) : "0" (output)) 6660 6661 Now we suddenly have two different input values (containing the same 6662 value, but different pseudos) where we formerly had only one. 6663 With more complicated asms this might lead to reload failures 6664 which wouldn't have happen without this pass. So, iterate over 6665 all operands and replace all occurrences of the register used. 6666 6667 However, if one or more of the 'input' uses have a non-matching 6668 constraint and the matched output operand is an early clobber 6669 operand, then do not replace the input operand, since by definition 6670 it conflicts with the output operand and cannot share the same 6671 register. See PR89313 for details. */ 6672 6673 for (j = 0; j < noutputs; j++) 6674 if (!rtx_equal_p (SET_DEST (p_sets[j]), input) 6675 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j]))) 6676 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]), 6677 input, output); 6678 for (j = 0; j < ninputs; j++) 6679 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j))) 6680 { 6681 if (!early_clobber_p 6682 || match == matching_constraint_num 6683 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j))) 6684 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j), 6685 input, output); 6686 } 6687 6688 changed = true; 6689 } 6690 6691 if (changed) 6692 df_insn_rescan (insn); 6693 } 6694 6695 /* Add the decl D to the local_decls list of FUN. */ 6696 6697 void 6698 add_local_decl (struct function *fun, tree d) 6699 { 6700 gcc_assert (VAR_P (d)); 6701 vec_safe_push (fun->local_decls, d); 6702 } 6703 6704 namespace { 6705 6706 const pass_data pass_data_match_asm_constraints = 6707 { 6708 RTL_PASS, /* type */ 6709 "asmcons", /* name */ 6710 OPTGROUP_NONE, /* optinfo_flags */ 6711 TV_NONE, /* tv_id */ 6712 0, /* properties_required */ 6713 0, /* properties_provided */ 6714 0, /* properties_destroyed */ 6715 0, /* todo_flags_start */ 6716 0, /* todo_flags_finish */ 6717 }; 6718 6719 class pass_match_asm_constraints : public rtl_opt_pass 6720 { 6721 public: 6722 pass_match_asm_constraints (gcc::context *ctxt) 6723 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt) 6724 {} 6725 6726 /* opt_pass methods: */ 6727 virtual unsigned int execute (function *); 6728 6729 }; // class pass_match_asm_constraints 6730 6731 unsigned 6732 pass_match_asm_constraints::execute (function *fun) 6733 { 6734 basic_block bb; 6735 rtx_insn *insn; 6736 rtx pat, *p_sets; 6737 int noutputs; 6738 6739 if (!crtl->has_asm_statement) 6740 return 0; 6741 6742 df_set_flags (DF_DEFER_INSN_RESCAN); 6743 FOR_EACH_BB_FN (bb, fun) 6744 { 6745 FOR_BB_INSNS (bb, insn) 6746 { 6747 if (!INSN_P (insn)) 6748 continue; 6749 6750 pat = PATTERN (insn); 6751 if (GET_CODE (pat) == PARALLEL) 6752 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0); 6753 else if (GET_CODE (pat) == SET) 6754 p_sets = &PATTERN (insn), noutputs = 1; 6755 else 6756 continue; 6757 6758 if (GET_CODE (*p_sets) == SET 6759 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS) 6760 match_asm_constraints_1 (insn, p_sets, noutputs); 6761 } 6762 } 6763 6764 return TODO_df_finish; 6765 } 6766 6767 } // anon namespace 6768 6769 rtl_opt_pass * 6770 make_pass_match_asm_constraints (gcc::context *ctxt) 6771 { 6772 return new pass_match_asm_constraints (ctxt); 6773 } 6774 6775 6776 #include "gt-function.h" 6777