1 /* Common block and equivalence list handling 2 Copyright (C) 2000-2019 Free Software Foundation, Inc. 3 Contributed by Canqun Yang <canqun@nudt.edu.cn> 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 /* The core algorithm is based on Andy Vaught's g95 tree. Also the 22 way to build UNION_TYPE is borrowed from Richard Henderson. 23 24 Transform common blocks. An integral part of this is processing 25 equivalence variables. Equivalenced variables that are not in a 26 common block end up in a private block of their own. 27 28 Each common block or local equivalence list is declared as a union. 29 Variables within the block are represented as a field within the 30 block with the proper offset. 31 32 So if two variables are equivalenced, they just point to a common 33 area in memory. 34 35 Mathematically, laying out an equivalence block is equivalent to 36 solving a linear system of equations. The matrix is usually a 37 sparse matrix in which each row contains all zero elements except 38 for a +1 and a -1, a sort of a generalized Vandermonde matrix. The 39 matrix is usually block diagonal. The system can be 40 overdetermined, underdetermined or have a unique solution. If the 41 system is inconsistent, the program is not standard conforming. 42 The solution vector is integral, since all of the pivots are +1 or -1. 43 44 How we lay out an equivalence block is a little less complicated. 45 In an equivalence list with n elements, there are n-1 conditions to 46 be satisfied. The conditions partition the variables into what we 47 will call segments. If A and B are equivalenced then A and B are 48 in the same segment. If B and C are equivalenced as well, then A, 49 B and C are in a segment and so on. Each segment is a block of 50 memory that has one or more variables equivalenced in some way. A 51 common block is made up of a series of segments that are joined one 52 after the other. In the linear system, a segment is a block 53 diagonal. 54 55 To lay out a segment we first start with some variable and 56 determine its length. The first variable is assumed to start at 57 offset one and extends to however long it is. We then traverse the 58 list of equivalences to find an unused condition that involves at 59 least one of the variables currently in the segment. 60 61 Each equivalence condition amounts to the condition B+b=C+c where B 62 and C are the offsets of the B and C variables, and b and c are 63 constants which are nonzero for array elements, substrings or 64 structure components. So for 65 66 EQUIVALENCE(B(2), C(3)) 67 we have 68 B + 2*size of B's elements = C + 3*size of C's elements. 69 70 If B and C are known we check to see if the condition already 71 holds. If B is known we can solve for C. Since we know the length 72 of C, we can see if the minimum and maximum extents of the segment 73 are affected. Eventually, we make a full pass through the 74 equivalence list without finding any new conditions and the segment 75 is fully specified. 76 77 At this point, the segment is added to the current common block. 78 Since we know the minimum extent of the segment, everything in the 79 segment is translated to its position in the common block. The 80 usual case here is that there are no equivalence statements and the 81 common block is series of segments with one variable each, which is 82 a diagonal matrix in the matrix formulation. 83 84 Each segment is described by a chain of segment_info structures. Each 85 segment_info structure describes the extents of a single variable within 86 the segment. This list is maintained in the order the elements are 87 positioned within the segment. If two elements have the same starting 88 offset the smaller will come first. If they also have the same size their 89 ordering is undefined. 90 91 Once all common blocks have been created, the list of equivalences 92 is examined for still-unused equivalence conditions. We create a 93 block for each merged equivalence list. */ 94 95 #include "config.h" 96 #define INCLUDE_MAP 97 #include "system.h" 98 #include "coretypes.h" 99 #include "tm.h" 100 #include "tree.h" 101 #include "gfortran.h" 102 #include "trans.h" 103 #include "stringpool.h" 104 #include "fold-const.h" 105 #include "stor-layout.h" 106 #include "varasm.h" 107 #include "trans-types.h" 108 #include "trans-const.h" 109 #include "target-memory.h" 110 111 112 /* Holds a single variable in an equivalence set. */ 113 typedef struct segment_info 114 { 115 gfc_symbol *sym; 116 HOST_WIDE_INT offset; 117 HOST_WIDE_INT length; 118 /* This will contain the field type until the field is created. */ 119 tree field; 120 struct segment_info *next; 121 } segment_info; 122 123 static segment_info * current_segment; 124 125 /* Store decl of all common blocks in this translation unit; the first 126 tree is the identifier. */ 127 static std::map<tree, tree> gfc_map_of_all_commons; 128 129 130 /* Make a segment_info based on a symbol. */ 131 132 static segment_info * 133 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset) 134 { 135 segment_info *s; 136 137 /* Make sure we've got the character length. */ 138 if (sym->ts.type == BT_CHARACTER) 139 gfc_conv_const_charlen (sym->ts.u.cl); 140 141 /* Create the segment_info and fill it in. */ 142 s = XCNEW (segment_info); 143 s->sym = sym; 144 /* We will use this type when building the segment aggregate type. */ 145 s->field = gfc_sym_type (sym); 146 s->length = int_size_in_bytes (s->field); 147 s->offset = offset; 148 149 return s; 150 } 151 152 153 /* Add a copy of a segment list to the namespace. This is specifically for 154 equivalence segments, so that dependency checking can be done on 155 equivalence group members. */ 156 157 static void 158 copy_equiv_list_to_ns (segment_info *c) 159 { 160 segment_info *f; 161 gfc_equiv_info *s; 162 gfc_equiv_list *l; 163 164 l = XCNEW (gfc_equiv_list); 165 166 l->next = c->sym->ns->equiv_lists; 167 c->sym->ns->equiv_lists = l; 168 169 for (f = c; f; f = f->next) 170 { 171 s = XCNEW (gfc_equiv_info); 172 s->next = l->equiv; 173 l->equiv = s; 174 s->sym = f->sym; 175 s->offset = f->offset; 176 s->length = f->length; 177 } 178 } 179 180 181 /* Add combine segment V and segment LIST. */ 182 183 static segment_info * 184 add_segments (segment_info *list, segment_info *v) 185 { 186 segment_info *s; 187 segment_info *p; 188 segment_info *next; 189 190 p = NULL; 191 s = list; 192 193 while (v) 194 { 195 /* Find the location of the new element. */ 196 while (s) 197 { 198 if (v->offset < s->offset) 199 break; 200 if (v->offset == s->offset 201 && v->length <= s->length) 202 break; 203 204 p = s; 205 s = s->next; 206 } 207 208 /* Insert the new element in between p and s. */ 209 next = v->next; 210 v->next = s; 211 if (p == NULL) 212 list = v; 213 else 214 p->next = v; 215 216 p = v; 217 v = next; 218 } 219 220 return list; 221 } 222 223 224 /* Construct mangled common block name from symbol name. */ 225 226 /* We need the bind(c) flag to tell us how/if we should mangle the symbol 227 name. There are few calls to this function, so few places that this 228 would need to be added. At the moment, there is only one call, in 229 build_common_decl(). We can't attempt to look up the common block 230 because we may be building it for the first time and therefore, it won't 231 be in the common_root. We also need the binding label, if it's bind(c). 232 Therefore, send in the pointer to the common block, so whatever info we 233 have so far can be used. All of the necessary info should be available 234 in the gfc_common_head by now, so it should be accurate to test the 235 isBindC flag and use the binding label given if it is bind(c). 236 237 We may NOT know yet if it's bind(c) or not, but we can try at least. 238 Will have to figure out what to do later if it's labeled bind(c) 239 after this is called. */ 240 241 static tree 242 gfc_sym_mangled_common_id (gfc_common_head *com) 243 { 244 int has_underscore; 245 char mangled_name[GFC_MAX_MANGLED_SYMBOL_LEN + 1]; 246 char name[GFC_MAX_SYMBOL_LEN + 1]; 247 248 /* Get the name out of the common block pointer. */ 249 strcpy (name, com->name); 250 251 /* If we're suppose to do a bind(c). */ 252 if (com->is_bind_c == 1 && com->binding_label) 253 return get_identifier (com->binding_label); 254 255 if (strcmp (name, BLANK_COMMON_NAME) == 0) 256 return get_identifier (name); 257 258 if (flag_underscoring) 259 { 260 has_underscore = strchr (name, '_') != 0; 261 if (flag_second_underscore && has_underscore) 262 snprintf (mangled_name, sizeof mangled_name, "%s__", name); 263 else 264 snprintf (mangled_name, sizeof mangled_name, "%s_", name); 265 266 return get_identifier (mangled_name); 267 } 268 else 269 return get_identifier (name); 270 } 271 272 273 /* Build a field declaration for a common variable or a local equivalence 274 object. */ 275 276 static void 277 build_field (segment_info *h, tree union_type, record_layout_info rli) 278 { 279 tree field; 280 tree name; 281 HOST_WIDE_INT offset = h->offset; 282 unsigned HOST_WIDE_INT desired_align, known_align; 283 284 name = get_identifier (h->sym->name); 285 field = build_decl (h->sym->declared_at.lb->location, 286 FIELD_DECL, name, h->field); 287 known_align = (offset & -offset) * BITS_PER_UNIT; 288 if (known_align == 0 || known_align > BIGGEST_ALIGNMENT) 289 known_align = BIGGEST_ALIGNMENT; 290 291 desired_align = update_alignment_for_field (rli, field, known_align); 292 if (desired_align > known_align) 293 DECL_PACKED (field) = 1; 294 295 DECL_FIELD_CONTEXT (field) = union_type; 296 DECL_FIELD_OFFSET (field) = size_int (offset); 297 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node; 298 SET_DECL_OFFSET_ALIGN (field, known_align); 299 300 rli->offset = size_binop (MAX_EXPR, rli->offset, 301 size_binop (PLUS_EXPR, 302 DECL_FIELD_OFFSET (field), 303 DECL_SIZE_UNIT (field))); 304 /* If this field is assigned to a label, we create another two variables. 305 One will hold the address of target label or format label. The other will 306 hold the length of format label string. */ 307 if (h->sym->attr.assign) 308 { 309 tree len; 310 tree addr; 311 312 gfc_allocate_lang_decl (field); 313 GFC_DECL_ASSIGN (field) = 1; 314 len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name); 315 addr = gfc_create_var_np (pvoid_type_node, h->sym->name); 316 TREE_STATIC (len) = 1; 317 TREE_STATIC (addr) = 1; 318 DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2); 319 gfc_set_decl_location (len, &h->sym->declared_at); 320 gfc_set_decl_location (addr, &h->sym->declared_at); 321 GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len); 322 GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr); 323 } 324 325 /* If this field is volatile, mark it. */ 326 if (h->sym->attr.volatile_) 327 { 328 tree new_type; 329 TREE_THIS_VOLATILE (field) = 1; 330 TREE_SIDE_EFFECTS (field) = 1; 331 new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE); 332 TREE_TYPE (field) = new_type; 333 } 334 335 h->field = field; 336 } 337 338 339 /* Get storage for local equivalence. */ 340 341 static tree 342 build_equiv_decl (tree union_type, bool is_init, bool is_saved) 343 { 344 tree decl; 345 char name[18]; 346 static int serial = 0; 347 348 if (is_init) 349 { 350 decl = gfc_create_var (union_type, "equiv"); 351 TREE_STATIC (decl) = 1; 352 GFC_DECL_COMMON_OR_EQUIV (decl) = 1; 353 return decl; 354 } 355 356 snprintf (name, sizeof (name), "equiv.%d", serial++); 357 decl = build_decl (input_location, 358 VAR_DECL, get_identifier (name), union_type); 359 DECL_ARTIFICIAL (decl) = 1; 360 DECL_IGNORED_P (decl) = 1; 361 362 if (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl)) 363 || is_saved) 364 TREE_STATIC (decl) = 1; 365 366 TREE_ADDRESSABLE (decl) = 1; 367 TREE_USED (decl) = 1; 368 GFC_DECL_COMMON_OR_EQUIV (decl) = 1; 369 370 /* The source location has been lost, and doesn't really matter. 371 We need to set it to something though. */ 372 gfc_set_decl_location (decl, &gfc_current_locus); 373 374 gfc_add_decl_to_function (decl); 375 376 return decl; 377 } 378 379 380 /* Get storage for common block. */ 381 382 static tree 383 build_common_decl (gfc_common_head *com, tree union_type, bool is_init) 384 { 385 tree decl, identifier; 386 387 identifier = gfc_sym_mangled_common_id (com); 388 decl = gfc_map_of_all_commons.count(identifier) 389 ? gfc_map_of_all_commons[identifier] : NULL_TREE; 390 391 /* Update the size of this common block as needed. */ 392 if (decl != NULL_TREE) 393 { 394 tree size = TYPE_SIZE_UNIT (union_type); 395 396 /* Named common blocks of the same name shall be of the same size 397 in all scoping units of a program in which they appear, but 398 blank common blocks may be of different sizes. */ 399 if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size) 400 && strcmp (com->name, BLANK_COMMON_NAME)) 401 gfc_warning (0, "Named COMMON block %qs at %L shall be of the " 402 "same size as elsewhere (%lu vs %lu bytes)", com->name, 403 &com->where, 404 (unsigned long) TREE_INT_CST_LOW (size), 405 (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl))); 406 407 if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size)) 408 { 409 DECL_SIZE (decl) = TYPE_SIZE (union_type); 410 DECL_SIZE_UNIT (decl) = size; 411 SET_DECL_MODE (decl, TYPE_MODE (union_type)); 412 TREE_TYPE (decl) = union_type; 413 layout_decl (decl, 0); 414 } 415 } 416 417 /* If this common block has been declared in a previous program unit, 418 and either it is already initialized or there is no new initialization 419 for it, just return. */ 420 if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl))) 421 return decl; 422 423 /* If there is no backend_decl for the common block, build it. */ 424 if (decl == NULL_TREE) 425 { 426 if (com->is_bind_c == 1 && com->binding_label) 427 decl = build_decl (input_location, VAR_DECL, identifier, union_type); 428 else 429 { 430 decl = build_decl (input_location, VAR_DECL, get_identifier (com->name), 431 union_type); 432 gfc_set_decl_assembler_name (decl, identifier); 433 } 434 435 TREE_PUBLIC (decl) = 1; 436 TREE_STATIC (decl) = 1; 437 DECL_IGNORED_P (decl) = 1; 438 if (!com->is_bind_c) 439 SET_DECL_ALIGN (decl, BIGGEST_ALIGNMENT); 440 else 441 { 442 /* Do not set the alignment for bind(c) common blocks to 443 BIGGEST_ALIGNMENT because that won't match what C does. Also, 444 for common blocks with one element, the alignment must be 445 that of the field within the common block in order to match 446 what C will do. */ 447 tree field = NULL_TREE; 448 field = TYPE_FIELDS (TREE_TYPE (decl)); 449 if (DECL_CHAIN (field) == NULL_TREE) 450 SET_DECL_ALIGN (decl, TYPE_ALIGN (TREE_TYPE (field))); 451 } 452 DECL_USER_ALIGN (decl) = 0; 453 GFC_DECL_COMMON_OR_EQUIV (decl) = 1; 454 455 gfc_set_decl_location (decl, &com->where); 456 457 if (com->threadprivate) 458 set_decl_tls_model (decl, decl_default_tls_model (decl)); 459 460 if (com->omp_declare_target_link) 461 DECL_ATTRIBUTES (decl) 462 = tree_cons (get_identifier ("omp declare target link"), 463 NULL_TREE, DECL_ATTRIBUTES (decl)); 464 else if (com->omp_declare_target) 465 DECL_ATTRIBUTES (decl) 466 = tree_cons (get_identifier ("omp declare target"), 467 NULL_TREE, DECL_ATTRIBUTES (decl)); 468 469 /* Place the back end declaration for this common block in 470 GLOBAL_BINDING_LEVEL. */ 471 gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl); 472 } 473 474 /* Has no initial values. */ 475 if (!is_init) 476 { 477 DECL_INITIAL (decl) = NULL_TREE; 478 DECL_COMMON (decl) = 1; 479 DECL_DEFER_OUTPUT (decl) = 1; 480 } 481 else 482 { 483 DECL_INITIAL (decl) = error_mark_node; 484 DECL_COMMON (decl) = 0; 485 DECL_DEFER_OUTPUT (decl) = 0; 486 } 487 return decl; 488 } 489 490 491 /* Return a field that is the size of the union, if an equivalence has 492 overlapping initializers. Merge the initializers into a single 493 initializer for this new field, then free the old ones. */ 494 495 static tree 496 get_init_field (segment_info *head, tree union_type, tree *field_init, 497 record_layout_info rli) 498 { 499 segment_info *s; 500 HOST_WIDE_INT length = 0; 501 HOST_WIDE_INT offset = 0; 502 unsigned HOST_WIDE_INT known_align, desired_align; 503 bool overlap = false; 504 tree tmp, field; 505 tree init; 506 unsigned char *data, *chk; 507 vec<constructor_elt, va_gc> *v = NULL; 508 509 tree type = unsigned_char_type_node; 510 int i; 511 512 /* Obtain the size of the union and check if there are any overlapping 513 initializers. */ 514 for (s = head; s; s = s->next) 515 { 516 HOST_WIDE_INT slen = s->offset + s->length; 517 if (s->sym->value) 518 { 519 if (s->offset < offset) 520 overlap = true; 521 offset = slen; 522 } 523 length = length < slen ? slen : length; 524 } 525 526 if (!overlap) 527 return NULL_TREE; 528 529 /* Now absorb all the initializer data into a single vector, 530 whilst checking for overlapping, unequal values. */ 531 data = XCNEWVEC (unsigned char, (size_t)length); 532 chk = XCNEWVEC (unsigned char, (size_t)length); 533 534 /* TODO - change this when default initialization is implemented. */ 535 memset (data, '\0', (size_t)length); 536 memset (chk, '\0', (size_t)length); 537 for (s = head; s; s = s->next) 538 if (s->sym->value) 539 { 540 locus *loc = NULL; 541 if (s->sym->ns->equiv && s->sym->ns->equiv->eq) 542 loc = &s->sym->ns->equiv->eq->expr->where; 543 gfc_merge_initializers (s->sym->ts, s->sym->value, loc, 544 &data[s->offset], 545 &chk[s->offset], 546 (size_t)s->length); 547 } 548 549 for (i = 0; i < length; i++) 550 CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i])); 551 552 free (data); 553 free (chk); 554 555 /* Build a char[length] array to hold the initializers. Much of what 556 follows is borrowed from build_field, above. */ 557 558 tmp = build_int_cst (gfc_array_index_type, length - 1); 559 tmp = build_range_type (gfc_array_index_type, 560 gfc_index_zero_node, tmp); 561 tmp = build_array_type (type, tmp); 562 field = build_decl (gfc_current_locus.lb->location, 563 FIELD_DECL, NULL_TREE, tmp); 564 565 known_align = BIGGEST_ALIGNMENT; 566 567 desired_align = update_alignment_for_field (rli, field, known_align); 568 if (desired_align > known_align) 569 DECL_PACKED (field) = 1; 570 571 DECL_FIELD_CONTEXT (field) = union_type; 572 DECL_FIELD_OFFSET (field) = size_int (0); 573 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node; 574 SET_DECL_OFFSET_ALIGN (field, known_align); 575 576 rli->offset = size_binop (MAX_EXPR, rli->offset, 577 size_binop (PLUS_EXPR, 578 DECL_FIELD_OFFSET (field), 579 DECL_SIZE_UNIT (field))); 580 581 init = build_constructor (TREE_TYPE (field), v); 582 TREE_CONSTANT (init) = 1; 583 584 *field_init = init; 585 586 for (s = head; s; s = s->next) 587 { 588 if (s->sym->value == NULL) 589 continue; 590 591 gfc_free_expr (s->sym->value); 592 s->sym->value = NULL; 593 } 594 595 return field; 596 } 597 598 599 /* Declare memory for the common block or local equivalence, and create 600 backend declarations for all of the elements. */ 601 602 static void 603 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv) 604 { 605 segment_info *s, *next_s; 606 tree union_type; 607 tree *field_link; 608 tree field; 609 tree field_init = NULL_TREE; 610 record_layout_info rli; 611 tree decl; 612 bool is_init = false; 613 bool is_saved = false; 614 615 /* Declare the variables inside the common block. 616 If the current common block contains any equivalence object, then 617 make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the 618 alias analyzer work well when there is no address overlapping for 619 common variables in the current common block. */ 620 if (saw_equiv) 621 union_type = make_node (UNION_TYPE); 622 else 623 union_type = make_node (RECORD_TYPE); 624 625 rli = start_record_layout (union_type); 626 field_link = &TYPE_FIELDS (union_type); 627 628 /* Check for overlapping initializers and replace them with a single, 629 artificial field that contains all the data. */ 630 if (saw_equiv) 631 field = get_init_field (head, union_type, &field_init, rli); 632 else 633 field = NULL_TREE; 634 635 if (field != NULL_TREE) 636 { 637 is_init = true; 638 *field_link = field; 639 field_link = &DECL_CHAIN (field); 640 } 641 642 for (s = head; s; s = s->next) 643 { 644 build_field (s, union_type, rli); 645 646 /* Link the field into the type. */ 647 *field_link = s->field; 648 field_link = &DECL_CHAIN (s->field); 649 650 /* Has initial value. */ 651 if (s->sym->value) 652 is_init = true; 653 654 /* Has SAVE attribute. */ 655 if (s->sym->attr.save) 656 is_saved = true; 657 } 658 659 finish_record_layout (rli, true); 660 661 if (com) 662 decl = build_common_decl (com, union_type, is_init); 663 else 664 decl = build_equiv_decl (union_type, is_init, is_saved); 665 666 if (is_init) 667 { 668 tree ctor, tmp; 669 vec<constructor_elt, va_gc> *v = NULL; 670 671 if (field != NULL_TREE && field_init != NULL_TREE) 672 CONSTRUCTOR_APPEND_ELT (v, field, field_init); 673 else 674 for (s = head; s; s = s->next) 675 { 676 if (s->sym->value) 677 { 678 /* Add the initializer for this field. */ 679 tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts, 680 TREE_TYPE (s->field), 681 s->sym->attr.dimension, 682 s->sym->attr.pointer 683 || s->sym->attr.allocatable, false); 684 685 CONSTRUCTOR_APPEND_ELT (v, s->field, tmp); 686 } 687 } 688 689 gcc_assert (!v->is_empty ()); 690 ctor = build_constructor (union_type, v); 691 TREE_CONSTANT (ctor) = 1; 692 TREE_STATIC (ctor) = 1; 693 DECL_INITIAL (decl) = ctor; 694 695 if (flag_checking) 696 { 697 tree field, value; 698 unsigned HOST_WIDE_INT idx; 699 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value) 700 gcc_assert (TREE_CODE (field) == FIELD_DECL); 701 } 702 } 703 704 /* Build component reference for each variable. */ 705 for (s = head; s; s = next_s) 706 { 707 tree var_decl; 708 709 var_decl = build_decl (s->sym->declared_at.lb->location, 710 VAR_DECL, DECL_NAME (s->field), 711 TREE_TYPE (s->field)); 712 TREE_STATIC (var_decl) = TREE_STATIC (decl); 713 /* Mark the variable as used in order to avoid warnings about 714 unused variables. */ 715 TREE_USED (var_decl) = 1; 716 if (s->sym->attr.use_assoc) 717 DECL_IGNORED_P (var_decl) = 1; 718 if (s->sym->attr.target) 719 TREE_ADDRESSABLE (var_decl) = 1; 720 /* Fake variables are not visible from other translation units. */ 721 TREE_PUBLIC (var_decl) = 0; 722 gfc_finish_decl_attrs (var_decl, &s->sym->attr); 723 724 /* To preserve identifier names in COMMON, chain to procedure 725 scope unless at top level in a module definition. */ 726 if (com 727 && s->sym->ns->proc_name 728 && s->sym->ns->proc_name->attr.flavor == FL_MODULE) 729 var_decl = pushdecl_top_level (var_decl); 730 else 731 gfc_add_decl_to_function (var_decl); 732 733 SET_DECL_VALUE_EXPR (var_decl, 734 fold_build3_loc (input_location, COMPONENT_REF, 735 TREE_TYPE (s->field), 736 decl, s->field, NULL_TREE)); 737 DECL_HAS_VALUE_EXPR_P (var_decl) = 1; 738 GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1; 739 740 if (s->sym->attr.assign) 741 { 742 gfc_allocate_lang_decl (var_decl); 743 GFC_DECL_ASSIGN (var_decl) = 1; 744 GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field); 745 GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field); 746 } 747 748 s->sym->backend_decl = var_decl; 749 750 next_s = s->next; 751 free (s); 752 } 753 } 754 755 756 /* Given a symbol, find it in the current segment list. Returns NULL if 757 not found. */ 758 759 static segment_info * 760 find_segment_info (gfc_symbol *symbol) 761 { 762 segment_info *n; 763 764 for (n = current_segment; n; n = n->next) 765 { 766 if (n->sym == symbol) 767 return n; 768 } 769 770 return NULL; 771 } 772 773 774 /* Given an expression node, make sure it is a constant integer and return 775 the mpz_t value. */ 776 777 static mpz_t * 778 get_mpz (gfc_expr *e) 779 { 780 781 if (e->expr_type != EXPR_CONSTANT) 782 gfc_internal_error ("get_mpz(): Not an integer constant"); 783 784 return &e->value.integer; 785 } 786 787 788 /* Given an array specification and an array reference, figure out the 789 array element number (zero based). Bounds and elements are guaranteed 790 to be constants. If something goes wrong we generate an error and 791 return zero. */ 792 793 static HOST_WIDE_INT 794 element_number (gfc_array_ref *ar) 795 { 796 mpz_t multiplier, offset, extent, n; 797 gfc_array_spec *as; 798 HOST_WIDE_INT i, rank; 799 800 as = ar->as; 801 rank = as->rank; 802 mpz_init_set_ui (multiplier, 1); 803 mpz_init_set_ui (offset, 0); 804 mpz_init (extent); 805 mpz_init (n); 806 807 for (i = 0; i < rank; i++) 808 { 809 if (ar->dimen_type[i] != DIMEN_ELEMENT) 810 gfc_internal_error ("element_number(): Bad dimension type"); 811 812 if (as && as->lower[i]) 813 mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i])); 814 else 815 mpz_sub_ui (n, *get_mpz (ar->start[i]), 1); 816 817 mpz_mul (n, n, multiplier); 818 mpz_add (offset, offset, n); 819 820 if (as && as->upper[i] && as->lower[i]) 821 { 822 mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i])); 823 mpz_add_ui (extent, extent, 1); 824 } 825 else 826 mpz_set_ui (extent, 0); 827 828 if (mpz_sgn (extent) < 0) 829 mpz_set_ui (extent, 0); 830 831 mpz_mul (multiplier, multiplier, extent); 832 } 833 834 i = mpz_get_ui (offset); 835 836 mpz_clear (multiplier); 837 mpz_clear (offset); 838 mpz_clear (extent); 839 mpz_clear (n); 840 841 return i; 842 } 843 844 845 /* Given a single element of an equivalence list, figure out the offset 846 from the base symbol. For simple variables or full arrays, this is 847 simply zero. For an array element we have to calculate the array 848 element number and multiply by the element size. For a substring we 849 have to calculate the further reference. */ 850 851 static HOST_WIDE_INT 852 calculate_offset (gfc_expr *e) 853 { 854 HOST_WIDE_INT n, element_size, offset; 855 gfc_typespec *element_type; 856 gfc_ref *reference; 857 858 offset = 0; 859 element_type = &e->symtree->n.sym->ts; 860 861 for (reference = e->ref; reference; reference = reference->next) 862 switch (reference->type) 863 { 864 case REF_ARRAY: 865 switch (reference->u.ar.type) 866 { 867 case AR_FULL: 868 break; 869 870 case AR_ELEMENT: 871 n = element_number (&reference->u.ar); 872 if (element_type->type == BT_CHARACTER) 873 gfc_conv_const_charlen (element_type->u.cl); 874 element_size = 875 int_size_in_bytes (gfc_typenode_for_spec (element_type)); 876 offset += n * element_size; 877 break; 878 879 default: 880 gfc_error ("Bad array reference at %L", &e->where); 881 } 882 break; 883 case REF_SUBSTRING: 884 if (reference->u.ss.start != NULL) 885 offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1; 886 break; 887 default: 888 gfc_error ("Illegal reference type at %L as EQUIVALENCE object", 889 &e->where); 890 } 891 return offset; 892 } 893 894 895 /* Add a new segment_info structure to the current segment. eq1 is already 896 in the list, eq2 is not. */ 897 898 static void 899 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2) 900 { 901 HOST_WIDE_INT offset1, offset2; 902 segment_info *a; 903 904 offset1 = calculate_offset (eq1->expr); 905 offset2 = calculate_offset (eq2->expr); 906 907 a = get_segment_info (eq2->expr->symtree->n.sym, 908 v->offset + offset1 - offset2); 909 910 current_segment = add_segments (current_segment, a); 911 } 912 913 914 /* Given two equivalence structures that are both already in the list, make 915 sure that this new condition is not violated, generating an error if it 916 is. */ 917 918 static void 919 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2, 920 gfc_equiv *eq2) 921 { 922 HOST_WIDE_INT offset1, offset2; 923 924 offset1 = calculate_offset (eq1->expr); 925 offset2 = calculate_offset (eq2->expr); 926 927 if (s1->offset + offset1 != s2->offset + offset2) 928 gfc_error ("Inconsistent equivalence rules involving %qs at %L and " 929 "%qs at %L", s1->sym->name, &s1->sym->declared_at, 930 s2->sym->name, &s2->sym->declared_at); 931 } 932 933 934 /* Process a new equivalence condition. eq1 is know to be in segment f. 935 If eq2 is also present then confirm that the condition holds. 936 Otherwise add a new variable to the segment list. */ 937 938 static void 939 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2) 940 { 941 segment_info *n; 942 943 n = find_segment_info (eq2->expr->symtree->n.sym); 944 945 if (n == NULL) 946 new_condition (f, eq1, eq2); 947 else 948 confirm_condition (f, eq1, n, eq2); 949 } 950 951 952 /* Given a segment element, search through the equivalence lists for unused 953 conditions that involve the symbol. Add these rules to the segment. */ 954 955 static bool 956 find_equivalence (segment_info *n) 957 { 958 gfc_equiv *e1, *e2, *eq; 959 bool found; 960 961 found = FALSE; 962 963 for (e1 = n->sym->ns->equiv; e1; e1 = e1->next) 964 { 965 eq = NULL; 966 967 /* Search the equivalence list, including the root (first) element 968 for the symbol that owns the segment. */ 969 for (e2 = e1; e2; e2 = e2->eq) 970 { 971 if (!e2->used && e2->expr->symtree->n.sym == n->sym) 972 { 973 eq = e2; 974 break; 975 } 976 } 977 978 /* Go to the next root element. */ 979 if (eq == NULL) 980 continue; 981 982 eq->used = 1; 983 984 /* Now traverse the equivalence list matching the offsets. */ 985 for (e2 = e1; e2; e2 = e2->eq) 986 { 987 if (!e2->used && e2 != eq) 988 { 989 add_condition (n, eq, e2); 990 e2->used = 1; 991 found = TRUE; 992 } 993 } 994 } 995 return found; 996 } 997 998 999 /* Add all symbols equivalenced within a segment. We need to scan the 1000 segment list multiple times to include indirect equivalences. Since 1001 a new segment_info can inserted at the beginning of the segment list, 1002 depending on its offset, we have to force a final pass through the 1003 loop by demanding that completion sees a pass with no matches; i.e., 1004 all symbols with equiv_built set and no new equivalences found. */ 1005 1006 static void 1007 add_equivalences (bool *saw_equiv) 1008 { 1009 segment_info *f; 1010 bool seen_one, more; 1011 1012 seen_one = false; 1013 more = TRUE; 1014 while (more) 1015 { 1016 more = FALSE; 1017 for (f = current_segment; f; f = f->next) 1018 { 1019 if (!f->sym->equiv_built) 1020 { 1021 f->sym->equiv_built = 1; 1022 seen_one = find_equivalence (f); 1023 if (seen_one) 1024 { 1025 *saw_equiv = true; 1026 more = true; 1027 } 1028 } 1029 } 1030 } 1031 1032 /* Add a copy of this segment list to the namespace. */ 1033 copy_equiv_list_to_ns (current_segment); 1034 } 1035 1036 1037 /* Returns the offset necessary to properly align the current equivalence. 1038 Sets *palign to the required alignment. */ 1039 1040 static HOST_WIDE_INT 1041 align_segment (unsigned HOST_WIDE_INT *palign) 1042 { 1043 segment_info *s; 1044 unsigned HOST_WIDE_INT offset; 1045 unsigned HOST_WIDE_INT max_align; 1046 unsigned HOST_WIDE_INT this_align; 1047 unsigned HOST_WIDE_INT this_offset; 1048 1049 max_align = 1; 1050 offset = 0; 1051 for (s = current_segment; s; s = s->next) 1052 { 1053 this_align = TYPE_ALIGN_UNIT (s->field); 1054 if (s->offset & (this_align - 1)) 1055 { 1056 /* Field is misaligned. */ 1057 this_offset = this_align - ((s->offset + offset) & (this_align - 1)); 1058 if (this_offset & (max_align - 1)) 1059 { 1060 /* Aligning this field would misalign a previous field. */ 1061 gfc_error ("The equivalence set for variable %qs " 1062 "declared at %L violates alignment requirements", 1063 s->sym->name, &s->sym->declared_at); 1064 } 1065 offset += this_offset; 1066 } 1067 max_align = this_align; 1068 } 1069 if (palign) 1070 *palign = max_align; 1071 return offset; 1072 } 1073 1074 1075 /* Adjust segment offsets by the given amount. */ 1076 1077 static void 1078 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset) 1079 { 1080 for (; s; s = s->next) 1081 s->offset += offset; 1082 } 1083 1084 1085 /* Lay out a symbol in a common block. If the symbol has already been seen 1086 then check the location is consistent. Otherwise create segments 1087 for that symbol and all the symbols equivalenced with it. */ 1088 1089 /* Translate a single common block. */ 1090 1091 static void 1092 translate_common (gfc_common_head *common, gfc_symbol *var_list) 1093 { 1094 gfc_symbol *sym; 1095 segment_info *s; 1096 segment_info *common_segment; 1097 HOST_WIDE_INT offset; 1098 HOST_WIDE_INT current_offset; 1099 unsigned HOST_WIDE_INT align; 1100 bool saw_equiv; 1101 1102 common_segment = NULL; 1103 offset = 0; 1104 current_offset = 0; 1105 align = 1; 1106 saw_equiv = false; 1107 1108 /* Add symbols to the segment. */ 1109 for (sym = var_list; sym; sym = sym->common_next) 1110 { 1111 current_segment = common_segment; 1112 s = find_segment_info (sym); 1113 1114 /* Symbol has already been added via an equivalence. Multiple 1115 use associations of the same common block result in equiv_built 1116 being set but no information about the symbol in the segment. */ 1117 if (s && sym->equiv_built) 1118 { 1119 /* Ensure the current location is properly aligned. */ 1120 align = TYPE_ALIGN_UNIT (s->field); 1121 current_offset = (current_offset + align - 1) &~ (align - 1); 1122 1123 /* Verify that it ended up where we expect it. */ 1124 if (s->offset != current_offset) 1125 { 1126 gfc_error ("Equivalence for %qs does not match ordering of " 1127 "COMMON %qs at %L", sym->name, 1128 common->name, &common->where); 1129 } 1130 } 1131 else 1132 { 1133 /* A symbol we haven't seen before. */ 1134 s = current_segment = get_segment_info (sym, current_offset); 1135 1136 /* Add all objects directly or indirectly equivalenced with this 1137 symbol. */ 1138 add_equivalences (&saw_equiv); 1139 1140 if (current_segment->offset < 0) 1141 gfc_error ("The equivalence set for %qs cause an invalid " 1142 "extension to COMMON %qs at %L", sym->name, 1143 common->name, &common->where); 1144 1145 if (flag_align_commons) 1146 offset = align_segment (&align); 1147 1148 if (offset) 1149 { 1150 /* The required offset conflicts with previous alignment 1151 requirements. Insert padding immediately before this 1152 segment. */ 1153 if (warn_align_commons) 1154 { 1155 if (strcmp (common->name, BLANK_COMMON_NAME)) 1156 gfc_warning (OPT_Walign_commons, 1157 "Padding of %d bytes required before %qs in " 1158 "COMMON %qs at %L; reorder elements or use " 1159 "%<-fno-align-commons%>", (int)offset, 1160 s->sym->name, common->name, &common->where); 1161 else 1162 gfc_warning (OPT_Walign_commons, 1163 "Padding of %d bytes required before %qs in " 1164 "COMMON at %L; reorder elements or use " 1165 "%<-fno-align-commons%>", (int)offset, 1166 s->sym->name, &common->where); 1167 } 1168 } 1169 1170 /* Apply the offset to the new segments. */ 1171 apply_segment_offset (current_segment, offset); 1172 current_offset += offset; 1173 1174 /* Add the new segments to the common block. */ 1175 common_segment = add_segments (common_segment, current_segment); 1176 } 1177 1178 /* The offset of the next common variable. */ 1179 current_offset += s->length; 1180 } 1181 1182 if (common_segment == NULL) 1183 { 1184 gfc_error ("COMMON %qs at %L does not exist", 1185 common->name, &common->where); 1186 return; 1187 } 1188 1189 if (common_segment->offset != 0 && warn_align_commons) 1190 { 1191 if (strcmp (common->name, BLANK_COMMON_NAME)) 1192 gfc_warning (OPT_Walign_commons, 1193 "COMMON %qs at %L requires %d bytes of padding; " 1194 "reorder elements or use %<-fno-align-commons%>", 1195 common->name, &common->where, (int)common_segment->offset); 1196 else 1197 gfc_warning (OPT_Walign_commons, 1198 "COMMON at %L requires %d bytes of padding; " 1199 "reorder elements or use %<-fno-align-commons%>", 1200 &common->where, (int)common_segment->offset); 1201 } 1202 1203 create_common (common, common_segment, saw_equiv); 1204 } 1205 1206 1207 /* Create a new block for each merged equivalence list. */ 1208 1209 static void 1210 finish_equivalences (gfc_namespace *ns) 1211 { 1212 gfc_equiv *z, *y; 1213 gfc_symbol *sym; 1214 gfc_common_head * c; 1215 HOST_WIDE_INT offset; 1216 unsigned HOST_WIDE_INT align; 1217 bool dummy; 1218 1219 for (z = ns->equiv; z; z = z->next) 1220 for (y = z->eq; y; y = y->eq) 1221 { 1222 if (y->used) 1223 continue; 1224 sym = z->expr->symtree->n.sym; 1225 current_segment = get_segment_info (sym, 0); 1226 1227 /* All objects directly or indirectly equivalenced with this 1228 symbol. */ 1229 add_equivalences (&dummy); 1230 1231 /* Align the block. */ 1232 offset = align_segment (&align); 1233 1234 /* Ensure all offsets are positive. */ 1235 offset -= current_segment->offset & ~(align - 1); 1236 1237 apply_segment_offset (current_segment, offset); 1238 1239 /* Create the decl. If this is a module equivalence, it has a 1240 unique name, pointed to by z->module. This is written to a 1241 gfc_common_header to push create_common into using 1242 build_common_decl, so that the equivalence appears as an 1243 external symbol. Otherwise, a local declaration is built using 1244 build_equiv_decl. */ 1245 if (z->module) 1246 { 1247 c = gfc_get_common_head (); 1248 /* We've lost the real location, so use the location of the 1249 enclosing procedure. If we're in a BLOCK DATA block, then 1250 use the location in the sym_root. */ 1251 if (ns->proc_name) 1252 c->where = ns->proc_name->declared_at; 1253 else if (ns->is_block_data) 1254 c->where = ns->sym_root->n.sym->declared_at; 1255 strcpy (c->name, z->module); 1256 } 1257 else 1258 c = NULL; 1259 1260 create_common (c, current_segment, true); 1261 break; 1262 } 1263 } 1264 1265 1266 /* Work function for translating a named common block. */ 1267 1268 static void 1269 named_common (gfc_symtree *st) 1270 { 1271 translate_common (st->n.common, st->n.common->head); 1272 } 1273 1274 1275 /* Translate the common blocks in a namespace. Unlike other variables, 1276 these have to be created before code, because the backend_decl depends 1277 on the rest of the common block. */ 1278 1279 void 1280 gfc_trans_common (gfc_namespace *ns) 1281 { 1282 gfc_common_head *c; 1283 1284 /* Translate the blank common block. */ 1285 if (ns->blank_common.head != NULL) 1286 { 1287 c = gfc_get_common_head (); 1288 c->where = ns->blank_common.head->common_head->where; 1289 strcpy (c->name, BLANK_COMMON_NAME); 1290 translate_common (c, ns->blank_common.head); 1291 } 1292 1293 /* Translate all named common blocks. */ 1294 gfc_traverse_symtree (ns->common_root, named_common); 1295 1296 /* Translate local equivalence. */ 1297 finish_equivalences (ns); 1298 1299 /* Commit the newly created symbols for common blocks and module 1300 equivalences. */ 1301 gfc_commit_symbols (); 1302 } 1303