1 /* Simulate storage of variables into target memory. 2 Copyright (C) 2007-2019 Free Software Foundation, Inc. 3 Contributed by Paul Thomas and Brooks Moses 4 5 This file is part of GCC. 6 7 GCC is free software; you can redistribute it and/or modify it under 8 the terms of the GNU General Public License as published by the Free 9 Software Foundation; either version 3, or (at your option) any later 10 version. 11 12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 13 WARRANTY; without even the implied warranty of MERCHANTABILITY or 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 15 for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with GCC; see the file COPYING3. If not see 19 <http://www.gnu.org/licenses/>. */ 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "tree.h" 25 #include "gfortran.h" 26 #include "trans.h" 27 #include "fold-const.h" 28 #include "stor-layout.h" 29 #include "arith.h" 30 #include "constructor.h" 31 #include "trans-const.h" 32 #include "trans-types.h" 33 #include "target-memory.h" 34 35 /* --------------------------------------------------------------- */ 36 /* Calculate the size of an expression. */ 37 38 39 static size_t 40 size_integer (int kind) 41 { 42 return GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (gfc_get_int_type (kind))); 43 } 44 45 46 static size_t 47 size_float (int kind) 48 { 49 return GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (gfc_get_real_type (kind))); 50 } 51 52 53 static size_t 54 size_complex (int kind) 55 { 56 return 2 * size_float (kind); 57 } 58 59 60 static size_t 61 size_logical (int kind) 62 { 63 return GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (gfc_get_logical_type (kind))); 64 } 65 66 67 static size_t 68 size_character (gfc_charlen_t length, int kind) 69 { 70 int i = gfc_validate_kind (BT_CHARACTER, kind, false); 71 return length * gfc_character_kinds[i].bit_size / 8; 72 } 73 74 75 /* Return the size of a single element of the given expression. 76 Equivalent to gfc_target_expr_size for scalars. */ 77 78 bool 79 gfc_element_size (gfc_expr *e, size_t *siz) 80 { 81 tree type; 82 83 switch (e->ts.type) 84 { 85 case BT_INTEGER: 86 *siz = size_integer (e->ts.kind); 87 return true; 88 case BT_REAL: 89 *siz = size_float (e->ts.kind); 90 return true; 91 case BT_COMPLEX: 92 *siz = size_complex (e->ts.kind); 93 return true; 94 case BT_LOGICAL: 95 *siz = size_logical (e->ts.kind); 96 return true; 97 case BT_CHARACTER: 98 if (e->expr_type == EXPR_CONSTANT) 99 *siz = size_character (e->value.character.length, e->ts.kind); 100 else if (e->ts.u.cl != NULL && e->ts.u.cl->length != NULL 101 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT 102 && e->ts.u.cl->length->ts.type == BT_INTEGER) 103 { 104 HOST_WIDE_INT length; 105 106 gfc_extract_hwi (e->ts.u.cl->length, &length); 107 *siz = size_character (length, e->ts.kind); 108 } 109 else 110 { 111 *siz = 0; 112 return false; 113 } 114 return true; 115 116 case BT_HOLLERITH: 117 *siz = e->representation.length; 118 return true; 119 case BT_DERIVED: 120 case BT_CLASS: 121 case BT_VOID: 122 case BT_ASSUMED: 123 case BT_PROCEDURE: 124 { 125 /* Determine type size without clobbering the typespec for ISO C 126 binding types. */ 127 gfc_typespec ts; 128 HOST_WIDE_INT size; 129 ts = e->ts; 130 type = gfc_typenode_for_spec (&ts); 131 size = int_size_in_bytes (type); 132 gcc_assert (size >= 0); 133 *siz = size; 134 } 135 return true; 136 default: 137 gfc_internal_error ("Invalid expression in gfc_element_size."); 138 *siz = 0; 139 return false; 140 } 141 return true; 142 } 143 144 145 /* Return the size of an expression in its target representation. */ 146 147 bool 148 gfc_target_expr_size (gfc_expr *e, size_t *size) 149 { 150 mpz_t tmp; 151 size_t asz, el_size; 152 153 gcc_assert (e != NULL); 154 155 *size = 0; 156 if (e->rank) 157 { 158 if (gfc_array_size (e, &tmp)) 159 asz = mpz_get_ui (tmp); 160 else 161 return false; 162 } 163 else 164 asz = 1; 165 166 if (!gfc_element_size (e, &el_size)) 167 return false; 168 *size = asz * el_size; 169 return true; 170 } 171 172 173 /* The encode_* functions export a value into a buffer, and 174 return the number of bytes of the buffer that have been 175 used. */ 176 177 static unsigned HOST_WIDE_INT 178 encode_array (gfc_expr *expr, unsigned char *buffer, size_t buffer_size) 179 { 180 mpz_t array_size; 181 int i; 182 int ptr = 0; 183 184 gfc_constructor_base ctor = expr->value.constructor; 185 186 gfc_array_size (expr, &array_size); 187 for (i = 0; i < (int)mpz_get_ui (array_size); i++) 188 { 189 ptr += gfc_target_encode_expr (gfc_constructor_lookup_expr (ctor, i), 190 &buffer[ptr], buffer_size - ptr); 191 } 192 193 mpz_clear (array_size); 194 return ptr; 195 } 196 197 198 static int 199 encode_integer (int kind, mpz_t integer, unsigned char *buffer, 200 size_t buffer_size) 201 { 202 return native_encode_expr (gfc_conv_mpz_to_tree (integer, kind), 203 buffer, buffer_size); 204 } 205 206 207 static int 208 encode_float (int kind, mpfr_t real, unsigned char *buffer, size_t buffer_size) 209 { 210 return native_encode_expr (gfc_conv_mpfr_to_tree (real, kind, 0), buffer, 211 buffer_size); 212 } 213 214 215 static int 216 encode_complex (int kind, mpc_t cmplx, 217 unsigned char *buffer, size_t buffer_size) 218 { 219 int size; 220 size = encode_float (kind, mpc_realref (cmplx), &buffer[0], buffer_size); 221 size += encode_float (kind, mpc_imagref (cmplx), 222 &buffer[size], buffer_size - size); 223 return size; 224 } 225 226 227 static int 228 encode_logical (int kind, int logical, unsigned char *buffer, size_t buffer_size) 229 { 230 return native_encode_expr (build_int_cst (gfc_get_logical_type (kind), 231 logical), 232 buffer, buffer_size); 233 } 234 235 236 size_t 237 gfc_encode_character (int kind, size_t length, const gfc_char_t *string, 238 unsigned char *buffer, size_t buffer_size) 239 { 240 size_t elsize = size_character (1, kind); 241 tree type = gfc_get_char_type (kind); 242 243 gcc_assert (buffer_size >= size_character (length, kind)); 244 245 for (size_t i = 0; i < length; i++) 246 native_encode_expr (build_int_cst (type, string[i]), &buffer[i*elsize], 247 elsize); 248 249 return length; 250 } 251 252 253 static unsigned HOST_WIDE_INT 254 encode_derived (gfc_expr *source, unsigned char *buffer, size_t buffer_size) 255 { 256 gfc_constructor *c; 257 gfc_component *cmp; 258 int ptr; 259 tree type; 260 HOST_WIDE_INT size; 261 262 type = gfc_typenode_for_spec (&source->ts); 263 264 for (c = gfc_constructor_first (source->value.constructor), 265 cmp = source->ts.u.derived->components; 266 c; 267 c = gfc_constructor_next (c), cmp = cmp->next) 268 { 269 gcc_assert (cmp); 270 if (!c->expr) 271 continue; 272 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl)) 273 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8; 274 275 if (c->expr->expr_type == EXPR_NULL) 276 { 277 size = int_size_in_bytes (TREE_TYPE (cmp->backend_decl)); 278 gcc_assert (size >= 0); 279 memset (&buffer[ptr], 0, size); 280 } 281 else 282 gfc_target_encode_expr (c->expr, &buffer[ptr], 283 buffer_size - ptr); 284 } 285 286 size = int_size_in_bytes (type); 287 gcc_assert (size >= 0); 288 return size; 289 } 290 291 292 /* Write a constant expression in binary form to a buffer. */ 293 unsigned HOST_WIDE_INT 294 gfc_target_encode_expr (gfc_expr *source, unsigned char *buffer, 295 size_t buffer_size) 296 { 297 if (source == NULL) 298 return 0; 299 300 if (source->expr_type == EXPR_ARRAY) 301 return encode_array (source, buffer, buffer_size); 302 303 gcc_assert (source->expr_type == EXPR_CONSTANT 304 || source->expr_type == EXPR_STRUCTURE 305 || source->expr_type == EXPR_SUBSTRING); 306 307 /* If we already have a target-memory representation, we use that rather 308 than recreating one. */ 309 if (source->representation.string) 310 { 311 memcpy (buffer, source->representation.string, 312 source->representation.length); 313 return source->representation.length; 314 } 315 316 switch (source->ts.type) 317 { 318 case BT_INTEGER: 319 return encode_integer (source->ts.kind, source->value.integer, buffer, 320 buffer_size); 321 case BT_REAL: 322 return encode_float (source->ts.kind, source->value.real, buffer, 323 buffer_size); 324 case BT_COMPLEX: 325 return encode_complex (source->ts.kind, source->value.complex, 326 buffer, buffer_size); 327 case BT_LOGICAL: 328 return encode_logical (source->ts.kind, source->value.logical, buffer, 329 buffer_size); 330 case BT_CHARACTER: 331 if (source->expr_type == EXPR_CONSTANT || source->ref == NULL) 332 return gfc_encode_character (source->ts.kind, 333 source->value.character.length, 334 source->value.character.string, 335 buffer, buffer_size); 336 else 337 { 338 HOST_WIDE_INT start, end; 339 340 gcc_assert (source->expr_type == EXPR_SUBSTRING); 341 gfc_extract_hwi (source->ref->u.ss.start, &start); 342 gfc_extract_hwi (source->ref->u.ss.end, &end); 343 return gfc_encode_character (source->ts.kind, MAX(end - start + 1, 0), 344 &source->value.character.string[start-1], 345 buffer, buffer_size); 346 } 347 348 case BT_DERIVED: 349 if (source->ts.u.derived->ts.f90_type == BT_VOID) 350 { 351 gfc_constructor *c; 352 gcc_assert (source->expr_type == EXPR_STRUCTURE); 353 c = gfc_constructor_first (source->value.constructor); 354 gcc_assert (c->expr->expr_type == EXPR_CONSTANT 355 && c->expr->ts.type == BT_INTEGER); 356 return encode_integer (gfc_index_integer_kind, c->expr->value.integer, 357 buffer, buffer_size); 358 } 359 360 return encode_derived (source, buffer, buffer_size); 361 default: 362 gfc_internal_error ("Invalid expression in gfc_target_encode_expr."); 363 return 0; 364 } 365 } 366 367 368 static size_t 369 interpret_array (unsigned char *buffer, size_t buffer_size, gfc_expr *result) 370 { 371 gfc_constructor_base base = NULL; 372 size_t array_size = 1; 373 size_t ptr = 0; 374 375 /* Calculate array size from its shape and rank. */ 376 gcc_assert (result->rank > 0 && result->shape); 377 378 for (int i = 0; i < result->rank; i++) 379 array_size *= mpz_get_ui (result->shape[i]); 380 381 /* Iterate over array elements, producing constructors. */ 382 for (size_t i = 0; i < array_size; i++) 383 { 384 gfc_expr *e = gfc_get_constant_expr (result->ts.type, result->ts.kind, 385 &result->where); 386 e->ts = result->ts; 387 388 if (e->ts.type == BT_CHARACTER) 389 e->value.character.length = result->value.character.length; 390 391 gfc_constructor_append_expr (&base, e, &result->where); 392 393 ptr += gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e, 394 true); 395 } 396 397 result->value.constructor = base; 398 return ptr; 399 } 400 401 402 int 403 gfc_interpret_integer (int kind, unsigned char *buffer, size_t buffer_size, 404 mpz_t integer) 405 { 406 mpz_init (integer); 407 gfc_conv_tree_to_mpz (integer, 408 native_interpret_expr (gfc_get_int_type (kind), 409 buffer, buffer_size)); 410 return size_integer (kind); 411 } 412 413 414 int 415 gfc_interpret_float (int kind, unsigned char *buffer, size_t buffer_size, 416 mpfr_t real) 417 { 418 gfc_set_model_kind (kind); 419 mpfr_init (real); 420 gfc_conv_tree_to_mpfr (real, 421 native_interpret_expr (gfc_get_real_type (kind), 422 buffer, buffer_size)); 423 424 return size_float (kind); 425 } 426 427 428 int 429 gfc_interpret_complex (int kind, unsigned char *buffer, size_t buffer_size, 430 mpc_t complex) 431 { 432 int size; 433 size = gfc_interpret_float (kind, &buffer[0], buffer_size, 434 mpc_realref (complex)); 435 size += gfc_interpret_float (kind, &buffer[size], buffer_size - size, 436 mpc_imagref (complex)); 437 return size; 438 } 439 440 441 int 442 gfc_interpret_logical (int kind, unsigned char *buffer, size_t buffer_size, 443 int *logical) 444 { 445 tree t = native_interpret_expr (gfc_get_logical_type (kind), buffer, 446 buffer_size); 447 *logical = wi::to_wide (t) == 0 ? 0 : 1; 448 return size_logical (kind); 449 } 450 451 452 size_t 453 gfc_interpret_character (unsigned char *buffer, size_t buffer_size, 454 gfc_expr *result) 455 { 456 if (result->ts.u.cl && result->ts.u.cl->length) 457 result->value.character.length = 458 gfc_mpz_get_hwi (result->ts.u.cl->length->value.integer); 459 460 gcc_assert (buffer_size >= size_character (result->value.character.length, 461 result->ts.kind)); 462 result->value.character.string = 463 gfc_get_wide_string (result->value.character.length + 1); 464 465 if (result->ts.kind == gfc_default_character_kind) 466 for (size_t i = 0; i < (size_t) result->value.character.length; i++) 467 result->value.character.string[i] = (gfc_char_t) buffer[i]; 468 else 469 { 470 mpz_t integer; 471 size_t bytes = size_character (1, result->ts.kind); 472 mpz_init (integer); 473 gcc_assert (bytes <= sizeof (unsigned long)); 474 475 for (size_t i = 0; i < (size_t) result->value.character.length; i++) 476 { 477 gfc_conv_tree_to_mpz (integer, 478 native_interpret_expr (gfc_get_char_type (result->ts.kind), 479 &buffer[bytes*i], buffer_size-bytes*i)); 480 result->value.character.string[i] 481 = (gfc_char_t) mpz_get_ui (integer); 482 } 483 484 mpz_clear (integer); 485 } 486 487 result->value.character.string[result->value.character.length] = '\0'; 488 489 return result->value.character.length; 490 } 491 492 493 int 494 gfc_interpret_derived (unsigned char *buffer, size_t buffer_size, gfc_expr *result) 495 { 496 gfc_component *cmp; 497 int ptr; 498 tree type; 499 500 /* The attributes of the derived type need to be bolted to the floor. */ 501 result->expr_type = EXPR_STRUCTURE; 502 503 cmp = result->ts.u.derived->components; 504 505 if (result->ts.u.derived->from_intmod == INTMOD_ISO_C_BINDING 506 && (result->ts.u.derived->intmod_sym_id == ISOCBINDING_PTR 507 || result->ts.u.derived->intmod_sym_id == ISOCBINDING_FUNPTR)) 508 { 509 gfc_constructor *c; 510 gfc_expr *e; 511 /* Needed as gfc_typenode_for_spec as gfc_typenode_for_spec 512 sets this to BT_INTEGER. */ 513 result->ts.type = BT_DERIVED; 514 e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind, &result->where); 515 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL); 516 c->n.component = cmp; 517 gfc_target_interpret_expr (buffer, buffer_size, e, true); 518 e->ts.is_iso_c = 1; 519 return int_size_in_bytes (ptr_type_node); 520 } 521 522 type = gfc_typenode_for_spec (&result->ts); 523 524 /* Run through the derived type components. */ 525 for (;cmp; cmp = cmp->next) 526 { 527 gfc_constructor *c; 528 gfc_expr *e = gfc_get_constant_expr (cmp->ts.type, cmp->ts.kind, 529 &result->where); 530 e->ts = cmp->ts; 531 532 /* Copy shape, if needed. */ 533 if (cmp->as && cmp->as->rank) 534 { 535 int n; 536 537 e->expr_type = EXPR_ARRAY; 538 e->rank = cmp->as->rank; 539 540 e->shape = gfc_get_shape (e->rank); 541 for (n = 0; n < e->rank; n++) 542 { 543 mpz_init_set_ui (e->shape[n], 1); 544 mpz_add (e->shape[n], e->shape[n], 545 cmp->as->upper[n]->value.integer); 546 mpz_sub (e->shape[n], e->shape[n], 547 cmp->as->lower[n]->value.integer); 548 } 549 } 550 551 c = gfc_constructor_append_expr (&result->value.constructor, e, NULL); 552 553 /* The constructor points to the component. */ 554 c->n.component = cmp; 555 556 /* Calculate the offset, which consists of the FIELD_OFFSET in 557 bytes, which appears in multiples of DECL_OFFSET_ALIGN-bit-sized, 558 and additional bits of FIELD_BIT_OFFSET. The code assumes that all 559 sizes of the components are multiples of BITS_PER_UNIT, 560 i.e. there are, e.g., no bit fields. */ 561 562 gcc_assert (cmp->backend_decl); 563 ptr = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (cmp->backend_decl)); 564 gcc_assert (ptr % 8 == 0); 565 ptr = ptr/8 + TREE_INT_CST_LOW (DECL_FIELD_OFFSET (cmp->backend_decl)); 566 567 gcc_assert (e->ts.type != BT_VOID || cmp->attr.caf_token); 568 gfc_target_interpret_expr (&buffer[ptr], buffer_size - ptr, e, true); 569 } 570 571 return int_size_in_bytes (type); 572 } 573 574 575 /* Read a binary buffer to a constant expression. */ 576 size_t 577 gfc_target_interpret_expr (unsigned char *buffer, size_t buffer_size, 578 gfc_expr *result, bool convert_widechar) 579 { 580 if (result->expr_type == EXPR_ARRAY) 581 return interpret_array (buffer, buffer_size, result); 582 583 switch (result->ts.type) 584 { 585 case BT_INTEGER: 586 result->representation.length = 587 gfc_interpret_integer (result->ts.kind, buffer, buffer_size, 588 result->value.integer); 589 break; 590 591 case BT_REAL: 592 result->representation.length = 593 gfc_interpret_float (result->ts.kind, buffer, buffer_size, 594 result->value.real); 595 break; 596 597 case BT_COMPLEX: 598 result->representation.length = 599 gfc_interpret_complex (result->ts.kind, buffer, buffer_size, 600 result->value.complex); 601 break; 602 603 case BT_LOGICAL: 604 result->representation.length = 605 gfc_interpret_logical (result->ts.kind, buffer, buffer_size, 606 &result->value.logical); 607 break; 608 609 case BT_CHARACTER: 610 result->representation.length = 611 gfc_interpret_character (buffer, buffer_size, result); 612 break; 613 614 case BT_CLASS: 615 result->ts = CLASS_DATA (result)->ts; 616 /* Fall through. */ 617 case BT_DERIVED: 618 result->representation.length = 619 gfc_interpret_derived (buffer, buffer_size, result); 620 gcc_assert (result->representation.length >= 0); 621 break; 622 623 case BT_VOID: 624 /* This deals with caf_tokens. */ 625 result->representation.length = 626 gfc_interpret_integer (result->ts.kind, buffer, buffer_size, 627 result->value.integer); 628 break; 629 630 default: 631 gfc_internal_error ("Invalid expression in gfc_target_interpret_expr."); 632 break; 633 } 634 635 if (result->ts.type == BT_CHARACTER && convert_widechar) 636 result->representation.string 637 = gfc_widechar_to_char (result->value.character.string, 638 result->value.character.length); 639 else 640 { 641 result->representation.string = 642 XCNEWVEC (char, result->representation.length + 1); 643 memcpy (result->representation.string, buffer, 644 result->representation.length); 645 result->representation.string[result->representation.length] = '\0'; 646 } 647 648 return result->representation.length; 649 } 650 651 652 /* --------------------------------------------------------------- */ 653 /* Two functions used by trans-common.c to write overlapping 654 equivalence initializers to a buffer. This is added to the union 655 and the original initializers freed. */ 656 657 658 /* Writes the values of a constant expression to a char buffer. If another 659 unequal initializer has already been written to the buffer, this is an 660 error. */ 661 662 static size_t 663 expr_to_char (gfc_expr *e, locus *loc, 664 unsigned char *data, unsigned char *chk, size_t len) 665 { 666 int i; 667 int ptr; 668 gfc_constructor *c; 669 gfc_component *cmp; 670 unsigned char *buffer; 671 672 if (e == NULL) 673 return 0; 674 675 /* Take a derived type, one component at a time, using the offsets from the backend 676 declaration. */ 677 if (e->ts.type == BT_DERIVED) 678 { 679 for (c = gfc_constructor_first (e->value.constructor), 680 cmp = e->ts.u.derived->components; 681 c; c = gfc_constructor_next (c), cmp = cmp->next) 682 { 683 gcc_assert (cmp && cmp->backend_decl); 684 if (!c->expr) 685 continue; 686 ptr = TREE_INT_CST_LOW(DECL_FIELD_OFFSET(cmp->backend_decl)) 687 + TREE_INT_CST_LOW(DECL_FIELD_BIT_OFFSET(cmp->backend_decl))/8; 688 expr_to_char (c->expr, loc, &data[ptr], &chk[ptr], len); 689 } 690 return len; 691 } 692 693 /* Otherwise, use the target-memory machinery to write a bitwise image, appropriate 694 to the target, in a buffer and check off the initialized part of the buffer. */ 695 gfc_target_expr_size (e, &len); 696 buffer = (unsigned char*)alloca (len); 697 len = gfc_target_encode_expr (e, buffer, len); 698 699 for (i = 0; i < (int)len; i++) 700 { 701 if (chk[i] && (buffer[i] != data[i])) 702 { 703 if (loc) 704 gfc_error ("Overlapping unequal initializers in EQUIVALENCE " 705 "at %L", loc); 706 else 707 gfc_error ("Overlapping unequal initializers in EQUIVALENCE " 708 "at %C"); 709 return 0; 710 } 711 chk[i] = 0xFF; 712 } 713 714 memcpy (data, buffer, len); 715 return len; 716 } 717 718 719 /* Writes the values from the equivalence initializers to a char* array 720 that will be written to the constructor to make the initializer for 721 the union declaration. */ 722 723 size_t 724 gfc_merge_initializers (gfc_typespec ts, gfc_expr *e, locus *loc, 725 unsigned char *data, 726 unsigned char *chk, size_t length) 727 { 728 size_t len = 0; 729 gfc_constructor * c; 730 731 switch (e->expr_type) 732 { 733 case EXPR_CONSTANT: 734 case EXPR_STRUCTURE: 735 len = expr_to_char (e, loc, &data[0], &chk[0], length); 736 break; 737 738 case EXPR_ARRAY: 739 for (c = gfc_constructor_first (e->value.constructor); 740 c; c = gfc_constructor_next (c)) 741 { 742 size_t elt_size; 743 744 gfc_target_expr_size (c->expr, &elt_size); 745 746 if (mpz_cmp_si (c->offset, 0) != 0) 747 len = elt_size * (size_t)mpz_get_si (c->offset); 748 749 len = len + gfc_merge_initializers (ts, c->expr, loc, &data[len], 750 &chk[len], length - len); 751 } 752 break; 753 754 default: 755 return 0; 756 } 757 758 return len; 759 } 760 761 762 /* Transfer the bitpattern of a (integer) BOZ to real or complex variables. 763 When successful, no BOZ or nothing to do, true is returned. */ 764 765 bool 766 gfc_convert_boz (gfc_expr *expr, gfc_typespec *ts) 767 { 768 size_t buffer_size, boz_bit_size, ts_bit_size; 769 int index; 770 unsigned char *buffer; 771 772 if (!expr->is_boz) 773 return true; 774 775 gcc_assert (expr->expr_type == EXPR_CONSTANT 776 && expr->ts.type == BT_INTEGER); 777 778 /* Don't convert BOZ to logical, character, derived etc. */ 779 if (ts->type == BT_REAL) 780 { 781 buffer_size = size_float (ts->kind); 782 ts_bit_size = buffer_size * 8; 783 } 784 else if (ts->type == BT_COMPLEX) 785 { 786 buffer_size = size_complex (ts->kind); 787 ts_bit_size = buffer_size * 8 / 2; 788 } 789 else 790 return true; 791 792 /* Convert BOZ to the smallest possible integer kind. */ 793 boz_bit_size = mpz_sizeinbase (expr->value.integer, 2); 794 795 if (boz_bit_size > ts_bit_size) 796 { 797 gfc_error_now ("BOZ constant at %L is too large (%ld vs %ld bits)", 798 &expr->where, (long) boz_bit_size, (long) ts_bit_size); 799 return false; 800 } 801 802 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index) 803 if ((unsigned) gfc_integer_kinds[index].bit_size >= ts_bit_size) 804 break; 805 806 expr->ts.kind = gfc_integer_kinds[index].kind; 807 buffer_size = MAX (buffer_size, size_integer (expr->ts.kind)); 808 809 buffer = (unsigned char*)alloca (buffer_size); 810 encode_integer (expr->ts.kind, expr->value.integer, buffer, buffer_size); 811 mpz_clear (expr->value.integer); 812 813 if (ts->type == BT_REAL) 814 { 815 mpfr_init (expr->value.real); 816 gfc_interpret_float (ts->kind, buffer, buffer_size, expr->value.real); 817 } 818 else 819 { 820 mpc_init2 (expr->value.complex, mpfr_get_default_prec()); 821 gfc_interpret_complex (ts->kind, buffer, buffer_size, 822 expr->value.complex); 823 } 824 expr->is_boz = 0; 825 expr->ts.type = ts->type; 826 expr->ts.kind = ts->kind; 827 828 return true; 829 } 830