1 /* Fold a constant sub-tree into a single node for C-compiler 2 Copyright (C) 1987-2018 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /*@@ This file should be rewritten to use an arbitrary precision 21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst". 22 @@ Perhaps the routines could also be used for bc/dc, and made a lib. 23 @@ The routines that translate from the ap rep should 24 @@ warn if precision et. al. is lost. 25 @@ This would also make life easier when this technology is used 26 @@ for cross-compilers. */ 27 28 /* The entry points in this file are fold, size_int_wide and size_binop. 29 30 fold takes a tree as argument and returns a simplified tree. 31 32 size_binop takes a tree code for an arithmetic operation 33 and two operands that are trees, and produces a tree for the 34 result, assuming the type comes from `sizetype'. 35 36 size_int takes an integer value, and creates a tree constant 37 with type from `sizetype'. 38 39 Note: Since the folders get called on non-gimple code as well as 40 gimple code, we need to handle GIMPLE tuples as well as their 41 corresponding tree equivalents. */ 42 43 #include "config.h" 44 #include "system.h" 45 #include "coretypes.h" 46 #include "backend.h" 47 #include "target.h" 48 #include "rtl.h" 49 #include "tree.h" 50 #include "gimple.h" 51 #include "predict.h" 52 #include "memmodel.h" 53 #include "tm_p.h" 54 #include "tree-ssa-operands.h" 55 #include "optabs-query.h" 56 #include "cgraph.h" 57 #include "diagnostic-core.h" 58 #include "flags.h" 59 #include "alias.h" 60 #include "fold-const.h" 61 #include "fold-const-call.h" 62 #include "stor-layout.h" 63 #include "calls.h" 64 #include "tree-iterator.h" 65 #include "expr.h" 66 #include "intl.h" 67 #include "langhooks.h" 68 #include "tree-eh.h" 69 #include "gimplify.h" 70 #include "tree-dfa.h" 71 #include "builtins.h" 72 #include "generic-match.h" 73 #include "gimple-fold.h" 74 #include "params.h" 75 #include "tree-into-ssa.h" 76 #include "md5.h" 77 #include "case-cfn-macros.h" 78 #include "stringpool.h" 79 #include "tree-vrp.h" 80 #include "tree-ssanames.h" 81 #include "selftest.h" 82 #include "stringpool.h" 83 #include "attribs.h" 84 #include "tree-vector-builder.h" 85 #include "vec-perm-indices.h" 86 87 /* Nonzero if we are folding constants inside an initializer; zero 88 otherwise. */ 89 int folding_initializer = 0; 90 91 /* The following constants represent a bit based encoding of GCC's 92 comparison operators. This encoding simplifies transformations 93 on relational comparison operators, such as AND and OR. */ 94 enum comparison_code { 95 COMPCODE_FALSE = 0, 96 COMPCODE_LT = 1, 97 COMPCODE_EQ = 2, 98 COMPCODE_LE = 3, 99 COMPCODE_GT = 4, 100 COMPCODE_LTGT = 5, 101 COMPCODE_GE = 6, 102 COMPCODE_ORD = 7, 103 COMPCODE_UNORD = 8, 104 COMPCODE_UNLT = 9, 105 COMPCODE_UNEQ = 10, 106 COMPCODE_UNLE = 11, 107 COMPCODE_UNGT = 12, 108 COMPCODE_NE = 13, 109 COMPCODE_UNGE = 14, 110 COMPCODE_TRUE = 15 111 }; 112 113 static bool negate_expr_p (tree); 114 static tree negate_expr (tree); 115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree); 116 static enum comparison_code comparison_to_compcode (enum tree_code); 117 static enum tree_code compcode_to_comparison (enum comparison_code); 118 static int twoval_comparison_p (tree, tree *, tree *); 119 static tree eval_subst (location_t, tree, tree, tree, tree, tree); 120 static tree optimize_bit_field_compare (location_t, enum tree_code, 121 tree, tree, tree); 122 static int simple_operand_p (const_tree); 123 static bool simple_operand_p_2 (tree); 124 static tree range_binop (enum tree_code, tree, tree, int, tree, int); 125 static tree range_predecessor (tree); 126 static tree range_successor (tree); 127 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree); 128 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree); 129 static tree unextend (tree, int, int, tree); 130 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *); 131 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *); 132 static tree fold_binary_op_with_conditional_arg (location_t, 133 enum tree_code, tree, 134 tree, tree, 135 tree, tree, int); 136 static tree fold_negate_const (tree, tree); 137 static tree fold_not_const (const_tree, tree); 138 static tree fold_relational_const (enum tree_code, tree, tree, tree); 139 static tree fold_convert_const (enum tree_code, tree, tree); 140 static tree fold_view_convert_expr (tree, tree); 141 static tree fold_negate_expr (location_t, tree); 142 143 144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION. 145 Otherwise, return LOC. */ 146 147 static location_t 148 expr_location_or (tree t, location_t loc) 149 { 150 location_t tloc = EXPR_LOCATION (t); 151 return tloc == UNKNOWN_LOCATION ? loc : tloc; 152 } 153 154 /* Similar to protected_set_expr_location, but never modify x in place, 155 if location can and needs to be set, unshare it. */ 156 157 static inline tree 158 protected_set_expr_location_unshare (tree x, location_t loc) 159 { 160 if (CAN_HAVE_LOCATION_P (x) 161 && EXPR_LOCATION (x) != loc 162 && !(TREE_CODE (x) == SAVE_EXPR 163 || TREE_CODE (x) == TARGET_EXPR 164 || TREE_CODE (x) == BIND_EXPR)) 165 { 166 x = copy_node (x); 167 SET_EXPR_LOCATION (x, loc); 168 } 169 return x; 170 } 171 172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact 173 division and returns the quotient. Otherwise returns 174 NULL_TREE. */ 175 176 tree 177 div_if_zero_remainder (const_tree arg1, const_tree arg2) 178 { 179 widest_int quo; 180 181 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2), 182 SIGNED, &quo)) 183 return wide_int_to_tree (TREE_TYPE (arg1), quo); 184 185 return NULL_TREE; 186 } 187 188 /* This is nonzero if we should defer warnings about undefined 189 overflow. This facility exists because these warnings are a 190 special case. The code to estimate loop iterations does not want 191 to issue any warnings, since it works with expressions which do not 192 occur in user code. Various bits of cleanup code call fold(), but 193 only use the result if it has certain characteristics (e.g., is a 194 constant); that code only wants to issue a warning if the result is 195 used. */ 196 197 static int fold_deferring_overflow_warnings; 198 199 /* If a warning about undefined overflow is deferred, this is the 200 warning. Note that this may cause us to turn two warnings into 201 one, but that is fine since it is sufficient to only give one 202 warning per expression. */ 203 204 static const char* fold_deferred_overflow_warning; 205 206 /* If a warning about undefined overflow is deferred, this is the 207 level at which the warning should be emitted. */ 208 209 static enum warn_strict_overflow_code fold_deferred_overflow_code; 210 211 /* Start deferring overflow warnings. We could use a stack here to 212 permit nested calls, but at present it is not necessary. */ 213 214 void 215 fold_defer_overflow_warnings (void) 216 { 217 ++fold_deferring_overflow_warnings; 218 } 219 220 /* Stop deferring overflow warnings. If there is a pending warning, 221 and ISSUE is true, then issue the warning if appropriate. STMT is 222 the statement with which the warning should be associated (used for 223 location information); STMT may be NULL. CODE is the level of the 224 warning--a warn_strict_overflow_code value. This function will use 225 the smaller of CODE and the deferred code when deciding whether to 226 issue the warning. CODE may be zero to mean to always use the 227 deferred code. */ 228 229 void 230 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code) 231 { 232 const char *warnmsg; 233 location_t locus; 234 235 gcc_assert (fold_deferring_overflow_warnings > 0); 236 --fold_deferring_overflow_warnings; 237 if (fold_deferring_overflow_warnings > 0) 238 { 239 if (fold_deferred_overflow_warning != NULL 240 && code != 0 241 && code < (int) fold_deferred_overflow_code) 242 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code; 243 return; 244 } 245 246 warnmsg = fold_deferred_overflow_warning; 247 fold_deferred_overflow_warning = NULL; 248 249 if (!issue || warnmsg == NULL) 250 return; 251 252 if (gimple_no_warning_p (stmt)) 253 return; 254 255 /* Use the smallest code level when deciding to issue the 256 warning. */ 257 if (code == 0 || code > (int) fold_deferred_overflow_code) 258 code = fold_deferred_overflow_code; 259 260 if (!issue_strict_overflow_warning (code)) 261 return; 262 263 if (stmt == NULL) 264 locus = input_location; 265 else 266 locus = gimple_location (stmt); 267 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg); 268 } 269 270 /* Stop deferring overflow warnings, ignoring any deferred 271 warnings. */ 272 273 void 274 fold_undefer_and_ignore_overflow_warnings (void) 275 { 276 fold_undefer_overflow_warnings (false, NULL, 0); 277 } 278 279 /* Whether we are deferring overflow warnings. */ 280 281 bool 282 fold_deferring_overflow_warnings_p (void) 283 { 284 return fold_deferring_overflow_warnings > 0; 285 } 286 287 /* This is called when we fold something based on the fact that signed 288 overflow is undefined. */ 289 290 void 291 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc) 292 { 293 if (fold_deferring_overflow_warnings > 0) 294 { 295 if (fold_deferred_overflow_warning == NULL 296 || wc < fold_deferred_overflow_code) 297 { 298 fold_deferred_overflow_warning = gmsgid; 299 fold_deferred_overflow_code = wc; 300 } 301 } 302 else if (issue_strict_overflow_warning (wc)) 303 warning (OPT_Wstrict_overflow, gmsgid); 304 } 305 306 /* Return true if the built-in mathematical function specified by CODE 307 is odd, i.e. -f(x) == f(-x). */ 308 309 bool 310 negate_mathfn_p (combined_fn fn) 311 { 312 switch (fn) 313 { 314 CASE_CFN_ASIN: 315 CASE_CFN_ASINH: 316 CASE_CFN_ATAN: 317 CASE_CFN_ATANH: 318 CASE_CFN_CASIN: 319 CASE_CFN_CASINH: 320 CASE_CFN_CATAN: 321 CASE_CFN_CATANH: 322 CASE_CFN_CBRT: 323 CASE_CFN_CPROJ: 324 CASE_CFN_CSIN: 325 CASE_CFN_CSINH: 326 CASE_CFN_CTAN: 327 CASE_CFN_CTANH: 328 CASE_CFN_ERF: 329 CASE_CFN_LLROUND: 330 CASE_CFN_LROUND: 331 CASE_CFN_ROUND: 332 CASE_CFN_SIN: 333 CASE_CFN_SINH: 334 CASE_CFN_TAN: 335 CASE_CFN_TANH: 336 CASE_CFN_TRUNC: 337 return true; 338 339 CASE_CFN_LLRINT: 340 CASE_CFN_LRINT: 341 CASE_CFN_NEARBYINT: 342 CASE_CFN_RINT: 343 return !flag_rounding_math; 344 345 default: 346 break; 347 } 348 return false; 349 } 350 351 /* Check whether we may negate an integer constant T without causing 352 overflow. */ 353 354 bool 355 may_negate_without_overflow_p (const_tree t) 356 { 357 tree type; 358 359 gcc_assert (TREE_CODE (t) == INTEGER_CST); 360 361 type = TREE_TYPE (t); 362 if (TYPE_UNSIGNED (type)) 363 return false; 364 365 return !wi::only_sign_bit_p (wi::to_wide (t)); 366 } 367 368 /* Determine whether an expression T can be cheaply negated using 369 the function negate_expr without introducing undefined overflow. */ 370 371 static bool 372 negate_expr_p (tree t) 373 { 374 tree type; 375 376 if (t == 0) 377 return false; 378 379 type = TREE_TYPE (t); 380 381 STRIP_SIGN_NOPS (t); 382 switch (TREE_CODE (t)) 383 { 384 case INTEGER_CST: 385 if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type)) 386 return true; 387 388 /* Check that -CST will not overflow type. */ 389 return may_negate_without_overflow_p (t); 390 case BIT_NOT_EXPR: 391 return (INTEGRAL_TYPE_P (type) 392 && TYPE_OVERFLOW_WRAPS (type)); 393 394 case FIXED_CST: 395 return true; 396 397 case NEGATE_EXPR: 398 return !TYPE_OVERFLOW_SANITIZED (type); 399 400 case REAL_CST: 401 /* We want to canonicalize to positive real constants. Pretend 402 that only negative ones can be easily negated. */ 403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); 404 405 case COMPLEX_CST: 406 return negate_expr_p (TREE_REALPART (t)) 407 && negate_expr_p (TREE_IMAGPART (t)); 408 409 case VECTOR_CST: 410 { 411 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type)) 412 return true; 413 414 /* Steps don't prevent negation. */ 415 unsigned int count = vector_cst_encoded_nelts (t); 416 for (unsigned int i = 0; i < count; ++i) 417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i))) 418 return false; 419 420 return true; 421 } 422 423 case COMPLEX_EXPR: 424 return negate_expr_p (TREE_OPERAND (t, 0)) 425 && negate_expr_p (TREE_OPERAND (t, 1)); 426 427 case CONJ_EXPR: 428 return negate_expr_p (TREE_OPERAND (t, 0)); 429 430 case PLUS_EXPR: 431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 432 || HONOR_SIGNED_ZEROS (element_mode (type)) 433 || (ANY_INTEGRAL_TYPE_P (type) 434 && ! TYPE_OVERFLOW_WRAPS (type))) 435 return false; 436 /* -(A + B) -> (-B) - A. */ 437 if (negate_expr_p (TREE_OPERAND (t, 1))) 438 return true; 439 /* -(A + B) -> (-A) - B. */ 440 return negate_expr_p (TREE_OPERAND (t, 0)); 441 442 case MINUS_EXPR: 443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */ 444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 445 && !HONOR_SIGNED_ZEROS (element_mode (type)) 446 && (! ANY_INTEGRAL_TYPE_P (type) 447 || TYPE_OVERFLOW_WRAPS (type)); 448 449 case MULT_EXPR: 450 if (TYPE_UNSIGNED (type)) 451 break; 452 /* INT_MIN/n * n doesn't overflow while negating one operand it does 453 if n is a (negative) power of two. */ 454 if (INTEGRAL_TYPE_P (TREE_TYPE (t)) 455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 456 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST 457 && (wi::popcount 458 (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1) 459 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 460 && (wi::popcount 461 (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1))) 462 break; 463 464 /* Fall through. */ 465 466 case RDIV_EXPR: 467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t)))) 468 return negate_expr_p (TREE_OPERAND (t, 1)) 469 || negate_expr_p (TREE_OPERAND (t, 0)); 470 break; 471 472 case TRUNC_DIV_EXPR: 473 case ROUND_DIV_EXPR: 474 case EXACT_DIV_EXPR: 475 if (TYPE_UNSIGNED (type)) 476 break; 477 /* In general we can't negate A in A / B, because if A is INT_MIN and 478 B is not 1 we change the sign of the result. */ 479 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST 480 && negate_expr_p (TREE_OPERAND (t, 0))) 481 return true; 482 /* In general we can't negate B in A / B, because if A is INT_MIN and 483 B is 1, we may turn this into INT_MIN / -1 which is undefined 484 and actually traps on some architectures. */ 485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t)) 486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 487 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 488 && ! integer_onep (TREE_OPERAND (t, 1)))) 489 return negate_expr_p (TREE_OPERAND (t, 1)); 490 break; 491 492 case NOP_EXPR: 493 /* Negate -((double)float) as (double)(-float). */ 494 if (TREE_CODE (type) == REAL_TYPE) 495 { 496 tree tem = strip_float_extensions (t); 497 if (tem != t) 498 return negate_expr_p (tem); 499 } 500 break; 501 502 case CALL_EXPR: 503 /* Negate -f(x) as f(-x). */ 504 if (negate_mathfn_p (get_call_combined_fn (t))) 505 return negate_expr_p (CALL_EXPR_ARG (t, 0)); 506 break; 507 508 case RSHIFT_EXPR: 509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ 510 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) 511 { 512 tree op1 = TREE_OPERAND (t, 1); 513 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1) 514 return true; 515 } 516 break; 517 518 default: 519 break; 520 } 521 return false; 522 } 523 524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no 525 simplification is possible. 526 If negate_expr_p would return true for T, NULL_TREE will never be 527 returned. */ 528 529 static tree 530 fold_negate_expr_1 (location_t loc, tree t) 531 { 532 tree type = TREE_TYPE (t); 533 tree tem; 534 535 switch (TREE_CODE (t)) 536 { 537 /* Convert - (~A) to A + 1. */ 538 case BIT_NOT_EXPR: 539 if (INTEGRAL_TYPE_P (type)) 540 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0), 541 build_one_cst (type)); 542 break; 543 544 case INTEGER_CST: 545 tem = fold_negate_const (t, type); 546 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t) 547 || (ANY_INTEGRAL_TYPE_P (type) 548 && !TYPE_OVERFLOW_TRAPS (type) 549 && TYPE_OVERFLOW_WRAPS (type)) 550 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0) 551 return tem; 552 break; 553 554 case POLY_INT_CST: 555 case REAL_CST: 556 case FIXED_CST: 557 tem = fold_negate_const (t, type); 558 return tem; 559 560 case COMPLEX_CST: 561 { 562 tree rpart = fold_negate_expr (loc, TREE_REALPART (t)); 563 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t)); 564 if (rpart && ipart) 565 return build_complex (type, rpart, ipart); 566 } 567 break; 568 569 case VECTOR_CST: 570 { 571 tree_vector_builder elts; 572 elts.new_unary_operation (type, t, true); 573 unsigned int count = elts.encoded_nelts (); 574 for (unsigned int i = 0; i < count; ++i) 575 { 576 tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i)); 577 if (elt == NULL_TREE) 578 return NULL_TREE; 579 elts.quick_push (elt); 580 } 581 582 return elts.build (); 583 } 584 585 case COMPLEX_EXPR: 586 if (negate_expr_p (t)) 587 return fold_build2_loc (loc, COMPLEX_EXPR, type, 588 fold_negate_expr (loc, TREE_OPERAND (t, 0)), 589 fold_negate_expr (loc, TREE_OPERAND (t, 1))); 590 break; 591 592 case CONJ_EXPR: 593 if (negate_expr_p (t)) 594 return fold_build1_loc (loc, CONJ_EXPR, type, 595 fold_negate_expr (loc, TREE_OPERAND (t, 0))); 596 break; 597 598 case NEGATE_EXPR: 599 if (!TYPE_OVERFLOW_SANITIZED (type)) 600 return TREE_OPERAND (t, 0); 601 break; 602 603 case PLUS_EXPR: 604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 605 && !HONOR_SIGNED_ZEROS (element_mode (type))) 606 { 607 /* -(A + B) -> (-B) - A. */ 608 if (negate_expr_p (TREE_OPERAND (t, 1))) 609 { 610 tem = negate_expr (TREE_OPERAND (t, 1)); 611 return fold_build2_loc (loc, MINUS_EXPR, type, 612 tem, TREE_OPERAND (t, 0)); 613 } 614 615 /* -(A + B) -> (-A) - B. */ 616 if (negate_expr_p (TREE_OPERAND (t, 0))) 617 { 618 tem = negate_expr (TREE_OPERAND (t, 0)); 619 return fold_build2_loc (loc, MINUS_EXPR, type, 620 tem, TREE_OPERAND (t, 1)); 621 } 622 } 623 break; 624 625 case MINUS_EXPR: 626 /* - (A - B) -> B - A */ 627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)) 628 && !HONOR_SIGNED_ZEROS (element_mode (type))) 629 return fold_build2_loc (loc, MINUS_EXPR, type, 630 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0)); 631 break; 632 633 case MULT_EXPR: 634 if (TYPE_UNSIGNED (type)) 635 break; 636 637 /* Fall through. */ 638 639 case RDIV_EXPR: 640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))) 641 { 642 tem = TREE_OPERAND (t, 1); 643 if (negate_expr_p (tem)) 644 return fold_build2_loc (loc, TREE_CODE (t), type, 645 TREE_OPERAND (t, 0), negate_expr (tem)); 646 tem = TREE_OPERAND (t, 0); 647 if (negate_expr_p (tem)) 648 return fold_build2_loc (loc, TREE_CODE (t), type, 649 negate_expr (tem), TREE_OPERAND (t, 1)); 650 } 651 break; 652 653 case TRUNC_DIV_EXPR: 654 case ROUND_DIV_EXPR: 655 case EXACT_DIV_EXPR: 656 if (TYPE_UNSIGNED (type)) 657 break; 658 /* In general we can't negate A in A / B, because if A is INT_MIN and 659 B is not 1 we change the sign of the result. */ 660 if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST 661 && negate_expr_p (TREE_OPERAND (t, 0))) 662 return fold_build2_loc (loc, TREE_CODE (t), type, 663 negate_expr (TREE_OPERAND (t, 0)), 664 TREE_OPERAND (t, 1)); 665 /* In general we can't negate B in A / B, because if A is INT_MIN and 666 B is 1, we may turn this into INT_MIN / -1 which is undefined 667 and actually traps on some architectures. */ 668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t)) 669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) 670 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 671 && ! integer_onep (TREE_OPERAND (t, 1)))) 672 && negate_expr_p (TREE_OPERAND (t, 1))) 673 return fold_build2_loc (loc, TREE_CODE (t), type, 674 TREE_OPERAND (t, 0), 675 negate_expr (TREE_OPERAND (t, 1))); 676 break; 677 678 case NOP_EXPR: 679 /* Convert -((double)float) into (double)(-float). */ 680 if (TREE_CODE (type) == REAL_TYPE) 681 { 682 tem = strip_float_extensions (t); 683 if (tem != t && negate_expr_p (tem)) 684 return fold_convert_loc (loc, type, negate_expr (tem)); 685 } 686 break; 687 688 case CALL_EXPR: 689 /* Negate -f(x) as f(-x). */ 690 if (negate_mathfn_p (get_call_combined_fn (t)) 691 && negate_expr_p (CALL_EXPR_ARG (t, 0))) 692 { 693 tree fndecl, arg; 694 695 fndecl = get_callee_fndecl (t); 696 arg = negate_expr (CALL_EXPR_ARG (t, 0)); 697 return build_call_expr_loc (loc, fndecl, 1, arg); 698 } 699 break; 700 701 case RSHIFT_EXPR: 702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ 703 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) 704 { 705 tree op1 = TREE_OPERAND (t, 1); 706 if (wi::to_wide (op1) == TYPE_PRECISION (type) - 1) 707 { 708 tree ntype = TYPE_UNSIGNED (type) 709 ? signed_type_for (type) 710 : unsigned_type_for (type); 711 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0)); 712 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1); 713 return fold_convert_loc (loc, type, temp); 714 } 715 } 716 break; 717 718 default: 719 break; 720 } 721 722 return NULL_TREE; 723 } 724 725 /* A wrapper for fold_negate_expr_1. */ 726 727 static tree 728 fold_negate_expr (location_t loc, tree t) 729 { 730 tree type = TREE_TYPE (t); 731 STRIP_SIGN_NOPS (t); 732 tree tem = fold_negate_expr_1 (loc, t); 733 if (tem == NULL_TREE) 734 return NULL_TREE; 735 return fold_convert_loc (loc, type, tem); 736 } 737 738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be 739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case 740 return NULL_TREE. */ 741 742 static tree 743 negate_expr (tree t) 744 { 745 tree type, tem; 746 location_t loc; 747 748 if (t == NULL_TREE) 749 return NULL_TREE; 750 751 loc = EXPR_LOCATION (t); 752 type = TREE_TYPE (t); 753 STRIP_SIGN_NOPS (t); 754 755 tem = fold_negate_expr (loc, t); 756 if (!tem) 757 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t); 758 return fold_convert_loc (loc, type, tem); 759 } 760 761 /* Split a tree IN into a constant, literal and variable parts that could be 762 combined with CODE to make IN. "constant" means an expression with 763 TREE_CONSTANT but that isn't an actual constant. CODE must be a 764 commutative arithmetic operation. Store the constant part into *CONP, 765 the literal in *LITP and return the variable part. If a part isn't 766 present, set it to null. If the tree does not decompose in this way, 767 return the entire tree as the variable part and the other parts as null. 768 769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that 770 case, we negate an operand that was subtracted. Except if it is a 771 literal for which we use *MINUS_LITP instead. 772 773 If NEGATE_P is true, we are negating all of IN, again except a literal 774 for which we use *MINUS_LITP instead. If a variable part is of pointer 775 type, it is negated after converting to TYPE. This prevents us from 776 generating illegal MINUS pointer expression. LOC is the location of 777 the converted variable part. 778 779 If IN is itself a literal or constant, return it as appropriate. 780 781 Note that we do not guarantee that any of the three values will be the 782 same type as IN, but they will have the same signedness and mode. */ 783 784 static tree 785 split_tree (tree in, tree type, enum tree_code code, 786 tree *minus_varp, tree *conp, tree *minus_conp, 787 tree *litp, tree *minus_litp, int negate_p) 788 { 789 tree var = 0; 790 *minus_varp = 0; 791 *conp = 0; 792 *minus_conp = 0; 793 *litp = 0; 794 *minus_litp = 0; 795 796 /* Strip any conversions that don't change the machine mode or signedness. */ 797 STRIP_SIGN_NOPS (in); 798 799 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST 800 || TREE_CODE (in) == FIXED_CST) 801 *litp = in; 802 else if (TREE_CODE (in) == code 803 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math) 804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in)) 805 /* We can associate addition and subtraction together (even 806 though the C standard doesn't say so) for integers because 807 the value is not affected. For reals, the value might be 808 affected, so we can't. */ 809 && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR) 810 || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR) 811 || (code == MINUS_EXPR 812 && (TREE_CODE (in) == PLUS_EXPR 813 || TREE_CODE (in) == POINTER_PLUS_EXPR))))) 814 { 815 tree op0 = TREE_OPERAND (in, 0); 816 tree op1 = TREE_OPERAND (in, 1); 817 int neg1_p = TREE_CODE (in) == MINUS_EXPR; 818 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0; 819 820 /* First see if either of the operands is a literal, then a constant. */ 821 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST 822 || TREE_CODE (op0) == FIXED_CST) 823 *litp = op0, op0 = 0; 824 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST 825 || TREE_CODE (op1) == FIXED_CST) 826 *litp = op1, neg_litp_p = neg1_p, op1 = 0; 827 828 if (op0 != 0 && TREE_CONSTANT (op0)) 829 *conp = op0, op0 = 0; 830 else if (op1 != 0 && TREE_CONSTANT (op1)) 831 *conp = op1, neg_conp_p = neg1_p, op1 = 0; 832 833 /* If we haven't dealt with either operand, this is not a case we can 834 decompose. Otherwise, VAR is either of the ones remaining, if any. */ 835 if (op0 != 0 && op1 != 0) 836 var = in; 837 else if (op0 != 0) 838 var = op0; 839 else 840 var = op1, neg_var_p = neg1_p; 841 842 /* Now do any needed negations. */ 843 if (neg_litp_p) 844 *minus_litp = *litp, *litp = 0; 845 if (neg_conp_p && *conp) 846 *minus_conp = *conp, *conp = 0; 847 if (neg_var_p && var) 848 *minus_varp = var, var = 0; 849 } 850 else if (TREE_CONSTANT (in)) 851 *conp = in; 852 else if (TREE_CODE (in) == BIT_NOT_EXPR 853 && code == PLUS_EXPR) 854 { 855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this 856 when IN is constant. */ 857 *litp = build_minus_one_cst (type); 858 *minus_varp = TREE_OPERAND (in, 0); 859 } 860 else 861 var = in; 862 863 if (negate_p) 864 { 865 if (*litp) 866 *minus_litp = *litp, *litp = 0; 867 else if (*minus_litp) 868 *litp = *minus_litp, *minus_litp = 0; 869 if (*conp) 870 *minus_conp = *conp, *conp = 0; 871 else if (*minus_conp) 872 *conp = *minus_conp, *minus_conp = 0; 873 if (var) 874 *minus_varp = var, var = 0; 875 else if (*minus_varp) 876 var = *minus_varp, *minus_varp = 0; 877 } 878 879 if (*litp 880 && TREE_OVERFLOW_P (*litp)) 881 *litp = drop_tree_overflow (*litp); 882 if (*minus_litp 883 && TREE_OVERFLOW_P (*minus_litp)) 884 *minus_litp = drop_tree_overflow (*minus_litp); 885 886 return var; 887 } 888 889 /* Re-associate trees split by the above function. T1 and T2 are 890 either expressions to associate or null. Return the new 891 expression, if any. LOC is the location of the new expression. If 892 we build an operation, do it in TYPE and with CODE. */ 893 894 static tree 895 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type) 896 { 897 if (t1 == 0) 898 { 899 gcc_assert (t2 == 0 || code != MINUS_EXPR); 900 return t2; 901 } 902 else if (t2 == 0) 903 return t1; 904 905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't 906 try to fold this since we will have infinite recursion. But do 907 deal with any NEGATE_EXPRs. */ 908 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code 909 || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR 910 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR) 911 { 912 if (code == PLUS_EXPR) 913 { 914 if (TREE_CODE (t1) == NEGATE_EXPR) 915 return build2_loc (loc, MINUS_EXPR, type, 916 fold_convert_loc (loc, type, t2), 917 fold_convert_loc (loc, type, 918 TREE_OPERAND (t1, 0))); 919 else if (TREE_CODE (t2) == NEGATE_EXPR) 920 return build2_loc (loc, MINUS_EXPR, type, 921 fold_convert_loc (loc, type, t1), 922 fold_convert_loc (loc, type, 923 TREE_OPERAND (t2, 0))); 924 else if (integer_zerop (t2)) 925 return fold_convert_loc (loc, type, t1); 926 } 927 else if (code == MINUS_EXPR) 928 { 929 if (integer_zerop (t2)) 930 return fold_convert_loc (loc, type, t1); 931 } 932 933 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), 934 fold_convert_loc (loc, type, t2)); 935 } 936 937 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), 938 fold_convert_loc (loc, type, t2)); 939 } 940 941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable 942 for use in int_const_binop, size_binop and size_diffop. */ 943 944 static bool 945 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2) 946 { 947 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1)) 948 return false; 949 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2)) 950 return false; 951 952 switch (code) 953 { 954 case LSHIFT_EXPR: 955 case RSHIFT_EXPR: 956 case LROTATE_EXPR: 957 case RROTATE_EXPR: 958 return true; 959 960 default: 961 break; 962 } 963 964 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2) 965 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2) 966 && TYPE_MODE (type1) == TYPE_MODE (type2); 967 } 968 969 /* Subroutine of int_const_binop_1 that handles two INTEGER_CSTs. */ 970 971 static tree 972 int_const_binop_2 (enum tree_code code, const_tree parg1, const_tree parg2, 973 int overflowable) 974 { 975 wide_int res; 976 tree t; 977 tree type = TREE_TYPE (parg1); 978 signop sign = TYPE_SIGN (type); 979 bool overflow = false; 980 981 wi::tree_to_wide_ref arg1 = wi::to_wide (parg1); 982 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type)); 983 984 switch (code) 985 { 986 case BIT_IOR_EXPR: 987 res = wi::bit_or (arg1, arg2); 988 break; 989 990 case BIT_XOR_EXPR: 991 res = wi::bit_xor (arg1, arg2); 992 break; 993 994 case BIT_AND_EXPR: 995 res = wi::bit_and (arg1, arg2); 996 break; 997 998 case RSHIFT_EXPR: 999 case LSHIFT_EXPR: 1000 if (wi::neg_p (arg2)) 1001 { 1002 arg2 = -arg2; 1003 if (code == RSHIFT_EXPR) 1004 code = LSHIFT_EXPR; 1005 else 1006 code = RSHIFT_EXPR; 1007 } 1008 1009 if (code == RSHIFT_EXPR) 1010 /* It's unclear from the C standard whether shifts can overflow. 1011 The following code ignores overflow; perhaps a C standard 1012 interpretation ruling is needed. */ 1013 res = wi::rshift (arg1, arg2, sign); 1014 else 1015 res = wi::lshift (arg1, arg2); 1016 break; 1017 1018 case RROTATE_EXPR: 1019 case LROTATE_EXPR: 1020 if (wi::neg_p (arg2)) 1021 { 1022 arg2 = -arg2; 1023 if (code == RROTATE_EXPR) 1024 code = LROTATE_EXPR; 1025 else 1026 code = RROTATE_EXPR; 1027 } 1028 1029 if (code == RROTATE_EXPR) 1030 res = wi::rrotate (arg1, arg2); 1031 else 1032 res = wi::lrotate (arg1, arg2); 1033 break; 1034 1035 case PLUS_EXPR: 1036 res = wi::add (arg1, arg2, sign, &overflow); 1037 break; 1038 1039 case MINUS_EXPR: 1040 res = wi::sub (arg1, arg2, sign, &overflow); 1041 break; 1042 1043 case MULT_EXPR: 1044 res = wi::mul (arg1, arg2, sign, &overflow); 1045 break; 1046 1047 case MULT_HIGHPART_EXPR: 1048 res = wi::mul_high (arg1, arg2, sign); 1049 break; 1050 1051 case TRUNC_DIV_EXPR: 1052 case EXACT_DIV_EXPR: 1053 if (arg2 == 0) 1054 return NULL_TREE; 1055 res = wi::div_trunc (arg1, arg2, sign, &overflow); 1056 break; 1057 1058 case FLOOR_DIV_EXPR: 1059 if (arg2 == 0) 1060 return NULL_TREE; 1061 res = wi::div_floor (arg1, arg2, sign, &overflow); 1062 break; 1063 1064 case CEIL_DIV_EXPR: 1065 if (arg2 == 0) 1066 return NULL_TREE; 1067 res = wi::div_ceil (arg1, arg2, sign, &overflow); 1068 break; 1069 1070 case ROUND_DIV_EXPR: 1071 if (arg2 == 0) 1072 return NULL_TREE; 1073 res = wi::div_round (arg1, arg2, sign, &overflow); 1074 break; 1075 1076 case TRUNC_MOD_EXPR: 1077 if (arg2 == 0) 1078 return NULL_TREE; 1079 res = wi::mod_trunc (arg1, arg2, sign, &overflow); 1080 break; 1081 1082 case FLOOR_MOD_EXPR: 1083 if (arg2 == 0) 1084 return NULL_TREE; 1085 res = wi::mod_floor (arg1, arg2, sign, &overflow); 1086 break; 1087 1088 case CEIL_MOD_EXPR: 1089 if (arg2 == 0) 1090 return NULL_TREE; 1091 res = wi::mod_ceil (arg1, arg2, sign, &overflow); 1092 break; 1093 1094 case ROUND_MOD_EXPR: 1095 if (arg2 == 0) 1096 return NULL_TREE; 1097 res = wi::mod_round (arg1, arg2, sign, &overflow); 1098 break; 1099 1100 case MIN_EXPR: 1101 res = wi::min (arg1, arg2, sign); 1102 break; 1103 1104 case MAX_EXPR: 1105 res = wi::max (arg1, arg2, sign); 1106 break; 1107 1108 default: 1109 return NULL_TREE; 1110 } 1111 1112 t = force_fit_type (type, res, overflowable, 1113 (((sign == SIGNED || overflowable == -1) 1114 && overflow) 1115 | TREE_OVERFLOW (parg1) | TREE_OVERFLOW (parg2))); 1116 1117 return t; 1118 } 1119 1120 /* Combine two integer constants PARG1 and PARG2 under operation CODE 1121 to produce a new constant. Return NULL_TREE if we don't know how 1122 to evaluate CODE at compile-time. */ 1123 1124 static tree 1125 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree arg2, 1126 int overflowable) 1127 { 1128 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST) 1129 return int_const_binop_2 (code, arg1, arg2, overflowable); 1130 1131 gcc_assert (NUM_POLY_INT_COEFFS != 1); 1132 1133 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) 1134 { 1135 poly_wide_int res; 1136 bool overflow; 1137 tree type = TREE_TYPE (arg1); 1138 signop sign = TYPE_SIGN (type); 1139 switch (code) 1140 { 1141 case PLUS_EXPR: 1142 res = wi::add (wi::to_poly_wide (arg1), 1143 wi::to_poly_wide (arg2), sign, &overflow); 1144 break; 1145 1146 case MINUS_EXPR: 1147 res = wi::sub (wi::to_poly_wide (arg1), 1148 wi::to_poly_wide (arg2), sign, &overflow); 1149 break; 1150 1151 case MULT_EXPR: 1152 if (TREE_CODE (arg2) == INTEGER_CST) 1153 res = wi::mul (wi::to_poly_wide (arg1), 1154 wi::to_wide (arg2), sign, &overflow); 1155 else if (TREE_CODE (arg1) == INTEGER_CST) 1156 res = wi::mul (wi::to_poly_wide (arg2), 1157 wi::to_wide (arg1), sign, &overflow); 1158 else 1159 return NULL_TREE; 1160 break; 1161 1162 case LSHIFT_EXPR: 1163 if (TREE_CODE (arg2) == INTEGER_CST) 1164 res = wi::to_poly_wide (arg1) << wi::to_wide (arg2); 1165 else 1166 return NULL_TREE; 1167 break; 1168 1169 case BIT_IOR_EXPR: 1170 if (TREE_CODE (arg2) != INTEGER_CST 1171 || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2), 1172 &res)) 1173 return NULL_TREE; 1174 break; 1175 1176 default: 1177 return NULL_TREE; 1178 } 1179 return force_fit_type (type, res, overflowable, 1180 (((sign == SIGNED || overflowable == -1) 1181 && overflow) 1182 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))); 1183 } 1184 1185 return NULL_TREE; 1186 } 1187 1188 tree 1189 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2) 1190 { 1191 return int_const_binop_1 (code, arg1, arg2, 1); 1192 } 1193 1194 /* Return true if binary operation OP distributes over addition in operand 1195 OPNO, with the other operand being held constant. OPNO counts from 1. */ 1196 1197 static bool 1198 distributes_over_addition_p (tree_code op, int opno) 1199 { 1200 switch (op) 1201 { 1202 case PLUS_EXPR: 1203 case MINUS_EXPR: 1204 case MULT_EXPR: 1205 return true; 1206 1207 case LSHIFT_EXPR: 1208 return opno == 1; 1209 1210 default: 1211 return false; 1212 } 1213 } 1214 1215 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new 1216 constant. We assume ARG1 and ARG2 have the same data type, or at least 1217 are the same kind of constant and the same machine mode. Return zero if 1218 combining the constants is not allowed in the current operating mode. */ 1219 1220 static tree 1221 const_binop (enum tree_code code, tree arg1, tree arg2) 1222 { 1223 /* Sanity check for the recursive cases. */ 1224 if (!arg1 || !arg2) 1225 return NULL_TREE; 1226 1227 STRIP_NOPS (arg1); 1228 STRIP_NOPS (arg2); 1229 1230 if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) 1231 { 1232 if (code == POINTER_PLUS_EXPR) 1233 return int_const_binop (PLUS_EXPR, 1234 arg1, fold_convert (TREE_TYPE (arg1), arg2)); 1235 1236 return int_const_binop (code, arg1, arg2); 1237 } 1238 1239 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST) 1240 { 1241 machine_mode mode; 1242 REAL_VALUE_TYPE d1; 1243 REAL_VALUE_TYPE d2; 1244 REAL_VALUE_TYPE value; 1245 REAL_VALUE_TYPE result; 1246 bool inexact; 1247 tree t, type; 1248 1249 /* The following codes are handled by real_arithmetic. */ 1250 switch (code) 1251 { 1252 case PLUS_EXPR: 1253 case MINUS_EXPR: 1254 case MULT_EXPR: 1255 case RDIV_EXPR: 1256 case MIN_EXPR: 1257 case MAX_EXPR: 1258 break; 1259 1260 default: 1261 return NULL_TREE; 1262 } 1263 1264 d1 = TREE_REAL_CST (arg1); 1265 d2 = TREE_REAL_CST (arg2); 1266 1267 type = TREE_TYPE (arg1); 1268 mode = TYPE_MODE (type); 1269 1270 /* Don't perform operation if we honor signaling NaNs and 1271 either operand is a signaling NaN. */ 1272 if (HONOR_SNANS (mode) 1273 && (REAL_VALUE_ISSIGNALING_NAN (d1) 1274 || REAL_VALUE_ISSIGNALING_NAN (d2))) 1275 return NULL_TREE; 1276 1277 /* Don't perform operation if it would raise a division 1278 by zero exception. */ 1279 if (code == RDIV_EXPR 1280 && real_equal (&d2, &dconst0) 1281 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode))) 1282 return NULL_TREE; 1283 1284 /* If either operand is a NaN, just return it. Otherwise, set up 1285 for floating-point trap; we return an overflow. */ 1286 if (REAL_VALUE_ISNAN (d1)) 1287 { 1288 /* Make resulting NaN value to be qNaN when flag_signaling_nans 1289 is off. */ 1290 d1.signalling = 0; 1291 t = build_real (type, d1); 1292 return t; 1293 } 1294 else if (REAL_VALUE_ISNAN (d2)) 1295 { 1296 /* Make resulting NaN value to be qNaN when flag_signaling_nans 1297 is off. */ 1298 d2.signalling = 0; 1299 t = build_real (type, d2); 1300 return t; 1301 } 1302 1303 inexact = real_arithmetic (&value, code, &d1, &d2); 1304 real_convert (&result, mode, &value); 1305 1306 /* Don't constant fold this floating point operation if 1307 the result has overflowed and flag_trapping_math. */ 1308 if (flag_trapping_math 1309 && MODE_HAS_INFINITIES (mode) 1310 && REAL_VALUE_ISINF (result) 1311 && !REAL_VALUE_ISINF (d1) 1312 && !REAL_VALUE_ISINF (d2)) 1313 return NULL_TREE; 1314 1315 /* Don't constant fold this floating point operation if the 1316 result may dependent upon the run-time rounding mode and 1317 flag_rounding_math is set, or if GCC's software emulation 1318 is unable to accurately represent the result. */ 1319 if ((flag_rounding_math 1320 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations)) 1321 && (inexact || !real_identical (&result, &value))) 1322 return NULL_TREE; 1323 1324 t = build_real (type, result); 1325 1326 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2); 1327 return t; 1328 } 1329 1330 if (TREE_CODE (arg1) == FIXED_CST) 1331 { 1332 FIXED_VALUE_TYPE f1; 1333 FIXED_VALUE_TYPE f2; 1334 FIXED_VALUE_TYPE result; 1335 tree t, type; 1336 int sat_p; 1337 bool overflow_p; 1338 1339 /* The following codes are handled by fixed_arithmetic. */ 1340 switch (code) 1341 { 1342 case PLUS_EXPR: 1343 case MINUS_EXPR: 1344 case MULT_EXPR: 1345 case TRUNC_DIV_EXPR: 1346 if (TREE_CODE (arg2) != FIXED_CST) 1347 return NULL_TREE; 1348 f2 = TREE_FIXED_CST (arg2); 1349 break; 1350 1351 case LSHIFT_EXPR: 1352 case RSHIFT_EXPR: 1353 { 1354 if (TREE_CODE (arg2) != INTEGER_CST) 1355 return NULL_TREE; 1356 wi::tree_to_wide_ref w2 = wi::to_wide (arg2); 1357 f2.data.high = w2.elt (1); 1358 f2.data.low = w2.ulow (); 1359 f2.mode = SImode; 1360 } 1361 break; 1362 1363 default: 1364 return NULL_TREE; 1365 } 1366 1367 f1 = TREE_FIXED_CST (arg1); 1368 type = TREE_TYPE (arg1); 1369 sat_p = TYPE_SATURATING (type); 1370 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p); 1371 t = build_fixed (type, result); 1372 /* Propagate overflow flags. */ 1373 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)) 1374 TREE_OVERFLOW (t) = 1; 1375 return t; 1376 } 1377 1378 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST) 1379 { 1380 tree type = TREE_TYPE (arg1); 1381 tree r1 = TREE_REALPART (arg1); 1382 tree i1 = TREE_IMAGPART (arg1); 1383 tree r2 = TREE_REALPART (arg2); 1384 tree i2 = TREE_IMAGPART (arg2); 1385 tree real, imag; 1386 1387 switch (code) 1388 { 1389 case PLUS_EXPR: 1390 case MINUS_EXPR: 1391 real = const_binop (code, r1, r2); 1392 imag = const_binop (code, i1, i2); 1393 break; 1394 1395 case MULT_EXPR: 1396 if (COMPLEX_FLOAT_TYPE_P (type)) 1397 return do_mpc_arg2 (arg1, arg2, type, 1398 /* do_nonfinite= */ folding_initializer, 1399 mpc_mul); 1400 1401 real = const_binop (MINUS_EXPR, 1402 const_binop (MULT_EXPR, r1, r2), 1403 const_binop (MULT_EXPR, i1, i2)); 1404 imag = const_binop (PLUS_EXPR, 1405 const_binop (MULT_EXPR, r1, i2), 1406 const_binop (MULT_EXPR, i1, r2)); 1407 break; 1408 1409 case RDIV_EXPR: 1410 if (COMPLEX_FLOAT_TYPE_P (type)) 1411 return do_mpc_arg2 (arg1, arg2, type, 1412 /* do_nonfinite= */ folding_initializer, 1413 mpc_div); 1414 /* Fallthru. */ 1415 case TRUNC_DIV_EXPR: 1416 case CEIL_DIV_EXPR: 1417 case FLOOR_DIV_EXPR: 1418 case ROUND_DIV_EXPR: 1419 if (flag_complex_method == 0) 1420 { 1421 /* Keep this algorithm in sync with 1422 tree-complex.c:expand_complex_div_straight(). 1423 1424 Expand complex division to scalars, straightforward algorithm. 1425 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) 1426 t = br*br + bi*bi 1427 */ 1428 tree magsquared 1429 = const_binop (PLUS_EXPR, 1430 const_binop (MULT_EXPR, r2, r2), 1431 const_binop (MULT_EXPR, i2, i2)); 1432 tree t1 1433 = const_binop (PLUS_EXPR, 1434 const_binop (MULT_EXPR, r1, r2), 1435 const_binop (MULT_EXPR, i1, i2)); 1436 tree t2 1437 = const_binop (MINUS_EXPR, 1438 const_binop (MULT_EXPR, i1, r2), 1439 const_binop (MULT_EXPR, r1, i2)); 1440 1441 real = const_binop (code, t1, magsquared); 1442 imag = const_binop (code, t2, magsquared); 1443 } 1444 else 1445 { 1446 /* Keep this algorithm in sync with 1447 tree-complex.c:expand_complex_div_wide(). 1448 1449 Expand complex division to scalars, modified algorithm to minimize 1450 overflow with wide input ranges. */ 1451 tree compare = fold_build2 (LT_EXPR, boolean_type_node, 1452 fold_abs_const (r2, TREE_TYPE (type)), 1453 fold_abs_const (i2, TREE_TYPE (type))); 1454 1455 if (integer_nonzerop (compare)) 1456 { 1457 /* In the TRUE branch, we compute 1458 ratio = br/bi; 1459 div = (br * ratio) + bi; 1460 tr = (ar * ratio) + ai; 1461 ti = (ai * ratio) - ar; 1462 tr = tr / div; 1463 ti = ti / div; */ 1464 tree ratio = const_binop (code, r2, i2); 1465 tree div = const_binop (PLUS_EXPR, i2, 1466 const_binop (MULT_EXPR, r2, ratio)); 1467 real = const_binop (MULT_EXPR, r1, ratio); 1468 real = const_binop (PLUS_EXPR, real, i1); 1469 real = const_binop (code, real, div); 1470 1471 imag = const_binop (MULT_EXPR, i1, ratio); 1472 imag = const_binop (MINUS_EXPR, imag, r1); 1473 imag = const_binop (code, imag, div); 1474 } 1475 else 1476 { 1477 /* In the FALSE branch, we compute 1478 ratio = d/c; 1479 divisor = (d * ratio) + c; 1480 tr = (b * ratio) + a; 1481 ti = b - (a * ratio); 1482 tr = tr / div; 1483 ti = ti / div; */ 1484 tree ratio = const_binop (code, i2, r2); 1485 tree div = const_binop (PLUS_EXPR, r2, 1486 const_binop (MULT_EXPR, i2, ratio)); 1487 1488 real = const_binop (MULT_EXPR, i1, ratio); 1489 real = const_binop (PLUS_EXPR, real, r1); 1490 real = const_binop (code, real, div); 1491 1492 imag = const_binop (MULT_EXPR, r1, ratio); 1493 imag = const_binop (MINUS_EXPR, i1, imag); 1494 imag = const_binop (code, imag, div); 1495 } 1496 } 1497 break; 1498 1499 default: 1500 return NULL_TREE; 1501 } 1502 1503 if (real && imag) 1504 return build_complex (type, real, imag); 1505 } 1506 1507 if (TREE_CODE (arg1) == VECTOR_CST 1508 && TREE_CODE (arg2) == VECTOR_CST 1509 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), 1510 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)))) 1511 { 1512 tree type = TREE_TYPE (arg1); 1513 bool step_ok_p; 1514 if (VECTOR_CST_STEPPED_P (arg1) 1515 && VECTOR_CST_STEPPED_P (arg2)) 1516 /* We can operate directly on the encoding if: 1517 1518 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1 1519 implies 1520 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1) 1521 1522 Addition and subtraction are the supported operators 1523 for which this is true. */ 1524 step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR); 1525 else if (VECTOR_CST_STEPPED_P (arg1)) 1526 /* We can operate directly on stepped encodings if: 1527 1528 a3 - a2 == a2 - a1 1529 implies: 1530 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c) 1531 1532 which is true if (x -> x op c) distributes over addition. */ 1533 step_ok_p = distributes_over_addition_p (code, 1); 1534 else 1535 /* Similarly in reverse. */ 1536 step_ok_p = distributes_over_addition_p (code, 2); 1537 tree_vector_builder elts; 1538 if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p)) 1539 return NULL_TREE; 1540 unsigned int count = elts.encoded_nelts (); 1541 for (unsigned int i = 0; i < count; ++i) 1542 { 1543 tree elem1 = VECTOR_CST_ELT (arg1, i); 1544 tree elem2 = VECTOR_CST_ELT (arg2, i); 1545 1546 tree elt = const_binop (code, elem1, elem2); 1547 1548 /* It is possible that const_binop cannot handle the given 1549 code and return NULL_TREE */ 1550 if (elt == NULL_TREE) 1551 return NULL_TREE; 1552 elts.quick_push (elt); 1553 } 1554 1555 return elts.build (); 1556 } 1557 1558 /* Shifts allow a scalar offset for a vector. */ 1559 if (TREE_CODE (arg1) == VECTOR_CST 1560 && TREE_CODE (arg2) == INTEGER_CST) 1561 { 1562 tree type = TREE_TYPE (arg1); 1563 bool step_ok_p = distributes_over_addition_p (code, 1); 1564 tree_vector_builder elts; 1565 if (!elts.new_unary_operation (type, arg1, step_ok_p)) 1566 return NULL_TREE; 1567 unsigned int count = elts.encoded_nelts (); 1568 for (unsigned int i = 0; i < count; ++i) 1569 { 1570 tree elem1 = VECTOR_CST_ELT (arg1, i); 1571 1572 tree elt = const_binop (code, elem1, arg2); 1573 1574 /* It is possible that const_binop cannot handle the given 1575 code and return NULL_TREE. */ 1576 if (elt == NULL_TREE) 1577 return NULL_TREE; 1578 elts.quick_push (elt); 1579 } 1580 1581 return elts.build (); 1582 } 1583 return NULL_TREE; 1584 } 1585 1586 /* Overload that adds a TYPE parameter to be able to dispatch 1587 to fold_relational_const. */ 1588 1589 tree 1590 const_binop (enum tree_code code, tree type, tree arg1, tree arg2) 1591 { 1592 if (TREE_CODE_CLASS (code) == tcc_comparison) 1593 return fold_relational_const (code, type, arg1, arg2); 1594 1595 /* ??? Until we make the const_binop worker take the type of the 1596 result as argument put those cases that need it here. */ 1597 switch (code) 1598 { 1599 case VEC_SERIES_EXPR: 1600 if (CONSTANT_CLASS_P (arg1) 1601 && CONSTANT_CLASS_P (arg2)) 1602 return build_vec_series (type, arg1, arg2); 1603 return NULL_TREE; 1604 1605 case COMPLEX_EXPR: 1606 if ((TREE_CODE (arg1) == REAL_CST 1607 && TREE_CODE (arg2) == REAL_CST) 1608 || (TREE_CODE (arg1) == INTEGER_CST 1609 && TREE_CODE (arg2) == INTEGER_CST)) 1610 return build_complex (type, arg1, arg2); 1611 return NULL_TREE; 1612 1613 case POINTER_DIFF_EXPR: 1614 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST) 1615 { 1616 offset_int res = wi::sub (wi::to_offset (arg1), 1617 wi::to_offset (arg2)); 1618 return force_fit_type (type, res, 1, 1619 TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)); 1620 } 1621 return NULL_TREE; 1622 1623 case VEC_PACK_TRUNC_EXPR: 1624 case VEC_PACK_FIX_TRUNC_EXPR: 1625 { 1626 unsigned int HOST_WIDE_INT out_nelts, in_nelts, i; 1627 1628 if (TREE_CODE (arg1) != VECTOR_CST 1629 || TREE_CODE (arg2) != VECTOR_CST) 1630 return NULL_TREE; 1631 1632 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) 1633 return NULL_TREE; 1634 1635 out_nelts = in_nelts * 2; 1636 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) 1637 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1638 1639 tree_vector_builder elts (type, out_nelts, 1); 1640 for (i = 0; i < out_nelts; i++) 1641 { 1642 tree elt = (i < in_nelts 1643 ? VECTOR_CST_ELT (arg1, i) 1644 : VECTOR_CST_ELT (arg2, i - in_nelts)); 1645 elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR 1646 ? NOP_EXPR : FIX_TRUNC_EXPR, 1647 TREE_TYPE (type), elt); 1648 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1649 return NULL_TREE; 1650 elts.quick_push (elt); 1651 } 1652 1653 return elts.build (); 1654 } 1655 1656 case VEC_WIDEN_MULT_LO_EXPR: 1657 case VEC_WIDEN_MULT_HI_EXPR: 1658 case VEC_WIDEN_MULT_EVEN_EXPR: 1659 case VEC_WIDEN_MULT_ODD_EXPR: 1660 { 1661 unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale; 1662 1663 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST) 1664 return NULL_TREE; 1665 1666 if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) 1667 return NULL_TREE; 1668 out_nelts = in_nelts / 2; 1669 gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) 1670 && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1671 1672 if (code == VEC_WIDEN_MULT_LO_EXPR) 1673 scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0; 1674 else if (code == VEC_WIDEN_MULT_HI_EXPR) 1675 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts; 1676 else if (code == VEC_WIDEN_MULT_EVEN_EXPR) 1677 scale = 1, ofs = 0; 1678 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */ 1679 scale = 1, ofs = 1; 1680 1681 tree_vector_builder elts (type, out_nelts, 1); 1682 for (out = 0; out < out_nelts; out++) 1683 { 1684 unsigned int in = (out << scale) + ofs; 1685 tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), 1686 VECTOR_CST_ELT (arg1, in)); 1687 tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), 1688 VECTOR_CST_ELT (arg2, in)); 1689 1690 if (t1 == NULL_TREE || t2 == NULL_TREE) 1691 return NULL_TREE; 1692 tree elt = const_binop (MULT_EXPR, t1, t2); 1693 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1694 return NULL_TREE; 1695 elts.quick_push (elt); 1696 } 1697 1698 return elts.build (); 1699 } 1700 1701 default:; 1702 } 1703 1704 if (TREE_CODE_CLASS (code) != tcc_binary) 1705 return NULL_TREE; 1706 1707 /* Make sure type and arg0 have the same saturating flag. */ 1708 gcc_checking_assert (TYPE_SATURATING (type) 1709 == TYPE_SATURATING (TREE_TYPE (arg1))); 1710 1711 return const_binop (code, arg1, arg2); 1712 } 1713 1714 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant. 1715 Return zero if computing the constants is not possible. */ 1716 1717 tree 1718 const_unop (enum tree_code code, tree type, tree arg0) 1719 { 1720 /* Don't perform the operation, other than NEGATE and ABS, if 1721 flag_signaling_nans is on and the operand is a signaling NaN. */ 1722 if (TREE_CODE (arg0) == REAL_CST 1723 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))) 1724 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)) 1725 && code != NEGATE_EXPR 1726 && code != ABS_EXPR) 1727 return NULL_TREE; 1728 1729 switch (code) 1730 { 1731 CASE_CONVERT: 1732 case FLOAT_EXPR: 1733 case FIX_TRUNC_EXPR: 1734 case FIXED_CONVERT_EXPR: 1735 return fold_convert_const (code, type, arg0); 1736 1737 case ADDR_SPACE_CONVERT_EXPR: 1738 /* If the source address is 0, and the source address space 1739 cannot have a valid object at 0, fold to dest type null. */ 1740 if (integer_zerop (arg0) 1741 && !(targetm.addr_space.zero_address_valid 1742 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))))) 1743 return fold_convert_const (code, type, arg0); 1744 break; 1745 1746 case VIEW_CONVERT_EXPR: 1747 return fold_view_convert_expr (type, arg0); 1748 1749 case NEGATE_EXPR: 1750 { 1751 /* Can't call fold_negate_const directly here as that doesn't 1752 handle all cases and we might not be able to negate some 1753 constants. */ 1754 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0); 1755 if (tem && CONSTANT_CLASS_P (tem)) 1756 return tem; 1757 break; 1758 } 1759 1760 case ABS_EXPR: 1761 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST) 1762 return fold_abs_const (arg0, type); 1763 break; 1764 1765 case CONJ_EXPR: 1766 if (TREE_CODE (arg0) == COMPLEX_CST) 1767 { 1768 tree ipart = fold_negate_const (TREE_IMAGPART (arg0), 1769 TREE_TYPE (type)); 1770 return build_complex (type, TREE_REALPART (arg0), ipart); 1771 } 1772 break; 1773 1774 case BIT_NOT_EXPR: 1775 if (TREE_CODE (arg0) == INTEGER_CST) 1776 return fold_not_const (arg0, type); 1777 else if (POLY_INT_CST_P (arg0)) 1778 return wide_int_to_tree (type, -poly_int_cst_value (arg0)); 1779 /* Perform BIT_NOT_EXPR on each element individually. */ 1780 else if (TREE_CODE (arg0) == VECTOR_CST) 1781 { 1782 tree elem; 1783 1784 /* This can cope with stepped encodings because ~x == -1 - x. */ 1785 tree_vector_builder elements; 1786 elements.new_unary_operation (type, arg0, true); 1787 unsigned int i, count = elements.encoded_nelts (); 1788 for (i = 0; i < count; ++i) 1789 { 1790 elem = VECTOR_CST_ELT (arg0, i); 1791 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem); 1792 if (elem == NULL_TREE) 1793 break; 1794 elements.quick_push (elem); 1795 } 1796 if (i == count) 1797 return elements.build (); 1798 } 1799 break; 1800 1801 case TRUTH_NOT_EXPR: 1802 if (TREE_CODE (arg0) == INTEGER_CST) 1803 return constant_boolean_node (integer_zerop (arg0), type); 1804 break; 1805 1806 case REALPART_EXPR: 1807 if (TREE_CODE (arg0) == COMPLEX_CST) 1808 return fold_convert (type, TREE_REALPART (arg0)); 1809 break; 1810 1811 case IMAGPART_EXPR: 1812 if (TREE_CODE (arg0) == COMPLEX_CST) 1813 return fold_convert (type, TREE_IMAGPART (arg0)); 1814 break; 1815 1816 case VEC_UNPACK_LO_EXPR: 1817 case VEC_UNPACK_HI_EXPR: 1818 case VEC_UNPACK_FLOAT_LO_EXPR: 1819 case VEC_UNPACK_FLOAT_HI_EXPR: 1820 { 1821 unsigned HOST_WIDE_INT out_nelts, in_nelts, i; 1822 enum tree_code subcode; 1823 1824 if (TREE_CODE (arg0) != VECTOR_CST) 1825 return NULL_TREE; 1826 1827 if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts)) 1828 return NULL_TREE; 1829 out_nelts = in_nelts / 2; 1830 gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); 1831 1832 unsigned int offset = 0; 1833 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR 1834 || code == VEC_UNPACK_FLOAT_LO_EXPR)) 1835 offset = out_nelts; 1836 1837 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR) 1838 subcode = NOP_EXPR; 1839 else 1840 subcode = FLOAT_EXPR; 1841 1842 tree_vector_builder elts (type, out_nelts, 1); 1843 for (i = 0; i < out_nelts; i++) 1844 { 1845 tree elt = fold_convert_const (subcode, TREE_TYPE (type), 1846 VECTOR_CST_ELT (arg0, i + offset)); 1847 if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) 1848 return NULL_TREE; 1849 elts.quick_push (elt); 1850 } 1851 1852 return elts.build (); 1853 } 1854 1855 case VEC_DUPLICATE_EXPR: 1856 if (CONSTANT_CLASS_P (arg0)) 1857 return build_vector_from_val (type, arg0); 1858 return NULL_TREE; 1859 1860 default: 1861 break; 1862 } 1863 1864 return NULL_TREE; 1865 } 1866 1867 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND 1868 indicates which particular sizetype to create. */ 1869 1870 tree 1871 size_int_kind (poly_int64 number, enum size_type_kind kind) 1872 { 1873 return build_int_cst (sizetype_tab[(int) kind], number); 1874 } 1875 1876 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE 1877 is a tree code. The type of the result is taken from the operands. 1878 Both must be equivalent integer types, ala int_binop_types_match_p. 1879 If the operands are constant, so is the result. */ 1880 1881 tree 1882 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1) 1883 { 1884 tree type = TREE_TYPE (arg0); 1885 1886 if (arg0 == error_mark_node || arg1 == error_mark_node) 1887 return error_mark_node; 1888 1889 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0), 1890 TREE_TYPE (arg1))); 1891 1892 /* Handle the special case of two poly_int constants faster. */ 1893 if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1)) 1894 { 1895 /* And some specific cases even faster than that. */ 1896 if (code == PLUS_EXPR) 1897 { 1898 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0)) 1899 return arg1; 1900 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1)) 1901 return arg0; 1902 } 1903 else if (code == MINUS_EXPR) 1904 { 1905 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1)) 1906 return arg0; 1907 } 1908 else if (code == MULT_EXPR) 1909 { 1910 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0)) 1911 return arg1; 1912 } 1913 1914 /* Handle general case of two integer constants. For sizetype 1915 constant calculations we always want to know about overflow, 1916 even in the unsigned case. */ 1917 tree res = int_const_binop_1 (code, arg0, arg1, -1); 1918 if (res != NULL_TREE) 1919 return res; 1920 } 1921 1922 return fold_build2_loc (loc, code, type, arg0, arg1); 1923 } 1924 1925 /* Given two values, either both of sizetype or both of bitsizetype, 1926 compute the difference between the two values. Return the value 1927 in signed type corresponding to the type of the operands. */ 1928 1929 tree 1930 size_diffop_loc (location_t loc, tree arg0, tree arg1) 1931 { 1932 tree type = TREE_TYPE (arg0); 1933 tree ctype; 1934 1935 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0), 1936 TREE_TYPE (arg1))); 1937 1938 /* If the type is already signed, just do the simple thing. */ 1939 if (!TYPE_UNSIGNED (type)) 1940 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1); 1941 1942 if (type == sizetype) 1943 ctype = ssizetype; 1944 else if (type == bitsizetype) 1945 ctype = sbitsizetype; 1946 else 1947 ctype = signed_type_for (type); 1948 1949 /* If either operand is not a constant, do the conversions to the signed 1950 type and subtract. The hardware will do the right thing with any 1951 overflow in the subtraction. */ 1952 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST) 1953 return size_binop_loc (loc, MINUS_EXPR, 1954 fold_convert_loc (loc, ctype, arg0), 1955 fold_convert_loc (loc, ctype, arg1)); 1956 1957 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE. 1958 Otherwise, subtract the other way, convert to CTYPE (we know that can't 1959 overflow) and negate (which can't either). Special-case a result 1960 of zero while we're here. */ 1961 if (tree_int_cst_equal (arg0, arg1)) 1962 return build_int_cst (ctype, 0); 1963 else if (tree_int_cst_lt (arg1, arg0)) 1964 return fold_convert_loc (loc, ctype, 1965 size_binop_loc (loc, MINUS_EXPR, arg0, arg1)); 1966 else 1967 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0), 1968 fold_convert_loc (loc, ctype, 1969 size_binop_loc (loc, 1970 MINUS_EXPR, 1971 arg1, arg0))); 1972 } 1973 1974 /* A subroutine of fold_convert_const handling conversions of an 1975 INTEGER_CST to another integer type. */ 1976 1977 static tree 1978 fold_convert_const_int_from_int (tree type, const_tree arg1) 1979 { 1980 /* Given an integer constant, make new constant with new type, 1981 appropriately sign-extended or truncated. Use widest_int 1982 so that any extension is done according ARG1's type. */ 1983 return force_fit_type (type, wi::to_widest (arg1), 1984 !POINTER_TYPE_P (TREE_TYPE (arg1)), 1985 TREE_OVERFLOW (arg1)); 1986 } 1987 1988 /* A subroutine of fold_convert_const handling conversions a REAL_CST 1989 to an integer type. */ 1990 1991 static tree 1992 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1) 1993 { 1994 bool overflow = false; 1995 tree t; 1996 1997 /* The following code implements the floating point to integer 1998 conversion rules required by the Java Language Specification, 1999 that IEEE NaNs are mapped to zero and values that overflow 2000 the target precision saturate, i.e. values greater than 2001 INT_MAX are mapped to INT_MAX, and values less than INT_MIN 2002 are mapped to INT_MIN. These semantics are allowed by the 2003 C and C++ standards that simply state that the behavior of 2004 FP-to-integer conversion is unspecified upon overflow. */ 2005 2006 wide_int val; 2007 REAL_VALUE_TYPE r; 2008 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1); 2009 2010 switch (code) 2011 { 2012 case FIX_TRUNC_EXPR: 2013 real_trunc (&r, VOIDmode, &x); 2014 break; 2015 2016 default: 2017 gcc_unreachable (); 2018 } 2019 2020 /* If R is NaN, return zero and show we have an overflow. */ 2021 if (REAL_VALUE_ISNAN (r)) 2022 { 2023 overflow = true; 2024 val = wi::zero (TYPE_PRECISION (type)); 2025 } 2026 2027 /* See if R is less than the lower bound or greater than the 2028 upper bound. */ 2029 2030 if (! overflow) 2031 { 2032 tree lt = TYPE_MIN_VALUE (type); 2033 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt); 2034 if (real_less (&r, &l)) 2035 { 2036 overflow = true; 2037 val = wi::to_wide (lt); 2038 } 2039 } 2040 2041 if (! overflow) 2042 { 2043 tree ut = TYPE_MAX_VALUE (type); 2044 if (ut) 2045 { 2046 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut); 2047 if (real_less (&u, &r)) 2048 { 2049 overflow = true; 2050 val = wi::to_wide (ut); 2051 } 2052 } 2053 } 2054 2055 if (! overflow) 2056 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type)); 2057 2058 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1)); 2059 return t; 2060 } 2061 2062 /* A subroutine of fold_convert_const handling conversions of a 2063 FIXED_CST to an integer type. */ 2064 2065 static tree 2066 fold_convert_const_int_from_fixed (tree type, const_tree arg1) 2067 { 2068 tree t; 2069 double_int temp, temp_trunc; 2070 scalar_mode mode; 2071 2072 /* Right shift FIXED_CST to temp by fbit. */ 2073 temp = TREE_FIXED_CST (arg1).data; 2074 mode = TREE_FIXED_CST (arg1).mode; 2075 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT) 2076 { 2077 temp = temp.rshift (GET_MODE_FBIT (mode), 2078 HOST_BITS_PER_DOUBLE_INT, 2079 SIGNED_FIXED_POINT_MODE_P (mode)); 2080 2081 /* Left shift temp to temp_trunc by fbit. */ 2082 temp_trunc = temp.lshift (GET_MODE_FBIT (mode), 2083 HOST_BITS_PER_DOUBLE_INT, 2084 SIGNED_FIXED_POINT_MODE_P (mode)); 2085 } 2086 else 2087 { 2088 temp = double_int_zero; 2089 temp_trunc = double_int_zero; 2090 } 2091 2092 /* If FIXED_CST is negative, we need to round the value toward 0. 2093 By checking if the fractional bits are not zero to add 1 to temp. */ 2094 if (SIGNED_FIXED_POINT_MODE_P (mode) 2095 && temp_trunc.is_negative () 2096 && TREE_FIXED_CST (arg1).data != temp_trunc) 2097 temp += double_int_one; 2098 2099 /* Given a fixed-point constant, make new constant with new type, 2100 appropriately sign-extended or truncated. */ 2101 t = force_fit_type (type, temp, -1, 2102 (temp.is_negative () 2103 && (TYPE_UNSIGNED (type) 2104 < TYPE_UNSIGNED (TREE_TYPE (arg1)))) 2105 | TREE_OVERFLOW (arg1)); 2106 2107 return t; 2108 } 2109 2110 /* A subroutine of fold_convert_const handling conversions a REAL_CST 2111 to another floating point type. */ 2112 2113 static tree 2114 fold_convert_const_real_from_real (tree type, const_tree arg1) 2115 { 2116 REAL_VALUE_TYPE value; 2117 tree t; 2118 2119 /* Don't perform the operation if flag_signaling_nans is on 2120 and the operand is a signaling NaN. */ 2121 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))) 2122 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))) 2123 return NULL_TREE; 2124 2125 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1)); 2126 t = build_real (type, value); 2127 2128 /* If converting an infinity or NAN to a representation that doesn't 2129 have one, set the overflow bit so that we can produce some kind of 2130 error message at the appropriate point if necessary. It's not the 2131 most user-friendly message, but it's better than nothing. */ 2132 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1)) 2133 && !MODE_HAS_INFINITIES (TYPE_MODE (type))) 2134 TREE_OVERFLOW (t) = 1; 2135 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)) 2136 && !MODE_HAS_NANS (TYPE_MODE (type))) 2137 TREE_OVERFLOW (t) = 1; 2138 /* Regular overflow, conversion produced an infinity in a mode that 2139 can't represent them. */ 2140 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) 2141 && REAL_VALUE_ISINF (value) 2142 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1))) 2143 TREE_OVERFLOW (t) = 1; 2144 else 2145 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); 2146 return t; 2147 } 2148 2149 /* A subroutine of fold_convert_const handling conversions a FIXED_CST 2150 to a floating point type. */ 2151 2152 static tree 2153 fold_convert_const_real_from_fixed (tree type, const_tree arg1) 2154 { 2155 REAL_VALUE_TYPE value; 2156 tree t; 2157 2158 real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type), 2159 &TREE_FIXED_CST (arg1)); 2160 t = build_real (type, value); 2161 2162 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); 2163 return t; 2164 } 2165 2166 /* A subroutine of fold_convert_const handling conversions a FIXED_CST 2167 to another fixed-point type. */ 2168 2169 static tree 2170 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1) 2171 { 2172 FIXED_VALUE_TYPE value; 2173 tree t; 2174 bool overflow_p; 2175 2176 overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type), 2177 &TREE_FIXED_CST (arg1), TYPE_SATURATING (type)); 2178 t = build_fixed (type, value); 2179 2180 /* Propagate overflow flags. */ 2181 if (overflow_p | TREE_OVERFLOW (arg1)) 2182 TREE_OVERFLOW (t) = 1; 2183 return t; 2184 } 2185 2186 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST 2187 to a fixed-point type. */ 2188 2189 static tree 2190 fold_convert_const_fixed_from_int (tree type, const_tree arg1) 2191 { 2192 FIXED_VALUE_TYPE value; 2193 tree t; 2194 bool overflow_p; 2195 double_int di; 2196 2197 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2); 2198 2199 di.low = TREE_INT_CST_ELT (arg1, 0); 2200 if (TREE_INT_CST_NUNITS (arg1) == 1) 2201 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0; 2202 else 2203 di.high = TREE_INT_CST_ELT (arg1, 1); 2204 2205 overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di, 2206 TYPE_UNSIGNED (TREE_TYPE (arg1)), 2207 TYPE_SATURATING (type)); 2208 t = build_fixed (type, value); 2209 2210 /* Propagate overflow flags. */ 2211 if (overflow_p | TREE_OVERFLOW (arg1)) 2212 TREE_OVERFLOW (t) = 1; 2213 return t; 2214 } 2215 2216 /* A subroutine of fold_convert_const handling conversions a REAL_CST 2217 to a fixed-point type. */ 2218 2219 static tree 2220 fold_convert_const_fixed_from_real (tree type, const_tree arg1) 2221 { 2222 FIXED_VALUE_TYPE value; 2223 tree t; 2224 bool overflow_p; 2225 2226 overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type), 2227 &TREE_REAL_CST (arg1), 2228 TYPE_SATURATING (type)); 2229 t = build_fixed (type, value); 2230 2231 /* Propagate overflow flags. */ 2232 if (overflow_p | TREE_OVERFLOW (arg1)) 2233 TREE_OVERFLOW (t) = 1; 2234 return t; 2235 } 2236 2237 /* Attempt to fold type conversion operation CODE of expression ARG1 to 2238 type TYPE. If no simplification can be done return NULL_TREE. */ 2239 2240 static tree 2241 fold_convert_const (enum tree_code code, tree type, tree arg1) 2242 { 2243 tree arg_type = TREE_TYPE (arg1); 2244 if (arg_type == type) 2245 return arg1; 2246 2247 /* We can't widen types, since the runtime value could overflow the 2248 original type before being extended to the new type. */ 2249 if (POLY_INT_CST_P (arg1) 2250 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) 2251 && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type)) 2252 return build_poly_int_cst (type, 2253 poly_wide_int::from (poly_int_cst_value (arg1), 2254 TYPE_PRECISION (type), 2255 TYPE_SIGN (arg_type))); 2256 2257 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type) 2258 || TREE_CODE (type) == OFFSET_TYPE) 2259 { 2260 if (TREE_CODE (arg1) == INTEGER_CST) 2261 return fold_convert_const_int_from_int (type, arg1); 2262 else if (TREE_CODE (arg1) == REAL_CST) 2263 return fold_convert_const_int_from_real (code, type, arg1); 2264 else if (TREE_CODE (arg1) == FIXED_CST) 2265 return fold_convert_const_int_from_fixed (type, arg1); 2266 } 2267 else if (TREE_CODE (type) == REAL_TYPE) 2268 { 2269 if (TREE_CODE (arg1) == INTEGER_CST) 2270 return build_real_from_int_cst (type, arg1); 2271 else if (TREE_CODE (arg1) == REAL_CST) 2272 return fold_convert_const_real_from_real (type, arg1); 2273 else if (TREE_CODE (arg1) == FIXED_CST) 2274 return fold_convert_const_real_from_fixed (type, arg1); 2275 } 2276 else if (TREE_CODE (type) == FIXED_POINT_TYPE) 2277 { 2278 if (TREE_CODE (arg1) == FIXED_CST) 2279 return fold_convert_const_fixed_from_fixed (type, arg1); 2280 else if (TREE_CODE (arg1) == INTEGER_CST) 2281 return fold_convert_const_fixed_from_int (type, arg1); 2282 else if (TREE_CODE (arg1) == REAL_CST) 2283 return fold_convert_const_fixed_from_real (type, arg1); 2284 } 2285 else if (TREE_CODE (type) == VECTOR_TYPE) 2286 { 2287 if (TREE_CODE (arg1) == VECTOR_CST 2288 && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1))) 2289 { 2290 tree elttype = TREE_TYPE (type); 2291 tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1)); 2292 /* We can't handle steps directly when extending, since the 2293 values need to wrap at the original precision first. */ 2294 bool step_ok_p 2295 = (INTEGRAL_TYPE_P (elttype) 2296 && INTEGRAL_TYPE_P (arg1_elttype) 2297 && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype)); 2298 tree_vector_builder v; 2299 if (!v.new_unary_operation (type, arg1, step_ok_p)) 2300 return NULL_TREE; 2301 unsigned int len = v.encoded_nelts (); 2302 for (unsigned int i = 0; i < len; ++i) 2303 { 2304 tree elt = VECTOR_CST_ELT (arg1, i); 2305 tree cvt = fold_convert_const (code, elttype, elt); 2306 if (cvt == NULL_TREE) 2307 return NULL_TREE; 2308 v.quick_push (cvt); 2309 } 2310 return v.build (); 2311 } 2312 } 2313 return NULL_TREE; 2314 } 2315 2316 /* Construct a vector of zero elements of vector type TYPE. */ 2317 2318 static tree 2319 build_zero_vector (tree type) 2320 { 2321 tree t; 2322 2323 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node); 2324 return build_vector_from_val (type, t); 2325 } 2326 2327 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */ 2328 2329 bool 2330 fold_convertible_p (const_tree type, const_tree arg) 2331 { 2332 tree orig = TREE_TYPE (arg); 2333 2334 if (type == orig) 2335 return true; 2336 2337 if (TREE_CODE (arg) == ERROR_MARK 2338 || TREE_CODE (type) == ERROR_MARK 2339 || TREE_CODE (orig) == ERROR_MARK) 2340 return false; 2341 2342 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) 2343 return true; 2344 2345 switch (TREE_CODE (type)) 2346 { 2347 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2348 case POINTER_TYPE: case REFERENCE_TYPE: 2349 case OFFSET_TYPE: 2350 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2351 || TREE_CODE (orig) == OFFSET_TYPE); 2352 2353 case REAL_TYPE: 2354 case FIXED_POINT_TYPE: 2355 case VECTOR_TYPE: 2356 case VOID_TYPE: 2357 return TREE_CODE (type) == TREE_CODE (orig); 2358 2359 default: 2360 return false; 2361 } 2362 } 2363 2364 /* Convert expression ARG to type TYPE. Used by the middle-end for 2365 simple conversions in preference to calling the front-end's convert. */ 2366 2367 tree 2368 fold_convert_loc (location_t loc, tree type, tree arg) 2369 { 2370 tree orig = TREE_TYPE (arg); 2371 tree tem; 2372 2373 if (type == orig) 2374 return arg; 2375 2376 if (TREE_CODE (arg) == ERROR_MARK 2377 || TREE_CODE (type) == ERROR_MARK 2378 || TREE_CODE (orig) == ERROR_MARK) 2379 return error_mark_node; 2380 2381 switch (TREE_CODE (type)) 2382 { 2383 case POINTER_TYPE: 2384 case REFERENCE_TYPE: 2385 /* Handle conversions between pointers to different address spaces. */ 2386 if (POINTER_TYPE_P (orig) 2387 && (TYPE_ADDR_SPACE (TREE_TYPE (type)) 2388 != TYPE_ADDR_SPACE (TREE_TYPE (orig)))) 2389 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg); 2390 /* fall through */ 2391 2392 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 2393 case OFFSET_TYPE: 2394 if (TREE_CODE (arg) == INTEGER_CST) 2395 { 2396 tem = fold_convert_const (NOP_EXPR, type, arg); 2397 if (tem != NULL_TREE) 2398 return tem; 2399 } 2400 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2401 || TREE_CODE (orig) == OFFSET_TYPE) 2402 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2403 if (TREE_CODE (orig) == COMPLEX_TYPE) 2404 return fold_convert_loc (loc, type, 2405 fold_build1_loc (loc, REALPART_EXPR, 2406 TREE_TYPE (orig), arg)); 2407 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE 2408 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); 2409 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); 2410 2411 case REAL_TYPE: 2412 if (TREE_CODE (arg) == INTEGER_CST) 2413 { 2414 tem = fold_convert_const (FLOAT_EXPR, type, arg); 2415 if (tem != NULL_TREE) 2416 return tem; 2417 } 2418 else if (TREE_CODE (arg) == REAL_CST) 2419 { 2420 tem = fold_convert_const (NOP_EXPR, type, arg); 2421 if (tem != NULL_TREE) 2422 return tem; 2423 } 2424 else if (TREE_CODE (arg) == FIXED_CST) 2425 { 2426 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); 2427 if (tem != NULL_TREE) 2428 return tem; 2429 } 2430 2431 switch (TREE_CODE (orig)) 2432 { 2433 case INTEGER_TYPE: 2434 case BOOLEAN_TYPE: case ENUMERAL_TYPE: 2435 case POINTER_TYPE: case REFERENCE_TYPE: 2436 return fold_build1_loc (loc, FLOAT_EXPR, type, arg); 2437 2438 case REAL_TYPE: 2439 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2440 2441 case FIXED_POINT_TYPE: 2442 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); 2443 2444 case COMPLEX_TYPE: 2445 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2446 return fold_convert_loc (loc, type, tem); 2447 2448 default: 2449 gcc_unreachable (); 2450 } 2451 2452 case FIXED_POINT_TYPE: 2453 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST 2454 || TREE_CODE (arg) == REAL_CST) 2455 { 2456 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); 2457 if (tem != NULL_TREE) 2458 goto fold_convert_exit; 2459 } 2460 2461 switch (TREE_CODE (orig)) 2462 { 2463 case FIXED_POINT_TYPE: 2464 case INTEGER_TYPE: 2465 case ENUMERAL_TYPE: 2466 case BOOLEAN_TYPE: 2467 case REAL_TYPE: 2468 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); 2469 2470 case COMPLEX_TYPE: 2471 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2472 return fold_convert_loc (loc, type, tem); 2473 2474 default: 2475 gcc_unreachable (); 2476 } 2477 2478 case COMPLEX_TYPE: 2479 switch (TREE_CODE (orig)) 2480 { 2481 case INTEGER_TYPE: 2482 case BOOLEAN_TYPE: case ENUMERAL_TYPE: 2483 case POINTER_TYPE: case REFERENCE_TYPE: 2484 case REAL_TYPE: 2485 case FIXED_POINT_TYPE: 2486 return fold_build2_loc (loc, COMPLEX_EXPR, type, 2487 fold_convert_loc (loc, TREE_TYPE (type), arg), 2488 fold_convert_loc (loc, TREE_TYPE (type), 2489 integer_zero_node)); 2490 case COMPLEX_TYPE: 2491 { 2492 tree rpart, ipart; 2493 2494 if (TREE_CODE (arg) == COMPLEX_EXPR) 2495 { 2496 rpart = fold_convert_loc (loc, TREE_TYPE (type), 2497 TREE_OPERAND (arg, 0)); 2498 ipart = fold_convert_loc (loc, TREE_TYPE (type), 2499 TREE_OPERAND (arg, 1)); 2500 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); 2501 } 2502 2503 arg = save_expr (arg); 2504 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); 2505 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg); 2506 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart); 2507 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart); 2508 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); 2509 } 2510 2511 default: 2512 gcc_unreachable (); 2513 } 2514 2515 case VECTOR_TYPE: 2516 if (integer_zerop (arg)) 2517 return build_zero_vector (type); 2518 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); 2519 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) 2520 || TREE_CODE (orig) == VECTOR_TYPE); 2521 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); 2522 2523 case VOID_TYPE: 2524 tem = fold_ignored_result (arg); 2525 return fold_build1_loc (loc, NOP_EXPR, type, tem); 2526 2527 default: 2528 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) 2529 return fold_build1_loc (loc, NOP_EXPR, type, arg); 2530 gcc_unreachable (); 2531 } 2532 fold_convert_exit: 2533 protected_set_expr_location_unshare (tem, loc); 2534 return tem; 2535 } 2536 2537 /* Return false if expr can be assumed not to be an lvalue, true 2538 otherwise. */ 2539 2540 static bool 2541 maybe_lvalue_p (const_tree x) 2542 { 2543 /* We only need to wrap lvalue tree codes. */ 2544 switch (TREE_CODE (x)) 2545 { 2546 case VAR_DECL: 2547 case PARM_DECL: 2548 case RESULT_DECL: 2549 case LABEL_DECL: 2550 case FUNCTION_DECL: 2551 case SSA_NAME: 2552 2553 case COMPONENT_REF: 2554 case MEM_REF: 2555 case INDIRECT_REF: 2556 case ARRAY_REF: 2557 case ARRAY_RANGE_REF: 2558 case BIT_FIELD_REF: 2559 case OBJ_TYPE_REF: 2560 2561 case REALPART_EXPR: 2562 case IMAGPART_EXPR: 2563 case PREINCREMENT_EXPR: 2564 case PREDECREMENT_EXPR: 2565 case SAVE_EXPR: 2566 case TRY_CATCH_EXPR: 2567 case WITH_CLEANUP_EXPR: 2568 case COMPOUND_EXPR: 2569 case MODIFY_EXPR: 2570 case TARGET_EXPR: 2571 case COND_EXPR: 2572 case BIND_EXPR: 2573 break; 2574 2575 default: 2576 /* Assume the worst for front-end tree codes. */ 2577 if ((int)TREE_CODE (x) >= NUM_TREE_CODES) 2578 break; 2579 return false; 2580 } 2581 2582 return true; 2583 } 2584 2585 /* Return an expr equal to X but certainly not valid as an lvalue. */ 2586 2587 tree 2588 non_lvalue_loc (location_t loc, tree x) 2589 { 2590 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to 2591 us. */ 2592 if (in_gimple_form) 2593 return x; 2594 2595 if (! maybe_lvalue_p (x)) 2596 return x; 2597 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x); 2598 } 2599 2600 /* When pedantic, return an expr equal to X but certainly not valid as a 2601 pedantic lvalue. Otherwise, return X. */ 2602 2603 static tree 2604 pedantic_non_lvalue_loc (location_t loc, tree x) 2605 { 2606 return protected_set_expr_location_unshare (x, loc); 2607 } 2608 2609 /* Given a tree comparison code, return the code that is the logical inverse. 2610 It is generally not safe to do this for floating-point comparisons, except 2611 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return 2612 ERROR_MARK in this case. */ 2613 2614 enum tree_code 2615 invert_tree_comparison (enum tree_code code, bool honor_nans) 2616 { 2617 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR 2618 && code != ORDERED_EXPR && code != UNORDERED_EXPR) 2619 return ERROR_MARK; 2620 2621 switch (code) 2622 { 2623 case EQ_EXPR: 2624 return NE_EXPR; 2625 case NE_EXPR: 2626 return EQ_EXPR; 2627 case GT_EXPR: 2628 return honor_nans ? UNLE_EXPR : LE_EXPR; 2629 case GE_EXPR: 2630 return honor_nans ? UNLT_EXPR : LT_EXPR; 2631 case LT_EXPR: 2632 return honor_nans ? UNGE_EXPR : GE_EXPR; 2633 case LE_EXPR: 2634 return honor_nans ? UNGT_EXPR : GT_EXPR; 2635 case LTGT_EXPR: 2636 return UNEQ_EXPR; 2637 case UNEQ_EXPR: 2638 return LTGT_EXPR; 2639 case UNGT_EXPR: 2640 return LE_EXPR; 2641 case UNGE_EXPR: 2642 return LT_EXPR; 2643 case UNLT_EXPR: 2644 return GE_EXPR; 2645 case UNLE_EXPR: 2646 return GT_EXPR; 2647 case ORDERED_EXPR: 2648 return UNORDERED_EXPR; 2649 case UNORDERED_EXPR: 2650 return ORDERED_EXPR; 2651 default: 2652 gcc_unreachable (); 2653 } 2654 } 2655 2656 /* Similar, but return the comparison that results if the operands are 2657 swapped. This is safe for floating-point. */ 2658 2659 enum tree_code 2660 swap_tree_comparison (enum tree_code code) 2661 { 2662 switch (code) 2663 { 2664 case EQ_EXPR: 2665 case NE_EXPR: 2666 case ORDERED_EXPR: 2667 case UNORDERED_EXPR: 2668 case LTGT_EXPR: 2669 case UNEQ_EXPR: 2670 return code; 2671 case GT_EXPR: 2672 return LT_EXPR; 2673 case GE_EXPR: 2674 return LE_EXPR; 2675 case LT_EXPR: 2676 return GT_EXPR; 2677 case LE_EXPR: 2678 return GE_EXPR; 2679 case UNGT_EXPR: 2680 return UNLT_EXPR; 2681 case UNGE_EXPR: 2682 return UNLE_EXPR; 2683 case UNLT_EXPR: 2684 return UNGT_EXPR; 2685 case UNLE_EXPR: 2686 return UNGE_EXPR; 2687 default: 2688 gcc_unreachable (); 2689 } 2690 } 2691 2692 2693 /* Convert a comparison tree code from an enum tree_code representation 2694 into a compcode bit-based encoding. This function is the inverse of 2695 compcode_to_comparison. */ 2696 2697 static enum comparison_code 2698 comparison_to_compcode (enum tree_code code) 2699 { 2700 switch (code) 2701 { 2702 case LT_EXPR: 2703 return COMPCODE_LT; 2704 case EQ_EXPR: 2705 return COMPCODE_EQ; 2706 case LE_EXPR: 2707 return COMPCODE_LE; 2708 case GT_EXPR: 2709 return COMPCODE_GT; 2710 case NE_EXPR: 2711 return COMPCODE_NE; 2712 case GE_EXPR: 2713 return COMPCODE_GE; 2714 case ORDERED_EXPR: 2715 return COMPCODE_ORD; 2716 case UNORDERED_EXPR: 2717 return COMPCODE_UNORD; 2718 case UNLT_EXPR: 2719 return COMPCODE_UNLT; 2720 case UNEQ_EXPR: 2721 return COMPCODE_UNEQ; 2722 case UNLE_EXPR: 2723 return COMPCODE_UNLE; 2724 case UNGT_EXPR: 2725 return COMPCODE_UNGT; 2726 case LTGT_EXPR: 2727 return COMPCODE_LTGT; 2728 case UNGE_EXPR: 2729 return COMPCODE_UNGE; 2730 default: 2731 gcc_unreachable (); 2732 } 2733 } 2734 2735 /* Convert a compcode bit-based encoding of a comparison operator back 2736 to GCC's enum tree_code representation. This function is the 2737 inverse of comparison_to_compcode. */ 2738 2739 static enum tree_code 2740 compcode_to_comparison (enum comparison_code code) 2741 { 2742 switch (code) 2743 { 2744 case COMPCODE_LT: 2745 return LT_EXPR; 2746 case COMPCODE_EQ: 2747 return EQ_EXPR; 2748 case COMPCODE_LE: 2749 return LE_EXPR; 2750 case COMPCODE_GT: 2751 return GT_EXPR; 2752 case COMPCODE_NE: 2753 return NE_EXPR; 2754 case COMPCODE_GE: 2755 return GE_EXPR; 2756 case COMPCODE_ORD: 2757 return ORDERED_EXPR; 2758 case COMPCODE_UNORD: 2759 return UNORDERED_EXPR; 2760 case COMPCODE_UNLT: 2761 return UNLT_EXPR; 2762 case COMPCODE_UNEQ: 2763 return UNEQ_EXPR; 2764 case COMPCODE_UNLE: 2765 return UNLE_EXPR; 2766 case COMPCODE_UNGT: 2767 return UNGT_EXPR; 2768 case COMPCODE_LTGT: 2769 return LTGT_EXPR; 2770 case COMPCODE_UNGE: 2771 return UNGE_EXPR; 2772 default: 2773 gcc_unreachable (); 2774 } 2775 } 2776 2777 /* Return a tree for the comparison which is the combination of 2778 doing the AND or OR (depending on CODE) of the two operations LCODE 2779 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account 2780 the possibility of trapping if the mode has NaNs, and return NULL_TREE 2781 if this makes the transformation invalid. */ 2782 2783 tree 2784 combine_comparisons (location_t loc, 2785 enum tree_code code, enum tree_code lcode, 2786 enum tree_code rcode, tree truth_type, 2787 tree ll_arg, tree lr_arg) 2788 { 2789 bool honor_nans = HONOR_NANS (ll_arg); 2790 enum comparison_code lcompcode = comparison_to_compcode (lcode); 2791 enum comparison_code rcompcode = comparison_to_compcode (rcode); 2792 int compcode; 2793 2794 switch (code) 2795 { 2796 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR: 2797 compcode = lcompcode & rcompcode; 2798 break; 2799 2800 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR: 2801 compcode = lcompcode | rcompcode; 2802 break; 2803 2804 default: 2805 return NULL_TREE; 2806 } 2807 2808 if (!honor_nans) 2809 { 2810 /* Eliminate unordered comparisons, as well as LTGT and ORD 2811 which are not used unless the mode has NaNs. */ 2812 compcode &= ~COMPCODE_UNORD; 2813 if (compcode == COMPCODE_LTGT) 2814 compcode = COMPCODE_NE; 2815 else if (compcode == COMPCODE_ORD) 2816 compcode = COMPCODE_TRUE; 2817 } 2818 else if (flag_trapping_math) 2819 { 2820 /* Check that the original operation and the optimized ones will trap 2821 under the same condition. */ 2822 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0 2823 && (lcompcode != COMPCODE_EQ) 2824 && (lcompcode != COMPCODE_ORD); 2825 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0 2826 && (rcompcode != COMPCODE_EQ) 2827 && (rcompcode != COMPCODE_ORD); 2828 bool trap = (compcode & COMPCODE_UNORD) == 0 2829 && (compcode != COMPCODE_EQ) 2830 && (compcode != COMPCODE_ORD); 2831 2832 /* In a short-circuited boolean expression the LHS might be 2833 such that the RHS, if evaluated, will never trap. For 2834 example, in ORD (x, y) && (x < y), we evaluate the RHS only 2835 if neither x nor y is NaN. (This is a mixed blessing: for 2836 example, the expression above will never trap, hence 2837 optimizing it to x < y would be invalid). */ 2838 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD)) 2839 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD))) 2840 rtrap = false; 2841 2842 /* If the comparison was short-circuited, and only the RHS 2843 trapped, we may now generate a spurious trap. */ 2844 if (rtrap && !ltrap 2845 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) 2846 return NULL_TREE; 2847 2848 /* If we changed the conditions that cause a trap, we lose. */ 2849 if ((ltrap || rtrap) != trap) 2850 return NULL_TREE; 2851 } 2852 2853 if (compcode == COMPCODE_TRUE) 2854 return constant_boolean_node (true, truth_type); 2855 else if (compcode == COMPCODE_FALSE) 2856 return constant_boolean_node (false, truth_type); 2857 else 2858 { 2859 enum tree_code tcode; 2860 2861 tcode = compcode_to_comparison ((enum comparison_code) compcode); 2862 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg); 2863 } 2864 } 2865 2866 /* Return nonzero if two operands (typically of the same tree node) 2867 are necessarily equal. FLAGS modifies behavior as follows: 2868 2869 If OEP_ONLY_CONST is set, only return nonzero for constants. 2870 This function tests whether the operands are indistinguishable; 2871 it does not test whether they are equal using C's == operation. 2872 The distinction is important for IEEE floating point, because 2873 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and 2874 (2) two NaNs may be indistinguishable, but NaN!=NaN. 2875 2876 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself 2877 even though it may hold multiple values during a function. 2878 This is because a GCC tree node guarantees that nothing else is 2879 executed between the evaluation of its "operands" (which may often 2880 be evaluated in arbitrary order). Hence if the operands themselves 2881 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the 2882 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST 2883 unset means assuming isochronic (or instantaneous) tree equivalence. 2884 Unless comparing arbitrary expression trees, such as from different 2885 statements, this flag can usually be left unset. 2886 2887 If OEP_PURE_SAME is set, then pure functions with identical arguments 2888 are considered the same. It is used when the caller has other ways 2889 to ensure that global memory is unchanged in between. 2890 2891 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects, 2892 not values of expressions. 2893 2894 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects 2895 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs. 2896 2897 If OEP_BITWISE is set, then require the values to be bitwise identical 2898 rather than simply numerically equal. Do not take advantage of things 2899 like math-related flags or undefined behavior; only return true for 2900 values that are provably bitwise identical in all circumstances. 2901 2902 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on 2903 any operand with side effect. This is unnecesarily conservative in the 2904 case we know that arg0 and arg1 are in disjoint code paths (such as in 2905 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing 2906 addresses with TREE_CONSTANT flag set so we know that &var == &var 2907 even if var is volatile. */ 2908 2909 int 2910 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags) 2911 { 2912 /* When checking, verify at the outermost operand_equal_p call that 2913 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same 2914 hash value. */ 2915 if (flag_checking && !(flags & OEP_NO_HASH_CHECK)) 2916 { 2917 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK)) 2918 { 2919 if (arg0 != arg1) 2920 { 2921 inchash::hash hstate0 (0), hstate1 (0); 2922 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK); 2923 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK); 2924 hashval_t h0 = hstate0.end (); 2925 hashval_t h1 = hstate1.end (); 2926 gcc_assert (h0 == h1); 2927 } 2928 return 1; 2929 } 2930 else 2931 return 0; 2932 } 2933 2934 /* If either is ERROR_MARK, they aren't equal. */ 2935 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK 2936 || TREE_TYPE (arg0) == error_mark_node 2937 || TREE_TYPE (arg1) == error_mark_node) 2938 return 0; 2939 2940 /* Similar, if either does not have a type (like a released SSA name), 2941 they aren't equal. */ 2942 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1)) 2943 return 0; 2944 2945 /* Bitwise identity makes no sense if the values have different layouts. */ 2946 if ((flags & OEP_BITWISE) 2947 && !tree_nop_conversion_p (TREE_TYPE (arg0), TREE_TYPE (arg1))) 2948 return 0; 2949 2950 /* We cannot consider pointers to different address space equal. */ 2951 if (POINTER_TYPE_P (TREE_TYPE (arg0)) 2952 && POINTER_TYPE_P (TREE_TYPE (arg1)) 2953 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))) 2954 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1))))) 2955 return 0; 2956 2957 /* Check equality of integer constants before bailing out due to 2958 precision differences. */ 2959 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST) 2960 { 2961 /* Address of INTEGER_CST is not defined; check that we did not forget 2962 to drop the OEP_ADDRESS_OF flags. */ 2963 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 2964 return tree_int_cst_equal (arg0, arg1); 2965 } 2966 2967 if (!(flags & OEP_ADDRESS_OF)) 2968 { 2969 /* If both types don't have the same signedness, then we can't consider 2970 them equal. We must check this before the STRIP_NOPS calls 2971 because they may change the signedness of the arguments. As pointers 2972 strictly don't have a signedness, require either two pointers or 2973 two non-pointers as well. */ 2974 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)) 2975 || POINTER_TYPE_P (TREE_TYPE (arg0)) 2976 != POINTER_TYPE_P (TREE_TYPE (arg1))) 2977 return 0; 2978 2979 /* If both types don't have the same precision, then it is not safe 2980 to strip NOPs. */ 2981 if (element_precision (TREE_TYPE (arg0)) 2982 != element_precision (TREE_TYPE (arg1))) 2983 return 0; 2984 2985 STRIP_NOPS (arg0); 2986 STRIP_NOPS (arg1); 2987 } 2988 #if 0 2989 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the 2990 sanity check once the issue is solved. */ 2991 else 2992 /* Addresses of conversions and SSA_NAMEs (and many other things) 2993 are not defined. Check that we did not forget to drop the 2994 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */ 2995 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1) 2996 && TREE_CODE (arg0) != SSA_NAME); 2997 #endif 2998 2999 /* In case both args are comparisons but with different comparison 3000 code, try to swap the comparison operands of one arg to produce 3001 a match and compare that variant. */ 3002 if (TREE_CODE (arg0) != TREE_CODE (arg1) 3003 && COMPARISON_CLASS_P (arg0) 3004 && COMPARISON_CLASS_P (arg1)) 3005 { 3006 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1)); 3007 3008 if (TREE_CODE (arg0) == swap_code) 3009 return operand_equal_p (TREE_OPERAND (arg0, 0), 3010 TREE_OPERAND (arg1, 1), flags) 3011 && operand_equal_p (TREE_OPERAND (arg0, 1), 3012 TREE_OPERAND (arg1, 0), flags); 3013 } 3014 3015 if (TREE_CODE (arg0) != TREE_CODE (arg1)) 3016 { 3017 /* NOP_EXPR and CONVERT_EXPR are considered equal. */ 3018 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)) 3019 ; 3020 else if (flags & OEP_ADDRESS_OF) 3021 { 3022 /* If we are interested in comparing addresses ignore 3023 MEM_REF wrappings of the base that can appear just for 3024 TBAA reasons. */ 3025 if (TREE_CODE (arg0) == MEM_REF 3026 && DECL_P (arg1) 3027 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR 3028 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1 3029 && integer_zerop (TREE_OPERAND (arg0, 1))) 3030 return 1; 3031 else if (TREE_CODE (arg1) == MEM_REF 3032 && DECL_P (arg0) 3033 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR 3034 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0 3035 && integer_zerop (TREE_OPERAND (arg1, 1))) 3036 return 1; 3037 return 0; 3038 } 3039 else 3040 return 0; 3041 } 3042 3043 /* When not checking adddresses, this is needed for conversions and for 3044 COMPONENT_REF. Might as well play it safe and always test this. */ 3045 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK 3046 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK 3047 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)) 3048 && !(flags & OEP_ADDRESS_OF))) 3049 return 0; 3050 3051 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal. 3052 We don't care about side effects in that case because the SAVE_EXPR 3053 takes care of that for us. In all other cases, two expressions are 3054 equal if they have no side effects. If we have two identical 3055 expressions with side effects that should be treated the same due 3056 to the only side effects being identical SAVE_EXPR's, that will 3057 be detected in the recursive calls below. 3058 If we are taking an invariant address of two identical objects 3059 they are necessarily equal as well. */ 3060 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST) 3061 && (TREE_CODE (arg0) == SAVE_EXPR 3062 || (flags & OEP_MATCH_SIDE_EFFECTS) 3063 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1)))) 3064 return 1; 3065 3066 /* Next handle constant cases, those for which we can return 1 even 3067 if ONLY_CONST is set. */ 3068 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)) 3069 switch (TREE_CODE (arg0)) 3070 { 3071 case INTEGER_CST: 3072 return tree_int_cst_equal (arg0, arg1); 3073 3074 case FIXED_CST: 3075 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0), 3076 TREE_FIXED_CST (arg1)); 3077 3078 case REAL_CST: 3079 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1))) 3080 return 1; 3081 3082 if (!(flags & OEP_BITWISE) && !HONOR_SIGNED_ZEROS (arg0)) 3083 { 3084 /* If we do not distinguish between signed and unsigned zero, 3085 consider them equal. */ 3086 if (real_zerop (arg0) && real_zerop (arg1)) 3087 return 1; 3088 } 3089 return 0; 3090 3091 case VECTOR_CST: 3092 { 3093 if (VECTOR_CST_LOG2_NPATTERNS (arg0) 3094 != VECTOR_CST_LOG2_NPATTERNS (arg1)) 3095 return 0; 3096 3097 if (VECTOR_CST_NELTS_PER_PATTERN (arg0) 3098 != VECTOR_CST_NELTS_PER_PATTERN (arg1)) 3099 return 0; 3100 3101 unsigned int count = vector_cst_encoded_nelts (arg0); 3102 for (unsigned int i = 0; i < count; ++i) 3103 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i), 3104 VECTOR_CST_ENCODED_ELT (arg1, i), flags)) 3105 return 0; 3106 return 1; 3107 } 3108 3109 case COMPLEX_CST: 3110 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1), 3111 flags) 3112 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1), 3113 flags)); 3114 3115 case STRING_CST: 3116 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1) 3117 && ! memcmp (TREE_STRING_POINTER (arg0), 3118 TREE_STRING_POINTER (arg1), 3119 TREE_STRING_LENGTH (arg0))); 3120 3121 case ADDR_EXPR: 3122 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 3123 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 3124 flags | OEP_ADDRESS_OF 3125 | OEP_MATCH_SIDE_EFFECTS); 3126 case CONSTRUCTOR: 3127 /* In GIMPLE empty constructors are allowed in initializers of 3128 aggregates. */ 3129 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1); 3130 default: 3131 break; 3132 } 3133 3134 /* Don't handle more cases for OEP_BITWISE, since we can't guarantee that 3135 two instances of undefined behavior will give identical results. */ 3136 if (flags & (OEP_ONLY_CONST | OEP_BITWISE)) 3137 return 0; 3138 3139 /* Define macros to test an operand from arg0 and arg1 for equality and a 3140 variant that allows null and views null as being different from any 3141 non-null value. In the latter case, if either is null, the both 3142 must be; otherwise, do the normal comparison. */ 3143 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \ 3144 TREE_OPERAND (arg1, N), flags) 3145 3146 #define OP_SAME_WITH_NULL(N) \ 3147 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \ 3148 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N)) 3149 3150 switch (TREE_CODE_CLASS (TREE_CODE (arg0))) 3151 { 3152 case tcc_unary: 3153 /* Two conversions are equal only if signedness and modes match. */ 3154 switch (TREE_CODE (arg0)) 3155 { 3156 CASE_CONVERT: 3157 case FIX_TRUNC_EXPR: 3158 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) 3159 != TYPE_UNSIGNED (TREE_TYPE (arg1))) 3160 return 0; 3161 break; 3162 default: 3163 break; 3164 } 3165 3166 return OP_SAME (0); 3167 3168 3169 case tcc_comparison: 3170 case tcc_binary: 3171 if (OP_SAME (0) && OP_SAME (1)) 3172 return 1; 3173 3174 /* For commutative ops, allow the other order. */ 3175 return (commutative_tree_code (TREE_CODE (arg0)) 3176 && operand_equal_p (TREE_OPERAND (arg0, 0), 3177 TREE_OPERAND (arg1, 1), flags) 3178 && operand_equal_p (TREE_OPERAND (arg0, 1), 3179 TREE_OPERAND (arg1, 0), flags)); 3180 3181 case tcc_reference: 3182 /* If either of the pointer (or reference) expressions we are 3183 dereferencing contain a side effect, these cannot be equal, 3184 but their addresses can be. */ 3185 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0 3186 && (TREE_SIDE_EFFECTS (arg0) 3187 || TREE_SIDE_EFFECTS (arg1))) 3188 return 0; 3189 3190 switch (TREE_CODE (arg0)) 3191 { 3192 case INDIRECT_REF: 3193 if (!(flags & OEP_ADDRESS_OF)) 3194 { 3195 if (TYPE_ALIGN (TREE_TYPE (arg0)) 3196 != TYPE_ALIGN (TREE_TYPE (arg1))) 3197 return 0; 3198 /* Verify that the access types are compatible. */ 3199 if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0)) 3200 != TYPE_MAIN_VARIANT (TREE_TYPE (arg1))) 3201 return 0; 3202 } 3203 flags &= ~OEP_ADDRESS_OF; 3204 return OP_SAME (0); 3205 3206 case IMAGPART_EXPR: 3207 /* Require the same offset. */ 3208 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), 3209 TYPE_SIZE (TREE_TYPE (arg1)), 3210 flags & ~OEP_ADDRESS_OF)) 3211 return 0; 3212 3213 /* Fallthru. */ 3214 case REALPART_EXPR: 3215 case VIEW_CONVERT_EXPR: 3216 return OP_SAME (0); 3217 3218 case TARGET_MEM_REF: 3219 case MEM_REF: 3220 if (!(flags & OEP_ADDRESS_OF)) 3221 { 3222 /* Require equal access sizes */ 3223 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1)) 3224 && (!TYPE_SIZE (TREE_TYPE (arg0)) 3225 || !TYPE_SIZE (TREE_TYPE (arg1)) 3226 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), 3227 TYPE_SIZE (TREE_TYPE (arg1)), 3228 flags))) 3229 return 0; 3230 /* Verify that access happens in similar types. */ 3231 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))) 3232 return 0; 3233 /* Verify that accesses are TBAA compatible. */ 3234 if (!alias_ptr_types_compatible_p 3235 (TREE_TYPE (TREE_OPERAND (arg0, 1)), 3236 TREE_TYPE (TREE_OPERAND (arg1, 1))) 3237 || (MR_DEPENDENCE_CLIQUE (arg0) 3238 != MR_DEPENDENCE_CLIQUE (arg1)) 3239 || (MR_DEPENDENCE_BASE (arg0) 3240 != MR_DEPENDENCE_BASE (arg1))) 3241 return 0; 3242 /* Verify that alignment is compatible. */ 3243 if (TYPE_ALIGN (TREE_TYPE (arg0)) 3244 != TYPE_ALIGN (TREE_TYPE (arg1))) 3245 return 0; 3246 } 3247 flags &= ~OEP_ADDRESS_OF; 3248 return (OP_SAME (0) && OP_SAME (1) 3249 /* TARGET_MEM_REF require equal extra operands. */ 3250 && (TREE_CODE (arg0) != TARGET_MEM_REF 3251 || (OP_SAME_WITH_NULL (2) 3252 && OP_SAME_WITH_NULL (3) 3253 && OP_SAME_WITH_NULL (4)))); 3254 3255 case ARRAY_REF: 3256 case ARRAY_RANGE_REF: 3257 if (!OP_SAME (0)) 3258 return 0; 3259 flags &= ~OEP_ADDRESS_OF; 3260 /* Compare the array index by value if it is constant first as we 3261 may have different types but same value here. */ 3262 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1), 3263 TREE_OPERAND (arg1, 1)) 3264 || OP_SAME (1)) 3265 && OP_SAME_WITH_NULL (2) 3266 && OP_SAME_WITH_NULL (3) 3267 /* Compare low bound and element size as with OEP_ADDRESS_OF 3268 we have to account for the offset of the ref. */ 3269 && (TREE_TYPE (TREE_OPERAND (arg0, 0)) 3270 == TREE_TYPE (TREE_OPERAND (arg1, 0)) 3271 || (operand_equal_p (array_ref_low_bound 3272 (CONST_CAST_TREE (arg0)), 3273 array_ref_low_bound 3274 (CONST_CAST_TREE (arg1)), flags) 3275 && operand_equal_p (array_ref_element_size 3276 (CONST_CAST_TREE (arg0)), 3277 array_ref_element_size 3278 (CONST_CAST_TREE (arg1)), 3279 flags)))); 3280 3281 case COMPONENT_REF: 3282 /* Handle operand 2 the same as for ARRAY_REF. Operand 0 3283 may be NULL when we're called to compare MEM_EXPRs. */ 3284 if (!OP_SAME_WITH_NULL (0) 3285 || !OP_SAME (1)) 3286 return 0; 3287 flags &= ~OEP_ADDRESS_OF; 3288 return OP_SAME_WITH_NULL (2); 3289 3290 case BIT_FIELD_REF: 3291 if (!OP_SAME (0)) 3292 return 0; 3293 flags &= ~OEP_ADDRESS_OF; 3294 return OP_SAME (1) && OP_SAME (2); 3295 3296 default: 3297 return 0; 3298 } 3299 3300 case tcc_expression: 3301 switch (TREE_CODE (arg0)) 3302 { 3303 case ADDR_EXPR: 3304 /* Be sure we pass right ADDRESS_OF flag. */ 3305 gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); 3306 return operand_equal_p (TREE_OPERAND (arg0, 0), 3307 TREE_OPERAND (arg1, 0), 3308 flags | OEP_ADDRESS_OF); 3309 3310 case TRUTH_NOT_EXPR: 3311 return OP_SAME (0); 3312 3313 case TRUTH_ANDIF_EXPR: 3314 case TRUTH_ORIF_EXPR: 3315 return OP_SAME (0) && OP_SAME (1); 3316 3317 case FMA_EXPR: 3318 case WIDEN_MULT_PLUS_EXPR: 3319 case WIDEN_MULT_MINUS_EXPR: 3320 if (!OP_SAME (2)) 3321 return 0; 3322 /* The multiplcation operands are commutative. */ 3323 /* FALLTHRU */ 3324 3325 case TRUTH_AND_EXPR: 3326 case TRUTH_OR_EXPR: 3327 case TRUTH_XOR_EXPR: 3328 if (OP_SAME (0) && OP_SAME (1)) 3329 return 1; 3330 3331 /* Otherwise take into account this is a commutative operation. */ 3332 return (operand_equal_p (TREE_OPERAND (arg0, 0), 3333 TREE_OPERAND (arg1, 1), flags) 3334 && operand_equal_p (TREE_OPERAND (arg0, 1), 3335 TREE_OPERAND (arg1, 0), flags)); 3336 3337 case COND_EXPR: 3338 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2)) 3339 return 0; 3340 flags &= ~OEP_ADDRESS_OF; 3341 return OP_SAME (0); 3342 3343 case BIT_INSERT_EXPR: 3344 /* BIT_INSERT_EXPR has an implict operand as the type precision 3345 of op1. Need to check to make sure they are the same. */ 3346 if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 3347 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST 3348 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1))) 3349 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1)))) 3350 return false; 3351 /* FALLTHRU */ 3352 3353 case VEC_COND_EXPR: 3354 case DOT_PROD_EXPR: 3355 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2); 3356 3357 case MODIFY_EXPR: 3358 case INIT_EXPR: 3359 case COMPOUND_EXPR: 3360 case PREDECREMENT_EXPR: 3361 case PREINCREMENT_EXPR: 3362 case POSTDECREMENT_EXPR: 3363 case POSTINCREMENT_EXPR: 3364 if (flags & OEP_LEXICOGRAPHIC) 3365 return OP_SAME (0) && OP_SAME (1); 3366 return 0; 3367 3368 case CLEANUP_POINT_EXPR: 3369 case EXPR_STMT: 3370 if (flags & OEP_LEXICOGRAPHIC) 3371 return OP_SAME (0); 3372 return 0; 3373 3374 default: 3375 return 0; 3376 } 3377 3378 case tcc_vl_exp: 3379 switch (TREE_CODE (arg0)) 3380 { 3381 case CALL_EXPR: 3382 if ((CALL_EXPR_FN (arg0) == NULL_TREE) 3383 != (CALL_EXPR_FN (arg1) == NULL_TREE)) 3384 /* If not both CALL_EXPRs are either internal or normal function 3385 functions, then they are not equal. */ 3386 return 0; 3387 else if (CALL_EXPR_FN (arg0) == NULL_TREE) 3388 { 3389 /* If the CALL_EXPRs call different internal functions, then they 3390 are not equal. */ 3391 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1)) 3392 return 0; 3393 } 3394 else 3395 { 3396 /* If the CALL_EXPRs call different functions, then they are not 3397 equal. */ 3398 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1), 3399 flags)) 3400 return 0; 3401 } 3402 3403 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */ 3404 { 3405 unsigned int cef = call_expr_flags (arg0); 3406 if (flags & OEP_PURE_SAME) 3407 cef &= ECF_CONST | ECF_PURE; 3408 else 3409 cef &= ECF_CONST; 3410 if (!cef && !(flags & OEP_LEXICOGRAPHIC)) 3411 return 0; 3412 } 3413 3414 /* Now see if all the arguments are the same. */ 3415 { 3416 const_call_expr_arg_iterator iter0, iter1; 3417 const_tree a0, a1; 3418 for (a0 = first_const_call_expr_arg (arg0, &iter0), 3419 a1 = first_const_call_expr_arg (arg1, &iter1); 3420 a0 && a1; 3421 a0 = next_const_call_expr_arg (&iter0), 3422 a1 = next_const_call_expr_arg (&iter1)) 3423 if (! operand_equal_p (a0, a1, flags)) 3424 return 0; 3425 3426 /* If we get here and both argument lists are exhausted 3427 then the CALL_EXPRs are equal. */ 3428 return ! (a0 || a1); 3429 } 3430 default: 3431 return 0; 3432 } 3433 3434 case tcc_declaration: 3435 /* Consider __builtin_sqrt equal to sqrt. */ 3436 return (TREE_CODE (arg0) == FUNCTION_DECL 3437 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1) 3438 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1) 3439 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1)); 3440 3441 case tcc_exceptional: 3442 if (TREE_CODE (arg0) == CONSTRUCTOR) 3443 { 3444 /* In GIMPLE constructors are used only to build vectors from 3445 elements. Individual elements in the constructor must be 3446 indexed in increasing order and form an initial sequence. 3447 3448 We make no effort to compare constructors in generic. 3449 (see sem_variable::equals in ipa-icf which can do so for 3450 constants). */ 3451 if (!VECTOR_TYPE_P (TREE_TYPE (arg0)) 3452 || !VECTOR_TYPE_P (TREE_TYPE (arg1))) 3453 return 0; 3454 3455 /* Be sure that vectors constructed have the same representation. 3456 We only tested element precision and modes to match. 3457 Vectors may be BLKmode and thus also check that the number of 3458 parts match. */ 3459 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), 3460 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))) 3461 return 0; 3462 3463 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0); 3464 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1); 3465 unsigned int len = vec_safe_length (v0); 3466 3467 if (len != vec_safe_length (v1)) 3468 return 0; 3469 3470 for (unsigned int i = 0; i < len; i++) 3471 { 3472 constructor_elt *c0 = &(*v0)[i]; 3473 constructor_elt *c1 = &(*v1)[i]; 3474 3475 if (!operand_equal_p (c0->value, c1->value, flags) 3476 /* In GIMPLE the indexes can be either NULL or matching i. 3477 Double check this so we won't get false 3478 positives for GENERIC. */ 3479 || (c0->index 3480 && (TREE_CODE (c0->index) != INTEGER_CST 3481 || !compare_tree_int (c0->index, i))) 3482 || (c1->index 3483 && (TREE_CODE (c1->index) != INTEGER_CST 3484 || !compare_tree_int (c1->index, i)))) 3485 return 0; 3486 } 3487 return 1; 3488 } 3489 else if (TREE_CODE (arg0) == STATEMENT_LIST 3490 && (flags & OEP_LEXICOGRAPHIC)) 3491 { 3492 /* Compare the STATEMENT_LISTs. */ 3493 tree_stmt_iterator tsi1, tsi2; 3494 tree body1 = CONST_CAST_TREE (arg0); 3495 tree body2 = CONST_CAST_TREE (arg1); 3496 for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ; 3497 tsi_next (&tsi1), tsi_next (&tsi2)) 3498 { 3499 /* The lists don't have the same number of statements. */ 3500 if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2)) 3501 return 0; 3502 if (tsi_end_p (tsi1) && tsi_end_p (tsi2)) 3503 return 1; 3504 if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2), 3505 flags & (OEP_LEXICOGRAPHIC 3506 | OEP_NO_HASH_CHECK))) 3507 return 0; 3508 } 3509 } 3510 return 0; 3511 3512 case tcc_statement: 3513 switch (TREE_CODE (arg0)) 3514 { 3515 case RETURN_EXPR: 3516 if (flags & OEP_LEXICOGRAPHIC) 3517 return OP_SAME_WITH_NULL (0); 3518 return 0; 3519 case DEBUG_BEGIN_STMT: 3520 if (flags & OEP_LEXICOGRAPHIC) 3521 return 1; 3522 return 0; 3523 default: 3524 return 0; 3525 } 3526 3527 default: 3528 return 0; 3529 } 3530 3531 #undef OP_SAME 3532 #undef OP_SAME_WITH_NULL 3533 } 3534 3535 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1 3536 with a different signedness or a narrower precision. */ 3537 3538 static bool 3539 operand_equal_for_comparison_p (tree arg0, tree arg1) 3540 { 3541 if (operand_equal_p (arg0, arg1, 0)) 3542 return true; 3543 3544 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 3545 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1))) 3546 return false; 3547 3548 /* Discard any conversions that don't change the modes of ARG0 and ARG1 3549 and see if the inner values are the same. This removes any 3550 signedness comparison, which doesn't matter here. */ 3551 tree op0 = arg0; 3552 tree op1 = arg1; 3553 STRIP_NOPS (op0); 3554 STRIP_NOPS (op1); 3555 if (operand_equal_p (op0, op1, 0)) 3556 return true; 3557 3558 /* Discard a single widening conversion from ARG1 and see if the inner 3559 value is the same as ARG0. */ 3560 if (CONVERT_EXPR_P (arg1) 3561 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))) 3562 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0))) 3563 < TYPE_PRECISION (TREE_TYPE (arg1)) 3564 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 3565 return true; 3566 3567 return false; 3568 } 3569 3570 /* See if ARG is an expression that is either a comparison or is performing 3571 arithmetic on comparisons. The comparisons must only be comparing 3572 two different values, which will be stored in *CVAL1 and *CVAL2; if 3573 they are nonzero it means that some operands have already been found. 3574 No variables may be used anywhere else in the expression except in the 3575 comparisons. 3576 3577 If this is true, return 1. Otherwise, return zero. */ 3578 3579 static int 3580 twoval_comparison_p (tree arg, tree *cval1, tree *cval2) 3581 { 3582 enum tree_code code = TREE_CODE (arg); 3583 enum tree_code_class tclass = TREE_CODE_CLASS (code); 3584 3585 /* We can handle some of the tcc_expression cases here. */ 3586 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) 3587 tclass = tcc_unary; 3588 else if (tclass == tcc_expression 3589 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR 3590 || code == COMPOUND_EXPR)) 3591 tclass = tcc_binary; 3592 3593 switch (tclass) 3594 { 3595 case tcc_unary: 3596 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2); 3597 3598 case tcc_binary: 3599 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) 3600 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)); 3601 3602 case tcc_constant: 3603 return 1; 3604 3605 case tcc_expression: 3606 if (code == COND_EXPR) 3607 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) 3608 && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2) 3609 && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2)); 3610 return 0; 3611 3612 case tcc_comparison: 3613 /* First see if we can handle the first operand, then the second. For 3614 the second operand, we know *CVAL1 can't be zero. It must be that 3615 one side of the comparison is each of the values; test for the 3616 case where this isn't true by failing if the two operands 3617 are the same. */ 3618 3619 if (operand_equal_p (TREE_OPERAND (arg, 0), 3620 TREE_OPERAND (arg, 1), 0)) 3621 return 0; 3622 3623 if (*cval1 == 0) 3624 *cval1 = TREE_OPERAND (arg, 0); 3625 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0)) 3626 ; 3627 else if (*cval2 == 0) 3628 *cval2 = TREE_OPERAND (arg, 0); 3629 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0)) 3630 ; 3631 else 3632 return 0; 3633 3634 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0)) 3635 ; 3636 else if (*cval2 == 0) 3637 *cval2 = TREE_OPERAND (arg, 1); 3638 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0)) 3639 ; 3640 else 3641 return 0; 3642 3643 return 1; 3644 3645 default: 3646 return 0; 3647 } 3648 } 3649 3650 /* ARG is a tree that is known to contain just arithmetic operations and 3651 comparisons. Evaluate the operations in the tree substituting NEW0 for 3652 any occurrence of OLD0 as an operand of a comparison and likewise for 3653 NEW1 and OLD1. */ 3654 3655 static tree 3656 eval_subst (location_t loc, tree arg, tree old0, tree new0, 3657 tree old1, tree new1) 3658 { 3659 tree type = TREE_TYPE (arg); 3660 enum tree_code code = TREE_CODE (arg); 3661 enum tree_code_class tclass = TREE_CODE_CLASS (code); 3662 3663 /* We can handle some of the tcc_expression cases here. */ 3664 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) 3665 tclass = tcc_unary; 3666 else if (tclass == tcc_expression 3667 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) 3668 tclass = tcc_binary; 3669 3670 switch (tclass) 3671 { 3672 case tcc_unary: 3673 return fold_build1_loc (loc, code, type, 3674 eval_subst (loc, TREE_OPERAND (arg, 0), 3675 old0, new0, old1, new1)); 3676 3677 case tcc_binary: 3678 return fold_build2_loc (loc, code, type, 3679 eval_subst (loc, TREE_OPERAND (arg, 0), 3680 old0, new0, old1, new1), 3681 eval_subst (loc, TREE_OPERAND (arg, 1), 3682 old0, new0, old1, new1)); 3683 3684 case tcc_expression: 3685 switch (code) 3686 { 3687 case SAVE_EXPR: 3688 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0, 3689 old1, new1); 3690 3691 case COMPOUND_EXPR: 3692 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0, 3693 old1, new1); 3694 3695 case COND_EXPR: 3696 return fold_build3_loc (loc, code, type, 3697 eval_subst (loc, TREE_OPERAND (arg, 0), 3698 old0, new0, old1, new1), 3699 eval_subst (loc, TREE_OPERAND (arg, 1), 3700 old0, new0, old1, new1), 3701 eval_subst (loc, TREE_OPERAND (arg, 2), 3702 old0, new0, old1, new1)); 3703 default: 3704 break; 3705 } 3706 /* Fall through - ??? */ 3707 3708 case tcc_comparison: 3709 { 3710 tree arg0 = TREE_OPERAND (arg, 0); 3711 tree arg1 = TREE_OPERAND (arg, 1); 3712 3713 /* We need to check both for exact equality and tree equality. The 3714 former will be true if the operand has a side-effect. In that 3715 case, we know the operand occurred exactly once. */ 3716 3717 if (arg0 == old0 || operand_equal_p (arg0, old0, 0)) 3718 arg0 = new0; 3719 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0)) 3720 arg0 = new1; 3721 3722 if (arg1 == old0 || operand_equal_p (arg1, old0, 0)) 3723 arg1 = new0; 3724 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0)) 3725 arg1 = new1; 3726 3727 return fold_build2_loc (loc, code, type, arg0, arg1); 3728 } 3729 3730 default: 3731 return arg; 3732 } 3733 } 3734 3735 /* Return a tree for the case when the result of an expression is RESULT 3736 converted to TYPE and OMITTED was previously an operand of the expression 3737 but is now not needed (e.g., we folded OMITTED * 0). 3738 3739 If OMITTED has side effects, we must evaluate it. Otherwise, just do 3740 the conversion of RESULT to TYPE. */ 3741 3742 tree 3743 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted) 3744 { 3745 tree t = fold_convert_loc (loc, type, result); 3746 3747 /* If the resulting operand is an empty statement, just return the omitted 3748 statement casted to void. */ 3749 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted)) 3750 return build1_loc (loc, NOP_EXPR, void_type_node, 3751 fold_ignored_result (omitted)); 3752 3753 if (TREE_SIDE_EFFECTS (omitted)) 3754 return build2_loc (loc, COMPOUND_EXPR, type, 3755 fold_ignored_result (omitted), t); 3756 3757 return non_lvalue_loc (loc, t); 3758 } 3759 3760 /* Return a tree for the case when the result of an expression is RESULT 3761 converted to TYPE and OMITTED1 and OMITTED2 were previously operands 3762 of the expression but are now not needed. 3763 3764 If OMITTED1 or OMITTED2 has side effects, they must be evaluated. 3765 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is 3766 evaluated before OMITTED2. Otherwise, if neither has side effects, 3767 just do the conversion of RESULT to TYPE. */ 3768 3769 tree 3770 omit_two_operands_loc (location_t loc, tree type, tree result, 3771 tree omitted1, tree omitted2) 3772 { 3773 tree t = fold_convert_loc (loc, type, result); 3774 3775 if (TREE_SIDE_EFFECTS (omitted2)) 3776 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t); 3777 if (TREE_SIDE_EFFECTS (omitted1)) 3778 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t); 3779 3780 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t; 3781 } 3782 3783 3784 /* Return a simplified tree node for the truth-negation of ARG. This 3785 never alters ARG itself. We assume that ARG is an operation that 3786 returns a truth value (0 or 1). 3787 3788 FIXME: one would think we would fold the result, but it causes 3789 problems with the dominator optimizer. */ 3790 3791 static tree 3792 fold_truth_not_expr (location_t loc, tree arg) 3793 { 3794 tree type = TREE_TYPE (arg); 3795 enum tree_code code = TREE_CODE (arg); 3796 location_t loc1, loc2; 3797 3798 /* If this is a comparison, we can simply invert it, except for 3799 floating-point non-equality comparisons, in which case we just 3800 enclose a TRUTH_NOT_EXPR around what we have. */ 3801 3802 if (TREE_CODE_CLASS (code) == tcc_comparison) 3803 { 3804 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0)); 3805 if (FLOAT_TYPE_P (op_type) 3806 && flag_trapping_math 3807 && code != ORDERED_EXPR && code != UNORDERED_EXPR 3808 && code != NE_EXPR && code != EQ_EXPR) 3809 return NULL_TREE; 3810 3811 code = invert_tree_comparison (code, HONOR_NANS (op_type)); 3812 if (code == ERROR_MARK) 3813 return NULL_TREE; 3814 3815 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0), 3816 TREE_OPERAND (arg, 1)); 3817 if (TREE_NO_WARNING (arg)) 3818 TREE_NO_WARNING (ret) = 1; 3819 return ret; 3820 } 3821 3822 switch (code) 3823 { 3824 case INTEGER_CST: 3825 return constant_boolean_node (integer_zerop (arg), type); 3826 3827 case TRUTH_AND_EXPR: 3828 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3829 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3830 return build2_loc (loc, TRUTH_OR_EXPR, type, 3831 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3832 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3833 3834 case TRUTH_OR_EXPR: 3835 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3836 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3837 return build2_loc (loc, TRUTH_AND_EXPR, type, 3838 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3839 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3840 3841 case TRUTH_XOR_EXPR: 3842 /* Here we can invert either operand. We invert the first operand 3843 unless the second operand is a TRUTH_NOT_EXPR in which case our 3844 result is the XOR of the first operand with the inside of the 3845 negation of the second operand. */ 3846 3847 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR) 3848 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0), 3849 TREE_OPERAND (TREE_OPERAND (arg, 1), 0)); 3850 else 3851 return build2_loc (loc, TRUTH_XOR_EXPR, type, 3852 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)), 3853 TREE_OPERAND (arg, 1)); 3854 3855 case TRUTH_ANDIF_EXPR: 3856 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3857 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3858 return build2_loc (loc, TRUTH_ORIF_EXPR, type, 3859 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3860 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3861 3862 case TRUTH_ORIF_EXPR: 3863 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3864 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3865 return build2_loc (loc, TRUTH_ANDIF_EXPR, type, 3866 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), 3867 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); 3868 3869 case TRUTH_NOT_EXPR: 3870 return TREE_OPERAND (arg, 0); 3871 3872 case COND_EXPR: 3873 { 3874 tree arg1 = TREE_OPERAND (arg, 1); 3875 tree arg2 = TREE_OPERAND (arg, 2); 3876 3877 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3878 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc); 3879 3880 /* A COND_EXPR may have a throw as one operand, which 3881 then has void type. Just leave void operands 3882 as they are. */ 3883 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0), 3884 VOID_TYPE_P (TREE_TYPE (arg1)) 3885 ? arg1 : invert_truthvalue_loc (loc1, arg1), 3886 VOID_TYPE_P (TREE_TYPE (arg2)) 3887 ? arg2 : invert_truthvalue_loc (loc2, arg2)); 3888 } 3889 3890 case COMPOUND_EXPR: 3891 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); 3892 return build2_loc (loc, COMPOUND_EXPR, type, 3893 TREE_OPERAND (arg, 0), 3894 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1))); 3895 3896 case NON_LVALUE_EXPR: 3897 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3898 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)); 3899 3900 CASE_CONVERT: 3901 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE) 3902 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); 3903 3904 /* fall through */ 3905 3906 case FLOAT_EXPR: 3907 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3908 return build1_loc (loc, TREE_CODE (arg), type, 3909 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); 3910 3911 case BIT_AND_EXPR: 3912 if (!integer_onep (TREE_OPERAND (arg, 1))) 3913 return NULL_TREE; 3914 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0)); 3915 3916 case SAVE_EXPR: 3917 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); 3918 3919 case CLEANUP_POINT_EXPR: 3920 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); 3921 return build1_loc (loc, CLEANUP_POINT_EXPR, type, 3922 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); 3923 3924 default: 3925 return NULL_TREE; 3926 } 3927 } 3928 3929 /* Fold the truth-negation of ARG. This never alters ARG itself. We 3930 assume that ARG is an operation that returns a truth value (0 or 1 3931 for scalars, 0 or -1 for vectors). Return the folded expression if 3932 folding is successful. Otherwise, return NULL_TREE. */ 3933 3934 static tree 3935 fold_invert_truthvalue (location_t loc, tree arg) 3936 { 3937 tree type = TREE_TYPE (arg); 3938 return fold_unary_loc (loc, VECTOR_TYPE_P (type) 3939 ? BIT_NOT_EXPR 3940 : TRUTH_NOT_EXPR, 3941 type, arg); 3942 } 3943 3944 /* Return a simplified tree node for the truth-negation of ARG. This 3945 never alters ARG itself. We assume that ARG is an operation that 3946 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */ 3947 3948 tree 3949 invert_truthvalue_loc (location_t loc, tree arg) 3950 { 3951 if (TREE_CODE (arg) == ERROR_MARK) 3952 return arg; 3953 3954 tree type = TREE_TYPE (arg); 3955 return fold_build1_loc (loc, VECTOR_TYPE_P (type) 3956 ? BIT_NOT_EXPR 3957 : TRUTH_NOT_EXPR, 3958 type, arg); 3959 } 3960 3961 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER 3962 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero 3963 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER 3964 is the original memory reference used to preserve the alias set of 3965 the access. */ 3966 3967 static tree 3968 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type, 3969 HOST_WIDE_INT bitsize, poly_int64 bitpos, 3970 int unsignedp, int reversep) 3971 { 3972 tree result, bftype; 3973 3974 /* Attempt not to lose the access path if possible. */ 3975 if (TREE_CODE (orig_inner) == COMPONENT_REF) 3976 { 3977 tree ninner = TREE_OPERAND (orig_inner, 0); 3978 machine_mode nmode; 3979 poly_int64 nbitsize, nbitpos; 3980 tree noffset; 3981 int nunsignedp, nreversep, nvolatilep = 0; 3982 tree base = get_inner_reference (ninner, &nbitsize, &nbitpos, 3983 &noffset, &nmode, &nunsignedp, 3984 &nreversep, &nvolatilep); 3985 if (base == inner 3986 && noffset == NULL_TREE 3987 && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize) 3988 && !reversep 3989 && !nreversep 3990 && !nvolatilep) 3991 { 3992 inner = ninner; 3993 bitpos -= nbitpos; 3994 } 3995 } 3996 3997 alias_set_type iset = get_alias_set (orig_inner); 3998 if (iset == 0 && get_alias_set (inner) != iset) 3999 inner = fold_build2 (MEM_REF, TREE_TYPE (inner), 4000 build_fold_addr_expr (inner), 4001 build_int_cst (ptr_type_node, 0)); 4002 4003 if (known_eq (bitpos, 0) && !reversep) 4004 { 4005 tree size = TYPE_SIZE (TREE_TYPE (inner)); 4006 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner)) 4007 || POINTER_TYPE_P (TREE_TYPE (inner))) 4008 && tree_fits_shwi_p (size) 4009 && tree_to_shwi (size) == bitsize) 4010 return fold_convert_loc (loc, type, inner); 4011 } 4012 4013 bftype = type; 4014 if (TYPE_PRECISION (bftype) != bitsize 4015 || TYPE_UNSIGNED (bftype) == !unsignedp) 4016 bftype = build_nonstandard_integer_type (bitsize, 0); 4017 4018 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner, 4019 bitsize_int (bitsize), bitsize_int (bitpos)); 4020 REF_REVERSE_STORAGE_ORDER (result) = reversep; 4021 4022 if (bftype != type) 4023 result = fold_convert_loc (loc, type, result); 4024 4025 return result; 4026 } 4027 4028 /* Optimize a bit-field compare. 4029 4030 There are two cases: First is a compare against a constant and the 4031 second is a comparison of two items where the fields are at the same 4032 bit position relative to the start of a chunk (byte, halfword, word) 4033 large enough to contain it. In these cases we can avoid the shift 4034 implicit in bitfield extractions. 4035 4036 For constants, we emit a compare of the shifted constant with the 4037 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being 4038 compared. For two fields at the same position, we do the ANDs with the 4039 similar mask and compare the result of the ANDs. 4040 4041 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR. 4042 COMPARE_TYPE is the type of the comparison, and LHS and RHS 4043 are the left and right operands of the comparison, respectively. 4044 4045 If the optimization described above can be done, we return the resulting 4046 tree. Otherwise we return zero. */ 4047 4048 static tree 4049 optimize_bit_field_compare (location_t loc, enum tree_code code, 4050 tree compare_type, tree lhs, tree rhs) 4051 { 4052 poly_int64 plbitpos, plbitsize, rbitpos, rbitsize; 4053 HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize; 4054 tree type = TREE_TYPE (lhs); 4055 tree unsigned_type; 4056 int const_p = TREE_CODE (rhs) == INTEGER_CST; 4057 machine_mode lmode, rmode; 4058 scalar_int_mode nmode; 4059 int lunsignedp, runsignedp; 4060 int lreversep, rreversep; 4061 int lvolatilep = 0, rvolatilep = 0; 4062 tree linner, rinner = NULL_TREE; 4063 tree mask; 4064 tree offset; 4065 4066 /* Get all the information about the extractions being done. If the bit size 4067 is the same as the size of the underlying object, we aren't doing an 4068 extraction at all and so can do nothing. We also don't want to 4069 do anything if the inner expression is a PLACEHOLDER_EXPR since we 4070 then will no longer be able to replace it. */ 4071 linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode, 4072 &lunsignedp, &lreversep, &lvolatilep); 4073 if (linner == lhs 4074 || !known_size_p (plbitsize) 4075 || !plbitsize.is_constant (&lbitsize) 4076 || !plbitpos.is_constant (&lbitpos) 4077 || known_eq (lbitsize, GET_MODE_BITSIZE (lmode)) 4078 || offset != 0 4079 || TREE_CODE (linner) == PLACEHOLDER_EXPR 4080 || lvolatilep) 4081 return 0; 4082 4083 if (const_p) 4084 rreversep = lreversep; 4085 else 4086 { 4087 /* If this is not a constant, we can only do something if bit positions, 4088 sizes, signedness and storage order are the same. */ 4089 rinner 4090 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode, 4091 &runsignedp, &rreversep, &rvolatilep); 4092 4093 if (rinner == rhs 4094 || maybe_ne (lbitpos, rbitpos) 4095 || maybe_ne (lbitsize, rbitsize) 4096 || lunsignedp != runsignedp 4097 || lreversep != rreversep 4098 || offset != 0 4099 || TREE_CODE (rinner) == PLACEHOLDER_EXPR 4100 || rvolatilep) 4101 return 0; 4102 } 4103 4104 /* Honor the C++ memory model and mimic what RTL expansion does. */ 4105 poly_uint64 bitstart = 0; 4106 poly_uint64 bitend = 0; 4107 if (TREE_CODE (lhs) == COMPONENT_REF) 4108 { 4109 get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset); 4110 if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE) 4111 return 0; 4112 } 4113 4114 /* See if we can find a mode to refer to this field. We should be able to, 4115 but fail if we can't. */ 4116 if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend, 4117 const_p ? TYPE_ALIGN (TREE_TYPE (linner)) 4118 : MIN (TYPE_ALIGN (TREE_TYPE (linner)), 4119 TYPE_ALIGN (TREE_TYPE (rinner))), 4120 BITS_PER_WORD, false, &nmode)) 4121 return 0; 4122 4123 /* Set signed and unsigned types of the precision of this mode for the 4124 shifts below. */ 4125 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1); 4126 4127 /* Compute the bit position and size for the new reference and our offset 4128 within it. If the new reference is the same size as the original, we 4129 won't optimize anything, so return zero. */ 4130 nbitsize = GET_MODE_BITSIZE (nmode); 4131 nbitpos = lbitpos & ~ (nbitsize - 1); 4132 lbitpos -= nbitpos; 4133 if (nbitsize == lbitsize) 4134 return 0; 4135 4136 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 4137 lbitpos = nbitsize - lbitsize - lbitpos; 4138 4139 /* Make the mask to be used against the extracted field. */ 4140 mask = build_int_cst_type (unsigned_type, -1); 4141 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize)); 4142 mask = const_binop (RSHIFT_EXPR, mask, 4143 size_int (nbitsize - lbitsize - lbitpos)); 4144 4145 if (! const_p) 4146 { 4147 if (nbitpos < 0) 4148 return 0; 4149 4150 /* If not comparing with constant, just rework the comparison 4151 and return. */ 4152 tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type, 4153 nbitsize, nbitpos, 1, lreversep); 4154 t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask); 4155 tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type, 4156 nbitsize, nbitpos, 1, rreversep); 4157 t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask); 4158 return fold_build2_loc (loc, code, compare_type, t1, t2); 4159 } 4160 4161 /* Otherwise, we are handling the constant case. See if the constant is too 4162 big for the field. Warn and return a tree for 0 (false) if so. We do 4163 this not only for its own sake, but to avoid having to test for this 4164 error case below. If we didn't, we might generate wrong code. 4165 4166 For unsigned fields, the constant shifted right by the field length should 4167 be all zero. For signed fields, the high-order bits should agree with 4168 the sign bit. */ 4169 4170 if (lunsignedp) 4171 { 4172 if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0) 4173 { 4174 warning (0, "comparison is always %d due to width of bit-field", 4175 code == NE_EXPR); 4176 return constant_boolean_node (code == NE_EXPR, compare_type); 4177 } 4178 } 4179 else 4180 { 4181 wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1); 4182 if (tem != 0 && tem != -1) 4183 { 4184 warning (0, "comparison is always %d due to width of bit-field", 4185 code == NE_EXPR); 4186 return constant_boolean_node (code == NE_EXPR, compare_type); 4187 } 4188 } 4189 4190 if (nbitpos < 0) 4191 return 0; 4192 4193 /* Single-bit compares should always be against zero. */ 4194 if (lbitsize == 1 && ! integer_zerop (rhs)) 4195 { 4196 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR; 4197 rhs = build_int_cst (type, 0); 4198 } 4199 4200 /* Make a new bitfield reference, shift the constant over the 4201 appropriate number of bits and mask it with the computed mask 4202 (in case this was a signed field). If we changed it, make a new one. */ 4203 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type, 4204 nbitsize, nbitpos, 1, lreversep); 4205 4206 rhs = const_binop (BIT_AND_EXPR, 4207 const_binop (LSHIFT_EXPR, 4208 fold_convert_loc (loc, unsigned_type, rhs), 4209 size_int (lbitpos)), 4210 mask); 4211 4212 lhs = build2_loc (loc, code, compare_type, 4213 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs); 4214 return lhs; 4215 } 4216 4217 /* Subroutine for fold_truth_andor_1: decode a field reference. 4218 4219 If EXP is a comparison reference, we return the innermost reference. 4220 4221 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is 4222 set to the starting bit number. 4223 4224 If the innermost field can be completely contained in a mode-sized 4225 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode. 4226 4227 *PVOLATILEP is set to 1 if the any expression encountered is volatile; 4228 otherwise it is not changed. 4229 4230 *PUNSIGNEDP is set to the signedness of the field. 4231 4232 *PREVERSEP is set to the storage order of the field. 4233 4234 *PMASK is set to the mask used. This is either contained in a 4235 BIT_AND_EXPR or derived from the width of the field. 4236 4237 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any. 4238 4239 Return 0 if this is not a component reference or is one that we can't 4240 do anything with. */ 4241 4242 static tree 4243 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize, 4244 HOST_WIDE_INT *pbitpos, machine_mode *pmode, 4245 int *punsignedp, int *preversep, int *pvolatilep, 4246 tree *pmask, tree *pand_mask) 4247 { 4248 tree exp = *exp_; 4249 tree outer_type = 0; 4250 tree and_mask = 0; 4251 tree mask, inner, offset; 4252 tree unsigned_type; 4253 unsigned int precision; 4254 4255 /* All the optimizations using this function assume integer fields. 4256 There are problems with FP fields since the type_for_size call 4257 below can fail for, e.g., XFmode. */ 4258 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp))) 4259 return NULL_TREE; 4260 4261 /* We are interested in the bare arrangement of bits, so strip everything 4262 that doesn't affect the machine mode. However, record the type of the 4263 outermost expression if it may matter below. */ 4264 if (CONVERT_EXPR_P (exp) 4265 || TREE_CODE (exp) == NON_LVALUE_EXPR) 4266 outer_type = TREE_TYPE (exp); 4267 STRIP_NOPS (exp); 4268 4269 if (TREE_CODE (exp) == BIT_AND_EXPR) 4270 { 4271 and_mask = TREE_OPERAND (exp, 1); 4272 exp = TREE_OPERAND (exp, 0); 4273 STRIP_NOPS (exp); STRIP_NOPS (and_mask); 4274 if (TREE_CODE (and_mask) != INTEGER_CST) 4275 return NULL_TREE; 4276 } 4277 4278 poly_int64 poly_bitsize, poly_bitpos; 4279 inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset, 4280 pmode, punsignedp, preversep, pvolatilep); 4281 if ((inner == exp && and_mask == 0) 4282 || !poly_bitsize.is_constant (pbitsize) 4283 || !poly_bitpos.is_constant (pbitpos) 4284 || *pbitsize < 0 4285 || offset != 0 4286 || TREE_CODE (inner) == PLACEHOLDER_EXPR 4287 /* Reject out-of-bound accesses (PR79731). */ 4288 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner)) 4289 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)), 4290 *pbitpos + *pbitsize) < 0)) 4291 return NULL_TREE; 4292 4293 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1); 4294 if (unsigned_type == NULL_TREE) 4295 return NULL_TREE; 4296 4297 *exp_ = exp; 4298 4299 /* If the number of bits in the reference is the same as the bitsize of 4300 the outer type, then the outer type gives the signedness. Otherwise 4301 (in case of a small bitfield) the signedness is unchanged. */ 4302 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type)) 4303 *punsignedp = TYPE_UNSIGNED (outer_type); 4304 4305 /* Compute the mask to access the bitfield. */ 4306 precision = TYPE_PRECISION (unsigned_type); 4307 4308 mask = build_int_cst_type (unsigned_type, -1); 4309 4310 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize)); 4311 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize)); 4312 4313 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */ 4314 if (and_mask != 0) 4315 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, 4316 fold_convert_loc (loc, unsigned_type, and_mask), mask); 4317 4318 *pmask = mask; 4319 *pand_mask = and_mask; 4320 return inner; 4321 } 4322 4323 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order 4324 bit positions and MASK is SIGNED. */ 4325 4326 static int 4327 all_ones_mask_p (const_tree mask, unsigned int size) 4328 { 4329 tree type = TREE_TYPE (mask); 4330 unsigned int precision = TYPE_PRECISION (type); 4331 4332 /* If this function returns true when the type of the mask is 4333 UNSIGNED, then there will be errors. In particular see 4334 gcc.c-torture/execute/990326-1.c. There does not appear to be 4335 any documentation paper trail as to why this is so. But the pre 4336 wide-int worked with that restriction and it has been preserved 4337 here. */ 4338 if (size > precision || TYPE_SIGN (type) == UNSIGNED) 4339 return false; 4340 4341 return wi::mask (size, false, precision) == wi::to_wide (mask); 4342 } 4343 4344 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that 4345 represents the sign bit of EXP's type. If EXP represents a sign 4346 or zero extension, also test VAL against the unextended type. 4347 The return value is the (sub)expression whose sign bit is VAL, 4348 or NULL_TREE otherwise. */ 4349 4350 tree 4351 sign_bit_p (tree exp, const_tree val) 4352 { 4353 int width; 4354 tree t; 4355 4356 /* Tree EXP must have an integral type. */ 4357 t = TREE_TYPE (exp); 4358 if (! INTEGRAL_TYPE_P (t)) 4359 return NULL_TREE; 4360 4361 /* Tree VAL must be an integer constant. */ 4362 if (TREE_CODE (val) != INTEGER_CST 4363 || TREE_OVERFLOW (val)) 4364 return NULL_TREE; 4365 4366 width = TYPE_PRECISION (t); 4367 if (wi::only_sign_bit_p (wi::to_wide (val), width)) 4368 return exp; 4369 4370 /* Handle extension from a narrower type. */ 4371 if (TREE_CODE (exp) == NOP_EXPR 4372 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width) 4373 return sign_bit_p (TREE_OPERAND (exp, 0), val); 4374 4375 return NULL_TREE; 4376 } 4377 4378 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough 4379 to be evaluated unconditionally. */ 4380 4381 static int 4382 simple_operand_p (const_tree exp) 4383 { 4384 /* Strip any conversions that don't change the machine mode. */ 4385 STRIP_NOPS (exp); 4386 4387 return (CONSTANT_CLASS_P (exp) 4388 || TREE_CODE (exp) == SSA_NAME 4389 || (DECL_P (exp) 4390 && ! TREE_ADDRESSABLE (exp) 4391 && ! TREE_THIS_VOLATILE (exp) 4392 && ! DECL_NONLOCAL (exp) 4393 /* Don't regard global variables as simple. They may be 4394 allocated in ways unknown to the compiler (shared memory, 4395 #pragma weak, etc). */ 4396 && ! TREE_PUBLIC (exp) 4397 && ! DECL_EXTERNAL (exp) 4398 /* Weakrefs are not safe to be read, since they can be NULL. 4399 They are !TREE_PUBLIC && !DECL_EXTERNAL but still 4400 have DECL_WEAK flag set. */ 4401 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp)) 4402 /* Loading a static variable is unduly expensive, but global 4403 registers aren't expensive. */ 4404 && (! TREE_STATIC (exp) || DECL_REGISTER (exp)))); 4405 } 4406 4407 /* Subroutine for fold_truth_andor: determine if an operand is simple enough 4408 to be evaluated unconditionally. 4409 I addition to simple_operand_p, we assume that comparisons, conversions, 4410 and logic-not operations are simple, if their operands are simple, too. */ 4411 4412 static bool 4413 simple_operand_p_2 (tree exp) 4414 { 4415 enum tree_code code; 4416 4417 if (TREE_SIDE_EFFECTS (exp) 4418 || tree_could_trap_p (exp)) 4419 return false; 4420 4421 while (CONVERT_EXPR_P (exp)) 4422 exp = TREE_OPERAND (exp, 0); 4423 4424 code = TREE_CODE (exp); 4425 4426 if (TREE_CODE_CLASS (code) == tcc_comparison) 4427 return (simple_operand_p (TREE_OPERAND (exp, 0)) 4428 && simple_operand_p (TREE_OPERAND (exp, 1))); 4429 4430 if (code == TRUTH_NOT_EXPR) 4431 return simple_operand_p_2 (TREE_OPERAND (exp, 0)); 4432 4433 return simple_operand_p (exp); 4434 } 4435 4436 4437 /* The following functions are subroutines to fold_range_test and allow it to 4438 try to change a logical combination of comparisons into a range test. 4439 4440 For example, both 4441 X == 2 || X == 3 || X == 4 || X == 5 4442 and 4443 X >= 2 && X <= 5 4444 are converted to 4445 (unsigned) (X - 2) <= 3 4446 4447 We describe each set of comparisons as being either inside or outside 4448 a range, using a variable named like IN_P, and then describe the 4449 range with a lower and upper bound. If one of the bounds is omitted, 4450 it represents either the highest or lowest value of the type. 4451 4452 In the comments below, we represent a range by two numbers in brackets 4453 preceded by a "+" to designate being inside that range, or a "-" to 4454 designate being outside that range, so the condition can be inverted by 4455 flipping the prefix. An omitted bound is represented by a "-". For 4456 example, "- [-, 10]" means being outside the range starting at the lowest 4457 possible value and ending at 10, in other words, being greater than 10. 4458 The range "+ [-, -]" is always true and hence the range "- [-, -]" is 4459 always false. 4460 4461 We set up things so that the missing bounds are handled in a consistent 4462 manner so neither a missing bound nor "true" and "false" need to be 4463 handled using a special case. */ 4464 4465 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case 4466 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P 4467 and UPPER1_P are nonzero if the respective argument is an upper bound 4468 and zero for a lower. TYPE, if nonzero, is the type of the result; it 4469 must be specified for a comparison. ARG1 will be converted to ARG0's 4470 type if both are specified. */ 4471 4472 static tree 4473 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p, 4474 tree arg1, int upper1_p) 4475 { 4476 tree tem; 4477 int result; 4478 int sgn0, sgn1; 4479 4480 /* If neither arg represents infinity, do the normal operation. 4481 Else, if not a comparison, return infinity. Else handle the special 4482 comparison rules. Note that most of the cases below won't occur, but 4483 are handled for consistency. */ 4484 4485 if (arg0 != 0 && arg1 != 0) 4486 { 4487 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0), 4488 arg0, fold_convert (TREE_TYPE (arg0), arg1)); 4489 STRIP_NOPS (tem); 4490 return TREE_CODE (tem) == INTEGER_CST ? tem : 0; 4491 } 4492 4493 if (TREE_CODE_CLASS (code) != tcc_comparison) 4494 return 0; 4495 4496 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0 4497 for neither. In real maths, we cannot assume open ended ranges are 4498 the same. But, this is computer arithmetic, where numbers are finite. 4499 We can therefore make the transformation of any unbounded range with 4500 the value Z, Z being greater than any representable number. This permits 4501 us to treat unbounded ranges as equal. */ 4502 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1); 4503 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1); 4504 switch (code) 4505 { 4506 case EQ_EXPR: 4507 result = sgn0 == sgn1; 4508 break; 4509 case NE_EXPR: 4510 result = sgn0 != sgn1; 4511 break; 4512 case LT_EXPR: 4513 result = sgn0 < sgn1; 4514 break; 4515 case LE_EXPR: 4516 result = sgn0 <= sgn1; 4517 break; 4518 case GT_EXPR: 4519 result = sgn0 > sgn1; 4520 break; 4521 case GE_EXPR: 4522 result = sgn0 >= sgn1; 4523 break; 4524 default: 4525 gcc_unreachable (); 4526 } 4527 4528 return constant_boolean_node (result, type); 4529 } 4530 4531 /* Helper routine for make_range. Perform one step for it, return 4532 new expression if the loop should continue or NULL_TREE if it should 4533 stop. */ 4534 4535 tree 4536 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1, 4537 tree exp_type, tree *p_low, tree *p_high, int *p_in_p, 4538 bool *strict_overflow_p) 4539 { 4540 tree arg0_type = TREE_TYPE (arg0); 4541 tree n_low, n_high, low = *p_low, high = *p_high; 4542 int in_p = *p_in_p, n_in_p; 4543 4544 switch (code) 4545 { 4546 case TRUTH_NOT_EXPR: 4547 /* We can only do something if the range is testing for zero. */ 4548 if (low == NULL_TREE || high == NULL_TREE 4549 || ! integer_zerop (low) || ! integer_zerop (high)) 4550 return NULL_TREE; 4551 *p_in_p = ! in_p; 4552 return arg0; 4553 4554 case EQ_EXPR: case NE_EXPR: 4555 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR: 4556 /* We can only do something if the range is testing for zero 4557 and if the second operand is an integer constant. Note that 4558 saying something is "in" the range we make is done by 4559 complementing IN_P since it will set in the initial case of 4560 being not equal to zero; "out" is leaving it alone. */ 4561 if (low == NULL_TREE || high == NULL_TREE 4562 || ! integer_zerop (low) || ! integer_zerop (high) 4563 || TREE_CODE (arg1) != INTEGER_CST) 4564 return NULL_TREE; 4565 4566 switch (code) 4567 { 4568 case NE_EXPR: /* - [c, c] */ 4569 low = high = arg1; 4570 break; 4571 case EQ_EXPR: /* + [c, c] */ 4572 in_p = ! in_p, low = high = arg1; 4573 break; 4574 case GT_EXPR: /* - [-, c] */ 4575 low = 0, high = arg1; 4576 break; 4577 case GE_EXPR: /* + [c, -] */ 4578 in_p = ! in_p, low = arg1, high = 0; 4579 break; 4580 case LT_EXPR: /* - [c, -] */ 4581 low = arg1, high = 0; 4582 break; 4583 case LE_EXPR: /* + [-, c] */ 4584 in_p = ! in_p, low = 0, high = arg1; 4585 break; 4586 default: 4587 gcc_unreachable (); 4588 } 4589 4590 /* If this is an unsigned comparison, we also know that EXP is 4591 greater than or equal to zero. We base the range tests we make 4592 on that fact, so we record it here so we can parse existing 4593 range tests. We test arg0_type since often the return type 4594 of, e.g. EQ_EXPR, is boolean. */ 4595 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0)) 4596 { 4597 if (! merge_ranges (&n_in_p, &n_low, &n_high, 4598 in_p, low, high, 1, 4599 build_int_cst (arg0_type, 0), 4600 NULL_TREE)) 4601 return NULL_TREE; 4602 4603 in_p = n_in_p, low = n_low, high = n_high; 4604 4605 /* If the high bound is missing, but we have a nonzero low 4606 bound, reverse the range so it goes from zero to the low bound 4607 minus 1. */ 4608 if (high == 0 && low && ! integer_zerop (low)) 4609 { 4610 in_p = ! in_p; 4611 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0, 4612 build_int_cst (TREE_TYPE (low), 1), 0); 4613 low = build_int_cst (arg0_type, 0); 4614 } 4615 } 4616 4617 *p_low = low; 4618 *p_high = high; 4619 *p_in_p = in_p; 4620 return arg0; 4621 4622 case NEGATE_EXPR: 4623 /* If flag_wrapv and ARG0_TYPE is signed, make sure 4624 low and high are non-NULL, then normalize will DTRT. */ 4625 if (!TYPE_UNSIGNED (arg0_type) 4626 && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4627 { 4628 if (low == NULL_TREE) 4629 low = TYPE_MIN_VALUE (arg0_type); 4630 if (high == NULL_TREE) 4631 high = TYPE_MAX_VALUE (arg0_type); 4632 } 4633 4634 /* (-x) IN [a,b] -> x in [-b, -a] */ 4635 n_low = range_binop (MINUS_EXPR, exp_type, 4636 build_int_cst (exp_type, 0), 4637 0, high, 1); 4638 n_high = range_binop (MINUS_EXPR, exp_type, 4639 build_int_cst (exp_type, 0), 4640 0, low, 0); 4641 if (n_high != 0 && TREE_OVERFLOW (n_high)) 4642 return NULL_TREE; 4643 goto normalize; 4644 4645 case BIT_NOT_EXPR: 4646 /* ~ X -> -X - 1 */ 4647 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0), 4648 build_int_cst (exp_type, 1)); 4649 4650 case PLUS_EXPR: 4651 case MINUS_EXPR: 4652 if (TREE_CODE (arg1) != INTEGER_CST) 4653 return NULL_TREE; 4654 4655 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot 4656 move a constant to the other side. */ 4657 if (!TYPE_UNSIGNED (arg0_type) 4658 && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4659 return NULL_TREE; 4660 4661 /* If EXP is signed, any overflow in the computation is undefined, 4662 so we don't worry about it so long as our computations on 4663 the bounds don't overflow. For unsigned, overflow is defined 4664 and this is exactly the right thing. */ 4665 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, 4666 arg0_type, low, 0, arg1, 0); 4667 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, 4668 arg0_type, high, 1, arg1, 0); 4669 if ((n_low != 0 && TREE_OVERFLOW (n_low)) 4670 || (n_high != 0 && TREE_OVERFLOW (n_high))) 4671 return NULL_TREE; 4672 4673 if (TYPE_OVERFLOW_UNDEFINED (arg0_type)) 4674 *strict_overflow_p = true; 4675 4676 normalize: 4677 /* Check for an unsigned range which has wrapped around the maximum 4678 value thus making n_high < n_low, and normalize it. */ 4679 if (n_low && n_high && tree_int_cst_lt (n_high, n_low)) 4680 { 4681 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0, 4682 build_int_cst (TREE_TYPE (n_high), 1), 0); 4683 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0, 4684 build_int_cst (TREE_TYPE (n_low), 1), 0); 4685 4686 /* If the range is of the form +/- [ x+1, x ], we won't 4687 be able to normalize it. But then, it represents the 4688 whole range or the empty set, so make it 4689 +/- [ -, - ]. */ 4690 if (tree_int_cst_equal (n_low, low) 4691 && tree_int_cst_equal (n_high, high)) 4692 low = high = 0; 4693 else 4694 in_p = ! in_p; 4695 } 4696 else 4697 low = n_low, high = n_high; 4698 4699 *p_low = low; 4700 *p_high = high; 4701 *p_in_p = in_p; 4702 return arg0; 4703 4704 CASE_CONVERT: 4705 case NON_LVALUE_EXPR: 4706 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type)) 4707 return NULL_TREE; 4708 4709 if (! INTEGRAL_TYPE_P (arg0_type) 4710 || (low != 0 && ! int_fits_type_p (low, arg0_type)) 4711 || (high != 0 && ! int_fits_type_p (high, arg0_type))) 4712 return NULL_TREE; 4713 4714 n_low = low, n_high = high; 4715 4716 if (n_low != 0) 4717 n_low = fold_convert_loc (loc, arg0_type, n_low); 4718 4719 if (n_high != 0) 4720 n_high = fold_convert_loc (loc, arg0_type, n_high); 4721 4722 /* If we're converting arg0 from an unsigned type, to exp, 4723 a signed type, we will be doing the comparison as unsigned. 4724 The tests above have already verified that LOW and HIGH 4725 are both positive. 4726 4727 So we have to ensure that we will handle large unsigned 4728 values the same way that the current signed bounds treat 4729 negative values. */ 4730 4731 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type)) 4732 { 4733 tree high_positive; 4734 tree equiv_type; 4735 /* For fixed-point modes, we need to pass the saturating flag 4736 as the 2nd parameter. */ 4737 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type))) 4738 equiv_type 4739 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 4740 TYPE_SATURATING (arg0_type)); 4741 else 4742 equiv_type 4743 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1); 4744 4745 /* A range without an upper bound is, naturally, unbounded. 4746 Since convert would have cropped a very large value, use 4747 the max value for the destination type. */ 4748 high_positive 4749 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type) 4750 : TYPE_MAX_VALUE (arg0_type); 4751 4752 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type)) 4753 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type, 4754 fold_convert_loc (loc, arg0_type, 4755 high_positive), 4756 build_int_cst (arg0_type, 1)); 4757 4758 /* If the low bound is specified, "and" the range with the 4759 range for which the original unsigned value will be 4760 positive. */ 4761 if (low != 0) 4762 { 4763 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high, 4764 1, fold_convert_loc (loc, arg0_type, 4765 integer_zero_node), 4766 high_positive)) 4767 return NULL_TREE; 4768 4769 in_p = (n_in_p == in_p); 4770 } 4771 else 4772 { 4773 /* Otherwise, "or" the range with the range of the input 4774 that will be interpreted as negative. */ 4775 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high, 4776 1, fold_convert_loc (loc, arg0_type, 4777 integer_zero_node), 4778 high_positive)) 4779 return NULL_TREE; 4780 4781 in_p = (in_p != n_in_p); 4782 } 4783 } 4784 4785 *p_low = n_low; 4786 *p_high = n_high; 4787 *p_in_p = in_p; 4788 return arg0; 4789 4790 default: 4791 return NULL_TREE; 4792 } 4793 } 4794 4795 /* Given EXP, a logical expression, set the range it is testing into 4796 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression 4797 actually being tested. *PLOW and *PHIGH will be made of the same 4798 type as the returned expression. If EXP is not a comparison, we 4799 will most likely not be returning a useful value and range. Set 4800 *STRICT_OVERFLOW_P to true if the return value is only valid 4801 because signed overflow is undefined; otherwise, do not change 4802 *STRICT_OVERFLOW_P. */ 4803 4804 tree 4805 make_range (tree exp, int *pin_p, tree *plow, tree *phigh, 4806 bool *strict_overflow_p) 4807 { 4808 enum tree_code code; 4809 tree arg0, arg1 = NULL_TREE; 4810 tree exp_type, nexp; 4811 int in_p; 4812 tree low, high; 4813 location_t loc = EXPR_LOCATION (exp); 4814 4815 /* Start with simply saying "EXP != 0" and then look at the code of EXP 4816 and see if we can refine the range. Some of the cases below may not 4817 happen, but it doesn't seem worth worrying about this. We "continue" 4818 the outer loop when we've changed something; otherwise we "break" 4819 the switch, which will "break" the while. */ 4820 4821 in_p = 0; 4822 low = high = build_int_cst (TREE_TYPE (exp), 0); 4823 4824 while (1) 4825 { 4826 code = TREE_CODE (exp); 4827 exp_type = TREE_TYPE (exp); 4828 arg0 = NULL_TREE; 4829 4830 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) 4831 { 4832 if (TREE_OPERAND_LENGTH (exp) > 0) 4833 arg0 = TREE_OPERAND (exp, 0); 4834 if (TREE_CODE_CLASS (code) == tcc_binary 4835 || TREE_CODE_CLASS (code) == tcc_comparison 4836 || (TREE_CODE_CLASS (code) == tcc_expression 4837 && TREE_OPERAND_LENGTH (exp) > 1)) 4838 arg1 = TREE_OPERAND (exp, 1); 4839 } 4840 if (arg0 == NULL_TREE) 4841 break; 4842 4843 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low, 4844 &high, &in_p, strict_overflow_p); 4845 if (nexp == NULL_TREE) 4846 break; 4847 exp = nexp; 4848 } 4849 4850 /* If EXP is a constant, we can evaluate whether this is true or false. */ 4851 if (TREE_CODE (exp) == INTEGER_CST) 4852 { 4853 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node, 4854 exp, 0, low, 0)) 4855 && integer_onep (range_binop (LE_EXPR, integer_type_node, 4856 exp, 1, high, 1))); 4857 low = high = 0; 4858 exp = 0; 4859 } 4860 4861 *pin_p = in_p, *plow = low, *phigh = high; 4862 return exp; 4863 } 4864 4865 /* Returns TRUE if [LOW, HIGH] range check can be optimized to 4866 a bitwise check i.e. when 4867 LOW == 0xXX...X00...0 4868 HIGH == 0xXX...X11...1 4869 Return corresponding mask in MASK and stem in VALUE. */ 4870 4871 static bool 4872 maskable_range_p (const_tree low, const_tree high, tree type, tree *mask, 4873 tree *value) 4874 { 4875 if (TREE_CODE (low) != INTEGER_CST 4876 || TREE_CODE (high) != INTEGER_CST) 4877 return false; 4878 4879 unsigned prec = TYPE_PRECISION (type); 4880 wide_int lo = wi::to_wide (low, prec); 4881 wide_int hi = wi::to_wide (high, prec); 4882 4883 wide_int end_mask = lo ^ hi; 4884 if ((end_mask & (end_mask + 1)) != 0 4885 || (lo & end_mask) != 0) 4886 return false; 4887 4888 wide_int stem_mask = ~end_mask; 4889 wide_int stem = lo & stem_mask; 4890 if (stem != (hi & stem_mask)) 4891 return false; 4892 4893 *mask = wide_int_to_tree (type, stem_mask); 4894 *value = wide_int_to_tree (type, stem); 4895 4896 return true; 4897 } 4898 4899 /* Helper routine for build_range_check and match.pd. Return the type to 4900 perform the check or NULL if it shouldn't be optimized. */ 4901 4902 tree 4903 range_check_type (tree etype) 4904 { 4905 /* First make sure that arithmetics in this type is valid, then make sure 4906 that it wraps around. */ 4907 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE) 4908 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 4909 TYPE_UNSIGNED (etype)); 4910 4911 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype)) 4912 { 4913 tree utype, minv, maxv; 4914 4915 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN 4916 for the type in question, as we rely on this here. */ 4917 utype = unsigned_type_for (etype); 4918 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype)); 4919 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1, 4920 build_int_cst (TREE_TYPE (maxv), 1), 1); 4921 minv = fold_convert (utype, TYPE_MIN_VALUE (etype)); 4922 4923 if (integer_zerop (range_binop (NE_EXPR, integer_type_node, 4924 minv, 1, maxv, 1))) 4925 etype = utype; 4926 else 4927 return NULL_TREE; 4928 } 4929 return etype; 4930 } 4931 4932 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result 4933 type, TYPE, return an expression to test if EXP is in (or out of, depending 4934 on IN_P) the range. Return 0 if the test couldn't be created. */ 4935 4936 tree 4937 build_range_check (location_t loc, tree type, tree exp, int in_p, 4938 tree low, tree high) 4939 { 4940 tree etype = TREE_TYPE (exp), mask, value; 4941 4942 /* Disable this optimization for function pointer expressions 4943 on targets that require function pointer canonicalization. */ 4944 if (targetm.have_canonicalize_funcptr_for_compare () 4945 && POINTER_TYPE_P (etype) 4946 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype))) 4947 return NULL_TREE; 4948 4949 if (! in_p) 4950 { 4951 value = build_range_check (loc, type, exp, 1, low, high); 4952 if (value != 0) 4953 return invert_truthvalue_loc (loc, value); 4954 4955 return 0; 4956 } 4957 4958 if (low == 0 && high == 0) 4959 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp); 4960 4961 if (low == 0) 4962 return fold_build2_loc (loc, LE_EXPR, type, exp, 4963 fold_convert_loc (loc, etype, high)); 4964 4965 if (high == 0) 4966 return fold_build2_loc (loc, GE_EXPR, type, exp, 4967 fold_convert_loc (loc, etype, low)); 4968 4969 if (operand_equal_p (low, high, 0)) 4970 return fold_build2_loc (loc, EQ_EXPR, type, exp, 4971 fold_convert_loc (loc, etype, low)); 4972 4973 if (TREE_CODE (exp) == BIT_AND_EXPR 4974 && maskable_range_p (low, high, etype, &mask, &value)) 4975 return fold_build2_loc (loc, EQ_EXPR, type, 4976 fold_build2_loc (loc, BIT_AND_EXPR, etype, 4977 exp, mask), 4978 value); 4979 4980 if (integer_zerop (low)) 4981 { 4982 if (! TYPE_UNSIGNED (etype)) 4983 { 4984 etype = unsigned_type_for (etype); 4985 high = fold_convert_loc (loc, etype, high); 4986 exp = fold_convert_loc (loc, etype, exp); 4987 } 4988 return build_range_check (loc, type, exp, 1, 0, high); 4989 } 4990 4991 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */ 4992 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST) 4993 { 4994 int prec = TYPE_PRECISION (etype); 4995 4996 if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high)) 4997 { 4998 if (TYPE_UNSIGNED (etype)) 4999 { 5000 tree signed_etype = signed_type_for (etype); 5001 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype)) 5002 etype 5003 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0); 5004 else 5005 etype = signed_etype; 5006 exp = fold_convert_loc (loc, etype, exp); 5007 } 5008 return fold_build2_loc (loc, GT_EXPR, type, exp, 5009 build_int_cst (etype, 0)); 5010 } 5011 } 5012 5013 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low). 5014 This requires wrap-around arithmetics for the type of the expression. */ 5015 etype = range_check_type (etype); 5016 if (etype == NULL_TREE) 5017 return NULL_TREE; 5018 5019 if (POINTER_TYPE_P (etype)) 5020 etype = unsigned_type_for (etype); 5021 5022 high = fold_convert_loc (loc, etype, high); 5023 low = fold_convert_loc (loc, etype, low); 5024 exp = fold_convert_loc (loc, etype, exp); 5025 5026 value = const_binop (MINUS_EXPR, high, low); 5027 5028 if (value != 0 && !TREE_OVERFLOW (value)) 5029 return build_range_check (loc, type, 5030 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low), 5031 1, build_int_cst (etype, 0), value); 5032 5033 return 0; 5034 } 5035 5036 /* Return the predecessor of VAL in its type, handling the infinite case. */ 5037 5038 static tree 5039 range_predecessor (tree val) 5040 { 5041 tree type = TREE_TYPE (val); 5042 5043 if (INTEGRAL_TYPE_P (type) 5044 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0)) 5045 return 0; 5046 else 5047 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, 5048 build_int_cst (TREE_TYPE (val), 1), 0); 5049 } 5050 5051 /* Return the successor of VAL in its type, handling the infinite case. */ 5052 5053 static tree 5054 range_successor (tree val) 5055 { 5056 tree type = TREE_TYPE (val); 5057 5058 if (INTEGRAL_TYPE_P (type) 5059 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0)) 5060 return 0; 5061 else 5062 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, 5063 build_int_cst (TREE_TYPE (val), 1), 0); 5064 } 5065 5066 /* Given two ranges, see if we can merge them into one. Return 1 if we 5067 can, 0 if we can't. Set the output range into the specified parameters. */ 5068 5069 bool 5070 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0, 5071 tree high0, int in1_p, tree low1, tree high1) 5072 { 5073 int no_overlap; 5074 int subset; 5075 int temp; 5076 tree tem; 5077 int in_p; 5078 tree low, high; 5079 int lowequal = ((low0 == 0 && low1 == 0) 5080 || integer_onep (range_binop (EQ_EXPR, integer_type_node, 5081 low0, 0, low1, 0))); 5082 int highequal = ((high0 == 0 && high1 == 0) 5083 || integer_onep (range_binop (EQ_EXPR, integer_type_node, 5084 high0, 1, high1, 1))); 5085 5086 /* Make range 0 be the range that starts first, or ends last if they 5087 start at the same value. Swap them if it isn't. */ 5088 if (integer_onep (range_binop (GT_EXPR, integer_type_node, 5089 low0, 0, low1, 0)) 5090 || (lowequal 5091 && integer_onep (range_binop (GT_EXPR, integer_type_node, 5092 high1, 1, high0, 1)))) 5093 { 5094 temp = in0_p, in0_p = in1_p, in1_p = temp; 5095 tem = low0, low0 = low1, low1 = tem; 5096 tem = high0, high0 = high1, high1 = tem; 5097 } 5098 5099 /* Now flag two cases, whether the ranges are disjoint or whether the 5100 second range is totally subsumed in the first. Note that the tests 5101 below are simplified by the ones above. */ 5102 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node, 5103 high0, 1, low1, 0)); 5104 subset = integer_onep (range_binop (LE_EXPR, integer_type_node, 5105 high1, 1, high0, 1)); 5106 5107 /* We now have four cases, depending on whether we are including or 5108 excluding the two ranges. */ 5109 if (in0_p && in1_p) 5110 { 5111 /* If they don't overlap, the result is false. If the second range 5112 is a subset it is the result. Otherwise, the range is from the start 5113 of the second to the end of the first. */ 5114 if (no_overlap) 5115 in_p = 0, low = high = 0; 5116 else if (subset) 5117 in_p = 1, low = low1, high = high1; 5118 else 5119 in_p = 1, low = low1, high = high0; 5120 } 5121 5122 else if (in0_p && ! in1_p) 5123 { 5124 /* If they don't overlap, the result is the first range. If they are 5125 equal, the result is false. If the second range is a subset of the 5126 first, and the ranges begin at the same place, we go from just after 5127 the end of the second range to the end of the first. If the second 5128 range is not a subset of the first, or if it is a subset and both 5129 ranges end at the same place, the range starts at the start of the 5130 first range and ends just before the second range. 5131 Otherwise, we can't describe this as a single range. */ 5132 if (no_overlap) 5133 in_p = 1, low = low0, high = high0; 5134 else if (lowequal && highequal) 5135 in_p = 0, low = high = 0; 5136 else if (subset && lowequal) 5137 { 5138 low = range_successor (high1); 5139 high = high0; 5140 in_p = 1; 5141 if (low == 0) 5142 { 5143 /* We are in the weird situation where high0 > high1 but 5144 high1 has no successor. Punt. */ 5145 return 0; 5146 } 5147 } 5148 else if (! subset || highequal) 5149 { 5150 low = low0; 5151 high = range_predecessor (low1); 5152 in_p = 1; 5153 if (high == 0) 5154 { 5155 /* low0 < low1 but low1 has no predecessor. Punt. */ 5156 return 0; 5157 } 5158 } 5159 else 5160 return 0; 5161 } 5162 5163 else if (! in0_p && in1_p) 5164 { 5165 /* If they don't overlap, the result is the second range. If the second 5166 is a subset of the first, the result is false. Otherwise, 5167 the range starts just after the first range and ends at the 5168 end of the second. */ 5169 if (no_overlap) 5170 in_p = 1, low = low1, high = high1; 5171 else if (subset || highequal) 5172 in_p = 0, low = high = 0; 5173 else 5174 { 5175 low = range_successor (high0); 5176 high = high1; 5177 in_p = 1; 5178 if (low == 0) 5179 { 5180 /* high1 > high0 but high0 has no successor. Punt. */ 5181 return 0; 5182 } 5183 } 5184 } 5185 5186 else 5187 { 5188 /* The case where we are excluding both ranges. Here the complex case 5189 is if they don't overlap. In that case, the only time we have a 5190 range is if they are adjacent. If the second is a subset of the 5191 first, the result is the first. Otherwise, the range to exclude 5192 starts at the beginning of the first range and ends at the end of the 5193 second. */ 5194 if (no_overlap) 5195 { 5196 if (integer_onep (range_binop (EQ_EXPR, integer_type_node, 5197 range_successor (high0), 5198 1, low1, 0))) 5199 in_p = 0, low = low0, high = high1; 5200 else 5201 { 5202 /* Canonicalize - [min, x] into - [-, x]. */ 5203 if (low0 && TREE_CODE (low0) == INTEGER_CST) 5204 switch (TREE_CODE (TREE_TYPE (low0))) 5205 { 5206 case ENUMERAL_TYPE: 5207 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)), 5208 GET_MODE_BITSIZE 5209 (TYPE_MODE (TREE_TYPE (low0))))) 5210 break; 5211 /* FALLTHROUGH */ 5212 case INTEGER_TYPE: 5213 if (tree_int_cst_equal (low0, 5214 TYPE_MIN_VALUE (TREE_TYPE (low0)))) 5215 low0 = 0; 5216 break; 5217 case POINTER_TYPE: 5218 if (TYPE_UNSIGNED (TREE_TYPE (low0)) 5219 && integer_zerop (low0)) 5220 low0 = 0; 5221 break; 5222 default: 5223 break; 5224 } 5225 5226 /* Canonicalize - [x, max] into - [x, -]. */ 5227 if (high1 && TREE_CODE (high1) == INTEGER_CST) 5228 switch (TREE_CODE (TREE_TYPE (high1))) 5229 { 5230 case ENUMERAL_TYPE: 5231 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)), 5232 GET_MODE_BITSIZE 5233 (TYPE_MODE (TREE_TYPE (high1))))) 5234 break; 5235 /* FALLTHROUGH */ 5236 case INTEGER_TYPE: 5237 if (tree_int_cst_equal (high1, 5238 TYPE_MAX_VALUE (TREE_TYPE (high1)))) 5239 high1 = 0; 5240 break; 5241 case POINTER_TYPE: 5242 if (TYPE_UNSIGNED (TREE_TYPE (high1)) 5243 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE, 5244 high1, 1, 5245 build_int_cst (TREE_TYPE (high1), 1), 5246 1))) 5247 high1 = 0; 5248 break; 5249 default: 5250 break; 5251 } 5252 5253 /* The ranges might be also adjacent between the maximum and 5254 minimum values of the given type. For 5255 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y 5256 return + [x + 1, y - 1]. */ 5257 if (low0 == 0 && high1 == 0) 5258 { 5259 low = range_successor (high0); 5260 high = range_predecessor (low1); 5261 if (low == 0 || high == 0) 5262 return 0; 5263 5264 in_p = 1; 5265 } 5266 else 5267 return 0; 5268 } 5269 } 5270 else if (subset) 5271 in_p = 0, low = low0, high = high0; 5272 else 5273 in_p = 0, low = low0, high = high1; 5274 } 5275 5276 *pin_p = in_p, *plow = low, *phigh = high; 5277 return 1; 5278 } 5279 5280 5281 /* Subroutine of fold, looking inside expressions of the form 5282 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands 5283 of the COND_EXPR. This function is being used also to optimize 5284 A op B ? C : A, by reversing the comparison first. 5285 5286 Return a folded expression whose code is not a COND_EXPR 5287 anymore, or NULL_TREE if no folding opportunity is found. */ 5288 5289 static tree 5290 fold_cond_expr_with_comparison (location_t loc, tree type, 5291 tree arg0, tree arg1, tree arg2) 5292 { 5293 enum tree_code comp_code = TREE_CODE (arg0); 5294 tree arg00 = TREE_OPERAND (arg0, 0); 5295 tree arg01 = TREE_OPERAND (arg0, 1); 5296 tree arg1_type = TREE_TYPE (arg1); 5297 tree tem; 5298 5299 STRIP_NOPS (arg1); 5300 STRIP_NOPS (arg2); 5301 5302 /* If we have A op 0 ? A : -A, consider applying the following 5303 transformations: 5304 5305 A == 0? A : -A same as -A 5306 A != 0? A : -A same as A 5307 A >= 0? A : -A same as abs (A) 5308 A > 0? A : -A same as abs (A) 5309 A <= 0? A : -A same as -abs (A) 5310 A < 0? A : -A same as -abs (A) 5311 5312 None of these transformations work for modes with signed 5313 zeros. If A is +/-0, the first two transformations will 5314 change the sign of the result (from +0 to -0, or vice 5315 versa). The last four will fix the sign of the result, 5316 even though the original expressions could be positive or 5317 negative, depending on the sign of A. 5318 5319 Note that all these transformations are correct if A is 5320 NaN, since the two alternatives (A and -A) are also NaNs. */ 5321 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5322 && (FLOAT_TYPE_P (TREE_TYPE (arg01)) 5323 ? real_zerop (arg01) 5324 : integer_zerop (arg01)) 5325 && ((TREE_CODE (arg2) == NEGATE_EXPR 5326 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0)) 5327 /* In the case that A is of the form X-Y, '-A' (arg2) may 5328 have already been folded to Y-X, check for that. */ 5329 || (TREE_CODE (arg1) == MINUS_EXPR 5330 && TREE_CODE (arg2) == MINUS_EXPR 5331 && operand_equal_p (TREE_OPERAND (arg1, 0), 5332 TREE_OPERAND (arg2, 1), 0) 5333 && operand_equal_p (TREE_OPERAND (arg1, 1), 5334 TREE_OPERAND (arg2, 0), 0)))) 5335 switch (comp_code) 5336 { 5337 case EQ_EXPR: 5338 case UNEQ_EXPR: 5339 tem = fold_convert_loc (loc, arg1_type, arg1); 5340 return fold_convert_loc (loc, type, negate_expr (tem)); 5341 case NE_EXPR: 5342 case LTGT_EXPR: 5343 return fold_convert_loc (loc, type, arg1); 5344 case UNGE_EXPR: 5345 case UNGT_EXPR: 5346 if (flag_trapping_math) 5347 break; 5348 /* Fall through. */ 5349 case GE_EXPR: 5350 case GT_EXPR: 5351 if (TYPE_UNSIGNED (TREE_TYPE (arg1))) 5352 break; 5353 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); 5354 return fold_convert_loc (loc, type, tem); 5355 case UNLE_EXPR: 5356 case UNLT_EXPR: 5357 if (flag_trapping_math) 5358 break; 5359 /* FALLTHRU */ 5360 case LE_EXPR: 5361 case LT_EXPR: 5362 if (TYPE_UNSIGNED (TREE_TYPE (arg1))) 5363 break; 5364 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); 5365 return negate_expr (fold_convert_loc (loc, type, tem)); 5366 default: 5367 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); 5368 break; 5369 } 5370 5371 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise 5372 A == 0 ? A : 0 is always 0 unless A is -0. Note that 5373 both transformations are correct when A is NaN: A != 0 5374 is then true, and A == 0 is false. */ 5375 5376 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5377 && integer_zerop (arg01) && integer_zerop (arg2)) 5378 { 5379 if (comp_code == NE_EXPR) 5380 return fold_convert_loc (loc, type, arg1); 5381 else if (comp_code == EQ_EXPR) 5382 return build_zero_cst (type); 5383 } 5384 5385 /* Try some transformations of A op B ? A : B. 5386 5387 A == B? A : B same as B 5388 A != B? A : B same as A 5389 A >= B? A : B same as max (A, B) 5390 A > B? A : B same as max (B, A) 5391 A <= B? A : B same as min (A, B) 5392 A < B? A : B same as min (B, A) 5393 5394 As above, these transformations don't work in the presence 5395 of signed zeros. For example, if A and B are zeros of 5396 opposite sign, the first two transformations will change 5397 the sign of the result. In the last four, the original 5398 expressions give different results for (A=+0, B=-0) and 5399 (A=-0, B=+0), but the transformed expressions do not. 5400 5401 The first two transformations are correct if either A or B 5402 is a NaN. In the first transformation, the condition will 5403 be false, and B will indeed be chosen. In the case of the 5404 second transformation, the condition A != B will be true, 5405 and A will be chosen. 5406 5407 The conversions to max() and min() are not correct if B is 5408 a number and A is not. The conditions in the original 5409 expressions will be false, so all four give B. The min() 5410 and max() versions would give a NaN instead. */ 5411 if (!HONOR_SIGNED_ZEROS (element_mode (type)) 5412 && operand_equal_for_comparison_p (arg01, arg2) 5413 /* Avoid these transformations if the COND_EXPR may be used 5414 as an lvalue in the C++ front-end. PR c++/19199. */ 5415 && (in_gimple_form 5416 || VECTOR_TYPE_P (type) 5417 || (! lang_GNU_CXX () 5418 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0) 5419 || ! maybe_lvalue_p (arg1) 5420 || ! maybe_lvalue_p (arg2))) 5421 { 5422 tree comp_op0 = arg00; 5423 tree comp_op1 = arg01; 5424 tree comp_type = TREE_TYPE (comp_op0); 5425 5426 switch (comp_code) 5427 { 5428 case EQ_EXPR: 5429 return fold_convert_loc (loc, type, arg2); 5430 case NE_EXPR: 5431 return fold_convert_loc (loc, type, arg1); 5432 case LE_EXPR: 5433 case LT_EXPR: 5434 case UNLE_EXPR: 5435 case UNLT_EXPR: 5436 /* In C++ a ?: expression can be an lvalue, so put the 5437 operand which will be used if they are equal first 5438 so that we can convert this back to the 5439 corresponding COND_EXPR. */ 5440 if (!HONOR_NANS (arg1)) 5441 { 5442 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); 5443 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); 5444 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR) 5445 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1) 5446 : fold_build2_loc (loc, MIN_EXPR, comp_type, 5447 comp_op1, comp_op0); 5448 return fold_convert_loc (loc, type, tem); 5449 } 5450 break; 5451 case GE_EXPR: 5452 case GT_EXPR: 5453 case UNGE_EXPR: 5454 case UNGT_EXPR: 5455 if (!HONOR_NANS (arg1)) 5456 { 5457 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); 5458 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); 5459 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR) 5460 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1) 5461 : fold_build2_loc (loc, MAX_EXPR, comp_type, 5462 comp_op1, comp_op0); 5463 return fold_convert_loc (loc, type, tem); 5464 } 5465 break; 5466 case UNEQ_EXPR: 5467 if (!HONOR_NANS (arg1)) 5468 return fold_convert_loc (loc, type, arg2); 5469 break; 5470 case LTGT_EXPR: 5471 if (!HONOR_NANS (arg1)) 5472 return fold_convert_loc (loc, type, arg1); 5473 break; 5474 default: 5475 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); 5476 break; 5477 } 5478 } 5479 5480 return NULL_TREE; 5481 } 5482 5483 5484 5485 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT 5486 #define LOGICAL_OP_NON_SHORT_CIRCUIT \ 5487 (BRANCH_COST (optimize_function_for_speed_p (cfun), \ 5488 false) >= 2) 5489 #endif 5490 5491 /* EXP is some logical combination of boolean tests. See if we can 5492 merge it into some range test. Return the new tree if so. */ 5493 5494 static tree 5495 fold_range_test (location_t loc, enum tree_code code, tree type, 5496 tree op0, tree op1) 5497 { 5498 int or_op = (code == TRUTH_ORIF_EXPR 5499 || code == TRUTH_OR_EXPR); 5500 int in0_p, in1_p, in_p; 5501 tree low0, low1, low, high0, high1, high; 5502 bool strict_overflow_p = false; 5503 tree tem, lhs, rhs; 5504 const char * const warnmsg = G_("assuming signed overflow does not occur " 5505 "when simplifying range test"); 5506 5507 if (!INTEGRAL_TYPE_P (type)) 5508 return 0; 5509 5510 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p); 5511 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p); 5512 5513 /* If this is an OR operation, invert both sides; we will invert 5514 again at the end. */ 5515 if (or_op) 5516 in0_p = ! in0_p, in1_p = ! in1_p; 5517 5518 /* If both expressions are the same, if we can merge the ranges, and we 5519 can build the range test, return it or it inverted. If one of the 5520 ranges is always true or always false, consider it to be the same 5521 expression as the other. */ 5522 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0)) 5523 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0, 5524 in1_p, low1, high1) 5525 && (tem = (build_range_check (loc, type, 5526 lhs != 0 ? lhs 5527 : rhs != 0 ? rhs : integer_zero_node, 5528 in_p, low, high))) != 0) 5529 { 5530 if (strict_overflow_p) 5531 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 5532 return or_op ? invert_truthvalue_loc (loc, tem) : tem; 5533 } 5534 5535 /* On machines where the branch cost is expensive, if this is a 5536 short-circuited branch and the underlying object on both sides 5537 is the same, make a non-short-circuit operation. */ 5538 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT; 5539 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT) != -1) 5540 logical_op_non_short_circuit 5541 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT); 5542 if (logical_op_non_short_circuit 5543 && !flag_sanitize_coverage 5544 && lhs != 0 && rhs != 0 5545 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR) 5546 && operand_equal_p (lhs, rhs, 0)) 5547 { 5548 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR 5549 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in 5550 which cases we can't do this. */ 5551 if (simple_operand_p (lhs)) 5552 return build2_loc (loc, code == TRUTH_ANDIF_EXPR 5553 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, 5554 type, op0, op1); 5555 5556 else if (!lang_hooks.decls.global_bindings_p () 5557 && !CONTAINS_PLACEHOLDER_P (lhs)) 5558 { 5559 tree common = save_expr (lhs); 5560 5561 if ((lhs = build_range_check (loc, type, common, 5562 or_op ? ! in0_p : in0_p, 5563 low0, high0)) != 0 5564 && (rhs = build_range_check (loc, type, common, 5565 or_op ? ! in1_p : in1_p, 5566 low1, high1)) != 0) 5567 { 5568 if (strict_overflow_p) 5569 fold_overflow_warning (warnmsg, 5570 WARN_STRICT_OVERFLOW_COMPARISON); 5571 return build2_loc (loc, code == TRUTH_ANDIF_EXPR 5572 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, 5573 type, lhs, rhs); 5574 } 5575 } 5576 } 5577 5578 return 0; 5579 } 5580 5581 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P 5582 bit value. Arrange things so the extra bits will be set to zero if and 5583 only if C is signed-extended to its full width. If MASK is nonzero, 5584 it is an INTEGER_CST that should be AND'ed with the extra bits. */ 5585 5586 static tree 5587 unextend (tree c, int p, int unsignedp, tree mask) 5588 { 5589 tree type = TREE_TYPE (c); 5590 int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type)); 5591 tree temp; 5592 5593 if (p == modesize || unsignedp) 5594 return c; 5595 5596 /* We work by getting just the sign bit into the low-order bit, then 5597 into the high-order bit, then sign-extend. We then XOR that value 5598 with C. */ 5599 temp = build_int_cst (TREE_TYPE (c), 5600 wi::extract_uhwi (wi::to_wide (c), p - 1, 1)); 5601 5602 /* We must use a signed type in order to get an arithmetic right shift. 5603 However, we must also avoid introducing accidental overflows, so that 5604 a subsequent call to integer_zerop will work. Hence we must 5605 do the type conversion here. At this point, the constant is either 5606 zero or one, and the conversion to a signed type can never overflow. 5607 We could get an overflow if this conversion is done anywhere else. */ 5608 if (TYPE_UNSIGNED (type)) 5609 temp = fold_convert (signed_type_for (type), temp); 5610 5611 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1)); 5612 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1)); 5613 if (mask != 0) 5614 temp = const_binop (BIT_AND_EXPR, temp, 5615 fold_convert (TREE_TYPE (c), mask)); 5616 /* If necessary, convert the type back to match the type of C. */ 5617 if (TYPE_UNSIGNED (type)) 5618 temp = fold_convert (type, temp); 5619 5620 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp)); 5621 } 5622 5623 /* For an expression that has the form 5624 (A && B) || ~B 5625 or 5626 (A || B) && ~B, 5627 we can drop one of the inner expressions and simplify to 5628 A || ~B 5629 or 5630 A && ~B 5631 LOC is the location of the resulting expression. OP is the inner 5632 logical operation; the left-hand side in the examples above, while CMPOP 5633 is the right-hand side. RHS_ONLY is used to prevent us from accidentally 5634 removing a condition that guards another, as in 5635 (A != NULL && A->...) || A == NULL 5636 which we must not transform. If RHS_ONLY is true, only eliminate the 5637 right-most operand of the inner logical operation. */ 5638 5639 static tree 5640 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop, 5641 bool rhs_only) 5642 { 5643 tree type = TREE_TYPE (cmpop); 5644 enum tree_code code = TREE_CODE (cmpop); 5645 enum tree_code truthop_code = TREE_CODE (op); 5646 tree lhs = TREE_OPERAND (op, 0); 5647 tree rhs = TREE_OPERAND (op, 1); 5648 tree orig_lhs = lhs, orig_rhs = rhs; 5649 enum tree_code rhs_code = TREE_CODE (rhs); 5650 enum tree_code lhs_code = TREE_CODE (lhs); 5651 enum tree_code inv_code; 5652 5653 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop)) 5654 return NULL_TREE; 5655 5656 if (TREE_CODE_CLASS (code) != tcc_comparison) 5657 return NULL_TREE; 5658 5659 if (rhs_code == truthop_code) 5660 { 5661 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only); 5662 if (newrhs != NULL_TREE) 5663 { 5664 rhs = newrhs; 5665 rhs_code = TREE_CODE (rhs); 5666 } 5667 } 5668 if (lhs_code == truthop_code && !rhs_only) 5669 { 5670 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false); 5671 if (newlhs != NULL_TREE) 5672 { 5673 lhs = newlhs; 5674 lhs_code = TREE_CODE (lhs); 5675 } 5676 } 5677 5678 inv_code = invert_tree_comparison (code, HONOR_NANS (type)); 5679 if (inv_code == rhs_code 5680 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0) 5681 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0)) 5682 return lhs; 5683 if (!rhs_only && inv_code == lhs_code 5684 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0) 5685 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0)) 5686 return rhs; 5687 if (rhs != orig_rhs || lhs != orig_lhs) 5688 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop), 5689 lhs, rhs); 5690 return NULL_TREE; 5691 } 5692 5693 /* Find ways of folding logical expressions of LHS and RHS: 5694 Try to merge two comparisons to the same innermost item. 5695 Look for range tests like "ch >= '0' && ch <= '9'". 5696 Look for combinations of simple terms on machines with expensive branches 5697 and evaluate the RHS unconditionally. 5698 5699 For example, if we have p->a == 2 && p->b == 4 and we can make an 5700 object large enough to span both A and B, we can do this with a comparison 5701 against the object ANDed with the a mask. 5702 5703 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking 5704 operations to do this with one comparison. 5705 5706 We check for both normal comparisons and the BIT_AND_EXPRs made this by 5707 function and the one above. 5708 5709 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR, 5710 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR. 5711 5712 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its 5713 two operands. 5714 5715 We return the simplified tree or 0 if no optimization is possible. */ 5716 5717 static tree 5718 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type, 5719 tree lhs, tree rhs) 5720 { 5721 /* If this is the "or" of two comparisons, we can do something if 5722 the comparisons are NE_EXPR. If this is the "and", we can do something 5723 if the comparisons are EQ_EXPR. I.e., 5724 (a->b == 2 && a->c == 4) can become (a->new == NEW). 5725 5726 WANTED_CODE is this operation code. For single bit fields, we can 5727 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong" 5728 comparison for one-bit fields. */ 5729 5730 enum tree_code wanted_code; 5731 enum tree_code lcode, rcode; 5732 tree ll_arg, lr_arg, rl_arg, rr_arg; 5733 tree ll_inner, lr_inner, rl_inner, rr_inner; 5734 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos; 5735 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos; 5736 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos; 5737 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos; 5738 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp; 5739 int ll_reversep, lr_reversep, rl_reversep, rr_reversep; 5740 machine_mode ll_mode, lr_mode, rl_mode, rr_mode; 5741 scalar_int_mode lnmode, rnmode; 5742 tree ll_mask, lr_mask, rl_mask, rr_mask; 5743 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask; 5744 tree l_const, r_const; 5745 tree lntype, rntype, result; 5746 HOST_WIDE_INT first_bit, end_bit; 5747 int volatilep; 5748 5749 /* Start by getting the comparison codes. Fail if anything is volatile. 5750 If one operand is a BIT_AND_EXPR with the constant one, treat it as if 5751 it were surrounded with a NE_EXPR. */ 5752 5753 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs)) 5754 return 0; 5755 5756 lcode = TREE_CODE (lhs); 5757 rcode = TREE_CODE (rhs); 5758 5759 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1))) 5760 { 5761 lhs = build2 (NE_EXPR, truth_type, lhs, 5762 build_int_cst (TREE_TYPE (lhs), 0)); 5763 lcode = NE_EXPR; 5764 } 5765 5766 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1))) 5767 { 5768 rhs = build2 (NE_EXPR, truth_type, rhs, 5769 build_int_cst (TREE_TYPE (rhs), 0)); 5770 rcode = NE_EXPR; 5771 } 5772 5773 if (TREE_CODE_CLASS (lcode) != tcc_comparison 5774 || TREE_CODE_CLASS (rcode) != tcc_comparison) 5775 return 0; 5776 5777 ll_arg = TREE_OPERAND (lhs, 0); 5778 lr_arg = TREE_OPERAND (lhs, 1); 5779 rl_arg = TREE_OPERAND (rhs, 0); 5780 rr_arg = TREE_OPERAND (rhs, 1); 5781 5782 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */ 5783 if (simple_operand_p (ll_arg) 5784 && simple_operand_p (lr_arg)) 5785 { 5786 if (operand_equal_p (ll_arg, rl_arg, 0) 5787 && operand_equal_p (lr_arg, rr_arg, 0)) 5788 { 5789 result = combine_comparisons (loc, code, lcode, rcode, 5790 truth_type, ll_arg, lr_arg); 5791 if (result) 5792 return result; 5793 } 5794 else if (operand_equal_p (ll_arg, rr_arg, 0) 5795 && operand_equal_p (lr_arg, rl_arg, 0)) 5796 { 5797 result = combine_comparisons (loc, code, lcode, 5798 swap_tree_comparison (rcode), 5799 truth_type, ll_arg, lr_arg); 5800 if (result) 5801 return result; 5802 } 5803 } 5804 5805 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR) 5806 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR); 5807 5808 /* If the RHS can be evaluated unconditionally and its operands are 5809 simple, it wins to evaluate the RHS unconditionally on machines 5810 with expensive branches. In this case, this isn't a comparison 5811 that can be merged. */ 5812 5813 if (BRANCH_COST (optimize_function_for_speed_p (cfun), 5814 false) >= 2 5815 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg)) 5816 && simple_operand_p (rl_arg) 5817 && simple_operand_p (rr_arg)) 5818 { 5819 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */ 5820 if (code == TRUTH_OR_EXPR 5821 && lcode == NE_EXPR && integer_zerop (lr_arg) 5822 && rcode == NE_EXPR && integer_zerop (rr_arg) 5823 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) 5824 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) 5825 return build2_loc (loc, NE_EXPR, truth_type, 5826 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), 5827 ll_arg, rl_arg), 5828 build_int_cst (TREE_TYPE (ll_arg), 0)); 5829 5830 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */ 5831 if (code == TRUTH_AND_EXPR 5832 && lcode == EQ_EXPR && integer_zerop (lr_arg) 5833 && rcode == EQ_EXPR && integer_zerop (rr_arg) 5834 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) 5835 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) 5836 return build2_loc (loc, EQ_EXPR, truth_type, 5837 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), 5838 ll_arg, rl_arg), 5839 build_int_cst (TREE_TYPE (ll_arg), 0)); 5840 } 5841 5842 /* See if the comparisons can be merged. Then get all the parameters for 5843 each side. */ 5844 5845 if ((lcode != EQ_EXPR && lcode != NE_EXPR) 5846 || (rcode != EQ_EXPR && rcode != NE_EXPR)) 5847 return 0; 5848 5849 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0; 5850 volatilep = 0; 5851 ll_inner = decode_field_reference (loc, &ll_arg, 5852 &ll_bitsize, &ll_bitpos, &ll_mode, 5853 &ll_unsignedp, &ll_reversep, &volatilep, 5854 &ll_mask, &ll_and_mask); 5855 lr_inner = decode_field_reference (loc, &lr_arg, 5856 &lr_bitsize, &lr_bitpos, &lr_mode, 5857 &lr_unsignedp, &lr_reversep, &volatilep, 5858 &lr_mask, &lr_and_mask); 5859 rl_inner = decode_field_reference (loc, &rl_arg, 5860 &rl_bitsize, &rl_bitpos, &rl_mode, 5861 &rl_unsignedp, &rl_reversep, &volatilep, 5862 &rl_mask, &rl_and_mask); 5863 rr_inner = decode_field_reference (loc, &rr_arg, 5864 &rr_bitsize, &rr_bitpos, &rr_mode, 5865 &rr_unsignedp, &rr_reversep, &volatilep, 5866 &rr_mask, &rr_and_mask); 5867 5868 /* It must be true that the inner operation on the lhs of each 5869 comparison must be the same if we are to be able to do anything. 5870 Then see if we have constants. If not, the same must be true for 5871 the rhs's. */ 5872 if (volatilep 5873 || ll_reversep != rl_reversep 5874 || ll_inner == 0 || rl_inner == 0 5875 || ! operand_equal_p (ll_inner, rl_inner, 0)) 5876 return 0; 5877 5878 if (TREE_CODE (lr_arg) == INTEGER_CST 5879 && TREE_CODE (rr_arg) == INTEGER_CST) 5880 { 5881 l_const = lr_arg, r_const = rr_arg; 5882 lr_reversep = ll_reversep; 5883 } 5884 else if (lr_reversep != rr_reversep 5885 || lr_inner == 0 || rr_inner == 0 5886 || ! operand_equal_p (lr_inner, rr_inner, 0)) 5887 return 0; 5888 else 5889 l_const = r_const = 0; 5890 5891 /* If either comparison code is not correct for our logical operation, 5892 fail. However, we can convert a one-bit comparison against zero into 5893 the opposite comparison against that bit being set in the field. */ 5894 5895 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR); 5896 if (lcode != wanted_code) 5897 { 5898 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask)) 5899 { 5900 /* Make the left operand unsigned, since we are only interested 5901 in the value of one bit. Otherwise we are doing the wrong 5902 thing below. */ 5903 ll_unsignedp = 1; 5904 l_const = ll_mask; 5905 } 5906 else 5907 return 0; 5908 } 5909 5910 /* This is analogous to the code for l_const above. */ 5911 if (rcode != wanted_code) 5912 { 5913 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask)) 5914 { 5915 rl_unsignedp = 1; 5916 r_const = rl_mask; 5917 } 5918 else 5919 return 0; 5920 } 5921 5922 /* See if we can find a mode that contains both fields being compared on 5923 the left. If we can't, fail. Otherwise, update all constants and masks 5924 to be relative to a field of that size. */ 5925 first_bit = MIN (ll_bitpos, rl_bitpos); 5926 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize); 5927 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, 5928 TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD, 5929 volatilep, &lnmode)) 5930 return 0; 5931 5932 lnbitsize = GET_MODE_BITSIZE (lnmode); 5933 lnbitpos = first_bit & ~ (lnbitsize - 1); 5934 lntype = lang_hooks.types.type_for_size (lnbitsize, 1); 5935 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos; 5936 5937 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 5938 { 5939 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize; 5940 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize; 5941 } 5942 5943 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask), 5944 size_int (xll_bitpos)); 5945 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask), 5946 size_int (xrl_bitpos)); 5947 5948 if (l_const) 5949 { 5950 l_const = fold_convert_loc (loc, lntype, l_const); 5951 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask); 5952 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos)); 5953 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const, 5954 fold_build1_loc (loc, BIT_NOT_EXPR, 5955 lntype, ll_mask)))) 5956 { 5957 warning (0, "comparison is always %d", wanted_code == NE_EXPR); 5958 5959 return constant_boolean_node (wanted_code == NE_EXPR, truth_type); 5960 } 5961 } 5962 if (r_const) 5963 { 5964 r_const = fold_convert_loc (loc, lntype, r_const); 5965 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask); 5966 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos)); 5967 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const, 5968 fold_build1_loc (loc, BIT_NOT_EXPR, 5969 lntype, rl_mask)))) 5970 { 5971 warning (0, "comparison is always %d", wanted_code == NE_EXPR); 5972 5973 return constant_boolean_node (wanted_code == NE_EXPR, truth_type); 5974 } 5975 } 5976 5977 /* If the right sides are not constant, do the same for it. Also, 5978 disallow this optimization if a size, signedness or storage order 5979 mismatch occurs between the left and right sides. */ 5980 if (l_const == 0) 5981 { 5982 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize 5983 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp 5984 || ll_reversep != lr_reversep 5985 /* Make sure the two fields on the right 5986 correspond to the left without being swapped. */ 5987 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos) 5988 return 0; 5989 5990 first_bit = MIN (lr_bitpos, rr_bitpos); 5991 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize); 5992 if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, 5993 TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD, 5994 volatilep, &rnmode)) 5995 return 0; 5996 5997 rnbitsize = GET_MODE_BITSIZE (rnmode); 5998 rnbitpos = first_bit & ~ (rnbitsize - 1); 5999 rntype = lang_hooks.types.type_for_size (rnbitsize, 1); 6000 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos; 6001 6002 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) 6003 { 6004 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize; 6005 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize; 6006 } 6007 6008 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, 6009 rntype, lr_mask), 6010 size_int (xlr_bitpos)); 6011 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, 6012 rntype, rr_mask), 6013 size_int (xrr_bitpos)); 6014 6015 /* Make a mask that corresponds to both fields being compared. 6016 Do this for both items being compared. If the operands are the 6017 same size and the bits being compared are in the same position 6018 then we can do this by masking both and comparing the masked 6019 results. */ 6020 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); 6021 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask); 6022 if (lnbitsize == rnbitsize 6023 && xll_bitpos == xlr_bitpos 6024 && lnbitpos >= 0 6025 && rnbitpos >= 0) 6026 { 6027 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, 6028 lntype, lnbitsize, lnbitpos, 6029 ll_unsignedp || rl_unsignedp, ll_reversep); 6030 if (! all_ones_mask_p (ll_mask, lnbitsize)) 6031 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask); 6032 6033 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, 6034 rntype, rnbitsize, rnbitpos, 6035 lr_unsignedp || rr_unsignedp, lr_reversep); 6036 if (! all_ones_mask_p (lr_mask, rnbitsize)) 6037 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask); 6038 6039 return build2_loc (loc, wanted_code, truth_type, lhs, rhs); 6040 } 6041 6042 /* There is still another way we can do something: If both pairs of 6043 fields being compared are adjacent, we may be able to make a wider 6044 field containing them both. 6045 6046 Note that we still must mask the lhs/rhs expressions. Furthermore, 6047 the mask must be shifted to account for the shift done by 6048 make_bit_field_ref. */ 6049 if (((ll_bitsize + ll_bitpos == rl_bitpos 6050 && lr_bitsize + lr_bitpos == rr_bitpos) 6051 || (ll_bitpos == rl_bitpos + rl_bitsize 6052 && lr_bitpos == rr_bitpos + rr_bitsize)) 6053 && ll_bitpos >= 0 6054 && rl_bitpos >= 0 6055 && lr_bitpos >= 0 6056 && rr_bitpos >= 0) 6057 { 6058 tree type; 6059 6060 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype, 6061 ll_bitsize + rl_bitsize, 6062 MIN (ll_bitpos, rl_bitpos), 6063 ll_unsignedp, ll_reversep); 6064 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype, 6065 lr_bitsize + rr_bitsize, 6066 MIN (lr_bitpos, rr_bitpos), 6067 lr_unsignedp, lr_reversep); 6068 6069 ll_mask = const_binop (RSHIFT_EXPR, ll_mask, 6070 size_int (MIN (xll_bitpos, xrl_bitpos))); 6071 lr_mask = const_binop (RSHIFT_EXPR, lr_mask, 6072 size_int (MIN (xlr_bitpos, xrr_bitpos))); 6073 6074 /* Convert to the smaller type before masking out unwanted bits. */ 6075 type = lntype; 6076 if (lntype != rntype) 6077 { 6078 if (lnbitsize > rnbitsize) 6079 { 6080 lhs = fold_convert_loc (loc, rntype, lhs); 6081 ll_mask = fold_convert_loc (loc, rntype, ll_mask); 6082 type = rntype; 6083 } 6084 else if (lnbitsize < rnbitsize) 6085 { 6086 rhs = fold_convert_loc (loc, lntype, rhs); 6087 lr_mask = fold_convert_loc (loc, lntype, lr_mask); 6088 type = lntype; 6089 } 6090 } 6091 6092 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize)) 6093 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask); 6094 6095 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize)) 6096 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask); 6097 6098 return build2_loc (loc, wanted_code, truth_type, lhs, rhs); 6099 } 6100 6101 return 0; 6102 } 6103 6104 /* Handle the case of comparisons with constants. If there is something in 6105 common between the masks, those bits of the constants must be the same. 6106 If not, the condition is always false. Test for this to avoid generating 6107 incorrect code below. */ 6108 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask); 6109 if (! integer_zerop (result) 6110 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const), 6111 const_binop (BIT_AND_EXPR, result, r_const)) != 1) 6112 { 6113 if (wanted_code == NE_EXPR) 6114 { 6115 warning (0, "%<or%> of unmatched not-equal tests is always 1"); 6116 return constant_boolean_node (true, truth_type); 6117 } 6118 else 6119 { 6120 warning (0, "%<and%> of mutually exclusive equal-tests is always 0"); 6121 return constant_boolean_node (false, truth_type); 6122 } 6123 } 6124 6125 if (lnbitpos < 0) 6126 return 0; 6127 6128 /* Construct the expression we will return. First get the component 6129 reference we will make. Unless the mask is all ones the width of 6130 that field, perform the mask operation. Then compare with the 6131 merged constant. */ 6132 result = make_bit_field_ref (loc, ll_inner, ll_arg, 6133 lntype, lnbitsize, lnbitpos, 6134 ll_unsignedp || rl_unsignedp, ll_reversep); 6135 6136 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); 6137 if (! all_ones_mask_p (ll_mask, lnbitsize)) 6138 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask); 6139 6140 return build2_loc (loc, wanted_code, truth_type, result, 6141 const_binop (BIT_IOR_EXPR, l_const, r_const)); 6142 } 6143 6144 /* T is an integer expression that is being multiplied, divided, or taken a 6145 modulus (CODE says which and what kind of divide or modulus) by a 6146 constant C. See if we can eliminate that operation by folding it with 6147 other operations already in T. WIDE_TYPE, if non-null, is a type that 6148 should be used for the computation if wider than our type. 6149 6150 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return 6151 (X * 2) + (Y * 4). We must, however, be assured that either the original 6152 expression would not overflow or that overflow is undefined for the type 6153 in the language in question. 6154 6155 If we return a non-null expression, it is an equivalent form of the 6156 original computation, but need not be in the original type. 6157 6158 We set *STRICT_OVERFLOW_P to true if the return values depends on 6159 signed overflow being undefined. Otherwise we do not change 6160 *STRICT_OVERFLOW_P. */ 6161 6162 static tree 6163 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type, 6164 bool *strict_overflow_p) 6165 { 6166 /* To avoid exponential search depth, refuse to allow recursion past 6167 three levels. Beyond that (1) it's highly unlikely that we'll find 6168 something interesting and (2) we've probably processed it before 6169 when we built the inner expression. */ 6170 6171 static int depth; 6172 tree ret; 6173 6174 if (depth > 3) 6175 return NULL; 6176 6177 depth++; 6178 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p); 6179 depth--; 6180 6181 return ret; 6182 } 6183 6184 static tree 6185 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type, 6186 bool *strict_overflow_p) 6187 { 6188 tree type = TREE_TYPE (t); 6189 enum tree_code tcode = TREE_CODE (t); 6190 tree ctype = (wide_type != 0 6191 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type)) 6192 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type))) 6193 ? wide_type : type); 6194 tree t1, t2; 6195 int same_p = tcode == code; 6196 tree op0 = NULL_TREE, op1 = NULL_TREE; 6197 bool sub_strict_overflow_p; 6198 6199 /* Don't deal with constants of zero here; they confuse the code below. */ 6200 if (integer_zerop (c)) 6201 return NULL_TREE; 6202 6203 if (TREE_CODE_CLASS (tcode) == tcc_unary) 6204 op0 = TREE_OPERAND (t, 0); 6205 6206 if (TREE_CODE_CLASS (tcode) == tcc_binary) 6207 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1); 6208 6209 /* Note that we need not handle conditional operations here since fold 6210 already handles those cases. So just do arithmetic here. */ 6211 switch (tcode) 6212 { 6213 case INTEGER_CST: 6214 /* For a constant, we can always simplify if we are a multiply 6215 or (for divide and modulus) if it is a multiple of our constant. */ 6216 if (code == MULT_EXPR 6217 || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c), 6218 TYPE_SIGN (type))) 6219 { 6220 tree tem = const_binop (code, fold_convert (ctype, t), 6221 fold_convert (ctype, c)); 6222 /* If the multiplication overflowed, we lost information on it. 6223 See PR68142 and PR69845. */ 6224 if (TREE_OVERFLOW (tem)) 6225 return NULL_TREE; 6226 return tem; 6227 } 6228 break; 6229 6230 CASE_CONVERT: case NON_LVALUE_EXPR: 6231 /* If op0 is an expression ... */ 6232 if ((COMPARISON_CLASS_P (op0) 6233 || UNARY_CLASS_P (op0) 6234 || BINARY_CLASS_P (op0) 6235 || VL_EXP_CLASS_P (op0) 6236 || EXPRESSION_CLASS_P (op0)) 6237 /* ... and has wrapping overflow, and its type is smaller 6238 than ctype, then we cannot pass through as widening. */ 6239 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0)) 6240 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))) 6241 && (TYPE_PRECISION (ctype) 6242 > TYPE_PRECISION (TREE_TYPE (op0)))) 6243 /* ... or this is a truncation (t is narrower than op0), 6244 then we cannot pass through this narrowing. */ 6245 || (TYPE_PRECISION (type) 6246 < TYPE_PRECISION (TREE_TYPE (op0))) 6247 /* ... or signedness changes for division or modulus, 6248 then we cannot pass through this conversion. */ 6249 || (code != MULT_EXPR 6250 && (TYPE_UNSIGNED (ctype) 6251 != TYPE_UNSIGNED (TREE_TYPE (op0)))) 6252 /* ... or has undefined overflow while the converted to 6253 type has not, we cannot do the operation in the inner type 6254 as that would introduce undefined overflow. */ 6255 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0)) 6256 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))) 6257 && !TYPE_OVERFLOW_UNDEFINED (type)))) 6258 break; 6259 6260 /* Pass the constant down and see if we can make a simplification. If 6261 we can, replace this expression with the inner simplification for 6262 possible later conversion to our or some other type. */ 6263 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0 6264 && TREE_CODE (t2) == INTEGER_CST 6265 && !TREE_OVERFLOW (t2) 6266 && (t1 = extract_muldiv (op0, t2, code, 6267 code == MULT_EXPR ? ctype : NULL_TREE, 6268 strict_overflow_p)) != 0) 6269 return t1; 6270 break; 6271 6272 case ABS_EXPR: 6273 /* If widening the type changes it from signed to unsigned, then we 6274 must avoid building ABS_EXPR itself as unsigned. */ 6275 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type)) 6276 { 6277 tree cstype = (*signed_type_for) (ctype); 6278 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p)) 6279 != 0) 6280 { 6281 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1)); 6282 return fold_convert (ctype, t1); 6283 } 6284 break; 6285 } 6286 /* If the constant is negative, we cannot simplify this. */ 6287 if (tree_int_cst_sgn (c) == -1) 6288 break; 6289 /* FALLTHROUGH */ 6290 case NEGATE_EXPR: 6291 /* For division and modulus, type can't be unsigned, as e.g. 6292 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2. 6293 For signed types, even with wrapping overflow, this is fine. */ 6294 if (code != MULT_EXPR && TYPE_UNSIGNED (type)) 6295 break; 6296 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p)) 6297 != 0) 6298 return fold_build1 (tcode, ctype, fold_convert (ctype, t1)); 6299 break; 6300 6301 case MIN_EXPR: case MAX_EXPR: 6302 /* If widening the type changes the signedness, then we can't perform 6303 this optimization as that changes the result. */ 6304 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type)) 6305 break; 6306 6307 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */ 6308 sub_strict_overflow_p = false; 6309 if ((t1 = extract_muldiv (op0, c, code, wide_type, 6310 &sub_strict_overflow_p)) != 0 6311 && (t2 = extract_muldiv (op1, c, code, wide_type, 6312 &sub_strict_overflow_p)) != 0) 6313 { 6314 if (tree_int_cst_sgn (c) < 0) 6315 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR); 6316 if (sub_strict_overflow_p) 6317 *strict_overflow_p = true; 6318 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6319 fold_convert (ctype, t2)); 6320 } 6321 break; 6322 6323 case LSHIFT_EXPR: case RSHIFT_EXPR: 6324 /* If the second operand is constant, this is a multiplication 6325 or floor division, by a power of two, so we can treat it that 6326 way unless the multiplier or divisor overflows. Signed 6327 left-shift overflow is implementation-defined rather than 6328 undefined in C90, so do not convert signed left shift into 6329 multiplication. */ 6330 if (TREE_CODE (op1) == INTEGER_CST 6331 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0))) 6332 /* const_binop may not detect overflow correctly, 6333 so check for it explicitly here. */ 6334 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), 6335 wi::to_wide (op1)) 6336 && (t1 = fold_convert (ctype, 6337 const_binop (LSHIFT_EXPR, size_one_node, 6338 op1))) != 0 6339 && !TREE_OVERFLOW (t1)) 6340 return extract_muldiv (build2 (tcode == LSHIFT_EXPR 6341 ? MULT_EXPR : FLOOR_DIV_EXPR, 6342 ctype, 6343 fold_convert (ctype, op0), 6344 t1), 6345 c, code, wide_type, strict_overflow_p); 6346 break; 6347 6348 case PLUS_EXPR: case MINUS_EXPR: 6349 /* See if we can eliminate the operation on both sides. If we can, we 6350 can return a new PLUS or MINUS. If we can't, the only remaining 6351 cases where we can do anything are if the second operand is a 6352 constant. */ 6353 sub_strict_overflow_p = false; 6354 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p); 6355 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p); 6356 if (t1 != 0 && t2 != 0 6357 && TYPE_OVERFLOW_WRAPS (ctype) 6358 && (code == MULT_EXPR 6359 /* If not multiplication, we can only do this if both operands 6360 are divisible by c. */ 6361 || (multiple_of_p (ctype, op0, c) 6362 && multiple_of_p (ctype, op1, c)))) 6363 { 6364 if (sub_strict_overflow_p) 6365 *strict_overflow_p = true; 6366 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6367 fold_convert (ctype, t2)); 6368 } 6369 6370 /* If this was a subtraction, negate OP1 and set it to be an addition. 6371 This simplifies the logic below. */ 6372 if (tcode == MINUS_EXPR) 6373 { 6374 tcode = PLUS_EXPR, op1 = negate_expr (op1); 6375 /* If OP1 was not easily negatable, the constant may be OP0. */ 6376 if (TREE_CODE (op0) == INTEGER_CST) 6377 { 6378 std::swap (op0, op1); 6379 std::swap (t1, t2); 6380 } 6381 } 6382 6383 if (TREE_CODE (op1) != INTEGER_CST) 6384 break; 6385 6386 /* If either OP1 or C are negative, this optimization is not safe for 6387 some of the division and remainder types while for others we need 6388 to change the code. */ 6389 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0) 6390 { 6391 if (code == CEIL_DIV_EXPR) 6392 code = FLOOR_DIV_EXPR; 6393 else if (code == FLOOR_DIV_EXPR) 6394 code = CEIL_DIV_EXPR; 6395 else if (code != MULT_EXPR 6396 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR) 6397 break; 6398 } 6399 6400 /* If it's a multiply or a division/modulus operation of a multiple 6401 of our constant, do the operation and verify it doesn't overflow. */ 6402 if (code == MULT_EXPR 6403 || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6404 TYPE_SIGN (type))) 6405 { 6406 op1 = const_binop (code, fold_convert (ctype, op1), 6407 fold_convert (ctype, c)); 6408 /* We allow the constant to overflow with wrapping semantics. */ 6409 if (op1 == 0 6410 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype))) 6411 break; 6412 } 6413 else 6414 break; 6415 6416 /* If we have an unsigned type, we cannot widen the operation since it 6417 will change the result if the original computation overflowed. */ 6418 if (TYPE_UNSIGNED (ctype) && ctype != type) 6419 break; 6420 6421 /* The last case is if we are a multiply. In that case, we can 6422 apply the distributive law to commute the multiply and addition 6423 if the multiplication of the constants doesn't overflow 6424 and overflow is defined. With undefined overflow 6425 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */ 6426 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype)) 6427 return fold_build2 (tcode, ctype, 6428 fold_build2 (code, ctype, 6429 fold_convert (ctype, op0), 6430 fold_convert (ctype, c)), 6431 op1); 6432 6433 break; 6434 6435 case MULT_EXPR: 6436 /* We have a special case here if we are doing something like 6437 (C * 8) % 4 since we know that's zero. */ 6438 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR 6439 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR) 6440 /* If the multiplication can overflow we cannot optimize this. */ 6441 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)) 6442 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST 6443 && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6444 TYPE_SIGN (type))) 6445 { 6446 *strict_overflow_p = true; 6447 return omit_one_operand (type, integer_zero_node, op0); 6448 } 6449 6450 /* ... fall through ... */ 6451 6452 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: 6453 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: 6454 /* If we can extract our operation from the LHS, do so and return a 6455 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise, 6456 do something only if the second operand is a constant. */ 6457 if (same_p 6458 && TYPE_OVERFLOW_WRAPS (ctype) 6459 && (t1 = extract_muldiv (op0, c, code, wide_type, 6460 strict_overflow_p)) != 0) 6461 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), 6462 fold_convert (ctype, op1)); 6463 else if (tcode == MULT_EXPR && code == MULT_EXPR 6464 && TYPE_OVERFLOW_WRAPS (ctype) 6465 && (t1 = extract_muldiv (op1, c, code, wide_type, 6466 strict_overflow_p)) != 0) 6467 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6468 fold_convert (ctype, t1)); 6469 else if (TREE_CODE (op1) != INTEGER_CST) 6470 return 0; 6471 6472 /* If these are the same operation types, we can associate them 6473 assuming no overflow. */ 6474 if (tcode == code) 6475 { 6476 bool overflow_p = false; 6477 bool overflow_mul_p; 6478 signop sign = TYPE_SIGN (ctype); 6479 unsigned prec = TYPE_PRECISION (ctype); 6480 wide_int mul = wi::mul (wi::to_wide (op1, prec), 6481 wi::to_wide (c, prec), 6482 sign, &overflow_mul_p); 6483 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1); 6484 if (overflow_mul_p 6485 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED)) 6486 overflow_p = true; 6487 if (!overflow_p) 6488 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6489 wide_int_to_tree (ctype, mul)); 6490 } 6491 6492 /* If these operations "cancel" each other, we have the main 6493 optimizations of this pass, which occur when either constant is a 6494 multiple of the other, in which case we replace this with either an 6495 operation or CODE or TCODE. 6496 6497 If we have an unsigned type, we cannot do this since it will change 6498 the result if the original computation overflowed. */ 6499 if (TYPE_OVERFLOW_UNDEFINED (ctype) 6500 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR) 6501 || (tcode == MULT_EXPR 6502 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR 6503 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR 6504 && code != MULT_EXPR))) 6505 { 6506 if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), 6507 TYPE_SIGN (type))) 6508 { 6509 if (TYPE_OVERFLOW_UNDEFINED (ctype)) 6510 *strict_overflow_p = true; 6511 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), 6512 fold_convert (ctype, 6513 const_binop (TRUNC_DIV_EXPR, 6514 op1, c))); 6515 } 6516 else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1), 6517 TYPE_SIGN (type))) 6518 { 6519 if (TYPE_OVERFLOW_UNDEFINED (ctype)) 6520 *strict_overflow_p = true; 6521 return fold_build2 (code, ctype, fold_convert (ctype, op0), 6522 fold_convert (ctype, 6523 const_binop (TRUNC_DIV_EXPR, 6524 c, op1))); 6525 } 6526 } 6527 break; 6528 6529 default: 6530 break; 6531 } 6532 6533 return 0; 6534 } 6535 6536 /* Return a node which has the indicated constant VALUE (either 0 or 6537 1 for scalars or {-1,-1,..} or {0,0,...} for vectors), 6538 and is of the indicated TYPE. */ 6539 6540 tree 6541 constant_boolean_node (bool value, tree type) 6542 { 6543 if (type == integer_type_node) 6544 return value ? integer_one_node : integer_zero_node; 6545 else if (type == boolean_type_node) 6546 return value ? boolean_true_node : boolean_false_node; 6547 else if (TREE_CODE (type) == VECTOR_TYPE) 6548 return build_vector_from_val (type, 6549 build_int_cst (TREE_TYPE (type), 6550 value ? -1 : 0)); 6551 else 6552 return fold_convert (type, value ? integer_one_node : integer_zero_node); 6553 } 6554 6555 6556 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'. 6557 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here 6558 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)' 6559 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the 6560 COND is the first argument to CODE; otherwise (as in the example 6561 given here), it is the second argument. TYPE is the type of the 6562 original expression. Return NULL_TREE if no simplification is 6563 possible. */ 6564 6565 static tree 6566 fold_binary_op_with_conditional_arg (location_t loc, 6567 enum tree_code code, 6568 tree type, tree op0, tree op1, 6569 tree cond, tree arg, int cond_first_p) 6570 { 6571 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1); 6572 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0); 6573 tree test, true_value, false_value; 6574 tree lhs = NULL_TREE; 6575 tree rhs = NULL_TREE; 6576 enum tree_code cond_code = COND_EXPR; 6577 6578 if (TREE_CODE (cond) == COND_EXPR 6579 || TREE_CODE (cond) == VEC_COND_EXPR) 6580 { 6581 test = TREE_OPERAND (cond, 0); 6582 true_value = TREE_OPERAND (cond, 1); 6583 false_value = TREE_OPERAND (cond, 2); 6584 /* If this operand throws an expression, then it does not make 6585 sense to try to perform a logical or arithmetic operation 6586 involving it. */ 6587 if (VOID_TYPE_P (TREE_TYPE (true_value))) 6588 lhs = true_value; 6589 if (VOID_TYPE_P (TREE_TYPE (false_value))) 6590 rhs = false_value; 6591 } 6592 else if (!(TREE_CODE (type) != VECTOR_TYPE 6593 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE)) 6594 { 6595 tree testtype = TREE_TYPE (cond); 6596 test = cond; 6597 true_value = constant_boolean_node (true, testtype); 6598 false_value = constant_boolean_node (false, testtype); 6599 } 6600 else 6601 /* Detect the case of mixing vector and scalar types - bail out. */ 6602 return NULL_TREE; 6603 6604 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE) 6605 cond_code = VEC_COND_EXPR; 6606 6607 /* This transformation is only worthwhile if we don't have to wrap ARG 6608 in a SAVE_EXPR and the operation can be simplified without recursing 6609 on at least one of the branches once its pushed inside the COND_EXPR. */ 6610 if (!TREE_CONSTANT (arg) 6611 && (TREE_SIDE_EFFECTS (arg) 6612 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR 6613 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value))) 6614 return NULL_TREE; 6615 6616 arg = fold_convert_loc (loc, arg_type, arg); 6617 if (lhs == 0) 6618 { 6619 true_value = fold_convert_loc (loc, cond_type, true_value); 6620 if (cond_first_p) 6621 lhs = fold_build2_loc (loc, code, type, true_value, arg); 6622 else 6623 lhs = fold_build2_loc (loc, code, type, arg, true_value); 6624 } 6625 if (rhs == 0) 6626 { 6627 false_value = fold_convert_loc (loc, cond_type, false_value); 6628 if (cond_first_p) 6629 rhs = fold_build2_loc (loc, code, type, false_value, arg); 6630 else 6631 rhs = fold_build2_loc (loc, code, type, arg, false_value); 6632 } 6633 6634 /* Check that we have simplified at least one of the branches. */ 6635 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs)) 6636 return NULL_TREE; 6637 6638 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs); 6639 } 6640 6641 6642 /* Subroutine of fold() that checks for the addition of +/- 0.0. 6643 6644 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type 6645 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X - 6646 ADDEND is the same as X. 6647 6648 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero 6649 and finite. The problematic cases are when X is zero, and its mode 6650 has signed zeros. In the case of rounding towards -infinity, 6651 X - 0 is not the same as X because 0 - 0 is -0. In other rounding 6652 modes, X + 0 is not the same as X because -0 + 0 is 0. */ 6653 6654 bool 6655 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate) 6656 { 6657 if (!real_zerop (addend)) 6658 return false; 6659 6660 /* Don't allow the fold with -fsignaling-nans. */ 6661 if (HONOR_SNANS (element_mode (type))) 6662 return false; 6663 6664 /* Allow the fold if zeros aren't signed, or their sign isn't important. */ 6665 if (!HONOR_SIGNED_ZEROS (element_mode (type))) 6666 return true; 6667 6668 /* In a vector or complex, we would need to check the sign of all zeros. */ 6669 if (TREE_CODE (addend) != REAL_CST) 6670 return false; 6671 6672 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */ 6673 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend))) 6674 negate = !negate; 6675 6676 /* The mode has signed zeros, and we have to honor their sign. 6677 In this situation, there is only one case we can return true for. 6678 X - 0 is the same as X unless rounding towards -infinity is 6679 supported. */ 6680 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)); 6681 } 6682 6683 /* Subroutine of match.pd that optimizes comparisons of a division by 6684 a nonzero integer constant against an integer constant, i.e. 6685 X/C1 op C2. 6686 6687 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, 6688 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */ 6689 6690 enum tree_code 6691 fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo, 6692 tree *hi, bool *neg_overflow) 6693 { 6694 tree prod, tmp, type = TREE_TYPE (c1); 6695 signop sign = TYPE_SIGN (type); 6696 bool overflow; 6697 6698 /* We have to do this the hard way to detect unsigned overflow. 6699 prod = int_const_binop (MULT_EXPR, c1, c2); */ 6700 wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow); 6701 prod = force_fit_type (type, val, -1, overflow); 6702 *neg_overflow = false; 6703 6704 if (sign == UNSIGNED) 6705 { 6706 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); 6707 *lo = prod; 6708 6709 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */ 6710 val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow); 6711 *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod)); 6712 } 6713 else if (tree_int_cst_sgn (c1) >= 0) 6714 { 6715 tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); 6716 switch (tree_int_cst_sgn (c2)) 6717 { 6718 case -1: 6719 *neg_overflow = true; 6720 *lo = int_const_binop (MINUS_EXPR, prod, tmp); 6721 *hi = prod; 6722 break; 6723 6724 case 0: 6725 *lo = fold_negate_const (tmp, type); 6726 *hi = tmp; 6727 break; 6728 6729 case 1: 6730 *hi = int_const_binop (PLUS_EXPR, prod, tmp); 6731 *lo = prod; 6732 break; 6733 6734 default: 6735 gcc_unreachable (); 6736 } 6737 } 6738 else 6739 { 6740 /* A negative divisor reverses the relational operators. */ 6741 code = swap_tree_comparison (code); 6742 6743 tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1)); 6744 switch (tree_int_cst_sgn (c2)) 6745 { 6746 case -1: 6747 *hi = int_const_binop (MINUS_EXPR, prod, tmp); 6748 *lo = prod; 6749 break; 6750 6751 case 0: 6752 *hi = fold_negate_const (tmp, type); 6753 *lo = tmp; 6754 break; 6755 6756 case 1: 6757 *neg_overflow = true; 6758 *lo = int_const_binop (PLUS_EXPR, prod, tmp); 6759 *hi = prod; 6760 break; 6761 6762 default: 6763 gcc_unreachable (); 6764 } 6765 } 6766 6767 if (code != EQ_EXPR && code != NE_EXPR) 6768 return code; 6769 6770 if (TREE_OVERFLOW (*lo) 6771 || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0)) 6772 *lo = NULL_TREE; 6773 if (TREE_OVERFLOW (*hi) 6774 || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0)) 6775 *hi = NULL_TREE; 6776 6777 return code; 6778 } 6779 6780 6781 /* If CODE with arguments ARG0 and ARG1 represents a single bit 6782 equality/inequality test, then return a simplified form of the test 6783 using a sign testing. Otherwise return NULL. TYPE is the desired 6784 result type. */ 6785 6786 static tree 6787 fold_single_bit_test_into_sign_test (location_t loc, 6788 enum tree_code code, tree arg0, tree arg1, 6789 tree result_type) 6790 { 6791 /* If this is testing a single bit, we can optimize the test. */ 6792 if ((code == NE_EXPR || code == EQ_EXPR) 6793 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) 6794 && integer_pow2p (TREE_OPERAND (arg0, 1))) 6795 { 6796 /* If we have (A & C) != 0 where C is the sign bit of A, convert 6797 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */ 6798 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)); 6799 6800 if (arg00 != NULL_TREE 6801 /* This is only a win if casting to a signed type is cheap, 6802 i.e. when arg00's type is not a partial mode. */ 6803 && type_has_mode_precision_p (TREE_TYPE (arg00))) 6804 { 6805 tree stype = signed_type_for (TREE_TYPE (arg00)); 6806 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, 6807 result_type, 6808 fold_convert_loc (loc, stype, arg00), 6809 build_int_cst (stype, 0)); 6810 } 6811 } 6812 6813 return NULL_TREE; 6814 } 6815 6816 /* If CODE with arguments ARG0 and ARG1 represents a single bit 6817 equality/inequality test, then return a simplified form of 6818 the test using shifts and logical operations. Otherwise return 6819 NULL. TYPE is the desired result type. */ 6820 6821 tree 6822 fold_single_bit_test (location_t loc, enum tree_code code, 6823 tree arg0, tree arg1, tree result_type) 6824 { 6825 /* If this is testing a single bit, we can optimize the test. */ 6826 if ((code == NE_EXPR || code == EQ_EXPR) 6827 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) 6828 && integer_pow2p (TREE_OPERAND (arg0, 1))) 6829 { 6830 tree inner = TREE_OPERAND (arg0, 0); 6831 tree type = TREE_TYPE (arg0); 6832 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1)); 6833 scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type); 6834 int ops_unsigned; 6835 tree signed_type, unsigned_type, intermediate_type; 6836 tree tem, one; 6837 6838 /* First, see if we can fold the single bit test into a sign-bit 6839 test. */ 6840 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, 6841 result_type); 6842 if (tem) 6843 return tem; 6844 6845 /* Otherwise we have (A & C) != 0 where C is a single bit, 6846 convert that into ((A >> C2) & 1). Where C2 = log2(C). 6847 Similarly for (A & C) == 0. */ 6848 6849 /* If INNER is a right shift of a constant and it plus BITNUM does 6850 not overflow, adjust BITNUM and INNER. */ 6851 if (TREE_CODE (inner) == RSHIFT_EXPR 6852 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST 6853 && bitnum < TYPE_PRECISION (type) 6854 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)), 6855 TYPE_PRECISION (type) - bitnum)) 6856 { 6857 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1)); 6858 inner = TREE_OPERAND (inner, 0); 6859 } 6860 6861 /* If we are going to be able to omit the AND below, we must do our 6862 operations as unsigned. If we must use the AND, we have a choice. 6863 Normally unsigned is faster, but for some machines signed is. */ 6864 ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND 6865 && !flag_syntax_only) ? 0 : 1; 6866 6867 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0); 6868 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1); 6869 intermediate_type = ops_unsigned ? unsigned_type : signed_type; 6870 inner = fold_convert_loc (loc, intermediate_type, inner); 6871 6872 if (bitnum != 0) 6873 inner = build2 (RSHIFT_EXPR, intermediate_type, 6874 inner, size_int (bitnum)); 6875 6876 one = build_int_cst (intermediate_type, 1); 6877 6878 if (code == EQ_EXPR) 6879 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one); 6880 6881 /* Put the AND last so it can combine with more things. */ 6882 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one); 6883 6884 /* Make sure to return the proper type. */ 6885 inner = fold_convert_loc (loc, result_type, inner); 6886 6887 return inner; 6888 } 6889 return NULL_TREE; 6890 } 6891 6892 /* Test whether it is preferable two swap two operands, ARG0 and 6893 ARG1, for example because ARG0 is an integer constant and ARG1 6894 isn't. */ 6895 6896 bool 6897 tree_swap_operands_p (const_tree arg0, const_tree arg1) 6898 { 6899 if (CONSTANT_CLASS_P (arg1)) 6900 return 0; 6901 if (CONSTANT_CLASS_P (arg0)) 6902 return 1; 6903 6904 STRIP_NOPS (arg0); 6905 STRIP_NOPS (arg1); 6906 6907 if (TREE_CONSTANT (arg1)) 6908 return 0; 6909 if (TREE_CONSTANT (arg0)) 6910 return 1; 6911 6912 /* It is preferable to swap two SSA_NAME to ensure a canonical form 6913 for commutative and comparison operators. Ensuring a canonical 6914 form allows the optimizers to find additional redundancies without 6915 having to explicitly check for both orderings. */ 6916 if (TREE_CODE (arg0) == SSA_NAME 6917 && TREE_CODE (arg1) == SSA_NAME 6918 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1)) 6919 return 1; 6920 6921 /* Put SSA_NAMEs last. */ 6922 if (TREE_CODE (arg1) == SSA_NAME) 6923 return 0; 6924 if (TREE_CODE (arg0) == SSA_NAME) 6925 return 1; 6926 6927 /* Put variables last. */ 6928 if (DECL_P (arg1)) 6929 return 0; 6930 if (DECL_P (arg0)) 6931 return 1; 6932 6933 return 0; 6934 } 6935 6936 6937 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y 6938 means A >= Y && A != MAX, but in this case we know that 6939 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */ 6940 6941 static tree 6942 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound) 6943 { 6944 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y; 6945 6946 if (TREE_CODE (bound) == LT_EXPR) 6947 a = TREE_OPERAND (bound, 0); 6948 else if (TREE_CODE (bound) == GT_EXPR) 6949 a = TREE_OPERAND (bound, 1); 6950 else 6951 return NULL_TREE; 6952 6953 typea = TREE_TYPE (a); 6954 if (!INTEGRAL_TYPE_P (typea) 6955 && !POINTER_TYPE_P (typea)) 6956 return NULL_TREE; 6957 6958 if (TREE_CODE (ineq) == LT_EXPR) 6959 { 6960 a1 = TREE_OPERAND (ineq, 1); 6961 y = TREE_OPERAND (ineq, 0); 6962 } 6963 else if (TREE_CODE (ineq) == GT_EXPR) 6964 { 6965 a1 = TREE_OPERAND (ineq, 0); 6966 y = TREE_OPERAND (ineq, 1); 6967 } 6968 else 6969 return NULL_TREE; 6970 6971 if (TREE_TYPE (a1) != typea) 6972 return NULL_TREE; 6973 6974 if (POINTER_TYPE_P (typea)) 6975 { 6976 /* Convert the pointer types into integer before taking the difference. */ 6977 tree ta = fold_convert_loc (loc, ssizetype, a); 6978 tree ta1 = fold_convert_loc (loc, ssizetype, a1); 6979 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta); 6980 } 6981 else 6982 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a); 6983 6984 if (!diff || !integer_onep (diff)) 6985 return NULL_TREE; 6986 6987 return fold_build2_loc (loc, GE_EXPR, type, a, y); 6988 } 6989 6990 /* Fold a sum or difference of at least one multiplication. 6991 Returns the folded tree or NULL if no simplification could be made. */ 6992 6993 static tree 6994 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type, 6995 tree arg0, tree arg1) 6996 { 6997 tree arg00, arg01, arg10, arg11; 6998 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same; 6999 7000 /* (A * C) +- (B * C) -> (A+-B) * C. 7001 (A * C) +- A -> A * (C+-1). 7002 We are most concerned about the case where C is a constant, 7003 but other combinations show up during loop reduction. Since 7004 it is not difficult, try all four possibilities. */ 7005 7006 if (TREE_CODE (arg0) == MULT_EXPR) 7007 { 7008 arg00 = TREE_OPERAND (arg0, 0); 7009 arg01 = TREE_OPERAND (arg0, 1); 7010 } 7011 else if (TREE_CODE (arg0) == INTEGER_CST) 7012 { 7013 arg00 = build_one_cst (type); 7014 arg01 = arg0; 7015 } 7016 else 7017 { 7018 /* We cannot generate constant 1 for fract. */ 7019 if (ALL_FRACT_MODE_P (TYPE_MODE (type))) 7020 return NULL_TREE; 7021 arg00 = arg0; 7022 arg01 = build_one_cst (type); 7023 } 7024 if (TREE_CODE (arg1) == MULT_EXPR) 7025 { 7026 arg10 = TREE_OPERAND (arg1, 0); 7027 arg11 = TREE_OPERAND (arg1, 1); 7028 } 7029 else if (TREE_CODE (arg1) == INTEGER_CST) 7030 { 7031 arg10 = build_one_cst (type); 7032 /* As we canonicalize A - 2 to A + -2 get rid of that sign for 7033 the purpose of this canonicalization. */ 7034 if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1))) 7035 && negate_expr_p (arg1) 7036 && code == PLUS_EXPR) 7037 { 7038 arg11 = negate_expr (arg1); 7039 code = MINUS_EXPR; 7040 } 7041 else 7042 arg11 = arg1; 7043 } 7044 else 7045 { 7046 /* We cannot generate constant 1 for fract. */ 7047 if (ALL_FRACT_MODE_P (TYPE_MODE (type))) 7048 return NULL_TREE; 7049 arg10 = arg1; 7050 arg11 = build_one_cst (type); 7051 } 7052 same = NULL_TREE; 7053 7054 /* Prefer factoring a common non-constant. */ 7055 if (operand_equal_p (arg00, arg10, 0)) 7056 same = arg00, alt0 = arg01, alt1 = arg11; 7057 else if (operand_equal_p (arg01, arg11, 0)) 7058 same = arg01, alt0 = arg00, alt1 = arg10; 7059 else if (operand_equal_p (arg00, arg11, 0)) 7060 same = arg00, alt0 = arg01, alt1 = arg10; 7061 else if (operand_equal_p (arg01, arg10, 0)) 7062 same = arg01, alt0 = arg00, alt1 = arg11; 7063 7064 /* No identical multiplicands; see if we can find a common 7065 power-of-two factor in non-power-of-two multiplies. This 7066 can help in multi-dimensional array access. */ 7067 else if (tree_fits_shwi_p (arg01) 7068 && tree_fits_shwi_p (arg11)) 7069 { 7070 HOST_WIDE_INT int01, int11, tmp; 7071 bool swap = false; 7072 tree maybe_same; 7073 int01 = tree_to_shwi (arg01); 7074 int11 = tree_to_shwi (arg11); 7075 7076 /* Move min of absolute values to int11. */ 7077 if (absu_hwi (int01) < absu_hwi (int11)) 7078 { 7079 tmp = int01, int01 = int11, int11 = tmp; 7080 alt0 = arg00, arg00 = arg10, arg10 = alt0; 7081 maybe_same = arg01; 7082 swap = true; 7083 } 7084 else 7085 maybe_same = arg11; 7086 7087 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0 7088 /* The remainder should not be a constant, otherwise we 7089 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has 7090 increased the number of multiplications necessary. */ 7091 && TREE_CODE (arg10) != INTEGER_CST) 7092 { 7093 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00, 7094 build_int_cst (TREE_TYPE (arg00), 7095 int01 / int11)); 7096 alt1 = arg10; 7097 same = maybe_same; 7098 if (swap) 7099 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same; 7100 } 7101 } 7102 7103 if (!same) 7104 return NULL_TREE; 7105 7106 if (! INTEGRAL_TYPE_P (type) 7107 || TYPE_OVERFLOW_WRAPS (type) 7108 /* We are neither factoring zero nor minus one. */ 7109 || TREE_CODE (same) == INTEGER_CST) 7110 return fold_build2_loc (loc, MULT_EXPR, type, 7111 fold_build2_loc (loc, code, type, 7112 fold_convert_loc (loc, type, alt0), 7113 fold_convert_loc (loc, type, alt1)), 7114 fold_convert_loc (loc, type, same)); 7115 7116 /* Same may be zero and thus the operation 'code' may overflow. Likewise 7117 same may be minus one and thus the multiplication may overflow. Perform 7118 the sum operation in an unsigned type. */ 7119 tree utype = unsigned_type_for (type); 7120 tree tem = fold_build2_loc (loc, code, utype, 7121 fold_convert_loc (loc, utype, alt0), 7122 fold_convert_loc (loc, utype, alt1)); 7123 /* If the sum evaluated to a constant that is not -INF the multiplication 7124 cannot overflow. */ 7125 if (TREE_CODE (tem) == INTEGER_CST 7126 && (wi::to_wide (tem) 7127 != wi::min_value (TYPE_PRECISION (utype), SIGNED))) 7128 return fold_build2_loc (loc, MULT_EXPR, type, 7129 fold_convert (type, tem), same); 7130 7131 /* Do not resort to unsigned multiplication because 7132 we lose the no-overflow property of the expression. */ 7133 return NULL_TREE; 7134 } 7135 7136 /* Subroutine of native_encode_expr. Encode the INTEGER_CST 7137 specified by EXPR into the buffer PTR of length LEN bytes. 7138 Return the number of bytes placed in the buffer, or zero 7139 upon failure. */ 7140 7141 static int 7142 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off) 7143 { 7144 tree type = TREE_TYPE (expr); 7145 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); 7146 int byte, offset, word, words; 7147 unsigned char value; 7148 7149 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7150 return 0; 7151 if (off == -1) 7152 off = 0; 7153 7154 if (ptr == NULL) 7155 /* Dry run. */ 7156 return MIN (len, total_bytes - off); 7157 7158 words = total_bytes / UNITS_PER_WORD; 7159 7160 for (byte = 0; byte < total_bytes; byte++) 7161 { 7162 int bitpos = byte * BITS_PER_UNIT; 7163 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole 7164 number of bytes. */ 7165 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT); 7166 7167 if (total_bytes > UNITS_PER_WORD) 7168 { 7169 word = byte / UNITS_PER_WORD; 7170 if (WORDS_BIG_ENDIAN) 7171 word = (words - 1) - word; 7172 offset = word * UNITS_PER_WORD; 7173 if (BYTES_BIG_ENDIAN) 7174 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7175 else 7176 offset += byte % UNITS_PER_WORD; 7177 } 7178 else 7179 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte; 7180 if (offset >= off && offset - off < len) 7181 ptr[offset - off] = value; 7182 } 7183 return MIN (len, total_bytes - off); 7184 } 7185 7186 7187 /* Subroutine of native_encode_expr. Encode the FIXED_CST 7188 specified by EXPR into the buffer PTR of length LEN bytes. 7189 Return the number of bytes placed in the buffer, or zero 7190 upon failure. */ 7191 7192 static int 7193 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off) 7194 { 7195 tree type = TREE_TYPE (expr); 7196 scalar_mode mode = SCALAR_TYPE_MODE (type); 7197 int total_bytes = GET_MODE_SIZE (mode); 7198 FIXED_VALUE_TYPE value; 7199 tree i_value, i_type; 7200 7201 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7202 return 0; 7203 7204 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1); 7205 7206 if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes) 7207 return 0; 7208 7209 value = TREE_FIXED_CST (expr); 7210 i_value = double_int_to_tree (i_type, value.data); 7211 7212 return native_encode_int (i_value, ptr, len, off); 7213 } 7214 7215 7216 /* Subroutine of native_encode_expr. Encode the REAL_CST 7217 specified by EXPR into the buffer PTR of length LEN bytes. 7218 Return the number of bytes placed in the buffer, or zero 7219 upon failure. */ 7220 7221 static int 7222 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off) 7223 { 7224 tree type = TREE_TYPE (expr); 7225 int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type)); 7226 int byte, offset, word, words, bitpos; 7227 unsigned char value; 7228 7229 /* There are always 32 bits in each long, no matter the size of 7230 the hosts long. We handle floating point representations with 7231 up to 192 bits. */ 7232 long tmp[6]; 7233 7234 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7235 return 0; 7236 if (off == -1) 7237 off = 0; 7238 7239 if (ptr == NULL) 7240 /* Dry run. */ 7241 return MIN (len, total_bytes - off); 7242 7243 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; 7244 7245 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type)); 7246 7247 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; 7248 bitpos += BITS_PER_UNIT) 7249 { 7250 byte = (bitpos / BITS_PER_UNIT) & 3; 7251 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31)); 7252 7253 if (UNITS_PER_WORD < 4) 7254 { 7255 word = byte / UNITS_PER_WORD; 7256 if (WORDS_BIG_ENDIAN) 7257 word = (words - 1) - word; 7258 offset = word * UNITS_PER_WORD; 7259 if (BYTES_BIG_ENDIAN) 7260 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7261 else 7262 offset += byte % UNITS_PER_WORD; 7263 } 7264 else 7265 { 7266 offset = byte; 7267 if (BYTES_BIG_ENDIAN) 7268 { 7269 /* Reverse bytes within each long, or within the entire float 7270 if it's smaller than a long (for HFmode). */ 7271 offset = MIN (3, total_bytes - 1) - offset; 7272 gcc_assert (offset >= 0); 7273 } 7274 } 7275 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3); 7276 if (offset >= off 7277 && offset - off < len) 7278 ptr[offset - off] = value; 7279 } 7280 return MIN (len, total_bytes - off); 7281 } 7282 7283 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST 7284 specified by EXPR into the buffer PTR of length LEN bytes. 7285 Return the number of bytes placed in the buffer, or zero 7286 upon failure. */ 7287 7288 static int 7289 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off) 7290 { 7291 int rsize, isize; 7292 tree part; 7293 7294 part = TREE_REALPART (expr); 7295 rsize = native_encode_expr (part, ptr, len, off); 7296 if (off == -1 && rsize == 0) 7297 return 0; 7298 part = TREE_IMAGPART (expr); 7299 if (off != -1) 7300 off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part)))); 7301 isize = native_encode_expr (part, ptr ? ptr + rsize : NULL, 7302 len - rsize, off); 7303 if (off == -1 && isize != rsize) 7304 return 0; 7305 return rsize + isize; 7306 } 7307 7308 7309 /* Subroutine of native_encode_expr. Encode the VECTOR_CST 7310 specified by EXPR into the buffer PTR of length LEN bytes. 7311 Return the number of bytes placed in the buffer, or zero 7312 upon failure. */ 7313 7314 static int 7315 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off) 7316 { 7317 unsigned HOST_WIDE_INT i, count; 7318 int size, offset; 7319 tree itype, elem; 7320 7321 offset = 0; 7322 if (!VECTOR_CST_NELTS (expr).is_constant (&count)) 7323 return 0; 7324 itype = TREE_TYPE (TREE_TYPE (expr)); 7325 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype)); 7326 for (i = 0; i < count; i++) 7327 { 7328 if (off >= size) 7329 { 7330 off -= size; 7331 continue; 7332 } 7333 elem = VECTOR_CST_ELT (expr, i); 7334 int res = native_encode_expr (elem, ptr ? ptr + offset : NULL, 7335 len - offset, off); 7336 if ((off == -1 && res != size) || res == 0) 7337 return 0; 7338 offset += res; 7339 if (offset >= len) 7340 return (off == -1 && i < count - 1) ? 0 : offset; 7341 if (off != -1) 7342 off = 0; 7343 } 7344 return offset; 7345 } 7346 7347 7348 /* Subroutine of native_encode_expr. Encode the STRING_CST 7349 specified by EXPR into the buffer PTR of length LEN bytes. 7350 Return the number of bytes placed in the buffer, or zero 7351 upon failure. */ 7352 7353 static int 7354 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off) 7355 { 7356 tree type = TREE_TYPE (expr); 7357 7358 /* Wide-char strings are encoded in target byte-order so native 7359 encoding them is trivial. */ 7360 if (BITS_PER_UNIT != CHAR_BIT 7361 || TREE_CODE (type) != ARRAY_TYPE 7362 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE 7363 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type))) 7364 return 0; 7365 7366 HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr))); 7367 if ((off == -1 && total_bytes > len) || off >= total_bytes) 7368 return 0; 7369 if (off == -1) 7370 off = 0; 7371 if (ptr == NULL) 7372 /* Dry run. */; 7373 else if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len)) 7374 { 7375 int written = 0; 7376 if (off < TREE_STRING_LENGTH (expr)) 7377 { 7378 written = MIN (len, TREE_STRING_LENGTH (expr) - off); 7379 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written); 7380 } 7381 memset (ptr + written, 0, 7382 MIN (total_bytes - written, len - written)); 7383 } 7384 else 7385 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len)); 7386 return MIN (total_bytes - off, len); 7387 } 7388 7389 7390 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST, 7391 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the 7392 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store 7393 anything, just do a dry run. If OFF is not -1 then start 7394 the encoding at byte offset OFF and encode at most LEN bytes. 7395 Return the number of bytes placed in the buffer, or zero upon failure. */ 7396 7397 int 7398 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off) 7399 { 7400 /* We don't support starting at negative offset and -1 is special. */ 7401 if (off < -1) 7402 return 0; 7403 7404 switch (TREE_CODE (expr)) 7405 { 7406 case INTEGER_CST: 7407 return native_encode_int (expr, ptr, len, off); 7408 7409 case REAL_CST: 7410 return native_encode_real (expr, ptr, len, off); 7411 7412 case FIXED_CST: 7413 return native_encode_fixed (expr, ptr, len, off); 7414 7415 case COMPLEX_CST: 7416 return native_encode_complex (expr, ptr, len, off); 7417 7418 case VECTOR_CST: 7419 return native_encode_vector (expr, ptr, len, off); 7420 7421 case STRING_CST: 7422 return native_encode_string (expr, ptr, len, off); 7423 7424 default: 7425 return 0; 7426 } 7427 } 7428 7429 7430 /* Subroutine of native_interpret_expr. Interpret the contents of 7431 the buffer PTR of length LEN as an INTEGER_CST of type TYPE. 7432 If the buffer cannot be interpreted, return NULL_TREE. */ 7433 7434 static tree 7435 native_interpret_int (tree type, const unsigned char *ptr, int len) 7436 { 7437 int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); 7438 7439 if (total_bytes > len 7440 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7441 return NULL_TREE; 7442 7443 wide_int result = wi::from_buffer (ptr, total_bytes); 7444 7445 return wide_int_to_tree (type, result); 7446 } 7447 7448 7449 /* Subroutine of native_interpret_expr. Interpret the contents of 7450 the buffer PTR of length LEN as a FIXED_CST of type TYPE. 7451 If the buffer cannot be interpreted, return NULL_TREE. */ 7452 7453 static tree 7454 native_interpret_fixed (tree type, const unsigned char *ptr, int len) 7455 { 7456 scalar_mode mode = SCALAR_TYPE_MODE (type); 7457 int total_bytes = GET_MODE_SIZE (mode); 7458 double_int result; 7459 FIXED_VALUE_TYPE fixed_value; 7460 7461 if (total_bytes > len 7462 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) 7463 return NULL_TREE; 7464 7465 result = double_int::from_buffer (ptr, total_bytes); 7466 fixed_value = fixed_from_double_int (result, mode); 7467 7468 return build_fixed (type, fixed_value); 7469 } 7470 7471 7472 /* Subroutine of native_interpret_expr. Interpret the contents of 7473 the buffer PTR of length LEN as a REAL_CST of type TYPE. 7474 If the buffer cannot be interpreted, return NULL_TREE. */ 7475 7476 static tree 7477 native_interpret_real (tree type, const unsigned char *ptr, int len) 7478 { 7479 scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type); 7480 int total_bytes = GET_MODE_SIZE (mode); 7481 unsigned char value; 7482 /* There are always 32 bits in each long, no matter the size of 7483 the hosts long. We handle floating point representations with 7484 up to 192 bits. */ 7485 REAL_VALUE_TYPE r; 7486 long tmp[6]; 7487 7488 if (total_bytes > len || total_bytes > 24) 7489 return NULL_TREE; 7490 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; 7491 7492 memset (tmp, 0, sizeof (tmp)); 7493 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; 7494 bitpos += BITS_PER_UNIT) 7495 { 7496 /* Both OFFSET and BYTE index within a long; 7497 bitpos indexes the whole float. */ 7498 int offset, byte = (bitpos / BITS_PER_UNIT) & 3; 7499 if (UNITS_PER_WORD < 4) 7500 { 7501 int word = byte / UNITS_PER_WORD; 7502 if (WORDS_BIG_ENDIAN) 7503 word = (words - 1) - word; 7504 offset = word * UNITS_PER_WORD; 7505 if (BYTES_BIG_ENDIAN) 7506 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); 7507 else 7508 offset += byte % UNITS_PER_WORD; 7509 } 7510 else 7511 { 7512 offset = byte; 7513 if (BYTES_BIG_ENDIAN) 7514 { 7515 /* Reverse bytes within each long, or within the entire float 7516 if it's smaller than a long (for HFmode). */ 7517 offset = MIN (3, total_bytes - 1) - offset; 7518 gcc_assert (offset >= 0); 7519 } 7520 } 7521 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)]; 7522 7523 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31); 7524 } 7525 7526 real_from_target (&r, tmp, mode); 7527 return build_real (type, r); 7528 } 7529 7530 7531 /* Subroutine of native_interpret_expr. Interpret the contents of 7532 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE. 7533 If the buffer cannot be interpreted, return NULL_TREE. */ 7534 7535 static tree 7536 native_interpret_complex (tree type, const unsigned char *ptr, int len) 7537 { 7538 tree etype, rpart, ipart; 7539 int size; 7540 7541 etype = TREE_TYPE (type); 7542 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); 7543 if (size * 2 > len) 7544 return NULL_TREE; 7545 rpart = native_interpret_expr (etype, ptr, size); 7546 if (!rpart) 7547 return NULL_TREE; 7548 ipart = native_interpret_expr (etype, ptr+size, size); 7549 if (!ipart) 7550 return NULL_TREE; 7551 return build_complex (type, rpart, ipart); 7552 } 7553 7554 7555 /* Subroutine of native_interpret_expr. Interpret the contents of 7556 the buffer PTR of length LEN as a VECTOR_CST of type TYPE. 7557 If the buffer cannot be interpreted, return NULL_TREE. */ 7558 7559 static tree 7560 native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len) 7561 { 7562 tree etype, elem; 7563 unsigned int i, size; 7564 unsigned HOST_WIDE_INT count; 7565 7566 etype = TREE_TYPE (type); 7567 size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); 7568 if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count) 7569 || size * count > len) 7570 return NULL_TREE; 7571 7572 tree_vector_builder elements (type, count, 1); 7573 for (i = 0; i < count; ++i) 7574 { 7575 elem = native_interpret_expr (etype, ptr+(i*size), size); 7576 if (!elem) 7577 return NULL_TREE; 7578 elements.quick_push (elem); 7579 } 7580 return elements.build (); 7581 } 7582 7583 7584 /* Subroutine of fold_view_convert_expr. Interpret the contents of 7585 the buffer PTR of length LEN as a constant of type TYPE. For 7586 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P 7587 we return a REAL_CST, etc... If the buffer cannot be interpreted, 7588 return NULL_TREE. */ 7589 7590 tree 7591 native_interpret_expr (tree type, const unsigned char *ptr, int len) 7592 { 7593 switch (TREE_CODE (type)) 7594 { 7595 case INTEGER_TYPE: 7596 case ENUMERAL_TYPE: 7597 case BOOLEAN_TYPE: 7598 case POINTER_TYPE: 7599 case REFERENCE_TYPE: 7600 return native_interpret_int (type, ptr, len); 7601 7602 case REAL_TYPE: 7603 return native_interpret_real (type, ptr, len); 7604 7605 case FIXED_POINT_TYPE: 7606 return native_interpret_fixed (type, ptr, len); 7607 7608 case COMPLEX_TYPE: 7609 return native_interpret_complex (type, ptr, len); 7610 7611 case VECTOR_TYPE: 7612 return native_interpret_vector (type, ptr, len); 7613 7614 default: 7615 return NULL_TREE; 7616 } 7617 } 7618 7619 /* Returns true if we can interpret the contents of a native encoding 7620 as TYPE. */ 7621 7622 static bool 7623 can_native_interpret_type_p (tree type) 7624 { 7625 switch (TREE_CODE (type)) 7626 { 7627 case INTEGER_TYPE: 7628 case ENUMERAL_TYPE: 7629 case BOOLEAN_TYPE: 7630 case POINTER_TYPE: 7631 case REFERENCE_TYPE: 7632 case FIXED_POINT_TYPE: 7633 case REAL_TYPE: 7634 case COMPLEX_TYPE: 7635 case VECTOR_TYPE: 7636 return true; 7637 default: 7638 return false; 7639 } 7640 } 7641 7642 7643 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type 7644 TYPE at compile-time. If we're unable to perform the conversion 7645 return NULL_TREE. */ 7646 7647 static tree 7648 fold_view_convert_expr (tree type, tree expr) 7649 { 7650 /* We support up to 512-bit values (for V8DFmode). */ 7651 unsigned char buffer[64]; 7652 int len; 7653 7654 /* Check that the host and target are sane. */ 7655 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8) 7656 return NULL_TREE; 7657 7658 len = native_encode_expr (expr, buffer, sizeof (buffer)); 7659 if (len == 0) 7660 return NULL_TREE; 7661 7662 return native_interpret_expr (type, buffer, len); 7663 } 7664 7665 /* Build an expression for the address of T. Folds away INDIRECT_REF 7666 to avoid confusing the gimplify process. */ 7667 7668 tree 7669 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype) 7670 { 7671 /* The size of the object is not relevant when talking about its address. */ 7672 if (TREE_CODE (t) == WITH_SIZE_EXPR) 7673 t = TREE_OPERAND (t, 0); 7674 7675 if (TREE_CODE (t) == INDIRECT_REF) 7676 { 7677 t = TREE_OPERAND (t, 0); 7678 7679 if (TREE_TYPE (t) != ptrtype) 7680 t = build1_loc (loc, NOP_EXPR, ptrtype, t); 7681 } 7682 else if (TREE_CODE (t) == MEM_REF 7683 && integer_zerop (TREE_OPERAND (t, 1))) 7684 return TREE_OPERAND (t, 0); 7685 else if (TREE_CODE (t) == MEM_REF 7686 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST) 7687 return fold_binary (POINTER_PLUS_EXPR, ptrtype, 7688 TREE_OPERAND (t, 0), 7689 convert_to_ptrofftype (TREE_OPERAND (t, 1))); 7690 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR) 7691 { 7692 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0)); 7693 7694 if (TREE_TYPE (t) != ptrtype) 7695 t = fold_convert_loc (loc, ptrtype, t); 7696 } 7697 else 7698 t = build1_loc (loc, ADDR_EXPR, ptrtype, t); 7699 7700 return t; 7701 } 7702 7703 /* Build an expression for the address of T. */ 7704 7705 tree 7706 build_fold_addr_expr_loc (location_t loc, tree t) 7707 { 7708 tree ptrtype = build_pointer_type (TREE_TYPE (t)); 7709 7710 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype); 7711 } 7712 7713 /* Fold a unary expression of code CODE and type TYPE with operand 7714 OP0. Return the folded expression if folding is successful. 7715 Otherwise, return NULL_TREE. */ 7716 7717 tree 7718 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0) 7719 { 7720 tree tem; 7721 tree arg0; 7722 enum tree_code_class kind = TREE_CODE_CLASS (code); 7723 7724 gcc_assert (IS_EXPR_CODE_CLASS (kind) 7725 && TREE_CODE_LENGTH (code) == 1); 7726 7727 arg0 = op0; 7728 if (arg0) 7729 { 7730 if (CONVERT_EXPR_CODE_P (code) 7731 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR) 7732 { 7733 /* Don't use STRIP_NOPS, because signedness of argument type 7734 matters. */ 7735 STRIP_SIGN_NOPS (arg0); 7736 } 7737 else 7738 { 7739 /* Strip any conversions that don't change the mode. This 7740 is safe for every expression, except for a comparison 7741 expression because its signedness is derived from its 7742 operands. 7743 7744 Note that this is done as an internal manipulation within 7745 the constant folder, in order to find the simplest 7746 representation of the arguments so that their form can be 7747 studied. In any cases, the appropriate type conversions 7748 should be put back in the tree that will get out of the 7749 constant folder. */ 7750 STRIP_NOPS (arg0); 7751 } 7752 7753 if (CONSTANT_CLASS_P (arg0)) 7754 { 7755 tree tem = const_unop (code, type, arg0); 7756 if (tem) 7757 { 7758 if (TREE_TYPE (tem) != type) 7759 tem = fold_convert_loc (loc, type, tem); 7760 return tem; 7761 } 7762 } 7763 } 7764 7765 tem = generic_simplify (loc, code, type, op0); 7766 if (tem) 7767 return tem; 7768 7769 if (TREE_CODE_CLASS (code) == tcc_unary) 7770 { 7771 if (TREE_CODE (arg0) == COMPOUND_EXPR) 7772 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), 7773 fold_build1_loc (loc, code, type, 7774 fold_convert_loc (loc, TREE_TYPE (op0), 7775 TREE_OPERAND (arg0, 1)))); 7776 else if (TREE_CODE (arg0) == COND_EXPR) 7777 { 7778 tree arg01 = TREE_OPERAND (arg0, 1); 7779 tree arg02 = TREE_OPERAND (arg0, 2); 7780 if (! VOID_TYPE_P (TREE_TYPE (arg01))) 7781 arg01 = fold_build1_loc (loc, code, type, 7782 fold_convert_loc (loc, 7783 TREE_TYPE (op0), arg01)); 7784 if (! VOID_TYPE_P (TREE_TYPE (arg02))) 7785 arg02 = fold_build1_loc (loc, code, type, 7786 fold_convert_loc (loc, 7787 TREE_TYPE (op0), arg02)); 7788 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0), 7789 arg01, arg02); 7790 7791 /* If this was a conversion, and all we did was to move into 7792 inside the COND_EXPR, bring it back out. But leave it if 7793 it is a conversion from integer to integer and the 7794 result precision is no wider than a word since such a 7795 conversion is cheap and may be optimized away by combine, 7796 while it couldn't if it were outside the COND_EXPR. Then return 7797 so we don't get into an infinite recursion loop taking the 7798 conversion out and then back in. */ 7799 7800 if ((CONVERT_EXPR_CODE_P (code) 7801 || code == NON_LVALUE_EXPR) 7802 && TREE_CODE (tem) == COND_EXPR 7803 && TREE_CODE (TREE_OPERAND (tem, 1)) == code 7804 && TREE_CODE (TREE_OPERAND (tem, 2)) == code 7805 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1)) 7806 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2)) 7807 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)) 7808 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0))) 7809 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem)) 7810 && (INTEGRAL_TYPE_P 7811 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)))) 7812 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD) 7813 || flag_syntax_only)) 7814 tem = build1_loc (loc, code, type, 7815 build3 (COND_EXPR, 7816 TREE_TYPE (TREE_OPERAND 7817 (TREE_OPERAND (tem, 1), 0)), 7818 TREE_OPERAND (tem, 0), 7819 TREE_OPERAND (TREE_OPERAND (tem, 1), 0), 7820 TREE_OPERAND (TREE_OPERAND (tem, 2), 7821 0))); 7822 return tem; 7823 } 7824 } 7825 7826 switch (code) 7827 { 7828 case NON_LVALUE_EXPR: 7829 if (!maybe_lvalue_p (op0)) 7830 return fold_convert_loc (loc, type, op0); 7831 return NULL_TREE; 7832 7833 CASE_CONVERT: 7834 case FLOAT_EXPR: 7835 case FIX_TRUNC_EXPR: 7836 if (COMPARISON_CLASS_P (op0)) 7837 { 7838 /* If we have (type) (a CMP b) and type is an integral type, return 7839 new expression involving the new type. Canonicalize 7840 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for 7841 non-integral type. 7842 Do not fold the result as that would not simplify further, also 7843 folding again results in recursions. */ 7844 if (TREE_CODE (type) == BOOLEAN_TYPE) 7845 return build2_loc (loc, TREE_CODE (op0), type, 7846 TREE_OPERAND (op0, 0), 7847 TREE_OPERAND (op0, 1)); 7848 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type) 7849 && TREE_CODE (type) != VECTOR_TYPE) 7850 return build3_loc (loc, COND_EXPR, type, op0, 7851 constant_boolean_node (true, type), 7852 constant_boolean_node (false, type)); 7853 } 7854 7855 /* Handle (T *)&A.B.C for A being of type T and B and C 7856 living at offset zero. This occurs frequently in 7857 C++ upcasting and then accessing the base. */ 7858 if (TREE_CODE (op0) == ADDR_EXPR 7859 && POINTER_TYPE_P (type) 7860 && handled_component_p (TREE_OPERAND (op0, 0))) 7861 { 7862 poly_int64 bitsize, bitpos; 7863 tree offset; 7864 machine_mode mode; 7865 int unsignedp, reversep, volatilep; 7866 tree base 7867 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos, 7868 &offset, &mode, &unsignedp, &reversep, 7869 &volatilep); 7870 /* If the reference was to a (constant) zero offset, we can use 7871 the address of the base if it has the same base type 7872 as the result type and the pointer type is unqualified. */ 7873 if (!offset 7874 && known_eq (bitpos, 0) 7875 && (TYPE_MAIN_VARIANT (TREE_TYPE (type)) 7876 == TYPE_MAIN_VARIANT (TREE_TYPE (base))) 7877 && TYPE_QUALS (type) == TYPE_UNQUALIFIED) 7878 return fold_convert_loc (loc, type, 7879 build_fold_addr_expr_loc (loc, base)); 7880 } 7881 7882 if (TREE_CODE (op0) == MODIFY_EXPR 7883 && TREE_CONSTANT (TREE_OPERAND (op0, 1)) 7884 /* Detect assigning a bitfield. */ 7885 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF 7886 && DECL_BIT_FIELD 7887 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1)))) 7888 { 7889 /* Don't leave an assignment inside a conversion 7890 unless assigning a bitfield. */ 7891 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1)); 7892 /* First do the assignment, then return converted constant. */ 7893 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem); 7894 TREE_NO_WARNING (tem) = 1; 7895 TREE_USED (tem) = 1; 7896 return tem; 7897 } 7898 7899 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer 7900 constants (if x has signed type, the sign bit cannot be set 7901 in c). This folds extension into the BIT_AND_EXPR. 7902 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they 7903 very likely don't have maximal range for their precision and this 7904 transformation effectively doesn't preserve non-maximal ranges. */ 7905 if (TREE_CODE (type) == INTEGER_TYPE 7906 && TREE_CODE (op0) == BIT_AND_EXPR 7907 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST) 7908 { 7909 tree and_expr = op0; 7910 tree and0 = TREE_OPERAND (and_expr, 0); 7911 tree and1 = TREE_OPERAND (and_expr, 1); 7912 int change = 0; 7913 7914 if (TYPE_UNSIGNED (TREE_TYPE (and_expr)) 7915 || (TYPE_PRECISION (type) 7916 <= TYPE_PRECISION (TREE_TYPE (and_expr)))) 7917 change = 1; 7918 else if (TYPE_PRECISION (TREE_TYPE (and1)) 7919 <= HOST_BITS_PER_WIDE_INT 7920 && tree_fits_uhwi_p (and1)) 7921 { 7922 unsigned HOST_WIDE_INT cst; 7923 7924 cst = tree_to_uhwi (and1); 7925 cst &= HOST_WIDE_INT_M1U 7926 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1); 7927 change = (cst == 0); 7928 if (change 7929 && !flag_syntax_only 7930 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0))) 7931 == ZERO_EXTEND)) 7932 { 7933 tree uns = unsigned_type_for (TREE_TYPE (and0)); 7934 and0 = fold_convert_loc (loc, uns, and0); 7935 and1 = fold_convert_loc (loc, uns, and1); 7936 } 7937 } 7938 if (change) 7939 { 7940 tem = force_fit_type (type, wi::to_widest (and1), 0, 7941 TREE_OVERFLOW (and1)); 7942 return fold_build2_loc (loc, BIT_AND_EXPR, type, 7943 fold_convert_loc (loc, type, and0), tem); 7944 } 7945 } 7946 7947 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new 7948 cast (T1)X will fold away. We assume that this happens when X itself 7949 is a cast. */ 7950 if (POINTER_TYPE_P (type) 7951 && TREE_CODE (arg0) == POINTER_PLUS_EXPR 7952 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0))) 7953 { 7954 tree arg00 = TREE_OPERAND (arg0, 0); 7955 tree arg01 = TREE_OPERAND (arg0, 1); 7956 7957 return fold_build_pointer_plus_loc 7958 (loc, fold_convert_loc (loc, type, arg00), arg01); 7959 } 7960 7961 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types 7962 of the same precision, and X is an integer type not narrower than 7963 types T1 or T2, i.e. the cast (T2)X isn't an extension. */ 7964 if (INTEGRAL_TYPE_P (type) 7965 && TREE_CODE (op0) == BIT_NOT_EXPR 7966 && INTEGRAL_TYPE_P (TREE_TYPE (op0)) 7967 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0)) 7968 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0))) 7969 { 7970 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0); 7971 if (INTEGRAL_TYPE_P (TREE_TYPE (tem)) 7972 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem))) 7973 return fold_build1_loc (loc, BIT_NOT_EXPR, type, 7974 fold_convert_loc (loc, type, tem)); 7975 } 7976 7977 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the 7978 type of X and Y (integer types only). */ 7979 if (INTEGRAL_TYPE_P (type) 7980 && TREE_CODE (op0) == MULT_EXPR 7981 && INTEGRAL_TYPE_P (TREE_TYPE (op0)) 7982 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0))) 7983 { 7984 /* Be careful not to introduce new overflows. */ 7985 tree mult_type; 7986 if (TYPE_OVERFLOW_WRAPS (type)) 7987 mult_type = type; 7988 else 7989 mult_type = unsigned_type_for (type); 7990 7991 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0))) 7992 { 7993 tem = fold_build2_loc (loc, MULT_EXPR, mult_type, 7994 fold_convert_loc (loc, mult_type, 7995 TREE_OPERAND (op0, 0)), 7996 fold_convert_loc (loc, mult_type, 7997 TREE_OPERAND (op0, 1))); 7998 return fold_convert_loc (loc, type, tem); 7999 } 8000 } 8001 8002 return NULL_TREE; 8003 8004 case VIEW_CONVERT_EXPR: 8005 if (TREE_CODE (op0) == MEM_REF) 8006 { 8007 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type)) 8008 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0))); 8009 tem = fold_build2_loc (loc, MEM_REF, type, 8010 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1)); 8011 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0); 8012 return tem; 8013 } 8014 8015 return NULL_TREE; 8016 8017 case NEGATE_EXPR: 8018 tem = fold_negate_expr (loc, arg0); 8019 if (tem) 8020 return fold_convert_loc (loc, type, tem); 8021 return NULL_TREE; 8022 8023 case ABS_EXPR: 8024 /* Convert fabs((double)float) into (double)fabsf(float). */ 8025 if (TREE_CODE (arg0) == NOP_EXPR 8026 && TREE_CODE (type) == REAL_TYPE) 8027 { 8028 tree targ0 = strip_float_extensions (arg0); 8029 if (targ0 != arg0) 8030 return fold_convert_loc (loc, type, 8031 fold_build1_loc (loc, ABS_EXPR, 8032 TREE_TYPE (targ0), 8033 targ0)); 8034 } 8035 return NULL_TREE; 8036 8037 case BIT_NOT_EXPR: 8038 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */ 8039 if (TREE_CODE (arg0) == BIT_XOR_EXPR 8040 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, 8041 fold_convert_loc (loc, type, 8042 TREE_OPERAND (arg0, 0))))) 8043 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem, 8044 fold_convert_loc (loc, type, 8045 TREE_OPERAND (arg0, 1))); 8046 else if (TREE_CODE (arg0) == BIT_XOR_EXPR 8047 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, 8048 fold_convert_loc (loc, type, 8049 TREE_OPERAND (arg0, 1))))) 8050 return fold_build2_loc (loc, BIT_XOR_EXPR, type, 8051 fold_convert_loc (loc, type, 8052 TREE_OPERAND (arg0, 0)), tem); 8053 8054 return NULL_TREE; 8055 8056 case TRUTH_NOT_EXPR: 8057 /* Note that the operand of this must be an int 8058 and its values must be 0 or 1. 8059 ("true" is a fixed value perhaps depending on the language, 8060 but we don't handle values other than 1 correctly yet.) */ 8061 tem = fold_truth_not_expr (loc, arg0); 8062 if (!tem) 8063 return NULL_TREE; 8064 return fold_convert_loc (loc, type, tem); 8065 8066 case INDIRECT_REF: 8067 /* Fold *&X to X if X is an lvalue. */ 8068 if (TREE_CODE (op0) == ADDR_EXPR) 8069 { 8070 tree op00 = TREE_OPERAND (op0, 0); 8071 if ((VAR_P (op00) 8072 || TREE_CODE (op00) == PARM_DECL 8073 || TREE_CODE (op00) == RESULT_DECL) 8074 && !TREE_READONLY (op00)) 8075 return op00; 8076 } 8077 return NULL_TREE; 8078 8079 default: 8080 return NULL_TREE; 8081 } /* switch (code) */ 8082 } 8083 8084 8085 /* If the operation was a conversion do _not_ mark a resulting constant 8086 with TREE_OVERFLOW if the original constant was not. These conversions 8087 have implementation defined behavior and retaining the TREE_OVERFLOW 8088 flag here would confuse later passes such as VRP. */ 8089 tree 8090 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code, 8091 tree type, tree op0) 8092 { 8093 tree res = fold_unary_loc (loc, code, type, op0); 8094 if (res 8095 && TREE_CODE (res) == INTEGER_CST 8096 && TREE_CODE (op0) == INTEGER_CST 8097 && CONVERT_EXPR_CODE_P (code)) 8098 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0); 8099 8100 return res; 8101 } 8102 8103 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with 8104 operands OP0 and OP1. LOC is the location of the resulting expression. 8105 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1. 8106 Return the folded expression if folding is successful. Otherwise, 8107 return NULL_TREE. */ 8108 static tree 8109 fold_truth_andor (location_t loc, enum tree_code code, tree type, 8110 tree arg0, tree arg1, tree op0, tree op1) 8111 { 8112 tree tem; 8113 8114 /* We only do these simplifications if we are optimizing. */ 8115 if (!optimize) 8116 return NULL_TREE; 8117 8118 /* Check for things like (A || B) && (A || C). We can convert this 8119 to A || (B && C). Note that either operator can be any of the four 8120 truth and/or operations and the transformation will still be 8121 valid. Also note that we only care about order for the 8122 ANDIF and ORIF operators. If B contains side effects, this 8123 might change the truth-value of A. */ 8124 if (TREE_CODE (arg0) == TREE_CODE (arg1) 8125 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR 8126 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR 8127 || TREE_CODE (arg0) == TRUTH_AND_EXPR 8128 || TREE_CODE (arg0) == TRUTH_OR_EXPR) 8129 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1))) 8130 { 8131 tree a00 = TREE_OPERAND (arg0, 0); 8132 tree a01 = TREE_OPERAND (arg0, 1); 8133 tree a10 = TREE_OPERAND (arg1, 0); 8134 tree a11 = TREE_OPERAND (arg1, 1); 8135 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR 8136 || TREE_CODE (arg0) == TRUTH_AND_EXPR) 8137 && (code == TRUTH_AND_EXPR 8138 || code == TRUTH_OR_EXPR)); 8139 8140 if (operand_equal_p (a00, a10, 0)) 8141 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, 8142 fold_build2_loc (loc, code, type, a01, a11)); 8143 else if (commutative && operand_equal_p (a00, a11, 0)) 8144 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, 8145 fold_build2_loc (loc, code, type, a01, a10)); 8146 else if (commutative && operand_equal_p (a01, a10, 0)) 8147 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01, 8148 fold_build2_loc (loc, code, type, a00, a11)); 8149 8150 /* This case if tricky because we must either have commutative 8151 operators or else A10 must not have side-effects. */ 8152 8153 else if ((commutative || ! TREE_SIDE_EFFECTS (a10)) 8154 && operand_equal_p (a01, a11, 0)) 8155 return fold_build2_loc (loc, TREE_CODE (arg0), type, 8156 fold_build2_loc (loc, code, type, a00, a10), 8157 a01); 8158 } 8159 8160 /* See if we can build a range comparison. */ 8161 if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0) 8162 return tem; 8163 8164 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR) 8165 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR)) 8166 { 8167 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true); 8168 if (tem) 8169 return fold_build2_loc (loc, code, type, tem, arg1); 8170 } 8171 8172 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR) 8173 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR)) 8174 { 8175 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false); 8176 if (tem) 8177 return fold_build2_loc (loc, code, type, arg0, tem); 8178 } 8179 8180 /* Check for the possibility of merging component references. If our 8181 lhs is another similar operation, try to merge its rhs with our 8182 rhs. Then try to merge our lhs and rhs. */ 8183 if (TREE_CODE (arg0) == code 8184 && (tem = fold_truth_andor_1 (loc, code, type, 8185 TREE_OPERAND (arg0, 1), arg1)) != 0) 8186 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem); 8187 8188 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0) 8189 return tem; 8190 8191 bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT; 8192 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT) != -1) 8193 logical_op_non_short_circuit 8194 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT); 8195 if (logical_op_non_short_circuit 8196 && !flag_sanitize_coverage 8197 && (code == TRUTH_AND_EXPR 8198 || code == TRUTH_ANDIF_EXPR 8199 || code == TRUTH_OR_EXPR 8200 || code == TRUTH_ORIF_EXPR)) 8201 { 8202 enum tree_code ncode, icode; 8203 8204 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR) 8205 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR; 8206 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR; 8207 8208 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)), 8209 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C)) 8210 We don't want to pack more than two leafs to a non-IF AND/OR 8211 expression. 8212 If tree-code of left-hand operand isn't an AND/OR-IF code and not 8213 equal to IF-CODE, then we don't want to add right-hand operand. 8214 If the inner right-hand side of left-hand operand has 8215 side-effects, or isn't simple, then we can't add to it, 8216 as otherwise we might destroy if-sequence. */ 8217 if (TREE_CODE (arg0) == icode 8218 && simple_operand_p_2 (arg1) 8219 /* Needed for sequence points to handle trappings, and 8220 side-effects. */ 8221 && simple_operand_p_2 (TREE_OPERAND (arg0, 1))) 8222 { 8223 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1), 8224 arg1); 8225 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0), 8226 tem); 8227 } 8228 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C), 8229 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */ 8230 else if (TREE_CODE (arg1) == icode 8231 && simple_operand_p_2 (arg0) 8232 /* Needed for sequence points to handle trappings, and 8233 side-effects. */ 8234 && simple_operand_p_2 (TREE_OPERAND (arg1, 0))) 8235 { 8236 tem = fold_build2_loc (loc, ncode, type, 8237 arg0, TREE_OPERAND (arg1, 0)); 8238 return fold_build2_loc (loc, icode, type, tem, 8239 TREE_OPERAND (arg1, 1)); 8240 } 8241 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B) 8242 into (A OR B). 8243 For sequence point consistancy, we need to check for trapping, 8244 and side-effects. */ 8245 else if (code == icode && simple_operand_p_2 (arg0) 8246 && simple_operand_p_2 (arg1)) 8247 return fold_build2_loc (loc, ncode, type, arg0, arg1); 8248 } 8249 8250 return NULL_TREE; 8251 } 8252 8253 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1 8254 by changing CODE to reduce the magnitude of constants involved in 8255 ARG0 of the comparison. 8256 Returns a canonicalized comparison tree if a simplification was 8257 possible, otherwise returns NULL_TREE. 8258 Set *STRICT_OVERFLOW_P to true if the canonicalization is only 8259 valid if signed overflow is undefined. */ 8260 8261 static tree 8262 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type, 8263 tree arg0, tree arg1, 8264 bool *strict_overflow_p) 8265 { 8266 enum tree_code code0 = TREE_CODE (arg0); 8267 tree t, cst0 = NULL_TREE; 8268 int sgn0; 8269 8270 /* Match A +- CST code arg1. We can change this only if overflow 8271 is undefined. */ 8272 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 8273 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))) 8274 /* In principle pointers also have undefined overflow behavior, 8275 but that causes problems elsewhere. */ 8276 && !POINTER_TYPE_P (TREE_TYPE (arg0)) 8277 && (code0 == MINUS_EXPR 8278 || code0 == PLUS_EXPR) 8279 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)) 8280 return NULL_TREE; 8281 8282 /* Identify the constant in arg0 and its sign. */ 8283 cst0 = TREE_OPERAND (arg0, 1); 8284 sgn0 = tree_int_cst_sgn (cst0); 8285 8286 /* Overflowed constants and zero will cause problems. */ 8287 if (integer_zerop (cst0) 8288 || TREE_OVERFLOW (cst0)) 8289 return NULL_TREE; 8290 8291 /* See if we can reduce the magnitude of the constant in 8292 arg0 by changing the comparison code. */ 8293 /* A - CST < arg1 -> A - CST-1 <= arg1. */ 8294 if (code == LT_EXPR 8295 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) 8296 code = LE_EXPR; 8297 /* A + CST > arg1 -> A + CST-1 >= arg1. */ 8298 else if (code == GT_EXPR 8299 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) 8300 code = GE_EXPR; 8301 /* A + CST <= arg1 -> A + CST-1 < arg1. */ 8302 else if (code == LE_EXPR 8303 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) 8304 code = LT_EXPR; 8305 /* A - CST >= arg1 -> A - CST-1 > arg1. */ 8306 else if (code == GE_EXPR 8307 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) 8308 code = GT_EXPR; 8309 else 8310 return NULL_TREE; 8311 *strict_overflow_p = true; 8312 8313 /* Now build the constant reduced in magnitude. But not if that 8314 would produce one outside of its types range. */ 8315 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0)) 8316 && ((sgn0 == 1 8317 && TYPE_MIN_VALUE (TREE_TYPE (cst0)) 8318 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0)))) 8319 || (sgn0 == -1 8320 && TYPE_MAX_VALUE (TREE_TYPE (cst0)) 8321 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0)))))) 8322 return NULL_TREE; 8323 8324 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR, 8325 cst0, build_int_cst (TREE_TYPE (cst0), 1)); 8326 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t); 8327 t = fold_convert (TREE_TYPE (arg1), t); 8328 8329 return fold_build2_loc (loc, code, type, t, arg1); 8330 } 8331 8332 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined 8333 overflow further. Try to decrease the magnitude of constants involved 8334 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa 8335 and put sole constants at the second argument position. 8336 Returns the canonicalized tree if changed, otherwise NULL_TREE. */ 8337 8338 static tree 8339 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type, 8340 tree arg0, tree arg1) 8341 { 8342 tree t; 8343 bool strict_overflow_p; 8344 const char * const warnmsg = G_("assuming signed overflow does not occur " 8345 "when reducing constant in comparison"); 8346 8347 /* Try canonicalization by simplifying arg0. */ 8348 strict_overflow_p = false; 8349 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1, 8350 &strict_overflow_p); 8351 if (t) 8352 { 8353 if (strict_overflow_p) 8354 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); 8355 return t; 8356 } 8357 8358 /* Try canonicalization by simplifying arg1 using the swapped 8359 comparison. */ 8360 code = swap_tree_comparison (code); 8361 strict_overflow_p = false; 8362 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0, 8363 &strict_overflow_p); 8364 if (t && strict_overflow_p) 8365 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); 8366 return t; 8367 } 8368 8369 /* Return whether BASE + OFFSET + BITPOS may wrap around the address 8370 space. This is used to avoid issuing overflow warnings for 8371 expressions like &p->x which can not wrap. */ 8372 8373 static bool 8374 pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos) 8375 { 8376 if (!POINTER_TYPE_P (TREE_TYPE (base))) 8377 return true; 8378 8379 if (maybe_lt (bitpos, 0)) 8380 return true; 8381 8382 poly_wide_int wi_offset; 8383 int precision = TYPE_PRECISION (TREE_TYPE (base)); 8384 if (offset == NULL_TREE) 8385 wi_offset = wi::zero (precision); 8386 else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset)) 8387 return true; 8388 else 8389 wi_offset = wi::to_poly_wide (offset); 8390 8391 bool overflow; 8392 poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos), 8393 precision); 8394 poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow); 8395 if (overflow) 8396 return true; 8397 8398 poly_uint64 total_hwi, size; 8399 if (!total.to_uhwi (&total_hwi) 8400 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))), 8401 &size) 8402 || known_eq (size, 0U)) 8403 return true; 8404 8405 if (known_le (total_hwi, size)) 8406 return false; 8407 8408 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an 8409 array. */ 8410 if (TREE_CODE (base) == ADDR_EXPR 8411 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))), 8412 &size) 8413 && maybe_ne (size, 0U) 8414 && known_le (total_hwi, size)) 8415 return false; 8416 8417 return true; 8418 } 8419 8420 /* Return a positive integer when the symbol DECL is known to have 8421 a nonzero address, zero when it's known not to (e.g., it's a weak 8422 symbol), and a negative integer when the symbol is not yet in the 8423 symbol table and so whether or not its address is zero is unknown. 8424 For function local objects always return positive integer. */ 8425 static int 8426 maybe_nonzero_address (tree decl) 8427 { 8428 if (DECL_P (decl) && decl_in_symtab_p (decl)) 8429 if (struct symtab_node *symbol = symtab_node::get_create (decl)) 8430 return symbol->nonzero_address (); 8431 8432 /* Function local objects are never NULL. */ 8433 if (DECL_P (decl) 8434 && (DECL_CONTEXT (decl) 8435 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL 8436 && auto_var_in_fn_p (decl, DECL_CONTEXT (decl)))) 8437 return 1; 8438 8439 return -1; 8440 } 8441 8442 /* Subroutine of fold_binary. This routine performs all of the 8443 transformations that are common to the equality/inequality 8444 operators (EQ_EXPR and NE_EXPR) and the ordering operators 8445 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than 8446 fold_binary should call fold_binary. Fold a comparison with 8447 tree code CODE and type TYPE with operands OP0 and OP1. Return 8448 the folded comparison or NULL_TREE. */ 8449 8450 static tree 8451 fold_comparison (location_t loc, enum tree_code code, tree type, 8452 tree op0, tree op1) 8453 { 8454 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR); 8455 tree arg0, arg1, tem; 8456 8457 arg0 = op0; 8458 arg1 = op1; 8459 8460 STRIP_SIGN_NOPS (arg0); 8461 STRIP_SIGN_NOPS (arg1); 8462 8463 /* For comparisons of pointers we can decompose it to a compile time 8464 comparison of the base objects and the offsets into the object. 8465 This requires at least one operand being an ADDR_EXPR or a 8466 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */ 8467 if (POINTER_TYPE_P (TREE_TYPE (arg0)) 8468 && (TREE_CODE (arg0) == ADDR_EXPR 8469 || TREE_CODE (arg1) == ADDR_EXPR 8470 || TREE_CODE (arg0) == POINTER_PLUS_EXPR 8471 || TREE_CODE (arg1) == POINTER_PLUS_EXPR)) 8472 { 8473 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE; 8474 poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0; 8475 machine_mode mode; 8476 int volatilep, reversep, unsignedp; 8477 bool indirect_base0 = false, indirect_base1 = false; 8478 8479 /* Get base and offset for the access. Strip ADDR_EXPR for 8480 get_inner_reference, but put it back by stripping INDIRECT_REF 8481 off the base object if possible. indirect_baseN will be true 8482 if baseN is not an address but refers to the object itself. */ 8483 base0 = arg0; 8484 if (TREE_CODE (arg0) == ADDR_EXPR) 8485 { 8486 base0 8487 = get_inner_reference (TREE_OPERAND (arg0, 0), 8488 &bitsize, &bitpos0, &offset0, &mode, 8489 &unsignedp, &reversep, &volatilep); 8490 if (TREE_CODE (base0) == INDIRECT_REF) 8491 base0 = TREE_OPERAND (base0, 0); 8492 else 8493 indirect_base0 = true; 8494 } 8495 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR) 8496 { 8497 base0 = TREE_OPERAND (arg0, 0); 8498 STRIP_SIGN_NOPS (base0); 8499 if (TREE_CODE (base0) == ADDR_EXPR) 8500 { 8501 base0 8502 = get_inner_reference (TREE_OPERAND (base0, 0), 8503 &bitsize, &bitpos0, &offset0, &mode, 8504 &unsignedp, &reversep, &volatilep); 8505 if (TREE_CODE (base0) == INDIRECT_REF) 8506 base0 = TREE_OPERAND (base0, 0); 8507 else 8508 indirect_base0 = true; 8509 } 8510 if (offset0 == NULL_TREE || integer_zerop (offset0)) 8511 offset0 = TREE_OPERAND (arg0, 1); 8512 else 8513 offset0 = size_binop (PLUS_EXPR, offset0, 8514 TREE_OPERAND (arg0, 1)); 8515 if (poly_int_tree_p (offset0)) 8516 { 8517 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0), 8518 TYPE_PRECISION (sizetype)); 8519 tem <<= LOG2_BITS_PER_UNIT; 8520 tem += bitpos0; 8521 if (tem.to_shwi (&bitpos0)) 8522 offset0 = NULL_TREE; 8523 } 8524 } 8525 8526 base1 = arg1; 8527 if (TREE_CODE (arg1) == ADDR_EXPR) 8528 { 8529 base1 8530 = get_inner_reference (TREE_OPERAND (arg1, 0), 8531 &bitsize, &bitpos1, &offset1, &mode, 8532 &unsignedp, &reversep, &volatilep); 8533 if (TREE_CODE (base1) == INDIRECT_REF) 8534 base1 = TREE_OPERAND (base1, 0); 8535 else 8536 indirect_base1 = true; 8537 } 8538 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR) 8539 { 8540 base1 = TREE_OPERAND (arg1, 0); 8541 STRIP_SIGN_NOPS (base1); 8542 if (TREE_CODE (base1) == ADDR_EXPR) 8543 { 8544 base1 8545 = get_inner_reference (TREE_OPERAND (base1, 0), 8546 &bitsize, &bitpos1, &offset1, &mode, 8547 &unsignedp, &reversep, &volatilep); 8548 if (TREE_CODE (base1) == INDIRECT_REF) 8549 base1 = TREE_OPERAND (base1, 0); 8550 else 8551 indirect_base1 = true; 8552 } 8553 if (offset1 == NULL_TREE || integer_zerop (offset1)) 8554 offset1 = TREE_OPERAND (arg1, 1); 8555 else 8556 offset1 = size_binop (PLUS_EXPR, offset1, 8557 TREE_OPERAND (arg1, 1)); 8558 if (poly_int_tree_p (offset1)) 8559 { 8560 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1), 8561 TYPE_PRECISION (sizetype)); 8562 tem <<= LOG2_BITS_PER_UNIT; 8563 tem += bitpos1; 8564 if (tem.to_shwi (&bitpos1)) 8565 offset1 = NULL_TREE; 8566 } 8567 } 8568 8569 /* If we have equivalent bases we might be able to simplify. */ 8570 if (indirect_base0 == indirect_base1 8571 && operand_equal_p (base0, base1, 8572 indirect_base0 ? OEP_ADDRESS_OF : 0)) 8573 { 8574 /* We can fold this expression to a constant if the non-constant 8575 offset parts are equal. */ 8576 if ((offset0 == offset1 8577 || (offset0 && offset1 8578 && operand_equal_p (offset0, offset1, 0))) 8579 && (equality_code 8580 || (indirect_base0 8581 && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) 8582 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 8583 { 8584 if (!equality_code 8585 && maybe_ne (bitpos0, bitpos1) 8586 && (pointer_may_wrap_p (base0, offset0, bitpos0) 8587 || pointer_may_wrap_p (base1, offset1, bitpos1))) 8588 fold_overflow_warning (("assuming pointer wraparound does not " 8589 "occur when comparing P +- C1 with " 8590 "P +- C2"), 8591 WARN_STRICT_OVERFLOW_CONDITIONAL); 8592 8593 switch (code) 8594 { 8595 case EQ_EXPR: 8596 if (known_eq (bitpos0, bitpos1)) 8597 return constant_boolean_node (true, type); 8598 if (known_ne (bitpos0, bitpos1)) 8599 return constant_boolean_node (false, type); 8600 break; 8601 case NE_EXPR: 8602 if (known_ne (bitpos0, bitpos1)) 8603 return constant_boolean_node (true, type); 8604 if (known_eq (bitpos0, bitpos1)) 8605 return constant_boolean_node (false, type); 8606 break; 8607 case LT_EXPR: 8608 if (known_lt (bitpos0, bitpos1)) 8609 return constant_boolean_node (true, type); 8610 if (known_ge (bitpos0, bitpos1)) 8611 return constant_boolean_node (false, type); 8612 break; 8613 case LE_EXPR: 8614 if (known_le (bitpos0, bitpos1)) 8615 return constant_boolean_node (true, type); 8616 if (known_gt (bitpos0, bitpos1)) 8617 return constant_boolean_node (false, type); 8618 break; 8619 case GE_EXPR: 8620 if (known_ge (bitpos0, bitpos1)) 8621 return constant_boolean_node (true, type); 8622 if (known_lt (bitpos0, bitpos1)) 8623 return constant_boolean_node (false, type); 8624 break; 8625 case GT_EXPR: 8626 if (known_gt (bitpos0, bitpos1)) 8627 return constant_boolean_node (true, type); 8628 if (known_le (bitpos0, bitpos1)) 8629 return constant_boolean_node (false, type); 8630 break; 8631 default:; 8632 } 8633 } 8634 /* We can simplify the comparison to a comparison of the variable 8635 offset parts if the constant offset parts are equal. 8636 Be careful to use signed sizetype here because otherwise we 8637 mess with array offsets in the wrong way. This is possible 8638 because pointer arithmetic is restricted to retain within an 8639 object and overflow on pointer differences is undefined as of 8640 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */ 8641 else if (known_eq (bitpos0, bitpos1) 8642 && (equality_code 8643 || (indirect_base0 8644 && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) 8645 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 8646 { 8647 /* By converting to signed sizetype we cover middle-end pointer 8648 arithmetic which operates on unsigned pointer types of size 8649 type size and ARRAY_REF offsets which are properly sign or 8650 zero extended from their type in case it is narrower than 8651 sizetype. */ 8652 if (offset0 == NULL_TREE) 8653 offset0 = build_int_cst (ssizetype, 0); 8654 else 8655 offset0 = fold_convert_loc (loc, ssizetype, offset0); 8656 if (offset1 == NULL_TREE) 8657 offset1 = build_int_cst (ssizetype, 0); 8658 else 8659 offset1 = fold_convert_loc (loc, ssizetype, offset1); 8660 8661 if (!equality_code 8662 && (pointer_may_wrap_p (base0, offset0, bitpos0) 8663 || pointer_may_wrap_p (base1, offset1, bitpos1))) 8664 fold_overflow_warning (("assuming pointer wraparound does not " 8665 "occur when comparing P +- C1 with " 8666 "P +- C2"), 8667 WARN_STRICT_OVERFLOW_COMPARISON); 8668 8669 return fold_build2_loc (loc, code, type, offset0, offset1); 8670 } 8671 } 8672 /* For equal offsets we can simplify to a comparison of the 8673 base addresses. */ 8674 else if (known_eq (bitpos0, bitpos1) 8675 && (indirect_base0 8676 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0) 8677 && (indirect_base1 8678 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1) 8679 && ((offset0 == offset1) 8680 || (offset0 && offset1 8681 && operand_equal_p (offset0, offset1, 0)))) 8682 { 8683 if (indirect_base0) 8684 base0 = build_fold_addr_expr_loc (loc, base0); 8685 if (indirect_base1) 8686 base1 = build_fold_addr_expr_loc (loc, base1); 8687 return fold_build2_loc (loc, code, type, base0, base1); 8688 } 8689 /* Comparison between an ordinary (non-weak) symbol and a null 8690 pointer can be eliminated since such symbols must have a non 8691 null address. In C, relational expressions between pointers 8692 to objects and null pointers are undefined. The results 8693 below follow the C++ rules with the additional property that 8694 every object pointer compares greater than a null pointer. 8695 */ 8696 else if (((DECL_P (base0) 8697 && maybe_nonzero_address (base0) > 0 8698 /* Avoid folding references to struct members at offset 0 to 8699 prevent tests like '&ptr->firstmember == 0' from getting 8700 eliminated. When ptr is null, although the -> expression 8701 is strictly speaking invalid, GCC retains it as a matter 8702 of QoI. See PR c/44555. */ 8703 && (offset0 == NULL_TREE && known_ne (bitpos0, 0))) 8704 || CONSTANT_CLASS_P (base0)) 8705 && indirect_base0 8706 /* The caller guarantees that when one of the arguments is 8707 constant (i.e., null in this case) it is second. */ 8708 && integer_zerop (arg1)) 8709 { 8710 switch (code) 8711 { 8712 case EQ_EXPR: 8713 case LE_EXPR: 8714 case LT_EXPR: 8715 return constant_boolean_node (false, type); 8716 case GE_EXPR: 8717 case GT_EXPR: 8718 case NE_EXPR: 8719 return constant_boolean_node (true, type); 8720 default: 8721 gcc_unreachable (); 8722 } 8723 } 8724 } 8725 8726 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to 8727 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if 8728 the resulting offset is smaller in absolute value than the 8729 original one and has the same sign. */ 8730 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 8731 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)) 8732 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) 8733 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 8734 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))) 8735 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR) 8736 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST 8737 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1)))) 8738 { 8739 tree const1 = TREE_OPERAND (arg0, 1); 8740 tree const2 = TREE_OPERAND (arg1, 1); 8741 tree variable1 = TREE_OPERAND (arg0, 0); 8742 tree variable2 = TREE_OPERAND (arg1, 0); 8743 tree cst; 8744 const char * const warnmsg = G_("assuming signed overflow does not " 8745 "occur when combining constants around " 8746 "a comparison"); 8747 8748 /* Put the constant on the side where it doesn't overflow and is 8749 of lower absolute value and of same sign than before. */ 8750 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) 8751 ? MINUS_EXPR : PLUS_EXPR, 8752 const2, const1); 8753 if (!TREE_OVERFLOW (cst) 8754 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2) 8755 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2)) 8756 { 8757 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 8758 return fold_build2_loc (loc, code, type, 8759 variable1, 8760 fold_build2_loc (loc, TREE_CODE (arg1), 8761 TREE_TYPE (arg1), 8762 variable2, cst)); 8763 } 8764 8765 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) 8766 ? MINUS_EXPR : PLUS_EXPR, 8767 const1, const2); 8768 if (!TREE_OVERFLOW (cst) 8769 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1) 8770 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1)) 8771 { 8772 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); 8773 return fold_build2_loc (loc, code, type, 8774 fold_build2_loc (loc, TREE_CODE (arg0), 8775 TREE_TYPE (arg0), 8776 variable1, cst), 8777 variable2); 8778 } 8779 } 8780 8781 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1); 8782 if (tem) 8783 return tem; 8784 8785 /* If we are comparing an expression that just has comparisons 8786 of two integer values, arithmetic expressions of those comparisons, 8787 and constants, we can simplify it. There are only three cases 8788 to check: the two values can either be equal, the first can be 8789 greater, or the second can be greater. Fold the expression for 8790 those three values. Since each value must be 0 or 1, we have 8791 eight possibilities, each of which corresponds to the constant 0 8792 or 1 or one of the six possible comparisons. 8793 8794 This handles common cases like (a > b) == 0 but also handles 8795 expressions like ((x > y) - (y > x)) > 0, which supposedly 8796 occur in macroized code. */ 8797 8798 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST) 8799 { 8800 tree cval1 = 0, cval2 = 0; 8801 8802 if (twoval_comparison_p (arg0, &cval1, &cval2) 8803 /* Don't handle degenerate cases here; they should already 8804 have been handled anyway. */ 8805 && cval1 != 0 && cval2 != 0 8806 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2)) 8807 && TREE_TYPE (cval1) == TREE_TYPE (cval2) 8808 && INTEGRAL_TYPE_P (TREE_TYPE (cval1)) 8809 && TYPE_MAX_VALUE (TREE_TYPE (cval1)) 8810 && TYPE_MAX_VALUE (TREE_TYPE (cval2)) 8811 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)), 8812 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0)) 8813 { 8814 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1)); 8815 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1)); 8816 8817 /* We can't just pass T to eval_subst in case cval1 or cval2 8818 was the same as ARG1. */ 8819 8820 tree high_result 8821 = fold_build2_loc (loc, code, type, 8822 eval_subst (loc, arg0, cval1, maxval, 8823 cval2, minval), 8824 arg1); 8825 tree equal_result 8826 = fold_build2_loc (loc, code, type, 8827 eval_subst (loc, arg0, cval1, maxval, 8828 cval2, maxval), 8829 arg1); 8830 tree low_result 8831 = fold_build2_loc (loc, code, type, 8832 eval_subst (loc, arg0, cval1, minval, 8833 cval2, maxval), 8834 arg1); 8835 8836 /* All three of these results should be 0 or 1. Confirm they are. 8837 Then use those values to select the proper code to use. */ 8838 8839 if (TREE_CODE (high_result) == INTEGER_CST 8840 && TREE_CODE (equal_result) == INTEGER_CST 8841 && TREE_CODE (low_result) == INTEGER_CST) 8842 { 8843 /* Make a 3-bit mask with the high-order bit being the 8844 value for `>', the next for '=', and the low for '<'. */ 8845 switch ((integer_onep (high_result) * 4) 8846 + (integer_onep (equal_result) * 2) 8847 + integer_onep (low_result)) 8848 { 8849 case 0: 8850 /* Always false. */ 8851 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 8852 case 1: 8853 code = LT_EXPR; 8854 break; 8855 case 2: 8856 code = EQ_EXPR; 8857 break; 8858 case 3: 8859 code = LE_EXPR; 8860 break; 8861 case 4: 8862 code = GT_EXPR; 8863 break; 8864 case 5: 8865 code = NE_EXPR; 8866 break; 8867 case 6: 8868 code = GE_EXPR; 8869 break; 8870 case 7: 8871 /* Always true. */ 8872 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 8873 } 8874 8875 return fold_build2_loc (loc, code, type, cval1, cval2); 8876 } 8877 } 8878 } 8879 8880 return NULL_TREE; 8881 } 8882 8883 8884 /* Subroutine of fold_binary. Optimize complex multiplications of the 8885 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The 8886 argument EXPR represents the expression "z" of type TYPE. */ 8887 8888 static tree 8889 fold_mult_zconjz (location_t loc, tree type, tree expr) 8890 { 8891 tree itype = TREE_TYPE (type); 8892 tree rpart, ipart, tem; 8893 8894 if (TREE_CODE (expr) == COMPLEX_EXPR) 8895 { 8896 rpart = TREE_OPERAND (expr, 0); 8897 ipart = TREE_OPERAND (expr, 1); 8898 } 8899 else if (TREE_CODE (expr) == COMPLEX_CST) 8900 { 8901 rpart = TREE_REALPART (expr); 8902 ipart = TREE_IMAGPART (expr); 8903 } 8904 else 8905 { 8906 expr = save_expr (expr); 8907 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr); 8908 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr); 8909 } 8910 8911 rpart = save_expr (rpart); 8912 ipart = save_expr (ipart); 8913 tem = fold_build2_loc (loc, PLUS_EXPR, itype, 8914 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart), 8915 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart)); 8916 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem, 8917 build_zero_cst (itype)); 8918 } 8919 8920 8921 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or 8922 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return 8923 true if successful. */ 8924 8925 static bool 8926 vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts) 8927 { 8928 unsigned HOST_WIDE_INT i, nunits; 8929 8930 if (TREE_CODE (arg) == VECTOR_CST 8931 && VECTOR_CST_NELTS (arg).is_constant (&nunits)) 8932 { 8933 for (i = 0; i < nunits; ++i) 8934 elts[i] = VECTOR_CST_ELT (arg, i); 8935 } 8936 else if (TREE_CODE (arg) == CONSTRUCTOR) 8937 { 8938 constructor_elt *elt; 8939 8940 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt) 8941 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE) 8942 return false; 8943 else 8944 elts[i] = elt->value; 8945 } 8946 else 8947 return false; 8948 for (; i < nelts; i++) 8949 elts[i] 8950 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node); 8951 return true; 8952 } 8953 8954 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL 8955 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful, 8956 NULL_TREE otherwise. */ 8957 8958 static tree 8959 fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel) 8960 { 8961 unsigned int i; 8962 unsigned HOST_WIDE_INT nelts; 8963 bool need_ctor = false; 8964 8965 if (!sel.length ().is_constant (&nelts)) 8966 return NULL_TREE; 8967 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts) 8968 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts) 8969 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts)); 8970 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type) 8971 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type)) 8972 return NULL_TREE; 8973 8974 tree *in_elts = XALLOCAVEC (tree, nelts * 2); 8975 if (!vec_cst_ctor_to_array (arg0, nelts, in_elts) 8976 || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts)) 8977 return NULL_TREE; 8978 8979 tree_vector_builder out_elts (type, nelts, 1); 8980 for (i = 0; i < nelts; i++) 8981 { 8982 HOST_WIDE_INT index; 8983 if (!sel[i].is_constant (&index)) 8984 return NULL_TREE; 8985 if (!CONSTANT_CLASS_P (in_elts[index])) 8986 need_ctor = true; 8987 out_elts.quick_push (unshare_expr (in_elts[index])); 8988 } 8989 8990 if (need_ctor) 8991 { 8992 vec<constructor_elt, va_gc> *v; 8993 vec_alloc (v, nelts); 8994 for (i = 0; i < nelts; i++) 8995 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]); 8996 return build_constructor (type, v); 8997 } 8998 else 8999 return out_elts.build (); 9000 } 9001 9002 /* Try to fold a pointer difference of type TYPE two address expressions of 9003 array references AREF0 and AREF1 using location LOC. Return a 9004 simplified expression for the difference or NULL_TREE. */ 9005 9006 static tree 9007 fold_addr_of_array_ref_difference (location_t loc, tree type, 9008 tree aref0, tree aref1, 9009 bool use_pointer_diff) 9010 { 9011 tree base0 = TREE_OPERAND (aref0, 0); 9012 tree base1 = TREE_OPERAND (aref1, 0); 9013 tree base_offset = build_int_cst (type, 0); 9014 9015 /* If the bases are array references as well, recurse. If the bases 9016 are pointer indirections compute the difference of the pointers. 9017 If the bases are equal, we are set. */ 9018 if ((TREE_CODE (base0) == ARRAY_REF 9019 && TREE_CODE (base1) == ARRAY_REF 9020 && (base_offset 9021 = fold_addr_of_array_ref_difference (loc, type, base0, base1, 9022 use_pointer_diff))) 9023 || (INDIRECT_REF_P (base0) 9024 && INDIRECT_REF_P (base1) 9025 && (base_offset 9026 = use_pointer_diff 9027 ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type, 9028 TREE_OPERAND (base0, 0), 9029 TREE_OPERAND (base1, 0)) 9030 : fold_binary_loc (loc, MINUS_EXPR, type, 9031 fold_convert (type, 9032 TREE_OPERAND (base0, 0)), 9033 fold_convert (type, 9034 TREE_OPERAND (base1, 0))))) 9035 || operand_equal_p (base0, base1, OEP_ADDRESS_OF)) 9036 { 9037 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1)); 9038 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1)); 9039 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0)); 9040 tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1); 9041 return fold_build2_loc (loc, PLUS_EXPR, type, 9042 base_offset, 9043 fold_build2_loc (loc, MULT_EXPR, type, 9044 diff, esz)); 9045 } 9046 return NULL_TREE; 9047 } 9048 9049 /* If the real or vector real constant CST of type TYPE has an exact 9050 inverse, return it, else return NULL. */ 9051 9052 tree 9053 exact_inverse (tree type, tree cst) 9054 { 9055 REAL_VALUE_TYPE r; 9056 tree unit_type; 9057 machine_mode mode; 9058 9059 switch (TREE_CODE (cst)) 9060 { 9061 case REAL_CST: 9062 r = TREE_REAL_CST (cst); 9063 9064 if (exact_real_inverse (TYPE_MODE (type), &r)) 9065 return build_real (type, r); 9066 9067 return NULL_TREE; 9068 9069 case VECTOR_CST: 9070 { 9071 unit_type = TREE_TYPE (type); 9072 mode = TYPE_MODE (unit_type); 9073 9074 tree_vector_builder elts; 9075 if (!elts.new_unary_operation (type, cst, false)) 9076 return NULL_TREE; 9077 unsigned int count = elts.encoded_nelts (); 9078 for (unsigned int i = 0; i < count; ++i) 9079 { 9080 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i)); 9081 if (!exact_real_inverse (mode, &r)) 9082 return NULL_TREE; 9083 elts.quick_push (build_real (unit_type, r)); 9084 } 9085 9086 return elts.build (); 9087 } 9088 9089 default: 9090 return NULL_TREE; 9091 } 9092 } 9093 9094 /* Mask out the tz least significant bits of X of type TYPE where 9095 tz is the number of trailing zeroes in Y. */ 9096 static wide_int 9097 mask_with_tz (tree type, const wide_int &x, const wide_int &y) 9098 { 9099 int tz = wi::ctz (y); 9100 if (tz > 0) 9101 return wi::mask (tz, true, TYPE_PRECISION (type)) & x; 9102 return x; 9103 } 9104 9105 /* Return true when T is an address and is known to be nonzero. 9106 For floating point we further ensure that T is not denormal. 9107 Similar logic is present in nonzero_address in rtlanal.h. 9108 9109 If the return value is based on the assumption that signed overflow 9110 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 9111 change *STRICT_OVERFLOW_P. */ 9112 9113 static bool 9114 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p) 9115 { 9116 tree type = TREE_TYPE (t); 9117 enum tree_code code; 9118 9119 /* Doing something useful for floating point would need more work. */ 9120 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type)) 9121 return false; 9122 9123 code = TREE_CODE (t); 9124 switch (TREE_CODE_CLASS (code)) 9125 { 9126 case tcc_unary: 9127 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), 9128 strict_overflow_p); 9129 case tcc_binary: 9130 case tcc_comparison: 9131 return tree_binary_nonzero_warnv_p (code, type, 9132 TREE_OPERAND (t, 0), 9133 TREE_OPERAND (t, 1), 9134 strict_overflow_p); 9135 case tcc_constant: 9136 case tcc_declaration: 9137 case tcc_reference: 9138 return tree_single_nonzero_warnv_p (t, strict_overflow_p); 9139 9140 default: 9141 break; 9142 } 9143 9144 switch (code) 9145 { 9146 case TRUTH_NOT_EXPR: 9147 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), 9148 strict_overflow_p); 9149 9150 case TRUTH_AND_EXPR: 9151 case TRUTH_OR_EXPR: 9152 case TRUTH_XOR_EXPR: 9153 return tree_binary_nonzero_warnv_p (code, type, 9154 TREE_OPERAND (t, 0), 9155 TREE_OPERAND (t, 1), 9156 strict_overflow_p); 9157 9158 case COND_EXPR: 9159 case CONSTRUCTOR: 9160 case OBJ_TYPE_REF: 9161 case ASSERT_EXPR: 9162 case ADDR_EXPR: 9163 case WITH_SIZE_EXPR: 9164 case SSA_NAME: 9165 return tree_single_nonzero_warnv_p (t, strict_overflow_p); 9166 9167 case COMPOUND_EXPR: 9168 case MODIFY_EXPR: 9169 case BIND_EXPR: 9170 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), 9171 strict_overflow_p); 9172 9173 case SAVE_EXPR: 9174 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0), 9175 strict_overflow_p); 9176 9177 case CALL_EXPR: 9178 { 9179 tree fndecl = get_callee_fndecl (t); 9180 if (!fndecl) return false; 9181 if (flag_delete_null_pointer_checks && !flag_check_new 9182 && DECL_IS_OPERATOR_NEW (fndecl) 9183 && !TREE_NOTHROW (fndecl)) 9184 return true; 9185 if (flag_delete_null_pointer_checks 9186 && lookup_attribute ("returns_nonnull", 9187 TYPE_ATTRIBUTES (TREE_TYPE (fndecl)))) 9188 return true; 9189 return alloca_call_p (t); 9190 } 9191 9192 default: 9193 break; 9194 } 9195 return false; 9196 } 9197 9198 /* Return true when T is an address and is known to be nonzero. 9199 Handle warnings about undefined signed overflow. */ 9200 9201 bool 9202 tree_expr_nonzero_p (tree t) 9203 { 9204 bool ret, strict_overflow_p; 9205 9206 strict_overflow_p = false; 9207 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p); 9208 if (strict_overflow_p) 9209 fold_overflow_warning (("assuming signed overflow does not occur when " 9210 "determining that expression is always " 9211 "non-zero"), 9212 WARN_STRICT_OVERFLOW_MISC); 9213 return ret; 9214 } 9215 9216 /* Return true if T is known not to be equal to an integer W. */ 9217 9218 bool 9219 expr_not_equal_to (tree t, const wide_int &w) 9220 { 9221 wide_int min, max, nz; 9222 value_range_type rtype; 9223 switch (TREE_CODE (t)) 9224 { 9225 case INTEGER_CST: 9226 return wi::to_wide (t) != w; 9227 9228 case SSA_NAME: 9229 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) 9230 return false; 9231 rtype = get_range_info (t, &min, &max); 9232 if (rtype == VR_RANGE) 9233 { 9234 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t)))) 9235 return true; 9236 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t)))) 9237 return true; 9238 } 9239 else if (rtype == VR_ANTI_RANGE 9240 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t))) 9241 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t)))) 9242 return true; 9243 /* If T has some known zero bits and W has any of those bits set, 9244 then T is known not to be equal to W. */ 9245 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)), 9246 TYPE_PRECISION (TREE_TYPE (t))), 0)) 9247 return true; 9248 return false; 9249 9250 default: 9251 return false; 9252 } 9253 } 9254 9255 /* Fold a binary expression of code CODE and type TYPE with operands 9256 OP0 and OP1. LOC is the location of the resulting expression. 9257 Return the folded expression if folding is successful. Otherwise, 9258 return NULL_TREE. */ 9259 9260 tree 9261 fold_binary_loc (location_t loc, enum tree_code code, tree type, 9262 tree op0, tree op1) 9263 { 9264 enum tree_code_class kind = TREE_CODE_CLASS (code); 9265 tree arg0, arg1, tem; 9266 tree t1 = NULL_TREE; 9267 bool strict_overflow_p; 9268 unsigned int prec; 9269 9270 gcc_assert (IS_EXPR_CODE_CLASS (kind) 9271 && TREE_CODE_LENGTH (code) == 2 9272 && op0 != NULL_TREE 9273 && op1 != NULL_TREE); 9274 9275 arg0 = op0; 9276 arg1 = op1; 9277 9278 /* Strip any conversions that don't change the mode. This is 9279 safe for every expression, except for a comparison expression 9280 because its signedness is derived from its operands. So, in 9281 the latter case, only strip conversions that don't change the 9282 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments 9283 preserved. 9284 9285 Note that this is done as an internal manipulation within the 9286 constant folder, in order to find the simplest representation 9287 of the arguments so that their form can be studied. In any 9288 cases, the appropriate type conversions should be put back in 9289 the tree that will get out of the constant folder. */ 9290 9291 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR) 9292 { 9293 STRIP_SIGN_NOPS (arg0); 9294 STRIP_SIGN_NOPS (arg1); 9295 } 9296 else 9297 { 9298 STRIP_NOPS (arg0); 9299 STRIP_NOPS (arg1); 9300 } 9301 9302 /* Note that TREE_CONSTANT isn't enough: static var addresses are 9303 constant but we can't do arithmetic on them. */ 9304 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1)) 9305 { 9306 tem = const_binop (code, type, arg0, arg1); 9307 if (tem != NULL_TREE) 9308 { 9309 if (TREE_TYPE (tem) != type) 9310 tem = fold_convert_loc (loc, type, tem); 9311 return tem; 9312 } 9313 } 9314 9315 /* If this is a commutative operation, and ARG0 is a constant, move it 9316 to ARG1 to reduce the number of tests below. */ 9317 if (commutative_tree_code (code) 9318 && tree_swap_operands_p (arg0, arg1)) 9319 return fold_build2_loc (loc, code, type, op1, op0); 9320 9321 /* Likewise if this is a comparison, and ARG0 is a constant, move it 9322 to ARG1 to reduce the number of tests below. */ 9323 if (kind == tcc_comparison 9324 && tree_swap_operands_p (arg0, arg1)) 9325 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0); 9326 9327 tem = generic_simplify (loc, code, type, op0, op1); 9328 if (tem) 9329 return tem; 9330 9331 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand. 9332 9333 First check for cases where an arithmetic operation is applied to a 9334 compound, conditional, or comparison operation. Push the arithmetic 9335 operation inside the compound or conditional to see if any folding 9336 can then be done. Convert comparison to conditional for this purpose. 9337 The also optimizes non-constant cases that used to be done in 9338 expand_expr. 9339 9340 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR, 9341 one of the operands is a comparison and the other is a comparison, a 9342 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the 9343 code below would make the expression more complex. Change it to a 9344 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to 9345 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */ 9346 9347 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR 9348 || code == EQ_EXPR || code == NE_EXPR) 9349 && !VECTOR_TYPE_P (TREE_TYPE (arg0)) 9350 && ((truth_value_p (TREE_CODE (arg0)) 9351 && (truth_value_p (TREE_CODE (arg1)) 9352 || (TREE_CODE (arg1) == BIT_AND_EXPR 9353 && integer_onep (TREE_OPERAND (arg1, 1))))) 9354 || (truth_value_p (TREE_CODE (arg1)) 9355 && (truth_value_p (TREE_CODE (arg0)) 9356 || (TREE_CODE (arg0) == BIT_AND_EXPR 9357 && integer_onep (TREE_OPERAND (arg0, 1))))))) 9358 { 9359 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR 9360 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR 9361 : TRUTH_XOR_EXPR, 9362 boolean_type_node, 9363 fold_convert_loc (loc, boolean_type_node, arg0), 9364 fold_convert_loc (loc, boolean_type_node, arg1)); 9365 9366 if (code == EQ_EXPR) 9367 tem = invert_truthvalue_loc (loc, tem); 9368 9369 return fold_convert_loc (loc, type, tem); 9370 } 9371 9372 if (TREE_CODE_CLASS (code) == tcc_binary 9373 || TREE_CODE_CLASS (code) == tcc_comparison) 9374 { 9375 if (TREE_CODE (arg0) == COMPOUND_EXPR) 9376 { 9377 tem = fold_build2_loc (loc, code, type, 9378 fold_convert_loc (loc, TREE_TYPE (op0), 9379 TREE_OPERAND (arg0, 1)), op1); 9380 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), 9381 tem); 9382 } 9383 if (TREE_CODE (arg1) == COMPOUND_EXPR) 9384 { 9385 tem = fold_build2_loc (loc, code, type, op0, 9386 fold_convert_loc (loc, TREE_TYPE (op1), 9387 TREE_OPERAND (arg1, 1))); 9388 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0), 9389 tem); 9390 } 9391 9392 if (TREE_CODE (arg0) == COND_EXPR 9393 || TREE_CODE (arg0) == VEC_COND_EXPR 9394 || COMPARISON_CLASS_P (arg0)) 9395 { 9396 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, 9397 arg0, arg1, 9398 /*cond_first_p=*/1); 9399 if (tem != NULL_TREE) 9400 return tem; 9401 } 9402 9403 if (TREE_CODE (arg1) == COND_EXPR 9404 || TREE_CODE (arg1) == VEC_COND_EXPR 9405 || COMPARISON_CLASS_P (arg1)) 9406 { 9407 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, 9408 arg1, arg0, 9409 /*cond_first_p=*/0); 9410 if (tem != NULL_TREE) 9411 return tem; 9412 } 9413 } 9414 9415 switch (code) 9416 { 9417 case MEM_REF: 9418 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */ 9419 if (TREE_CODE (arg0) == ADDR_EXPR 9420 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF) 9421 { 9422 tree iref = TREE_OPERAND (arg0, 0); 9423 return fold_build2 (MEM_REF, type, 9424 TREE_OPERAND (iref, 0), 9425 int_const_binop (PLUS_EXPR, arg1, 9426 TREE_OPERAND (iref, 1))); 9427 } 9428 9429 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */ 9430 if (TREE_CODE (arg0) == ADDR_EXPR 9431 && handled_component_p (TREE_OPERAND (arg0, 0))) 9432 { 9433 tree base; 9434 poly_int64 coffset; 9435 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0), 9436 &coffset); 9437 if (!base) 9438 return NULL_TREE; 9439 return fold_build2 (MEM_REF, type, 9440 build_fold_addr_expr (base), 9441 int_const_binop (PLUS_EXPR, arg1, 9442 size_int (coffset))); 9443 } 9444 9445 return NULL_TREE; 9446 9447 case POINTER_PLUS_EXPR: 9448 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */ 9449 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) 9450 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))) 9451 return fold_convert_loc (loc, type, 9452 fold_build2_loc (loc, PLUS_EXPR, sizetype, 9453 fold_convert_loc (loc, sizetype, 9454 arg1), 9455 fold_convert_loc (loc, sizetype, 9456 arg0))); 9457 9458 return NULL_TREE; 9459 9460 case PLUS_EXPR: 9461 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)) 9462 { 9463 /* X + (X / CST) * -CST is X % CST. */ 9464 if (TREE_CODE (arg1) == MULT_EXPR 9465 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR 9466 && operand_equal_p (arg0, 9467 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)) 9468 { 9469 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1); 9470 tree cst1 = TREE_OPERAND (arg1, 1); 9471 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1), 9472 cst1, cst0); 9473 if (sum && integer_zerop (sum)) 9474 return fold_convert_loc (loc, type, 9475 fold_build2_loc (loc, TRUNC_MOD_EXPR, 9476 TREE_TYPE (arg0), arg0, 9477 cst0)); 9478 } 9479 } 9480 9481 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or 9482 one. Make sure the type is not saturating and has the signedness of 9483 the stripped operands, as fold_plusminus_mult_expr will re-associate. 9484 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ 9485 if ((TREE_CODE (arg0) == MULT_EXPR 9486 || TREE_CODE (arg1) == MULT_EXPR) 9487 && !TYPE_SATURATING (type) 9488 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) 9489 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) 9490 && (!FLOAT_TYPE_P (type) || flag_associative_math)) 9491 { 9492 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); 9493 if (tem) 9494 return tem; 9495 } 9496 9497 if (! FLOAT_TYPE_P (type)) 9498 { 9499 /* Reassociate (plus (plus (mult) (foo)) (mult)) as 9500 (plus (plus (mult) (mult)) (foo)) so that we can 9501 take advantage of the factoring cases below. */ 9502 if (ANY_INTEGRAL_TYPE_P (type) 9503 && TYPE_OVERFLOW_WRAPS (type) 9504 && (((TREE_CODE (arg0) == PLUS_EXPR 9505 || TREE_CODE (arg0) == MINUS_EXPR) 9506 && TREE_CODE (arg1) == MULT_EXPR) 9507 || ((TREE_CODE (arg1) == PLUS_EXPR 9508 || TREE_CODE (arg1) == MINUS_EXPR) 9509 && TREE_CODE (arg0) == MULT_EXPR))) 9510 { 9511 tree parg0, parg1, parg, marg; 9512 enum tree_code pcode; 9513 9514 if (TREE_CODE (arg1) == MULT_EXPR) 9515 parg = arg0, marg = arg1; 9516 else 9517 parg = arg1, marg = arg0; 9518 pcode = TREE_CODE (parg); 9519 parg0 = TREE_OPERAND (parg, 0); 9520 parg1 = TREE_OPERAND (parg, 1); 9521 STRIP_NOPS (parg0); 9522 STRIP_NOPS (parg1); 9523 9524 if (TREE_CODE (parg0) == MULT_EXPR 9525 && TREE_CODE (parg1) != MULT_EXPR) 9526 return fold_build2_loc (loc, pcode, type, 9527 fold_build2_loc (loc, PLUS_EXPR, type, 9528 fold_convert_loc (loc, type, 9529 parg0), 9530 fold_convert_loc (loc, type, 9531 marg)), 9532 fold_convert_loc (loc, type, parg1)); 9533 if (TREE_CODE (parg0) != MULT_EXPR 9534 && TREE_CODE (parg1) == MULT_EXPR) 9535 return 9536 fold_build2_loc (loc, PLUS_EXPR, type, 9537 fold_convert_loc (loc, type, parg0), 9538 fold_build2_loc (loc, pcode, type, 9539 fold_convert_loc (loc, type, marg), 9540 fold_convert_loc (loc, type, 9541 parg1))); 9542 } 9543 } 9544 else 9545 { 9546 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y ) 9547 to __complex__ ( x, y ). This is not the same for SNaNs or 9548 if signed zeros are involved. */ 9549 if (!HONOR_SNANS (element_mode (arg0)) 9550 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 9551 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) 9552 { 9553 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 9554 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); 9555 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); 9556 bool arg0rz = false, arg0iz = false; 9557 if ((arg0r && (arg0rz = real_zerop (arg0r))) 9558 || (arg0i && (arg0iz = real_zerop (arg0i)))) 9559 { 9560 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); 9561 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); 9562 if (arg0rz && arg1i && real_zerop (arg1i)) 9563 { 9564 tree rp = arg1r ? arg1r 9565 : build1 (REALPART_EXPR, rtype, arg1); 9566 tree ip = arg0i ? arg0i 9567 : build1 (IMAGPART_EXPR, rtype, arg0); 9568 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9569 } 9570 else if (arg0iz && arg1r && real_zerop (arg1r)) 9571 { 9572 tree rp = arg0r ? arg0r 9573 : build1 (REALPART_EXPR, rtype, arg0); 9574 tree ip = arg1i ? arg1i 9575 : build1 (IMAGPART_EXPR, rtype, arg1); 9576 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9577 } 9578 } 9579 } 9580 9581 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. 9582 We associate floats only if the user has specified 9583 -fassociative-math. */ 9584 if (flag_associative_math 9585 && TREE_CODE (arg1) == PLUS_EXPR 9586 && TREE_CODE (arg0) != MULT_EXPR) 9587 { 9588 tree tree10 = TREE_OPERAND (arg1, 0); 9589 tree tree11 = TREE_OPERAND (arg1, 1); 9590 if (TREE_CODE (tree11) == MULT_EXPR 9591 && TREE_CODE (tree10) == MULT_EXPR) 9592 { 9593 tree tree0; 9594 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10); 9595 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11); 9596 } 9597 } 9598 /* Convert (b*c + d*e) + a into b*c + (d*e +a). 9599 We associate floats only if the user has specified 9600 -fassociative-math. */ 9601 if (flag_associative_math 9602 && TREE_CODE (arg0) == PLUS_EXPR 9603 && TREE_CODE (arg1) != MULT_EXPR) 9604 { 9605 tree tree00 = TREE_OPERAND (arg0, 0); 9606 tree tree01 = TREE_OPERAND (arg0, 1); 9607 if (TREE_CODE (tree01) == MULT_EXPR 9608 && TREE_CODE (tree00) == MULT_EXPR) 9609 { 9610 tree tree0; 9611 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1); 9612 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0); 9613 } 9614 } 9615 } 9616 9617 bit_rotate: 9618 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A 9619 is a rotate of A by C1 bits. */ 9620 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A 9621 is a rotate of A by B bits. 9622 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1, 9623 though in this case CODE must be | and not + or ^, otherwise 9624 it doesn't return A when B is 0. */ 9625 { 9626 enum tree_code code0, code1; 9627 tree rtype; 9628 code0 = TREE_CODE (arg0); 9629 code1 = TREE_CODE (arg1); 9630 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR) 9631 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR)) 9632 && operand_equal_p (TREE_OPERAND (arg0, 0), 9633 TREE_OPERAND (arg1, 0), 0) 9634 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)), 9635 TYPE_UNSIGNED (rtype)) 9636 /* Only create rotates in complete modes. Other cases are not 9637 expanded properly. */ 9638 && (element_precision (rtype) 9639 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype)))) 9640 { 9641 tree tree01, tree11; 9642 tree orig_tree01, orig_tree11; 9643 enum tree_code code01, code11; 9644 9645 tree01 = orig_tree01 = TREE_OPERAND (arg0, 1); 9646 tree11 = orig_tree11 = TREE_OPERAND (arg1, 1); 9647 STRIP_NOPS (tree01); 9648 STRIP_NOPS (tree11); 9649 code01 = TREE_CODE (tree01); 9650 code11 = TREE_CODE (tree11); 9651 if (code11 != MINUS_EXPR 9652 && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR)) 9653 { 9654 std::swap (code0, code1); 9655 std::swap (code01, code11); 9656 std::swap (tree01, tree11); 9657 std::swap (orig_tree01, orig_tree11); 9658 } 9659 if (code01 == INTEGER_CST 9660 && code11 == INTEGER_CST 9661 && (wi::to_widest (tree01) + wi::to_widest (tree11) 9662 == element_precision (rtype))) 9663 { 9664 tem = build2_loc (loc, LROTATE_EXPR, 9665 rtype, TREE_OPERAND (arg0, 0), 9666 code0 == LSHIFT_EXPR 9667 ? orig_tree01 : orig_tree11); 9668 return fold_convert_loc (loc, type, tem); 9669 } 9670 else if (code11 == MINUS_EXPR) 9671 { 9672 tree tree110, tree111; 9673 tree110 = TREE_OPERAND (tree11, 0); 9674 tree111 = TREE_OPERAND (tree11, 1); 9675 STRIP_NOPS (tree110); 9676 STRIP_NOPS (tree111); 9677 if (TREE_CODE (tree110) == INTEGER_CST 9678 && compare_tree_int (tree110, 9679 element_precision (rtype)) == 0 9680 && operand_equal_p (tree01, tree111, 0)) 9681 { 9682 tem = build2_loc (loc, (code0 == LSHIFT_EXPR 9683 ? LROTATE_EXPR : RROTATE_EXPR), 9684 rtype, TREE_OPERAND (arg0, 0), 9685 orig_tree01); 9686 return fold_convert_loc (loc, type, tem); 9687 } 9688 } 9689 else if (code == BIT_IOR_EXPR 9690 && code11 == BIT_AND_EXPR 9691 && pow2p_hwi (element_precision (rtype))) 9692 { 9693 tree tree110, tree111; 9694 tree110 = TREE_OPERAND (tree11, 0); 9695 tree111 = TREE_OPERAND (tree11, 1); 9696 STRIP_NOPS (tree110); 9697 STRIP_NOPS (tree111); 9698 if (TREE_CODE (tree110) == NEGATE_EXPR 9699 && TREE_CODE (tree111) == INTEGER_CST 9700 && compare_tree_int (tree111, 9701 element_precision (rtype) - 1) == 0 9702 && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0)) 9703 { 9704 tem = build2_loc (loc, (code0 == LSHIFT_EXPR 9705 ? LROTATE_EXPR : RROTATE_EXPR), 9706 rtype, TREE_OPERAND (arg0, 0), 9707 orig_tree01); 9708 return fold_convert_loc (loc, type, tem); 9709 } 9710 } 9711 } 9712 } 9713 9714 associate: 9715 /* In most languages, can't associate operations on floats through 9716 parentheses. Rather than remember where the parentheses were, we 9717 don't associate floats at all, unless the user has specified 9718 -fassociative-math. 9719 And, we need to make sure type is not saturating. */ 9720 9721 if ((! FLOAT_TYPE_P (type) || flag_associative_math) 9722 && !TYPE_SATURATING (type)) 9723 { 9724 tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0; 9725 tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1; 9726 tree atype = type; 9727 bool ok = true; 9728 9729 /* Split both trees into variables, constants, and literals. Then 9730 associate each group together, the constants with literals, 9731 then the result with variables. This increases the chances of 9732 literals being recombined later and of generating relocatable 9733 expressions for the sum of a constant and literal. */ 9734 var0 = split_tree (arg0, type, code, 9735 &minus_var0, &con0, &minus_con0, 9736 &lit0, &minus_lit0, 0); 9737 var1 = split_tree (arg1, type, code, 9738 &minus_var1, &con1, &minus_con1, 9739 &lit1, &minus_lit1, code == MINUS_EXPR); 9740 9741 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */ 9742 if (code == MINUS_EXPR) 9743 code = PLUS_EXPR; 9744 9745 /* With undefined overflow prefer doing association in a type 9746 which wraps on overflow, if that is one of the operand types. */ 9747 if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) 9748 && !TYPE_OVERFLOW_WRAPS (type)) 9749 { 9750 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 9751 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) 9752 atype = TREE_TYPE (arg0); 9753 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) 9754 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) 9755 atype = TREE_TYPE (arg1); 9756 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type)); 9757 } 9758 9759 /* With undefined overflow we can only associate constants with one 9760 variable, and constants whose association doesn't overflow. */ 9761 if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype)) 9762 && !TYPE_OVERFLOW_WRAPS (atype)) 9763 { 9764 if ((var0 && var1) || (minus_var0 && minus_var1)) 9765 { 9766 /* ??? If split_tree would handle NEGATE_EXPR we could 9767 simply reject these cases and the allowed cases would 9768 be the var0/minus_var1 ones. */ 9769 tree tmp0 = var0 ? var0 : minus_var0; 9770 tree tmp1 = var1 ? var1 : minus_var1; 9771 bool one_neg = false; 9772 9773 if (TREE_CODE (tmp0) == NEGATE_EXPR) 9774 { 9775 tmp0 = TREE_OPERAND (tmp0, 0); 9776 one_neg = !one_neg; 9777 } 9778 if (CONVERT_EXPR_P (tmp0) 9779 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0))) 9780 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0))) 9781 <= TYPE_PRECISION (atype))) 9782 tmp0 = TREE_OPERAND (tmp0, 0); 9783 if (TREE_CODE (tmp1) == NEGATE_EXPR) 9784 { 9785 tmp1 = TREE_OPERAND (tmp1, 0); 9786 one_neg = !one_neg; 9787 } 9788 if (CONVERT_EXPR_P (tmp1) 9789 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0))) 9790 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0))) 9791 <= TYPE_PRECISION (atype))) 9792 tmp1 = TREE_OPERAND (tmp1, 0); 9793 /* The only case we can still associate with two variables 9794 is if they cancel out. */ 9795 if (!one_neg 9796 || !operand_equal_p (tmp0, tmp1, 0)) 9797 ok = false; 9798 } 9799 else if ((var0 && minus_var1 9800 && ! operand_equal_p (var0, minus_var1, 0)) 9801 || (minus_var0 && var1 9802 && ! operand_equal_p (minus_var0, var1, 0))) 9803 ok = false; 9804 } 9805 9806 /* Only do something if we found more than two objects. Otherwise, 9807 nothing has changed and we risk infinite recursion. */ 9808 if (ok 9809 && ((var0 != 0) + (var1 != 0) 9810 + (minus_var0 != 0) + (minus_var1 != 0) 9811 + (con0 != 0) + (con1 != 0) 9812 + (minus_con0 != 0) + (minus_con1 != 0) 9813 + (lit0 != 0) + (lit1 != 0) 9814 + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2) 9815 { 9816 var0 = associate_trees (loc, var0, var1, code, atype); 9817 minus_var0 = associate_trees (loc, minus_var0, minus_var1, 9818 code, atype); 9819 con0 = associate_trees (loc, con0, con1, code, atype); 9820 minus_con0 = associate_trees (loc, minus_con0, minus_con1, 9821 code, atype); 9822 lit0 = associate_trees (loc, lit0, lit1, code, atype); 9823 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1, 9824 code, atype); 9825 9826 if (minus_var0 && var0) 9827 { 9828 var0 = associate_trees (loc, var0, minus_var0, 9829 MINUS_EXPR, atype); 9830 minus_var0 = 0; 9831 } 9832 if (minus_con0 && con0) 9833 { 9834 con0 = associate_trees (loc, con0, minus_con0, 9835 MINUS_EXPR, atype); 9836 minus_con0 = 0; 9837 } 9838 9839 /* Preserve the MINUS_EXPR if the negative part of the literal is 9840 greater than the positive part. Otherwise, the multiplicative 9841 folding code (i.e extract_muldiv) may be fooled in case 9842 unsigned constants are subtracted, like in the following 9843 example: ((X*2 + 4) - 8U)/2. */ 9844 if (minus_lit0 && lit0) 9845 { 9846 if (TREE_CODE (lit0) == INTEGER_CST 9847 && TREE_CODE (minus_lit0) == INTEGER_CST 9848 && tree_int_cst_lt (lit0, minus_lit0) 9849 /* But avoid ending up with only negated parts. */ 9850 && (var0 || con0)) 9851 { 9852 minus_lit0 = associate_trees (loc, minus_lit0, lit0, 9853 MINUS_EXPR, atype); 9854 lit0 = 0; 9855 } 9856 else 9857 { 9858 lit0 = associate_trees (loc, lit0, minus_lit0, 9859 MINUS_EXPR, atype); 9860 minus_lit0 = 0; 9861 } 9862 } 9863 9864 /* Don't introduce overflows through reassociation. */ 9865 if ((lit0 && TREE_OVERFLOW_P (lit0)) 9866 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))) 9867 return NULL_TREE; 9868 9869 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */ 9870 con0 = associate_trees (loc, con0, lit0, code, atype); 9871 lit0 = 0; 9872 minus_con0 = associate_trees (loc, minus_con0, minus_lit0, 9873 code, atype); 9874 minus_lit0 = 0; 9875 9876 /* Eliminate minus_con0. */ 9877 if (minus_con0) 9878 { 9879 if (con0) 9880 con0 = associate_trees (loc, con0, minus_con0, 9881 MINUS_EXPR, atype); 9882 else if (var0) 9883 var0 = associate_trees (loc, var0, minus_con0, 9884 MINUS_EXPR, atype); 9885 else 9886 gcc_unreachable (); 9887 minus_con0 = 0; 9888 } 9889 9890 /* Eliminate minus_var0. */ 9891 if (minus_var0) 9892 { 9893 if (con0) 9894 con0 = associate_trees (loc, con0, minus_var0, 9895 MINUS_EXPR, atype); 9896 else 9897 gcc_unreachable (); 9898 minus_var0 = 0; 9899 } 9900 9901 return 9902 fold_convert_loc (loc, type, associate_trees (loc, var0, con0, 9903 code, atype)); 9904 } 9905 } 9906 9907 return NULL_TREE; 9908 9909 case POINTER_DIFF_EXPR: 9910 case MINUS_EXPR: 9911 /* Fold &a[i] - &a[j] to i-j. */ 9912 if (TREE_CODE (arg0) == ADDR_EXPR 9913 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF 9914 && TREE_CODE (arg1) == ADDR_EXPR 9915 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF) 9916 { 9917 tree tem = fold_addr_of_array_ref_difference (loc, type, 9918 TREE_OPERAND (arg0, 0), 9919 TREE_OPERAND (arg1, 0), 9920 code 9921 == POINTER_DIFF_EXPR); 9922 if (tem) 9923 return tem; 9924 } 9925 9926 /* Further transformations are not for pointers. */ 9927 if (code == POINTER_DIFF_EXPR) 9928 return NULL_TREE; 9929 9930 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */ 9931 if (TREE_CODE (arg0) == NEGATE_EXPR 9932 && negate_expr_p (op1) 9933 /* If arg0 is e.g. unsigned int and type is int, then this could 9934 introduce UB, because if A is INT_MIN at runtime, the original 9935 expression can be well defined while the latter is not. 9936 See PR83269. */ 9937 && !(ANY_INTEGRAL_TYPE_P (type) 9938 && TYPE_OVERFLOW_UNDEFINED (type) 9939 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 9940 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) 9941 return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1), 9942 fold_convert_loc (loc, type, 9943 TREE_OPERAND (arg0, 0))); 9944 9945 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to 9946 __complex__ ( x, -y ). This is not the same for SNaNs or if 9947 signed zeros are involved. */ 9948 if (!HONOR_SNANS (element_mode (arg0)) 9949 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 9950 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) 9951 { 9952 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 9953 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); 9954 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); 9955 bool arg0rz = false, arg0iz = false; 9956 if ((arg0r && (arg0rz = real_zerop (arg0r))) 9957 || (arg0i && (arg0iz = real_zerop (arg0i)))) 9958 { 9959 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); 9960 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); 9961 if (arg0rz && arg1i && real_zerop (arg1i)) 9962 { 9963 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype, 9964 arg1r ? arg1r 9965 : build1 (REALPART_EXPR, rtype, arg1)); 9966 tree ip = arg0i ? arg0i 9967 : build1 (IMAGPART_EXPR, rtype, arg0); 9968 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9969 } 9970 else if (arg0iz && arg1r && real_zerop (arg1r)) 9971 { 9972 tree rp = arg0r ? arg0r 9973 : build1 (REALPART_EXPR, rtype, arg0); 9974 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype, 9975 arg1i ? arg1i 9976 : build1 (IMAGPART_EXPR, rtype, arg1)); 9977 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); 9978 } 9979 } 9980 } 9981 9982 /* A - B -> A + (-B) if B is easily negatable. */ 9983 if (negate_expr_p (op1) 9984 && ! TYPE_OVERFLOW_SANITIZED (type) 9985 && ((FLOAT_TYPE_P (type) 9986 /* Avoid this transformation if B is a positive REAL_CST. */ 9987 && (TREE_CODE (op1) != REAL_CST 9988 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1)))) 9989 || INTEGRAL_TYPE_P (type))) 9990 return fold_build2_loc (loc, PLUS_EXPR, type, 9991 fold_convert_loc (loc, type, arg0), 9992 negate_expr (op1)); 9993 9994 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or 9995 one. Make sure the type is not saturating and has the signedness of 9996 the stripped operands, as fold_plusminus_mult_expr will re-associate. 9997 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ 9998 if ((TREE_CODE (arg0) == MULT_EXPR 9999 || TREE_CODE (arg1) == MULT_EXPR) 10000 && !TYPE_SATURATING (type) 10001 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) 10002 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) 10003 && (!FLOAT_TYPE_P (type) || flag_associative_math)) 10004 { 10005 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); 10006 if (tem) 10007 return tem; 10008 } 10009 10010 goto associate; 10011 10012 case MULT_EXPR: 10013 if (! FLOAT_TYPE_P (type)) 10014 { 10015 /* Transform x * -C into -x * C if x is easily negatable. */ 10016 if (TREE_CODE (op1) == INTEGER_CST 10017 && tree_int_cst_sgn (op1) == -1 10018 && negate_expr_p (op0) 10019 && negate_expr_p (op1) 10020 && (tem = negate_expr (op1)) != op1 10021 && ! TREE_OVERFLOW (tem)) 10022 return fold_build2_loc (loc, MULT_EXPR, type, 10023 fold_convert_loc (loc, type, 10024 negate_expr (op0)), tem); 10025 10026 strict_overflow_p = false; 10027 if (TREE_CODE (arg1) == INTEGER_CST 10028 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10029 &strict_overflow_p)) != 0) 10030 { 10031 if (strict_overflow_p) 10032 fold_overflow_warning (("assuming signed overflow does not " 10033 "occur when simplifying " 10034 "multiplication"), 10035 WARN_STRICT_OVERFLOW_MISC); 10036 return fold_convert_loc (loc, type, tem); 10037 } 10038 10039 /* Optimize z * conj(z) for integer complex numbers. */ 10040 if (TREE_CODE (arg0) == CONJ_EXPR 10041 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10042 return fold_mult_zconjz (loc, type, arg1); 10043 if (TREE_CODE (arg1) == CONJ_EXPR 10044 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10045 return fold_mult_zconjz (loc, type, arg0); 10046 } 10047 else 10048 { 10049 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z). 10050 This is not the same for NaNs or if signed zeros are 10051 involved. */ 10052 if (!HONOR_NANS (arg0) 10053 && !HONOR_SIGNED_ZEROS (element_mode (arg0)) 10054 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)) 10055 && TREE_CODE (arg1) == COMPLEX_CST 10056 && real_zerop (TREE_REALPART (arg1))) 10057 { 10058 tree rtype = TREE_TYPE (TREE_TYPE (arg0)); 10059 if (real_onep (TREE_IMAGPART (arg1))) 10060 return 10061 fold_build2_loc (loc, COMPLEX_EXPR, type, 10062 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR, 10063 rtype, arg0)), 10064 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0)); 10065 else if (real_minus_onep (TREE_IMAGPART (arg1))) 10066 return 10067 fold_build2_loc (loc, COMPLEX_EXPR, type, 10068 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0), 10069 negate_expr (fold_build1_loc (loc, REALPART_EXPR, 10070 rtype, arg0))); 10071 } 10072 10073 /* Optimize z * conj(z) for floating point complex numbers. 10074 Guarded by flag_unsafe_math_optimizations as non-finite 10075 imaginary components don't produce scalar results. */ 10076 if (flag_unsafe_math_optimizations 10077 && TREE_CODE (arg0) == CONJ_EXPR 10078 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10079 return fold_mult_zconjz (loc, type, arg1); 10080 if (flag_unsafe_math_optimizations 10081 && TREE_CODE (arg1) == CONJ_EXPR 10082 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10083 return fold_mult_zconjz (loc, type, arg0); 10084 } 10085 goto associate; 10086 10087 case BIT_IOR_EXPR: 10088 /* Canonicalize (X & C1) | C2. */ 10089 if (TREE_CODE (arg0) == BIT_AND_EXPR 10090 && TREE_CODE (arg1) == INTEGER_CST 10091 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10092 { 10093 int width = TYPE_PRECISION (type), w; 10094 wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1)); 10095 wide_int c2 = wi::to_wide (arg1); 10096 10097 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */ 10098 if ((c1 & c2) == c1) 10099 return omit_one_operand_loc (loc, type, arg1, 10100 TREE_OPERAND (arg0, 0)); 10101 10102 wide_int msk = wi::mask (width, false, 10103 TYPE_PRECISION (TREE_TYPE (arg1))); 10104 10105 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */ 10106 if (wi::bit_and_not (msk, c1 | c2) == 0) 10107 { 10108 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10109 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); 10110 } 10111 10112 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2, 10113 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some 10114 mode which allows further optimizations. */ 10115 c1 &= msk; 10116 c2 &= msk; 10117 wide_int c3 = wi::bit_and_not (c1, c2); 10118 for (w = BITS_PER_UNIT; w <= width; w <<= 1) 10119 { 10120 wide_int mask = wi::mask (w, false, 10121 TYPE_PRECISION (type)); 10122 if (((c1 | c2) & mask) == mask 10123 && wi::bit_and_not (c1, mask) == 0) 10124 { 10125 c3 = mask; 10126 break; 10127 } 10128 } 10129 10130 if (c3 != c1) 10131 { 10132 tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10133 tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem, 10134 wide_int_to_tree (type, c3)); 10135 return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); 10136 } 10137 } 10138 10139 /* See if this can be simplified into a rotate first. If that 10140 is unsuccessful continue in the association code. */ 10141 goto bit_rotate; 10142 10143 case BIT_XOR_EXPR: 10144 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */ 10145 if (TREE_CODE (arg0) == BIT_AND_EXPR 10146 && INTEGRAL_TYPE_P (type) 10147 && integer_onep (TREE_OPERAND (arg0, 1)) 10148 && integer_onep (arg1)) 10149 return fold_build2_loc (loc, EQ_EXPR, type, arg0, 10150 build_zero_cst (TREE_TYPE (arg0))); 10151 10152 /* See if this can be simplified into a rotate first. If that 10153 is unsuccessful continue in the association code. */ 10154 goto bit_rotate; 10155 10156 case BIT_AND_EXPR: 10157 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */ 10158 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10159 && INTEGRAL_TYPE_P (type) 10160 && integer_onep (TREE_OPERAND (arg0, 1)) 10161 && integer_onep (arg1)) 10162 { 10163 tree tem2; 10164 tem = TREE_OPERAND (arg0, 0); 10165 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); 10166 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), 10167 tem, tem2); 10168 return fold_build2_loc (loc, EQ_EXPR, type, tem2, 10169 build_zero_cst (TREE_TYPE (tem))); 10170 } 10171 /* Fold ~X & 1 as (X & 1) == 0. */ 10172 if (TREE_CODE (arg0) == BIT_NOT_EXPR 10173 && INTEGRAL_TYPE_P (type) 10174 && integer_onep (arg1)) 10175 { 10176 tree tem2; 10177 tem = TREE_OPERAND (arg0, 0); 10178 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); 10179 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), 10180 tem, tem2); 10181 return fold_build2_loc (loc, EQ_EXPR, type, tem2, 10182 build_zero_cst (TREE_TYPE (tem))); 10183 } 10184 /* Fold !X & 1 as X == 0. */ 10185 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10186 && integer_onep (arg1)) 10187 { 10188 tem = TREE_OPERAND (arg0, 0); 10189 return fold_build2_loc (loc, EQ_EXPR, type, tem, 10190 build_zero_cst (TREE_TYPE (tem))); 10191 } 10192 10193 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant 10194 multiple of 1 << CST. */ 10195 if (TREE_CODE (arg1) == INTEGER_CST) 10196 { 10197 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); 10198 wide_int ncst1 = -cst1; 10199 if ((cst1 & ncst1) == ncst1 10200 && multiple_of_p (type, arg0, 10201 wide_int_to_tree (TREE_TYPE (arg1), ncst1))) 10202 return fold_convert_loc (loc, type, arg0); 10203 } 10204 10205 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero 10206 bits from CST2. */ 10207 if (TREE_CODE (arg1) == INTEGER_CST 10208 && TREE_CODE (arg0) == MULT_EXPR 10209 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10210 { 10211 wi::tree_to_wide_ref warg1 = wi::to_wide (arg1); 10212 wide_int masked 10213 = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1))); 10214 10215 if (masked == 0) 10216 return omit_two_operands_loc (loc, type, build_zero_cst (type), 10217 arg0, arg1); 10218 else if (masked != warg1) 10219 { 10220 /* Avoid the transform if arg1 is a mask of some 10221 mode which allows further optimizations. */ 10222 int pop = wi::popcount (warg1); 10223 if (!(pop >= BITS_PER_UNIT 10224 && pow2p_hwi (pop) 10225 && wi::mask (pop, false, warg1.get_precision ()) == warg1)) 10226 return fold_build2_loc (loc, code, type, op0, 10227 wide_int_to_tree (type, masked)); 10228 } 10229 } 10230 10231 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M, 10232 ((A & N) + B) & M -> (A + B) & M 10233 Similarly if (N & M) == 0, 10234 ((A | N) + B) & M -> (A + B) & M 10235 and for - instead of + (or unary - instead of +) 10236 and/or ^ instead of |. 10237 If B is constant and (B & M) == 0, fold into A & M. */ 10238 if (TREE_CODE (arg1) == INTEGER_CST) 10239 { 10240 wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); 10241 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0 10242 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)) 10243 && (TREE_CODE (arg0) == PLUS_EXPR 10244 || TREE_CODE (arg0) == MINUS_EXPR 10245 || TREE_CODE (arg0) == NEGATE_EXPR) 10246 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)) 10247 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE)) 10248 { 10249 tree pmop[2]; 10250 int which = 0; 10251 wide_int cst0; 10252 10253 /* Now we know that arg0 is (C + D) or (C - D) or 10254 -C and arg1 (M) is == (1LL << cst) - 1. 10255 Store C into PMOP[0] and D into PMOP[1]. */ 10256 pmop[0] = TREE_OPERAND (arg0, 0); 10257 pmop[1] = NULL; 10258 if (TREE_CODE (arg0) != NEGATE_EXPR) 10259 { 10260 pmop[1] = TREE_OPERAND (arg0, 1); 10261 which = 1; 10262 } 10263 10264 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1) 10265 which = -1; 10266 10267 for (; which >= 0; which--) 10268 switch (TREE_CODE (pmop[which])) 10269 { 10270 case BIT_AND_EXPR: 10271 case BIT_IOR_EXPR: 10272 case BIT_XOR_EXPR: 10273 if (TREE_CODE (TREE_OPERAND (pmop[which], 1)) 10274 != INTEGER_CST) 10275 break; 10276 cst0 = wi::to_wide (TREE_OPERAND (pmop[which], 1)) & cst1; 10277 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR) 10278 { 10279 if (cst0 != cst1) 10280 break; 10281 } 10282 else if (cst0 != 0) 10283 break; 10284 /* If C or D is of the form (A & N) where 10285 (N & M) == M, or of the form (A | N) or 10286 (A ^ N) where (N & M) == 0, replace it with A. */ 10287 pmop[which] = TREE_OPERAND (pmop[which], 0); 10288 break; 10289 case INTEGER_CST: 10290 /* If C or D is a N where (N & M) == 0, it can be 10291 omitted (assumed 0). */ 10292 if ((TREE_CODE (arg0) == PLUS_EXPR 10293 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0)) 10294 && (cst1 & wi::to_wide (pmop[which])) == 0) 10295 pmop[which] = NULL; 10296 break; 10297 default: 10298 break; 10299 } 10300 10301 /* Only build anything new if we optimized one or both arguments 10302 above. */ 10303 if (pmop[0] != TREE_OPERAND (arg0, 0) 10304 || (TREE_CODE (arg0) != NEGATE_EXPR 10305 && pmop[1] != TREE_OPERAND (arg0, 1))) 10306 { 10307 tree utype = TREE_TYPE (arg0); 10308 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) 10309 { 10310 /* Perform the operations in a type that has defined 10311 overflow behavior. */ 10312 utype = unsigned_type_for (TREE_TYPE (arg0)); 10313 if (pmop[0] != NULL) 10314 pmop[0] = fold_convert_loc (loc, utype, pmop[0]); 10315 if (pmop[1] != NULL) 10316 pmop[1] = fold_convert_loc (loc, utype, pmop[1]); 10317 } 10318 10319 if (TREE_CODE (arg0) == NEGATE_EXPR) 10320 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]); 10321 else if (TREE_CODE (arg0) == PLUS_EXPR) 10322 { 10323 if (pmop[0] != NULL && pmop[1] != NULL) 10324 tem = fold_build2_loc (loc, PLUS_EXPR, utype, 10325 pmop[0], pmop[1]); 10326 else if (pmop[0] != NULL) 10327 tem = pmop[0]; 10328 else if (pmop[1] != NULL) 10329 tem = pmop[1]; 10330 else 10331 return build_int_cst (type, 0); 10332 } 10333 else if (pmop[0] == NULL) 10334 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]); 10335 else 10336 tem = fold_build2_loc (loc, MINUS_EXPR, utype, 10337 pmop[0], pmop[1]); 10338 /* TEM is now the new binary +, - or unary - replacement. */ 10339 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem, 10340 fold_convert_loc (loc, utype, arg1)); 10341 return fold_convert_loc (loc, type, tem); 10342 } 10343 } 10344 } 10345 10346 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */ 10347 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR 10348 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0)))) 10349 { 10350 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0))); 10351 10352 wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED); 10353 if (mask == -1) 10354 return 10355 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10356 } 10357 10358 goto associate; 10359 10360 case RDIV_EXPR: 10361 /* Don't touch a floating-point divide by zero unless the mode 10362 of the constant can represent infinity. */ 10363 if (TREE_CODE (arg1) == REAL_CST 10364 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))) 10365 && real_zerop (arg1)) 10366 return NULL_TREE; 10367 10368 /* (-A) / (-B) -> A / B */ 10369 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1)) 10370 return fold_build2_loc (loc, RDIV_EXPR, type, 10371 TREE_OPERAND (arg0, 0), 10372 negate_expr (arg1)); 10373 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0)) 10374 return fold_build2_loc (loc, RDIV_EXPR, type, 10375 negate_expr (arg0), 10376 TREE_OPERAND (arg1, 0)); 10377 return NULL_TREE; 10378 10379 case TRUNC_DIV_EXPR: 10380 /* Fall through */ 10381 10382 case FLOOR_DIV_EXPR: 10383 /* Simplify A / (B << N) where A and B are positive and B is 10384 a power of 2, to A >> (N + log2(B)). */ 10385 strict_overflow_p = false; 10386 if (TREE_CODE (arg1) == LSHIFT_EXPR 10387 && (TYPE_UNSIGNED (type) 10388 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p))) 10389 { 10390 tree sval = TREE_OPERAND (arg1, 0); 10391 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0) 10392 { 10393 tree sh_cnt = TREE_OPERAND (arg1, 1); 10394 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt), 10395 wi::exact_log2 (wi::to_wide (sval))); 10396 10397 if (strict_overflow_p) 10398 fold_overflow_warning (("assuming signed overflow does not " 10399 "occur when simplifying A / (B << N)"), 10400 WARN_STRICT_OVERFLOW_MISC); 10401 10402 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt), 10403 sh_cnt, pow2); 10404 return fold_build2_loc (loc, RSHIFT_EXPR, type, 10405 fold_convert_loc (loc, type, arg0), sh_cnt); 10406 } 10407 } 10408 10409 /* Fall through */ 10410 10411 case ROUND_DIV_EXPR: 10412 case CEIL_DIV_EXPR: 10413 case EXACT_DIV_EXPR: 10414 if (integer_zerop (arg1)) 10415 return NULL_TREE; 10416 10417 /* Convert -A / -B to A / B when the type is signed and overflow is 10418 undefined. */ 10419 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 10420 && TREE_CODE (op0) == NEGATE_EXPR 10421 && negate_expr_p (op1)) 10422 { 10423 if (INTEGRAL_TYPE_P (type)) 10424 fold_overflow_warning (("assuming signed overflow does not occur " 10425 "when distributing negation across " 10426 "division"), 10427 WARN_STRICT_OVERFLOW_MISC); 10428 return fold_build2_loc (loc, code, type, 10429 fold_convert_loc (loc, type, 10430 TREE_OPERAND (arg0, 0)), 10431 negate_expr (op1)); 10432 } 10433 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 10434 && TREE_CODE (arg1) == NEGATE_EXPR 10435 && negate_expr_p (op0)) 10436 { 10437 if (INTEGRAL_TYPE_P (type)) 10438 fold_overflow_warning (("assuming signed overflow does not occur " 10439 "when distributing negation across " 10440 "division"), 10441 WARN_STRICT_OVERFLOW_MISC); 10442 return fold_build2_loc (loc, code, type, 10443 negate_expr (op0), 10444 fold_convert_loc (loc, type, 10445 TREE_OPERAND (arg1, 0))); 10446 } 10447 10448 /* If arg0 is a multiple of arg1, then rewrite to the fastest div 10449 operation, EXACT_DIV_EXPR. 10450 10451 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now. 10452 At one time others generated faster code, it's not clear if they do 10453 after the last round to changes to the DIV code in expmed.c. */ 10454 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR) 10455 && multiple_of_p (type, arg0, arg1)) 10456 return fold_build2_loc (loc, EXACT_DIV_EXPR, type, 10457 fold_convert (type, arg0), 10458 fold_convert (type, arg1)); 10459 10460 strict_overflow_p = false; 10461 if (TREE_CODE (arg1) == INTEGER_CST 10462 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10463 &strict_overflow_p)) != 0) 10464 { 10465 if (strict_overflow_p) 10466 fold_overflow_warning (("assuming signed overflow does not occur " 10467 "when simplifying division"), 10468 WARN_STRICT_OVERFLOW_MISC); 10469 return fold_convert_loc (loc, type, tem); 10470 } 10471 10472 return NULL_TREE; 10473 10474 case CEIL_MOD_EXPR: 10475 case FLOOR_MOD_EXPR: 10476 case ROUND_MOD_EXPR: 10477 case TRUNC_MOD_EXPR: 10478 strict_overflow_p = false; 10479 if (TREE_CODE (arg1) == INTEGER_CST 10480 && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, 10481 &strict_overflow_p)) != 0) 10482 { 10483 if (strict_overflow_p) 10484 fold_overflow_warning (("assuming signed overflow does not occur " 10485 "when simplifying modulus"), 10486 WARN_STRICT_OVERFLOW_MISC); 10487 return fold_convert_loc (loc, type, tem); 10488 } 10489 10490 return NULL_TREE; 10491 10492 case LROTATE_EXPR: 10493 case RROTATE_EXPR: 10494 case RSHIFT_EXPR: 10495 case LSHIFT_EXPR: 10496 /* Since negative shift count is not well-defined, 10497 don't try to compute it in the compiler. */ 10498 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0) 10499 return NULL_TREE; 10500 10501 prec = element_precision (type); 10502 10503 /* If we have a rotate of a bit operation with the rotate count and 10504 the second operand of the bit operation both constant, 10505 permute the two operations. */ 10506 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST 10507 && (TREE_CODE (arg0) == BIT_AND_EXPR 10508 || TREE_CODE (arg0) == BIT_IOR_EXPR 10509 || TREE_CODE (arg0) == BIT_XOR_EXPR) 10510 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10511 { 10512 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10513 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); 10514 return fold_build2_loc (loc, TREE_CODE (arg0), type, 10515 fold_build2_loc (loc, code, type, 10516 arg00, arg1), 10517 fold_build2_loc (loc, code, type, 10518 arg01, arg1)); 10519 } 10520 10521 /* Two consecutive rotates adding up to the some integer 10522 multiple of the precision of the type can be ignored. */ 10523 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST 10524 && TREE_CODE (arg0) == RROTATE_EXPR 10525 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST 10526 && wi::umod_trunc (wi::to_wide (arg1) 10527 + wi::to_wide (TREE_OPERAND (arg0, 1)), 10528 prec) == 0) 10529 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10530 10531 return NULL_TREE; 10532 10533 case MIN_EXPR: 10534 case MAX_EXPR: 10535 goto associate; 10536 10537 case TRUTH_ANDIF_EXPR: 10538 /* Note that the operands of this must be ints 10539 and their values must be 0 or 1. 10540 ("true" is a fixed value perhaps depending on the language.) */ 10541 /* If first arg is constant zero, return it. */ 10542 if (integer_zerop (arg0)) 10543 return fold_convert_loc (loc, type, arg0); 10544 /* FALLTHRU */ 10545 case TRUTH_AND_EXPR: 10546 /* If either arg is constant true, drop it. */ 10547 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10548 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); 10549 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1) 10550 /* Preserve sequence points. */ 10551 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) 10552 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10553 /* If second arg is constant zero, result is zero, but first arg 10554 must be evaluated. */ 10555 if (integer_zerop (arg1)) 10556 return omit_one_operand_loc (loc, type, arg1, arg0); 10557 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR 10558 case will be handled here. */ 10559 if (integer_zerop (arg0)) 10560 return omit_one_operand_loc (loc, type, arg0, arg1); 10561 10562 /* !X && X is always false. */ 10563 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10564 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10565 return omit_one_operand_loc (loc, type, integer_zero_node, arg1); 10566 /* X && !X is always false. */ 10567 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10568 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10569 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 10570 10571 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y 10572 means A >= Y && A != MAX, but in this case we know that 10573 A < X <= MAX. */ 10574 10575 if (!TREE_SIDE_EFFECTS (arg0) 10576 && !TREE_SIDE_EFFECTS (arg1)) 10577 { 10578 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1); 10579 if (tem && !operand_equal_p (tem, arg0, 0)) 10580 return fold_build2_loc (loc, code, type, tem, arg1); 10581 10582 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0); 10583 if (tem && !operand_equal_p (tem, arg1, 0)) 10584 return fold_build2_loc (loc, code, type, arg0, tem); 10585 } 10586 10587 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) 10588 != NULL_TREE) 10589 return tem; 10590 10591 return NULL_TREE; 10592 10593 case TRUTH_ORIF_EXPR: 10594 /* Note that the operands of this must be ints 10595 and their values must be 0 or true. 10596 ("true" is a fixed value perhaps depending on the language.) */ 10597 /* If first arg is constant true, return it. */ 10598 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10599 return fold_convert_loc (loc, type, arg0); 10600 /* FALLTHRU */ 10601 case TRUTH_OR_EXPR: 10602 /* If either arg is constant zero, drop it. */ 10603 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0)) 10604 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); 10605 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1) 10606 /* Preserve sequence points. */ 10607 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) 10608 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10609 /* If second arg is constant true, result is true, but we must 10610 evaluate first arg. */ 10611 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)) 10612 return omit_one_operand_loc (loc, type, arg1, arg0); 10613 /* Likewise for first arg, but note this only occurs here for 10614 TRUTH_OR_EXPR. */ 10615 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) 10616 return omit_one_operand_loc (loc, type, arg0, arg1); 10617 10618 /* !X || X is always true. */ 10619 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10620 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10621 return omit_one_operand_loc (loc, type, integer_one_node, arg1); 10622 /* X || !X is always true. */ 10623 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10624 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10625 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 10626 10627 /* (X && !Y) || (!X && Y) is X ^ Y */ 10628 if (TREE_CODE (arg0) == TRUTH_AND_EXPR 10629 && TREE_CODE (arg1) == TRUTH_AND_EXPR) 10630 { 10631 tree a0, a1, l0, l1, n0, n1; 10632 10633 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0)); 10634 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1)); 10635 10636 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); 10637 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); 10638 10639 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0); 10640 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1); 10641 10642 if ((operand_equal_p (n0, a0, 0) 10643 && operand_equal_p (n1, a1, 0)) 10644 || (operand_equal_p (n0, a1, 0) 10645 && operand_equal_p (n1, a0, 0))) 10646 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1); 10647 } 10648 10649 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) 10650 != NULL_TREE) 10651 return tem; 10652 10653 return NULL_TREE; 10654 10655 case TRUTH_XOR_EXPR: 10656 /* If the second arg is constant zero, drop it. */ 10657 if (integer_zerop (arg1)) 10658 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10659 /* If the second arg is constant true, this is a logical inversion. */ 10660 if (integer_onep (arg1)) 10661 { 10662 tem = invert_truthvalue_loc (loc, arg0); 10663 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem)); 10664 } 10665 /* Identical arguments cancel to zero. */ 10666 if (operand_equal_p (arg0, arg1, 0)) 10667 return omit_one_operand_loc (loc, type, integer_zero_node, arg0); 10668 10669 /* !X ^ X is always true. */ 10670 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR 10671 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) 10672 return omit_one_operand_loc (loc, type, integer_one_node, arg1); 10673 10674 /* X ^ !X is always true. */ 10675 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR 10676 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) 10677 return omit_one_operand_loc (loc, type, integer_one_node, arg0); 10678 10679 return NULL_TREE; 10680 10681 case EQ_EXPR: 10682 case NE_EXPR: 10683 STRIP_NOPS (arg0); 10684 STRIP_NOPS (arg1); 10685 10686 tem = fold_comparison (loc, code, type, op0, op1); 10687 if (tem != NULL_TREE) 10688 return tem; 10689 10690 /* bool_var != 1 becomes !bool_var. */ 10691 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1) 10692 && code == NE_EXPR) 10693 return fold_convert_loc (loc, type, 10694 fold_build1_loc (loc, TRUTH_NOT_EXPR, 10695 TREE_TYPE (arg0), arg0)); 10696 10697 /* bool_var == 0 becomes !bool_var. */ 10698 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1) 10699 && code == EQ_EXPR) 10700 return fold_convert_loc (loc, type, 10701 fold_build1_loc (loc, TRUTH_NOT_EXPR, 10702 TREE_TYPE (arg0), arg0)); 10703 10704 /* !exp != 0 becomes !exp */ 10705 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1) 10706 && code == NE_EXPR) 10707 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); 10708 10709 /* If this is an EQ or NE comparison with zero and ARG0 is 10710 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require 10711 two operations, but the latter can be done in one less insn 10712 on machines that have only two-operand insns or on which a 10713 constant cannot be the first operand. */ 10714 if (TREE_CODE (arg0) == BIT_AND_EXPR 10715 && integer_zerop (arg1)) 10716 { 10717 tree arg00 = TREE_OPERAND (arg0, 0); 10718 tree arg01 = TREE_OPERAND (arg0, 1); 10719 if (TREE_CODE (arg00) == LSHIFT_EXPR 10720 && integer_onep (TREE_OPERAND (arg00, 0))) 10721 { 10722 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00), 10723 arg01, TREE_OPERAND (arg00, 1)); 10724 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, 10725 build_int_cst (TREE_TYPE (arg0), 1)); 10726 return fold_build2_loc (loc, code, type, 10727 fold_convert_loc (loc, TREE_TYPE (arg1), tem), 10728 arg1); 10729 } 10730 else if (TREE_CODE (arg01) == LSHIFT_EXPR 10731 && integer_onep (TREE_OPERAND (arg01, 0))) 10732 { 10733 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01), 10734 arg00, TREE_OPERAND (arg01, 1)); 10735 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, 10736 build_int_cst (TREE_TYPE (arg0), 1)); 10737 return fold_build2_loc (loc, code, type, 10738 fold_convert_loc (loc, TREE_TYPE (arg1), tem), 10739 arg1); 10740 } 10741 } 10742 10743 /* If this is an NE or EQ comparison of zero against the result of a 10744 signed MOD operation whose second operand is a power of 2, make 10745 the MOD operation unsigned since it is simpler and equivalent. */ 10746 if (integer_zerop (arg1) 10747 && !TYPE_UNSIGNED (TREE_TYPE (arg0)) 10748 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR 10749 || TREE_CODE (arg0) == CEIL_MOD_EXPR 10750 || TREE_CODE (arg0) == FLOOR_MOD_EXPR 10751 || TREE_CODE (arg0) == ROUND_MOD_EXPR) 10752 && integer_pow2p (TREE_OPERAND (arg0, 1))) 10753 { 10754 tree newtype = unsigned_type_for (TREE_TYPE (arg0)); 10755 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype, 10756 fold_convert_loc (loc, newtype, 10757 TREE_OPERAND (arg0, 0)), 10758 fold_convert_loc (loc, newtype, 10759 TREE_OPERAND (arg0, 1))); 10760 10761 return fold_build2_loc (loc, code, type, newmod, 10762 fold_convert_loc (loc, newtype, arg1)); 10763 } 10764 10765 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where 10766 C1 is a valid shift constant, and C2 is a power of two, i.e. 10767 a single bit. */ 10768 if (TREE_CODE (arg0) == BIT_AND_EXPR 10769 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR 10770 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)) 10771 == INTEGER_CST 10772 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10773 && integer_zerop (arg1)) 10774 { 10775 tree itype = TREE_TYPE (arg0); 10776 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1); 10777 prec = TYPE_PRECISION (itype); 10778 10779 /* Check for a valid shift count. */ 10780 if (wi::ltu_p (wi::to_wide (arg001), prec)) 10781 { 10782 tree arg01 = TREE_OPERAND (arg0, 1); 10783 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0); 10784 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01); 10785 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0 10786 can be rewritten as (X & (C2 << C1)) != 0. */ 10787 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec) 10788 { 10789 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001); 10790 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem); 10791 return fold_build2_loc (loc, code, type, tem, 10792 fold_convert_loc (loc, itype, arg1)); 10793 } 10794 /* Otherwise, for signed (arithmetic) shifts, 10795 ((X >> C1) & C2) != 0 is rewritten as X < 0, and 10796 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */ 10797 else if (!TYPE_UNSIGNED (itype)) 10798 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type, 10799 arg000, build_int_cst (itype, 0)); 10800 /* Otherwise, of unsigned (logical) shifts, 10801 ((X >> C1) & C2) != 0 is rewritten as (X,false), and 10802 ((X >> C1) & C2) == 0 is rewritten as (X,true). */ 10803 else 10804 return omit_one_operand_loc (loc, type, 10805 code == EQ_EXPR ? integer_one_node 10806 : integer_zero_node, 10807 arg000); 10808 } 10809 } 10810 10811 /* If this is a comparison of a field, we may be able to simplify it. */ 10812 if ((TREE_CODE (arg0) == COMPONENT_REF 10813 || TREE_CODE (arg0) == BIT_FIELD_REF) 10814 /* Handle the constant case even without -O 10815 to make sure the warnings are given. */ 10816 && (optimize || TREE_CODE (arg1) == INTEGER_CST)) 10817 { 10818 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1); 10819 if (t1) 10820 return t1; 10821 } 10822 10823 /* Optimize comparisons of strlen vs zero to a compare of the 10824 first character of the string vs zero. To wit, 10825 strlen(ptr) == 0 => *ptr == 0 10826 strlen(ptr) != 0 => *ptr != 0 10827 Other cases should reduce to one of these two (or a constant) 10828 due to the return value of strlen being unsigned. */ 10829 if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1)) 10830 { 10831 tree fndecl = get_callee_fndecl (arg0); 10832 10833 if (fndecl 10834 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 10835 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN 10836 && call_expr_nargs (arg0) == 1 10837 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) 10838 == POINTER_TYPE)) 10839 { 10840 tree ptrtype 10841 = build_pointer_type (build_qualified_type (char_type_node, 10842 TYPE_QUAL_CONST)); 10843 tree ptr = fold_convert_loc (loc, ptrtype, 10844 CALL_EXPR_ARG (arg0, 0)); 10845 tree iref = build_fold_indirect_ref_loc (loc, ptr); 10846 return fold_build2_loc (loc, code, type, iref, 10847 build_int_cst (TREE_TYPE (iref), 0)); 10848 } 10849 } 10850 10851 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width 10852 of X. Similarly fold (X >> C) == 0 into X >= 0. */ 10853 if (TREE_CODE (arg0) == RSHIFT_EXPR 10854 && integer_zerop (arg1) 10855 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) 10856 { 10857 tree arg00 = TREE_OPERAND (arg0, 0); 10858 tree arg01 = TREE_OPERAND (arg0, 1); 10859 tree itype = TREE_TYPE (arg00); 10860 if (wi::to_wide (arg01) == element_precision (itype) - 1) 10861 { 10862 if (TYPE_UNSIGNED (itype)) 10863 { 10864 itype = signed_type_for (itype); 10865 arg00 = fold_convert_loc (loc, itype, arg00); 10866 } 10867 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, 10868 type, arg00, build_zero_cst (itype)); 10869 } 10870 } 10871 10872 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into 10873 (X & C) == 0 when C is a single bit. */ 10874 if (TREE_CODE (arg0) == BIT_AND_EXPR 10875 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR 10876 && integer_zerop (arg1) 10877 && integer_pow2p (TREE_OPERAND (arg0, 1))) 10878 { 10879 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), 10880 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0), 10881 TREE_OPERAND (arg0, 1)); 10882 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, 10883 type, tem, 10884 fold_convert_loc (loc, TREE_TYPE (arg0), 10885 arg1)); 10886 } 10887 10888 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the 10889 constant C is a power of two, i.e. a single bit. */ 10890 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10891 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR 10892 && integer_zerop (arg1) 10893 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10894 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 10895 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) 10896 { 10897 tree arg00 = TREE_OPERAND (arg0, 0); 10898 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, 10899 arg00, build_int_cst (TREE_TYPE (arg00), 0)); 10900 } 10901 10902 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0, 10903 when is C is a power of two, i.e. a single bit. */ 10904 if (TREE_CODE (arg0) == BIT_AND_EXPR 10905 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR 10906 && integer_zerop (arg1) 10907 && integer_pow2p (TREE_OPERAND (arg0, 1)) 10908 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 10909 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) 10910 { 10911 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0); 10912 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000), 10913 arg000, TREE_OPERAND (arg0, 1)); 10914 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, 10915 tem, build_int_cst (TREE_TYPE (tem), 0)); 10916 } 10917 10918 if (integer_zerop (arg1) 10919 && tree_expr_nonzero_p (arg0)) 10920 { 10921 tree res = constant_boolean_node (code==NE_EXPR, type); 10922 return omit_one_operand_loc (loc, type, res, arg0); 10923 } 10924 10925 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */ 10926 if (TREE_CODE (arg0) == BIT_AND_EXPR 10927 && TREE_CODE (arg1) == BIT_AND_EXPR) 10928 { 10929 tree arg00 = TREE_OPERAND (arg0, 0); 10930 tree arg01 = TREE_OPERAND (arg0, 1); 10931 tree arg10 = TREE_OPERAND (arg1, 0); 10932 tree arg11 = TREE_OPERAND (arg1, 1); 10933 tree itype = TREE_TYPE (arg0); 10934 10935 if (operand_equal_p (arg01, arg11, 0)) 10936 { 10937 tem = fold_convert_loc (loc, itype, arg10); 10938 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10939 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01); 10940 return fold_build2_loc (loc, code, type, tem, 10941 build_zero_cst (itype)); 10942 } 10943 if (operand_equal_p (arg01, arg10, 0)) 10944 { 10945 tem = fold_convert_loc (loc, itype, arg11); 10946 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 10947 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg01); 10948 return fold_build2_loc (loc, code, type, tem, 10949 build_zero_cst (itype)); 10950 } 10951 if (operand_equal_p (arg00, arg11, 0)) 10952 { 10953 tem = fold_convert_loc (loc, itype, arg10); 10954 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem); 10955 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00); 10956 return fold_build2_loc (loc, code, type, tem, 10957 build_zero_cst (itype)); 10958 } 10959 if (operand_equal_p (arg00, arg10, 0)) 10960 { 10961 tem = fold_convert_loc (loc, itype, arg11); 10962 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, tem); 10963 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, tem, arg00); 10964 return fold_build2_loc (loc, code, type, tem, 10965 build_zero_cst (itype)); 10966 } 10967 } 10968 10969 if (TREE_CODE (arg0) == BIT_XOR_EXPR 10970 && TREE_CODE (arg1) == BIT_XOR_EXPR) 10971 { 10972 tree arg00 = TREE_OPERAND (arg0, 0); 10973 tree arg01 = TREE_OPERAND (arg0, 1); 10974 tree arg10 = TREE_OPERAND (arg1, 0); 10975 tree arg11 = TREE_OPERAND (arg1, 1); 10976 tree itype = TREE_TYPE (arg0); 10977 10978 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries. 10979 operand_equal_p guarantees no side-effects so we don't need 10980 to use omit_one_operand on Z. */ 10981 if (operand_equal_p (arg01, arg11, 0)) 10982 return fold_build2_loc (loc, code, type, arg00, 10983 fold_convert_loc (loc, TREE_TYPE (arg00), 10984 arg10)); 10985 if (operand_equal_p (arg01, arg10, 0)) 10986 return fold_build2_loc (loc, code, type, arg00, 10987 fold_convert_loc (loc, TREE_TYPE (arg00), 10988 arg11)); 10989 if (operand_equal_p (arg00, arg11, 0)) 10990 return fold_build2_loc (loc, code, type, arg01, 10991 fold_convert_loc (loc, TREE_TYPE (arg01), 10992 arg10)); 10993 if (operand_equal_p (arg00, arg10, 0)) 10994 return fold_build2_loc (loc, code, type, arg01, 10995 fold_convert_loc (loc, TREE_TYPE (arg01), 10996 arg11)); 10997 10998 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */ 10999 if (TREE_CODE (arg01) == INTEGER_CST 11000 && TREE_CODE (arg11) == INTEGER_CST) 11001 { 11002 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, 11003 fold_convert_loc (loc, itype, arg11)); 11004 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); 11005 return fold_build2_loc (loc, code, type, tem, 11006 fold_convert_loc (loc, itype, arg10)); 11007 } 11008 } 11009 11010 /* Attempt to simplify equality/inequality comparisons of complex 11011 values. Only lower the comparison if the result is known or 11012 can be simplified to a single scalar comparison. */ 11013 if ((TREE_CODE (arg0) == COMPLEX_EXPR 11014 || TREE_CODE (arg0) == COMPLEX_CST) 11015 && (TREE_CODE (arg1) == COMPLEX_EXPR 11016 || TREE_CODE (arg1) == COMPLEX_CST)) 11017 { 11018 tree real0, imag0, real1, imag1; 11019 tree rcond, icond; 11020 11021 if (TREE_CODE (arg0) == COMPLEX_EXPR) 11022 { 11023 real0 = TREE_OPERAND (arg0, 0); 11024 imag0 = TREE_OPERAND (arg0, 1); 11025 } 11026 else 11027 { 11028 real0 = TREE_REALPART (arg0); 11029 imag0 = TREE_IMAGPART (arg0); 11030 } 11031 11032 if (TREE_CODE (arg1) == COMPLEX_EXPR) 11033 { 11034 real1 = TREE_OPERAND (arg1, 0); 11035 imag1 = TREE_OPERAND (arg1, 1); 11036 } 11037 else 11038 { 11039 real1 = TREE_REALPART (arg1); 11040 imag1 = TREE_IMAGPART (arg1); 11041 } 11042 11043 rcond = fold_binary_loc (loc, code, type, real0, real1); 11044 if (rcond && TREE_CODE (rcond) == INTEGER_CST) 11045 { 11046 if (integer_zerop (rcond)) 11047 { 11048 if (code == EQ_EXPR) 11049 return omit_two_operands_loc (loc, type, boolean_false_node, 11050 imag0, imag1); 11051 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1); 11052 } 11053 else 11054 { 11055 if (code == NE_EXPR) 11056 return omit_two_operands_loc (loc, type, boolean_true_node, 11057 imag0, imag1); 11058 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1); 11059 } 11060 } 11061 11062 icond = fold_binary_loc (loc, code, type, imag0, imag1); 11063 if (icond && TREE_CODE (icond) == INTEGER_CST) 11064 { 11065 if (integer_zerop (icond)) 11066 { 11067 if (code == EQ_EXPR) 11068 return omit_two_operands_loc (loc, type, boolean_false_node, 11069 real0, real1); 11070 return fold_build2_loc (loc, NE_EXPR, type, real0, real1); 11071 } 11072 else 11073 { 11074 if (code == NE_EXPR) 11075 return omit_two_operands_loc (loc, type, boolean_true_node, 11076 real0, real1); 11077 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1); 11078 } 11079 } 11080 } 11081 11082 return NULL_TREE; 11083 11084 case LT_EXPR: 11085 case GT_EXPR: 11086 case LE_EXPR: 11087 case GE_EXPR: 11088 tem = fold_comparison (loc, code, type, op0, op1); 11089 if (tem != NULL_TREE) 11090 return tem; 11091 11092 /* Transform comparisons of the form X +- C CMP X. */ 11093 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) 11094 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0) 11095 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST 11096 && !HONOR_SNANS (arg0)) 11097 { 11098 tree arg01 = TREE_OPERAND (arg0, 1); 11099 enum tree_code code0 = TREE_CODE (arg0); 11100 int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1; 11101 11102 /* (X - c) > X becomes false. */ 11103 if (code == GT_EXPR 11104 && ((code0 == MINUS_EXPR && is_positive >= 0) 11105 || (code0 == PLUS_EXPR && is_positive <= 0))) 11106 return constant_boolean_node (0, type); 11107 11108 /* Likewise (X + c) < X becomes false. */ 11109 if (code == LT_EXPR 11110 && ((code0 == PLUS_EXPR && is_positive >= 0) 11111 || (code0 == MINUS_EXPR && is_positive <= 0))) 11112 return constant_boolean_node (0, type); 11113 11114 /* Convert (X - c) <= X to true. */ 11115 if (!HONOR_NANS (arg1) 11116 && code == LE_EXPR 11117 && ((code0 == MINUS_EXPR && is_positive >= 0) 11118 || (code0 == PLUS_EXPR && is_positive <= 0))) 11119 return constant_boolean_node (1, type); 11120 11121 /* Convert (X + c) >= X to true. */ 11122 if (!HONOR_NANS (arg1) 11123 && code == GE_EXPR 11124 && ((code0 == PLUS_EXPR && is_positive >= 0) 11125 || (code0 == MINUS_EXPR && is_positive <= 0))) 11126 return constant_boolean_node (1, type); 11127 } 11128 11129 /* If we are comparing an ABS_EXPR with a constant, we can 11130 convert all the cases into explicit comparisons, but they may 11131 well not be faster than doing the ABS and one comparison. 11132 But ABS (X) <= C is a range comparison, which becomes a subtraction 11133 and a comparison, and is probably faster. */ 11134 if (code == LE_EXPR 11135 && TREE_CODE (arg1) == INTEGER_CST 11136 && TREE_CODE (arg0) == ABS_EXPR 11137 && ! TREE_SIDE_EFFECTS (arg0) 11138 && (tem = negate_expr (arg1)) != 0 11139 && TREE_CODE (tem) == INTEGER_CST 11140 && !TREE_OVERFLOW (tem)) 11141 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type, 11142 build2 (GE_EXPR, type, 11143 TREE_OPERAND (arg0, 0), tem), 11144 build2 (LE_EXPR, type, 11145 TREE_OPERAND (arg0, 0), arg1)); 11146 11147 /* Convert ABS_EXPR<x> >= 0 to true. */ 11148 strict_overflow_p = false; 11149 if (code == GE_EXPR 11150 && (integer_zerop (arg1) 11151 || (! HONOR_NANS (arg0) 11152 && real_zerop (arg1))) 11153 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) 11154 { 11155 if (strict_overflow_p) 11156 fold_overflow_warning (("assuming signed overflow does not occur " 11157 "when simplifying comparison of " 11158 "absolute value and zero"), 11159 WARN_STRICT_OVERFLOW_CONDITIONAL); 11160 return omit_one_operand_loc (loc, type, 11161 constant_boolean_node (true, type), 11162 arg0); 11163 } 11164 11165 /* Convert ABS_EXPR<x> < 0 to false. */ 11166 strict_overflow_p = false; 11167 if (code == LT_EXPR 11168 && (integer_zerop (arg1) || real_zerop (arg1)) 11169 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) 11170 { 11171 if (strict_overflow_p) 11172 fold_overflow_warning (("assuming signed overflow does not occur " 11173 "when simplifying comparison of " 11174 "absolute value and zero"), 11175 WARN_STRICT_OVERFLOW_CONDITIONAL); 11176 return omit_one_operand_loc (loc, type, 11177 constant_boolean_node (false, type), 11178 arg0); 11179 } 11180 11181 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0 11182 and similarly for >= into !=. */ 11183 if ((code == LT_EXPR || code == GE_EXPR) 11184 && TYPE_UNSIGNED (TREE_TYPE (arg0)) 11185 && TREE_CODE (arg1) == LSHIFT_EXPR 11186 && integer_onep (TREE_OPERAND (arg1, 0))) 11187 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, 11188 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, 11189 TREE_OPERAND (arg1, 1)), 11190 build_zero_cst (TREE_TYPE (arg0))); 11191 11192 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing, 11193 otherwise Y might be >= # of bits in X's type and thus e.g. 11194 (unsigned char) (1 << Y) for Y 15 might be 0. 11195 If the cast is widening, then 1 << Y should have unsigned type, 11196 otherwise if Y is number of bits in the signed shift type minus 1, 11197 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y 11198 31 might be 0xffffffff80000000. */ 11199 if ((code == LT_EXPR || code == GE_EXPR) 11200 && TYPE_UNSIGNED (TREE_TYPE (arg0)) 11201 && CONVERT_EXPR_P (arg1) 11202 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR 11203 && (element_precision (TREE_TYPE (arg1)) 11204 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))) 11205 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))) 11206 || (element_precision (TREE_TYPE (arg1)) 11207 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))) 11208 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0))) 11209 { 11210 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, 11211 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1)); 11212 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, 11213 fold_convert_loc (loc, TREE_TYPE (arg0), tem), 11214 build_zero_cst (TREE_TYPE (arg0))); 11215 } 11216 11217 return NULL_TREE; 11218 11219 case UNORDERED_EXPR: 11220 case ORDERED_EXPR: 11221 case UNLT_EXPR: 11222 case UNLE_EXPR: 11223 case UNGT_EXPR: 11224 case UNGE_EXPR: 11225 case UNEQ_EXPR: 11226 case LTGT_EXPR: 11227 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */ 11228 { 11229 tree targ0 = strip_float_extensions (arg0); 11230 tree targ1 = strip_float_extensions (arg1); 11231 tree newtype = TREE_TYPE (targ0); 11232 11233 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype)) 11234 newtype = TREE_TYPE (targ1); 11235 11236 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0))) 11237 return fold_build2_loc (loc, code, type, 11238 fold_convert_loc (loc, newtype, targ0), 11239 fold_convert_loc (loc, newtype, targ1)); 11240 } 11241 11242 return NULL_TREE; 11243 11244 case COMPOUND_EXPR: 11245 /* When pedantic, a compound expression can be neither an lvalue 11246 nor an integer constant expression. */ 11247 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1)) 11248 return NULL_TREE; 11249 /* Don't let (0, 0) be null pointer constant. */ 11250 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1) 11251 : fold_convert_loc (loc, type, arg1); 11252 return pedantic_non_lvalue_loc (loc, tem); 11253 11254 case ASSERT_EXPR: 11255 /* An ASSERT_EXPR should never be passed to fold_binary. */ 11256 gcc_unreachable (); 11257 11258 default: 11259 return NULL_TREE; 11260 } /* switch (code) */ 11261 } 11262 11263 /* Used by contains_label_[p1]. */ 11264 11265 struct contains_label_data 11266 { 11267 hash_set<tree> *pset; 11268 bool inside_switch_p; 11269 }; 11270 11271 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is 11272 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise 11273 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */ 11274 11275 static tree 11276 contains_label_1 (tree *tp, int *walk_subtrees, void *data) 11277 { 11278 contains_label_data *d = (contains_label_data *) data; 11279 switch (TREE_CODE (*tp)) 11280 { 11281 case LABEL_EXPR: 11282 return *tp; 11283 11284 case CASE_LABEL_EXPR: 11285 if (!d->inside_switch_p) 11286 return *tp; 11287 return NULL_TREE; 11288 11289 case SWITCH_EXPR: 11290 if (!d->inside_switch_p) 11291 { 11292 if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset)) 11293 return *tp; 11294 d->inside_switch_p = true; 11295 if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset)) 11296 return *tp; 11297 d->inside_switch_p = false; 11298 *walk_subtrees = 0; 11299 } 11300 return NULL_TREE; 11301 11302 case GOTO_EXPR: 11303 *walk_subtrees = 0; 11304 return NULL_TREE; 11305 11306 default: 11307 return NULL_TREE; 11308 } 11309 } 11310 11311 /* Return whether the sub-tree ST contains a label which is accessible from 11312 outside the sub-tree. */ 11313 11314 static bool 11315 contains_label_p (tree st) 11316 { 11317 hash_set<tree> pset; 11318 contains_label_data data = { &pset, false }; 11319 return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE; 11320 } 11321 11322 /* Fold a ternary expression of code CODE and type TYPE with operands 11323 OP0, OP1, and OP2. Return the folded expression if folding is 11324 successful. Otherwise, return NULL_TREE. */ 11325 11326 tree 11327 fold_ternary_loc (location_t loc, enum tree_code code, tree type, 11328 tree op0, tree op1, tree op2) 11329 { 11330 tree tem; 11331 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE; 11332 enum tree_code_class kind = TREE_CODE_CLASS (code); 11333 11334 gcc_assert (IS_EXPR_CODE_CLASS (kind) 11335 && TREE_CODE_LENGTH (code) == 3); 11336 11337 /* If this is a commutative operation, and OP0 is a constant, move it 11338 to OP1 to reduce the number of tests below. */ 11339 if (commutative_ternary_tree_code (code) 11340 && tree_swap_operands_p (op0, op1)) 11341 return fold_build3_loc (loc, code, type, op1, op0, op2); 11342 11343 tem = generic_simplify (loc, code, type, op0, op1, op2); 11344 if (tem) 11345 return tem; 11346 11347 /* Strip any conversions that don't change the mode. This is safe 11348 for every expression, except for a comparison expression because 11349 its signedness is derived from its operands. So, in the latter 11350 case, only strip conversions that don't change the signedness. 11351 11352 Note that this is done as an internal manipulation within the 11353 constant folder, in order to find the simplest representation of 11354 the arguments so that their form can be studied. In any cases, 11355 the appropriate type conversions should be put back in the tree 11356 that will get out of the constant folder. */ 11357 if (op0) 11358 { 11359 arg0 = op0; 11360 STRIP_NOPS (arg0); 11361 } 11362 11363 if (op1) 11364 { 11365 arg1 = op1; 11366 STRIP_NOPS (arg1); 11367 } 11368 11369 if (op2) 11370 { 11371 arg2 = op2; 11372 STRIP_NOPS (arg2); 11373 } 11374 11375 switch (code) 11376 { 11377 case COMPONENT_REF: 11378 if (TREE_CODE (arg0) == CONSTRUCTOR 11379 && ! type_contains_placeholder_p (TREE_TYPE (arg0))) 11380 { 11381 unsigned HOST_WIDE_INT idx; 11382 tree field, value; 11383 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value) 11384 if (field == arg1) 11385 return value; 11386 } 11387 return NULL_TREE; 11388 11389 case COND_EXPR: 11390 case VEC_COND_EXPR: 11391 /* Pedantic ANSI C says that a conditional expression is never an lvalue, 11392 so all simple results must be passed through pedantic_non_lvalue. */ 11393 if (TREE_CODE (arg0) == INTEGER_CST) 11394 { 11395 tree unused_op = integer_zerop (arg0) ? op1 : op2; 11396 tem = integer_zerop (arg0) ? op2 : op1; 11397 /* Only optimize constant conditions when the selected branch 11398 has the same type as the COND_EXPR. This avoids optimizing 11399 away "c ? x : throw", where the throw has a void type. 11400 Avoid throwing away that operand which contains label. */ 11401 if ((!TREE_SIDE_EFFECTS (unused_op) 11402 || !contains_label_p (unused_op)) 11403 && (! VOID_TYPE_P (TREE_TYPE (tem)) 11404 || VOID_TYPE_P (type))) 11405 return pedantic_non_lvalue_loc (loc, tem); 11406 return NULL_TREE; 11407 } 11408 else if (TREE_CODE (arg0) == VECTOR_CST) 11409 { 11410 unsigned HOST_WIDE_INT nelts; 11411 if ((TREE_CODE (arg1) == VECTOR_CST 11412 || TREE_CODE (arg1) == CONSTRUCTOR) 11413 && (TREE_CODE (arg2) == VECTOR_CST 11414 || TREE_CODE (arg2) == CONSTRUCTOR) 11415 && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts)) 11416 { 11417 vec_perm_builder sel (nelts, nelts, 1); 11418 for (unsigned int i = 0; i < nelts; i++) 11419 { 11420 tree val = VECTOR_CST_ELT (arg0, i); 11421 if (integer_all_onesp (val)) 11422 sel.quick_push (i); 11423 else if (integer_zerop (val)) 11424 sel.quick_push (nelts + i); 11425 else /* Currently unreachable. */ 11426 return NULL_TREE; 11427 } 11428 vec_perm_indices indices (sel, 2, nelts); 11429 tree t = fold_vec_perm (type, arg1, arg2, indices); 11430 if (t != NULL_TREE) 11431 return t; 11432 } 11433 } 11434 11435 /* If we have A op B ? A : C, we may be able to convert this to a 11436 simpler expression, depending on the operation and the values 11437 of B and C. Signed zeros prevent all of these transformations, 11438 for reasons given above each one. 11439 11440 Also try swapping the arguments and inverting the conditional. */ 11441 if (COMPARISON_CLASS_P (arg0) 11442 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1) 11443 && !HONOR_SIGNED_ZEROS (element_mode (op1))) 11444 { 11445 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2); 11446 if (tem) 11447 return tem; 11448 } 11449 11450 if (COMPARISON_CLASS_P (arg0) 11451 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2) 11452 && !HONOR_SIGNED_ZEROS (element_mode (op2))) 11453 { 11454 location_t loc0 = expr_location_or (arg0, loc); 11455 tem = fold_invert_truthvalue (loc0, arg0); 11456 if (tem && COMPARISON_CLASS_P (tem)) 11457 { 11458 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1); 11459 if (tem) 11460 return tem; 11461 } 11462 } 11463 11464 /* If the second operand is simpler than the third, swap them 11465 since that produces better jump optimization results. */ 11466 if (truth_value_p (TREE_CODE (arg0)) 11467 && tree_swap_operands_p (op1, op2)) 11468 { 11469 location_t loc0 = expr_location_or (arg0, loc); 11470 /* See if this can be inverted. If it can't, possibly because 11471 it was a floating-point inequality comparison, don't do 11472 anything. */ 11473 tem = fold_invert_truthvalue (loc0, arg0); 11474 if (tem) 11475 return fold_build3_loc (loc, code, type, tem, op2, op1); 11476 } 11477 11478 /* Convert A ? 1 : 0 to simply A. */ 11479 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1) 11480 : (integer_onep (op1) 11481 && !VECTOR_TYPE_P (type))) 11482 && integer_zerop (op2) 11483 /* If we try to convert OP0 to our type, the 11484 call to fold will try to move the conversion inside 11485 a COND, which will recurse. In that case, the COND_EXPR 11486 is probably the best choice, so leave it alone. */ 11487 && type == TREE_TYPE (arg0)) 11488 return pedantic_non_lvalue_loc (loc, arg0); 11489 11490 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR 11491 over COND_EXPR in cases such as floating point comparisons. */ 11492 if (integer_zerop (op1) 11493 && code == COND_EXPR 11494 && integer_onep (op2) 11495 && !VECTOR_TYPE_P (type) 11496 && truth_value_p (TREE_CODE (arg0))) 11497 return pedantic_non_lvalue_loc (loc, 11498 fold_convert_loc (loc, type, 11499 invert_truthvalue_loc (loc, 11500 arg0))); 11501 11502 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */ 11503 if (TREE_CODE (arg0) == LT_EXPR 11504 && integer_zerop (TREE_OPERAND (arg0, 1)) 11505 && integer_zerop (op2) 11506 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1))) 11507 { 11508 /* sign_bit_p looks through both zero and sign extensions, 11509 but for this optimization only sign extensions are 11510 usable. */ 11511 tree tem2 = TREE_OPERAND (arg0, 0); 11512 while (tem != tem2) 11513 { 11514 if (TREE_CODE (tem2) != NOP_EXPR 11515 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0)))) 11516 { 11517 tem = NULL_TREE; 11518 break; 11519 } 11520 tem2 = TREE_OPERAND (tem2, 0); 11521 } 11522 /* sign_bit_p only checks ARG1 bits within A's precision. 11523 If <sign bit of A> has wider type than A, bits outside 11524 of A's precision in <sign bit of A> need to be checked. 11525 If they are all 0, this optimization needs to be done 11526 in unsigned A's type, if they are all 1 in signed A's type, 11527 otherwise this can't be done. */ 11528 if (tem 11529 && TYPE_PRECISION (TREE_TYPE (tem)) 11530 < TYPE_PRECISION (TREE_TYPE (arg1)) 11531 && TYPE_PRECISION (TREE_TYPE (tem)) 11532 < TYPE_PRECISION (type)) 11533 { 11534 int inner_width, outer_width; 11535 tree tem_type; 11536 11537 inner_width = TYPE_PRECISION (TREE_TYPE (tem)); 11538 outer_width = TYPE_PRECISION (TREE_TYPE (arg1)); 11539 if (outer_width > TYPE_PRECISION (type)) 11540 outer_width = TYPE_PRECISION (type); 11541 11542 wide_int mask = wi::shifted_mask 11543 (inner_width, outer_width - inner_width, false, 11544 TYPE_PRECISION (TREE_TYPE (arg1))); 11545 11546 wide_int common = mask & wi::to_wide (arg1); 11547 if (common == mask) 11548 { 11549 tem_type = signed_type_for (TREE_TYPE (tem)); 11550 tem = fold_convert_loc (loc, tem_type, tem); 11551 } 11552 else if (common == 0) 11553 { 11554 tem_type = unsigned_type_for (TREE_TYPE (tem)); 11555 tem = fold_convert_loc (loc, tem_type, tem); 11556 } 11557 else 11558 tem = NULL; 11559 } 11560 11561 if (tem) 11562 return 11563 fold_convert_loc (loc, type, 11564 fold_build2_loc (loc, BIT_AND_EXPR, 11565 TREE_TYPE (tem), tem, 11566 fold_convert_loc (loc, 11567 TREE_TYPE (tem), 11568 arg1))); 11569 } 11570 11571 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was 11572 already handled above. */ 11573 if (TREE_CODE (arg0) == BIT_AND_EXPR 11574 && integer_onep (TREE_OPERAND (arg0, 1)) 11575 && integer_zerop (op2) 11576 && integer_pow2p (arg1)) 11577 { 11578 tree tem = TREE_OPERAND (arg0, 0); 11579 STRIP_NOPS (tem); 11580 if (TREE_CODE (tem) == RSHIFT_EXPR 11581 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1)) 11582 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) 11583 == tree_to_uhwi (TREE_OPERAND (tem, 1))) 11584 return fold_build2_loc (loc, BIT_AND_EXPR, type, 11585 fold_convert_loc (loc, type, 11586 TREE_OPERAND (tem, 0)), 11587 op1); 11588 } 11589 11590 /* A & N ? N : 0 is simply A & N if N is a power of two. This 11591 is probably obsolete because the first operand should be a 11592 truth value (that's why we have the two cases above), but let's 11593 leave it in until we can confirm this for all front-ends. */ 11594 if (integer_zerop (op2) 11595 && TREE_CODE (arg0) == NE_EXPR 11596 && integer_zerop (TREE_OPERAND (arg0, 1)) 11597 && integer_pow2p (arg1) 11598 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR 11599 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), 11600 arg1, OEP_ONLY_CONST) 11601 /* operand_equal_p compares just value, not precision, so e.g. 11602 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR 11603 second operand 32-bit -128, which is not a power of two (or vice 11604 versa. */ 11605 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))) 11606 return pedantic_non_lvalue_loc (loc, 11607 fold_convert_loc (loc, type, 11608 TREE_OPERAND (arg0, 11609 0))); 11610 11611 /* Disable the transformations below for vectors, since 11612 fold_binary_op_with_conditional_arg may undo them immediately, 11613 yielding an infinite loop. */ 11614 if (code == VEC_COND_EXPR) 11615 return NULL_TREE; 11616 11617 /* Convert A ? B : 0 into A && B if A and B are truth values. */ 11618 if (integer_zerop (op2) 11619 && truth_value_p (TREE_CODE (arg0)) 11620 && truth_value_p (TREE_CODE (arg1)) 11621 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11622 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR 11623 : TRUTH_ANDIF_EXPR, 11624 type, fold_convert_loc (loc, type, arg0), op1); 11625 11626 /* Convert A ? B : 1 into !A || B if A and B are truth values. */ 11627 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2) 11628 && truth_value_p (TREE_CODE (arg0)) 11629 && truth_value_p (TREE_CODE (arg1)) 11630 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11631 { 11632 location_t loc0 = expr_location_or (arg0, loc); 11633 /* Only perform transformation if ARG0 is easily inverted. */ 11634 tem = fold_invert_truthvalue (loc0, arg0); 11635 if (tem) 11636 return fold_build2_loc (loc, code == VEC_COND_EXPR 11637 ? BIT_IOR_EXPR 11638 : TRUTH_ORIF_EXPR, 11639 type, fold_convert_loc (loc, type, tem), 11640 op1); 11641 } 11642 11643 /* Convert A ? 0 : B into !A && B if A and B are truth values. */ 11644 if (integer_zerop (arg1) 11645 && truth_value_p (TREE_CODE (arg0)) 11646 && truth_value_p (TREE_CODE (op2)) 11647 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11648 { 11649 location_t loc0 = expr_location_or (arg0, loc); 11650 /* Only perform transformation if ARG0 is easily inverted. */ 11651 tem = fold_invert_truthvalue (loc0, arg0); 11652 if (tem) 11653 return fold_build2_loc (loc, code == VEC_COND_EXPR 11654 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR, 11655 type, fold_convert_loc (loc, type, tem), 11656 op2); 11657 } 11658 11659 /* Convert A ? 1 : B into A || B if A and B are truth values. */ 11660 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1) 11661 && truth_value_p (TREE_CODE (arg0)) 11662 && truth_value_p (TREE_CODE (op2)) 11663 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) 11664 return fold_build2_loc (loc, code == VEC_COND_EXPR 11665 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR, 11666 type, fold_convert_loc (loc, type, arg0), op2); 11667 11668 return NULL_TREE; 11669 11670 case CALL_EXPR: 11671 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses 11672 of fold_ternary on them. */ 11673 gcc_unreachable (); 11674 11675 case BIT_FIELD_REF: 11676 if (TREE_CODE (arg0) == VECTOR_CST 11677 && (type == TREE_TYPE (TREE_TYPE (arg0)) 11678 || (VECTOR_TYPE_P (type) 11679 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))) 11680 && tree_fits_uhwi_p (op1) 11681 && tree_fits_uhwi_p (op2)) 11682 { 11683 tree eltype = TREE_TYPE (TREE_TYPE (arg0)); 11684 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype)); 11685 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1); 11686 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2); 11687 11688 if (n != 0 11689 && (idx % width) == 0 11690 && (n % width) == 0 11691 && known_le ((idx + n) / width, 11692 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))) 11693 { 11694 idx = idx / width; 11695 n = n / width; 11696 11697 if (TREE_CODE (arg0) == VECTOR_CST) 11698 { 11699 if (n == 1) 11700 { 11701 tem = VECTOR_CST_ELT (arg0, idx); 11702 if (VECTOR_TYPE_P (type)) 11703 tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem); 11704 return tem; 11705 } 11706 11707 tree_vector_builder vals (type, n, 1); 11708 for (unsigned i = 0; i < n; ++i) 11709 vals.quick_push (VECTOR_CST_ELT (arg0, idx + i)); 11710 return vals.build (); 11711 } 11712 } 11713 } 11714 11715 /* On constants we can use native encode/interpret to constant 11716 fold (nearly) all BIT_FIELD_REFs. */ 11717 if (CONSTANT_CLASS_P (arg0) 11718 && can_native_interpret_type_p (type) 11719 && BITS_PER_UNIT == 8 11720 && tree_fits_uhwi_p (op1) 11721 && tree_fits_uhwi_p (op2)) 11722 { 11723 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11724 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1); 11725 /* Limit us to a reasonable amount of work. To relax the 11726 other limitations we need bit-shifting of the buffer 11727 and rounding up the size. */ 11728 if (bitpos % BITS_PER_UNIT == 0 11729 && bitsize % BITS_PER_UNIT == 0 11730 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE) 11731 { 11732 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT]; 11733 unsigned HOST_WIDE_INT len 11734 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT, 11735 bitpos / BITS_PER_UNIT); 11736 if (len > 0 11737 && len * BITS_PER_UNIT >= bitsize) 11738 { 11739 tree v = native_interpret_expr (type, b, 11740 bitsize / BITS_PER_UNIT); 11741 if (v) 11742 return v; 11743 } 11744 } 11745 } 11746 11747 return NULL_TREE; 11748 11749 case FMA_EXPR: 11750 /* For integers we can decompose the FMA if possible. */ 11751 if (TREE_CODE (arg0) == INTEGER_CST 11752 && TREE_CODE (arg1) == INTEGER_CST) 11753 return fold_build2_loc (loc, PLUS_EXPR, type, 11754 const_binop (MULT_EXPR, arg0, arg1), arg2); 11755 if (integer_zerop (arg2)) 11756 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1); 11757 11758 return fold_fma (loc, type, arg0, arg1, arg2); 11759 11760 case VEC_PERM_EXPR: 11761 if (TREE_CODE (arg2) == VECTOR_CST) 11762 { 11763 /* Build a vector of integers from the tree mask. */ 11764 vec_perm_builder builder; 11765 if (!tree_to_vec_perm_builder (&builder, arg2)) 11766 return NULL_TREE; 11767 11768 /* Create a vec_perm_indices for the integer vector. */ 11769 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type); 11770 bool single_arg = (op0 == op1); 11771 vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts); 11772 11773 /* Check for cases that fold to OP0 or OP1 in their original 11774 element order. */ 11775 if (sel.series_p (0, 1, 0, 1)) 11776 return op0; 11777 if (sel.series_p (0, 1, nelts, 1)) 11778 return op1; 11779 11780 if (!single_arg) 11781 { 11782 if (sel.all_from_input_p (0)) 11783 op1 = op0; 11784 else if (sel.all_from_input_p (1)) 11785 { 11786 op0 = op1; 11787 sel.rotate_inputs (1); 11788 } 11789 } 11790 11791 if ((TREE_CODE (op0) == VECTOR_CST 11792 || TREE_CODE (op0) == CONSTRUCTOR) 11793 && (TREE_CODE (op1) == VECTOR_CST 11794 || TREE_CODE (op1) == CONSTRUCTOR)) 11795 { 11796 tree t = fold_vec_perm (type, op0, op1, sel); 11797 if (t != NULL_TREE) 11798 return t; 11799 } 11800 11801 bool changed = (op0 == op1 && !single_arg); 11802 11803 /* Generate a canonical form of the selector. */ 11804 if (arg2 == op2 && sel.encoding () != builder) 11805 { 11806 /* Some targets are deficient and fail to expand a single 11807 argument permutation while still allowing an equivalent 11808 2-argument version. */ 11809 if (sel.ninputs () == 2 11810 || can_vec_perm_const_p (TYPE_MODE (type), sel, false)) 11811 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel); 11812 else 11813 { 11814 vec_perm_indices sel2 (builder, 2, nelts); 11815 if (can_vec_perm_const_p (TYPE_MODE (type), sel2, false)) 11816 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel2); 11817 else 11818 /* Not directly supported with either encoding, 11819 so use the preferred form. */ 11820 op2 = vec_perm_indices_to_tree (TREE_TYPE (arg2), sel); 11821 } 11822 changed = true; 11823 } 11824 11825 if (changed) 11826 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2); 11827 } 11828 return NULL_TREE; 11829 11830 case BIT_INSERT_EXPR: 11831 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */ 11832 if (TREE_CODE (arg0) == INTEGER_CST 11833 && TREE_CODE (arg1) == INTEGER_CST) 11834 { 11835 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11836 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1)); 11837 wide_int tem = (wi::to_wide (arg0) 11838 & wi::shifted_mask (bitpos, bitsize, true, 11839 TYPE_PRECISION (type))); 11840 wide_int tem2 11841 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)), 11842 bitsize), bitpos); 11843 return wide_int_to_tree (type, wi::bit_or (tem, tem2)); 11844 } 11845 else if (TREE_CODE (arg0) == VECTOR_CST 11846 && CONSTANT_CLASS_P (arg1) 11847 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)), 11848 TREE_TYPE (arg1))) 11849 { 11850 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); 11851 unsigned HOST_WIDE_INT elsize 11852 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1))); 11853 if (bitpos % elsize == 0) 11854 { 11855 unsigned k = bitpos / elsize; 11856 unsigned HOST_WIDE_INT nelts; 11857 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0)) 11858 return arg0; 11859 else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts)) 11860 { 11861 tree_vector_builder elts (type, nelts, 1); 11862 elts.quick_grow (nelts); 11863 for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i) 11864 elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i)); 11865 return elts.build (); 11866 } 11867 } 11868 } 11869 return NULL_TREE; 11870 11871 default: 11872 return NULL_TREE; 11873 } /* switch (code) */ 11874 } 11875 11876 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR 11877 of an array (or vector). */ 11878 11879 tree 11880 get_array_ctor_element_at_index (tree ctor, offset_int access_index) 11881 { 11882 tree index_type = NULL_TREE; 11883 offset_int low_bound = 0; 11884 11885 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) 11886 { 11887 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); 11888 if (domain_type && TYPE_MIN_VALUE (domain_type)) 11889 { 11890 /* Static constructors for variably sized objects makes no sense. */ 11891 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST); 11892 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type)); 11893 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type)); 11894 } 11895 } 11896 11897 if (index_type) 11898 access_index = wi::ext (access_index, TYPE_PRECISION (index_type), 11899 TYPE_SIGN (index_type)); 11900 11901 offset_int index = low_bound - 1; 11902 if (index_type) 11903 index = wi::ext (index, TYPE_PRECISION (index_type), 11904 TYPE_SIGN (index_type)); 11905 11906 offset_int max_index; 11907 unsigned HOST_WIDE_INT cnt; 11908 tree cfield, cval; 11909 11910 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) 11911 { 11912 /* Array constructor might explicitly set index, or specify a range, 11913 or leave index NULL meaning that it is next index after previous 11914 one. */ 11915 if (cfield) 11916 { 11917 if (TREE_CODE (cfield) == INTEGER_CST) 11918 max_index = index = wi::to_offset (cfield); 11919 else 11920 { 11921 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR); 11922 index = wi::to_offset (TREE_OPERAND (cfield, 0)); 11923 max_index = wi::to_offset (TREE_OPERAND (cfield, 1)); 11924 } 11925 } 11926 else 11927 { 11928 index += 1; 11929 if (index_type) 11930 index = wi::ext (index, TYPE_PRECISION (index_type), 11931 TYPE_SIGN (index_type)); 11932 max_index = index; 11933 } 11934 11935 /* Do we have match? */ 11936 if (wi::cmpu (access_index, index) >= 0 11937 && wi::cmpu (access_index, max_index) <= 0) 11938 return cval; 11939 } 11940 return NULL_TREE; 11941 } 11942 11943 /* Perform constant folding and related simplification of EXPR. 11944 The related simplifications include x*1 => x, x*0 => 0, etc., 11945 and application of the associative law. 11946 NOP_EXPR conversions may be removed freely (as long as we 11947 are careful not to change the type of the overall expression). 11948 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR, 11949 but we can constant-fold them if they have constant operands. */ 11950 11951 #ifdef ENABLE_FOLD_CHECKING 11952 # define fold(x) fold_1 (x) 11953 static tree fold_1 (tree); 11954 static 11955 #endif 11956 tree 11957 fold (tree expr) 11958 { 11959 const tree t = expr; 11960 enum tree_code code = TREE_CODE (t); 11961 enum tree_code_class kind = TREE_CODE_CLASS (code); 11962 tree tem; 11963 location_t loc = EXPR_LOCATION (expr); 11964 11965 /* Return right away if a constant. */ 11966 if (kind == tcc_constant) 11967 return t; 11968 11969 /* CALL_EXPR-like objects with variable numbers of operands are 11970 treated specially. */ 11971 if (kind == tcc_vl_exp) 11972 { 11973 if (code == CALL_EXPR) 11974 { 11975 tem = fold_call_expr (loc, expr, false); 11976 return tem ? tem : expr; 11977 } 11978 return expr; 11979 } 11980 11981 if (IS_EXPR_CODE_CLASS (kind)) 11982 { 11983 tree type = TREE_TYPE (t); 11984 tree op0, op1, op2; 11985 11986 switch (TREE_CODE_LENGTH (code)) 11987 { 11988 case 1: 11989 op0 = TREE_OPERAND (t, 0); 11990 tem = fold_unary_loc (loc, code, type, op0); 11991 return tem ? tem : expr; 11992 case 2: 11993 op0 = TREE_OPERAND (t, 0); 11994 op1 = TREE_OPERAND (t, 1); 11995 tem = fold_binary_loc (loc, code, type, op0, op1); 11996 return tem ? tem : expr; 11997 case 3: 11998 op0 = TREE_OPERAND (t, 0); 11999 op1 = TREE_OPERAND (t, 1); 12000 op2 = TREE_OPERAND (t, 2); 12001 tem = fold_ternary_loc (loc, code, type, op0, op1, op2); 12002 return tem ? tem : expr; 12003 default: 12004 break; 12005 } 12006 } 12007 12008 switch (code) 12009 { 12010 case ARRAY_REF: 12011 { 12012 tree op0 = TREE_OPERAND (t, 0); 12013 tree op1 = TREE_OPERAND (t, 1); 12014 12015 if (TREE_CODE (op1) == INTEGER_CST 12016 && TREE_CODE (op0) == CONSTRUCTOR 12017 && ! type_contains_placeholder_p (TREE_TYPE (op0))) 12018 { 12019 tree val = get_array_ctor_element_at_index (op0, 12020 wi::to_offset (op1)); 12021 if (val) 12022 return val; 12023 } 12024 12025 return t; 12026 } 12027 12028 /* Return a VECTOR_CST if possible. */ 12029 case CONSTRUCTOR: 12030 { 12031 tree type = TREE_TYPE (t); 12032 if (TREE_CODE (type) != VECTOR_TYPE) 12033 return t; 12034 12035 unsigned i; 12036 tree val; 12037 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val) 12038 if (! CONSTANT_CLASS_P (val)) 12039 return t; 12040 12041 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t)); 12042 } 12043 12044 case CONST_DECL: 12045 return fold (DECL_INITIAL (t)); 12046 12047 default: 12048 return t; 12049 } /* switch (code) */ 12050 } 12051 12052 #ifdef ENABLE_FOLD_CHECKING 12053 #undef fold 12054 12055 static void fold_checksum_tree (const_tree, struct md5_ctx *, 12056 hash_table<nofree_ptr_hash<const tree_node> > *); 12057 static void fold_check_failed (const_tree, const_tree); 12058 void print_fold_checksum (const_tree); 12059 12060 /* When --enable-checking=fold, compute a digest of expr before 12061 and after actual fold call to see if fold did not accidentally 12062 change original expr. */ 12063 12064 tree 12065 fold (tree expr) 12066 { 12067 tree ret; 12068 struct md5_ctx ctx; 12069 unsigned char checksum_before[16], checksum_after[16]; 12070 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12071 12072 md5_init_ctx (&ctx); 12073 fold_checksum_tree (expr, &ctx, &ht); 12074 md5_finish_ctx (&ctx, checksum_before); 12075 ht.empty (); 12076 12077 ret = fold_1 (expr); 12078 12079 md5_init_ctx (&ctx); 12080 fold_checksum_tree (expr, &ctx, &ht); 12081 md5_finish_ctx (&ctx, checksum_after); 12082 12083 if (memcmp (checksum_before, checksum_after, 16)) 12084 fold_check_failed (expr, ret); 12085 12086 return ret; 12087 } 12088 12089 void 12090 print_fold_checksum (const_tree expr) 12091 { 12092 struct md5_ctx ctx; 12093 unsigned char checksum[16], cnt; 12094 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12095 12096 md5_init_ctx (&ctx); 12097 fold_checksum_tree (expr, &ctx, &ht); 12098 md5_finish_ctx (&ctx, checksum); 12099 for (cnt = 0; cnt < 16; ++cnt) 12100 fprintf (stderr, "%02x", checksum[cnt]); 12101 putc ('\n', stderr); 12102 } 12103 12104 static void 12105 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED) 12106 { 12107 internal_error ("fold check: original tree changed by fold"); 12108 } 12109 12110 static void 12111 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, 12112 hash_table<nofree_ptr_hash <const tree_node> > *ht) 12113 { 12114 const tree_node **slot; 12115 enum tree_code code; 12116 union tree_node buf; 12117 int i, len; 12118 12119 recursive_label: 12120 if (expr == NULL) 12121 return; 12122 slot = ht->find_slot (expr, INSERT); 12123 if (*slot != NULL) 12124 return; 12125 *slot = expr; 12126 code = TREE_CODE (expr); 12127 if (TREE_CODE_CLASS (code) == tcc_declaration 12128 && HAS_DECL_ASSEMBLER_NAME_P (expr)) 12129 { 12130 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */ 12131 memcpy ((char *) &buf, expr, tree_size (expr)); 12132 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL); 12133 buf.decl_with_vis.symtab_node = NULL; 12134 expr = (tree) &buf; 12135 } 12136 else if (TREE_CODE_CLASS (code) == tcc_type 12137 && (TYPE_POINTER_TO (expr) 12138 || TYPE_REFERENCE_TO (expr) 12139 || TYPE_CACHED_VALUES_P (expr) 12140 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) 12141 || TYPE_NEXT_VARIANT (expr) 12142 || TYPE_ALIAS_SET_KNOWN_P (expr))) 12143 { 12144 /* Allow these fields to be modified. */ 12145 tree tmp; 12146 memcpy ((char *) &buf, expr, tree_size (expr)); 12147 expr = tmp = (tree) &buf; 12148 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0; 12149 TYPE_POINTER_TO (tmp) = NULL; 12150 TYPE_REFERENCE_TO (tmp) = NULL; 12151 TYPE_NEXT_VARIANT (tmp) = NULL; 12152 TYPE_ALIAS_SET (tmp) = -1; 12153 if (TYPE_CACHED_VALUES_P (tmp)) 12154 { 12155 TYPE_CACHED_VALUES_P (tmp) = 0; 12156 TYPE_CACHED_VALUES (tmp) = NULL; 12157 } 12158 } 12159 md5_process_bytes (expr, tree_size (expr), ctx); 12160 if (CODE_CONTAINS_STRUCT (code, TS_TYPED)) 12161 fold_checksum_tree (TREE_TYPE (expr), ctx, ht); 12162 if (TREE_CODE_CLASS (code) != tcc_type 12163 && TREE_CODE_CLASS (code) != tcc_declaration 12164 && code != TREE_LIST 12165 && code != SSA_NAME 12166 && CODE_CONTAINS_STRUCT (code, TS_COMMON)) 12167 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht); 12168 switch (TREE_CODE_CLASS (code)) 12169 { 12170 case tcc_constant: 12171 switch (code) 12172 { 12173 case STRING_CST: 12174 md5_process_bytes (TREE_STRING_POINTER (expr), 12175 TREE_STRING_LENGTH (expr), ctx); 12176 break; 12177 case COMPLEX_CST: 12178 fold_checksum_tree (TREE_REALPART (expr), ctx, ht); 12179 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht); 12180 break; 12181 case VECTOR_CST: 12182 len = vector_cst_encoded_nelts (expr); 12183 for (i = 0; i < len; ++i) 12184 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht); 12185 break; 12186 default: 12187 break; 12188 } 12189 break; 12190 case tcc_exceptional: 12191 switch (code) 12192 { 12193 case TREE_LIST: 12194 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht); 12195 fold_checksum_tree (TREE_VALUE (expr), ctx, ht); 12196 expr = TREE_CHAIN (expr); 12197 goto recursive_label; 12198 break; 12199 case TREE_VEC: 12200 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i) 12201 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht); 12202 break; 12203 default: 12204 break; 12205 } 12206 break; 12207 case tcc_expression: 12208 case tcc_reference: 12209 case tcc_comparison: 12210 case tcc_unary: 12211 case tcc_binary: 12212 case tcc_statement: 12213 case tcc_vl_exp: 12214 len = TREE_OPERAND_LENGTH (expr); 12215 for (i = 0; i < len; ++i) 12216 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht); 12217 break; 12218 case tcc_declaration: 12219 fold_checksum_tree (DECL_NAME (expr), ctx, ht); 12220 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht); 12221 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON)) 12222 { 12223 fold_checksum_tree (DECL_SIZE (expr), ctx, ht); 12224 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht); 12225 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht); 12226 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht); 12227 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht); 12228 } 12229 12230 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON)) 12231 { 12232 if (TREE_CODE (expr) == FUNCTION_DECL) 12233 { 12234 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht); 12235 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht); 12236 } 12237 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht); 12238 } 12239 break; 12240 case tcc_type: 12241 if (TREE_CODE (expr) == ENUMERAL_TYPE) 12242 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht); 12243 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht); 12244 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht); 12245 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht); 12246 fold_checksum_tree (TYPE_NAME (expr), ctx, ht); 12247 if (INTEGRAL_TYPE_P (expr) 12248 || SCALAR_FLOAT_TYPE_P (expr)) 12249 { 12250 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht); 12251 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht); 12252 } 12253 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht); 12254 if (TREE_CODE (expr) == RECORD_TYPE 12255 || TREE_CODE (expr) == UNION_TYPE 12256 || TREE_CODE (expr) == QUAL_UNION_TYPE) 12257 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht); 12258 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht); 12259 break; 12260 default: 12261 break; 12262 } 12263 } 12264 12265 /* Helper function for outputting the checksum of a tree T. When 12266 debugging with gdb, you can "define mynext" to be "next" followed 12267 by "call debug_fold_checksum (op0)", then just trace down till the 12268 outputs differ. */ 12269 12270 DEBUG_FUNCTION void 12271 debug_fold_checksum (const_tree t) 12272 { 12273 int i; 12274 unsigned char checksum[16]; 12275 struct md5_ctx ctx; 12276 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12277 12278 md5_init_ctx (&ctx); 12279 fold_checksum_tree (t, &ctx, &ht); 12280 md5_finish_ctx (&ctx, checksum); 12281 ht.empty (); 12282 12283 for (i = 0; i < 16; i++) 12284 fprintf (stderr, "%d ", checksum[i]); 12285 12286 fprintf (stderr, "\n"); 12287 } 12288 12289 #endif 12290 12291 /* Fold a unary tree expression with code CODE of type TYPE with an 12292 operand OP0. LOC is the location of the resulting expression. 12293 Return a folded expression if successful. Otherwise, return a tree 12294 expression with code CODE of type TYPE with an operand OP0. */ 12295 12296 tree 12297 fold_build1_loc (location_t loc, 12298 enum tree_code code, tree type, tree op0 MEM_STAT_DECL) 12299 { 12300 tree tem; 12301 #ifdef ENABLE_FOLD_CHECKING 12302 unsigned char checksum_before[16], checksum_after[16]; 12303 struct md5_ctx ctx; 12304 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12305 12306 md5_init_ctx (&ctx); 12307 fold_checksum_tree (op0, &ctx, &ht); 12308 md5_finish_ctx (&ctx, checksum_before); 12309 ht.empty (); 12310 #endif 12311 12312 tem = fold_unary_loc (loc, code, type, op0); 12313 if (!tem) 12314 tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT); 12315 12316 #ifdef ENABLE_FOLD_CHECKING 12317 md5_init_ctx (&ctx); 12318 fold_checksum_tree (op0, &ctx, &ht); 12319 md5_finish_ctx (&ctx, checksum_after); 12320 12321 if (memcmp (checksum_before, checksum_after, 16)) 12322 fold_check_failed (op0, tem); 12323 #endif 12324 return tem; 12325 } 12326 12327 /* Fold a binary tree expression with code CODE of type TYPE with 12328 operands OP0 and OP1. LOC is the location of the resulting 12329 expression. Return a folded expression if successful. Otherwise, 12330 return a tree expression with code CODE of type TYPE with operands 12331 OP0 and OP1. */ 12332 12333 tree 12334 fold_build2_loc (location_t loc, 12335 enum tree_code code, tree type, tree op0, tree op1 12336 MEM_STAT_DECL) 12337 { 12338 tree tem; 12339 #ifdef ENABLE_FOLD_CHECKING 12340 unsigned char checksum_before_op0[16], 12341 checksum_before_op1[16], 12342 checksum_after_op0[16], 12343 checksum_after_op1[16]; 12344 struct md5_ctx ctx; 12345 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12346 12347 md5_init_ctx (&ctx); 12348 fold_checksum_tree (op0, &ctx, &ht); 12349 md5_finish_ctx (&ctx, checksum_before_op0); 12350 ht.empty (); 12351 12352 md5_init_ctx (&ctx); 12353 fold_checksum_tree (op1, &ctx, &ht); 12354 md5_finish_ctx (&ctx, checksum_before_op1); 12355 ht.empty (); 12356 #endif 12357 12358 tem = fold_binary_loc (loc, code, type, op0, op1); 12359 if (!tem) 12360 tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT); 12361 12362 #ifdef ENABLE_FOLD_CHECKING 12363 md5_init_ctx (&ctx); 12364 fold_checksum_tree (op0, &ctx, &ht); 12365 md5_finish_ctx (&ctx, checksum_after_op0); 12366 ht.empty (); 12367 12368 if (memcmp (checksum_before_op0, checksum_after_op0, 16)) 12369 fold_check_failed (op0, tem); 12370 12371 md5_init_ctx (&ctx); 12372 fold_checksum_tree (op1, &ctx, &ht); 12373 md5_finish_ctx (&ctx, checksum_after_op1); 12374 12375 if (memcmp (checksum_before_op1, checksum_after_op1, 16)) 12376 fold_check_failed (op1, tem); 12377 #endif 12378 return tem; 12379 } 12380 12381 /* Fold a ternary tree expression with code CODE of type TYPE with 12382 operands OP0, OP1, and OP2. Return a folded expression if 12383 successful. Otherwise, return a tree expression with code CODE of 12384 type TYPE with operands OP0, OP1, and OP2. */ 12385 12386 tree 12387 fold_build3_loc (location_t loc, enum tree_code code, tree type, 12388 tree op0, tree op1, tree op2 MEM_STAT_DECL) 12389 { 12390 tree tem; 12391 #ifdef ENABLE_FOLD_CHECKING 12392 unsigned char checksum_before_op0[16], 12393 checksum_before_op1[16], 12394 checksum_before_op2[16], 12395 checksum_after_op0[16], 12396 checksum_after_op1[16], 12397 checksum_after_op2[16]; 12398 struct md5_ctx ctx; 12399 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12400 12401 md5_init_ctx (&ctx); 12402 fold_checksum_tree (op0, &ctx, &ht); 12403 md5_finish_ctx (&ctx, checksum_before_op0); 12404 ht.empty (); 12405 12406 md5_init_ctx (&ctx); 12407 fold_checksum_tree (op1, &ctx, &ht); 12408 md5_finish_ctx (&ctx, checksum_before_op1); 12409 ht.empty (); 12410 12411 md5_init_ctx (&ctx); 12412 fold_checksum_tree (op2, &ctx, &ht); 12413 md5_finish_ctx (&ctx, checksum_before_op2); 12414 ht.empty (); 12415 #endif 12416 12417 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); 12418 tem = fold_ternary_loc (loc, code, type, op0, op1, op2); 12419 if (!tem) 12420 tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT); 12421 12422 #ifdef ENABLE_FOLD_CHECKING 12423 md5_init_ctx (&ctx); 12424 fold_checksum_tree (op0, &ctx, &ht); 12425 md5_finish_ctx (&ctx, checksum_after_op0); 12426 ht.empty (); 12427 12428 if (memcmp (checksum_before_op0, checksum_after_op0, 16)) 12429 fold_check_failed (op0, tem); 12430 12431 md5_init_ctx (&ctx); 12432 fold_checksum_tree (op1, &ctx, &ht); 12433 md5_finish_ctx (&ctx, checksum_after_op1); 12434 ht.empty (); 12435 12436 if (memcmp (checksum_before_op1, checksum_after_op1, 16)) 12437 fold_check_failed (op1, tem); 12438 12439 md5_init_ctx (&ctx); 12440 fold_checksum_tree (op2, &ctx, &ht); 12441 md5_finish_ctx (&ctx, checksum_after_op2); 12442 12443 if (memcmp (checksum_before_op2, checksum_after_op2, 16)) 12444 fold_check_failed (op2, tem); 12445 #endif 12446 return tem; 12447 } 12448 12449 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS 12450 arguments in ARGARRAY, and a null static chain. 12451 Return a folded expression if successful. Otherwise, return a CALL_EXPR 12452 of type TYPE from the given operands as constructed by build_call_array. */ 12453 12454 tree 12455 fold_build_call_array_loc (location_t loc, tree type, tree fn, 12456 int nargs, tree *argarray) 12457 { 12458 tree tem; 12459 #ifdef ENABLE_FOLD_CHECKING 12460 unsigned char checksum_before_fn[16], 12461 checksum_before_arglist[16], 12462 checksum_after_fn[16], 12463 checksum_after_arglist[16]; 12464 struct md5_ctx ctx; 12465 hash_table<nofree_ptr_hash<const tree_node> > ht (32); 12466 int i; 12467 12468 md5_init_ctx (&ctx); 12469 fold_checksum_tree (fn, &ctx, &ht); 12470 md5_finish_ctx (&ctx, checksum_before_fn); 12471 ht.empty (); 12472 12473 md5_init_ctx (&ctx); 12474 for (i = 0; i < nargs; i++) 12475 fold_checksum_tree (argarray[i], &ctx, &ht); 12476 md5_finish_ctx (&ctx, checksum_before_arglist); 12477 ht.empty (); 12478 #endif 12479 12480 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray); 12481 if (!tem) 12482 tem = build_call_array_loc (loc, type, fn, nargs, argarray); 12483 12484 #ifdef ENABLE_FOLD_CHECKING 12485 md5_init_ctx (&ctx); 12486 fold_checksum_tree (fn, &ctx, &ht); 12487 md5_finish_ctx (&ctx, checksum_after_fn); 12488 ht.empty (); 12489 12490 if (memcmp (checksum_before_fn, checksum_after_fn, 16)) 12491 fold_check_failed (fn, tem); 12492 12493 md5_init_ctx (&ctx); 12494 for (i = 0; i < nargs; i++) 12495 fold_checksum_tree (argarray[i], &ctx, &ht); 12496 md5_finish_ctx (&ctx, checksum_after_arglist); 12497 12498 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16)) 12499 fold_check_failed (NULL_TREE, tem); 12500 #endif 12501 return tem; 12502 } 12503 12504 /* Perform constant folding and related simplification of initializer 12505 expression EXPR. These behave identically to "fold_buildN" but ignore 12506 potential run-time traps and exceptions that fold must preserve. */ 12507 12508 #define START_FOLD_INIT \ 12509 int saved_signaling_nans = flag_signaling_nans;\ 12510 int saved_trapping_math = flag_trapping_math;\ 12511 int saved_rounding_math = flag_rounding_math;\ 12512 int saved_trapv = flag_trapv;\ 12513 int saved_folding_initializer = folding_initializer;\ 12514 flag_signaling_nans = 0;\ 12515 flag_trapping_math = 0;\ 12516 flag_rounding_math = 0;\ 12517 flag_trapv = 0;\ 12518 folding_initializer = 1; 12519 12520 #define END_FOLD_INIT \ 12521 flag_signaling_nans = saved_signaling_nans;\ 12522 flag_trapping_math = saved_trapping_math;\ 12523 flag_rounding_math = saved_rounding_math;\ 12524 flag_trapv = saved_trapv;\ 12525 folding_initializer = saved_folding_initializer; 12526 12527 tree 12528 fold_build1_initializer_loc (location_t loc, enum tree_code code, 12529 tree type, tree op) 12530 { 12531 tree result; 12532 START_FOLD_INIT; 12533 12534 result = fold_build1_loc (loc, code, type, op); 12535 12536 END_FOLD_INIT; 12537 return result; 12538 } 12539 12540 tree 12541 fold_build2_initializer_loc (location_t loc, enum tree_code code, 12542 tree type, tree op0, tree op1) 12543 { 12544 tree result; 12545 START_FOLD_INIT; 12546 12547 result = fold_build2_loc (loc, code, type, op0, op1); 12548 12549 END_FOLD_INIT; 12550 return result; 12551 } 12552 12553 tree 12554 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn, 12555 int nargs, tree *argarray) 12556 { 12557 tree result; 12558 START_FOLD_INIT; 12559 12560 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray); 12561 12562 END_FOLD_INIT; 12563 return result; 12564 } 12565 12566 #undef START_FOLD_INIT 12567 #undef END_FOLD_INIT 12568 12569 /* Determine if first argument is a multiple of second argument. Return 0 if 12570 it is not, or we cannot easily determined it to be. 12571 12572 An example of the sort of thing we care about (at this point; this routine 12573 could surely be made more general, and expanded to do what the *_DIV_EXPR's 12574 fold cases do now) is discovering that 12575 12576 SAVE_EXPR (I) * SAVE_EXPR (J * 8) 12577 12578 is a multiple of 12579 12580 SAVE_EXPR (J * 8) 12581 12582 when we know that the two SAVE_EXPR (J * 8) nodes are the same node. 12583 12584 This code also handles discovering that 12585 12586 SAVE_EXPR (I) * SAVE_EXPR (J * 8) 12587 12588 is a multiple of 8 so we don't have to worry about dealing with a 12589 possible remainder. 12590 12591 Note that we *look* inside a SAVE_EXPR only to determine how it was 12592 calculated; it is not safe for fold to do much of anything else with the 12593 internals of a SAVE_EXPR, since it cannot know when it will be evaluated 12594 at run time. For example, the latter example above *cannot* be implemented 12595 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at 12596 evaluation time of the original SAVE_EXPR is not necessarily the same at 12597 the time the new expression is evaluated. The only optimization of this 12598 sort that would be valid is changing 12599 12600 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8) 12601 12602 divided by 8 to 12603 12604 SAVE_EXPR (I) * SAVE_EXPR (J) 12605 12606 (where the same SAVE_EXPR (J) is used in the original and the 12607 transformed version). */ 12608 12609 int 12610 multiple_of_p (tree type, const_tree top, const_tree bottom) 12611 { 12612 gimple *stmt; 12613 tree t1, op1, op2; 12614 12615 if (operand_equal_p (top, bottom, 0)) 12616 return 1; 12617 12618 if (TREE_CODE (type) != INTEGER_TYPE) 12619 return 0; 12620 12621 switch (TREE_CODE (top)) 12622 { 12623 case BIT_AND_EXPR: 12624 /* Bitwise and provides a power of two multiple. If the mask is 12625 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */ 12626 if (!integer_pow2p (bottom)) 12627 return 0; 12628 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12629 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12630 12631 case MULT_EXPR: 12632 if (TREE_CODE (bottom) == INTEGER_CST) 12633 { 12634 op1 = TREE_OPERAND (top, 0); 12635 op2 = TREE_OPERAND (top, 1); 12636 if (TREE_CODE (op1) == INTEGER_CST) 12637 std::swap (op1, op2); 12638 if (TREE_CODE (op2) == INTEGER_CST) 12639 { 12640 if (multiple_of_p (type, op2, bottom)) 12641 return 1; 12642 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */ 12643 if (multiple_of_p (type, bottom, op2)) 12644 { 12645 widest_int w = wi::sdiv_trunc (wi::to_widest (bottom), 12646 wi::to_widest (op2)); 12647 if (wi::fits_to_tree_p (w, TREE_TYPE (bottom))) 12648 { 12649 op2 = wide_int_to_tree (TREE_TYPE (bottom), w); 12650 return multiple_of_p (type, op1, op2); 12651 } 12652 } 12653 return multiple_of_p (type, op1, bottom); 12654 } 12655 } 12656 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12657 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12658 12659 case MINUS_EXPR: 12660 /* It is impossible to prove if op0 - op1 is multiple of bottom 12661 precisely, so be conservative here checking if both op0 and op1 12662 are multiple of bottom. Note we check the second operand first 12663 since it's usually simpler. */ 12664 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12665 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12666 12667 case PLUS_EXPR: 12668 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd 12669 as op0 - 3 if the expression has unsigned type. For example, 12670 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */ 12671 op1 = TREE_OPERAND (top, 1); 12672 if (TYPE_UNSIGNED (type) 12673 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1)) 12674 op1 = fold_build1 (NEGATE_EXPR, type, op1); 12675 return (multiple_of_p (type, op1, bottom) 12676 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); 12677 12678 case LSHIFT_EXPR: 12679 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST) 12680 { 12681 op1 = TREE_OPERAND (top, 1); 12682 /* const_binop may not detect overflow correctly, 12683 so check for it explicitly here. */ 12684 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), 12685 wi::to_wide (op1)) 12686 && (t1 = fold_convert (type, 12687 const_binop (LSHIFT_EXPR, size_one_node, 12688 op1))) != 0 12689 && !TREE_OVERFLOW (t1)) 12690 return multiple_of_p (type, t1, bottom); 12691 } 12692 return 0; 12693 12694 case NOP_EXPR: 12695 /* Can't handle conversions from non-integral or wider integral type. */ 12696 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE) 12697 || (TYPE_PRECISION (type) 12698 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0))))) 12699 return 0; 12700 12701 /* fall through */ 12702 12703 case SAVE_EXPR: 12704 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom); 12705 12706 case COND_EXPR: 12707 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) 12708 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom)); 12709 12710 case INTEGER_CST: 12711 if (TREE_CODE (bottom) != INTEGER_CST 12712 || integer_zerop (bottom) 12713 || (TYPE_UNSIGNED (type) 12714 && (tree_int_cst_sgn (top) < 0 12715 || tree_int_cst_sgn (bottom) < 0))) 12716 return 0; 12717 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom), 12718 SIGNED); 12719 12720 case SSA_NAME: 12721 if (TREE_CODE (bottom) == INTEGER_CST 12722 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL 12723 && gimple_code (stmt) == GIMPLE_ASSIGN) 12724 { 12725 enum tree_code code = gimple_assign_rhs_code (stmt); 12726 12727 /* Check for special cases to see if top is defined as multiple 12728 of bottom: 12729 12730 top = (X & ~(bottom - 1) ; bottom is power of 2 12731 12732 or 12733 12734 Y = X % bottom 12735 top = X - Y. */ 12736 if (code == BIT_AND_EXPR 12737 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE 12738 && TREE_CODE (op2) == INTEGER_CST 12739 && integer_pow2p (bottom) 12740 && wi::multiple_of_p (wi::to_widest (op2), 12741 wi::to_widest (bottom), UNSIGNED)) 12742 return 1; 12743 12744 op1 = gimple_assign_rhs1 (stmt); 12745 if (code == MINUS_EXPR 12746 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE 12747 && TREE_CODE (op2) == SSA_NAME 12748 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL 12749 && gimple_code (stmt) == GIMPLE_ASSIGN 12750 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR 12751 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0) 12752 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0)) 12753 return 1; 12754 } 12755 12756 /* fall through */ 12757 12758 default: 12759 if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom)) 12760 return multiple_p (wi::to_poly_widest (top), 12761 wi::to_poly_widest (bottom)); 12762 12763 return 0; 12764 } 12765 } 12766 12767 #define tree_expr_nonnegative_warnv_p(X, Y) \ 12768 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 12769 12770 #define RECURSE(X) \ 12771 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1)) 12772 12773 /* Return true if CODE or TYPE is known to be non-negative. */ 12774 12775 static bool 12776 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type) 12777 { 12778 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type)) 12779 && truth_value_p (code)) 12780 /* Truth values evaluate to 0 or 1, which is nonnegative unless we 12781 have a signed:1 type (where the value is -1 and 0). */ 12782 return true; 12783 return false; 12784 } 12785 12786 /* Return true if (CODE OP0) is known to be non-negative. If the return 12787 value is based on the assumption that signed overflow is undefined, 12788 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12789 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12790 12791 bool 12792 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, 12793 bool *strict_overflow_p, int depth) 12794 { 12795 if (TYPE_UNSIGNED (type)) 12796 return true; 12797 12798 switch (code) 12799 { 12800 case ABS_EXPR: 12801 /* We can't return 1 if flag_wrapv is set because 12802 ABS_EXPR<INT_MIN> = INT_MIN. */ 12803 if (!ANY_INTEGRAL_TYPE_P (type)) 12804 return true; 12805 if (TYPE_OVERFLOW_UNDEFINED (type)) 12806 { 12807 *strict_overflow_p = true; 12808 return true; 12809 } 12810 break; 12811 12812 case NON_LVALUE_EXPR: 12813 case FLOAT_EXPR: 12814 case FIX_TRUNC_EXPR: 12815 return RECURSE (op0); 12816 12817 CASE_CONVERT: 12818 { 12819 tree inner_type = TREE_TYPE (op0); 12820 tree outer_type = type; 12821 12822 if (TREE_CODE (outer_type) == REAL_TYPE) 12823 { 12824 if (TREE_CODE (inner_type) == REAL_TYPE) 12825 return RECURSE (op0); 12826 if (INTEGRAL_TYPE_P (inner_type)) 12827 { 12828 if (TYPE_UNSIGNED (inner_type)) 12829 return true; 12830 return RECURSE (op0); 12831 } 12832 } 12833 else if (INTEGRAL_TYPE_P (outer_type)) 12834 { 12835 if (TREE_CODE (inner_type) == REAL_TYPE) 12836 return RECURSE (op0); 12837 if (INTEGRAL_TYPE_P (inner_type)) 12838 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type) 12839 && TYPE_UNSIGNED (inner_type); 12840 } 12841 } 12842 break; 12843 12844 default: 12845 return tree_simple_nonnegative_warnv_p (code, type); 12846 } 12847 12848 /* We don't know sign of `t', so be conservative and return false. */ 12849 return false; 12850 } 12851 12852 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return 12853 value is based on the assumption that signed overflow is undefined, 12854 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12855 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12856 12857 bool 12858 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, 12859 tree op1, bool *strict_overflow_p, 12860 int depth) 12861 { 12862 if (TYPE_UNSIGNED (type)) 12863 return true; 12864 12865 switch (code) 12866 { 12867 case POINTER_PLUS_EXPR: 12868 case PLUS_EXPR: 12869 if (FLOAT_TYPE_P (type)) 12870 return RECURSE (op0) && RECURSE (op1); 12871 12872 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are 12873 both unsigned and at least 2 bits shorter than the result. */ 12874 if (TREE_CODE (type) == INTEGER_TYPE 12875 && TREE_CODE (op0) == NOP_EXPR 12876 && TREE_CODE (op1) == NOP_EXPR) 12877 { 12878 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0)); 12879 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0)); 12880 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1) 12881 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2)) 12882 { 12883 unsigned int prec = MAX (TYPE_PRECISION (inner1), 12884 TYPE_PRECISION (inner2)) + 1; 12885 return prec < TYPE_PRECISION (type); 12886 } 12887 } 12888 break; 12889 12890 case MULT_EXPR: 12891 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) 12892 { 12893 /* x * x is always non-negative for floating point x 12894 or without overflow. */ 12895 if (operand_equal_p (op0, op1, 0) 12896 || (RECURSE (op0) && RECURSE (op1))) 12897 { 12898 if (ANY_INTEGRAL_TYPE_P (type) 12899 && TYPE_OVERFLOW_UNDEFINED (type)) 12900 *strict_overflow_p = true; 12901 return true; 12902 } 12903 } 12904 12905 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are 12906 both unsigned and their total bits is shorter than the result. */ 12907 if (TREE_CODE (type) == INTEGER_TYPE 12908 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST) 12909 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST)) 12910 { 12911 tree inner0 = (TREE_CODE (op0) == NOP_EXPR) 12912 ? TREE_TYPE (TREE_OPERAND (op0, 0)) 12913 : TREE_TYPE (op0); 12914 tree inner1 = (TREE_CODE (op1) == NOP_EXPR) 12915 ? TREE_TYPE (TREE_OPERAND (op1, 0)) 12916 : TREE_TYPE (op1); 12917 12918 bool unsigned0 = TYPE_UNSIGNED (inner0); 12919 bool unsigned1 = TYPE_UNSIGNED (inner1); 12920 12921 if (TREE_CODE (op0) == INTEGER_CST) 12922 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0; 12923 12924 if (TREE_CODE (op1) == INTEGER_CST) 12925 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0; 12926 12927 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0 12928 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1) 12929 { 12930 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST) 12931 ? tree_int_cst_min_precision (op0, UNSIGNED) 12932 : TYPE_PRECISION (inner0); 12933 12934 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST) 12935 ? tree_int_cst_min_precision (op1, UNSIGNED) 12936 : TYPE_PRECISION (inner1); 12937 12938 return precision0 + precision1 < TYPE_PRECISION (type); 12939 } 12940 } 12941 return false; 12942 12943 case BIT_AND_EXPR: 12944 case MAX_EXPR: 12945 return RECURSE (op0) || RECURSE (op1); 12946 12947 case BIT_IOR_EXPR: 12948 case BIT_XOR_EXPR: 12949 case MIN_EXPR: 12950 case RDIV_EXPR: 12951 case TRUNC_DIV_EXPR: 12952 case CEIL_DIV_EXPR: 12953 case FLOOR_DIV_EXPR: 12954 case ROUND_DIV_EXPR: 12955 return RECURSE (op0) && RECURSE (op1); 12956 12957 case TRUNC_MOD_EXPR: 12958 return RECURSE (op0); 12959 12960 case FLOOR_MOD_EXPR: 12961 return RECURSE (op1); 12962 12963 case CEIL_MOD_EXPR: 12964 case ROUND_MOD_EXPR: 12965 default: 12966 return tree_simple_nonnegative_warnv_p (code, type); 12967 } 12968 12969 /* We don't know sign of `t', so be conservative and return false. */ 12970 return false; 12971 } 12972 12973 /* Return true if T is known to be non-negative. If the return 12974 value is based on the assumption that signed overflow is undefined, 12975 set *STRICT_OVERFLOW_P to true; otherwise, don't change 12976 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 12977 12978 bool 12979 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 12980 { 12981 if (TYPE_UNSIGNED (TREE_TYPE (t))) 12982 return true; 12983 12984 switch (TREE_CODE (t)) 12985 { 12986 case INTEGER_CST: 12987 return tree_int_cst_sgn (t) >= 0; 12988 12989 case REAL_CST: 12990 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); 12991 12992 case FIXED_CST: 12993 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t)); 12994 12995 case COND_EXPR: 12996 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); 12997 12998 case SSA_NAME: 12999 /* Limit the depth of recursion to avoid quadratic behavior. 13000 This is expected to catch almost all occurrences in practice. 13001 If this code misses important cases that unbounded recursion 13002 would not, passes that need this information could be revised 13003 to provide it through dataflow propagation. */ 13004 return (!name_registered_for_update_p (t) 13005 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH) 13006 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t), 13007 strict_overflow_p, depth)); 13008 13009 default: 13010 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); 13011 } 13012 } 13013 13014 /* Return true if T is known to be non-negative. If the return 13015 value is based on the assumption that signed overflow is undefined, 13016 set *STRICT_OVERFLOW_P to true; otherwise, don't change 13017 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 13018 13019 bool 13020 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1, 13021 bool *strict_overflow_p, int depth) 13022 { 13023 switch (fn) 13024 { 13025 CASE_CFN_ACOS: 13026 CASE_CFN_ACOSH: 13027 CASE_CFN_CABS: 13028 CASE_CFN_COSH: 13029 CASE_CFN_ERFC: 13030 CASE_CFN_EXP: 13031 CASE_CFN_EXP10: 13032 CASE_CFN_EXP2: 13033 CASE_CFN_FABS: 13034 CASE_CFN_FDIM: 13035 CASE_CFN_HYPOT: 13036 CASE_CFN_POW10: 13037 CASE_CFN_FFS: 13038 CASE_CFN_PARITY: 13039 CASE_CFN_POPCOUNT: 13040 CASE_CFN_CLZ: 13041 CASE_CFN_CLRSB: 13042 case CFN_BUILT_IN_BSWAP32: 13043 case CFN_BUILT_IN_BSWAP64: 13044 /* Always true. */ 13045 return true; 13046 13047 CASE_CFN_SQRT: 13048 CASE_CFN_SQRT_FN: 13049 /* sqrt(-0.0) is -0.0. */ 13050 if (!HONOR_SIGNED_ZEROS (element_mode (type))) 13051 return true; 13052 return RECURSE (arg0); 13053 13054 CASE_CFN_ASINH: 13055 CASE_CFN_ATAN: 13056 CASE_CFN_ATANH: 13057 CASE_CFN_CBRT: 13058 CASE_CFN_CEIL: 13059 CASE_CFN_CEIL_FN: 13060 CASE_CFN_ERF: 13061 CASE_CFN_EXPM1: 13062 CASE_CFN_FLOOR: 13063 CASE_CFN_FLOOR_FN: 13064 CASE_CFN_FMOD: 13065 CASE_CFN_FREXP: 13066 CASE_CFN_ICEIL: 13067 CASE_CFN_IFLOOR: 13068 CASE_CFN_IRINT: 13069 CASE_CFN_IROUND: 13070 CASE_CFN_LCEIL: 13071 CASE_CFN_LDEXP: 13072 CASE_CFN_LFLOOR: 13073 CASE_CFN_LLCEIL: 13074 CASE_CFN_LLFLOOR: 13075 CASE_CFN_LLRINT: 13076 CASE_CFN_LLROUND: 13077 CASE_CFN_LRINT: 13078 CASE_CFN_LROUND: 13079 CASE_CFN_MODF: 13080 CASE_CFN_NEARBYINT: 13081 CASE_CFN_NEARBYINT_FN: 13082 CASE_CFN_RINT: 13083 CASE_CFN_RINT_FN: 13084 CASE_CFN_ROUND: 13085 CASE_CFN_ROUND_FN: 13086 CASE_CFN_SCALB: 13087 CASE_CFN_SCALBLN: 13088 CASE_CFN_SCALBN: 13089 CASE_CFN_SIGNBIT: 13090 CASE_CFN_SIGNIFICAND: 13091 CASE_CFN_SINH: 13092 CASE_CFN_TANH: 13093 CASE_CFN_TRUNC: 13094 CASE_CFN_TRUNC_FN: 13095 /* True if the 1st argument is nonnegative. */ 13096 return RECURSE (arg0); 13097 13098 CASE_CFN_FMAX: 13099 CASE_CFN_FMAX_FN: 13100 /* True if the 1st OR 2nd arguments are nonnegative. */ 13101 return RECURSE (arg0) || RECURSE (arg1); 13102 13103 CASE_CFN_FMIN: 13104 CASE_CFN_FMIN_FN: 13105 /* True if the 1st AND 2nd arguments are nonnegative. */ 13106 return RECURSE (arg0) && RECURSE (arg1); 13107 13108 CASE_CFN_COPYSIGN: 13109 CASE_CFN_COPYSIGN_FN: 13110 /* True if the 2nd argument is nonnegative. */ 13111 return RECURSE (arg1); 13112 13113 CASE_CFN_POWI: 13114 /* True if the 1st argument is nonnegative or the second 13115 argument is an even integer. */ 13116 if (TREE_CODE (arg1) == INTEGER_CST 13117 && (TREE_INT_CST_LOW (arg1) & 1) == 0) 13118 return true; 13119 return RECURSE (arg0); 13120 13121 CASE_CFN_POW: 13122 /* True if the 1st argument is nonnegative or the second 13123 argument is an even integer valued real. */ 13124 if (TREE_CODE (arg1) == REAL_CST) 13125 { 13126 REAL_VALUE_TYPE c; 13127 HOST_WIDE_INT n; 13128 13129 c = TREE_REAL_CST (arg1); 13130 n = real_to_integer (&c); 13131 if ((n & 1) == 0) 13132 { 13133 REAL_VALUE_TYPE cint; 13134 real_from_integer (&cint, VOIDmode, n, SIGNED); 13135 if (real_identical (&c, &cint)) 13136 return true; 13137 } 13138 } 13139 return RECURSE (arg0); 13140 13141 default: 13142 break; 13143 } 13144 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type); 13145 } 13146 13147 /* Return true if T is known to be non-negative. If the return 13148 value is based on the assumption that signed overflow is undefined, 13149 set *STRICT_OVERFLOW_P to true; otherwise, don't change 13150 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 13151 13152 static bool 13153 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 13154 { 13155 enum tree_code code = TREE_CODE (t); 13156 if (TYPE_UNSIGNED (TREE_TYPE (t))) 13157 return true; 13158 13159 switch (code) 13160 { 13161 case TARGET_EXPR: 13162 { 13163 tree temp = TARGET_EXPR_SLOT (t); 13164 t = TARGET_EXPR_INITIAL (t); 13165 13166 /* If the initializer is non-void, then it's a normal expression 13167 that will be assigned to the slot. */ 13168 if (!VOID_TYPE_P (t)) 13169 return RECURSE (t); 13170 13171 /* Otherwise, the initializer sets the slot in some way. One common 13172 way is an assignment statement at the end of the initializer. */ 13173 while (1) 13174 { 13175 if (TREE_CODE (t) == BIND_EXPR) 13176 t = expr_last (BIND_EXPR_BODY (t)); 13177 else if (TREE_CODE (t) == TRY_FINALLY_EXPR 13178 || TREE_CODE (t) == TRY_CATCH_EXPR) 13179 t = expr_last (TREE_OPERAND (t, 0)); 13180 else if (TREE_CODE (t) == STATEMENT_LIST) 13181 t = expr_last (t); 13182 else 13183 break; 13184 } 13185 if (TREE_CODE (t) == MODIFY_EXPR 13186 && TREE_OPERAND (t, 0) == temp) 13187 return RECURSE (TREE_OPERAND (t, 1)); 13188 13189 return false; 13190 } 13191 13192 case CALL_EXPR: 13193 { 13194 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE; 13195 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE; 13196 13197 return tree_call_nonnegative_warnv_p (TREE_TYPE (t), 13198 get_call_combined_fn (t), 13199 arg0, 13200 arg1, 13201 strict_overflow_p, depth); 13202 } 13203 case COMPOUND_EXPR: 13204 case MODIFY_EXPR: 13205 return RECURSE (TREE_OPERAND (t, 1)); 13206 13207 case BIND_EXPR: 13208 return RECURSE (expr_last (TREE_OPERAND (t, 1))); 13209 13210 case SAVE_EXPR: 13211 return RECURSE (TREE_OPERAND (t, 0)); 13212 13213 default: 13214 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); 13215 } 13216 } 13217 13218 #undef RECURSE 13219 #undef tree_expr_nonnegative_warnv_p 13220 13221 /* Return true if T is known to be non-negative. If the return 13222 value is based on the assumption that signed overflow is undefined, 13223 set *STRICT_OVERFLOW_P to true; otherwise, don't change 13224 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ 13225 13226 bool 13227 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) 13228 { 13229 enum tree_code code; 13230 if (t == error_mark_node) 13231 return false; 13232 13233 code = TREE_CODE (t); 13234 switch (TREE_CODE_CLASS (code)) 13235 { 13236 case tcc_binary: 13237 case tcc_comparison: 13238 return tree_binary_nonnegative_warnv_p (TREE_CODE (t), 13239 TREE_TYPE (t), 13240 TREE_OPERAND (t, 0), 13241 TREE_OPERAND (t, 1), 13242 strict_overflow_p, depth); 13243 13244 case tcc_unary: 13245 return tree_unary_nonnegative_warnv_p (TREE_CODE (t), 13246 TREE_TYPE (t), 13247 TREE_OPERAND (t, 0), 13248 strict_overflow_p, depth); 13249 13250 case tcc_constant: 13251 case tcc_declaration: 13252 case tcc_reference: 13253 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); 13254 13255 default: 13256 break; 13257 } 13258 13259 switch (code) 13260 { 13261 case TRUTH_AND_EXPR: 13262 case TRUTH_OR_EXPR: 13263 case TRUTH_XOR_EXPR: 13264 return tree_binary_nonnegative_warnv_p (TREE_CODE (t), 13265 TREE_TYPE (t), 13266 TREE_OPERAND (t, 0), 13267 TREE_OPERAND (t, 1), 13268 strict_overflow_p, depth); 13269 case TRUTH_NOT_EXPR: 13270 return tree_unary_nonnegative_warnv_p (TREE_CODE (t), 13271 TREE_TYPE (t), 13272 TREE_OPERAND (t, 0), 13273 strict_overflow_p, depth); 13274 13275 case COND_EXPR: 13276 case CONSTRUCTOR: 13277 case OBJ_TYPE_REF: 13278 case ASSERT_EXPR: 13279 case ADDR_EXPR: 13280 case WITH_SIZE_EXPR: 13281 case SSA_NAME: 13282 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); 13283 13284 default: 13285 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth); 13286 } 13287 } 13288 13289 /* Return true if `t' is known to be non-negative. Handle warnings 13290 about undefined signed overflow. */ 13291 13292 bool 13293 tree_expr_nonnegative_p (tree t) 13294 { 13295 bool ret, strict_overflow_p; 13296 13297 strict_overflow_p = false; 13298 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p); 13299 if (strict_overflow_p) 13300 fold_overflow_warning (("assuming signed overflow does not occur when " 13301 "determining that expression is always " 13302 "non-negative"), 13303 WARN_STRICT_OVERFLOW_MISC); 13304 return ret; 13305 } 13306 13307 13308 /* Return true when (CODE OP0) is an address and is known to be nonzero. 13309 For floating point we further ensure that T is not denormal. 13310 Similar logic is present in nonzero_address in rtlanal.h. 13311 13312 If the return value is based on the assumption that signed overflow 13313 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13314 change *STRICT_OVERFLOW_P. */ 13315 13316 bool 13317 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0, 13318 bool *strict_overflow_p) 13319 { 13320 switch (code) 13321 { 13322 case ABS_EXPR: 13323 return tree_expr_nonzero_warnv_p (op0, 13324 strict_overflow_p); 13325 13326 case NOP_EXPR: 13327 { 13328 tree inner_type = TREE_TYPE (op0); 13329 tree outer_type = type; 13330 13331 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type) 13332 && tree_expr_nonzero_warnv_p (op0, 13333 strict_overflow_p)); 13334 } 13335 break; 13336 13337 case NON_LVALUE_EXPR: 13338 return tree_expr_nonzero_warnv_p (op0, 13339 strict_overflow_p); 13340 13341 default: 13342 break; 13343 } 13344 13345 return false; 13346 } 13347 13348 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero. 13349 For floating point we further ensure that T is not denormal. 13350 Similar logic is present in nonzero_address in rtlanal.h. 13351 13352 If the return value is based on the assumption that signed overflow 13353 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13354 change *STRICT_OVERFLOW_P. */ 13355 13356 bool 13357 tree_binary_nonzero_warnv_p (enum tree_code code, 13358 tree type, 13359 tree op0, 13360 tree op1, bool *strict_overflow_p) 13361 { 13362 bool sub_strict_overflow_p; 13363 switch (code) 13364 { 13365 case POINTER_PLUS_EXPR: 13366 case PLUS_EXPR: 13367 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type)) 13368 { 13369 /* With the presence of negative values it is hard 13370 to say something. */ 13371 sub_strict_overflow_p = false; 13372 if (!tree_expr_nonnegative_warnv_p (op0, 13373 &sub_strict_overflow_p) 13374 || !tree_expr_nonnegative_warnv_p (op1, 13375 &sub_strict_overflow_p)) 13376 return false; 13377 /* One of operands must be positive and the other non-negative. */ 13378 /* We don't set *STRICT_OVERFLOW_P here: even if this value 13379 overflows, on a twos-complement machine the sum of two 13380 nonnegative numbers can never be zero. */ 13381 return (tree_expr_nonzero_warnv_p (op0, 13382 strict_overflow_p) 13383 || tree_expr_nonzero_warnv_p (op1, 13384 strict_overflow_p)); 13385 } 13386 break; 13387 13388 case MULT_EXPR: 13389 if (TYPE_OVERFLOW_UNDEFINED (type)) 13390 { 13391 if (tree_expr_nonzero_warnv_p (op0, 13392 strict_overflow_p) 13393 && tree_expr_nonzero_warnv_p (op1, 13394 strict_overflow_p)) 13395 { 13396 *strict_overflow_p = true; 13397 return true; 13398 } 13399 } 13400 break; 13401 13402 case MIN_EXPR: 13403 sub_strict_overflow_p = false; 13404 if (tree_expr_nonzero_warnv_p (op0, 13405 &sub_strict_overflow_p) 13406 && tree_expr_nonzero_warnv_p (op1, 13407 &sub_strict_overflow_p)) 13408 { 13409 if (sub_strict_overflow_p) 13410 *strict_overflow_p = true; 13411 } 13412 break; 13413 13414 case MAX_EXPR: 13415 sub_strict_overflow_p = false; 13416 if (tree_expr_nonzero_warnv_p (op0, 13417 &sub_strict_overflow_p)) 13418 { 13419 if (sub_strict_overflow_p) 13420 *strict_overflow_p = true; 13421 13422 /* When both operands are nonzero, then MAX must be too. */ 13423 if (tree_expr_nonzero_warnv_p (op1, 13424 strict_overflow_p)) 13425 return true; 13426 13427 /* MAX where operand 0 is positive is positive. */ 13428 return tree_expr_nonnegative_warnv_p (op0, 13429 strict_overflow_p); 13430 } 13431 /* MAX where operand 1 is positive is positive. */ 13432 else if (tree_expr_nonzero_warnv_p (op1, 13433 &sub_strict_overflow_p) 13434 && tree_expr_nonnegative_warnv_p (op1, 13435 &sub_strict_overflow_p)) 13436 { 13437 if (sub_strict_overflow_p) 13438 *strict_overflow_p = true; 13439 return true; 13440 } 13441 break; 13442 13443 case BIT_IOR_EXPR: 13444 return (tree_expr_nonzero_warnv_p (op1, 13445 strict_overflow_p) 13446 || tree_expr_nonzero_warnv_p (op0, 13447 strict_overflow_p)); 13448 13449 default: 13450 break; 13451 } 13452 13453 return false; 13454 } 13455 13456 /* Return true when T is an address and is known to be nonzero. 13457 For floating point we further ensure that T is not denormal. 13458 Similar logic is present in nonzero_address in rtlanal.h. 13459 13460 If the return value is based on the assumption that signed overflow 13461 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't 13462 change *STRICT_OVERFLOW_P. */ 13463 13464 bool 13465 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p) 13466 { 13467 bool sub_strict_overflow_p; 13468 switch (TREE_CODE (t)) 13469 { 13470 case INTEGER_CST: 13471 return !integer_zerop (t); 13472 13473 case ADDR_EXPR: 13474 { 13475 tree base = TREE_OPERAND (t, 0); 13476 13477 if (!DECL_P (base)) 13478 base = get_base_address (base); 13479 13480 if (base && TREE_CODE (base) == TARGET_EXPR) 13481 base = TARGET_EXPR_SLOT (base); 13482 13483 if (!base) 13484 return false; 13485 13486 /* For objects in symbol table check if we know they are non-zero. 13487 Don't do anything for variables and functions before symtab is built; 13488 it is quite possible that they will be declared weak later. */ 13489 int nonzero_addr = maybe_nonzero_address (base); 13490 if (nonzero_addr >= 0) 13491 return nonzero_addr; 13492 13493 /* Constants are never weak. */ 13494 if (CONSTANT_CLASS_P (base)) 13495 return true; 13496 13497 return false; 13498 } 13499 13500 case COND_EXPR: 13501 sub_strict_overflow_p = false; 13502 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), 13503 &sub_strict_overflow_p) 13504 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2), 13505 &sub_strict_overflow_p)) 13506 { 13507 if (sub_strict_overflow_p) 13508 *strict_overflow_p = true; 13509 return true; 13510 } 13511 break; 13512 13513 case SSA_NAME: 13514 if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) 13515 break; 13516 return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t)))); 13517 13518 default: 13519 break; 13520 } 13521 return false; 13522 } 13523 13524 #define integer_valued_real_p(X) \ 13525 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 13526 13527 #define RECURSE(X) \ 13528 ((integer_valued_real_p) (X, depth + 1)) 13529 13530 /* Return true if the floating point result of (CODE OP0) has an 13531 integer value. We also allow +Inf, -Inf and NaN to be considered 13532 integer values. Return false for signaling NaN. 13533 13534 DEPTH is the current nesting depth of the query. */ 13535 13536 bool 13537 integer_valued_real_unary_p (tree_code code, tree op0, int depth) 13538 { 13539 switch (code) 13540 { 13541 case FLOAT_EXPR: 13542 return true; 13543 13544 case ABS_EXPR: 13545 return RECURSE (op0); 13546 13547 CASE_CONVERT: 13548 { 13549 tree type = TREE_TYPE (op0); 13550 if (TREE_CODE (type) == INTEGER_TYPE) 13551 return true; 13552 if (TREE_CODE (type) == REAL_TYPE) 13553 return RECURSE (op0); 13554 break; 13555 } 13556 13557 default: 13558 break; 13559 } 13560 return false; 13561 } 13562 13563 /* Return true if the floating point result of (CODE OP0 OP1) has an 13564 integer value. We also allow +Inf, -Inf and NaN to be considered 13565 integer values. Return false for signaling NaN. 13566 13567 DEPTH is the current nesting depth of the query. */ 13568 13569 bool 13570 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth) 13571 { 13572 switch (code) 13573 { 13574 case PLUS_EXPR: 13575 case MINUS_EXPR: 13576 case MULT_EXPR: 13577 case MIN_EXPR: 13578 case MAX_EXPR: 13579 return RECURSE (op0) && RECURSE (op1); 13580 13581 default: 13582 break; 13583 } 13584 return false; 13585 } 13586 13587 /* Return true if the floating point result of calling FNDECL with arguments 13588 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be 13589 considered integer values. Return false for signaling NaN. If FNDECL 13590 takes fewer than 2 arguments, the remaining ARGn are null. 13591 13592 DEPTH is the current nesting depth of the query. */ 13593 13594 bool 13595 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth) 13596 { 13597 switch (fn) 13598 { 13599 CASE_CFN_CEIL: 13600 CASE_CFN_CEIL_FN: 13601 CASE_CFN_FLOOR: 13602 CASE_CFN_FLOOR_FN: 13603 CASE_CFN_NEARBYINT: 13604 CASE_CFN_NEARBYINT_FN: 13605 CASE_CFN_RINT: 13606 CASE_CFN_RINT_FN: 13607 CASE_CFN_ROUND: 13608 CASE_CFN_ROUND_FN: 13609 CASE_CFN_TRUNC: 13610 CASE_CFN_TRUNC_FN: 13611 return true; 13612 13613 CASE_CFN_FMIN: 13614 CASE_CFN_FMIN_FN: 13615 CASE_CFN_FMAX: 13616 CASE_CFN_FMAX_FN: 13617 return RECURSE (arg0) && RECURSE (arg1); 13618 13619 default: 13620 break; 13621 } 13622 return false; 13623 } 13624 13625 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS) 13626 has an integer value. We also allow +Inf, -Inf and NaN to be 13627 considered integer values. Return false for signaling NaN. 13628 13629 DEPTH is the current nesting depth of the query. */ 13630 13631 bool 13632 integer_valued_real_single_p (tree t, int depth) 13633 { 13634 switch (TREE_CODE (t)) 13635 { 13636 case REAL_CST: 13637 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t))); 13638 13639 case COND_EXPR: 13640 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); 13641 13642 case SSA_NAME: 13643 /* Limit the depth of recursion to avoid quadratic behavior. 13644 This is expected to catch almost all occurrences in practice. 13645 If this code misses important cases that unbounded recursion 13646 would not, passes that need this information could be revised 13647 to provide it through dataflow propagation. */ 13648 return (!name_registered_for_update_p (t) 13649 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH) 13650 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t), 13651 depth)); 13652 13653 default: 13654 break; 13655 } 13656 return false; 13657 } 13658 13659 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS) 13660 has an integer value. We also allow +Inf, -Inf and NaN to be 13661 considered integer values. Return false for signaling NaN. 13662 13663 DEPTH is the current nesting depth of the query. */ 13664 13665 static bool 13666 integer_valued_real_invalid_p (tree t, int depth) 13667 { 13668 switch (TREE_CODE (t)) 13669 { 13670 case COMPOUND_EXPR: 13671 case MODIFY_EXPR: 13672 case BIND_EXPR: 13673 return RECURSE (TREE_OPERAND (t, 1)); 13674 13675 case SAVE_EXPR: 13676 return RECURSE (TREE_OPERAND (t, 0)); 13677 13678 default: 13679 break; 13680 } 13681 return false; 13682 } 13683 13684 #undef RECURSE 13685 #undef integer_valued_real_p 13686 13687 /* Return true if the floating point expression T has an integer value. 13688 We also allow +Inf, -Inf and NaN to be considered integer values. 13689 Return false for signaling NaN. 13690 13691 DEPTH is the current nesting depth of the query. */ 13692 13693 bool 13694 integer_valued_real_p (tree t, int depth) 13695 { 13696 if (t == error_mark_node) 13697 return false; 13698 13699 tree_code code = TREE_CODE (t); 13700 switch (TREE_CODE_CLASS (code)) 13701 { 13702 case tcc_binary: 13703 case tcc_comparison: 13704 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0), 13705 TREE_OPERAND (t, 1), depth); 13706 13707 case tcc_unary: 13708 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth); 13709 13710 case tcc_constant: 13711 case tcc_declaration: 13712 case tcc_reference: 13713 return integer_valued_real_single_p (t, depth); 13714 13715 default: 13716 break; 13717 } 13718 13719 switch (code) 13720 { 13721 case COND_EXPR: 13722 case SSA_NAME: 13723 return integer_valued_real_single_p (t, depth); 13724 13725 case CALL_EXPR: 13726 { 13727 tree arg0 = (call_expr_nargs (t) > 0 13728 ? CALL_EXPR_ARG (t, 0) 13729 : NULL_TREE); 13730 tree arg1 = (call_expr_nargs (t) > 1 13731 ? CALL_EXPR_ARG (t, 1) 13732 : NULL_TREE); 13733 return integer_valued_real_call_p (get_call_combined_fn (t), 13734 arg0, arg1, depth); 13735 } 13736 13737 default: 13738 return integer_valued_real_invalid_p (t, depth); 13739 } 13740 } 13741 13742 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1, 13743 attempt to fold the expression to a constant without modifying TYPE, 13744 OP0 or OP1. 13745 13746 If the expression could be simplified to a constant, then return 13747 the constant. If the expression would not be simplified to a 13748 constant, then return NULL_TREE. */ 13749 13750 tree 13751 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1) 13752 { 13753 tree tem = fold_binary (code, type, op0, op1); 13754 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; 13755 } 13756 13757 /* Given the components of a unary expression CODE, TYPE and OP0, 13758 attempt to fold the expression to a constant without modifying 13759 TYPE or OP0. 13760 13761 If the expression could be simplified to a constant, then return 13762 the constant. If the expression would not be simplified to a 13763 constant, then return NULL_TREE. */ 13764 13765 tree 13766 fold_unary_to_constant (enum tree_code code, tree type, tree op0) 13767 { 13768 tree tem = fold_unary (code, type, op0); 13769 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; 13770 } 13771 13772 /* If EXP represents referencing an element in a constant string 13773 (either via pointer arithmetic or array indexing), return the 13774 tree representing the value accessed, otherwise return NULL. */ 13775 13776 tree 13777 fold_read_from_constant_string (tree exp) 13778 { 13779 if ((TREE_CODE (exp) == INDIRECT_REF 13780 || TREE_CODE (exp) == ARRAY_REF) 13781 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE) 13782 { 13783 tree exp1 = TREE_OPERAND (exp, 0); 13784 tree index; 13785 tree string; 13786 location_t loc = EXPR_LOCATION (exp); 13787 13788 if (TREE_CODE (exp) == INDIRECT_REF) 13789 string = string_constant (exp1, &index); 13790 else 13791 { 13792 tree low_bound = array_ref_low_bound (exp); 13793 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1)); 13794 13795 /* Optimize the special-case of a zero lower bound. 13796 13797 We convert the low_bound to sizetype to avoid some problems 13798 with constant folding. (E.g. suppose the lower bound is 1, 13799 and its mode is QI. Without the conversion,l (ARRAY 13800 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1)) 13801 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */ 13802 if (! integer_zerop (low_bound)) 13803 index = size_diffop_loc (loc, index, 13804 fold_convert_loc (loc, sizetype, low_bound)); 13805 13806 string = exp1; 13807 } 13808 13809 scalar_int_mode char_mode; 13810 if (string 13811 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string))) 13812 && TREE_CODE (string) == STRING_CST 13813 && TREE_CODE (index) == INTEGER_CST 13814 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0 13815 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))), 13816 &char_mode) 13817 && GET_MODE_SIZE (char_mode) == 1) 13818 return build_int_cst_type (TREE_TYPE (exp), 13819 (TREE_STRING_POINTER (string) 13820 [TREE_INT_CST_LOW (index)])); 13821 } 13822 return NULL; 13823 } 13824 13825 /* Return the tree for neg (ARG0) when ARG0 is known to be either 13826 an integer constant, real, or fixed-point constant. 13827 13828 TYPE is the type of the result. */ 13829 13830 static tree 13831 fold_negate_const (tree arg0, tree type) 13832 { 13833 tree t = NULL_TREE; 13834 13835 switch (TREE_CODE (arg0)) 13836 { 13837 case REAL_CST: 13838 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); 13839 break; 13840 13841 case FIXED_CST: 13842 { 13843 FIXED_VALUE_TYPE f; 13844 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR, 13845 &(TREE_FIXED_CST (arg0)), NULL, 13846 TYPE_SATURATING (type)); 13847 t = build_fixed (type, f); 13848 /* Propagate overflow flags. */ 13849 if (overflow_p | TREE_OVERFLOW (arg0)) 13850 TREE_OVERFLOW (t) = 1; 13851 break; 13852 } 13853 13854 default: 13855 if (poly_int_tree_p (arg0)) 13856 { 13857 bool overflow; 13858 poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow); 13859 t = force_fit_type (type, res, 1, 13860 (overflow && ! TYPE_UNSIGNED (type)) 13861 || TREE_OVERFLOW (arg0)); 13862 break; 13863 } 13864 13865 gcc_unreachable (); 13866 } 13867 13868 return t; 13869 } 13870 13871 /* Return the tree for abs (ARG0) when ARG0 is known to be either 13872 an integer constant or real constant. 13873 13874 TYPE is the type of the result. */ 13875 13876 tree 13877 fold_abs_const (tree arg0, tree type) 13878 { 13879 tree t = NULL_TREE; 13880 13881 switch (TREE_CODE (arg0)) 13882 { 13883 case INTEGER_CST: 13884 { 13885 /* If the value is unsigned or non-negative, then the absolute value 13886 is the same as the ordinary value. */ 13887 if (!wi::neg_p (wi::to_wide (arg0), TYPE_SIGN (type))) 13888 t = arg0; 13889 13890 /* If the value is negative, then the absolute value is 13891 its negation. */ 13892 else 13893 { 13894 bool overflow; 13895 wide_int val = wi::neg (wi::to_wide (arg0), &overflow); 13896 t = force_fit_type (type, val, -1, 13897 overflow | TREE_OVERFLOW (arg0)); 13898 } 13899 } 13900 break; 13901 13902 case REAL_CST: 13903 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0))) 13904 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); 13905 else 13906 t = arg0; 13907 break; 13908 13909 default: 13910 gcc_unreachable (); 13911 } 13912 13913 return t; 13914 } 13915 13916 /* Return the tree for not (ARG0) when ARG0 is known to be an integer 13917 constant. TYPE is the type of the result. */ 13918 13919 static tree 13920 fold_not_const (const_tree arg0, tree type) 13921 { 13922 gcc_assert (TREE_CODE (arg0) == INTEGER_CST); 13923 13924 return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0)); 13925 } 13926 13927 /* Given CODE, a relational operator, the target type, TYPE and two 13928 constant operands OP0 and OP1, return the result of the 13929 relational operation. If the result is not a compile time 13930 constant, then return NULL_TREE. */ 13931 13932 static tree 13933 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1) 13934 { 13935 int result, invert; 13936 13937 /* From here on, the only cases we handle are when the result is 13938 known to be a constant. */ 13939 13940 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST) 13941 { 13942 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0); 13943 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1); 13944 13945 /* Handle the cases where either operand is a NaN. */ 13946 if (real_isnan (c0) || real_isnan (c1)) 13947 { 13948 switch (code) 13949 { 13950 case EQ_EXPR: 13951 case ORDERED_EXPR: 13952 result = 0; 13953 break; 13954 13955 case NE_EXPR: 13956 case UNORDERED_EXPR: 13957 case UNLT_EXPR: 13958 case UNLE_EXPR: 13959 case UNGT_EXPR: 13960 case UNGE_EXPR: 13961 case UNEQ_EXPR: 13962 result = 1; 13963 break; 13964 13965 case LT_EXPR: 13966 case LE_EXPR: 13967 case GT_EXPR: 13968 case GE_EXPR: 13969 case LTGT_EXPR: 13970 if (flag_trapping_math) 13971 return NULL_TREE; 13972 result = 0; 13973 break; 13974 13975 default: 13976 gcc_unreachable (); 13977 } 13978 13979 return constant_boolean_node (result, type); 13980 } 13981 13982 return constant_boolean_node (real_compare (code, c0, c1), type); 13983 } 13984 13985 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST) 13986 { 13987 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0); 13988 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1); 13989 return constant_boolean_node (fixed_compare (code, c0, c1), type); 13990 } 13991 13992 /* Handle equality/inequality of complex constants. */ 13993 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST) 13994 { 13995 tree rcond = fold_relational_const (code, type, 13996 TREE_REALPART (op0), 13997 TREE_REALPART (op1)); 13998 tree icond = fold_relational_const (code, type, 13999 TREE_IMAGPART (op0), 14000 TREE_IMAGPART (op1)); 14001 if (code == EQ_EXPR) 14002 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond); 14003 else if (code == NE_EXPR) 14004 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond); 14005 else 14006 return NULL_TREE; 14007 } 14008 14009 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST) 14010 { 14011 if (!VECTOR_TYPE_P (type)) 14012 { 14013 /* Have vector comparison with scalar boolean result. */ 14014 gcc_assert ((code == EQ_EXPR || code == NE_EXPR) 14015 && known_eq (VECTOR_CST_NELTS (op0), 14016 VECTOR_CST_NELTS (op1))); 14017 unsigned HOST_WIDE_INT nunits; 14018 if (!VECTOR_CST_NELTS (op0).is_constant (&nunits)) 14019 return NULL_TREE; 14020 for (unsigned i = 0; i < nunits; i++) 14021 { 14022 tree elem0 = VECTOR_CST_ELT (op0, i); 14023 tree elem1 = VECTOR_CST_ELT (op1, i); 14024 tree tmp = fold_relational_const (EQ_EXPR, type, elem0, elem1); 14025 if (tmp == NULL_TREE) 14026 return NULL_TREE; 14027 if (integer_zerop (tmp)) 14028 return constant_boolean_node (code == NE_EXPR, type); 14029 } 14030 return constant_boolean_node (code == EQ_EXPR, type); 14031 } 14032 tree_vector_builder elts; 14033 if (!elts.new_binary_operation (type, op0, op1, false)) 14034 return NULL_TREE; 14035 unsigned int count = elts.encoded_nelts (); 14036 for (unsigned i = 0; i < count; i++) 14037 { 14038 tree elem_type = TREE_TYPE (type); 14039 tree elem0 = VECTOR_CST_ELT (op0, i); 14040 tree elem1 = VECTOR_CST_ELT (op1, i); 14041 14042 tree tem = fold_relational_const (code, elem_type, 14043 elem0, elem1); 14044 14045 if (tem == NULL_TREE) 14046 return NULL_TREE; 14047 14048 elts.quick_push (build_int_cst (elem_type, 14049 integer_zerop (tem) ? 0 : -1)); 14050 } 14051 14052 return elts.build (); 14053 } 14054 14055 /* From here on we only handle LT, LE, GT, GE, EQ and NE. 14056 14057 To compute GT, swap the arguments and do LT. 14058 To compute GE, do LT and invert the result. 14059 To compute LE, swap the arguments, do LT and invert the result. 14060 To compute NE, do EQ and invert the result. 14061 14062 Therefore, the code below must handle only EQ and LT. */ 14063 14064 if (code == LE_EXPR || code == GT_EXPR) 14065 { 14066 std::swap (op0, op1); 14067 code = swap_tree_comparison (code); 14068 } 14069 14070 /* Note that it is safe to invert for real values here because we 14071 have already handled the one case that it matters. */ 14072 14073 invert = 0; 14074 if (code == NE_EXPR || code == GE_EXPR) 14075 { 14076 invert = 1; 14077 code = invert_tree_comparison (code, false); 14078 } 14079 14080 /* Compute a result for LT or EQ if args permit; 14081 Otherwise return T. */ 14082 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST) 14083 { 14084 if (code == EQ_EXPR) 14085 result = tree_int_cst_equal (op0, op1); 14086 else 14087 result = tree_int_cst_lt (op0, op1); 14088 } 14089 else 14090 return NULL_TREE; 14091 14092 if (invert) 14093 result ^= 1; 14094 return constant_boolean_node (result, type); 14095 } 14096 14097 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the 14098 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR 14099 itself. */ 14100 14101 tree 14102 fold_build_cleanup_point_expr (tree type, tree expr) 14103 { 14104 /* If the expression does not have side effects then we don't have to wrap 14105 it with a cleanup point expression. */ 14106 if (!TREE_SIDE_EFFECTS (expr)) 14107 return expr; 14108 14109 /* If the expression is a return, check to see if the expression inside the 14110 return has no side effects or the right hand side of the modify expression 14111 inside the return. If either don't have side effects set we don't need to 14112 wrap the expression in a cleanup point expression. Note we don't check the 14113 left hand side of the modify because it should always be a return decl. */ 14114 if (TREE_CODE (expr) == RETURN_EXPR) 14115 { 14116 tree op = TREE_OPERAND (expr, 0); 14117 if (!op || !TREE_SIDE_EFFECTS (op)) 14118 return expr; 14119 op = TREE_OPERAND (op, 1); 14120 if (!TREE_SIDE_EFFECTS (op)) 14121 return expr; 14122 } 14123 14124 return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr); 14125 } 14126 14127 /* Given a pointer value OP0 and a type TYPE, return a simplified version 14128 of an indirection through OP0, or NULL_TREE if no simplification is 14129 possible. */ 14130 14131 tree 14132 fold_indirect_ref_1 (location_t loc, tree type, tree op0) 14133 { 14134 tree sub = op0; 14135 tree subtype; 14136 poly_uint64 const_op01; 14137 14138 STRIP_NOPS (sub); 14139 subtype = TREE_TYPE (sub); 14140 if (!POINTER_TYPE_P (subtype) 14141 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0))) 14142 return NULL_TREE; 14143 14144 if (TREE_CODE (sub) == ADDR_EXPR) 14145 { 14146 tree op = TREE_OPERAND (sub, 0); 14147 tree optype = TREE_TYPE (op); 14148 14149 /* *&CONST_DECL -> to the value of the const decl. */ 14150 if (TREE_CODE (op) == CONST_DECL) 14151 return DECL_INITIAL (op); 14152 /* *&p => p; make sure to handle *&"str"[cst] here. */ 14153 if (type == optype) 14154 { 14155 tree fop = fold_read_from_constant_string (op); 14156 if (fop) 14157 return fop; 14158 else 14159 return op; 14160 } 14161 /* *(foo *)&fooarray => fooarray[0] */ 14162 else if (TREE_CODE (optype) == ARRAY_TYPE 14163 && type == TREE_TYPE (optype) 14164 && (!in_gimple_form 14165 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) 14166 { 14167 tree type_domain = TYPE_DOMAIN (optype); 14168 tree min_val = size_zero_node; 14169 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14170 min_val = TYPE_MIN_VALUE (type_domain); 14171 if (in_gimple_form 14172 && TREE_CODE (min_val) != INTEGER_CST) 14173 return NULL_TREE; 14174 return build4_loc (loc, ARRAY_REF, type, op, min_val, 14175 NULL_TREE, NULL_TREE); 14176 } 14177 /* *(foo *)&complexfoo => __real__ complexfoo */ 14178 else if (TREE_CODE (optype) == COMPLEX_TYPE 14179 && type == TREE_TYPE (optype)) 14180 return fold_build1_loc (loc, REALPART_EXPR, type, op); 14181 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */ 14182 else if (VECTOR_TYPE_P (optype) 14183 && type == TREE_TYPE (optype)) 14184 { 14185 tree part_width = TYPE_SIZE (type); 14186 tree index = bitsize_int (0); 14187 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, 14188 index); 14189 } 14190 } 14191 14192 if (TREE_CODE (sub) == POINTER_PLUS_EXPR 14193 && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01)) 14194 { 14195 tree op00 = TREE_OPERAND (sub, 0); 14196 tree op01 = TREE_OPERAND (sub, 1); 14197 14198 STRIP_NOPS (op00); 14199 if (TREE_CODE (op00) == ADDR_EXPR) 14200 { 14201 tree op00type; 14202 op00 = TREE_OPERAND (op00, 0); 14203 op00type = TREE_TYPE (op00); 14204 14205 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */ 14206 if (VECTOR_TYPE_P (op00type) 14207 && type == TREE_TYPE (op00type) 14208 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned, 14209 but we want to treat offsets with MSB set as negative. 14210 For the code below negative offsets are invalid and 14211 TYPE_SIZE of the element is something unsigned, so 14212 check whether op01 fits into poly_int64, which implies 14213 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and 14214 then just use poly_uint64 because we want to treat the 14215 value as unsigned. */ 14216 && tree_fits_poly_int64_p (op01)) 14217 { 14218 tree part_width = TYPE_SIZE (type); 14219 poly_uint64 max_offset 14220 = (tree_to_uhwi (part_width) / BITS_PER_UNIT 14221 * TYPE_VECTOR_SUBPARTS (op00type)); 14222 if (known_lt (const_op01, max_offset)) 14223 { 14224 tree index = bitsize_int (const_op01 * BITS_PER_UNIT); 14225 return fold_build3_loc (loc, 14226 BIT_FIELD_REF, type, op00, 14227 part_width, index); 14228 } 14229 } 14230 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */ 14231 else if (TREE_CODE (op00type) == COMPLEX_TYPE 14232 && type == TREE_TYPE (op00type)) 14233 { 14234 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)), 14235 const_op01)) 14236 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00); 14237 } 14238 /* ((foo *)&fooarray)[1] => fooarray[1] */ 14239 else if (TREE_CODE (op00type) == ARRAY_TYPE 14240 && type == TREE_TYPE (op00type)) 14241 { 14242 tree type_domain = TYPE_DOMAIN (op00type); 14243 tree min_val = size_zero_node; 14244 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14245 min_val = TYPE_MIN_VALUE (type_domain); 14246 offset_int off = wi::to_offset (op01); 14247 offset_int el_sz = wi::to_offset (TYPE_SIZE_UNIT (type)); 14248 offset_int remainder; 14249 off = wi::divmod_trunc (off, el_sz, SIGNED, &remainder); 14250 if (remainder == 0 && TREE_CODE (min_val) == INTEGER_CST) 14251 { 14252 off = off + wi::to_offset (min_val); 14253 op01 = wide_int_to_tree (sizetype, off); 14254 return build4_loc (loc, ARRAY_REF, type, op00, op01, 14255 NULL_TREE, NULL_TREE); 14256 } 14257 } 14258 } 14259 } 14260 14261 /* *(foo *)fooarrptr => (*fooarrptr)[0] */ 14262 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE 14263 && type == TREE_TYPE (TREE_TYPE (subtype)) 14264 && (!in_gimple_form 14265 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) 14266 { 14267 tree type_domain; 14268 tree min_val = size_zero_node; 14269 sub = build_fold_indirect_ref_loc (loc, sub); 14270 type_domain = TYPE_DOMAIN (TREE_TYPE (sub)); 14271 if (type_domain && TYPE_MIN_VALUE (type_domain)) 14272 min_val = TYPE_MIN_VALUE (type_domain); 14273 if (in_gimple_form 14274 && TREE_CODE (min_val) != INTEGER_CST) 14275 return NULL_TREE; 14276 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE, 14277 NULL_TREE); 14278 } 14279 14280 return NULL_TREE; 14281 } 14282 14283 /* Builds an expression for an indirection through T, simplifying some 14284 cases. */ 14285 14286 tree 14287 build_fold_indirect_ref_loc (location_t loc, tree t) 14288 { 14289 tree type = TREE_TYPE (TREE_TYPE (t)); 14290 tree sub = fold_indirect_ref_1 (loc, type, t); 14291 14292 if (sub) 14293 return sub; 14294 14295 return build1_loc (loc, INDIRECT_REF, type, t); 14296 } 14297 14298 /* Given an INDIRECT_REF T, return either T or a simplified version. */ 14299 14300 tree 14301 fold_indirect_ref_loc (location_t loc, tree t) 14302 { 14303 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0)); 14304 14305 if (sub) 14306 return sub; 14307 else 14308 return t; 14309 } 14310 14311 /* Strip non-trapping, non-side-effecting tree nodes from an expression 14312 whose result is ignored. The type of the returned tree need not be 14313 the same as the original expression. */ 14314 14315 tree 14316 fold_ignored_result (tree t) 14317 { 14318 if (!TREE_SIDE_EFFECTS (t)) 14319 return integer_zero_node; 14320 14321 for (;;) 14322 switch (TREE_CODE_CLASS (TREE_CODE (t))) 14323 { 14324 case tcc_unary: 14325 t = TREE_OPERAND (t, 0); 14326 break; 14327 14328 case tcc_binary: 14329 case tcc_comparison: 14330 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) 14331 t = TREE_OPERAND (t, 0); 14332 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))) 14333 t = TREE_OPERAND (t, 1); 14334 else 14335 return t; 14336 break; 14337 14338 case tcc_expression: 14339 switch (TREE_CODE (t)) 14340 { 14341 case COMPOUND_EXPR: 14342 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) 14343 return t; 14344 t = TREE_OPERAND (t, 0); 14345 break; 14346 14347 case COND_EXPR: 14348 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)) 14349 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2))) 14350 return t; 14351 t = TREE_OPERAND (t, 0); 14352 break; 14353 14354 default: 14355 return t; 14356 } 14357 break; 14358 14359 default: 14360 return t; 14361 } 14362 } 14363 14364 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */ 14365 14366 tree 14367 round_up_loc (location_t loc, tree value, unsigned int divisor) 14368 { 14369 tree div = NULL_TREE; 14370 14371 if (divisor == 1) 14372 return value; 14373 14374 /* See if VALUE is already a multiple of DIVISOR. If so, we don't 14375 have to do anything. Only do this when we are not given a const, 14376 because in that case, this check is more expensive than just 14377 doing it. */ 14378 if (TREE_CODE (value) != INTEGER_CST) 14379 { 14380 div = build_int_cst (TREE_TYPE (value), divisor); 14381 14382 if (multiple_of_p (TREE_TYPE (value), value, div)) 14383 return value; 14384 } 14385 14386 /* If divisor is a power of two, simplify this to bit manipulation. */ 14387 if (pow2_or_zerop (divisor)) 14388 { 14389 if (TREE_CODE (value) == INTEGER_CST) 14390 { 14391 wide_int val = wi::to_wide (value); 14392 bool overflow_p; 14393 14394 if ((val & (divisor - 1)) == 0) 14395 return value; 14396 14397 overflow_p = TREE_OVERFLOW (value); 14398 val += divisor - 1; 14399 val &= (int) -divisor; 14400 if (val == 0) 14401 overflow_p = true; 14402 14403 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p); 14404 } 14405 else 14406 { 14407 tree t; 14408 14409 t = build_int_cst (TREE_TYPE (value), divisor - 1); 14410 value = size_binop_loc (loc, PLUS_EXPR, value, t); 14411 t = build_int_cst (TREE_TYPE (value), - (int) divisor); 14412 value = size_binop_loc (loc, BIT_AND_EXPR, value, t); 14413 } 14414 } 14415 else 14416 { 14417 if (!div) 14418 div = build_int_cst (TREE_TYPE (value), divisor); 14419 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div); 14420 value = size_binop_loc (loc, MULT_EXPR, value, div); 14421 } 14422 14423 return value; 14424 } 14425 14426 /* Likewise, but round down. */ 14427 14428 tree 14429 round_down_loc (location_t loc, tree value, int divisor) 14430 { 14431 tree div = NULL_TREE; 14432 14433 gcc_assert (divisor > 0); 14434 if (divisor == 1) 14435 return value; 14436 14437 /* See if VALUE is already a multiple of DIVISOR. If so, we don't 14438 have to do anything. Only do this when we are not given a const, 14439 because in that case, this check is more expensive than just 14440 doing it. */ 14441 if (TREE_CODE (value) != INTEGER_CST) 14442 { 14443 div = build_int_cst (TREE_TYPE (value), divisor); 14444 14445 if (multiple_of_p (TREE_TYPE (value), value, div)) 14446 return value; 14447 } 14448 14449 /* If divisor is a power of two, simplify this to bit manipulation. */ 14450 if (pow2_or_zerop (divisor)) 14451 { 14452 tree t; 14453 14454 t = build_int_cst (TREE_TYPE (value), -divisor); 14455 value = size_binop_loc (loc, BIT_AND_EXPR, value, t); 14456 } 14457 else 14458 { 14459 if (!div) 14460 div = build_int_cst (TREE_TYPE (value), divisor); 14461 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div); 14462 value = size_binop_loc (loc, MULT_EXPR, value, div); 14463 } 14464 14465 return value; 14466 } 14467 14468 /* Returns the pointer to the base of the object addressed by EXP and 14469 extracts the information about the offset of the access, storing it 14470 to PBITPOS and POFFSET. */ 14471 14472 static tree 14473 split_address_to_core_and_offset (tree exp, 14474 poly_int64_pod *pbitpos, tree *poffset) 14475 { 14476 tree core; 14477 machine_mode mode; 14478 int unsignedp, reversep, volatilep; 14479 poly_int64 bitsize; 14480 location_t loc = EXPR_LOCATION (exp); 14481 14482 if (TREE_CODE (exp) == ADDR_EXPR) 14483 { 14484 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos, 14485 poffset, &mode, &unsignedp, &reversep, 14486 &volatilep); 14487 core = build_fold_addr_expr_loc (loc, core); 14488 } 14489 else if (TREE_CODE (exp) == POINTER_PLUS_EXPR) 14490 { 14491 core = TREE_OPERAND (exp, 0); 14492 STRIP_NOPS (core); 14493 *pbitpos = 0; 14494 *poffset = TREE_OPERAND (exp, 1); 14495 if (poly_int_tree_p (*poffset)) 14496 { 14497 poly_offset_int tem 14498 = wi::sext (wi::to_poly_offset (*poffset), 14499 TYPE_PRECISION (TREE_TYPE (*poffset))); 14500 tem <<= LOG2_BITS_PER_UNIT; 14501 if (tem.to_shwi (pbitpos)) 14502 *poffset = NULL_TREE; 14503 } 14504 } 14505 else 14506 { 14507 core = exp; 14508 *pbitpos = 0; 14509 *poffset = NULL_TREE; 14510 } 14511 14512 return core; 14513 } 14514 14515 /* Returns true if addresses of E1 and E2 differ by a constant, false 14516 otherwise. If they do, E1 - E2 is stored in *DIFF. */ 14517 14518 bool 14519 ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff) 14520 { 14521 tree core1, core2; 14522 poly_int64 bitpos1, bitpos2; 14523 tree toffset1, toffset2, tdiff, type; 14524 14525 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1); 14526 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2); 14527 14528 poly_int64 bytepos1, bytepos2; 14529 if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1) 14530 || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2) 14531 || !operand_equal_p (core1, core2, 0)) 14532 return false; 14533 14534 if (toffset1 && toffset2) 14535 { 14536 type = TREE_TYPE (toffset1); 14537 if (type != TREE_TYPE (toffset2)) 14538 toffset2 = fold_convert (type, toffset2); 14539 14540 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2); 14541 if (!cst_and_fits_in_hwi (tdiff)) 14542 return false; 14543 14544 *diff = int_cst_value (tdiff); 14545 } 14546 else if (toffset1 || toffset2) 14547 { 14548 /* If only one of the offsets is non-constant, the difference cannot 14549 be a constant. */ 14550 return false; 14551 } 14552 else 14553 *diff = 0; 14554 14555 *diff += bytepos1 - bytepos2; 14556 return true; 14557 } 14558 14559 /* Return OFF converted to a pointer offset type suitable as offset for 14560 POINTER_PLUS_EXPR. Use location LOC for this conversion. */ 14561 tree 14562 convert_to_ptrofftype_loc (location_t loc, tree off) 14563 { 14564 return fold_convert_loc (loc, sizetype, off); 14565 } 14566 14567 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ 14568 tree 14569 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off) 14570 { 14571 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), 14572 ptr, convert_to_ptrofftype_loc (loc, off)); 14573 } 14574 14575 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ 14576 tree 14577 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off) 14578 { 14579 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), 14580 ptr, size_int (off)); 14581 } 14582 14583 /* Return a char pointer for a C string if it is a string constant 14584 or sum of string constant and integer constant. We only support 14585 string constants properly terminated with '\0' character. 14586 If STRLEN is a valid pointer, length (including terminating character) 14587 of returned string is stored to the argument. */ 14588 14589 const char * 14590 c_getstr (tree src, unsigned HOST_WIDE_INT *strlen) 14591 { 14592 tree offset_node; 14593 14594 if (strlen) 14595 *strlen = 0; 14596 14597 src = string_constant (src, &offset_node); 14598 if (src == 0) 14599 return NULL; 14600 14601 unsigned HOST_WIDE_INT offset = 0; 14602 if (offset_node != NULL_TREE) 14603 { 14604 if (!tree_fits_uhwi_p (offset_node)) 14605 return NULL; 14606 else 14607 offset = tree_to_uhwi (offset_node); 14608 } 14609 14610 unsigned HOST_WIDE_INT string_length = TREE_STRING_LENGTH (src); 14611 const char *string = TREE_STRING_POINTER (src); 14612 14613 /* Support only properly null-terminated strings. */ 14614 if (string_length == 0 14615 || string[string_length - 1] != '\0' 14616 || offset >= string_length) 14617 return NULL; 14618 14619 if (strlen) 14620 *strlen = string_length - offset; 14621 return string + offset; 14622 } 14623 14624 #if CHECKING_P 14625 14626 namespace selftest { 14627 14628 /* Helper functions for writing tests of folding trees. */ 14629 14630 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */ 14631 14632 static void 14633 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs, 14634 tree constant) 14635 { 14636 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs)); 14637 } 14638 14639 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR 14640 wrapping WRAPPED_EXPR. */ 14641 14642 static void 14643 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs, 14644 tree wrapped_expr) 14645 { 14646 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs); 14647 ASSERT_NE (wrapped_expr, result); 14648 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result)); 14649 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0)); 14650 } 14651 14652 /* Verify that various arithmetic binary operations are folded 14653 correctly. */ 14654 14655 static void 14656 test_arithmetic_folding () 14657 { 14658 tree type = integer_type_node; 14659 tree x = create_tmp_var_raw (type, "x"); 14660 tree zero = build_zero_cst (type); 14661 tree one = build_int_cst (type, 1); 14662 14663 /* Addition. */ 14664 /* 1 <-- (0 + 1) */ 14665 assert_binop_folds_to_const (zero, PLUS_EXPR, one, 14666 one); 14667 assert_binop_folds_to_const (one, PLUS_EXPR, zero, 14668 one); 14669 14670 /* (nonlvalue)x <-- (x + 0) */ 14671 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero, 14672 x); 14673 14674 /* Subtraction. */ 14675 /* 0 <-- (x - x) */ 14676 assert_binop_folds_to_const (x, MINUS_EXPR, x, 14677 zero); 14678 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero, 14679 x); 14680 14681 /* Multiplication. */ 14682 /* 0 <-- (x * 0) */ 14683 assert_binop_folds_to_const (x, MULT_EXPR, zero, 14684 zero); 14685 14686 /* (nonlvalue)x <-- (x * 1) */ 14687 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one, 14688 x); 14689 } 14690 14691 /* Verify that various binary operations on vectors are folded 14692 correctly. */ 14693 14694 static void 14695 test_vector_folding () 14696 { 14697 tree inner_type = integer_type_node; 14698 tree type = build_vector_type (inner_type, 4); 14699 tree zero = build_zero_cst (type); 14700 tree one = build_one_cst (type); 14701 tree index = build_index_vector (type, 0, 1); 14702 14703 /* Verify equality tests that return a scalar boolean result. */ 14704 tree res_type = boolean_type_node; 14705 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one))); 14706 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero))); 14707 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one))); 14708 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one))); 14709 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, index, one))); 14710 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, 14711 index, one))); 14712 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, 14713 index, index))); 14714 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, 14715 index, index))); 14716 } 14717 14718 /* Verify folding of VEC_DUPLICATE_EXPRs. */ 14719 14720 static void 14721 test_vec_duplicate_folding () 14722 { 14723 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype); 14724 machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode); 14725 /* This will be 1 if VEC_MODE isn't a vector mode. */ 14726 poly_uint64 nunits = GET_MODE_NUNITS (vec_mode); 14727 14728 tree type = build_vector_type (ssizetype, nunits); 14729 tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5)); 14730 tree dup5_cst = build_vector_from_val (type, ssize_int (5)); 14731 ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0)); 14732 } 14733 14734 /* Run all of the selftests within this file. */ 14735 14736 void 14737 fold_const_c_tests () 14738 { 14739 test_arithmetic_folding (); 14740 test_vector_folding (); 14741 test_vec_duplicate_folding (); 14742 } 14743 14744 } // namespace selftest 14745 14746 #endif /* CHECKING_P */ 14747