xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/fixed-value.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Fixed-point arithmetic support.
2    Copyright (C) 2006-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "fixed-value.h"
34 #include "tree.h"
35 #include "diagnostic-core.h"
36 #include "wide-int.h"
37 
38 /* Compare two fixed objects for bitwise identity.  */
39 
40 bool
41 fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
42 {
43   return (a->mode == b->mode
44 	  && a->data.high == b->data.high
45 	  && a->data.low == b->data.low);
46 }
47 
48 /* Calculate a hash value.  */
49 
50 unsigned int
51 fixed_hash (const FIXED_VALUE_TYPE *f)
52 {
53   return (unsigned int) (f->data.low ^ f->data.high);
54 }
55 
56 /* Define the enum code for the range of the fixed-point value.  */
57 enum fixed_value_range_code {
58   FIXED_OK,		/* The value is within the range.  */
59   FIXED_UNDERFLOW,	/* The value is less than the minimum.  */
60   FIXED_GT_MAX_EPS,	/* The value is greater than the maximum, but not equal
61 			   to the maximum plus the epsilon.  */
62   FIXED_MAX_EPS		/* The value equals the maximum plus the epsilon.  */
63 };
64 
65 /* Check REAL_VALUE against the range of the fixed-point mode.
66    Return FIXED_OK, if it is within the range.
67           FIXED_UNDERFLOW, if it is less than the minimum.
68           FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
69 	    the maximum plus the epsilon.
70           FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon.  */
71 
72 static enum fixed_value_range_code
73 check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, machine_mode mode)
74 {
75   REAL_VALUE_TYPE max_value, min_value, epsilon_value;
76 
77   real_2expN (&max_value, GET_MODE_IBIT (mode), mode);
78   real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), mode);
79 
80   if (SIGNED_FIXED_POINT_MODE_P (mode))
81     min_value = real_value_negate (&max_value);
82   else
83     real_from_string (&min_value, "0.0");
84 
85   if (real_compare (LT_EXPR, real_value, &min_value))
86     return FIXED_UNDERFLOW;
87   if (real_compare (EQ_EXPR, real_value, &max_value))
88     return FIXED_MAX_EPS;
89   real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
90   if (real_compare (GT_EXPR, real_value, &max_value))
91     return FIXED_GT_MAX_EPS;
92   return FIXED_OK;
93 }
94 
95 
96 /* Construct a CONST_FIXED from a bit payload and machine mode MODE.
97    The bits in PAYLOAD are sign-extended/zero-extended according to MODE.  */
98 
99 FIXED_VALUE_TYPE
100 fixed_from_double_int (double_int payload, machine_mode mode)
101 {
102   FIXED_VALUE_TYPE value;
103 
104   gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
105 
106   if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
107     value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
108   else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
109     value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
110   else
111     gcc_unreachable ();
112 
113   value.mode = mode;
114 
115   return value;
116 }
117 
118 
119 /* Initialize from a decimal or hexadecimal string.  */
120 
121 void
122 fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, machine_mode mode)
123 {
124   REAL_VALUE_TYPE real_value, fixed_value, base_value;
125   unsigned int fbit;
126   enum fixed_value_range_code temp;
127   bool fail;
128 
129   f->mode = mode;
130   fbit = GET_MODE_FBIT (mode);
131 
132   real_from_string (&real_value, str);
133   temp = check_real_for_fixed_mode (&real_value, f->mode);
134   /* We don't want to warn the case when the _Fract value is 1.0.  */
135   if (temp == FIXED_UNDERFLOW
136       || temp == FIXED_GT_MAX_EPS
137       || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
138     warning (OPT_Woverflow,
139 	     "large fixed-point constant implicitly truncated to fixed-point type");
140   real_2expN (&base_value, fbit, mode);
141   real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
142   wide_int w = real_to_integer (&fixed_value, &fail,
143 				GET_MODE_PRECISION (mode));
144   f->data.low = w.elt (0);
145   f->data.high = w.elt (1);
146 
147   if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
148     {
149       /* From the spec, we need to evaluate 1 to the maximal value.  */
150       f->data.low = -1;
151       f->data.high = -1;
152       f->data = f->data.zext (GET_MODE_FBIT (f->mode)
153 				+ GET_MODE_IBIT (f->mode));
154     }
155   else
156     f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
157 			      + GET_MODE_FBIT (f->mode)
158 			      + GET_MODE_IBIT (f->mode),
159 			      UNSIGNED_FIXED_POINT_MODE_P (f->mode));
160 }
161 
162 /* Render F as a decimal floating point constant.  */
163 
164 void
165 fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
166 		  size_t buf_size)
167 {
168   REAL_VALUE_TYPE real_value, base_value, fixed_value;
169 
170   signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode) ? UNSIGNED : SIGNED;
171   real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), f_orig->mode);
172   real_from_integer (&real_value, VOIDmode,
173 		     wide_int::from (f_orig->data,
174 				     GET_MODE_PRECISION (f_orig->mode), sgn),
175 		     sgn);
176   real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
177   real_to_decimal (str, &fixed_value, buf_size, 0, 1);
178 }
179 
180 /* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
181    the machine mode MODE.
182    Do not modify *F otherwise.
183    This function assumes the width of double_int is greater than the width
184    of the fixed-point value (the sum of a possible sign bit, possible ibits,
185    and fbits).
186    Return true, if !SAT_P and overflow.  */
187 
188 static bool
189 fixed_saturate1 (machine_mode mode, double_int a, double_int *f,
190 		 bool sat_p)
191 {
192   bool overflow_p = false;
193   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
194   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
195 
196   if (unsigned_p) /* Unsigned type.  */
197     {
198       double_int max;
199       max.low = -1;
200       max.high = -1;
201       max = max.zext (i_f_bits);
202       if (a.ugt (max))
203 	{
204 	  if (sat_p)
205 	    *f = max;
206 	  else
207 	    overflow_p = true;
208 	}
209     }
210   else /* Signed type.  */
211     {
212       double_int max, min;
213       max.high = -1;
214       max.low = -1;
215       max = max.zext (i_f_bits);
216       min.high = 0;
217       min.low = 1;
218       min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
219       min = min.sext (1 + i_f_bits);
220       if (a.sgt (max))
221 	{
222 	  if (sat_p)
223 	    *f = max;
224 	  else
225 	    overflow_p = true;
226 	}
227       else if (a.slt (min))
228 	{
229 	  if (sat_p)
230 	    *f = min;
231 	  else
232 	    overflow_p = true;
233 	}
234     }
235   return overflow_p;
236 }
237 
238 /* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
239    save to *F based on the machine mode MODE.
240    Do not modify *F otherwise.
241    This function assumes the width of two double_int is greater than the width
242    of the fixed-point value (the sum of a possible sign bit, possible ibits,
243    and fbits).
244    Return true, if !SAT_P and overflow.  */
245 
246 static bool
247 fixed_saturate2 (machine_mode mode, double_int a_high, double_int a_low,
248 		 double_int *f, bool sat_p)
249 {
250   bool overflow_p = false;
251   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
252   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
253 
254   if (unsigned_p) /* Unsigned type.  */
255     {
256       double_int max_r, max_s;
257       max_r.high = 0;
258       max_r.low = 0;
259       max_s.high = -1;
260       max_s.low = -1;
261       max_s = max_s.zext (i_f_bits);
262       if (a_high.ugt (max_r)
263 	  || (a_high == max_r &&
264 	      a_low.ugt (max_s)))
265 	{
266 	  if (sat_p)
267 	    *f = max_s;
268 	  else
269 	    overflow_p = true;
270 	}
271     }
272   else /* Signed type.  */
273     {
274       double_int max_r, max_s, min_r, min_s;
275       max_r.high = 0;
276       max_r.low = 0;
277       max_s.high = -1;
278       max_s.low = -1;
279       max_s = max_s.zext (i_f_bits);
280       min_r.high = -1;
281       min_r.low = -1;
282       min_s.high = 0;
283       min_s.low = 1;
284       min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
285       min_s = min_s.sext (1 + i_f_bits);
286       if (a_high.sgt (max_r)
287 	  || (a_high == max_r &&
288 	      a_low.ugt (max_s)))
289 	{
290 	  if (sat_p)
291 	    *f = max_s;
292 	  else
293 	    overflow_p = true;
294 	}
295       else if (a_high.slt (min_r)
296 	       || (a_high == min_r &&
297 		   a_low.ult (min_s)))
298 	{
299 	  if (sat_p)
300 	    *f = min_s;
301 	  else
302 	    overflow_p = true;
303 	}
304     }
305   return overflow_p;
306 }
307 
308 /* Return the sign bit based on I_F_BITS.  */
309 
310 static inline int
311 get_fixed_sign_bit (double_int a, int i_f_bits)
312 {
313   if (i_f_bits < HOST_BITS_PER_WIDE_INT)
314     return (a.low >> i_f_bits) & 1;
315   else
316     return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
317 }
318 
319 /* Calculate F = A + (SUBTRACT_P ? -B : B).
320    If SAT_P, saturate the result to the max or the min.
321    Return true, if !SAT_P and overflow.  */
322 
323 static bool
324 do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
325 	      const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
326 {
327   bool overflow_p = false;
328   bool unsigned_p;
329   double_int temp;
330   int i_f_bits;
331 
332   /* This was a conditional expression but it triggered a bug in
333      Sun C 5.5.  */
334   if (subtract_p)
335     temp = -b->data;
336   else
337     temp = b->data;
338 
339   unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
340   i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
341   f->mode = a->mode;
342   f->data = a->data + temp;
343   if (unsigned_p) /* Unsigned type.  */
344     {
345       if (subtract_p) /* Unsigned subtraction.  */
346 	{
347 	  if (a->data.ult (b->data))
348 	    {
349 	      if (sat_p)
350 		{
351 		  f->data.high = 0;
352 		  f->data.low = 0;
353 		 }
354 	      else
355 		overflow_p = true;
356 	    }
357 	}
358       else /* Unsigned addition.  */
359 	{
360 	  f->data = f->data.zext (i_f_bits);
361 	  if (f->data.ult (a->data)
362 	      || f->data.ult (b->data))
363 	    {
364 	      if (sat_p)
365 		{
366 		  f->data.high = -1;
367 		  f->data.low = -1;
368 		}
369 	      else
370 		overflow_p = true;
371 	    }
372 	}
373     }
374   else /* Signed type.  */
375     {
376       if ((!subtract_p
377 	   && (get_fixed_sign_bit (a->data, i_f_bits)
378 	       == get_fixed_sign_bit (b->data, i_f_bits))
379 	   && (get_fixed_sign_bit (a->data, i_f_bits)
380 	       != get_fixed_sign_bit (f->data, i_f_bits)))
381 	  || (subtract_p
382 	      && (get_fixed_sign_bit (a->data, i_f_bits)
383 		  != get_fixed_sign_bit (b->data, i_f_bits))
384 	      && (get_fixed_sign_bit (a->data, i_f_bits)
385 		  != get_fixed_sign_bit (f->data, i_f_bits))))
386 	{
387 	  if (sat_p)
388 	    {
389 	      f->data.low = 1;
390 	      f->data.high = 0;
391 	      f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
392 	      if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
393 		{
394 		  --f->data;
395 		}
396 	    }
397 	  else
398 	    overflow_p = true;
399 	}
400     }
401   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
402   return overflow_p;
403 }
404 
405 /* Calculate F = A * B.
406    If SAT_P, saturate the result to the max or the min.
407    Return true, if !SAT_P and overflow.  */
408 
409 static bool
410 do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
411 		   const FIXED_VALUE_TYPE *b, bool sat_p)
412 {
413   bool overflow_p = false;
414   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
415   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
416   f->mode = a->mode;
417   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
418     {
419       f->data = a->data * b->data;
420       f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
421 				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
422       overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
423     }
424   else
425     {
426       /* The result of multiplication expands to two double_int.  */
427       double_int a_high, a_low, b_high, b_low;
428       double_int high_high, high_low, low_high, low_low;
429       double_int r, s, temp1, temp2;
430       int carry = 0;
431 
432       /* Decompose a and b to four double_int.  */
433       a_high.low = a->data.high;
434       a_high.high = 0;
435       a_low.low = a->data.low;
436       a_low.high = 0;
437       b_high.low = b->data.high;
438       b_high.high = 0;
439       b_low.low = b->data.low;
440       b_low.high = 0;
441 
442       /* Perform four multiplications.  */
443       low_low = a_low * b_low;
444       low_high = a_low * b_high;
445       high_low = a_high * b_low;
446       high_high = a_high * b_high;
447 
448       /* Accumulate four results to {r, s}.  */
449       temp1.high = high_low.low;
450       temp1.low = 0;
451       s = low_low + temp1;
452       if (s.ult (low_low)
453 	  || s.ult (temp1))
454 	carry ++; /* Carry */
455       temp1.high = s.high;
456       temp1.low = s.low;
457       temp2.high = low_high.low;
458       temp2.low = 0;
459       s = temp1 + temp2;
460       if (s.ult (temp1)
461 	  || s.ult (temp2))
462 	carry ++; /* Carry */
463 
464       temp1.low = high_low.high;
465       temp1.high = 0;
466       r = high_high + temp1;
467       temp1.low = low_high.high;
468       temp1.high = 0;
469       r += temp1;
470       temp1.low = carry;
471       temp1.high = 0;
472       r += temp1;
473 
474       /* We need to subtract b from r, if a < 0.  */
475       if (!unsigned_p && a->data.high < 0)
476 	r -= b->data;
477       /* We need to subtract a from r, if b < 0.  */
478       if (!unsigned_p && b->data.high < 0)
479 	r -= a->data;
480 
481       /* Shift right the result by FBIT.  */
482       if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
483 	{
484 	  s.low = r.low;
485 	  s.high = r.high;
486 	  if (unsigned_p)
487 	    {
488 	      r.low = 0;
489 	      r.high = 0;
490 	    }
491 	  else
492 	    {
493 	      r.low = -1;
494 	      r.high = -1;
495 	    }
496 	  f->data.low = s.low;
497 	  f->data.high = s.high;
498 	}
499       else
500 	{
501 	  s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT);
502 	  f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT
503 			  - GET_MODE_FBIT (f->mode)),
504 			 HOST_BITS_PER_DOUBLE_INT);
505 	  f->data.low = f->data.low | s.low;
506 	  f->data.high = f->data.high | s.high;
507 	  s.low = f->data.low;
508 	  s.high = f->data.high;
509 	  r = r.lshift (-GET_MODE_FBIT (f->mode),
510 			HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
511 	}
512 
513       overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
514     }
515 
516   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
517   return overflow_p;
518 }
519 
520 /* Calculate F = A / B.
521    If SAT_P, saturate the result to the max or the min.
522    Return true, if !SAT_P and overflow.  */
523 
524 static bool
525 do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
526 		 const FIXED_VALUE_TYPE *b, bool sat_p)
527 {
528   bool overflow_p = false;
529   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
530   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
531   f->mode = a->mode;
532   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
533     {
534       f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
535 				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
536       f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
537       overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
538     }
539   else
540     {
541       double_int pos_a, pos_b, r, s;
542       double_int quo_r, quo_s, mod, temp;
543       int num_of_neg = 0;
544       int i;
545 
546       /* If a < 0, negate a.  */
547       if (!unsigned_p && a->data.high < 0)
548 	{
549 	  pos_a = -a->data;
550 	  num_of_neg ++;
551 	}
552       else
553 	pos_a = a->data;
554 
555       /* If b < 0, negate b.  */
556       if (!unsigned_p && b->data.high < 0)
557 	{
558 	  pos_b = -b->data;
559 	  num_of_neg ++;
560 	}
561       else
562 	pos_b = b->data;
563 
564       /* Left shift pos_a to {r, s} by FBIT.  */
565       if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
566 	{
567 	  r = pos_a;
568 	  s.high = 0;
569 	  s.low = 0;
570 	}
571       else
572  	{
573 	  s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT);
574 	  r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT
575 			    - GET_MODE_FBIT (f->mode)),
576 			 HOST_BITS_PER_DOUBLE_INT);
577  	}
578 
579       /* Divide r by pos_b to quo_r.  The remainder is in mod.  */
580       quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod);
581       quo_s = double_int_zero;
582 
583       for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++)
584 	{
585 	  /* Record the leftmost bit of mod.  */
586 	  int leftmost_mod = (mod.high < 0);
587 
588 	  /* Shift left mod by 1 bit.  */
589 	  mod = mod.lshift (1);
590 
591 	  /* Test the leftmost bit of s to add to mod.  */
592 	  if (s.high < 0)
593 	    mod.low += 1;
594 
595 	  /* Shift left quo_s by 1 bit.  */
596 	  quo_s = quo_s.lshift (1);
597 
598 	  /* Try to calculate (mod - pos_b).  */
599 	  temp = mod - pos_b;
600 
601 	  if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1)
602 	    {
603 	      quo_s.low += 1;
604 	      mod = temp;
605 	    }
606 
607 	  /* Shift left s by 1 bit.  */
608 	  s = s.lshift (1);
609 
610 	}
611 
612       if (num_of_neg == 1)
613 	{
614 	  quo_s = -quo_s;
615 	  if (quo_s.high == 0 && quo_s.low == 0)
616 	    quo_r = -quo_r;
617 	  else
618 	    {
619 	      quo_r.low = ~quo_r.low;
620 	      quo_r.high = ~quo_r.high;
621 	    }
622 	}
623 
624       f->data = quo_s;
625       overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
626     }
627 
628   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
629   return overflow_p;
630 }
631 
632 /* Calculate F = A << B if LEFT_P.  Otherwise, F = A >> B.
633    If SAT_P, saturate the result to the max or the min.
634    Return true, if !SAT_P and overflow.  */
635 
636 static bool
637 do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
638 	      const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
639 {
640   bool overflow_p = false;
641   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
642   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
643   f->mode = a->mode;
644 
645   if (b->data.low == 0)
646     {
647       f->data = a->data;
648       return overflow_p;
649     }
650 
651   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
652     {
653       f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
654 				HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
655       if (left_p) /* Only left shift saturates.  */
656 	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
657     }
658   else /* We need two double_int to store the left-shift result.  */
659     {
660       double_int temp_high, temp_low;
661       if (b->data.low == HOST_BITS_PER_DOUBLE_INT)
662 	{
663 	  temp_high = a->data;
664 	  temp_low.high = 0;
665 	  temp_low.low = 0;
666 	}
667       else
668 	{
669 	  temp_low = a->data.lshift (b->data.low,
670 				     HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
671 	  /* Logical shift right to temp_high.  */
672 	  temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
673 			 HOST_BITS_PER_DOUBLE_INT);
674 	}
675       if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high.  */
676 	temp_high = temp_high.ext (b->data.low, unsigned_p);
677       f->data = temp_low;
678       overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
679 				    sat_p);
680     }
681   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
682   return overflow_p;
683 }
684 
685 /* Calculate F = -A.
686    If SAT_P, saturate the result to the max or the min.
687    Return true, if !SAT_P and overflow.  */
688 
689 static bool
690 do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
691 {
692   bool overflow_p = false;
693   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
694   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
695   f->mode = a->mode;
696   f->data = -a->data;
697   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
698 
699   if (unsigned_p) /* Unsigned type.  */
700     {
701       if (f->data.low != 0 || f->data.high != 0)
702 	{
703 	  if (sat_p)
704 	    {
705 	      f->data.low = 0;
706 	      f->data.high = 0;
707 	    }
708 	  else
709 	    overflow_p = true;
710 	}
711     }
712   else /* Signed type.  */
713     {
714       if (!(f->data.high == 0 && f->data.low == 0)
715 	  && f->data.high == a->data.high && f->data.low == a->data.low )
716 	{
717 	  if (sat_p)
718 	    {
719 	      /* Saturate to the maximum by subtracting f->data by one.  */
720 	      f->data.low = -1;
721 	      f->data.high = -1;
722 	      f->data = f->data.zext (i_f_bits);
723 	    }
724 	  else
725 	    overflow_p = true;
726 	}
727     }
728   return overflow_p;
729 }
730 
731 /* Perform the binary or unary operation described by CODE.
732    Note that OP0 and OP1 must have the same mode for binary operators.
733    For a unary operation, leave OP1 NULL.
734    Return true, if !SAT_P and overflow.  */
735 
736 bool
737 fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
738 		  const FIXED_VALUE_TYPE *op1, bool sat_p)
739 {
740   switch (icode)
741     {
742     case NEGATE_EXPR:
743       return do_fixed_neg (f, op0, sat_p);
744       break;
745 
746     case PLUS_EXPR:
747       gcc_assert (op0->mode == op1->mode);
748       return do_fixed_add (f, op0, op1, false, sat_p);
749       break;
750 
751     case MINUS_EXPR:
752       gcc_assert (op0->mode == op1->mode);
753       return do_fixed_add (f, op0, op1, true, sat_p);
754       break;
755 
756     case MULT_EXPR:
757       gcc_assert (op0->mode == op1->mode);
758       return do_fixed_multiply (f, op0, op1, sat_p);
759       break;
760 
761     case TRUNC_DIV_EXPR:
762       gcc_assert (op0->mode == op1->mode);
763       return do_fixed_divide (f, op0, op1, sat_p);
764       break;
765 
766     case LSHIFT_EXPR:
767       return do_fixed_shift (f, op0, op1, true, sat_p);
768       break;
769 
770     case RSHIFT_EXPR:
771       return do_fixed_shift (f, op0, op1, false, sat_p);
772       break;
773 
774     default:
775       gcc_unreachable ();
776     }
777   return false;
778 }
779 
780 /* Compare fixed-point values by tree_code.
781    Note that OP0 and OP1 must have the same mode.  */
782 
783 bool
784 fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
785 	       const FIXED_VALUE_TYPE *op1)
786 {
787   enum tree_code code = (enum tree_code) icode;
788   gcc_assert (op0->mode == op1->mode);
789 
790   switch (code)
791     {
792     case NE_EXPR:
793       return op0->data != op1->data;
794 
795     case EQ_EXPR:
796       return op0->data == op1->data;
797 
798     case LT_EXPR:
799       return op0->data.cmp (op1->data,
800 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
801 
802     case LE_EXPR:
803       return op0->data.cmp (op1->data,
804 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
805 
806     case GT_EXPR:
807       return op0->data.cmp (op1->data,
808 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
809 
810     case GE_EXPR:
811       return op0->data.cmp (op1->data,
812 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
813 
814     default:
815       gcc_unreachable ();
816     }
817 }
818 
819 /* Extend or truncate to a new mode.
820    If SAT_P, saturate the result to the max or the min.
821    Return true, if !SAT_P and overflow.  */
822 
823 bool
824 fixed_convert (FIXED_VALUE_TYPE *f, machine_mode mode,
825                const FIXED_VALUE_TYPE *a, bool sat_p)
826 {
827   bool overflow_p = false;
828   if (mode == a->mode)
829     {
830       *f = *a;
831       return overflow_p;
832     }
833 
834   if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
835     {
836       /* Left shift a to temp_high, temp_low based on a->mode.  */
837       double_int temp_high, temp_low;
838       int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
839       temp_low = a->data.lshift (amount,
840 				 HOST_BITS_PER_DOUBLE_INT,
841 				 SIGNED_FIXED_POINT_MODE_P (a->mode));
842       /* Logical shift right to temp_high.  */
843       temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
844 		     HOST_BITS_PER_DOUBLE_INT);
845       if (SIGNED_FIXED_POINT_MODE_P (a->mode)
846 	  && a->data.high < 0) /* Signed-extend temp_high.  */
847 	temp_high = temp_high.sext (amount);
848       f->mode = mode;
849       f->data = temp_low;
850       if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
851 	  SIGNED_FIXED_POINT_MODE_P (f->mode))
852 	overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
853 				      sat_p);
854       else
855 	{
856 	  /* Take care of the cases when converting between signed and
857 	     unsigned.  */
858 	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
859 	    {
860 	      /* Signed -> Unsigned.  */
861 	      if (a->data.high < 0)
862 		{
863 		  if (sat_p)
864 		    {
865 		      f->data.low = 0;  /* Set to zero.  */
866 		      f->data.high = 0;  /* Set to zero.  */
867 		    }
868 		  else
869 		    overflow_p = true;
870 		}
871 	      else
872 		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
873 					      &f->data, sat_p);
874 	    }
875 	  else
876 	    {
877 	      /* Unsigned -> Signed.  */
878 	      if (temp_high.high < 0)
879 		{
880 		  if (sat_p)
881 		    {
882 		      /* Set to maximum.  */
883 		      f->data.low = -1;  /* Set to all ones.  */
884 		      f->data.high = -1;  /* Set to all ones.  */
885 		      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
886 						+ GET_MODE_IBIT (f->mode));
887 						/* Clear the sign.  */
888 		    }
889 		  else
890 		    overflow_p = true;
891 		}
892 	      else
893 		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
894 					      &f->data, sat_p);
895 	    }
896 	}
897     }
898   else
899     {
900       /* Right shift a to temp based on a->mode.  */
901       double_int temp;
902       temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
903 			     HOST_BITS_PER_DOUBLE_INT,
904 			     SIGNED_FIXED_POINT_MODE_P (a->mode));
905       f->mode = mode;
906       f->data = temp;
907       if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
908 	  SIGNED_FIXED_POINT_MODE_P (f->mode))
909 	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
910       else
911 	{
912 	  /* Take care of the cases when converting between signed and
913 	     unsigned.  */
914 	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
915 	    {
916 	      /* Signed -> Unsigned.  */
917 	      if (a->data.high < 0)
918 		{
919 		  if (sat_p)
920 		    {
921 		      f->data.low = 0;  /* Set to zero.  */
922 		      f->data.high = 0;  /* Set to zero.  */
923 		    }
924 		  else
925 		    overflow_p = true;
926 		}
927 	      else
928 		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
929 					      sat_p);
930 	    }
931 	  else
932 	    {
933 	      /* Unsigned -> Signed.  */
934 	      if (temp.high < 0)
935 		{
936 		  if (sat_p)
937 		    {
938 		      /* Set to maximum.  */
939 		      f->data.low = -1;  /* Set to all ones.  */
940 		      f->data.high = -1;  /* Set to all ones.  */
941 		      f->data = f->data.zext (GET_MODE_FBIT (f->mode)
942 						+ GET_MODE_IBIT (f->mode));
943 						/* Clear the sign.  */
944 		    }
945 		  else
946 		    overflow_p = true;
947 		}
948 	      else
949 		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
950 					      sat_p);
951 	    }
952 	}
953     }
954 
955   f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
956 			    + GET_MODE_FBIT (f->mode)
957 			    + GET_MODE_IBIT (f->mode),
958 			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
959   return overflow_p;
960 }
961 
962 /* Convert to a new fixed-point mode from an integer.
963    If UNSIGNED_P, this integer is unsigned.
964    If SAT_P, saturate the result to the max or the min.
965    Return true, if !SAT_P and overflow.  */
966 
967 bool
968 fixed_convert_from_int (FIXED_VALUE_TYPE *f, machine_mode mode,
969 			double_int a, bool unsigned_p, bool sat_p)
970 {
971   bool overflow_p = false;
972   /* Left shift a to temp_high, temp_low.  */
973   double_int temp_high, temp_low;
974   int amount = GET_MODE_FBIT (mode);
975   if (amount == HOST_BITS_PER_DOUBLE_INT)
976     {
977        temp_high = a;
978        temp_low.low = 0;
979        temp_low.high = 0;
980     }
981   else
982     {
983       temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT);
984 
985       /* Logical shift right to temp_high.  */
986       temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
987 		     HOST_BITS_PER_DOUBLE_INT);
988     }
989   if (!unsigned_p && a.high < 0) /* Signed-extend temp_high.  */
990     temp_high = temp_high.sext (amount);
991 
992   f->mode = mode;
993   f->data = temp_low;
994 
995   if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
996     overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
997 				  sat_p);
998   else
999     {
1000       /* Take care of the cases when converting between signed and unsigned.  */
1001       if (!unsigned_p)
1002 	{
1003 	  /* Signed -> Unsigned.  */
1004 	  if (a.high < 0)
1005 	    {
1006 	      if (sat_p)
1007 		{
1008 		  f->data.low = 0;  /* Set to zero.  */
1009 		  f->data.high = 0;  /* Set to zero.  */
1010 		}
1011 	      else
1012 		overflow_p = true;
1013 	    }
1014 	  else
1015 	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1016 					  &f->data, sat_p);
1017 	}
1018       else
1019 	{
1020 	  /* Unsigned -> Signed.  */
1021 	  if (temp_high.high < 0)
1022 	    {
1023 	      if (sat_p)
1024 		{
1025 		  /* Set to maximum.  */
1026 		  f->data.low = -1;  /* Set to all ones.  */
1027 		  f->data.high = -1;  /* Set to all ones.  */
1028 		  f->data = f->data.zext (GET_MODE_FBIT (f->mode)
1029 					    + GET_MODE_IBIT (f->mode));
1030 					    /* Clear the sign.  */
1031 		}
1032 	      else
1033 		overflow_p = true;
1034 	    }
1035 	  else
1036 	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1037 					  &f->data, sat_p);
1038 	}
1039     }
1040   f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
1041 			    + GET_MODE_FBIT (f->mode)
1042 			    + GET_MODE_IBIT (f->mode),
1043 			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1044   return overflow_p;
1045 }
1046 
1047 /* Convert to a new fixed-point mode from a real.
1048    If SAT_P, saturate the result to the max or the min.
1049    Return true, if !SAT_P and overflow.  */
1050 
1051 bool
1052 fixed_convert_from_real (FIXED_VALUE_TYPE *f, machine_mode mode,
1053 			 const REAL_VALUE_TYPE *a, bool sat_p)
1054 {
1055   bool overflow_p = false;
1056   REAL_VALUE_TYPE real_value, fixed_value, base_value;
1057   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
1058   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
1059   unsigned int fbit = GET_MODE_FBIT (mode);
1060   enum fixed_value_range_code temp;
1061   bool fail;
1062 
1063   real_value = *a;
1064   f->mode = mode;
1065   real_2expN (&base_value, fbit, mode);
1066   real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
1067 
1068   wide_int w = real_to_integer (&fixed_value, &fail,
1069 				GET_MODE_PRECISION (mode));
1070   f->data.low = w.elt (0);
1071   f->data.high = w.elt (1);
1072   temp = check_real_for_fixed_mode (&real_value, mode);
1073   if (temp == FIXED_UNDERFLOW) /* Minimum.  */
1074     {
1075       if (sat_p)
1076 	{
1077 	  if (unsigned_p)
1078 	    {
1079 	      f->data.low = 0;
1080 	      f->data.high = 0;
1081 	    }
1082 	  else
1083 	    {
1084 	      f->data.low = 1;
1085 	      f->data.high = 0;
1086 	      f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
1087 	      f->data = f->data.sext (1 + i_f_bits);
1088 	    }
1089 	}
1090       else
1091 	overflow_p = true;
1092     }
1093   else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum.  */
1094     {
1095       if (sat_p)
1096 	{
1097 	  f->data.low = -1;
1098 	  f->data.high = -1;
1099 	  f->data = f->data.zext (i_f_bits);
1100 	}
1101       else
1102 	overflow_p = true;
1103     }
1104   f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1105   return overflow_p;
1106 }
1107 
1108 /* Convert to a new real mode from a fixed-point.  */
1109 
1110 void
1111 real_convert_from_fixed (REAL_VALUE_TYPE *r, machine_mode mode,
1112 			 const FIXED_VALUE_TYPE *f)
1113 {
1114   REAL_VALUE_TYPE base_value, fixed_value, real_value;
1115 
1116   signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f->mode) ? UNSIGNED : SIGNED;
1117   real_2expN (&base_value, GET_MODE_FBIT (f->mode), f->mode);
1118   real_from_integer (&fixed_value, VOIDmode,
1119 		     wide_int::from (f->data, GET_MODE_PRECISION (f->mode),
1120 				     sgn), sgn);
1121   real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
1122   real_convert (r, mode, &real_value);
1123 }
1124 
1125 /* Determine whether a fixed-point value F is negative.  */
1126 
1127 bool
1128 fixed_isneg (const FIXED_VALUE_TYPE *f)
1129 {
1130   if (SIGNED_FIXED_POINT_MODE_P (f->mode))
1131     {
1132       int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
1133       int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
1134       if (sign_bit == 1)
1135 	return true;
1136     }
1137 
1138   return false;
1139 }
1140