xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/fixed-value.c (revision 6cf6fe02a981b55727c49c3d37b0d8191a98c0ee)
1 /* Fixed-point arithmetic support.
2    Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "toplev.h"
26 #include "fixed-value.h"
27 
28 /* Compare two fixed objects for bitwise identity.  */
29 
30 bool
31 fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
32 {
33   return (a->mode == b->mode
34 	  && a->data.high == b->data.high
35 	  && a->data.low == b->data.low);
36 }
37 
38 /* Calculate a hash value.  */
39 
40 unsigned int
41 fixed_hash (const FIXED_VALUE_TYPE *f)
42 {
43   return (unsigned int) (f->data.low ^ f->data.high);
44 }
45 
46 /* Define the enum code for the range of the fixed-point value.  */
47 enum fixed_value_range_code {
48   FIXED_OK,		/* The value is within the range.  */
49   FIXED_UNDERFLOW,	/* The value is less than the minimum.  */
50   FIXED_GT_MAX_EPS,	/* The value is greater than the maximum, but not equal
51 			   to the maximum plus the epsilon.  */
52   FIXED_MAX_EPS		/* The value equals the maximum plus the epsilon.  */
53 };
54 
55 /* Check REAL_VALUE against the range of the fixed-point mode.
56    Return FIXED_OK, if it is within the range.
57           FIXED_UNDERFLOW, if it is less than the minimum.
58           FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
59 	    the maximum plus the epsilon.
60           FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon.  */
61 
62 static enum fixed_value_range_code
63 check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, enum machine_mode mode)
64 {
65   REAL_VALUE_TYPE max_value, min_value, epsilon_value;
66 
67   real_2expN (&max_value, GET_MODE_IBIT (mode), mode);
68   real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), mode);
69 
70   if (SIGNED_FIXED_POINT_MODE_P (mode))
71     min_value = REAL_VALUE_NEGATE (max_value);
72   else
73     real_from_string (&min_value, "0.0");
74 
75   if (real_compare (LT_EXPR, real_value, &min_value))
76     return FIXED_UNDERFLOW;
77   if (real_compare (EQ_EXPR, real_value, &max_value))
78     return FIXED_MAX_EPS;
79   real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
80   if (real_compare (GT_EXPR, real_value, &max_value))
81     return FIXED_GT_MAX_EPS;
82   return FIXED_OK;
83 }
84 
85 /* Initialize from a decimal or hexadecimal string.  */
86 
87 void
88 fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, enum machine_mode mode)
89 {
90   REAL_VALUE_TYPE real_value, fixed_value, base_value;
91   unsigned int fbit;
92   enum fixed_value_range_code temp;
93 
94   f->mode = mode;
95   fbit = GET_MODE_FBIT (mode);
96 
97   real_from_string (&real_value, str);
98   temp = check_real_for_fixed_mode (&real_value, f->mode);
99   /* We don't want to warn the case when the _Fract value is 1.0.  */
100   if (temp == FIXED_UNDERFLOW
101       || temp == FIXED_GT_MAX_EPS
102       || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
103     warning (OPT_Woverflow,
104 	     "large fixed-point constant implicitly truncated to fixed-point type");
105   real_2expN (&base_value, fbit, mode);
106   real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
107   real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high,
108 		    &fixed_value);
109 
110   if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
111     {
112       /* From the spec, we need to evaluate 1 to the maximal value.  */
113       f->data.low = -1;
114       f->data.high = -1;
115       f->data = double_int_ext (f->data,
116 				GET_MODE_FBIT (f->mode)
117 				+ GET_MODE_IBIT (f->mode), 1);
118     }
119   else
120     f->data = double_int_ext (f->data,
121 			      SIGNED_FIXED_POINT_MODE_P (f->mode)
122 			      + GET_MODE_FBIT (f->mode)
123 			      + GET_MODE_IBIT (f->mode),
124 			      UNSIGNED_FIXED_POINT_MODE_P (f->mode));
125 }
126 
127 /* Render F as a decimal floating point constant.  */
128 
129 void
130 fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
131 		  size_t buf_size)
132 {
133   REAL_VALUE_TYPE real_value, base_value, fixed_value;
134 
135   real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), f_orig->mode);
136   real_from_integer (&real_value, VOIDmode, f_orig->data.low, f_orig->data.high,
137 		     UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode));
138   real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
139   real_to_decimal (str, &fixed_value, buf_size, 0, 1);
140 }
141 
142 /* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
143    the machine mode MODE.
144    Do not modify *F otherwise.
145    This function assumes the width of double_int is greater than the width
146    of the fixed-point value (the sum of a possible sign bit, possible ibits,
147    and fbits).
148    Return true, if !SAT_P and overflow.  */
149 
150 static bool
151 fixed_saturate1 (enum machine_mode mode, double_int a, double_int *f,
152 		 bool sat_p)
153 {
154   bool overflow_p = false;
155   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
156   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
157 
158   if (unsigned_p) /* Unsigned type.  */
159     {
160       double_int max;
161       max.low = -1;
162       max.high = -1;
163       max = double_int_ext (max, i_f_bits, 1);
164       if (double_int_cmp (a, max, 1) == 1)
165 	{
166 	  if (sat_p)
167 	    *f = max;
168 	  else
169 	    overflow_p = true;
170 	}
171     }
172   else /* Signed type.  */
173     {
174       double_int max, min;
175       max.high = -1;
176       max.low = -1;
177       max = double_int_ext (max, i_f_bits, 1);
178       min.high = 0;
179       min.low = 1;
180       lshift_double (min.low, min.high, i_f_bits,
181 		     2 * HOST_BITS_PER_WIDE_INT,
182 		     &min.low, &min.high, 1);
183       min = double_int_ext (min, 1 + i_f_bits, 0);
184       if (double_int_cmp (a, max, 0) == 1)
185 	{
186 	  if (sat_p)
187 	    *f = max;
188 	  else
189 	    overflow_p = true;
190 	}
191       else if (double_int_cmp (a, min, 0) == -1)
192 	{
193 	  if (sat_p)
194 	    *f = min;
195 	  else
196 	    overflow_p = true;
197 	}
198     }
199   return overflow_p;
200 }
201 
202 /* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
203    save to *F based on the machine mode MODE.
204    Do not modify *F otherwise.
205    This function assumes the width of two double_int is greater than the width
206    of the fixed-point value (the sum of a possible sign bit, possible ibits,
207    and fbits).
208    Return true, if !SAT_P and overflow.  */
209 
210 static bool
211 fixed_saturate2 (enum machine_mode mode, double_int a_high, double_int a_low,
212 		 double_int *f, bool sat_p)
213 {
214   bool overflow_p = false;
215   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
216   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
217 
218   if (unsigned_p) /* Unsigned type.  */
219     {
220       double_int max_r, max_s;
221       max_r.high = 0;
222       max_r.low = 0;
223       max_s.high = -1;
224       max_s.low = -1;
225       max_s = double_int_ext (max_s, i_f_bits, 1);
226       if (double_int_cmp (a_high, max_r, 1) == 1
227 	  || (double_int_equal_p (a_high, max_r) &&
228 	      double_int_cmp (a_low, max_s, 1) == 1))
229 	{
230 	  if (sat_p)
231 	    *f = max_s;
232 	  else
233 	    overflow_p = true;
234 	}
235     }
236   else /* Signed type.  */
237     {
238       double_int max_r, max_s, min_r, min_s;
239       max_r.high = 0;
240       max_r.low = 0;
241       max_s.high = -1;
242       max_s.low = -1;
243       max_s = double_int_ext (max_s, i_f_bits, 1);
244       min_r.high = -1;
245       min_r.low = -1;
246       min_s.high = 0;
247       min_s.low = 1;
248       lshift_double (min_s.low, min_s.high, i_f_bits,
249 		     2 * HOST_BITS_PER_WIDE_INT,
250 		     &min_s.low, &min_s.high, 1);
251       min_s = double_int_ext (min_s, 1 + i_f_bits, 0);
252       if (double_int_cmp (a_high, max_r, 0) == 1
253 	  || (double_int_equal_p (a_high, max_r) &&
254 	      double_int_cmp (a_low, max_s, 1) == 1))
255 	{
256 	  if (sat_p)
257 	    *f = max_s;
258 	  else
259 	    overflow_p = true;
260 	}
261       else if (double_int_cmp (a_high, min_r, 0) == -1
262 	       || (double_int_equal_p (a_high, min_r) &&
263 		   double_int_cmp (a_low, min_s, 1) == -1))
264 	{
265 	  if (sat_p)
266 	    *f = min_s;
267 	  else
268 	    overflow_p = true;
269 	}
270     }
271   return overflow_p;
272 }
273 
274 /* Return the sign bit based on I_F_BITS.  */
275 
276 static inline int
277 get_fixed_sign_bit (double_int a, int i_f_bits)
278 {
279   if (i_f_bits < HOST_BITS_PER_WIDE_INT)
280     return (a.low >> i_f_bits) & 1;
281   else
282     return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
283 }
284 
285 /* Calculate F = A + (SUBTRACT_P ? -B : B).
286    If SAT_P, saturate the result to the max or the min.
287    Return true, if !SAT_P and overflow.  */
288 
289 static bool
290 do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
291 	      const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
292 {
293   bool overflow_p = false;
294   bool unsigned_p;
295   double_int temp;
296   int i_f_bits;
297 
298   /* This was a conditional expression but it triggered a bug in
299      Sun C 5.5.  */
300   if (subtract_p)
301     temp = double_int_neg (b->data);
302   else
303     temp = b->data;
304 
305   unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
306   i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
307   f->mode = a->mode;
308   f->data = double_int_add (a->data, temp);
309   if (unsigned_p) /* Unsigned type.  */
310     {
311       if (subtract_p) /* Unsigned subtraction.  */
312 	{
313 	  if (double_int_cmp (a->data, b->data, 1) == -1)
314 	    {
315 	      if (sat_p)
316 		{
317 		  f->data.high = 0;
318 		  f->data.low = 0;
319 		 }
320 	      else
321 		overflow_p = true;
322 	    }
323 	}
324       else /* Unsigned addition.  */
325 	{
326 	  f->data = double_int_ext (f->data, i_f_bits, 1);
327 	  if (double_int_cmp (f->data, a->data, 1) == -1
328 	      || double_int_cmp (f->data, b->data, 1) == -1)
329 	    {
330 	      if (sat_p)
331 		{
332 		  f->data.high = -1;
333 		  f->data.low = -1;
334 		}
335 	      else
336 		overflow_p = true;
337 	    }
338 	}
339     }
340   else /* Signed type.  */
341     {
342       if ((!subtract_p
343 	   && (get_fixed_sign_bit (a->data, i_f_bits)
344 	       == get_fixed_sign_bit (b->data, i_f_bits))
345 	   && (get_fixed_sign_bit (a->data, i_f_bits)
346 	       != get_fixed_sign_bit (f->data, i_f_bits)))
347 	  || (subtract_p
348 	      && (get_fixed_sign_bit (a->data, i_f_bits)
349 		  != get_fixed_sign_bit (b->data, i_f_bits))
350 	      && (get_fixed_sign_bit (a->data, i_f_bits)
351 		  != get_fixed_sign_bit (f->data, i_f_bits))))
352 	{
353 	  if (sat_p)
354 	    {
355 	      f->data.low = 1;
356 	      f->data.high = 0;
357 	      lshift_double (f->data.low, f->data.high, i_f_bits,
358 			     2 * HOST_BITS_PER_WIDE_INT,
359 			     &f->data.low, &f->data.high, 1);
360 	      if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
361 		{
362 		  double_int one;
363 		  one.low = 1;
364 		  one.high = 0;
365 		  f->data = double_int_add (f->data, double_int_neg (one));
366 		}
367 	    }
368 	  else
369 	    overflow_p = true;
370 	}
371     }
372   f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
373   return overflow_p;
374 }
375 
376 /* Calculate F = A * B.
377    If SAT_P, saturate the result to the max or the min.
378    Return true, if !SAT_P and overflow.  */
379 
380 static bool
381 do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
382 		   const FIXED_VALUE_TYPE *b, bool sat_p)
383 {
384   bool overflow_p = false;
385   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
386   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
387   f->mode = a->mode;
388   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
389     {
390       f->data = double_int_mul (a->data, b->data);
391       lshift_double (f->data.low, f->data.high,
392 		     (-GET_MODE_FBIT (f->mode)),
393 		     2 * HOST_BITS_PER_WIDE_INT,
394 		     &f->data.low, &f->data.high, !unsigned_p);
395       overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
396     }
397   else
398     {
399       /* The result of multiplication expands to two double_int.  */
400       double_int a_high, a_low, b_high, b_low;
401       double_int high_high, high_low, low_high, low_low;
402       double_int r, s, temp1, temp2;
403       int carry = 0;
404 
405       /* Decompose a and b to four double_int.  */
406       a_high.low = a->data.high;
407       a_high.high = 0;
408       a_low.low = a->data.low;
409       a_low.high = 0;
410       b_high.low = b->data.high;
411       b_high.high = 0;
412       b_low.low = b->data.low;
413       b_low.high = 0;
414 
415       /* Perform four multiplications.  */
416       low_low = double_int_mul (a_low, b_low);
417       low_high = double_int_mul (a_low, b_high);
418       high_low = double_int_mul (a_high, b_low);
419       high_high = double_int_mul (a_high, b_high);
420 
421       /* Accumulate four results to {r, s}.  */
422       temp1.high = high_low.low;
423       temp1.low = 0;
424       s = double_int_add (low_low, temp1);
425       if (double_int_cmp (s, low_low, 1) == -1
426 	  || double_int_cmp (s, temp1, 1) == -1)
427 	carry ++; /* Carry */
428       temp1.high = s.high;
429       temp1.low = s.low;
430       temp2.high = low_high.low;
431       temp2.low = 0;
432       s = double_int_add (temp1, temp2);
433       if (double_int_cmp (s, temp1, 1) == -1
434 	  || double_int_cmp (s, temp2, 1) == -1)
435 	carry ++; /* Carry */
436 
437       temp1.low = high_low.high;
438       temp1.high = 0;
439       r = double_int_add (high_high, temp1);
440       temp1.low = low_high.high;
441       temp1.high = 0;
442       r = double_int_add (r, temp1);
443       temp1.low = carry;
444       temp1.high = 0;
445       r = double_int_add (r, temp1);
446 
447       /* We need to add neg(b) to r, if a < 0.  */
448       if (!unsigned_p && a->data.high < 0)
449 	r = double_int_add (r, double_int_neg (b->data));
450       /* We need to add neg(a) to r, if b < 0.  */
451       if (!unsigned_p && b->data.high < 0)
452 	r = double_int_add (r, double_int_neg (a->data));
453 
454       /* Shift right the result by FBIT.  */
455       if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT)
456 	{
457 	  s.low = r.low;
458 	  s.high = r.high;
459 	  if (unsigned_p)
460 	    {
461 	      r.low = 0;
462 	      r.high = 0;
463 	    }
464 	  else
465 	    {
466 	      r.low = -1;
467 	      r.high = -1;
468 	    }
469 	  f->data.low = s.low;
470 	  f->data.high = s.high;
471 	}
472       else
473 	{
474 	  lshift_double (s.low, s.high,
475 			 (-GET_MODE_FBIT (f->mode)),
476 			 2 * HOST_BITS_PER_WIDE_INT,
477 			 &s.low, &s.high, 0);
478 	  lshift_double (r.low, r.high,
479 			 (2 * HOST_BITS_PER_WIDE_INT
480 			  - GET_MODE_FBIT (f->mode)),
481 			 2 * HOST_BITS_PER_WIDE_INT,
482 			 &f->data.low, &f->data.high, 0);
483 	  f->data.low = f->data.low | s.low;
484 	  f->data.high = f->data.high | s.high;
485 	  s.low = f->data.low;
486 	  s.high = f->data.high;
487 	  lshift_double (r.low, r.high,
488 			 (-GET_MODE_FBIT (f->mode)),
489 			 2 * HOST_BITS_PER_WIDE_INT,
490 			 &r.low, &r.high, !unsigned_p);
491 	}
492 
493       overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
494     }
495 
496   f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
497   return overflow_p;
498 }
499 
500 /* Calculate F = A / B.
501    If SAT_P, saturate the result to the max or the min.
502    Return true, if !SAT_P and overflow.  */
503 
504 static bool
505 do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
506 		 const FIXED_VALUE_TYPE *b, bool sat_p)
507 {
508   bool overflow_p = false;
509   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
510   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
511   f->mode = a->mode;
512   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
513     {
514       lshift_double (a->data.low, a->data.high,
515 		     GET_MODE_FBIT (f->mode),
516 		     2 * HOST_BITS_PER_WIDE_INT,
517 		     &f->data.low, &f->data.high, !unsigned_p);
518       f->data = double_int_div (f->data, b->data, unsigned_p, TRUNC_DIV_EXPR);
519       overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
520     }
521   else
522     {
523       double_int pos_a, pos_b, r, s;
524       double_int quo_r, quo_s, mod, temp;
525       int num_of_neg = 0;
526       int i;
527 
528       /* If a < 0, negate a.  */
529       if (!unsigned_p && a->data.high < 0)
530 	{
531 	  pos_a = double_int_neg (a->data);
532 	  num_of_neg ++;
533 	}
534       else
535 	pos_a = a->data;
536 
537       /* If b < 0, negate b.  */
538       if (!unsigned_p && b->data.high < 0)
539 	{
540 	  pos_b = double_int_neg (b->data);
541 	  num_of_neg ++;
542 	}
543       else
544 	pos_b = b->data;
545 
546       /* Left shift pos_a to {r, s} by FBIT.  */
547       if (GET_MODE_FBIT (f->mode) == 2 * HOST_BITS_PER_WIDE_INT)
548 	{
549 	  r = pos_a;
550 	  s.high = 0;
551 	  s.low = 0;
552 	}
553       else
554  	{
555 	  lshift_double (pos_a.low, pos_a.high,
556 			 GET_MODE_FBIT (f->mode),
557 			 2 * HOST_BITS_PER_WIDE_INT,
558 			 &s.low, &s.high, 0);
559 	  lshift_double (pos_a.low, pos_a.high,
560 			 - (2 * HOST_BITS_PER_WIDE_INT
561 			    - GET_MODE_FBIT (f->mode)),
562 			 2 * HOST_BITS_PER_WIDE_INT,
563 			 &r.low, &r.high, 0);
564  	}
565 
566       /* Divide r by pos_b to quo_r.  The remainder is in mod.  */
567       div_and_round_double (TRUNC_DIV_EXPR, 1, r.low, r.high, pos_b.low,
568 			    pos_b.high, &quo_r.low, &quo_r.high, &mod.low,
569 			    &mod.high);
570 
571       quo_s.high = 0;
572       quo_s.low = 0;
573 
574       for (i = 0; i < 2 * HOST_BITS_PER_WIDE_INT; i++)
575 	{
576 	  /* Record the leftmost bit of mod.  */
577 	  int leftmost_mod = (mod.high < 0);
578 
579 	  /* Shift left mod by 1 bit.  */
580 	  lshift_double (mod.low, mod.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
581 			 &mod.low, &mod.high, 0);
582 
583 	  /* Test the leftmost bit of s to add to mod.  */
584 	  if (s.high < 0)
585 	    mod.low += 1;
586 
587 	  /* Shift left quo_s by 1 bit.  */
588 	  lshift_double (quo_s.low, quo_s.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
589 			 &quo_s.low, &quo_s.high, 0);
590 
591 	  /* Try to calculate (mod - pos_b).  */
592 	  temp = double_int_add (mod, double_int_neg (pos_b));
593 
594 	  if (leftmost_mod == 1 || double_int_cmp (mod, pos_b, 1) != -1)
595 	    {
596 	      quo_s.low += 1;
597 	      mod = temp;
598 	    }
599 
600 	  /* Shift left s by 1 bit.  */
601 	  lshift_double (s.low, s.high, 1, 2 * HOST_BITS_PER_WIDE_INT,
602 			 &s.low, &s.high, 0);
603 
604 	}
605 
606       if (num_of_neg == 1)
607 	{
608 	  quo_s = double_int_neg (quo_s);
609 	  if (quo_s.high == 0 && quo_s.low == 0)
610 	    quo_r = double_int_neg (quo_r);
611 	  else
612 	    {
613 	      quo_r.low = ~quo_r.low;
614 	      quo_r.high = ~quo_r.high;
615 	    }
616 	}
617 
618       f->data = quo_s;
619       overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
620     }
621 
622   f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
623   return overflow_p;
624 }
625 
626 /* Calculate F = A << B if LEFT_P.  Otherwise, F = A >> B.
627    If SAT_P, saturate the result to the max or the min.
628    Return true, if !SAT_P and overflow.  */
629 
630 static bool
631 do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
632 	      const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
633 {
634   bool overflow_p = false;
635   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
636   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
637   f->mode = a->mode;
638 
639   if (b->data.low == 0)
640     {
641       f->data = a->data;
642       return overflow_p;
643     }
644 
645   if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
646     {
647       lshift_double (a->data.low, a->data.high,
648 		     left_p ? b->data.low : (-b->data.low),
649 		     2 * HOST_BITS_PER_WIDE_INT,
650 		     &f->data.low, &f->data.high, !unsigned_p);
651       if (left_p) /* Only left shift saturates.  */
652 	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
653     }
654   else /* We need two double_int to store the left-shift result.  */
655     {
656       double_int temp_high, temp_low;
657       if (b->data.low == 2 * HOST_BITS_PER_WIDE_INT)
658 	{
659 	  temp_high = a->data;
660 	  temp_low.high = 0;
661 	  temp_low.low = 0;
662 	}
663       else
664 	{
665 	  lshift_double (a->data.low, a->data.high,
666 			 b->data.low,
667 			 2 * HOST_BITS_PER_WIDE_INT,
668 			 &temp_low.low, &temp_low.high, !unsigned_p);
669 	  /* Logical shift right to temp_high.  */
670 	  lshift_double (a->data.low, a->data.high,
671 			 b->data.low - 2 * HOST_BITS_PER_WIDE_INT,
672 			 2 * HOST_BITS_PER_WIDE_INT,
673 			 &temp_high.low, &temp_high.high, 0);
674 	}
675       if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high.  */
676 	temp_high = double_int_ext (temp_high, b->data.low, unsigned_p);
677       f->data = temp_low;
678       overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
679 				    sat_p);
680     }
681   f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
682   return overflow_p;
683 }
684 
685 /* Calculate F = -A.
686    If SAT_P, saturate the result to the max or the min.
687    Return true, if !SAT_P and overflow.  */
688 
689 static bool
690 do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
691 {
692   bool overflow_p = false;
693   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
694   int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
695   f->mode = a->mode;
696   f->data = double_int_neg (a->data);
697   f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
698 
699   if (unsigned_p) /* Unsigned type.  */
700     {
701       if (f->data.low != 0 || f->data.high != 0)
702 	{
703 	  if (sat_p)
704 	    {
705 	      f->data.low = 0;
706 	      f->data.high = 0;
707 	    }
708 	  else
709 	    overflow_p = true;
710 	}
711     }
712   else /* Signed type.  */
713     {
714       if (!(f->data.high == 0 && f->data.low == 0)
715 	  && f->data.high == a->data.high && f->data.low == a->data.low )
716 	{
717 	  if (sat_p)
718 	    {
719 	      /* Saturate to the maximum by subtracting f->data by one.  */
720 	      f->data.low = -1;
721 	      f->data.high = -1;
722 	      f->data = double_int_ext (f->data, i_f_bits, 1);
723 	    }
724 	  else
725 	    overflow_p = true;
726 	}
727     }
728   return overflow_p;
729 }
730 
731 /* Perform the binary or unary operation described by CODE.
732    Note that OP0 and OP1 must have the same mode for binary operators.
733    For a unary operation, leave OP1 NULL.
734    Return true, if !SAT_P and overflow.  */
735 
736 bool
737 fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
738 		  const FIXED_VALUE_TYPE *op1, bool sat_p)
739 {
740   switch (icode)
741     {
742     case NEGATE_EXPR:
743       return do_fixed_neg (f, op0, sat_p);
744       break;
745 
746     case PLUS_EXPR:
747       gcc_assert (op0->mode == op1->mode);
748       return do_fixed_add (f, op0, op1, false, sat_p);
749       break;
750 
751     case MINUS_EXPR:
752       gcc_assert (op0->mode == op1->mode);
753       return do_fixed_add (f, op0, op1, true, sat_p);
754       break;
755 
756     case MULT_EXPR:
757       gcc_assert (op0->mode == op1->mode);
758       return do_fixed_multiply (f, op0, op1, sat_p);
759       break;
760 
761     case TRUNC_DIV_EXPR:
762       gcc_assert (op0->mode == op1->mode);
763       return do_fixed_divide (f, op0, op1, sat_p);
764       break;
765 
766     case LSHIFT_EXPR:
767       return do_fixed_shift (f, op0, op1, true, sat_p);
768       break;
769 
770     case RSHIFT_EXPR:
771       return do_fixed_shift (f, op0, op1, false, sat_p);
772       break;
773 
774     default:
775       gcc_unreachable ();
776     }
777   return false;
778 }
779 
780 /* Compare fixed-point values by tree_code.
781    Note that OP0 and OP1 must have the same mode.  */
782 
783 bool
784 fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
785 	       const FIXED_VALUE_TYPE *op1)
786 {
787   enum tree_code code = (enum tree_code) icode;
788   gcc_assert (op0->mode == op1->mode);
789 
790   switch (code)
791     {
792     case NE_EXPR:
793       return !double_int_equal_p (op0->data, op1->data);
794 
795     case EQ_EXPR:
796       return double_int_equal_p (op0->data, op1->data);
797 
798     case LT_EXPR:
799       return double_int_cmp (op0->data, op1->data,
800 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
801 
802     case LE_EXPR:
803       return double_int_cmp (op0->data, op1->data,
804 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
805 
806     case GT_EXPR:
807       return double_int_cmp (op0->data, op1->data,
808 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
809 
810     case GE_EXPR:
811       return double_int_cmp (op0->data, op1->data,
812 			     UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
813 
814     default:
815       gcc_unreachable ();
816     }
817 }
818 
819 /* Extend or truncate to a new mode.
820    If SAT_P, saturate the result to the max or the min.
821    Return true, if !SAT_P and overflow.  */
822 
823 bool
824 fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
825                const FIXED_VALUE_TYPE *a, bool sat_p)
826 {
827   bool overflow_p = false;
828   if (mode == a->mode)
829     {
830       *f = *a;
831       return overflow_p;
832     }
833 
834   if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
835     {
836       /* Left shift a to temp_high, temp_low based on a->mode.  */
837       double_int temp_high, temp_low;
838       int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
839       lshift_double (a->data.low, a->data.high,
840 		     amount,
841 		     2 * HOST_BITS_PER_WIDE_INT,
842 		     &temp_low.low, &temp_low.high,
843 		     SIGNED_FIXED_POINT_MODE_P (a->mode));
844       /* Logical shift right to temp_high.  */
845       lshift_double (a->data.low, a->data.high,
846 		     amount - 2 * HOST_BITS_PER_WIDE_INT,
847 		     2 * HOST_BITS_PER_WIDE_INT,
848 		     &temp_high.low, &temp_high.high, 0);
849       if (SIGNED_FIXED_POINT_MODE_P (a->mode)
850 	  && a->data.high < 0) /* Signed-extend temp_high.  */
851 	temp_high = double_int_ext (temp_high, amount, 0);
852       f->mode = mode;
853       f->data = temp_low;
854       if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
855 	  SIGNED_FIXED_POINT_MODE_P (f->mode))
856 	overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
857 				      sat_p);
858       else
859 	{
860 	  /* Take care of the cases when converting between signed and
861 	     unsigned.  */
862 	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
863 	    {
864 	      /* Signed -> Unsigned.  */
865 	      if (a->data.high < 0)
866 		{
867 		  if (sat_p)
868 		    {
869 		      f->data.low = 0;  /* Set to zero.  */
870 		      f->data.high = 0;  /* Set to zero.  */
871 		    }
872 		  else
873 		    overflow_p = true;
874 		}
875 	      else
876 		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
877 					      &f->data, sat_p);
878 	    }
879 	  else
880 	    {
881 	      /* Unsigned -> Signed.  */
882 	      if (temp_high.high < 0)
883 		{
884 		  if (sat_p)
885 		    {
886 		      /* Set to maximum.  */
887 		      f->data.low = -1;  /* Set to all ones.  */
888 		      f->data.high = -1;  /* Set to all ones.  */
889 		      f->data = double_int_ext (f->data,
890 						GET_MODE_FBIT (f->mode)
891 						+ GET_MODE_IBIT (f->mode),
892 						1); /* Clear the sign.  */
893 		    }
894 		  else
895 		    overflow_p = true;
896 		}
897 	      else
898 		overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
899 					      &f->data, sat_p);
900 	    }
901 	}
902     }
903   else
904     {
905       /* Right shift a to temp based on a->mode.  */
906       double_int temp;
907       lshift_double (a->data.low, a->data.high,
908 		     GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
909 		     2 * HOST_BITS_PER_WIDE_INT,
910 		     &temp.low, &temp.high,
911 		     SIGNED_FIXED_POINT_MODE_P (a->mode));
912       f->mode = mode;
913       f->data = temp;
914       if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
915 	  SIGNED_FIXED_POINT_MODE_P (f->mode))
916 	overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
917       else
918 	{
919 	  /* Take care of the cases when converting between signed and
920 	     unsigned.  */
921 	  if (SIGNED_FIXED_POINT_MODE_P (a->mode))
922 	    {
923 	      /* Signed -> Unsigned.  */
924 	      if (a->data.high < 0)
925 		{
926 		  if (sat_p)
927 		    {
928 		      f->data.low = 0;  /* Set to zero.  */
929 		      f->data.high = 0;  /* Set to zero.  */
930 		    }
931 		  else
932 		    overflow_p = true;
933 		}
934 	      else
935 		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
936 					      sat_p);
937 	    }
938 	  else
939 	    {
940 	      /* Unsigned -> Signed.  */
941 	      if (temp.high < 0)
942 		{
943 		  if (sat_p)
944 		    {
945 		      /* Set to maximum.  */
946 		      f->data.low = -1;  /* Set to all ones.  */
947 		      f->data.high = -1;  /* Set to all ones.  */
948 		      f->data = double_int_ext (f->data,
949 						GET_MODE_FBIT (f->mode)
950 						+ GET_MODE_IBIT (f->mode),
951 						1); /* Clear the sign.  */
952 		    }
953 		  else
954 		    overflow_p = true;
955 		}
956 	      else
957 		overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
958 					      sat_p);
959 	    }
960 	}
961     }
962 
963   f->data = double_int_ext (f->data,
964 			    SIGNED_FIXED_POINT_MODE_P (f->mode)
965 			    + GET_MODE_FBIT (f->mode)
966 			    + GET_MODE_IBIT (f->mode),
967 			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
968   return overflow_p;
969 }
970 
971 /* Convert to a new fixed-point mode from an integer.
972    If UNSIGNED_P, this integer is unsigned.
973    If SAT_P, saturate the result to the max or the min.
974    Return true, if !SAT_P and overflow.  */
975 
976 bool
977 fixed_convert_from_int (FIXED_VALUE_TYPE *f, enum machine_mode mode,
978 			double_int a, bool unsigned_p, bool sat_p)
979 {
980   bool overflow_p = false;
981   /* Left shift a to temp_high, temp_low.  */
982   double_int temp_high, temp_low;
983   int amount = GET_MODE_FBIT (mode);
984   if (amount == 2 * HOST_BITS_PER_WIDE_INT)
985     {
986        temp_high = a;
987        temp_low.low = 0;
988        temp_low.high = 0;
989     }
990   else
991     {
992       lshift_double (a.low, a.high,
993 		     amount,
994 		     2 * HOST_BITS_PER_WIDE_INT,
995 		     &temp_low.low, &temp_low.high, 0);
996 
997       /* Logical shift right to temp_high.  */
998       lshift_double (a.low, a.high,
999 		     amount - 2 * HOST_BITS_PER_WIDE_INT,
1000 		     2 * HOST_BITS_PER_WIDE_INT,
1001 		     &temp_high.low, &temp_high.high, 0);
1002     }
1003   if (!unsigned_p && a.high < 0) /* Signed-extend temp_high.  */
1004     temp_high = double_int_ext (temp_high, amount, 0);
1005 
1006   f->mode = mode;
1007   f->data = temp_low;
1008 
1009   if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
1010     overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
1011 				  sat_p);
1012   else
1013     {
1014       /* Take care of the cases when converting between signed and unsigned.  */
1015       if (!unsigned_p)
1016 	{
1017 	  /* Signed -> Unsigned.  */
1018 	  if (a.high < 0)
1019 	    {
1020 	      if (sat_p)
1021 		{
1022 		  f->data.low = 0;  /* Set to zero.  */
1023 		  f->data.high = 0;  /* Set to zero.  */
1024 		}
1025 	      else
1026 		overflow_p = true;
1027 	    }
1028 	  else
1029 	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1030 					  &f->data, sat_p);
1031 	}
1032       else
1033 	{
1034 	  /* Unsigned -> Signed.  */
1035 	  if (temp_high.high < 0)
1036 	    {
1037 	      if (sat_p)
1038 		{
1039 		  /* Set to maximum.  */
1040 		  f->data.low = -1;  /* Set to all ones.  */
1041 		  f->data.high = -1;  /* Set to all ones.  */
1042 		  f->data = double_int_ext (f->data,
1043 					    GET_MODE_FBIT (f->mode)
1044 					    + GET_MODE_IBIT (f->mode),
1045 					    1); /* Clear the sign.  */
1046 		}
1047 	      else
1048 		overflow_p = true;
1049 	    }
1050 	  else
1051 	    overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1052 					  &f->data, sat_p);
1053 	}
1054     }
1055   f->data = double_int_ext (f->data,
1056 			    SIGNED_FIXED_POINT_MODE_P (f->mode)
1057 			    + GET_MODE_FBIT (f->mode)
1058 			    + GET_MODE_IBIT (f->mode),
1059 			    UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1060   return overflow_p;
1061 }
1062 
1063 /* Convert to a new fixed-point mode from a real.
1064    If SAT_P, saturate the result to the max or the min.
1065    Return true, if !SAT_P and overflow.  */
1066 
1067 bool
1068 fixed_convert_from_real (FIXED_VALUE_TYPE *f, enum machine_mode mode,
1069 			 const REAL_VALUE_TYPE *a, bool sat_p)
1070 {
1071   bool overflow_p = false;
1072   REAL_VALUE_TYPE real_value, fixed_value, base_value;
1073   bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
1074   int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
1075   unsigned int fbit = GET_MODE_FBIT (mode);
1076   enum fixed_value_range_code temp;
1077 
1078   real_value = *a;
1079   f->mode = mode;
1080   real_2expN (&base_value, fbit, mode);
1081   real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
1082   real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, &fixed_value);
1083   temp = check_real_for_fixed_mode (&real_value, mode);
1084   if (temp == FIXED_UNDERFLOW) /* Minimum.  */
1085     {
1086       if (sat_p)
1087 	{
1088 	  if (unsigned_p)
1089 	    {
1090 	      f->data.low = 0;
1091 	      f->data.high = 0;
1092 	    }
1093 	  else
1094 	    {
1095 	      f->data.low = 1;
1096 	      f->data.high = 0;
1097 	      lshift_double (f->data.low, f->data.high, i_f_bits,
1098 			     2 * HOST_BITS_PER_WIDE_INT,
1099 			     &f->data.low, &f->data.high, 1);
1100 	      f->data = double_int_ext (f->data, 1 + i_f_bits, 0);
1101 	    }
1102 	}
1103       else
1104 	overflow_p = true;
1105     }
1106   else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum.  */
1107     {
1108       if (sat_p)
1109 	{
1110 	  f->data.low = -1;
1111 	  f->data.high = -1;
1112 	  f->data = double_int_ext (f->data, i_f_bits, 1);
1113 	}
1114       else
1115 	overflow_p = true;
1116     }
1117   f->data = double_int_ext (f->data, (!unsigned_p) + i_f_bits, unsigned_p);
1118   return overflow_p;
1119 }
1120 
1121 /* Convert to a new real mode from a fixed-point.  */
1122 
1123 void
1124 real_convert_from_fixed (REAL_VALUE_TYPE *r, enum machine_mode mode,
1125 			 const FIXED_VALUE_TYPE *f)
1126 {
1127   REAL_VALUE_TYPE base_value, fixed_value, real_value;
1128 
1129   real_2expN (&base_value, GET_MODE_FBIT (f->mode), f->mode);
1130   real_from_integer (&fixed_value, VOIDmode, f->data.low, f->data.high,
1131 		     UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1132   real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
1133   real_convert (r, mode, &real_value);
1134 }
1135 
1136 /* Determine whether a fixed-point value F is negative.  */
1137 
1138 bool
1139 fixed_isneg (const FIXED_VALUE_TYPE *f)
1140 {
1141   if (SIGNED_FIXED_POINT_MODE_P (f->mode))
1142     {
1143       int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
1144       int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
1145       if (sign_bit == 1)
1146 	return true;
1147     }
1148 
1149   return false;
1150 }
1151