xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/final.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2    Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 /* This is the final pass of the compiler.
21    It looks at the rtl code for a function and outputs assembler code.
22 
23    Call `final_start_function' to output the assembler code for function entry,
24    `final' to output assembler code for some RTL code,
25    `final_end_function' to output assembler code for function exit.
26    If a function is compiled in several pieces, each piece is
27    output separately with `final'.
28 
29    Some optimizations are also done at this level.
30    Move instructions that were made unnecessary by good register allocation
31    are detected and omitted from the output.  (Though most of these
32    are removed by the last jump pass.)
33 
34    Instructions to set the condition codes are omitted when it can be
35    seen that the condition codes already had the desired values.
36 
37    In some cases it is sufficient if the inherited condition codes
38    have related values, but this may require the following insn
39    (the one that tests the condition codes) to be modified.
40 
41    The code for the function prologue and epilogue are generated
42    directly in assembler by the target functions function_prologue and
43    function_epilogue.  Those instructions never exist as rtl.  */
44 
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "hash-set.h"
50 #include "machmode.h"
51 #include "vec.h"
52 #include "double-int.h"
53 #include "input.h"
54 #include "alias.h"
55 #include "symtab.h"
56 #include "wide-int.h"
57 #include "inchash.h"
58 #include "tree.h"
59 #include "varasm.h"
60 #include "hard-reg-set.h"
61 #include "rtl.h"
62 #include "tm_p.h"
63 #include "regs.h"
64 #include "insn-config.h"
65 #include "insn-attr.h"
66 #include "recog.h"
67 #include "conditions.h"
68 #include "flags.h"
69 #include "output.h"
70 #include "except.h"
71 #include "function.h"
72 #include "rtl-error.h"
73 #include "toplev.h" /* exact_log2, floor_log2 */
74 #include "reload.h"
75 #include "intl.h"
76 #include "predict.h"
77 #include "dominance.h"
78 #include "cfg.h"
79 #include "cfgrtl.h"
80 #include "basic-block.h"
81 #include "target.h"
82 #include "targhooks.h"
83 #include "debug.h"
84 #include "hashtab.h"
85 #include "statistics.h"
86 #include "real.h"
87 #include "fixed-value.h"
88 #include "expmed.h"
89 #include "dojump.h"
90 #include "explow.h"
91 #include "calls.h"
92 #include "emit-rtl.h"
93 #include "stmt.h"
94 #include "expr.h"
95 #include "tree-pass.h"
96 #include "hash-map.h"
97 #include "is-a.h"
98 #include "plugin-api.h"
99 #include "ipa-ref.h"
100 #include "cgraph.h"
101 #include "tree-ssa.h"
102 #include "coverage.h"
103 #include "df.h"
104 #include "ggc.h"
105 #include "cfgloop.h"
106 #include "params.h"
107 #include "tree-pretty-print.h" /* for dump_function_header */
108 #include "asan.h"
109 #include "wide-int-print.h"
110 #include "rtl-iter.h"
111 
112 #ifdef XCOFF_DEBUGGING_INFO
113 #include "xcoffout.h"		/* Needed for external data
114 				   declarations for e.g. AIX 4.x.  */
115 #endif
116 
117 #include "dwarf2out.h"
118 
119 #ifdef DBX_DEBUGGING_INFO
120 #include "dbxout.h"
121 #endif
122 
123 #ifdef SDB_DEBUGGING_INFO
124 #include "sdbout.h"
125 #endif
126 
127 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
128    So define a null default for it to save conditionalization later.  */
129 #ifndef CC_STATUS_INIT
130 #define CC_STATUS_INIT
131 #endif
132 
133 /* Is the given character a logical line separator for the assembler?  */
134 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
135 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
136 #endif
137 
138 #ifndef JUMP_TABLES_IN_TEXT_SECTION
139 #define JUMP_TABLES_IN_TEXT_SECTION 0
140 #endif
141 
142 /* Bitflags used by final_scan_insn.  */
143 #define SEEN_NOTE	1
144 #define SEEN_EMITTED	2
145 
146 /* Last insn processed by final_scan_insn.  */
147 static rtx_insn *debug_insn;
148 rtx_insn *current_output_insn;
149 
150 /* Line number of last NOTE.  */
151 static int last_linenum;
152 
153 /* Last discriminator written to assembly.  */
154 static int last_discriminator;
155 
156 /* Discriminator of current block.  */
157 static int discriminator;
158 
159 /* Highest line number in current block.  */
160 static int high_block_linenum;
161 
162 /* Likewise for function.  */
163 static int high_function_linenum;
164 
165 /* Filename of last NOTE.  */
166 static const char *last_filename;
167 
168 /* Override filename and line number.  */
169 static const char *override_filename;
170 static int override_linenum;
171 
172 /* Whether to force emission of a line note before the next insn.  */
173 static bool force_source_line = false;
174 
175 extern const int length_unit_log; /* This is defined in insn-attrtab.c.  */
176 
177 /* Nonzero while outputting an `asm' with operands.
178    This means that inconsistencies are the user's fault, so don't die.
179    The precise value is the insn being output, to pass to error_for_asm.  */
180 const rtx_insn *this_is_asm_operands;
181 
182 /* Number of operands of this insn, for an `asm' with operands.  */
183 static unsigned int insn_noperands;
184 
185 /* Compare optimization flag.  */
186 
187 static rtx last_ignored_compare = 0;
188 
189 /* Assign a unique number to each insn that is output.
190    This can be used to generate unique local labels.  */
191 
192 static int insn_counter = 0;
193 
194 #ifdef HAVE_cc0
195 /* This variable contains machine-dependent flags (defined in tm.h)
196    set and examined by output routines
197    that describe how to interpret the condition codes properly.  */
198 
199 CC_STATUS cc_status;
200 
201 /* During output of an insn, this contains a copy of cc_status
202    from before the insn.  */
203 
204 CC_STATUS cc_prev_status;
205 #endif
206 
207 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen.  */
208 
209 static int block_depth;
210 
211 /* Nonzero if have enabled APP processing of our assembler output.  */
212 
213 static int app_on;
214 
215 /* If we are outputting an insn sequence, this contains the sequence rtx.
216    Zero otherwise.  */
217 
218 rtx_sequence *final_sequence;
219 
220 #ifdef ASSEMBLER_DIALECT
221 
222 /* Number of the assembler dialect to use, starting at 0.  */
223 static int dialect_number;
224 #endif
225 
226 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern.  */
227 rtx current_insn_predicate;
228 
229 /* True if printing into -fdump-final-insns= dump.  */
230 bool final_insns_dump_p;
231 
232 /* True if profile_function should be called, but hasn't been called yet.  */
233 static bool need_profile_function;
234 
235 static int asm_insn_count (rtx);
236 static void profile_function (FILE *);
237 static void profile_after_prologue (FILE *);
238 static bool notice_source_line (rtx_insn *, bool *);
239 static rtx walk_alter_subreg (rtx *, bool *);
240 static void output_asm_name (void);
241 static void output_alternate_entry_point (FILE *, rtx_insn *);
242 static tree get_mem_expr_from_op (rtx, int *);
243 static void output_asm_operand_names (rtx *, int *, int);
244 #ifdef LEAF_REGISTERS
245 static void leaf_renumber_regs (rtx_insn *);
246 #endif
247 #ifdef HAVE_cc0
248 static int alter_cond (rtx);
249 #endif
250 #ifndef ADDR_VEC_ALIGN
251 static int final_addr_vec_align (rtx);
252 #endif
253 static int align_fuzz (rtx, rtx, int, unsigned);
254 static void collect_fn_hard_reg_usage (void);
255 static tree get_call_fndecl (rtx_insn *);
256 
257 /* Initialize data in final at the beginning of a compilation.  */
258 
259 void
260 init_final (const char *filename ATTRIBUTE_UNUSED)
261 {
262   app_on = 0;
263   final_sequence = 0;
264 
265 #ifdef ASSEMBLER_DIALECT
266   dialect_number = ASSEMBLER_DIALECT;
267 #endif
268 }
269 
270 /* Default target function prologue and epilogue assembler output.
271 
272    If not overridden for epilogue code, then the function body itself
273    contains return instructions wherever needed.  */
274 void
275 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
276 			       HOST_WIDE_INT size ATTRIBUTE_UNUSED)
277 {
278 }
279 
280 void
281 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
282 					 tree decl ATTRIBUTE_UNUSED,
283 					 bool new_is_cold ATTRIBUTE_UNUSED)
284 {
285 }
286 
287 /* Default target hook that outputs nothing to a stream.  */
288 void
289 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
290 {
291 }
292 
293 /* Enable APP processing of subsequent output.
294    Used before the output from an `asm' statement.  */
295 
296 void
297 app_enable (void)
298 {
299   if (! app_on)
300     {
301       fputs (ASM_APP_ON, asm_out_file);
302       app_on = 1;
303     }
304 }
305 
306 /* Disable APP processing of subsequent output.
307    Called from varasm.c before most kinds of output.  */
308 
309 void
310 app_disable (void)
311 {
312   if (app_on)
313     {
314       fputs (ASM_APP_OFF, asm_out_file);
315       app_on = 0;
316     }
317 }
318 
319 /* Return the number of slots filled in the current
320    delayed branch sequence (we don't count the insn needing the
321    delay slot).   Zero if not in a delayed branch sequence.  */
322 
323 #ifdef DELAY_SLOTS
324 int
325 dbr_sequence_length (void)
326 {
327   if (final_sequence != 0)
328     return XVECLEN (final_sequence, 0) - 1;
329   else
330     return 0;
331 }
332 #endif
333 
334 /* The next two pages contain routines used to compute the length of an insn
335    and to shorten branches.  */
336 
337 /* Arrays for insn lengths, and addresses.  The latter is referenced by
338    `insn_current_length'.  */
339 
340 static int *insn_lengths;
341 
342 vec<int> insn_addresses_;
343 
344 /* Max uid for which the above arrays are valid.  */
345 static int insn_lengths_max_uid;
346 
347 /* Address of insn being processed.  Used by `insn_current_length'.  */
348 int insn_current_address;
349 
350 /* Address of insn being processed in previous iteration.  */
351 int insn_last_address;
352 
353 /* known invariant alignment of insn being processed.  */
354 int insn_current_align;
355 
356 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
357    gives the next following alignment insn that increases the known
358    alignment, or NULL_RTX if there is no such insn.
359    For any alignment obtained this way, we can again index uid_align with
360    its uid to obtain the next following align that in turn increases the
361    alignment, till we reach NULL_RTX; the sequence obtained this way
362    for each insn we'll call the alignment chain of this insn in the following
363    comments.  */
364 
365 struct label_alignment
366 {
367   short alignment;
368   short max_skip;
369 };
370 
371 static rtx *uid_align;
372 static int *uid_shuid;
373 static struct label_alignment *label_align;
374 
375 /* Indicate that branch shortening hasn't yet been done.  */
376 
377 void
378 init_insn_lengths (void)
379 {
380   if (uid_shuid)
381     {
382       free (uid_shuid);
383       uid_shuid = 0;
384     }
385   if (insn_lengths)
386     {
387       free (insn_lengths);
388       insn_lengths = 0;
389       insn_lengths_max_uid = 0;
390     }
391   if (HAVE_ATTR_length)
392     INSN_ADDRESSES_FREE ();
393   if (uid_align)
394     {
395       free (uid_align);
396       uid_align = 0;
397     }
398 }
399 
400 /* Obtain the current length of an insn.  If branch shortening has been done,
401    get its actual length.  Otherwise, use FALLBACK_FN to calculate the
402    length.  */
403 static int
404 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
405 {
406   rtx body;
407   int i;
408   int length = 0;
409 
410   if (!HAVE_ATTR_length)
411     return 0;
412 
413   if (insn_lengths_max_uid > INSN_UID (insn))
414     return insn_lengths[INSN_UID (insn)];
415   else
416     switch (GET_CODE (insn))
417       {
418       case NOTE:
419       case BARRIER:
420       case CODE_LABEL:
421       case DEBUG_INSN:
422 	return 0;
423 
424       case CALL_INSN:
425       case JUMP_INSN:
426 	length = fallback_fn (insn);
427 	break;
428 
429       case INSN:
430 	body = PATTERN (insn);
431 	if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
432 	  return 0;
433 
434 	else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
435 	  length = asm_insn_count (body) * fallback_fn (insn);
436 	else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
437 	  for (i = 0; i < seq->len (); i++)
438 	    length += get_attr_length_1 (seq->insn (i), fallback_fn);
439 	else
440 	  length = fallback_fn (insn);
441 	break;
442 
443       default:
444 	break;
445       }
446 
447 #ifdef ADJUST_INSN_LENGTH
448   ADJUST_INSN_LENGTH (insn, length);
449 #endif
450   return length;
451 }
452 
453 /* Obtain the current length of an insn.  If branch shortening has been done,
454    get its actual length.  Otherwise, get its maximum length.  */
455 int
456 get_attr_length (rtx_insn *insn)
457 {
458   return get_attr_length_1 (insn, insn_default_length);
459 }
460 
461 /* Obtain the current length of an insn.  If branch shortening has been done,
462    get its actual length.  Otherwise, get its minimum length.  */
463 int
464 get_attr_min_length (rtx_insn *insn)
465 {
466   return get_attr_length_1 (insn, insn_min_length);
467 }
468 
469 /* Code to handle alignment inside shorten_branches.  */
470 
471 /* Here is an explanation how the algorithm in align_fuzz can give
472    proper results:
473 
474    Call a sequence of instructions beginning with alignment point X
475    and continuing until the next alignment point `block X'.  When `X'
476    is used in an expression, it means the alignment value of the
477    alignment point.
478 
479    Call the distance between the start of the first insn of block X, and
480    the end of the last insn of block X `IX', for the `inner size of X'.
481    This is clearly the sum of the instruction lengths.
482 
483    Likewise with the next alignment-delimited block following X, which we
484    shall call block Y.
485 
486    Call the distance between the start of the first insn of block X, and
487    the start of the first insn of block Y `OX', for the `outer size of X'.
488 
489    The estimated padding is then OX - IX.
490 
491    OX can be safely estimated as
492 
493            if (X >= Y)
494                    OX = round_up(IX, Y)
495            else
496                    OX = round_up(IX, X) + Y - X
497 
498    Clearly est(IX) >= real(IX), because that only depends on the
499    instruction lengths, and those being overestimated is a given.
500 
501    Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
502    we needn't worry about that when thinking about OX.
503 
504    When X >= Y, the alignment provided by Y adds no uncertainty factor
505    for branch ranges starting before X, so we can just round what we have.
506    But when X < Y, we don't know anything about the, so to speak,
507    `middle bits', so we have to assume the worst when aligning up from an
508    address mod X to one mod Y, which is Y - X.  */
509 
510 #ifndef LABEL_ALIGN
511 #define LABEL_ALIGN(LABEL) align_labels_log
512 #endif
513 
514 #ifndef LOOP_ALIGN
515 #define LOOP_ALIGN(LABEL) align_loops_log
516 #endif
517 
518 #ifndef LABEL_ALIGN_AFTER_BARRIER
519 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
520 #endif
521 
522 #ifndef JUMP_ALIGN
523 #define JUMP_ALIGN(LABEL) align_jumps_log
524 #endif
525 
526 int
527 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
528 {
529   return 0;
530 }
531 
532 int
533 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
534 {
535   return align_loops_max_skip;
536 }
537 
538 int
539 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
540 {
541   return align_labels_max_skip;
542 }
543 
544 int
545 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
546 {
547   return align_jumps_max_skip;
548 }
549 
550 #ifndef ADDR_VEC_ALIGN
551 static int
552 final_addr_vec_align (rtx addr_vec)
553 {
554   int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
555 
556   if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
557     align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
558   return exact_log2 (align);
559 
560 }
561 
562 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
563 #endif
564 
565 #ifndef INSN_LENGTH_ALIGNMENT
566 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
567 #endif
568 
569 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
570 
571 static int min_labelno, max_labelno;
572 
573 #define LABEL_TO_ALIGNMENT(LABEL) \
574   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
575 
576 #define LABEL_TO_MAX_SKIP(LABEL) \
577   (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
578 
579 /* For the benefit of port specific code do this also as a function.  */
580 
581 int
582 label_to_alignment (rtx label)
583 {
584   if (CODE_LABEL_NUMBER (label) <= max_labelno)
585     return LABEL_TO_ALIGNMENT (label);
586   return 0;
587 }
588 
589 int
590 label_to_max_skip (rtx label)
591 {
592   if (CODE_LABEL_NUMBER (label) <= max_labelno)
593     return LABEL_TO_MAX_SKIP (label);
594   return 0;
595 }
596 
597 /* The differences in addresses
598    between a branch and its target might grow or shrink depending on
599    the alignment the start insn of the range (the branch for a forward
600    branch or the label for a backward branch) starts out on; if these
601    differences are used naively, they can even oscillate infinitely.
602    We therefore want to compute a 'worst case' address difference that
603    is independent of the alignment the start insn of the range end
604    up on, and that is at least as large as the actual difference.
605    The function align_fuzz calculates the amount we have to add to the
606    naively computed difference, by traversing the part of the alignment
607    chain of the start insn of the range that is in front of the end insn
608    of the range, and considering for each alignment the maximum amount
609    that it might contribute to a size increase.
610 
611    For casesi tables, we also want to know worst case minimum amounts of
612    address difference, in case a machine description wants to introduce
613    some common offset that is added to all offsets in a table.
614    For this purpose, align_fuzz with a growth argument of 0 computes the
615    appropriate adjustment.  */
616 
617 /* Compute the maximum delta by which the difference of the addresses of
618    START and END might grow / shrink due to a different address for start
619    which changes the size of alignment insns between START and END.
620    KNOWN_ALIGN_LOG is the alignment known for START.
621    GROWTH should be ~0 if the objective is to compute potential code size
622    increase, and 0 if the objective is to compute potential shrink.
623    The return value is undefined for any other value of GROWTH.  */
624 
625 static int
626 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
627 {
628   int uid = INSN_UID (start);
629   rtx align_label;
630   int known_align = 1 << known_align_log;
631   int end_shuid = INSN_SHUID (end);
632   int fuzz = 0;
633 
634   for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
635     {
636       int align_addr, new_align;
637 
638       uid = INSN_UID (align_label);
639       align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
640       if (uid_shuid[uid] > end_shuid)
641 	break;
642       known_align_log = LABEL_TO_ALIGNMENT (align_label);
643       new_align = 1 << known_align_log;
644       if (new_align < known_align)
645 	continue;
646       fuzz += (-align_addr ^ growth) & (new_align - known_align);
647       known_align = new_align;
648     }
649   return fuzz;
650 }
651 
652 /* Compute a worst-case reference address of a branch so that it
653    can be safely used in the presence of aligned labels.  Since the
654    size of the branch itself is unknown, the size of the branch is
655    not included in the range.  I.e. for a forward branch, the reference
656    address is the end address of the branch as known from the previous
657    branch shortening pass, minus a value to account for possible size
658    increase due to alignment.  For a backward branch, it is the start
659    address of the branch as known from the current pass, plus a value
660    to account for possible size increase due to alignment.
661    NB.: Therefore, the maximum offset allowed for backward branches needs
662    to exclude the branch size.  */
663 
664 int
665 insn_current_reference_address (rtx_insn *branch)
666 {
667   rtx dest, seq;
668   int seq_uid;
669 
670   if (! INSN_ADDRESSES_SET_P ())
671     return 0;
672 
673   seq = NEXT_INSN (PREV_INSN (branch));
674   seq_uid = INSN_UID (seq);
675   if (!JUMP_P (branch))
676     /* This can happen for example on the PA; the objective is to know the
677        offset to address something in front of the start of the function.
678        Thus, we can treat it like a backward branch.
679        We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
680        any alignment we'd encounter, so we skip the call to align_fuzz.  */
681     return insn_current_address;
682   dest = JUMP_LABEL (branch);
683 
684   /* BRANCH has no proper alignment chain set, so use SEQ.
685      BRANCH also has no INSN_SHUID.  */
686   if (INSN_SHUID (seq) < INSN_SHUID (dest))
687     {
688       /* Forward branch.  */
689       return (insn_last_address + insn_lengths[seq_uid]
690 	      - align_fuzz (seq, dest, length_unit_log, ~0));
691     }
692   else
693     {
694       /* Backward branch.  */
695       return (insn_current_address
696 	      + align_fuzz (dest, seq, length_unit_log, ~0));
697     }
698 }
699 
700 /* Compute branch alignments based on frequency information in the
701    CFG.  */
702 
703 unsigned int
704 compute_alignments (void)
705 {
706   int log, max_skip, max_log;
707   basic_block bb;
708   int freq_max = 0;
709   int freq_threshold = 0;
710 
711   if (label_align)
712     {
713       free (label_align);
714       label_align = 0;
715     }
716 
717   max_labelno = max_label_num ();
718   min_labelno = get_first_label_num ();
719   label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
720 
721   /* If not optimizing or optimizing for size, don't assign any alignments.  */
722   if (! optimize || optimize_function_for_size_p (cfun))
723     return 0;
724 
725   if (dump_file)
726     {
727       dump_reg_info (dump_file);
728       dump_flow_info (dump_file, TDF_DETAILS);
729       flow_loops_dump (dump_file, NULL, 1);
730     }
731   loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
732   FOR_EACH_BB_FN (bb, cfun)
733     if (bb->frequency > freq_max)
734       freq_max = bb->frequency;
735   freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
736 
737   if (dump_file)
738     fprintf (dump_file, "freq_max: %i\n",freq_max);
739   FOR_EACH_BB_FN (bb, cfun)
740     {
741       rtx_insn *label = BB_HEAD (bb);
742       int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
743       edge e;
744       edge_iterator ei;
745 
746       if (!LABEL_P (label)
747 	  || optimize_bb_for_size_p (bb))
748 	{
749 	  if (dump_file)
750 	    fprintf (dump_file,
751 		     "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
752 		     bb->index, bb->frequency, bb->loop_father->num,
753 		     bb_loop_depth (bb));
754 	  continue;
755 	}
756       max_log = LABEL_ALIGN (label);
757       max_skip = targetm.asm_out.label_align_max_skip (label);
758 
759       FOR_EACH_EDGE (e, ei, bb->preds)
760 	{
761 	  if (e->flags & EDGE_FALLTHRU)
762 	    has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
763 	  else
764 	    branch_frequency += EDGE_FREQUENCY (e);
765 	}
766       if (dump_file)
767 	{
768 	  fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
769 		   " %2i fall %4i branch %4i",
770 		   bb->index, bb->frequency, bb->loop_father->num,
771 		   bb_loop_depth (bb),
772 		   fallthru_frequency, branch_frequency);
773 	  if (!bb->loop_father->inner && bb->loop_father->num)
774 	    fprintf (dump_file, " inner_loop");
775 	  if (bb->loop_father->header == bb)
776 	    fprintf (dump_file, " loop_header");
777 	  fprintf (dump_file, "\n");
778 	}
779 
780       /* There are two purposes to align block with no fallthru incoming edge:
781 	 1) to avoid fetch stalls when branch destination is near cache boundary
782 	 2) to improve cache efficiency in case the previous block is not executed
783 	    (so it does not need to be in the cache).
784 
785 	 We to catch first case, we align frequently executed blocks.
786 	 To catch the second, we align blocks that are executed more frequently
787 	 than the predecessor and the predecessor is likely to not be executed
788 	 when function is called.  */
789 
790       if (!has_fallthru
791 	  && (branch_frequency > freq_threshold
792 	      || (bb->frequency > bb->prev_bb->frequency * 10
793 		  && (bb->prev_bb->frequency
794 		      <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
795 	{
796 	  log = JUMP_ALIGN (label);
797 	  if (dump_file)
798 	    fprintf (dump_file, "  jump alignment added.\n");
799 	  if (max_log < log)
800 	    {
801 	      max_log = log;
802 	      max_skip = targetm.asm_out.jump_align_max_skip (label);
803 	    }
804 	}
805       /* In case block is frequent and reached mostly by non-fallthru edge,
806 	 align it.  It is most likely a first block of loop.  */
807       if (has_fallthru
808 	  && !(single_succ_p (bb)
809 	       && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
810 	  && optimize_bb_for_speed_p (bb)
811 	  && branch_frequency + fallthru_frequency > freq_threshold
812 	  && (branch_frequency
813 	      > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
814 	{
815 	  log = LOOP_ALIGN (label);
816 	  if (dump_file)
817 	    fprintf (dump_file, "  internal loop alignment added.\n");
818 	  if (max_log < log)
819 	    {
820 	      max_log = log;
821 	      max_skip = targetm.asm_out.loop_align_max_skip (label);
822 	    }
823 	}
824       LABEL_TO_ALIGNMENT (label) = max_log;
825       LABEL_TO_MAX_SKIP (label) = max_skip;
826     }
827 
828   loop_optimizer_finalize ();
829   free_dominance_info (CDI_DOMINATORS);
830   return 0;
831 }
832 
833 /* Grow the LABEL_ALIGN array after new labels are created.  */
834 
835 static void
836 grow_label_align (void)
837 {
838   int old = max_labelno;
839   int n_labels;
840   int n_old_labels;
841 
842   max_labelno = max_label_num ();
843 
844   n_labels = max_labelno - min_labelno + 1;
845   n_old_labels = old - min_labelno + 1;
846 
847   label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
848 
849   /* Range of labels grows monotonically in the function.  Failing here
850      means that the initialization of array got lost.  */
851   gcc_assert (n_old_labels <= n_labels);
852 
853   memset (label_align + n_old_labels, 0,
854           (n_labels - n_old_labels) * sizeof (struct label_alignment));
855 }
856 
857 /* Update the already computed alignment information.  LABEL_PAIRS is a vector
858    made up of pairs of labels for which the alignment information of the first
859    element will be copied from that of the second element.  */
860 
861 void
862 update_alignments (vec<rtx> &label_pairs)
863 {
864   unsigned int i = 0;
865   rtx iter, label = NULL_RTX;
866 
867   if (max_labelno != max_label_num ())
868     grow_label_align ();
869 
870   FOR_EACH_VEC_ELT (label_pairs, i, iter)
871     if (i & 1)
872       {
873 	LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
874 	LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
875       }
876     else
877       label = iter;
878 }
879 
880 namespace {
881 
882 const pass_data pass_data_compute_alignments =
883 {
884   RTL_PASS, /* type */
885   "alignments", /* name */
886   OPTGROUP_NONE, /* optinfo_flags */
887   TV_NONE, /* tv_id */
888   0, /* properties_required */
889   0, /* properties_provided */
890   0, /* properties_destroyed */
891   0, /* todo_flags_start */
892   0, /* todo_flags_finish */
893 };
894 
895 class pass_compute_alignments : public rtl_opt_pass
896 {
897 public:
898   pass_compute_alignments (gcc::context *ctxt)
899     : rtl_opt_pass (pass_data_compute_alignments, ctxt)
900   {}
901 
902   /* opt_pass methods: */
903   virtual unsigned int execute (function *) { return compute_alignments (); }
904 
905 }; // class pass_compute_alignments
906 
907 } // anon namespace
908 
909 rtl_opt_pass *
910 make_pass_compute_alignments (gcc::context *ctxt)
911 {
912   return new pass_compute_alignments (ctxt);
913 }
914 
915 
916 /* Make a pass over all insns and compute their actual lengths by shortening
917    any branches of variable length if possible.  */
918 
919 /* shorten_branches might be called multiple times:  for example, the SH
920    port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
921    In order to do this, it needs proper length information, which it obtains
922    by calling shorten_branches.  This cannot be collapsed with
923    shorten_branches itself into a single pass unless we also want to integrate
924    reorg.c, since the branch splitting exposes new instructions with delay
925    slots.  */
926 
927 void
928 shorten_branches (rtx_insn *first)
929 {
930   rtx_insn *insn;
931   int max_uid;
932   int i;
933   int max_log;
934   int max_skip;
935 #define MAX_CODE_ALIGN 16
936   rtx_insn *seq;
937   int something_changed = 1;
938   char *varying_length;
939   rtx body;
940   int uid;
941   rtx align_tab[MAX_CODE_ALIGN];
942 
943   /* Compute maximum UID and allocate label_align / uid_shuid.  */
944   max_uid = get_max_uid ();
945 
946   /* Free uid_shuid before reallocating it.  */
947   free (uid_shuid);
948 
949   uid_shuid = XNEWVEC (int, max_uid);
950 
951   if (max_labelno != max_label_num ())
952     grow_label_align ();
953 
954   /* Initialize label_align and set up uid_shuid to be strictly
955      monotonically rising with insn order.  */
956   /* We use max_log here to keep track of the maximum alignment we want to
957      impose on the next CODE_LABEL (or the current one if we are processing
958      the CODE_LABEL itself).  */
959 
960   max_log = 0;
961   max_skip = 0;
962 
963   for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
964     {
965       int log;
966 
967       INSN_SHUID (insn) = i++;
968       if (INSN_P (insn))
969 	continue;
970 
971       if (LABEL_P (insn))
972 	{
973 	  rtx_insn *next;
974 	  bool next_is_jumptable;
975 
976 	  /* Merge in alignments computed by compute_alignments.  */
977 	  log = LABEL_TO_ALIGNMENT (insn);
978 	  if (max_log < log)
979 	    {
980 	      max_log = log;
981 	      max_skip = LABEL_TO_MAX_SKIP (insn);
982 	    }
983 
984 	  next = next_nonnote_insn (insn);
985 	  next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
986 	  if (!next_is_jumptable)
987 	    {
988 	      log = LABEL_ALIGN (insn);
989 	      if (max_log < log)
990 		{
991 		  max_log = log;
992 		  max_skip = targetm.asm_out.label_align_max_skip (insn);
993 		}
994 	    }
995 	  /* ADDR_VECs only take room if read-only data goes into the text
996 	     section.  */
997 	  if ((JUMP_TABLES_IN_TEXT_SECTION
998 	       || readonly_data_section == text_section)
999 	      && next_is_jumptable)
1000 	    {
1001 	      log = ADDR_VEC_ALIGN (next);
1002 	      if (max_log < log)
1003 		{
1004 		  max_log = log;
1005 		  max_skip = targetm.asm_out.label_align_max_skip (insn);
1006 		}
1007 	    }
1008 	  LABEL_TO_ALIGNMENT (insn) = max_log;
1009 	  LABEL_TO_MAX_SKIP (insn) = max_skip;
1010 	  max_log = 0;
1011 	  max_skip = 0;
1012 	}
1013       else if (BARRIER_P (insn))
1014 	{
1015 	  rtx_insn *label;
1016 
1017 	  for (label = insn; label && ! INSN_P (label);
1018 	       label = NEXT_INSN (label))
1019 	    if (LABEL_P (label))
1020 	      {
1021 		log = LABEL_ALIGN_AFTER_BARRIER (insn);
1022 		if (max_log < log)
1023 		  {
1024 		    max_log = log;
1025 		    max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1026 		  }
1027 		break;
1028 	      }
1029 	}
1030     }
1031   if (!HAVE_ATTR_length)
1032     return;
1033 
1034   /* Allocate the rest of the arrays.  */
1035   insn_lengths = XNEWVEC (int, max_uid);
1036   insn_lengths_max_uid = max_uid;
1037   /* Syntax errors can lead to labels being outside of the main insn stream.
1038      Initialize insn_addresses, so that we get reproducible results.  */
1039   INSN_ADDRESSES_ALLOC (max_uid);
1040 
1041   varying_length = XCNEWVEC (char, max_uid);
1042 
1043   /* Initialize uid_align.  We scan instructions
1044      from end to start, and keep in align_tab[n] the last seen insn
1045      that does an alignment of at least n+1, i.e. the successor
1046      in the alignment chain for an insn that does / has a known
1047      alignment of n.  */
1048   uid_align = XCNEWVEC (rtx, max_uid);
1049 
1050   for (i = MAX_CODE_ALIGN; --i >= 0;)
1051     align_tab[i] = NULL_RTX;
1052   seq = get_last_insn ();
1053   for (; seq; seq = PREV_INSN (seq))
1054     {
1055       int uid = INSN_UID (seq);
1056       int log;
1057       log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1058       uid_align[uid] = align_tab[0];
1059       if (log)
1060 	{
1061 	  /* Found an alignment label.  */
1062 	  uid_align[uid] = align_tab[log];
1063 	  for (i = log - 1; i >= 0; i--)
1064 	    align_tab[i] = seq;
1065 	}
1066     }
1067 
1068   /* When optimizing, we start assuming minimum length, and keep increasing
1069      lengths as we find the need for this, till nothing changes.
1070      When not optimizing, we start assuming maximum lengths, and
1071      do a single pass to update the lengths.  */
1072   bool increasing = optimize != 0;
1073 
1074 #ifdef CASE_VECTOR_SHORTEN_MODE
1075   if (optimize)
1076     {
1077       /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1078          label fields.  */
1079 
1080       int min_shuid = INSN_SHUID (get_insns ()) - 1;
1081       int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1082       int rel;
1083 
1084       for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1085 	{
1086 	  rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1087 	  int len, i, min, max, insn_shuid;
1088 	  int min_align;
1089 	  addr_diff_vec_flags flags;
1090 
1091 	  if (! JUMP_TABLE_DATA_P (insn)
1092 	      || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1093 	    continue;
1094 	  pat = PATTERN (insn);
1095 	  len = XVECLEN (pat, 1);
1096 	  gcc_assert (len > 0);
1097 	  min_align = MAX_CODE_ALIGN;
1098 	  for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1099 	    {
1100 	      rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1101 	      int shuid = INSN_SHUID (lab);
1102 	      if (shuid < min)
1103 		{
1104 		  min = shuid;
1105 		  min_lab = lab;
1106 		}
1107 	      if (shuid > max)
1108 		{
1109 		  max = shuid;
1110 		  max_lab = lab;
1111 		}
1112 	      if (min_align > LABEL_TO_ALIGNMENT (lab))
1113 		min_align = LABEL_TO_ALIGNMENT (lab);
1114 	    }
1115 	  XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1116 	  XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1117 	  insn_shuid = INSN_SHUID (insn);
1118 	  rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1119 	  memset (&flags, 0, sizeof (flags));
1120 	  flags.min_align = min_align;
1121 	  flags.base_after_vec = rel > insn_shuid;
1122 	  flags.min_after_vec  = min > insn_shuid;
1123 	  flags.max_after_vec  = max > insn_shuid;
1124 	  flags.min_after_base = min > rel;
1125 	  flags.max_after_base = max > rel;
1126 	  ADDR_DIFF_VEC_FLAGS (pat) = flags;
1127 
1128 	  if (increasing)
1129 	    PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1130 	}
1131     }
1132 #endif /* CASE_VECTOR_SHORTEN_MODE */
1133 
1134   /* Compute initial lengths, addresses, and varying flags for each insn.  */
1135   int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1136 
1137   for (insn_current_address = 0, insn = first;
1138        insn != 0;
1139        insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1140     {
1141       uid = INSN_UID (insn);
1142 
1143       insn_lengths[uid] = 0;
1144 
1145       if (LABEL_P (insn))
1146 	{
1147 	  int log = LABEL_TO_ALIGNMENT (insn);
1148 	  if (log)
1149 	    {
1150 	      int align = 1 << log;
1151 	      int new_address = (insn_current_address + align - 1) & -align;
1152 	      insn_lengths[uid] = new_address - insn_current_address;
1153 	    }
1154 	}
1155 
1156       INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1157 
1158       if (NOTE_P (insn) || BARRIER_P (insn)
1159 	  || LABEL_P (insn) || DEBUG_INSN_P (insn))
1160 	continue;
1161       if (insn->deleted ())
1162 	continue;
1163 
1164       body = PATTERN (insn);
1165       if (JUMP_TABLE_DATA_P (insn))
1166 	{
1167 	  /* This only takes room if read-only data goes into the text
1168 	     section.  */
1169 	  if (JUMP_TABLES_IN_TEXT_SECTION
1170 	      || readonly_data_section == text_section)
1171 	    insn_lengths[uid] = (XVECLEN (body,
1172 					  GET_CODE (body) == ADDR_DIFF_VEC)
1173 				 * GET_MODE_SIZE (GET_MODE (body)));
1174 	  /* Alignment is handled by ADDR_VEC_ALIGN.  */
1175 	}
1176       else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1177 	insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1178       else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1179 	{
1180 	  int i;
1181 	  int const_delay_slots;
1182 #ifdef DELAY_SLOTS
1183 	  const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1184 #else
1185 	  const_delay_slots = 0;
1186 #endif
1187 	  int (*inner_length_fun) (rtx_insn *)
1188 	    = const_delay_slots ? length_fun : insn_default_length;
1189 	  /* Inside a delay slot sequence, we do not do any branch shortening
1190 	     if the shortening could change the number of delay slots
1191 	     of the branch.  */
1192 	  for (i = 0; i < body_seq->len (); i++)
1193 	    {
1194 	      rtx_insn *inner_insn = body_seq->insn (i);
1195 	      int inner_uid = INSN_UID (inner_insn);
1196 	      int inner_length;
1197 
1198 	      if (GET_CODE (body) == ASM_INPUT
1199 		  || asm_noperands (PATTERN (inner_insn)) >= 0)
1200 		inner_length = (asm_insn_count (PATTERN (inner_insn))
1201 				* insn_default_length (inner_insn));
1202 	      else
1203 		inner_length = inner_length_fun (inner_insn);
1204 
1205 	      insn_lengths[inner_uid] = inner_length;
1206 	      if (const_delay_slots)
1207 		{
1208 		  if ((varying_length[inner_uid]
1209 		       = insn_variable_length_p (inner_insn)) != 0)
1210 		    varying_length[uid] = 1;
1211 		  INSN_ADDRESSES (inner_uid) = (insn_current_address
1212 						+ insn_lengths[uid]);
1213 		}
1214 	      else
1215 		varying_length[inner_uid] = 0;
1216 	      insn_lengths[uid] += inner_length;
1217 	    }
1218 	}
1219       else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1220 	{
1221 	  insn_lengths[uid] = length_fun (insn);
1222 	  varying_length[uid] = insn_variable_length_p (insn);
1223 	}
1224 
1225       /* If needed, do any adjustment.  */
1226 #ifdef ADJUST_INSN_LENGTH
1227       ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1228       if (insn_lengths[uid] < 0)
1229 	fatal_insn ("negative insn length", insn);
1230 #endif
1231     }
1232 
1233   /* Now loop over all the insns finding varying length insns.  For each,
1234      get the current insn length.  If it has changed, reflect the change.
1235      When nothing changes for a full pass, we are done.  */
1236 
1237   while (something_changed)
1238     {
1239       something_changed = 0;
1240       insn_current_align = MAX_CODE_ALIGN - 1;
1241       for (insn_current_address = 0, insn = first;
1242 	   insn != 0;
1243 	   insn = NEXT_INSN (insn))
1244 	{
1245 	  int new_length;
1246 #ifdef ADJUST_INSN_LENGTH
1247 	  int tmp_length;
1248 #endif
1249 	  int length_align;
1250 
1251 	  uid = INSN_UID (insn);
1252 
1253 	  if (LABEL_P (insn))
1254 	    {
1255 	      int log = LABEL_TO_ALIGNMENT (insn);
1256 
1257 #ifdef CASE_VECTOR_SHORTEN_MODE
1258 	      /* If the mode of a following jump table was changed, we
1259 		 may need to update the alignment of this label.  */
1260 	      rtx_insn *next;
1261 	      bool next_is_jumptable;
1262 
1263 	      next = next_nonnote_insn (insn);
1264 	      next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1265 	      if ((JUMP_TABLES_IN_TEXT_SECTION
1266 		   || readonly_data_section == text_section)
1267 		  && next_is_jumptable)
1268 		{
1269 		  int newlog = ADDR_VEC_ALIGN (next);
1270 		  if (newlog != log)
1271 		    {
1272 		      log = newlog;
1273 		      LABEL_TO_ALIGNMENT (insn) = log;
1274 		      something_changed = 1;
1275 		    }
1276 		}
1277 #endif
1278 
1279 	      if (log > insn_current_align)
1280 		{
1281 		  int align = 1 << log;
1282 		  int new_address= (insn_current_address + align - 1) & -align;
1283 		  insn_lengths[uid] = new_address - insn_current_address;
1284 		  insn_current_align = log;
1285 		  insn_current_address = new_address;
1286 		}
1287 	      else
1288 		insn_lengths[uid] = 0;
1289 	      INSN_ADDRESSES (uid) = insn_current_address;
1290 	      continue;
1291 	    }
1292 
1293 	  length_align = INSN_LENGTH_ALIGNMENT (insn);
1294 	  if (length_align < insn_current_align)
1295 	    insn_current_align = length_align;
1296 
1297 	  insn_last_address = INSN_ADDRESSES (uid);
1298 	  INSN_ADDRESSES (uid) = insn_current_address;
1299 
1300 #ifdef CASE_VECTOR_SHORTEN_MODE
1301 	  if (optimize
1302 	      && JUMP_TABLE_DATA_P (insn)
1303 	      && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1304 	    {
1305 	      rtx body = PATTERN (insn);
1306 	      int old_length = insn_lengths[uid];
1307 	      rtx_insn *rel_lab =
1308 		safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1309 	      rtx min_lab = XEXP (XEXP (body, 2), 0);
1310 	      rtx max_lab = XEXP (XEXP (body, 3), 0);
1311 	      int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1312 	      int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1313 	      int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1314 	      rtx_insn *prev;
1315 	      int rel_align = 0;
1316 	      addr_diff_vec_flags flags;
1317 	      machine_mode vec_mode;
1318 
1319 	      /* Avoid automatic aggregate initialization.  */
1320 	      flags = ADDR_DIFF_VEC_FLAGS (body);
1321 
1322 	      /* Try to find a known alignment for rel_lab.  */
1323 	      for (prev = rel_lab;
1324 		   prev
1325 		   && ! insn_lengths[INSN_UID (prev)]
1326 		   && ! (varying_length[INSN_UID (prev)] & 1);
1327 		   prev = PREV_INSN (prev))
1328 		if (varying_length[INSN_UID (prev)] & 2)
1329 		  {
1330 		    rel_align = LABEL_TO_ALIGNMENT (prev);
1331 		    break;
1332 		  }
1333 
1334 	      /* See the comment on addr_diff_vec_flags in rtl.h for the
1335 		 meaning of the flags values.  base: REL_LAB   vec: INSN  */
1336 	      /* Anything after INSN has still addresses from the last
1337 		 pass; adjust these so that they reflect our current
1338 		 estimate for this pass.  */
1339 	      if (flags.base_after_vec)
1340 		rel_addr += insn_current_address - insn_last_address;
1341 	      if (flags.min_after_vec)
1342 		min_addr += insn_current_address - insn_last_address;
1343 	      if (flags.max_after_vec)
1344 		max_addr += insn_current_address - insn_last_address;
1345 	      /* We want to know the worst case, i.e. lowest possible value
1346 		 for the offset of MIN_LAB.  If MIN_LAB is after REL_LAB,
1347 		 its offset is positive, and we have to be wary of code shrink;
1348 		 otherwise, it is negative, and we have to be vary of code
1349 		 size increase.  */
1350 	      if (flags.min_after_base)
1351 		{
1352 		  /* If INSN is between REL_LAB and MIN_LAB, the size
1353 		     changes we are about to make can change the alignment
1354 		     within the observed offset, therefore we have to break
1355 		     it up into two parts that are independent.  */
1356 		  if (! flags.base_after_vec && flags.min_after_vec)
1357 		    {
1358 		      min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1359 		      min_addr -= align_fuzz (insn, min_lab, 0, 0);
1360 		    }
1361 		  else
1362 		    min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1363 		}
1364 	      else
1365 		{
1366 		  if (flags.base_after_vec && ! flags.min_after_vec)
1367 		    {
1368 		      min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1369 		      min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1370 		    }
1371 		  else
1372 		    min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1373 		}
1374 	      /* Likewise, determine the highest lowest possible value
1375 		 for the offset of MAX_LAB.  */
1376 	      if (flags.max_after_base)
1377 		{
1378 		  if (! flags.base_after_vec && flags.max_after_vec)
1379 		    {
1380 		      max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1381 		      max_addr += align_fuzz (insn, max_lab, 0, ~0);
1382 		    }
1383 		  else
1384 		    max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1385 		}
1386 	      else
1387 		{
1388 		  if (flags.base_after_vec && ! flags.max_after_vec)
1389 		    {
1390 		      max_addr += align_fuzz (max_lab, insn, 0, 0);
1391 		      max_addr += align_fuzz (insn, rel_lab, 0, 0);
1392 		    }
1393 		  else
1394 		    max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1395 		}
1396 	      vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1397 						   max_addr - rel_addr, body);
1398 	      if (!increasing
1399 		  || (GET_MODE_SIZE (vec_mode)
1400 		      >= GET_MODE_SIZE (GET_MODE (body))))
1401 		PUT_MODE (body, vec_mode);
1402 	      if (JUMP_TABLES_IN_TEXT_SECTION
1403 		  || readonly_data_section == text_section)
1404 		{
1405 		  insn_lengths[uid]
1406 		    = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1407 		  insn_current_address += insn_lengths[uid];
1408 		  if (insn_lengths[uid] != old_length)
1409 		    something_changed = 1;
1410 		}
1411 
1412 	      continue;
1413 	    }
1414 #endif /* CASE_VECTOR_SHORTEN_MODE */
1415 
1416 	  if (! (varying_length[uid]))
1417 	    {
1418 	      if (NONJUMP_INSN_P (insn)
1419 		  && GET_CODE (PATTERN (insn)) == SEQUENCE)
1420 		{
1421 		  int i;
1422 
1423 		  body = PATTERN (insn);
1424 		  for (i = 0; i < XVECLEN (body, 0); i++)
1425 		    {
1426 		      rtx inner_insn = XVECEXP (body, 0, i);
1427 		      int inner_uid = INSN_UID (inner_insn);
1428 
1429 		      INSN_ADDRESSES (inner_uid) = insn_current_address;
1430 
1431 		      insn_current_address += insn_lengths[inner_uid];
1432 		    }
1433 		}
1434 	      else
1435 		insn_current_address += insn_lengths[uid];
1436 
1437 	      continue;
1438 	    }
1439 
1440 	  if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1441 	    {
1442 	      rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1443 	      int i;
1444 
1445 	      body = PATTERN (insn);
1446 	      new_length = 0;
1447 	      for (i = 0; i < seqn->len (); i++)
1448 		{
1449 		  rtx_insn *inner_insn = seqn->insn (i);
1450 		  int inner_uid = INSN_UID (inner_insn);
1451 		  int inner_length;
1452 
1453 		  INSN_ADDRESSES (inner_uid) = insn_current_address;
1454 
1455 		  /* insn_current_length returns 0 for insns with a
1456 		     non-varying length.  */
1457 		  if (! varying_length[inner_uid])
1458 		    inner_length = insn_lengths[inner_uid];
1459 		  else
1460 		    inner_length = insn_current_length (inner_insn);
1461 
1462 		  if (inner_length != insn_lengths[inner_uid])
1463 		    {
1464 		      if (!increasing || inner_length > insn_lengths[inner_uid])
1465 			{
1466 			  insn_lengths[inner_uid] = inner_length;
1467 			  something_changed = 1;
1468 			}
1469 		      else
1470 			inner_length = insn_lengths[inner_uid];
1471 		    }
1472 		  insn_current_address += inner_length;
1473 		  new_length += inner_length;
1474 		}
1475 	    }
1476 	  else
1477 	    {
1478 	      new_length = insn_current_length (insn);
1479 	      insn_current_address += new_length;
1480 	    }
1481 
1482 #ifdef ADJUST_INSN_LENGTH
1483 	  /* If needed, do any adjustment.  */
1484 	  tmp_length = new_length;
1485 	  ADJUST_INSN_LENGTH (insn, new_length);
1486 	  insn_current_address += (new_length - tmp_length);
1487 #endif
1488 
1489 	  if (new_length != insn_lengths[uid]
1490 	      && (!increasing || new_length > insn_lengths[uid]))
1491 	    {
1492 	      insn_lengths[uid] = new_length;
1493 	      something_changed = 1;
1494 	    }
1495 	  else
1496 	    insn_current_address += insn_lengths[uid] - new_length;
1497 	}
1498       /* For a non-optimizing compile, do only a single pass.  */
1499       if (!increasing)
1500 	break;
1501     }
1502 
1503   free (varying_length);
1504 }
1505 
1506 /* Given the body of an INSN known to be generated by an ASM statement, return
1507    the number of machine instructions likely to be generated for this insn.
1508    This is used to compute its length.  */
1509 
1510 static int
1511 asm_insn_count (rtx body)
1512 {
1513   const char *templ;
1514 
1515   if (GET_CODE (body) == ASM_INPUT)
1516     templ = XSTR (body, 0);
1517   else
1518     templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1519 
1520   return asm_str_count (templ);
1521 }
1522 
1523 /* Return the number of machine instructions likely to be generated for the
1524    inline-asm template. */
1525 int
1526 asm_str_count (const char *templ)
1527 {
1528   int count = 1;
1529 
1530   if (!*templ)
1531     return 0;
1532 
1533   for (; *templ; templ++)
1534     if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1535 	|| *templ == '\n')
1536       count++;
1537 
1538   return count;
1539 }
1540 
1541 /* ??? This is probably the wrong place for these.  */
1542 /* Structure recording the mapping from source file and directory
1543    names at compile time to those to be embedded in debug
1544    information.  */
1545 typedef struct debug_prefix_map
1546 {
1547   const char *old_prefix;
1548   const char *new_prefix;
1549   size_t old_len;
1550   size_t new_len;
1551   struct debug_prefix_map *next;
1552 } debug_prefix_map;
1553 
1554 /* Linked list of such structures.  */
1555 static debug_prefix_map *debug_prefix_maps;
1556 
1557 
1558 /* Record a debug file prefix mapping.  ARG is the argument to
1559    -fdebug-prefix-map and must be of the form OLD=NEW.  */
1560 
1561 void
1562 add_debug_prefix_map (const char *arg)
1563 {
1564   debug_prefix_map *map;
1565   const char *p;
1566   char *env;
1567   const char *old;
1568   size_t oldlen;
1569 
1570   p = strchr (arg, '=');
1571   if (!p)
1572     {
1573       error ("invalid argument %qs to -fdebug-prefix-map", arg);
1574       return;
1575     }
1576   if (*arg == '$')
1577     {
1578       env = xstrndup (arg+1, p - (arg+1));
1579       old = getenv(env);
1580       if (!old)
1581 	{
1582 	  warning (0, "environment variable %qs not set in argument to "
1583 		   "-fdebug-prefix-map", env);
1584 	  free(env);
1585 	  return;
1586 	}
1587       oldlen = strlen(old);
1588       free(env);
1589     }
1590   else
1591     {
1592       old = xstrndup (arg, p - arg);
1593       oldlen = p - arg;
1594     }
1595 
1596   map = XNEW (debug_prefix_map);
1597   map->old_prefix = old;
1598   map->old_len = oldlen;
1599   p++;
1600   map->new_prefix = xstrdup (p);
1601   map->new_len = strlen (p);
1602   map->next = debug_prefix_maps;
1603   debug_prefix_maps = map;
1604 }
1605 
1606 /* Perform user-specified mapping of debug filename prefixes.  Return
1607    the new name corresponding to FILENAME.  */
1608 
1609 static const char *
1610 remap_debug_prefix_filename (const char *filename)
1611 {
1612   debug_prefix_map *map;
1613   char *s;
1614   const char *name;
1615   size_t name_len;
1616 
1617   for (map = debug_prefix_maps; map; map = map->next)
1618     if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1619       break;
1620   if (!map)
1621     return filename;
1622   name = filename + map->old_len;
1623   name_len = strlen (name) + 1;
1624   s = (char *) alloca (name_len + map->new_len);
1625   memcpy (s, map->new_prefix, map->new_len);
1626   memcpy (s + map->new_len, name, name_len);
1627   return ggc_strdup (s);
1628 }
1629 
1630 #include <regex.h>
1631 
1632 typedef struct debug_regex_map
1633 {
1634   regex_t re;
1635   const char *sub;
1636   struct debug_regex_map *next;
1637 } debug_regex_map;
1638 
1639 /* Linked list of such structures.  */
1640 debug_regex_map *debug_regex_maps;
1641 
1642 
1643 /* Record a debug file regex mapping.  ARG is the argument to
1644    -fdebug-regex-map and must be of the form OLD=NEW.  */
1645 
1646 void
1647 add_debug_regex_map (const char *arg)
1648 {
1649   debug_regex_map *map;
1650   const char *p;
1651   char *old;
1652   char buf[1024];
1653   regex_t re;
1654   int e;
1655 
1656   p = strchr (arg, '=');
1657   if (!p)
1658     {
1659       error ("invalid argument %qs to -fdebug-regex-map", arg);
1660       return;
1661     }
1662 
1663   old = xstrndup (arg, p - arg);
1664   if ((e = regcomp(&re, old, REG_EXTENDED)) != 0)
1665     {
1666       regerror(e, &re, buf, sizeof(buf));
1667       warning (0, "regular expression compilation for %qs in argument to "
1668 	       "-fdebug-regex-map failed: %qs", old, buf);
1669       free(old);
1670       return;
1671     }
1672   free(old);
1673 
1674   map = XNEW (debug_regex_map);
1675   map->re = re;
1676   p++;
1677   map->sub = xstrdup (p);
1678   map->next = debug_regex_maps;
1679   debug_regex_maps = map;
1680 }
1681 
1682 extern "C" ssize_t regasub(char **, const char *,
1683   const regmatch_t *rm, const char *);
1684 
1685 /* Perform user-specified mapping of debug filename regular expressions.  Return
1686    the new name corresponding to FILENAME.  */
1687 
1688 static const char *
1689 remap_debug_regex_filename (const char *filename)
1690 {
1691   debug_regex_map *map;
1692   char *s;
1693   regmatch_t rm[10];
1694 
1695   for (map = debug_regex_maps; map; map = map->next)
1696     if (regexec (&map->re, filename, 10, rm, 0) == 0
1697        && regasub (&s, map->sub, rm, filename) >= 0)
1698       {
1699 	 const char *name = ggc_strdup(s);
1700 	 free(s);
1701 	 return name;
1702       }
1703   return filename;
1704 }
1705 
1706 const char *
1707 remap_debug_filename (const char *filename)
1708 {
1709    return remap_debug_regex_filename (remap_debug_prefix_filename (filename));
1710 }
1711 
1712 /* Return true if DWARF2 debug info can be emitted for DECL.  */
1713 
1714 static bool
1715 dwarf2_debug_info_emitted_p (tree decl)
1716 {
1717   if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1718     return false;
1719 
1720   if (DECL_IGNORED_P (decl))
1721     return false;
1722 
1723   return true;
1724 }
1725 
1726 /* Return scope resulting from combination of S1 and S2.  */
1727 static tree
1728 choose_inner_scope (tree s1, tree s2)
1729 {
1730    if (!s1)
1731      return s2;
1732    if (!s2)
1733      return s1;
1734    if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1735      return s1;
1736    return s2;
1737 }
1738 
1739 /* Emit lexical block notes needed to change scope from S1 to S2.  */
1740 
1741 static void
1742 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1743 {
1744   rtx_insn *insn = orig_insn;
1745   tree com = NULL_TREE;
1746   tree ts1 = s1, ts2 = s2;
1747   tree s;
1748 
1749   while (ts1 != ts2)
1750     {
1751       gcc_assert (ts1 && ts2);
1752       if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1753 	ts1 = BLOCK_SUPERCONTEXT (ts1);
1754       else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1755 	ts2 = BLOCK_SUPERCONTEXT (ts2);
1756       else
1757 	{
1758 	  ts1 = BLOCK_SUPERCONTEXT (ts1);
1759 	  ts2 = BLOCK_SUPERCONTEXT (ts2);
1760 	}
1761     }
1762   com = ts1;
1763 
1764   /* Close scopes.  */
1765   s = s1;
1766   while (s != com)
1767     {
1768       rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1769       NOTE_BLOCK (note) = s;
1770       s = BLOCK_SUPERCONTEXT (s);
1771     }
1772 
1773   /* Open scopes.  */
1774   s = s2;
1775   while (s != com)
1776     {
1777       insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1778       NOTE_BLOCK (insn) = s;
1779       s = BLOCK_SUPERCONTEXT (s);
1780     }
1781 }
1782 
1783 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1784    on the scope tree and the newly reordered instructions.  */
1785 
1786 static void
1787 reemit_insn_block_notes (void)
1788 {
1789   tree cur_block = DECL_INITIAL (cfun->decl);
1790   rtx_insn *insn;
1791   rtx_note *note;
1792 
1793   insn = get_insns ();
1794   for (; insn; insn = NEXT_INSN (insn))
1795     {
1796       tree this_block;
1797 
1798       /* Prevent lexical blocks from straddling section boundaries.  */
1799       if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1800         {
1801           for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1802                s = BLOCK_SUPERCONTEXT (s))
1803             {
1804               rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1805               NOTE_BLOCK (note) = s;
1806               note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1807               NOTE_BLOCK (note) = s;
1808             }
1809         }
1810 
1811       if (!active_insn_p (insn))
1812         continue;
1813 
1814       /* Avoid putting scope notes between jump table and its label.  */
1815       if (JUMP_TABLE_DATA_P (insn))
1816 	continue;
1817 
1818       this_block = insn_scope (insn);
1819       /* For sequences compute scope resulting from merging all scopes
1820 	 of instructions nested inside.  */
1821       if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1822 	{
1823 	  int i;
1824 
1825 	  this_block = NULL;
1826 	  for (i = 0; i < body->len (); i++)
1827 	    this_block = choose_inner_scope (this_block,
1828 					     insn_scope (body->insn (i)));
1829 	}
1830       if (! this_block)
1831 	{
1832 	  if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1833 	    continue;
1834 	  else
1835 	    this_block = DECL_INITIAL (cfun->decl);
1836 	}
1837 
1838       if (this_block != cur_block)
1839 	{
1840 	  change_scope (insn, cur_block, this_block);
1841 	  cur_block = this_block;
1842 	}
1843     }
1844 
1845   /* change_scope emits before the insn, not after.  */
1846   note = emit_note (NOTE_INSN_DELETED);
1847   change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1848   delete_insn (note);
1849 
1850   reorder_blocks ();
1851 }
1852 
1853 static const char *some_local_dynamic_name;
1854 
1855 /* Locate some local-dynamic symbol still in use by this function
1856    so that we can print its name in local-dynamic base patterns.
1857    Return null if there are no local-dynamic references.  */
1858 
1859 const char *
1860 get_some_local_dynamic_name ()
1861 {
1862   subrtx_iterator::array_type array;
1863   rtx_insn *insn;
1864 
1865   if (some_local_dynamic_name)
1866     return some_local_dynamic_name;
1867 
1868   for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1869     if (NONDEBUG_INSN_P (insn))
1870       FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1871 	{
1872 	  const_rtx x = *iter;
1873 	  if (GET_CODE (x) == SYMBOL_REF)
1874 	    {
1875 	      if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1876 		return some_local_dynamic_name = XSTR (x, 0);
1877 	      if (CONSTANT_POOL_ADDRESS_P (x))
1878 		iter.substitute (get_pool_constant (x));
1879 	    }
1880 	}
1881 
1882   return 0;
1883 }
1884 
1885 /* Output assembler code for the start of a function,
1886    and initialize some of the variables in this file
1887    for the new function.  The label for the function and associated
1888    assembler pseudo-ops have already been output in `assemble_start_function'.
1889 
1890    FIRST is the first insn of the rtl for the function being compiled.
1891    FILE is the file to write assembler code to.
1892    OPTIMIZE_P is nonzero if we should eliminate redundant
1893      test and compare insns.  */
1894 
1895 void
1896 final_start_function (rtx_insn *first, FILE *file,
1897 		      int optimize_p ATTRIBUTE_UNUSED)
1898 {
1899   block_depth = 0;
1900 
1901   this_is_asm_operands = 0;
1902 
1903   need_profile_function = false;
1904 
1905   last_filename = LOCATION_FILE (prologue_location);
1906   last_linenum = LOCATION_LINE (prologue_location);
1907   last_discriminator = discriminator = 0;
1908 
1909   high_block_linenum = high_function_linenum = last_linenum;
1910 
1911   if (flag_sanitize & SANITIZE_ADDRESS)
1912     asan_function_start ();
1913 
1914   if (!DECL_IGNORED_P (current_function_decl))
1915     debug_hooks->begin_prologue (last_linenum, last_filename);
1916 
1917   if (!dwarf2_debug_info_emitted_p (current_function_decl))
1918     dwarf2out_begin_prologue (0, NULL);
1919 
1920 #ifdef LEAF_REG_REMAP
1921   if (crtl->uses_only_leaf_regs)
1922     leaf_renumber_regs (first);
1923 #endif
1924 
1925   /* The Sun386i and perhaps other machines don't work right
1926      if the profiling code comes after the prologue.  */
1927   if (targetm.profile_before_prologue () && crtl->profile)
1928     {
1929       if (targetm.asm_out.function_prologue
1930 	  == default_function_pro_epilogue
1931 #ifdef HAVE_prologue
1932 	  && HAVE_prologue
1933 #endif
1934 	 )
1935 	{
1936 	  rtx_insn *insn;
1937 	  for (insn = first; insn; insn = NEXT_INSN (insn))
1938 	    if (!NOTE_P (insn))
1939 	      {
1940 		insn = NULL;
1941 		break;
1942 	      }
1943 	    else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1944 		     || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1945 	      break;
1946 	    else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1947 		     || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1948 	      continue;
1949 	    else
1950 	      {
1951 		insn = NULL;
1952 		break;
1953 	      }
1954 
1955 	  if (insn)
1956 	    need_profile_function = true;
1957 	  else
1958 	    profile_function (file);
1959 	}
1960       else
1961 	profile_function (file);
1962     }
1963 
1964   /* If debugging, assign block numbers to all of the blocks in this
1965      function.  */
1966   if (write_symbols)
1967     {
1968       reemit_insn_block_notes ();
1969       number_blocks (current_function_decl);
1970       /* We never actually put out begin/end notes for the top-level
1971 	 block in the function.  But, conceptually, that block is
1972 	 always needed.  */
1973       TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1974     }
1975 
1976   if (warn_frame_larger_than
1977     && get_frame_size () > frame_larger_than_size)
1978   {
1979       /* Issue a warning */
1980       warning (OPT_Wframe_larger_than_,
1981                "the frame size of %wd bytes is larger than %wd bytes",
1982                get_frame_size (), frame_larger_than_size);
1983   }
1984 
1985   /* First output the function prologue: code to set up the stack frame.  */
1986   targetm.asm_out.function_prologue (file, get_frame_size ());
1987 
1988   /* If the machine represents the prologue as RTL, the profiling code must
1989      be emitted when NOTE_INSN_PROLOGUE_END is scanned.  */
1990 #ifdef HAVE_prologue
1991   if (! HAVE_prologue)
1992 #endif
1993     profile_after_prologue (file);
1994 }
1995 
1996 static void
1997 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1998 {
1999   if (!targetm.profile_before_prologue () && crtl->profile)
2000     profile_function (file);
2001 }
2002 
2003 static void
2004 profile_function (FILE *file ATTRIBUTE_UNUSED)
2005 {
2006 #ifndef NO_PROFILE_COUNTERS
2007 # define NO_PROFILE_COUNTERS	0
2008 #endif
2009 #ifdef ASM_OUTPUT_REG_PUSH
2010   rtx sval = NULL, chain = NULL;
2011 
2012   if (cfun->returns_struct)
2013     sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
2014 					   true);
2015   if (cfun->static_chain_decl)
2016     chain = targetm.calls.static_chain (current_function_decl, true);
2017 #endif /* ASM_OUTPUT_REG_PUSH */
2018 
2019   if (! NO_PROFILE_COUNTERS)
2020     {
2021       int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
2022       switch_to_section (data_section);
2023       ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
2024       targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
2025       assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
2026     }
2027 
2028   switch_to_section (current_function_section ());
2029 
2030 #ifdef ASM_OUTPUT_REG_PUSH
2031   if (sval && REG_P (sval))
2032     ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
2033   if (chain && REG_P (chain))
2034     ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
2035 #endif
2036 
2037   FUNCTION_PROFILER (file, current_function_funcdef_no);
2038 
2039 #ifdef ASM_OUTPUT_REG_PUSH
2040   if (chain && REG_P (chain))
2041     ASM_OUTPUT_REG_POP (file, REGNO (chain));
2042   if (sval && REG_P (sval))
2043     ASM_OUTPUT_REG_POP (file, REGNO (sval));
2044 #endif
2045 }
2046 
2047 /* Output assembler code for the end of a function.
2048    For clarity, args are same as those of `final_start_function'
2049    even though not all of them are needed.  */
2050 
2051 void
2052 final_end_function (void)
2053 {
2054   app_disable ();
2055 
2056   if (!DECL_IGNORED_P (current_function_decl))
2057     debug_hooks->end_function (high_function_linenum);
2058 
2059   /* Finally, output the function epilogue:
2060      code to restore the stack frame and return to the caller.  */
2061   targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
2062 
2063   /* And debug output.  */
2064   if (!DECL_IGNORED_P (current_function_decl))
2065     debug_hooks->end_epilogue (last_linenum, last_filename);
2066 
2067   if (!dwarf2_debug_info_emitted_p (current_function_decl)
2068       && dwarf2out_do_frame ())
2069     dwarf2out_end_epilogue (last_linenum, last_filename);
2070 
2071   some_local_dynamic_name = 0;
2072 }
2073 
2074 
2075 /* Dumper helper for basic block information. FILE is the assembly
2076    output file, and INSN is the instruction being emitted.  */
2077 
2078 static void
2079 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
2080                        basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
2081 {
2082   basic_block bb;
2083 
2084   if (!flag_debug_asm)
2085     return;
2086 
2087   if (INSN_UID (insn) < bb_map_size
2088       && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
2089     {
2090       edge e;
2091       edge_iterator ei;
2092 
2093       fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
2094       if (bb->frequency)
2095         fprintf (file, " freq:%d", bb->frequency);
2096       if (bb->count)
2097         fprintf (file, " count:%"PRId64,
2098                  bb->count);
2099       fprintf (file, " seq:%d", (*bb_seqn)++);
2100       fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
2101       FOR_EACH_EDGE (e, ei, bb->preds)
2102         {
2103           dump_edge_info (file, e, TDF_DETAILS, 0);
2104         }
2105       fprintf (file, "\n");
2106     }
2107   if (INSN_UID (insn) < bb_map_size
2108       && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2109     {
2110       edge e;
2111       edge_iterator ei;
2112 
2113       fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2114       FOR_EACH_EDGE (e, ei, bb->succs)
2115        {
2116          dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2117        }
2118       fprintf (file, "\n");
2119     }
2120 }
2121 
2122 /* Output assembler code for some insns: all or part of a function.
2123    For description of args, see `final_start_function', above.  */
2124 
2125 void
2126 final (rtx_insn *first, FILE *file, int optimize_p)
2127 {
2128   rtx_insn *insn, *next;
2129   int seen = 0;
2130 
2131   /* Used for -dA dump.  */
2132   basic_block *start_to_bb = NULL;
2133   basic_block *end_to_bb = NULL;
2134   int bb_map_size = 0;
2135   int bb_seqn = 0;
2136 
2137   last_ignored_compare = 0;
2138 
2139 #ifdef HAVE_cc0
2140   for (insn = first; insn; insn = NEXT_INSN (insn))
2141     {
2142       /* If CC tracking across branches is enabled, record the insn which
2143 	 jumps to each branch only reached from one place.  */
2144       if (optimize_p && JUMP_P (insn))
2145 	{
2146 	  rtx lab = JUMP_LABEL (insn);
2147 	  if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2148 	    {
2149 	      LABEL_REFS (lab) = insn;
2150 	    }
2151 	}
2152     }
2153 #endif
2154 
2155   init_recog ();
2156 
2157   CC_STATUS_INIT;
2158 
2159   if (flag_debug_asm)
2160     {
2161       basic_block bb;
2162 
2163       bb_map_size = get_max_uid () + 1;
2164       start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2165       end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2166 
2167       /* There is no cfg for a thunk.  */
2168       if (!cfun->is_thunk)
2169 	FOR_EACH_BB_REVERSE_FN (bb, cfun)
2170 	  {
2171 	    start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2172 	    end_to_bb[INSN_UID (BB_END (bb))] = bb;
2173 	  }
2174     }
2175 
2176   /* Output the insns.  */
2177   for (insn = first; insn;)
2178     {
2179       if (HAVE_ATTR_length)
2180 	{
2181 	  if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2182 	    {
2183 	      /* This can be triggered by bugs elsewhere in the compiler if
2184 		 new insns are created after init_insn_lengths is called.  */
2185 	      gcc_assert (NOTE_P (insn));
2186 	      insn_current_address = -1;
2187 	    }
2188 	  else
2189 	    insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2190 	}
2191 
2192       dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2193                              bb_map_size, &bb_seqn);
2194       insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2195     }
2196 
2197   if (flag_debug_asm)
2198     {
2199       free (start_to_bb);
2200       free (end_to_bb);
2201     }
2202 
2203   /* Remove CFI notes, to avoid compare-debug failures.  */
2204   for (insn = first; insn; insn = next)
2205     {
2206       next = NEXT_INSN (insn);
2207       if (NOTE_P (insn)
2208 	  && (NOTE_KIND (insn) == NOTE_INSN_CFI
2209 	      || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2210 	delete_insn (insn);
2211     }
2212 }
2213 
2214 const char *
2215 get_insn_template (int code, rtx insn)
2216 {
2217   switch (insn_data[code].output_format)
2218     {
2219     case INSN_OUTPUT_FORMAT_SINGLE:
2220       return insn_data[code].output.single;
2221     case INSN_OUTPUT_FORMAT_MULTI:
2222       return insn_data[code].output.multi[which_alternative];
2223     case INSN_OUTPUT_FORMAT_FUNCTION:
2224       gcc_assert (insn);
2225       return (*insn_data[code].output.function) (recog_data.operand,
2226 						 as_a <rtx_insn *> (insn));
2227 
2228     default:
2229       gcc_unreachable ();
2230     }
2231 }
2232 
2233 /* Emit the appropriate declaration for an alternate-entry-point
2234    symbol represented by INSN, to FILE.  INSN is a CODE_LABEL with
2235    LABEL_KIND != LABEL_NORMAL.
2236 
2237    The case fall-through in this function is intentional.  */
2238 static void
2239 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2240 {
2241   const char *name = LABEL_NAME (insn);
2242 
2243   switch (LABEL_KIND (insn))
2244     {
2245     case LABEL_WEAK_ENTRY:
2246 #ifdef ASM_WEAKEN_LABEL
2247       ASM_WEAKEN_LABEL (file, name);
2248 #endif
2249     case LABEL_GLOBAL_ENTRY:
2250       targetm.asm_out.globalize_label (file, name);
2251     case LABEL_STATIC_ENTRY:
2252 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2253       ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2254 #endif
2255       ASM_OUTPUT_LABEL (file, name);
2256       break;
2257 
2258     case LABEL_NORMAL:
2259     default:
2260       gcc_unreachable ();
2261     }
2262 }
2263 
2264 /* Given a CALL_INSN, find and return the nested CALL. */
2265 static rtx
2266 call_from_call_insn (rtx_call_insn *insn)
2267 {
2268   rtx x;
2269   gcc_assert (CALL_P (insn));
2270   x = PATTERN (insn);
2271 
2272   while (GET_CODE (x) != CALL)
2273     {
2274       switch (GET_CODE (x))
2275 	{
2276 	default:
2277 	  gcc_unreachable ();
2278 	case COND_EXEC:
2279 	  x = COND_EXEC_CODE (x);
2280 	  break;
2281 	case PARALLEL:
2282 	  x = XVECEXP (x, 0, 0);
2283 	  break;
2284 	case SET:
2285 	  x = XEXP (x, 1);
2286 	  break;
2287 	}
2288     }
2289   return x;
2290 }
2291 
2292 /* The final scan for one insn, INSN.
2293    Args are same as in `final', except that INSN
2294    is the insn being scanned.
2295    Value returned is the next insn to be scanned.
2296 
2297    NOPEEPHOLES is the flag to disallow peephole processing (currently
2298    used for within delayed branch sequence output).
2299 
2300    SEEN is used to track the end of the prologue, for emitting
2301    debug information.  We force the emission of a line note after
2302    both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG.  */
2303 
2304 rtx_insn *
2305 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2306 		 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2307 {
2308 #ifdef HAVE_cc0
2309   rtx set;
2310 #endif
2311   rtx_insn *next;
2312 
2313   insn_counter++;
2314 
2315   /* Ignore deleted insns.  These can occur when we split insns (due to a
2316      template of "#") while not optimizing.  */
2317   if (insn->deleted ())
2318     return NEXT_INSN (insn);
2319 
2320   switch (GET_CODE (insn))
2321     {
2322     case NOTE:
2323       switch (NOTE_KIND (insn))
2324 	{
2325 	case NOTE_INSN_DELETED:
2326 	  break;
2327 
2328 	case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2329 	  in_cold_section_p = !in_cold_section_p;
2330 
2331 	  if (dwarf2out_do_frame ())
2332 	    dwarf2out_switch_text_section ();
2333 	  else if (!DECL_IGNORED_P (current_function_decl))
2334 	    debug_hooks->switch_text_section ();
2335 
2336 	  switch_to_section (current_function_section ());
2337 	  targetm.asm_out.function_switched_text_sections (asm_out_file,
2338 							   current_function_decl,
2339 							   in_cold_section_p);
2340 	  /* Emit a label for the split cold section.  Form label name by
2341 	     suffixing "cold" to the original function's name.  */
2342 	  if (in_cold_section_p)
2343 	    {
2344 	      tree cold_function_name
2345 		= clone_function_name (current_function_decl, "cold");
2346 	      ASM_OUTPUT_LABEL (asm_out_file,
2347 				IDENTIFIER_POINTER (cold_function_name));
2348 	    }
2349 	  break;
2350 
2351 	case NOTE_INSN_BASIC_BLOCK:
2352 	  if (need_profile_function)
2353 	    {
2354 	      profile_function (asm_out_file);
2355 	      need_profile_function = false;
2356 	    }
2357 
2358 	  if (targetm.asm_out.unwind_emit)
2359 	    targetm.asm_out.unwind_emit (asm_out_file, insn);
2360 
2361           discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2362 
2363 	  break;
2364 
2365 	case NOTE_INSN_EH_REGION_BEG:
2366 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2367 				  NOTE_EH_HANDLER (insn));
2368 	  break;
2369 
2370 	case NOTE_INSN_EH_REGION_END:
2371 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2372 				  NOTE_EH_HANDLER (insn));
2373 	  break;
2374 
2375 	case NOTE_INSN_PROLOGUE_END:
2376 	  targetm.asm_out.function_end_prologue (file);
2377 	  profile_after_prologue (file);
2378 
2379 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2380 	    {
2381 	      *seen |= SEEN_EMITTED;
2382 	      force_source_line = true;
2383 	    }
2384 	  else
2385 	    *seen |= SEEN_NOTE;
2386 
2387 	  break;
2388 
2389 	case NOTE_INSN_EPILOGUE_BEG:
2390           if (!DECL_IGNORED_P (current_function_decl))
2391             (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2392 	  targetm.asm_out.function_begin_epilogue (file);
2393 	  break;
2394 
2395 	case NOTE_INSN_CFI:
2396 	  dwarf2out_emit_cfi (NOTE_CFI (insn));
2397 	  break;
2398 
2399 	case NOTE_INSN_CFI_LABEL:
2400 	  ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2401 				  NOTE_LABEL_NUMBER (insn));
2402 	  break;
2403 
2404 	case NOTE_INSN_FUNCTION_BEG:
2405 	  if (need_profile_function)
2406 	    {
2407 	      profile_function (asm_out_file);
2408 	      need_profile_function = false;
2409 	    }
2410 
2411 	  app_disable ();
2412 	  if (!DECL_IGNORED_P (current_function_decl))
2413 	    debug_hooks->end_prologue (last_linenum, last_filename);
2414 
2415 	  if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2416 	    {
2417 	      *seen |= SEEN_EMITTED;
2418 	      force_source_line = true;
2419 	    }
2420 	  else
2421 	    *seen |= SEEN_NOTE;
2422 
2423 	  break;
2424 
2425 	case NOTE_INSN_BLOCK_BEG:
2426 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2427 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2428 	      || write_symbols == DWARF2_DEBUG
2429 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2430 	      || write_symbols == VMS_DEBUG)
2431 	    {
2432 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2433 
2434 	      app_disable ();
2435 	      ++block_depth;
2436 	      high_block_linenum = last_linenum;
2437 
2438 	      /* Output debugging info about the symbol-block beginning.  */
2439 	      if (!DECL_IGNORED_P (current_function_decl))
2440 		debug_hooks->begin_block (last_linenum, n);
2441 
2442 	      /* Mark this block as output.  */
2443 	      TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2444 	    }
2445 	  if (write_symbols == DBX_DEBUG
2446 	      || write_symbols == SDB_DEBUG)
2447 	    {
2448 	      location_t *locus_ptr
2449 		= block_nonartificial_location (NOTE_BLOCK (insn));
2450 
2451 	      if (locus_ptr != NULL)
2452 		{
2453 		  override_filename = LOCATION_FILE (*locus_ptr);
2454 		  override_linenum = LOCATION_LINE (*locus_ptr);
2455 		}
2456 	    }
2457 	  break;
2458 
2459 	case NOTE_INSN_BLOCK_END:
2460 	  if (debug_info_level == DINFO_LEVEL_NORMAL
2461 	      || debug_info_level == DINFO_LEVEL_VERBOSE
2462 	      || write_symbols == DWARF2_DEBUG
2463 	      || write_symbols == VMS_AND_DWARF2_DEBUG
2464 	      || write_symbols == VMS_DEBUG)
2465 	    {
2466 	      int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2467 
2468 	      app_disable ();
2469 
2470 	      /* End of a symbol-block.  */
2471 	      --block_depth;
2472 	      gcc_assert (block_depth >= 0);
2473 
2474 	      if (!DECL_IGNORED_P (current_function_decl))
2475 		debug_hooks->end_block (high_block_linenum, n);
2476 	    }
2477 	  if (write_symbols == DBX_DEBUG
2478 	      || write_symbols == SDB_DEBUG)
2479 	    {
2480 	      tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2481 	      location_t *locus_ptr
2482 		= block_nonartificial_location (outer_block);
2483 
2484 	      if (locus_ptr != NULL)
2485 		{
2486 		  override_filename = LOCATION_FILE (*locus_ptr);
2487 		  override_linenum = LOCATION_LINE (*locus_ptr);
2488 		}
2489 	      else
2490 		{
2491 		  override_filename = NULL;
2492 		  override_linenum = 0;
2493 		}
2494 	    }
2495 	  break;
2496 
2497 	case NOTE_INSN_DELETED_LABEL:
2498 	  /* Emit the label.  We may have deleted the CODE_LABEL because
2499 	     the label could be proved to be unreachable, though still
2500 	     referenced (in the form of having its address taken.  */
2501 	  ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2502 	  break;
2503 
2504 	case NOTE_INSN_DELETED_DEBUG_LABEL:
2505 	  /* Similarly, but need to use different namespace for it.  */
2506 	  if (CODE_LABEL_NUMBER (insn) != -1)
2507 	    ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2508 	  break;
2509 
2510 	case NOTE_INSN_VAR_LOCATION:
2511 	case NOTE_INSN_CALL_ARG_LOCATION:
2512 	  if (!DECL_IGNORED_P (current_function_decl))
2513 	    debug_hooks->var_location (insn);
2514 	  break;
2515 
2516 	default:
2517 	  gcc_unreachable ();
2518 	  break;
2519 	}
2520       break;
2521 
2522     case BARRIER:
2523       break;
2524 
2525     case CODE_LABEL:
2526       /* The target port might emit labels in the output function for
2527 	 some insn, e.g. sh.c output_branchy_insn.  */
2528       if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2529 	{
2530 	  int align = LABEL_TO_ALIGNMENT (insn);
2531 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2532 	  int max_skip = LABEL_TO_MAX_SKIP (insn);
2533 #endif
2534 
2535 	  if (align && NEXT_INSN (insn))
2536 	    {
2537 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2538 	      ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2539 #else
2540 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2541               ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2542 #else
2543 	      ASM_OUTPUT_ALIGN (file, align);
2544 #endif
2545 #endif
2546 	    }
2547 	}
2548       CC_STATUS_INIT;
2549 
2550       if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2551 	debug_hooks->label (as_a <rtx_code_label *> (insn));
2552 
2553       app_disable ();
2554 
2555       next = next_nonnote_insn (insn);
2556       /* If this label is followed by a jump-table, make sure we put
2557 	 the label in the read-only section.  Also possibly write the
2558 	 label and jump table together.  */
2559       if (next != 0 && JUMP_TABLE_DATA_P (next))
2560 	{
2561 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2562 	  /* In this case, the case vector is being moved by the
2563 	     target, so don't output the label at all.  Leave that
2564 	     to the back end macros.  */
2565 #else
2566 	  if (! JUMP_TABLES_IN_TEXT_SECTION)
2567 	    {
2568 	      int log_align;
2569 
2570 	      switch_to_section (targetm.asm_out.function_rodata_section
2571 				 (current_function_decl));
2572 
2573 #ifdef ADDR_VEC_ALIGN
2574 	      log_align = ADDR_VEC_ALIGN (next);
2575 #else
2576 	      log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2577 #endif
2578 	      ASM_OUTPUT_ALIGN (file, log_align);
2579 	    }
2580 	  else
2581 	    switch_to_section (current_function_section ());
2582 
2583 #ifdef ASM_OUTPUT_CASE_LABEL
2584 	  ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2585 				 next);
2586 #else
2587 	  targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2588 #endif
2589 #endif
2590 	  break;
2591 	}
2592       if (LABEL_ALT_ENTRY_P (insn))
2593 	output_alternate_entry_point (file, insn);
2594       else
2595 	targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2596       break;
2597 
2598     default:
2599       {
2600 	rtx body = PATTERN (insn);
2601 	int insn_code_number;
2602 	const char *templ;
2603 	bool is_stmt;
2604 
2605 	/* Reset this early so it is correct for ASM statements.  */
2606 	current_insn_predicate = NULL_RTX;
2607 
2608 	/* An INSN, JUMP_INSN or CALL_INSN.
2609 	   First check for special kinds that recog doesn't recognize.  */
2610 
2611 	if (GET_CODE (body) == USE /* These are just declarations.  */
2612 	    || GET_CODE (body) == CLOBBER)
2613 	  break;
2614 
2615 #ifdef HAVE_cc0
2616 	{
2617 	  /* If there is a REG_CC_SETTER note on this insn, it means that
2618 	     the setting of the condition code was done in the delay slot
2619 	     of the insn that branched here.  So recover the cc status
2620 	     from the insn that set it.  */
2621 
2622 	  rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2623 	  if (note)
2624 	    {
2625 	      rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2626 	      NOTICE_UPDATE_CC (PATTERN (other), other);
2627 	      cc_prev_status = cc_status;
2628 	    }
2629 	}
2630 #endif
2631 
2632 	/* Detect insns that are really jump-tables
2633 	   and output them as such.  */
2634 
2635         if (JUMP_TABLE_DATA_P (insn))
2636 	  {
2637 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2638 	    int vlen, idx;
2639 #endif
2640 
2641 	    if (! JUMP_TABLES_IN_TEXT_SECTION)
2642 	      switch_to_section (targetm.asm_out.function_rodata_section
2643 				 (current_function_decl));
2644 	    else
2645 	      switch_to_section (current_function_section ());
2646 
2647 	    app_disable ();
2648 
2649 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2650 	    if (GET_CODE (body) == ADDR_VEC)
2651 	      {
2652 #ifdef ASM_OUTPUT_ADDR_VEC
2653 		ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2654 #else
2655 		gcc_unreachable ();
2656 #endif
2657 	      }
2658 	    else
2659 	      {
2660 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2661 		ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2662 #else
2663 		gcc_unreachable ();
2664 #endif
2665 	      }
2666 #else
2667 	    vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2668 	    for (idx = 0; idx < vlen; idx++)
2669 	      {
2670 		if (GET_CODE (body) == ADDR_VEC)
2671 		  {
2672 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2673 		    ASM_OUTPUT_ADDR_VEC_ELT
2674 		      (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2675 #else
2676 		    gcc_unreachable ();
2677 #endif
2678 		  }
2679 		else
2680 		  {
2681 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2682 		    ASM_OUTPUT_ADDR_DIFF_ELT
2683 		      (file,
2684 		       body,
2685 		       CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2686 		       CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2687 #else
2688 		    gcc_unreachable ();
2689 #endif
2690 		  }
2691 	      }
2692 #ifdef ASM_OUTPUT_CASE_END
2693 	    ASM_OUTPUT_CASE_END (file,
2694 				 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2695 				 insn);
2696 #endif
2697 #endif
2698 
2699 	    switch_to_section (current_function_section ());
2700 
2701 	    break;
2702 	  }
2703 	/* Output this line note if it is the first or the last line
2704 	   note in a row.  */
2705 	if (!DECL_IGNORED_P (current_function_decl)
2706 	    && notice_source_line (insn, &is_stmt))
2707 	  (*debug_hooks->source_line) (last_linenum, last_filename,
2708 				       last_discriminator, is_stmt);
2709 
2710 	if (GET_CODE (body) == ASM_INPUT)
2711 	  {
2712 	    const char *string = XSTR (body, 0);
2713 
2714 	    /* There's no telling what that did to the condition codes.  */
2715 	    CC_STATUS_INIT;
2716 
2717 	    if (string[0])
2718 	      {
2719 		expanded_location loc;
2720 
2721 		app_enable ();
2722 		loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2723 		if (*loc.file && loc.line)
2724 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2725 			   ASM_COMMENT_START, loc.line, loc.file);
2726 		fprintf (asm_out_file, "\t%s\n", string);
2727 #if HAVE_AS_LINE_ZERO
2728 		if (*loc.file && loc.line)
2729 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2730 #endif
2731 	      }
2732 	    break;
2733 	  }
2734 
2735 	/* Detect `asm' construct with operands.  */
2736 	if (asm_noperands (body) >= 0)
2737 	  {
2738 	    unsigned int noperands = asm_noperands (body);
2739 	    rtx *ops = XALLOCAVEC (rtx, noperands);
2740 	    const char *string;
2741 	    location_t loc;
2742 	    expanded_location expanded;
2743 
2744 	    /* There's no telling what that did to the condition codes.  */
2745 	    CC_STATUS_INIT;
2746 
2747 	    /* Get out the operand values.  */
2748 	    string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2749 	    /* Inhibit dying on what would otherwise be compiler bugs.  */
2750 	    insn_noperands = noperands;
2751 	    this_is_asm_operands = insn;
2752 	    expanded = expand_location (loc);
2753 
2754 #ifdef FINAL_PRESCAN_INSN
2755 	    FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2756 #endif
2757 
2758 	    /* Output the insn using them.  */
2759 	    if (string[0])
2760 	      {
2761 		app_enable ();
2762 		if (expanded.file && expanded.line)
2763 		  fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2764 			   ASM_COMMENT_START, expanded.line, expanded.file);
2765 	        output_asm_insn (string, ops);
2766 #if HAVE_AS_LINE_ZERO
2767 		if (expanded.file && expanded.line)
2768 		  fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2769 #endif
2770 	      }
2771 
2772 	    if (targetm.asm_out.final_postscan_insn)
2773 	      targetm.asm_out.final_postscan_insn (file, insn, ops,
2774 						   insn_noperands);
2775 
2776 	    this_is_asm_operands = 0;
2777 	    break;
2778 	  }
2779 
2780 	app_disable ();
2781 
2782 	if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2783 	  {
2784 	    /* A delayed-branch sequence */
2785 	    int i;
2786 
2787 	    final_sequence = seq;
2788 
2789 	    /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2790 	       force the restoration of a comparison that was previously
2791 	       thought unnecessary.  If that happens, cancel this sequence
2792 	       and cause that insn to be restored.  */
2793 
2794 	    next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2795 	    if (next != seq->insn (1))
2796 	      {
2797 		final_sequence = 0;
2798 		return next;
2799 	      }
2800 
2801 	    for (i = 1; i < seq->len (); i++)
2802 	      {
2803 		rtx_insn *insn = seq->insn (i);
2804 		rtx_insn *next = NEXT_INSN (insn);
2805 		/* We loop in case any instruction in a delay slot gets
2806 		   split.  */
2807 		do
2808 		  insn = final_scan_insn (insn, file, 0, 1, seen);
2809 		while (insn != next);
2810 	      }
2811 #ifdef DBR_OUTPUT_SEQEND
2812 	    DBR_OUTPUT_SEQEND (file);
2813 #endif
2814 	    final_sequence = 0;
2815 
2816 	    /* If the insn requiring the delay slot was a CALL_INSN, the
2817 	       insns in the delay slot are actually executed before the
2818 	       called function.  Hence we don't preserve any CC-setting
2819 	       actions in these insns and the CC must be marked as being
2820 	       clobbered by the function.  */
2821 	    if (CALL_P (seq->insn (0)))
2822 	      {
2823 		CC_STATUS_INIT;
2824 	      }
2825 	    break;
2826 	  }
2827 
2828 	/* We have a real machine instruction as rtl.  */
2829 
2830 	body = PATTERN (insn);
2831 
2832 #ifdef HAVE_cc0
2833 	set = single_set (insn);
2834 
2835 	/* Check for redundant test and compare instructions
2836 	   (when the condition codes are already set up as desired).
2837 	   This is done only when optimizing; if not optimizing,
2838 	   it should be possible for the user to alter a variable
2839 	   with the debugger in between statements
2840 	   and the next statement should reexamine the variable
2841 	   to compute the condition codes.  */
2842 
2843 	if (optimize_p)
2844 	  {
2845 	    if (set
2846 		&& GET_CODE (SET_DEST (set)) == CC0
2847 		&& insn != last_ignored_compare)
2848 	      {
2849 		rtx src1, src2;
2850 		if (GET_CODE (SET_SRC (set)) == SUBREG)
2851 		  SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2852 
2853 		src1 = SET_SRC (set);
2854 		src2 = NULL_RTX;
2855 		if (GET_CODE (SET_SRC (set)) == COMPARE)
2856 		  {
2857 		    if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2858 		      XEXP (SET_SRC (set), 0)
2859 			= alter_subreg (&XEXP (SET_SRC (set), 0), true);
2860 		    if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2861 		      XEXP (SET_SRC (set), 1)
2862 			= alter_subreg (&XEXP (SET_SRC (set), 1), true);
2863 		    if (XEXP (SET_SRC (set), 1)
2864 			== CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2865 		      src2 = XEXP (SET_SRC (set), 0);
2866 		  }
2867 		if ((cc_status.value1 != 0
2868 		     && rtx_equal_p (src1, cc_status.value1))
2869 		    || (cc_status.value2 != 0
2870 			&& rtx_equal_p (src1, cc_status.value2))
2871 		    || (src2 != 0 && cc_status.value1 != 0
2872 		        && rtx_equal_p (src2, cc_status.value1))
2873 		    || (src2 != 0 && cc_status.value2 != 0
2874 			&& rtx_equal_p (src2, cc_status.value2)))
2875 		  {
2876 		    /* Don't delete insn if it has an addressing side-effect.  */
2877 		    if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2878 			/* or if anything in it is volatile.  */
2879 			&& ! volatile_refs_p (PATTERN (insn)))
2880 		      {
2881 			/* We don't really delete the insn; just ignore it.  */
2882 			last_ignored_compare = insn;
2883 			break;
2884 		      }
2885 		  }
2886 	      }
2887 	  }
2888 
2889 	/* If this is a conditional branch, maybe modify it
2890 	   if the cc's are in a nonstandard state
2891 	   so that it accomplishes the same thing that it would
2892 	   do straightforwardly if the cc's were set up normally.  */
2893 
2894 	if (cc_status.flags != 0
2895 	    && JUMP_P (insn)
2896 	    && GET_CODE (body) == SET
2897 	    && SET_DEST (body) == pc_rtx
2898 	    && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2899 	    && COMPARISON_P (XEXP (SET_SRC (body), 0))
2900 	    && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2901 	  {
2902 	    /* This function may alter the contents of its argument
2903 	       and clear some of the cc_status.flags bits.
2904 	       It may also return 1 meaning condition now always true
2905 	       or -1 meaning condition now always false
2906 	       or 2 meaning condition nontrivial but altered.  */
2907 	    int result = alter_cond (XEXP (SET_SRC (body), 0));
2908 	    /* If condition now has fixed value, replace the IF_THEN_ELSE
2909 	       with its then-operand or its else-operand.  */
2910 	    if (result == 1)
2911 	      SET_SRC (body) = XEXP (SET_SRC (body), 1);
2912 	    if (result == -1)
2913 	      SET_SRC (body) = XEXP (SET_SRC (body), 2);
2914 
2915 	    /* The jump is now either unconditional or a no-op.
2916 	       If it has become a no-op, don't try to output it.
2917 	       (It would not be recognized.)  */
2918 	    if (SET_SRC (body) == pc_rtx)
2919 	      {
2920 	        delete_insn (insn);
2921 		break;
2922 	      }
2923 	    else if (ANY_RETURN_P (SET_SRC (body)))
2924 	      /* Replace (set (pc) (return)) with (return).  */
2925 	      PATTERN (insn) = body = SET_SRC (body);
2926 
2927 	    /* Rerecognize the instruction if it has changed.  */
2928 	    if (result != 0)
2929 	      INSN_CODE (insn) = -1;
2930 	  }
2931 
2932 	/* If this is a conditional trap, maybe modify it if the cc's
2933 	   are in a nonstandard state so that it accomplishes the same
2934 	   thing that it would do straightforwardly if the cc's were
2935 	   set up normally.  */
2936 	if (cc_status.flags != 0
2937 	    && NONJUMP_INSN_P (insn)
2938 	    && GET_CODE (body) == TRAP_IF
2939 	    && COMPARISON_P (TRAP_CONDITION (body))
2940 	    && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2941 	  {
2942 	    /* This function may alter the contents of its argument
2943 	       and clear some of the cc_status.flags bits.
2944 	       It may also return 1 meaning condition now always true
2945 	       or -1 meaning condition now always false
2946 	       or 2 meaning condition nontrivial but altered.  */
2947 	    int result = alter_cond (TRAP_CONDITION (body));
2948 
2949 	    /* If TRAP_CONDITION has become always false, delete the
2950 	       instruction.  */
2951 	    if (result == -1)
2952 	      {
2953 		delete_insn (insn);
2954 		break;
2955 	      }
2956 
2957 	    /* If TRAP_CONDITION has become always true, replace
2958 	       TRAP_CONDITION with const_true_rtx.  */
2959 	    if (result == 1)
2960 	      TRAP_CONDITION (body) = const_true_rtx;
2961 
2962 	    /* Rerecognize the instruction if it has changed.  */
2963 	    if (result != 0)
2964 	      INSN_CODE (insn) = -1;
2965 	  }
2966 
2967 	/* Make same adjustments to instructions that examine the
2968 	   condition codes without jumping and instructions that
2969 	   handle conditional moves (if this machine has either one).  */
2970 
2971 	if (cc_status.flags != 0
2972 	    && set != 0)
2973 	  {
2974 	    rtx cond_rtx, then_rtx, else_rtx;
2975 
2976 	    if (!JUMP_P (insn)
2977 		&& GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2978 	      {
2979 		cond_rtx = XEXP (SET_SRC (set), 0);
2980 		then_rtx = XEXP (SET_SRC (set), 1);
2981 		else_rtx = XEXP (SET_SRC (set), 2);
2982 	      }
2983 	    else
2984 	      {
2985 		cond_rtx = SET_SRC (set);
2986 		then_rtx = const_true_rtx;
2987 		else_rtx = const0_rtx;
2988 	      }
2989 
2990 	    if (COMPARISON_P (cond_rtx)
2991 		&& XEXP (cond_rtx, 0) == cc0_rtx)
2992 	      {
2993 		int result;
2994 		result = alter_cond (cond_rtx);
2995 		if (result == 1)
2996 		  validate_change (insn, &SET_SRC (set), then_rtx, 0);
2997 		else if (result == -1)
2998 		  validate_change (insn, &SET_SRC (set), else_rtx, 0);
2999 		else if (result == 2)
3000 		  INSN_CODE (insn) = -1;
3001 		if (SET_DEST (set) == SET_SRC (set))
3002 		  delete_insn (insn);
3003 	      }
3004 	  }
3005 
3006 #endif
3007 
3008 #ifdef HAVE_peephole
3009 	/* Do machine-specific peephole optimizations if desired.  */
3010 
3011 	if (optimize_p && !flag_no_peephole && !nopeepholes)
3012 	  {
3013 	    rtx_insn *next = peephole (insn);
3014 	    /* When peepholing, if there were notes within the peephole,
3015 	       emit them before the peephole.  */
3016 	    if (next != 0 && next != NEXT_INSN (insn))
3017 	      {
3018 		rtx_insn *note, *prev = PREV_INSN (insn);
3019 
3020 		for (note = NEXT_INSN (insn); note != next;
3021 		     note = NEXT_INSN (note))
3022 		  final_scan_insn (note, file, optimize_p, nopeepholes, seen);
3023 
3024 		/* Put the notes in the proper position for a later
3025 		   rescan.  For example, the SH target can do this
3026 		   when generating a far jump in a delayed branch
3027 		   sequence.  */
3028 		note = NEXT_INSN (insn);
3029 		SET_PREV_INSN (note) = prev;
3030 		SET_NEXT_INSN (prev) = note;
3031 		SET_NEXT_INSN (PREV_INSN (next)) = insn;
3032 		SET_PREV_INSN (insn) = PREV_INSN (next);
3033 		SET_NEXT_INSN (insn) = next;
3034 		SET_PREV_INSN (next) = insn;
3035 	      }
3036 
3037 	    /* PEEPHOLE might have changed this.  */
3038 	    body = PATTERN (insn);
3039 	  }
3040 #endif
3041 
3042 	/* Try to recognize the instruction.
3043 	   If successful, verify that the operands satisfy the
3044 	   constraints for the instruction.  Crash if they don't,
3045 	   since `reload' should have changed them so that they do.  */
3046 
3047 	insn_code_number = recog_memoized (insn);
3048 	cleanup_subreg_operands (insn);
3049 
3050 	/* Dump the insn in the assembly for debugging (-dAP).
3051 	   If the final dump is requested as slim RTL, dump slim
3052 	   RTL to the assembly file also.  */
3053 	if (flag_dump_rtl_in_asm)
3054 	  {
3055 	    print_rtx_head = ASM_COMMENT_START;
3056 	    if (! (dump_flags & TDF_SLIM))
3057 	      print_rtl_single (asm_out_file, insn);
3058 	    else
3059 	      dump_insn_slim (asm_out_file, insn);
3060 	    print_rtx_head = "";
3061 	  }
3062 
3063 	if (! constrain_operands_cached (insn, 1))
3064 	  fatal_insn_not_found (insn);
3065 
3066 	/* Some target machines need to prescan each insn before
3067 	   it is output.  */
3068 
3069 #ifdef FINAL_PRESCAN_INSN
3070 	FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3071 #endif
3072 
3073 	if (targetm.have_conditional_execution ()
3074 	    && GET_CODE (PATTERN (insn)) == COND_EXEC)
3075 	  current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3076 
3077 #ifdef HAVE_cc0
3078 	cc_prev_status = cc_status;
3079 
3080 	/* Update `cc_status' for this instruction.
3081 	   The instruction's output routine may change it further.
3082 	   If the output routine for a jump insn needs to depend
3083 	   on the cc status, it should look at cc_prev_status.  */
3084 
3085 	NOTICE_UPDATE_CC (body, insn);
3086 #endif
3087 
3088 	current_output_insn = debug_insn = insn;
3089 
3090 	/* Find the proper template for this insn.  */
3091 	templ = get_insn_template (insn_code_number, insn);
3092 
3093 	/* If the C code returns 0, it means that it is a jump insn
3094 	   which follows a deleted test insn, and that test insn
3095 	   needs to be reinserted.  */
3096 	if (templ == 0)
3097 	  {
3098 	    rtx_insn *prev;
3099 
3100 	    gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3101 
3102 	    /* We have already processed the notes between the setter and
3103 	       the user.  Make sure we don't process them again, this is
3104 	       particularly important if one of the notes is a block
3105 	       scope note or an EH note.  */
3106 	    for (prev = insn;
3107 		 prev != last_ignored_compare;
3108 		 prev = PREV_INSN (prev))
3109 	      {
3110 		if (NOTE_P (prev))
3111 		  delete_insn (prev);	/* Use delete_note.  */
3112 	      }
3113 
3114 	    return prev;
3115 	  }
3116 
3117 	/* If the template is the string "#", it means that this insn must
3118 	   be split.  */
3119 	if (templ[0] == '#' && templ[1] == '\0')
3120 	  {
3121 	    rtx_insn *new_rtx = try_split (body, insn, 0);
3122 
3123 	    /* If we didn't split the insn, go away.  */
3124 	    if (new_rtx == insn && PATTERN (new_rtx) == body)
3125 	      fatal_insn ("could not split insn", insn);
3126 
3127 	    /* If we have a length attribute, this instruction should have
3128 	       been split in shorten_branches, to ensure that we would have
3129 	       valid length info for the splitees.  */
3130 	    gcc_assert (!HAVE_ATTR_length);
3131 
3132 	    return new_rtx;
3133 	  }
3134 
3135 	/* ??? This will put the directives in the wrong place if
3136 	   get_insn_template outputs assembly directly.  However calling it
3137 	   before get_insn_template breaks if the insns is split.  */
3138 	if (targetm.asm_out.unwind_emit_before_insn
3139 	    && targetm.asm_out.unwind_emit)
3140 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3141 
3142 	if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
3143 	  {
3144 	    rtx x = call_from_call_insn (call_insn);
3145 	    x = XEXP (x, 0);
3146 	    if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3147 	      {
3148 		tree t;
3149 		x = XEXP (x, 0);
3150 		t = SYMBOL_REF_DECL (x);
3151 		if (t)
3152 		  assemble_external (t);
3153 	      }
3154 	    if (!DECL_IGNORED_P (current_function_decl))
3155 	      debug_hooks->var_location (insn);
3156 	  }
3157 
3158 	/* Output assembler code from the template.  */
3159 	output_asm_insn (templ, recog_data.operand);
3160 
3161 	/* Some target machines need to postscan each insn after
3162 	   it is output.  */
3163 	if (targetm.asm_out.final_postscan_insn)
3164 	  targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3165 					       recog_data.n_operands);
3166 
3167 	if (!targetm.asm_out.unwind_emit_before_insn
3168 	    && targetm.asm_out.unwind_emit)
3169 	  targetm.asm_out.unwind_emit (asm_out_file, insn);
3170 
3171 	current_output_insn = debug_insn = 0;
3172       }
3173     }
3174   return NEXT_INSN (insn);
3175 }
3176 
3177 /* Return whether a source line note needs to be emitted before INSN.
3178    Sets IS_STMT to TRUE if the line should be marked as a possible
3179    breakpoint location.  */
3180 
3181 static bool
3182 notice_source_line (rtx_insn *insn, bool *is_stmt)
3183 {
3184   const char *filename;
3185   int linenum;
3186 
3187   if (override_filename)
3188     {
3189       filename = override_filename;
3190       linenum = override_linenum;
3191     }
3192   else if (INSN_HAS_LOCATION (insn))
3193     {
3194       expanded_location xloc = insn_location (insn);
3195       filename = xloc.file;
3196       linenum = xloc.line;
3197     }
3198   else
3199     {
3200       filename = NULL;
3201       linenum = 0;
3202     }
3203 
3204   if (filename == NULL)
3205     return false;
3206 
3207   if (force_source_line
3208       || filename != last_filename
3209       || last_linenum != linenum)
3210     {
3211       force_source_line = false;
3212       last_filename = filename;
3213       last_linenum = linenum;
3214       last_discriminator = discriminator;
3215       *is_stmt = true;
3216       high_block_linenum = MAX (last_linenum, high_block_linenum);
3217       high_function_linenum = MAX (last_linenum, high_function_linenum);
3218       return true;
3219     }
3220 
3221   if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3222     {
3223       /* If the discriminator changed, but the line number did not,
3224          output the line table entry with is_stmt false so the
3225          debugger does not treat this as a breakpoint location.  */
3226       last_discriminator = discriminator;
3227       *is_stmt = false;
3228       return true;
3229     }
3230 
3231   return false;
3232 }
3233 
3234 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3235    directly to the desired hard register.  */
3236 
3237 void
3238 cleanup_subreg_operands (rtx_insn *insn)
3239 {
3240   int i;
3241   bool changed = false;
3242   extract_insn_cached (insn);
3243   for (i = 0; i < recog_data.n_operands; i++)
3244     {
3245       /* The following test cannot use recog_data.operand when testing
3246 	 for a SUBREG: the underlying object might have been changed
3247 	 already if we are inside a match_operator expression that
3248 	 matches the else clause.  Instead we test the underlying
3249 	 expression directly.  */
3250       if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3251 	{
3252 	  recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3253 	  changed = true;
3254 	}
3255       else if (GET_CODE (recog_data.operand[i]) == PLUS
3256 	       || GET_CODE (recog_data.operand[i]) == MULT
3257 	       || MEM_P (recog_data.operand[i]))
3258 	recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3259     }
3260 
3261   for (i = 0; i < recog_data.n_dups; i++)
3262     {
3263       if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3264 	{
3265 	  *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3266 	  changed = true;
3267 	}
3268       else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3269 	       || GET_CODE (*recog_data.dup_loc[i]) == MULT
3270 	       || MEM_P (*recog_data.dup_loc[i]))
3271 	*recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3272     }
3273   if (changed)
3274     df_insn_rescan (insn);
3275 }
3276 
3277 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3278    the thing it is a subreg of.  Do it anyway if FINAL_P.  */
3279 
3280 rtx
3281 alter_subreg (rtx *xp, bool final_p)
3282 {
3283   rtx x = *xp;
3284   rtx y = SUBREG_REG (x);
3285 
3286   /* simplify_subreg does not remove subreg from volatile references.
3287      We are required to.  */
3288   if (MEM_P (y))
3289     {
3290       int offset = SUBREG_BYTE (x);
3291 
3292       /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3293 	 contains 0 instead of the proper offset.  See simplify_subreg.  */
3294       if (offset == 0
3295 	  && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3296         {
3297           int difference = GET_MODE_SIZE (GET_MODE (y))
3298 			   - GET_MODE_SIZE (GET_MODE (x));
3299           if (WORDS_BIG_ENDIAN)
3300             offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3301           if (BYTES_BIG_ENDIAN)
3302             offset += difference % UNITS_PER_WORD;
3303         }
3304 
3305       if (final_p)
3306 	*xp = adjust_address (y, GET_MODE (x), offset);
3307       else
3308 	*xp = adjust_address_nv (y, GET_MODE (x), offset);
3309     }
3310   else if (REG_P (y) && HARD_REGISTER_P (y))
3311     {
3312       rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3313 				     SUBREG_BYTE (x));
3314 
3315       if (new_rtx != 0)
3316 	*xp = new_rtx;
3317       else if (final_p && REG_P (y))
3318 	{
3319 	  /* Simplify_subreg can't handle some REG cases, but we have to.  */
3320 	  unsigned int regno;
3321 	  HOST_WIDE_INT offset;
3322 
3323 	  regno = subreg_regno (x);
3324 	  if (subreg_lowpart_p (x))
3325 	    offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3326 	  else
3327 	    offset = SUBREG_BYTE (x);
3328 	  *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3329 	}
3330     }
3331 
3332   return *xp;
3333 }
3334 
3335 /* Do alter_subreg on all the SUBREGs contained in X.  */
3336 
3337 static rtx
3338 walk_alter_subreg (rtx *xp, bool *changed)
3339 {
3340   rtx x = *xp;
3341   switch (GET_CODE (x))
3342     {
3343     case PLUS:
3344     case MULT:
3345     case AND:
3346       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3347       XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3348       break;
3349 
3350     case MEM:
3351     case ZERO_EXTEND:
3352       XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3353       break;
3354 
3355     case SUBREG:
3356       *changed = true;
3357       return alter_subreg (xp, true);
3358 
3359     default:
3360       break;
3361     }
3362 
3363   return *xp;
3364 }
3365 
3366 #ifdef HAVE_cc0
3367 
3368 /* Given BODY, the body of a jump instruction, alter the jump condition
3369    as required by the bits that are set in cc_status.flags.
3370    Not all of the bits there can be handled at this level in all cases.
3371 
3372    The value is normally 0.
3373    1 means that the condition has become always true.
3374    -1 means that the condition has become always false.
3375    2 means that COND has been altered.  */
3376 
3377 static int
3378 alter_cond (rtx cond)
3379 {
3380   int value = 0;
3381 
3382   if (cc_status.flags & CC_REVERSED)
3383     {
3384       value = 2;
3385       PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3386     }
3387 
3388   if (cc_status.flags & CC_INVERTED)
3389     {
3390       value = 2;
3391       PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3392     }
3393 
3394   if (cc_status.flags & CC_NOT_POSITIVE)
3395     switch (GET_CODE (cond))
3396       {
3397       case LE:
3398       case LEU:
3399       case GEU:
3400 	/* Jump becomes unconditional.  */
3401 	return 1;
3402 
3403       case GT:
3404       case GTU:
3405       case LTU:
3406 	/* Jump becomes no-op.  */
3407 	return -1;
3408 
3409       case GE:
3410 	PUT_CODE (cond, EQ);
3411 	value = 2;
3412 	break;
3413 
3414       case LT:
3415 	PUT_CODE (cond, NE);
3416 	value = 2;
3417 	break;
3418 
3419       default:
3420 	break;
3421       }
3422 
3423   if (cc_status.flags & CC_NOT_NEGATIVE)
3424     switch (GET_CODE (cond))
3425       {
3426       case GE:
3427       case GEU:
3428 	/* Jump becomes unconditional.  */
3429 	return 1;
3430 
3431       case LT:
3432       case LTU:
3433 	/* Jump becomes no-op.  */
3434 	return -1;
3435 
3436       case LE:
3437       case LEU:
3438 	PUT_CODE (cond, EQ);
3439 	value = 2;
3440 	break;
3441 
3442       case GT:
3443       case GTU:
3444 	PUT_CODE (cond, NE);
3445 	value = 2;
3446 	break;
3447 
3448       default:
3449 	break;
3450       }
3451 
3452   if (cc_status.flags & CC_NO_OVERFLOW)
3453     switch (GET_CODE (cond))
3454       {
3455       case GEU:
3456 	/* Jump becomes unconditional.  */
3457 	return 1;
3458 
3459       case LEU:
3460 	PUT_CODE (cond, EQ);
3461 	value = 2;
3462 	break;
3463 
3464       case GTU:
3465 	PUT_CODE (cond, NE);
3466 	value = 2;
3467 	break;
3468 
3469       case LTU:
3470 	/* Jump becomes no-op.  */
3471 	return -1;
3472 
3473       default:
3474 	break;
3475       }
3476 
3477   if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3478     switch (GET_CODE (cond))
3479       {
3480       default:
3481 	gcc_unreachable ();
3482 
3483       case NE:
3484 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3485 	value = 2;
3486 	break;
3487 
3488       case EQ:
3489 	PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3490 	value = 2;
3491 	break;
3492       }
3493 
3494   if (cc_status.flags & CC_NOT_SIGNED)
3495     /* The flags are valid if signed condition operators are converted
3496        to unsigned.  */
3497     switch (GET_CODE (cond))
3498       {
3499       case LE:
3500 	PUT_CODE (cond, LEU);
3501 	value = 2;
3502 	break;
3503 
3504       case LT:
3505 	PUT_CODE (cond, LTU);
3506 	value = 2;
3507 	break;
3508 
3509       case GT:
3510 	PUT_CODE (cond, GTU);
3511 	value = 2;
3512 	break;
3513 
3514       case GE:
3515 	PUT_CODE (cond, GEU);
3516 	value = 2;
3517 	break;
3518 
3519       default:
3520 	break;
3521       }
3522 
3523   return value;
3524 }
3525 #endif
3526 
3527 /* Report inconsistency between the assembler template and the operands.
3528    In an `asm', it's the user's fault; otherwise, the compiler's fault.  */
3529 
3530 void
3531 output_operand_lossage (const char *cmsgid, ...)
3532 {
3533   char *fmt_string;
3534   char *new_message;
3535   const char *pfx_str;
3536   va_list ap;
3537 
3538   va_start (ap, cmsgid);
3539 
3540   pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3541   fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3542   new_message = xvasprintf (fmt_string, ap);
3543 
3544   if (this_is_asm_operands)
3545     error_for_asm (this_is_asm_operands, "%s", new_message);
3546   else
3547     internal_error ("%s", new_message);
3548 
3549   free (fmt_string);
3550   free (new_message);
3551   va_end (ap);
3552 }
3553 
3554 /* Output of assembler code from a template, and its subroutines.  */
3555 
3556 /* Annotate the assembly with a comment describing the pattern and
3557    alternative used.  */
3558 
3559 static void
3560 output_asm_name (void)
3561 {
3562   if (debug_insn)
3563     {
3564       int num = INSN_CODE (debug_insn);
3565       fprintf (asm_out_file, "\t%s %d\t%s",
3566 	       ASM_COMMENT_START, INSN_UID (debug_insn),
3567 	       insn_data[num].name);
3568       if (insn_data[num].n_alternatives > 1)
3569 	fprintf (asm_out_file, "/%d", which_alternative + 1);
3570 
3571       if (HAVE_ATTR_length)
3572 	fprintf (asm_out_file, "\t[length = %d]",
3573 		 get_attr_length (debug_insn));
3574 
3575       /* Clear this so only the first assembler insn
3576 	 of any rtl insn will get the special comment for -dp.  */
3577       debug_insn = 0;
3578     }
3579 }
3580 
3581 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3582    or its address, return that expr .  Set *PADDRESSP to 1 if the expr
3583    corresponds to the address of the object and 0 if to the object.  */
3584 
3585 static tree
3586 get_mem_expr_from_op (rtx op, int *paddressp)
3587 {
3588   tree expr;
3589   int inner_addressp;
3590 
3591   *paddressp = 0;
3592 
3593   if (REG_P (op))
3594     return REG_EXPR (op);
3595   else if (!MEM_P (op))
3596     return 0;
3597 
3598   if (MEM_EXPR (op) != 0)
3599     return MEM_EXPR (op);
3600 
3601   /* Otherwise we have an address, so indicate it and look at the address.  */
3602   *paddressp = 1;
3603   op = XEXP (op, 0);
3604 
3605   /* First check if we have a decl for the address, then look at the right side
3606      if it is a PLUS.  Otherwise, strip off arithmetic and keep looking.
3607      But don't allow the address to itself be indirect.  */
3608   if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3609     return expr;
3610   else if (GET_CODE (op) == PLUS
3611 	   && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3612     return expr;
3613 
3614   while (UNARY_P (op)
3615 	 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3616     op = XEXP (op, 0);
3617 
3618   expr = get_mem_expr_from_op (op, &inner_addressp);
3619   return inner_addressp ? 0 : expr;
3620 }
3621 
3622 /* Output operand names for assembler instructions.  OPERANDS is the
3623    operand vector, OPORDER is the order to write the operands, and NOPS
3624    is the number of operands to write.  */
3625 
3626 static void
3627 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3628 {
3629   int wrote = 0;
3630   int i;
3631 
3632   for (i = 0; i < nops; i++)
3633     {
3634       int addressp;
3635       rtx op = operands[oporder[i]];
3636       tree expr = get_mem_expr_from_op (op, &addressp);
3637 
3638       fprintf (asm_out_file, "%c%s",
3639 	       wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3640       wrote = 1;
3641       if (expr)
3642 	{
3643 	  fprintf (asm_out_file, "%s",
3644 		   addressp ? "*" : "");
3645 	  print_mem_expr (asm_out_file, expr);
3646 	  wrote = 1;
3647 	}
3648       else if (REG_P (op) && ORIGINAL_REGNO (op)
3649 	       && ORIGINAL_REGNO (op) != REGNO (op))
3650 	fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3651     }
3652 }
3653 
3654 #ifdef ASSEMBLER_DIALECT
3655 /* Helper function to parse assembler dialects in the asm string.
3656    This is called from output_asm_insn and asm_fprintf.  */
3657 static const char *
3658 do_assembler_dialects (const char *p, int *dialect)
3659 {
3660   char c = *(p - 1);
3661 
3662   switch (c)
3663     {
3664     case '{':
3665       {
3666         int i;
3667 
3668         if (*dialect)
3669           output_operand_lossage ("nested assembly dialect alternatives");
3670         else
3671           *dialect = 1;
3672 
3673         /* If we want the first dialect, do nothing.  Otherwise, skip
3674            DIALECT_NUMBER of strings ending with '|'.  */
3675         for (i = 0; i < dialect_number; i++)
3676           {
3677             while (*p && *p != '}')
3678 	      {
3679 		if (*p == '|')
3680 		  {
3681 		    p++;
3682 		    break;
3683 		  }
3684 
3685 		/* Skip over any character after a percent sign.  */
3686 		if (*p == '%')
3687 		  p++;
3688 		if (*p)
3689 		  p++;
3690 	      }
3691 
3692             if (*p == '}')
3693 	      break;
3694           }
3695 
3696         if (*p == '\0')
3697           output_operand_lossage ("unterminated assembly dialect alternative");
3698       }
3699       break;
3700 
3701     case '|':
3702       if (*dialect)
3703         {
3704           /* Skip to close brace.  */
3705           do
3706             {
3707 	      if (*p == '\0')
3708 		{
3709 		  output_operand_lossage ("unterminated assembly dialect alternative");
3710 		  break;
3711 		}
3712 
3713 	      /* Skip over any character after a percent sign.  */
3714 	      if (*p == '%' && p[1])
3715 		{
3716 		  p += 2;
3717 		  continue;
3718 		}
3719 
3720 	      if (*p++ == '}')
3721 		break;
3722             }
3723           while (1);
3724 
3725           *dialect = 0;
3726         }
3727       else
3728         putc (c, asm_out_file);
3729       break;
3730 
3731     case '}':
3732       if (! *dialect)
3733         putc (c, asm_out_file);
3734       *dialect = 0;
3735       break;
3736     default:
3737       gcc_unreachable ();
3738     }
3739 
3740   return p;
3741 }
3742 #endif
3743 
3744 /* Output text from TEMPLATE to the assembler output file,
3745    obeying %-directions to substitute operands taken from
3746    the vector OPERANDS.
3747 
3748    %N (for N a digit) means print operand N in usual manner.
3749    %lN means require operand N to be a CODE_LABEL or LABEL_REF
3750       and print the label name with no punctuation.
3751    %cN means require operand N to be a constant
3752       and print the constant expression with no punctuation.
3753    %aN means expect operand N to be a memory address
3754       (not a memory reference!) and print a reference
3755       to that address.
3756    %nN means expect operand N to be a constant
3757       and print a constant expression for minus the value
3758       of the operand, with no other punctuation.  */
3759 
3760 void
3761 output_asm_insn (const char *templ, rtx *operands)
3762 {
3763   const char *p;
3764   int c;
3765 #ifdef ASSEMBLER_DIALECT
3766   int dialect = 0;
3767 #endif
3768   int oporder[MAX_RECOG_OPERANDS];
3769   char opoutput[MAX_RECOG_OPERANDS];
3770   int ops = 0;
3771 
3772   /* An insn may return a null string template
3773      in a case where no assembler code is needed.  */
3774   if (*templ == 0)
3775     return;
3776 
3777   memset (opoutput, 0, sizeof opoutput);
3778   p = templ;
3779   putc ('\t', asm_out_file);
3780 
3781 #ifdef ASM_OUTPUT_OPCODE
3782   ASM_OUTPUT_OPCODE (asm_out_file, p);
3783 #endif
3784 
3785   while ((c = *p++))
3786     switch (c)
3787       {
3788       case '\n':
3789 	if (flag_verbose_asm)
3790 	  output_asm_operand_names (operands, oporder, ops);
3791 	if (flag_print_asm_name)
3792 	  output_asm_name ();
3793 
3794 	ops = 0;
3795 	memset (opoutput, 0, sizeof opoutput);
3796 
3797 	putc (c, asm_out_file);
3798 #ifdef ASM_OUTPUT_OPCODE
3799 	while ((c = *p) == '\t')
3800 	  {
3801 	    putc (c, asm_out_file);
3802 	    p++;
3803 	  }
3804 	ASM_OUTPUT_OPCODE (asm_out_file, p);
3805 #endif
3806 	break;
3807 
3808 #ifdef ASSEMBLER_DIALECT
3809       case '{':
3810       case '}':
3811       case '|':
3812 	p = do_assembler_dialects (p, &dialect);
3813 	break;
3814 #endif
3815 
3816       case '%':
3817 	/* %% outputs a single %.  %{, %} and %| print {, } and | respectively
3818 	   if ASSEMBLER_DIALECT defined and these characters have a special
3819 	   meaning as dialect delimiters.*/
3820 	if (*p == '%'
3821 #ifdef ASSEMBLER_DIALECT
3822 	    || *p == '{' || *p == '}' || *p == '|'
3823 #endif
3824 	    )
3825 	  {
3826 	    putc (*p, asm_out_file);
3827 	    p++;
3828 	  }
3829 	/* %= outputs a number which is unique to each insn in the entire
3830 	   compilation.  This is useful for making local labels that are
3831 	   referred to more than once in a given insn.  */
3832 	else if (*p == '=')
3833 	  {
3834 	    p++;
3835 	    fprintf (asm_out_file, "%d", insn_counter);
3836 	  }
3837 	/* % followed by a letter and some digits
3838 	   outputs an operand in a special way depending on the letter.
3839 	   Letters `acln' are implemented directly.
3840 	   Other letters are passed to `output_operand' so that
3841 	   the TARGET_PRINT_OPERAND hook can define them.  */
3842 	else if (ISALPHA (*p))
3843 	  {
3844 	    int letter = *p++;
3845 	    unsigned long opnum;
3846 	    char *endptr;
3847 
3848 	    opnum = strtoul (p, &endptr, 10);
3849 
3850 	    if (endptr == p)
3851 	      output_operand_lossage ("operand number missing "
3852 				      "after %%-letter");
3853 	    else if (this_is_asm_operands && opnum >= insn_noperands)
3854 	      output_operand_lossage ("operand number out of range");
3855 	    else if (letter == 'l')
3856 	      output_asm_label (operands[opnum]);
3857 	    else if (letter == 'a')
3858 	      output_address (operands[opnum]);
3859 	    else if (letter == 'c')
3860 	      {
3861 		if (CONSTANT_ADDRESS_P (operands[opnum]))
3862 		  output_addr_const (asm_out_file, operands[opnum]);
3863 		else
3864 		  output_operand (operands[opnum], 'c');
3865 	      }
3866 	    else if (letter == 'n')
3867 	      {
3868 		if (CONST_INT_P (operands[opnum]))
3869 		  fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3870 			   - INTVAL (operands[opnum]));
3871 		else
3872 		  {
3873 		    putc ('-', asm_out_file);
3874 		    output_addr_const (asm_out_file, operands[opnum]);
3875 		  }
3876 	      }
3877 	    else
3878 	      output_operand (operands[opnum], letter);
3879 
3880 	    if (!opoutput[opnum])
3881 	      oporder[ops++] = opnum;
3882 	    opoutput[opnum] = 1;
3883 
3884 	    p = endptr;
3885 	    c = *p;
3886 	  }
3887 	/* % followed by a digit outputs an operand the default way.  */
3888 	else if (ISDIGIT (*p))
3889 	  {
3890 	    unsigned long opnum;
3891 	    char *endptr;
3892 
3893 	    opnum = strtoul (p, &endptr, 10);
3894 	    if (this_is_asm_operands && opnum >= insn_noperands)
3895 	      output_operand_lossage ("operand number out of range");
3896 	    else
3897 	      output_operand (operands[opnum], 0);
3898 
3899 	    if (!opoutput[opnum])
3900 	      oporder[ops++] = opnum;
3901 	    opoutput[opnum] = 1;
3902 
3903 	    p = endptr;
3904 	    c = *p;
3905 	  }
3906 	/* % followed by punctuation: output something for that
3907 	   punctuation character alone, with no operand.  The
3908 	   TARGET_PRINT_OPERAND hook decides what is actually done.  */
3909 	else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3910 	  output_operand (NULL_RTX, *p++);
3911 	else
3912 	  output_operand_lossage ("invalid %%-code");
3913 	break;
3914 
3915       default:
3916 	putc (c, asm_out_file);
3917       }
3918 
3919   /* Write out the variable names for operands, if we know them.  */
3920   if (flag_verbose_asm)
3921     output_asm_operand_names (operands, oporder, ops);
3922   if (flag_print_asm_name)
3923     output_asm_name ();
3924 
3925   putc ('\n', asm_out_file);
3926 }
3927 
3928 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol.  */
3929 
3930 void
3931 output_asm_label (rtx x)
3932 {
3933   char buf[256];
3934 
3935   if (GET_CODE (x) == LABEL_REF)
3936     x = LABEL_REF_LABEL (x);
3937   if (LABEL_P (x)
3938       || (NOTE_P (x)
3939 	  && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3940     ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3941   else
3942     output_operand_lossage ("'%%l' operand isn't a label");
3943 
3944   assemble_name (asm_out_file, buf);
3945 }
3946 
3947 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external.  */
3948 
3949 void
3950 mark_symbol_refs_as_used (rtx x)
3951 {
3952   subrtx_iterator::array_type array;
3953   FOR_EACH_SUBRTX (iter, array, x, ALL)
3954     {
3955       const_rtx x = *iter;
3956       if (GET_CODE (x) == SYMBOL_REF)
3957 	if (tree t = SYMBOL_REF_DECL (x))
3958 	  assemble_external (t);
3959     }
3960 }
3961 
3962 /* Print operand X using machine-dependent assembler syntax.
3963    CODE is a non-digit that preceded the operand-number in the % spec,
3964    such as 'z' if the spec was `%z3'.  CODE is 0 if there was no char
3965    between the % and the digits.
3966    When CODE is a non-letter, X is 0.
3967 
3968    The meanings of the letters are machine-dependent and controlled
3969    by TARGET_PRINT_OPERAND.  */
3970 
3971 void
3972 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3973 {
3974   if (x && GET_CODE (x) == SUBREG)
3975     x = alter_subreg (&x, true);
3976 
3977   /* X must not be a pseudo reg.  */
3978   if (!targetm.no_register_allocation)
3979     gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3980 
3981   targetm.asm_out.print_operand (asm_out_file, x, code);
3982 
3983   if (x == NULL_RTX)
3984     return;
3985 
3986   mark_symbol_refs_as_used (x);
3987 }
3988 
3989 /* Print a memory reference operand for address X using
3990    machine-dependent assembler syntax.  */
3991 
3992 void
3993 output_address (rtx x)
3994 {
3995   bool changed = false;
3996   walk_alter_subreg (&x, &changed);
3997   targetm.asm_out.print_operand_address (asm_out_file, x);
3998 }
3999 
4000 /* Print an integer constant expression in assembler syntax.
4001    Addition and subtraction are the only arithmetic
4002    that may appear in these expressions.  */
4003 
4004 void
4005 output_addr_const (FILE *file, rtx x)
4006 {
4007   char buf[256];
4008 
4009  restart:
4010   switch (GET_CODE (x))
4011     {
4012     case PC:
4013       putc ('.', file);
4014       break;
4015 
4016     case SYMBOL_REF:
4017       if (SYMBOL_REF_DECL (x))
4018 	assemble_external (SYMBOL_REF_DECL (x));
4019 #ifdef ASM_OUTPUT_SYMBOL_REF
4020       ASM_OUTPUT_SYMBOL_REF (file, x);
4021 #else
4022       assemble_name (file, XSTR (x, 0));
4023 #endif
4024       break;
4025 
4026     case LABEL_REF:
4027       x = LABEL_REF_LABEL (x);
4028       /* Fall through.  */
4029     case CODE_LABEL:
4030       ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4031 #ifdef ASM_OUTPUT_LABEL_REF
4032       ASM_OUTPUT_LABEL_REF (file, buf);
4033 #else
4034       assemble_name (file, buf);
4035 #endif
4036       break;
4037 
4038     case CONST_INT:
4039       fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4040       break;
4041 
4042     case CONST:
4043       /* This used to output parentheses around the expression,
4044 	 but that does not work on the 386 (either ATT or BSD assembler).  */
4045       output_addr_const (file, XEXP (x, 0));
4046       break;
4047 
4048     case CONST_WIDE_INT:
4049       /* We do not know the mode here so we have to use a round about
4050 	 way to build a wide-int to get it printed properly.  */
4051       {
4052 	wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4053 					   CONST_WIDE_INT_NUNITS (x),
4054 					   CONST_WIDE_INT_NUNITS (x)
4055 					   * HOST_BITS_PER_WIDE_INT,
4056 					   false);
4057 	print_decs (w, file);
4058       }
4059       break;
4060 
4061     case CONST_DOUBLE:
4062       if (CONST_DOUBLE_AS_INT_P (x))
4063 	{
4064 	  /* We can use %d if the number is one word and positive.  */
4065 	  if (CONST_DOUBLE_HIGH (x))
4066 	    fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4067 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4068 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4069 	  else if (CONST_DOUBLE_LOW (x) < 0)
4070 	    fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4071 		     (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4072 	  else
4073 	    fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4074 	}
4075       else
4076 	/* We can't handle floating point constants;
4077 	   PRINT_OPERAND must handle them.  */
4078 	output_operand_lossage ("floating constant misused");
4079       break;
4080 
4081     case CONST_FIXED:
4082       fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4083       break;
4084 
4085     case PLUS:
4086       /* Some assemblers need integer constants to appear last (eg masm).  */
4087       if (CONST_INT_P (XEXP (x, 0)))
4088 	{
4089 	  output_addr_const (file, XEXP (x, 1));
4090 	  if (INTVAL (XEXP (x, 0)) >= 0)
4091 	    fprintf (file, "+");
4092 	  output_addr_const (file, XEXP (x, 0));
4093 	}
4094       else
4095 	{
4096 	  output_addr_const (file, XEXP (x, 0));
4097 	  if (!CONST_INT_P (XEXP (x, 1))
4098 	      || INTVAL (XEXP (x, 1)) >= 0)
4099 	    fprintf (file, "+");
4100 	  output_addr_const (file, XEXP (x, 1));
4101 	}
4102       break;
4103 
4104     case MINUS:
4105       /* Avoid outputting things like x-x or x+5-x,
4106 	 since some assemblers can't handle that.  */
4107       x = simplify_subtraction (x);
4108       if (GET_CODE (x) != MINUS)
4109 	goto restart;
4110 
4111       output_addr_const (file, XEXP (x, 0));
4112       fprintf (file, "-");
4113       if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4114 	  || GET_CODE (XEXP (x, 1)) == PC
4115 	  || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4116 	output_addr_const (file, XEXP (x, 1));
4117       else
4118 	{
4119 	  fputs (targetm.asm_out.open_paren, file);
4120 	  output_addr_const (file, XEXP (x, 1));
4121 	  fputs (targetm.asm_out.close_paren, file);
4122 	}
4123       break;
4124 
4125     case ZERO_EXTEND:
4126     case SIGN_EXTEND:
4127     case SUBREG:
4128     case TRUNCATE:
4129       output_addr_const (file, XEXP (x, 0));
4130       break;
4131 
4132     default:
4133       if (targetm.asm_out.output_addr_const_extra (file, x))
4134 	break;
4135 
4136       output_operand_lossage ("invalid expression as operand");
4137     }
4138 }
4139 
4140 /* Output a quoted string.  */
4141 
4142 void
4143 output_quoted_string (FILE *asm_file, const char *string)
4144 {
4145 #ifdef OUTPUT_QUOTED_STRING
4146   OUTPUT_QUOTED_STRING (asm_file, string);
4147 #else
4148   char c;
4149 
4150   putc ('\"', asm_file);
4151   while ((c = *string++) != 0)
4152     {
4153       if (ISPRINT (c))
4154 	{
4155 	  if (c == '\"' || c == '\\')
4156 	    putc ('\\', asm_file);
4157 	  putc (c, asm_file);
4158 	}
4159       else
4160 	fprintf (asm_file, "\\%03o", (unsigned char) c);
4161     }
4162   putc ('\"', asm_file);
4163 #endif
4164 }
4165 
4166 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4167 
4168 void
4169 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4170 {
4171   char buf[2 + CHAR_BIT * sizeof (value) / 4];
4172   if (value == 0)
4173     putc ('0', f);
4174   else
4175     {
4176       char *p = buf + sizeof (buf);
4177       do
4178         *--p = "0123456789abcdef"[value % 16];
4179       while ((value /= 16) != 0);
4180       *--p = 'x';
4181       *--p = '0';
4182       fwrite (p, 1, buf + sizeof (buf) - p, f);
4183     }
4184 }
4185 
4186 /* Internal function that prints an unsigned long in decimal in reverse.
4187    The output string IS NOT null-terminated. */
4188 
4189 static int
4190 sprint_ul_rev (char *s, unsigned long value)
4191 {
4192   int i = 0;
4193   do
4194     {
4195       s[i] = "0123456789"[value % 10];
4196       value /= 10;
4197       i++;
4198       /* alternate version, without modulo */
4199       /* oldval = value; */
4200       /* value /= 10; */
4201       /* s[i] = "0123456789" [oldval - 10*value]; */
4202       /* i++ */
4203     }
4204   while (value != 0);
4205   return i;
4206 }
4207 
4208 /* Write an unsigned long as decimal to a file, fast. */
4209 
4210 void
4211 fprint_ul (FILE *f, unsigned long value)
4212 {
4213   /* python says: len(str(2**64)) == 20 */
4214   char s[20];
4215   int i;
4216 
4217   i = sprint_ul_rev (s, value);
4218 
4219   /* It's probably too small to bother with string reversal and fputs. */
4220   do
4221     {
4222       i--;
4223       putc (s[i], f);
4224     }
4225   while (i != 0);
4226 }
4227 
4228 /* Write an unsigned long as decimal to a string, fast.
4229    s must be wide enough to not overflow, at least 21 chars.
4230    Returns the length of the string (without terminating '\0'). */
4231 
4232 int
4233 sprint_ul (char *s, unsigned long value)
4234 {
4235   int len;
4236   char tmp_c;
4237   int i;
4238   int j;
4239 
4240   len = sprint_ul_rev (s, value);
4241   s[len] = '\0';
4242 
4243   /* Reverse the string. */
4244   i = 0;
4245   j = len - 1;
4246   while (i < j)
4247     {
4248       tmp_c = s[i];
4249       s[i] = s[j];
4250       s[j] = tmp_c;
4251       i++; j--;
4252     }
4253 
4254   return len;
4255 }
4256 
4257 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4258    %R prints the value of REGISTER_PREFIX.
4259    %L prints the value of LOCAL_LABEL_PREFIX.
4260    %U prints the value of USER_LABEL_PREFIX.
4261    %I prints the value of IMMEDIATE_PREFIX.
4262    %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4263    Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4264 
4265    We handle alternate assembler dialects here, just like output_asm_insn.  */
4266 
4267 void
4268 asm_fprintf (FILE *file, const char *p, ...)
4269 {
4270   char buf[10];
4271   char *q, c;
4272 #ifdef ASSEMBLER_DIALECT
4273   int dialect = 0;
4274 #endif
4275   va_list argptr;
4276 
4277   va_start (argptr, p);
4278 
4279   buf[0] = '%';
4280 
4281   while ((c = *p++))
4282     switch (c)
4283       {
4284 #ifdef ASSEMBLER_DIALECT
4285       case '{':
4286       case '}':
4287       case '|':
4288 	p = do_assembler_dialects (p, &dialect);
4289 	break;
4290 #endif
4291 
4292       case '%':
4293 	c = *p++;
4294 	q = &buf[1];
4295 	while (strchr ("-+ #0", c))
4296 	  {
4297 	    *q++ = c;
4298 	    c = *p++;
4299 	  }
4300 	while (ISDIGIT (c) || c == '.')
4301 	  {
4302 	    *q++ = c;
4303 	    c = *p++;
4304 	  }
4305 	switch (c)
4306 	  {
4307 	  case '%':
4308 	    putc ('%', file);
4309 	    break;
4310 
4311 	  case 'd':  case 'i':  case 'u':
4312 	  case 'x':  case 'X':  case 'o':
4313 	  case 'c':
4314 	    *q++ = c;
4315 	    *q = 0;
4316 	    fprintf (file, buf, va_arg (argptr, int));
4317 	    break;
4318 
4319 	  case 'w':
4320 	    /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4321 	       'o' cases, but we do not check for those cases.  It
4322 	       means that the value is a HOST_WIDE_INT, which may be
4323 	       either `long' or `long long'.  */
4324 	    memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4325 	    q += strlen (HOST_WIDE_INT_PRINT);
4326 	    *q++ = *p++;
4327 	    *q = 0;
4328 	    fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4329 	    break;
4330 
4331 	  case 'l':
4332 	    *q++ = c;
4333 #ifdef HAVE_LONG_LONG
4334 	    if (*p == 'l')
4335 	      {
4336 		*q++ = *p++;
4337 		*q++ = *p++;
4338 		*q = 0;
4339 		fprintf (file, buf, va_arg (argptr, long long));
4340 	      }
4341 	    else
4342 #endif
4343 	      {
4344 		*q++ = *p++;
4345 		*q = 0;
4346 		fprintf (file, buf, va_arg (argptr, long));
4347 	      }
4348 
4349 	    break;
4350 
4351 	  case 's':
4352 	    *q++ = c;
4353 	    *q = 0;
4354 	    fprintf (file, buf, va_arg (argptr, char *));
4355 	    break;
4356 
4357 	  case 'O':
4358 #ifdef ASM_OUTPUT_OPCODE
4359 	    ASM_OUTPUT_OPCODE (asm_out_file, p);
4360 #endif
4361 	    break;
4362 
4363 	  case 'R':
4364 #ifdef REGISTER_PREFIX
4365 	    fprintf (file, "%s", REGISTER_PREFIX);
4366 #endif
4367 	    break;
4368 
4369 	  case 'I':
4370 #ifdef IMMEDIATE_PREFIX
4371 	    fprintf (file, "%s", IMMEDIATE_PREFIX);
4372 #endif
4373 	    break;
4374 
4375 	  case 'L':
4376 #ifdef LOCAL_LABEL_PREFIX
4377 	    fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4378 #endif
4379 	    break;
4380 
4381 	  case 'U':
4382 	    fputs (user_label_prefix, file);
4383 	    break;
4384 
4385 #ifdef ASM_FPRINTF_EXTENSIONS
4386 	    /* Uppercase letters are reserved for general use by asm_fprintf
4387 	       and so are not available to target specific code.  In order to
4388 	       prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4389 	       they are defined here.  As they get turned into real extensions
4390 	       to asm_fprintf they should be removed from this list.  */
4391 	  case 'A': case 'B': case 'C': case 'D': case 'E':
4392 	  case 'F': case 'G': case 'H': case 'J': case 'K':
4393 	  case 'M': case 'N': case 'P': case 'Q': case 'S':
4394 	  case 'T': case 'V': case 'W': case 'Y': case 'Z':
4395 	    break;
4396 
4397 	  ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4398 #endif
4399 	  default:
4400 	    gcc_unreachable ();
4401 	  }
4402 	break;
4403 
4404       default:
4405 	putc (c, file);
4406       }
4407   va_end (argptr);
4408 }
4409 
4410 /* Return nonzero if this function has no function calls.  */
4411 
4412 int
4413 leaf_function_p (void)
4414 {
4415   rtx_insn *insn;
4416 
4417   /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4418      functions even if they call mcount.  */
4419   if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4420     return 0;
4421 
4422   for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4423     {
4424       if (CALL_P (insn)
4425 	  && ! SIBLING_CALL_P (insn))
4426 	return 0;
4427       if (NONJUMP_INSN_P (insn)
4428 	  && GET_CODE (PATTERN (insn)) == SEQUENCE
4429 	  && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4430 	  && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4431 	return 0;
4432     }
4433 
4434   return 1;
4435 }
4436 
4437 /* Return 1 if branch is a forward branch.
4438    Uses insn_shuid array, so it works only in the final pass.  May be used by
4439    output templates to customary add branch prediction hints.
4440  */
4441 int
4442 final_forward_branch_p (rtx_insn *insn)
4443 {
4444   int insn_id, label_id;
4445 
4446   gcc_assert (uid_shuid);
4447   insn_id = INSN_SHUID (insn);
4448   label_id = INSN_SHUID (JUMP_LABEL (insn));
4449   /* We've hit some insns that does not have id information available.  */
4450   gcc_assert (insn_id && label_id);
4451   return insn_id < label_id;
4452 }
4453 
4454 /* On some machines, a function with no call insns
4455    can run faster if it doesn't create its own register window.
4456    When output, the leaf function should use only the "output"
4457    registers.  Ordinarily, the function would be compiled to use
4458    the "input" registers to find its arguments; it is a candidate
4459    for leaf treatment if it uses only the "input" registers.
4460    Leaf function treatment means renumbering so the function
4461    uses the "output" registers instead.  */
4462 
4463 #ifdef LEAF_REGISTERS
4464 
4465 /* Return 1 if this function uses only the registers that can be
4466    safely renumbered.  */
4467 
4468 int
4469 only_leaf_regs_used (void)
4470 {
4471   int i;
4472   const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4473 
4474   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4475     if ((df_regs_ever_live_p (i) || global_regs[i])
4476 	&& ! permitted_reg_in_leaf_functions[i])
4477       return 0;
4478 
4479   if (crtl->uses_pic_offset_table
4480       && pic_offset_table_rtx != 0
4481       && REG_P (pic_offset_table_rtx)
4482       && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4483     return 0;
4484 
4485   return 1;
4486 }
4487 
4488 /* Scan all instructions and renumber all registers into those
4489    available in leaf functions.  */
4490 
4491 static void
4492 leaf_renumber_regs (rtx_insn *first)
4493 {
4494   rtx_insn *insn;
4495 
4496   /* Renumber only the actual patterns.
4497      The reg-notes can contain frame pointer refs,
4498      and renumbering them could crash, and should not be needed.  */
4499   for (insn = first; insn; insn = NEXT_INSN (insn))
4500     if (INSN_P (insn))
4501       leaf_renumber_regs_insn (PATTERN (insn));
4502 }
4503 
4504 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4505    available in leaf functions.  */
4506 
4507 void
4508 leaf_renumber_regs_insn (rtx in_rtx)
4509 {
4510   int i, j;
4511   const char *format_ptr;
4512 
4513   if (in_rtx == 0)
4514     return;
4515 
4516   /* Renumber all input-registers into output-registers.
4517      renumbered_regs would be 1 for an output-register;
4518      they  */
4519 
4520   if (REG_P (in_rtx))
4521     {
4522       int newreg;
4523 
4524       /* Don't renumber the same reg twice.  */
4525       if (in_rtx->used)
4526 	return;
4527 
4528       newreg = REGNO (in_rtx);
4529       /* Don't try to renumber pseudo regs.  It is possible for a pseudo reg
4530 	 to reach here as part of a REG_NOTE.  */
4531       if (newreg >= FIRST_PSEUDO_REGISTER)
4532 	{
4533 	  in_rtx->used = 1;
4534 	  return;
4535 	}
4536       newreg = LEAF_REG_REMAP (newreg);
4537       gcc_assert (newreg >= 0);
4538       df_set_regs_ever_live (REGNO (in_rtx), false);
4539       df_set_regs_ever_live (newreg, true);
4540       SET_REGNO (in_rtx, newreg);
4541       in_rtx->used = 1;
4542     }
4543 
4544   if (INSN_P (in_rtx))
4545     {
4546       /* Inside a SEQUENCE, we find insns.
4547 	 Renumber just the patterns of these insns,
4548 	 just as we do for the top-level insns.  */
4549       leaf_renumber_regs_insn (PATTERN (in_rtx));
4550       return;
4551     }
4552 
4553   format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4554 
4555   for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4556     switch (*format_ptr++)
4557       {
4558       case 'e':
4559 	leaf_renumber_regs_insn (XEXP (in_rtx, i));
4560 	break;
4561 
4562       case 'E':
4563 	if (NULL != XVEC (in_rtx, i))
4564 	  {
4565 	    for (j = 0; j < XVECLEN (in_rtx, i); j++)
4566 	      leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4567 	  }
4568 	break;
4569 
4570       case 'S':
4571       case 's':
4572       case '0':
4573       case 'i':
4574       case 'w':
4575       case 'n':
4576       case 'u':
4577 	break;
4578 
4579       default:
4580 	gcc_unreachable ();
4581       }
4582 }
4583 #endif
4584 
4585 /* Turn the RTL into assembly.  */
4586 static unsigned int
4587 rest_of_handle_final (void)
4588 {
4589   const char *fnname = get_fnname_from_decl (current_function_decl);
4590 
4591   assemble_start_function (current_function_decl, fnname);
4592   final_start_function (get_insns (), asm_out_file, optimize);
4593   final (get_insns (), asm_out_file, optimize);
4594   if (flag_ipa_ra)
4595     collect_fn_hard_reg_usage ();
4596   final_end_function ();
4597 
4598   /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4599      directive that closes the procedure descriptor.  Similarly, for x64 SEH.
4600      Otherwise it's not strictly necessary, but it doesn't hurt either.  */
4601   output_function_exception_table (fnname);
4602 
4603   assemble_end_function (current_function_decl, fnname);
4604 
4605   user_defined_section_attribute = false;
4606 
4607   /* Free up reg info memory.  */
4608   free_reg_info ();
4609 
4610   if (! quiet_flag)
4611     fflush (asm_out_file);
4612 
4613   /* Write DBX symbols if requested.  */
4614 
4615   /* Note that for those inline functions where we don't initially
4616      know for certain that we will be generating an out-of-line copy,
4617      the first invocation of this routine (rest_of_compilation) will
4618      skip over this code by doing a `goto exit_rest_of_compilation;'.
4619      Later on, wrapup_global_declarations will (indirectly) call
4620      rest_of_compilation again for those inline functions that need
4621      to have out-of-line copies generated.  During that call, we
4622      *will* be routed past here.  */
4623 
4624   timevar_push (TV_SYMOUT);
4625   if (!DECL_IGNORED_P (current_function_decl))
4626     debug_hooks->function_decl (current_function_decl);
4627   timevar_pop (TV_SYMOUT);
4628 
4629   /* Release the blocks that are linked to DECL_INITIAL() to free the memory.  */
4630   DECL_INITIAL (current_function_decl) = error_mark_node;
4631 
4632   if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4633       && targetm.have_ctors_dtors)
4634     targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4635 				 decl_init_priority_lookup
4636 				   (current_function_decl));
4637   if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4638       && targetm.have_ctors_dtors)
4639     targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4640 				decl_fini_priority_lookup
4641 				  (current_function_decl));
4642   return 0;
4643 }
4644 
4645 namespace {
4646 
4647 const pass_data pass_data_final =
4648 {
4649   RTL_PASS, /* type */
4650   "final", /* name */
4651   OPTGROUP_NONE, /* optinfo_flags */
4652   TV_FINAL, /* tv_id */
4653   0, /* properties_required */
4654   0, /* properties_provided */
4655   0, /* properties_destroyed */
4656   0, /* todo_flags_start */
4657   0, /* todo_flags_finish */
4658 };
4659 
4660 class pass_final : public rtl_opt_pass
4661 {
4662 public:
4663   pass_final (gcc::context *ctxt)
4664     : rtl_opt_pass (pass_data_final, ctxt)
4665   {}
4666 
4667   /* opt_pass methods: */
4668   virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4669 
4670 }; // class pass_final
4671 
4672 } // anon namespace
4673 
4674 rtl_opt_pass *
4675 make_pass_final (gcc::context *ctxt)
4676 {
4677   return new pass_final (ctxt);
4678 }
4679 
4680 
4681 static unsigned int
4682 rest_of_handle_shorten_branches (void)
4683 {
4684   /* Shorten branches.  */
4685   shorten_branches (get_insns ());
4686   return 0;
4687 }
4688 
4689 namespace {
4690 
4691 const pass_data pass_data_shorten_branches =
4692 {
4693   RTL_PASS, /* type */
4694   "shorten", /* name */
4695   OPTGROUP_NONE, /* optinfo_flags */
4696   TV_SHORTEN_BRANCH, /* tv_id */
4697   0, /* properties_required */
4698   0, /* properties_provided */
4699   0, /* properties_destroyed */
4700   0, /* todo_flags_start */
4701   0, /* todo_flags_finish */
4702 };
4703 
4704 class pass_shorten_branches : public rtl_opt_pass
4705 {
4706 public:
4707   pass_shorten_branches (gcc::context *ctxt)
4708     : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4709   {}
4710 
4711   /* opt_pass methods: */
4712   virtual unsigned int execute (function *)
4713     {
4714       return rest_of_handle_shorten_branches ();
4715     }
4716 
4717 }; // class pass_shorten_branches
4718 
4719 } // anon namespace
4720 
4721 rtl_opt_pass *
4722 make_pass_shorten_branches (gcc::context *ctxt)
4723 {
4724   return new pass_shorten_branches (ctxt);
4725 }
4726 
4727 
4728 static unsigned int
4729 rest_of_clean_state (void)
4730 {
4731   rtx_insn *insn, *next;
4732   FILE *final_output = NULL;
4733   int save_unnumbered = flag_dump_unnumbered;
4734   int save_noaddr = flag_dump_noaddr;
4735 
4736   if (flag_dump_final_insns)
4737     {
4738       final_output = fopen (flag_dump_final_insns, "a");
4739       if (!final_output)
4740 	{
4741 	  error ("could not open final insn dump file %qs: %m",
4742 		 flag_dump_final_insns);
4743 	  flag_dump_final_insns = NULL;
4744 	}
4745       else
4746 	{
4747 	  flag_dump_noaddr = flag_dump_unnumbered = 1;
4748 	  if (flag_compare_debug_opt || flag_compare_debug)
4749 	    dump_flags |= TDF_NOUID;
4750 	  dump_function_header (final_output, current_function_decl,
4751 				dump_flags);
4752 	  final_insns_dump_p = true;
4753 
4754 	  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4755 	    if (LABEL_P (insn))
4756 	      INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4757 	    else
4758 	      {
4759 		if (NOTE_P (insn))
4760 		  set_block_for_insn (insn, NULL);
4761 		INSN_UID (insn) = 0;
4762 	      }
4763 	}
4764     }
4765 
4766   /* It is very important to decompose the RTL instruction chain here:
4767      debug information keeps pointing into CODE_LABEL insns inside the function
4768      body.  If these remain pointing to the other insns, we end up preserving
4769      whole RTL chain and attached detailed debug info in memory.  */
4770   for (insn = get_insns (); insn; insn = next)
4771     {
4772       next = NEXT_INSN (insn);
4773       SET_NEXT_INSN (insn) = NULL;
4774       SET_PREV_INSN (insn) = NULL;
4775 
4776       if (final_output
4777 	  && (!NOTE_P (insn) ||
4778 	      (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4779 	       && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4780 	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4781 	       && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4782 	       && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4783 	print_rtl_single (final_output, insn);
4784     }
4785 
4786   if (final_output)
4787     {
4788       flag_dump_noaddr = save_noaddr;
4789       flag_dump_unnumbered = save_unnumbered;
4790       final_insns_dump_p = false;
4791 
4792       if (fclose (final_output))
4793 	{
4794 	  error ("could not close final insn dump file %qs: %m",
4795 		 flag_dump_final_insns);
4796 	  flag_dump_final_insns = NULL;
4797 	}
4798     }
4799 
4800   /* In case the function was not output,
4801      don't leave any temporary anonymous types
4802      queued up for sdb output.  */
4803 #ifdef SDB_DEBUGGING_INFO
4804   if (write_symbols == SDB_DEBUG)
4805     sdbout_types (NULL_TREE);
4806 #endif
4807 
4808   flag_rerun_cse_after_global_opts = 0;
4809   reload_completed = 0;
4810   epilogue_completed = 0;
4811 #ifdef STACK_REGS
4812   regstack_completed = 0;
4813 #endif
4814 
4815   /* Clear out the insn_length contents now that they are no
4816      longer valid.  */
4817   init_insn_lengths ();
4818 
4819   /* Show no temporary slots allocated.  */
4820   init_temp_slots ();
4821 
4822   free_bb_for_insn ();
4823 
4824   delete_tree_ssa ();
4825 
4826   /* We can reduce stack alignment on call site only when we are sure that
4827      the function body just produced will be actually used in the final
4828      executable.  */
4829   if (decl_binds_to_current_def_p (current_function_decl))
4830     {
4831       unsigned int pref = crtl->preferred_stack_boundary;
4832       if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4833         pref = crtl->stack_alignment_needed;
4834       cgraph_node::rtl_info (current_function_decl)
4835 	->preferred_incoming_stack_boundary = pref;
4836     }
4837 
4838   /* Make sure volatile mem refs aren't considered valid operands for
4839      arithmetic insns.  We must call this here if this is a nested inline
4840      function, since the above code leaves us in the init_recog state,
4841      and the function context push/pop code does not save/restore volatile_ok.
4842 
4843      ??? Maybe it isn't necessary for expand_start_function to call this
4844      anymore if we do it here?  */
4845 
4846   init_recog_no_volatile ();
4847 
4848   /* We're done with this function.  Free up memory if we can.  */
4849   free_after_parsing (cfun);
4850   free_after_compilation (cfun);
4851   return 0;
4852 }
4853 
4854 namespace {
4855 
4856 const pass_data pass_data_clean_state =
4857 {
4858   RTL_PASS, /* type */
4859   "*clean_state", /* name */
4860   OPTGROUP_NONE, /* optinfo_flags */
4861   TV_FINAL, /* tv_id */
4862   0, /* properties_required */
4863   0, /* properties_provided */
4864   PROP_rtl, /* properties_destroyed */
4865   0, /* todo_flags_start */
4866   0, /* todo_flags_finish */
4867 };
4868 
4869 class pass_clean_state : public rtl_opt_pass
4870 {
4871 public:
4872   pass_clean_state (gcc::context *ctxt)
4873     : rtl_opt_pass (pass_data_clean_state, ctxt)
4874   {}
4875 
4876   /* opt_pass methods: */
4877   virtual unsigned int execute (function *)
4878     {
4879       return rest_of_clean_state ();
4880     }
4881 
4882 }; // class pass_clean_state
4883 
4884 } // anon namespace
4885 
4886 rtl_opt_pass *
4887 make_pass_clean_state (gcc::context *ctxt)
4888 {
4889   return new pass_clean_state (ctxt);
4890 }
4891 
4892 /* Return true if INSN is a call to the the current function.  */
4893 
4894 static bool
4895 self_recursive_call_p (rtx_insn *insn)
4896 {
4897   tree fndecl = get_call_fndecl (insn);
4898   return (fndecl == current_function_decl
4899 	  && decl_binds_to_current_def_p (fndecl));
4900 }
4901 
4902 /* Collect hard register usage for the current function.  */
4903 
4904 static void
4905 collect_fn_hard_reg_usage (void)
4906 {
4907   rtx_insn *insn;
4908 #ifdef STACK_REGS
4909   int i;
4910 #endif
4911   struct cgraph_rtl_info *node;
4912   HARD_REG_SET function_used_regs;
4913 
4914   /* ??? To be removed when all the ports have been fixed.  */
4915   if (!targetm.call_fusage_contains_non_callee_clobbers)
4916     return;
4917 
4918   CLEAR_HARD_REG_SET (function_used_regs);
4919 
4920   for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4921     {
4922       HARD_REG_SET insn_used_regs;
4923 
4924       if (!NONDEBUG_INSN_P (insn))
4925 	continue;
4926 
4927       if (CALL_P (insn)
4928 	  && !self_recursive_call_p (insn))
4929 	{
4930 	  if (!get_call_reg_set_usage (insn, &insn_used_regs,
4931 				       call_used_reg_set))
4932 	    return;
4933 
4934 	  IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4935 	}
4936 
4937       find_all_hard_reg_sets (insn, &insn_used_regs, false);
4938       IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4939     }
4940 
4941   /* Be conservative - mark fixed and global registers as used.  */
4942   IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4943 
4944 #ifdef STACK_REGS
4945   /* Handle STACK_REGS conservatively, since the df-framework does not
4946      provide accurate information for them.  */
4947 
4948   for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4949     SET_HARD_REG_BIT (function_used_regs, i);
4950 #endif
4951 
4952   /* The information we have gathered is only interesting if it exposes a
4953      register from the call_used_regs that is not used in this function.  */
4954   if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4955     return;
4956 
4957   node = cgraph_node::rtl_info (current_function_decl);
4958   gcc_assert (node != NULL);
4959 
4960   COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4961   node->function_used_regs_valid = 1;
4962 }
4963 
4964 /* Get the declaration of the function called by INSN.  */
4965 
4966 static tree
4967 get_call_fndecl (rtx_insn *insn)
4968 {
4969   rtx note, datum;
4970 
4971   note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4972   if (note == NULL_RTX)
4973     return NULL_TREE;
4974 
4975   datum = XEXP (note, 0);
4976   if (datum != NULL_RTX)
4977     return SYMBOL_REF_DECL (datum);
4978 
4979   return NULL_TREE;
4980 }
4981 
4982 /* Return the cgraph_rtl_info of the function called by INSN.  Returns NULL for
4983    call targets that can be overwritten.  */
4984 
4985 static struct cgraph_rtl_info *
4986 get_call_cgraph_rtl_info (rtx_insn *insn)
4987 {
4988   tree fndecl;
4989 
4990   if (insn == NULL_RTX)
4991     return NULL;
4992 
4993   fndecl = get_call_fndecl (insn);
4994   if (fndecl == NULL_TREE
4995       || !decl_binds_to_current_def_p (fndecl))
4996     return NULL;
4997 
4998   return cgraph_node::rtl_info (fndecl);
4999 }
5000 
5001 /* Find hard registers used by function call instruction INSN, and return them
5002    in REG_SET.  Return DEFAULT_SET in REG_SET if not found.  */
5003 
5004 bool
5005 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5006 			HARD_REG_SET default_set)
5007 {
5008   if (flag_ipa_ra)
5009     {
5010       struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5011       if (node != NULL
5012 	  && node->function_used_regs_valid)
5013 	{
5014 	  COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5015 	  AND_HARD_REG_SET (*reg_set, default_set);
5016 	  return true;
5017 	}
5018     }
5019 
5020   COPY_HARD_REG_SET (*reg_set, default_set);
5021   return false;
5022 }
5023