1 /* Convert RTL to assembler code and output it, for GNU compiler. 2 Copyright (C) 1987-2020 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This is the final pass of the compiler. 21 It looks at the rtl code for a function and outputs assembler code. 22 23 Call `final_start_function' to output the assembler code for function entry, 24 `final' to output assembler code for some RTL code, 25 `final_end_function' to output assembler code for function exit. 26 If a function is compiled in several pieces, each piece is 27 output separately with `final'. 28 29 Some optimizations are also done at this level. 30 Move instructions that were made unnecessary by good register allocation 31 are detected and omitted from the output. (Though most of these 32 are removed by the last jump pass.) 33 34 Instructions to set the condition codes are omitted when it can be 35 seen that the condition codes already had the desired values. 36 37 In some cases it is sufficient if the inherited condition codes 38 have related values, but this may require the following insn 39 (the one that tests the condition codes) to be modified. 40 41 The code for the function prologue and epilogue are generated 42 directly in assembler by the target functions function_prologue and 43 function_epilogue. Those instructions never exist as rtl. */ 44 45 #include "config.h" 46 #define INCLUDE_ALGORITHM /* reverse */ 47 #include "system.h" 48 #include "coretypes.h" 49 #include "backend.h" 50 #include "target.h" 51 #include "rtl.h" 52 #include "tree.h" 53 #include "cfghooks.h" 54 #include "df.h" 55 #include "memmodel.h" 56 #include "tm_p.h" 57 #include "insn-config.h" 58 #include "regs.h" 59 #include "emit-rtl.h" 60 #include "recog.h" 61 #include "cgraph.h" 62 #include "tree-pretty-print.h" /* for dump_function_header */ 63 #include "varasm.h" 64 #include "insn-attr.h" 65 #include "conditions.h" 66 #include "flags.h" 67 #include "output.h" 68 #include "except.h" 69 #include "rtl-error.h" 70 #include "toplev.h" /* exact_log2, floor_log2 */ 71 #include "reload.h" 72 #include "intl.h" 73 #include "cfgrtl.h" 74 #include "debug.h" 75 #include "tree-pass.h" 76 #include "tree-ssa.h" 77 #include "cfgloop.h" 78 #include "stringpool.h" 79 #include "attribs.h" 80 #include "asan.h" 81 #include "rtl-iter.h" 82 #include "print-rtl.h" 83 #include "function-abi.h" 84 85 #ifdef XCOFF_DEBUGGING_INFO 86 #include "xcoffout.h" /* Needed for external data declarations. */ 87 #endif 88 89 #include "dwarf2out.h" 90 91 #ifdef DBX_DEBUGGING_INFO 92 #include "dbxout.h" 93 #endif 94 95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT. 96 So define a null default for it to save conditionalization later. */ 97 #ifndef CC_STATUS_INIT 98 #define CC_STATUS_INIT 99 #endif 100 101 /* Is the given character a logical line separator for the assembler? */ 102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR 103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';') 104 #endif 105 106 #ifndef JUMP_TABLES_IN_TEXT_SECTION 107 #define JUMP_TABLES_IN_TEXT_SECTION 0 108 #endif 109 110 /* Bitflags used by final_scan_insn. */ 111 #define SEEN_NOTE 1 112 #define SEEN_EMITTED 2 113 #define SEEN_NEXT_VIEW 4 114 115 /* Last insn processed by final_scan_insn. */ 116 static rtx_insn *debug_insn; 117 rtx_insn *current_output_insn; 118 119 /* Line number of last NOTE. */ 120 static int last_linenum; 121 122 /* Column number of last NOTE. */ 123 static int last_columnnum; 124 125 /* Discriminator written to assembly. */ 126 static int last_discriminator; 127 128 /* Discriminator to be written to assembly for current instruction. 129 Note: actual usage depends on loc_discriminator_kind setting. */ 130 static int discriminator; 131 static inline int compute_discriminator (location_t loc); 132 133 /* Discriminator identifying current basic block among others sharing 134 the same locus. */ 135 static int bb_discriminator; 136 137 /* Basic block discriminator for previous instruction. */ 138 static int last_bb_discriminator; 139 140 /* Highest line number in current block. */ 141 static int high_block_linenum; 142 143 /* Likewise for function. */ 144 static int high_function_linenum; 145 146 /* Filename of last NOTE. */ 147 static const char *last_filename; 148 149 /* Override filename, line and column number. */ 150 static const char *override_filename; 151 static int override_linenum; 152 static int override_columnnum; 153 static int override_discriminator; 154 155 /* Whether to force emission of a line note before the next insn. */ 156 static bool force_source_line = false; 157 158 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */ 159 160 /* Nonzero while outputting an `asm' with operands. 161 This means that inconsistencies are the user's fault, so don't die. 162 The precise value is the insn being output, to pass to error_for_asm. */ 163 const rtx_insn *this_is_asm_operands; 164 165 /* Number of operands of this insn, for an `asm' with operands. */ 166 static unsigned int insn_noperands; 167 168 /* Compare optimization flag. */ 169 170 static rtx last_ignored_compare = 0; 171 172 /* Assign a unique number to each insn that is output. 173 This can be used to generate unique local labels. */ 174 175 static int insn_counter = 0; 176 177 /* This variable contains machine-dependent flags (defined in tm.h) 178 set and examined by output routines 179 that describe how to interpret the condition codes properly. */ 180 181 CC_STATUS cc_status; 182 183 /* During output of an insn, this contains a copy of cc_status 184 from before the insn. */ 185 186 CC_STATUS cc_prev_status; 187 188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */ 189 190 static int block_depth; 191 192 /* Nonzero if have enabled APP processing of our assembler output. */ 193 194 static int app_on; 195 196 /* If we are outputting an insn sequence, this contains the sequence rtx. 197 Zero otherwise. */ 198 199 rtx_sequence *final_sequence; 200 201 #ifdef ASSEMBLER_DIALECT 202 203 /* Number of the assembler dialect to use, starting at 0. */ 204 static int dialect_number; 205 #endif 206 207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */ 208 rtx current_insn_predicate; 209 210 /* True if printing into -fdump-final-insns= dump. */ 211 bool final_insns_dump_p; 212 213 /* True if profile_function should be called, but hasn't been called yet. */ 214 static bool need_profile_function; 215 216 static int asm_insn_count (rtx); 217 static void profile_function (FILE *); 218 static void profile_after_prologue (FILE *); 219 static bool notice_source_line (rtx_insn *, bool *); 220 static rtx walk_alter_subreg (rtx *, bool *); 221 static void output_asm_name (void); 222 static void output_alternate_entry_point (FILE *, rtx_insn *); 223 static tree get_mem_expr_from_op (rtx, int *); 224 static void output_asm_operand_names (rtx *, int *, int); 225 #ifdef LEAF_REGISTERS 226 static void leaf_renumber_regs (rtx_insn *); 227 #endif 228 #if HAVE_cc0 229 static int alter_cond (rtx); 230 #endif 231 static int align_fuzz (rtx, rtx, int, unsigned); 232 static void collect_fn_hard_reg_usage (void); 233 234 /* Initialize data in final at the beginning of a compilation. */ 235 236 void 237 init_final (const char *filename ATTRIBUTE_UNUSED) 238 { 239 app_on = 0; 240 final_sequence = 0; 241 242 #ifdef ASSEMBLER_DIALECT 243 dialect_number = ASSEMBLER_DIALECT; 244 #endif 245 } 246 247 /* Default target function prologue and epilogue assembler output. 248 249 If not overridden for epilogue code, then the function body itself 250 contains return instructions wherever needed. */ 251 void 252 default_function_pro_epilogue (FILE *) 253 { 254 } 255 256 void 257 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED, 258 tree decl ATTRIBUTE_UNUSED, 259 bool new_is_cold ATTRIBUTE_UNUSED) 260 { 261 } 262 263 /* Default target hook that outputs nothing to a stream. */ 264 void 265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED) 266 { 267 } 268 269 /* Enable APP processing of subsequent output. 270 Used before the output from an `asm' statement. */ 271 272 void 273 app_enable (void) 274 { 275 if (! app_on) 276 { 277 fputs (ASM_APP_ON, asm_out_file); 278 app_on = 1; 279 } 280 } 281 282 /* Disable APP processing of subsequent output. 283 Called from varasm.c before most kinds of output. */ 284 285 void 286 app_disable (void) 287 { 288 if (app_on) 289 { 290 fputs (ASM_APP_OFF, asm_out_file); 291 app_on = 0; 292 } 293 } 294 295 /* Return the number of slots filled in the current 296 delayed branch sequence (we don't count the insn needing the 297 delay slot). Zero if not in a delayed branch sequence. */ 298 299 int 300 dbr_sequence_length (void) 301 { 302 if (final_sequence != 0) 303 return XVECLEN (final_sequence, 0) - 1; 304 else 305 return 0; 306 } 307 308 /* The next two pages contain routines used to compute the length of an insn 309 and to shorten branches. */ 310 311 /* Arrays for insn lengths, and addresses. The latter is referenced by 312 `insn_current_length'. */ 313 314 static int *insn_lengths; 315 316 vec<int> insn_addresses_; 317 318 /* Max uid for which the above arrays are valid. */ 319 static int insn_lengths_max_uid; 320 321 /* Address of insn being processed. Used by `insn_current_length'. */ 322 int insn_current_address; 323 324 /* Address of insn being processed in previous iteration. */ 325 int insn_last_address; 326 327 /* known invariant alignment of insn being processed. */ 328 int insn_current_align; 329 330 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)] 331 gives the next following alignment insn that increases the known 332 alignment, or NULL_RTX if there is no such insn. 333 For any alignment obtained this way, we can again index uid_align with 334 its uid to obtain the next following align that in turn increases the 335 alignment, till we reach NULL_RTX; the sequence obtained this way 336 for each insn we'll call the alignment chain of this insn in the following 337 comments. */ 338 339 static rtx *uid_align; 340 static int *uid_shuid; 341 static vec<align_flags> label_align; 342 343 /* Indicate that branch shortening hasn't yet been done. */ 344 345 void 346 init_insn_lengths (void) 347 { 348 if (uid_shuid) 349 { 350 free (uid_shuid); 351 uid_shuid = 0; 352 } 353 if (insn_lengths) 354 { 355 free (insn_lengths); 356 insn_lengths = 0; 357 insn_lengths_max_uid = 0; 358 } 359 if (HAVE_ATTR_length) 360 INSN_ADDRESSES_FREE (); 361 if (uid_align) 362 { 363 free (uid_align); 364 uid_align = 0; 365 } 366 } 367 368 /* Obtain the current length of an insn. If branch shortening has been done, 369 get its actual length. Otherwise, use FALLBACK_FN to calculate the 370 length. */ 371 static int 372 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *)) 373 { 374 rtx body; 375 int i; 376 int length = 0; 377 378 if (!HAVE_ATTR_length) 379 return 0; 380 381 if (insn_lengths_max_uid > INSN_UID (insn)) 382 return insn_lengths[INSN_UID (insn)]; 383 else 384 switch (GET_CODE (insn)) 385 { 386 case NOTE: 387 case BARRIER: 388 case CODE_LABEL: 389 case DEBUG_INSN: 390 return 0; 391 392 case CALL_INSN: 393 case JUMP_INSN: 394 length = fallback_fn (insn); 395 break; 396 397 case INSN: 398 body = PATTERN (insn); 399 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER) 400 return 0; 401 402 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) 403 length = asm_insn_count (body) * fallback_fn (insn); 404 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body)) 405 for (i = 0; i < seq->len (); i++) 406 length += get_attr_length_1 (seq->insn (i), fallback_fn); 407 else 408 length = fallback_fn (insn); 409 break; 410 411 default: 412 break; 413 } 414 415 #ifdef ADJUST_INSN_LENGTH 416 ADJUST_INSN_LENGTH (insn, length); 417 #endif 418 return length; 419 } 420 421 /* Obtain the current length of an insn. If branch shortening has been done, 422 get its actual length. Otherwise, get its maximum length. */ 423 int 424 get_attr_length (rtx_insn *insn) 425 { 426 return get_attr_length_1 (insn, insn_default_length); 427 } 428 429 /* Obtain the current length of an insn. If branch shortening has been done, 430 get its actual length. Otherwise, get its minimum length. */ 431 int 432 get_attr_min_length (rtx_insn *insn) 433 { 434 return get_attr_length_1 (insn, insn_min_length); 435 } 436 437 /* Code to handle alignment inside shorten_branches. */ 438 439 /* Here is an explanation how the algorithm in align_fuzz can give 440 proper results: 441 442 Call a sequence of instructions beginning with alignment point X 443 and continuing until the next alignment point `block X'. When `X' 444 is used in an expression, it means the alignment value of the 445 alignment point. 446 447 Call the distance between the start of the first insn of block X, and 448 the end of the last insn of block X `IX', for the `inner size of X'. 449 This is clearly the sum of the instruction lengths. 450 451 Likewise with the next alignment-delimited block following X, which we 452 shall call block Y. 453 454 Call the distance between the start of the first insn of block X, and 455 the start of the first insn of block Y `OX', for the `outer size of X'. 456 457 The estimated padding is then OX - IX. 458 459 OX can be safely estimated as 460 461 if (X >= Y) 462 OX = round_up(IX, Y) 463 else 464 OX = round_up(IX, X) + Y - X 465 466 Clearly est(IX) >= real(IX), because that only depends on the 467 instruction lengths, and those being overestimated is a given. 468 469 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so 470 we needn't worry about that when thinking about OX. 471 472 When X >= Y, the alignment provided by Y adds no uncertainty factor 473 for branch ranges starting before X, so we can just round what we have. 474 But when X < Y, we don't know anything about the, so to speak, 475 `middle bits', so we have to assume the worst when aligning up from an 476 address mod X to one mod Y, which is Y - X. */ 477 478 #ifndef LABEL_ALIGN 479 #define LABEL_ALIGN(LABEL) align_labels 480 #endif 481 482 #ifndef LOOP_ALIGN 483 #define LOOP_ALIGN(LABEL) align_loops 484 #endif 485 486 #ifndef LABEL_ALIGN_AFTER_BARRIER 487 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0 488 #endif 489 490 #ifndef JUMP_ALIGN 491 #define JUMP_ALIGN(LABEL) align_jumps 492 #endif 493 494 #ifndef ADDR_VEC_ALIGN 495 static int 496 final_addr_vec_align (rtx_jump_table_data *addr_vec) 497 { 498 int align = GET_MODE_SIZE (addr_vec->get_data_mode ()); 499 500 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT) 501 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT; 502 return exact_log2 (align); 503 504 } 505 506 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC) 507 #endif 508 509 #ifndef INSN_LENGTH_ALIGNMENT 510 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log 511 #endif 512 513 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)]) 514 515 static int min_labelno, max_labelno; 516 517 #define LABEL_TO_ALIGNMENT(LABEL) \ 518 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno]) 519 520 /* For the benefit of port specific code do this also as a function. */ 521 522 align_flags 523 label_to_alignment (rtx label) 524 { 525 if (CODE_LABEL_NUMBER (label) <= max_labelno) 526 return LABEL_TO_ALIGNMENT (label); 527 return align_flags (); 528 } 529 530 /* The differences in addresses 531 between a branch and its target might grow or shrink depending on 532 the alignment the start insn of the range (the branch for a forward 533 branch or the label for a backward branch) starts out on; if these 534 differences are used naively, they can even oscillate infinitely. 535 We therefore want to compute a 'worst case' address difference that 536 is independent of the alignment the start insn of the range end 537 up on, and that is at least as large as the actual difference. 538 The function align_fuzz calculates the amount we have to add to the 539 naively computed difference, by traversing the part of the alignment 540 chain of the start insn of the range that is in front of the end insn 541 of the range, and considering for each alignment the maximum amount 542 that it might contribute to a size increase. 543 544 For casesi tables, we also want to know worst case minimum amounts of 545 address difference, in case a machine description wants to introduce 546 some common offset that is added to all offsets in a table. 547 For this purpose, align_fuzz with a growth argument of 0 computes the 548 appropriate adjustment. */ 549 550 /* Compute the maximum delta by which the difference of the addresses of 551 START and END might grow / shrink due to a different address for start 552 which changes the size of alignment insns between START and END. 553 KNOWN_ALIGN_LOG is the alignment known for START. 554 GROWTH should be ~0 if the objective is to compute potential code size 555 increase, and 0 if the objective is to compute potential shrink. 556 The return value is undefined for any other value of GROWTH. */ 557 558 static int 559 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth) 560 { 561 int uid = INSN_UID (start); 562 rtx align_label; 563 int known_align = 1 << known_align_log; 564 int end_shuid = INSN_SHUID (end); 565 int fuzz = 0; 566 567 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid]) 568 { 569 int align_addr, new_align; 570 571 uid = INSN_UID (align_label); 572 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid]; 573 if (uid_shuid[uid] > end_shuid) 574 break; 575 align_flags alignment = LABEL_TO_ALIGNMENT (align_label); 576 new_align = 1 << alignment.levels[0].log; 577 if (new_align < known_align) 578 continue; 579 fuzz += (-align_addr ^ growth) & (new_align - known_align); 580 known_align = new_align; 581 } 582 return fuzz; 583 } 584 585 /* Compute a worst-case reference address of a branch so that it 586 can be safely used in the presence of aligned labels. Since the 587 size of the branch itself is unknown, the size of the branch is 588 not included in the range. I.e. for a forward branch, the reference 589 address is the end address of the branch as known from the previous 590 branch shortening pass, minus a value to account for possible size 591 increase due to alignment. For a backward branch, it is the start 592 address of the branch as known from the current pass, plus a value 593 to account for possible size increase due to alignment. 594 NB.: Therefore, the maximum offset allowed for backward branches needs 595 to exclude the branch size. */ 596 597 int 598 insn_current_reference_address (rtx_insn *branch) 599 { 600 rtx dest; 601 int seq_uid; 602 603 if (! INSN_ADDRESSES_SET_P ()) 604 return 0; 605 606 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch)); 607 seq_uid = INSN_UID (seq); 608 if (!jump_to_label_p (branch)) 609 /* This can happen for example on the PA; the objective is to know the 610 offset to address something in front of the start of the function. 611 Thus, we can treat it like a backward branch. 612 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than 613 any alignment we'd encounter, so we skip the call to align_fuzz. */ 614 return insn_current_address; 615 dest = JUMP_LABEL (branch); 616 617 /* BRANCH has no proper alignment chain set, so use SEQ. 618 BRANCH also has no INSN_SHUID. */ 619 if (INSN_SHUID (seq) < INSN_SHUID (dest)) 620 { 621 /* Forward branch. */ 622 return (insn_last_address + insn_lengths[seq_uid] 623 - align_fuzz (seq, dest, length_unit_log, ~0)); 624 } 625 else 626 { 627 /* Backward branch. */ 628 return (insn_current_address 629 + align_fuzz (dest, seq, length_unit_log, ~0)); 630 } 631 } 632 633 /* Compute branch alignments based on CFG profile. */ 634 635 unsigned int 636 compute_alignments (void) 637 { 638 basic_block bb; 639 align_flags max_alignment; 640 641 label_align.truncate (0); 642 643 max_labelno = max_label_num (); 644 min_labelno = get_first_label_num (); 645 label_align.safe_grow_cleared (max_labelno - min_labelno + 1); 646 647 /* If not optimizing or optimizing for size, don't assign any alignments. */ 648 if (! optimize || optimize_function_for_size_p (cfun)) 649 return 0; 650 651 if (dump_file) 652 { 653 dump_reg_info (dump_file); 654 dump_flow_info (dump_file, TDF_DETAILS); 655 flow_loops_dump (dump_file, NULL, 1); 656 } 657 loop_optimizer_init (AVOID_CFG_MODIFICATIONS); 658 profile_count count_threshold = cfun->cfg->count_max.apply_scale 659 (1, param_align_threshold); 660 661 if (dump_file) 662 { 663 fprintf (dump_file, "count_max: "); 664 cfun->cfg->count_max.dump (dump_file); 665 fprintf (dump_file, "\n"); 666 } 667 FOR_EACH_BB_FN (bb, cfun) 668 { 669 rtx_insn *label = BB_HEAD (bb); 670 bool has_fallthru = 0; 671 edge e; 672 edge_iterator ei; 673 674 if (!LABEL_P (label) 675 || optimize_bb_for_size_p (bb)) 676 { 677 if (dump_file) 678 fprintf (dump_file, 679 "BB %4i loop %2i loop_depth %2i skipped.\n", 680 bb->index, 681 bb->loop_father->num, 682 bb_loop_depth (bb)); 683 continue; 684 } 685 max_alignment = LABEL_ALIGN (label); 686 profile_count fallthru_count = profile_count::zero (); 687 profile_count branch_count = profile_count::zero (); 688 689 FOR_EACH_EDGE (e, ei, bb->preds) 690 { 691 if (e->flags & EDGE_FALLTHRU) 692 has_fallthru = 1, fallthru_count += e->count (); 693 else 694 branch_count += e->count (); 695 } 696 if (dump_file) 697 { 698 fprintf (dump_file, "BB %4i loop %2i loop_depth" 699 " %2i fall ", 700 bb->index, bb->loop_father->num, 701 bb_loop_depth (bb)); 702 fallthru_count.dump (dump_file); 703 fprintf (dump_file, " branch "); 704 branch_count.dump (dump_file); 705 if (!bb->loop_father->inner && bb->loop_father->num) 706 fprintf (dump_file, " inner_loop"); 707 if (bb->loop_father->header == bb) 708 fprintf (dump_file, " loop_header"); 709 fprintf (dump_file, "\n"); 710 } 711 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ()) 712 continue; 713 714 /* There are two purposes to align block with no fallthru incoming edge: 715 1) to avoid fetch stalls when branch destination is near cache boundary 716 2) to improve cache efficiency in case the previous block is not executed 717 (so it does not need to be in the cache). 718 719 We to catch first case, we align frequently executed blocks. 720 To catch the second, we align blocks that are executed more frequently 721 than the predecessor and the predecessor is likely to not be executed 722 when function is called. */ 723 724 if (!has_fallthru 725 && (branch_count > count_threshold 726 || (bb->count > bb->prev_bb->count.apply_scale (10, 1) 727 && (bb->prev_bb->count 728 <= ENTRY_BLOCK_PTR_FOR_FN (cfun) 729 ->count.apply_scale (1, 2))))) 730 { 731 align_flags alignment = JUMP_ALIGN (label); 732 if (dump_file) 733 fprintf (dump_file, " jump alignment added.\n"); 734 max_alignment = align_flags::max (max_alignment, alignment); 735 } 736 /* In case block is frequent and reached mostly by non-fallthru edge, 737 align it. It is most likely a first block of loop. */ 738 if (has_fallthru 739 && !(single_succ_p (bb) 740 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)) 741 && optimize_bb_for_speed_p (bb) 742 && branch_count + fallthru_count > count_threshold 743 && (branch_count 744 > fallthru_count.apply_scale 745 (param_align_loop_iterations, 1))) 746 { 747 align_flags alignment = LOOP_ALIGN (label); 748 if (dump_file) 749 fprintf (dump_file, " internal loop alignment added.\n"); 750 max_alignment = align_flags::max (max_alignment, alignment); 751 } 752 LABEL_TO_ALIGNMENT (label) = max_alignment; 753 } 754 755 loop_optimizer_finalize (); 756 free_dominance_info (CDI_DOMINATORS); 757 return 0; 758 } 759 760 /* Grow the LABEL_ALIGN array after new labels are created. */ 761 762 static void 763 grow_label_align (void) 764 { 765 int old = max_labelno; 766 int n_labels; 767 int n_old_labels; 768 769 max_labelno = max_label_num (); 770 771 n_labels = max_labelno - min_labelno + 1; 772 n_old_labels = old - min_labelno + 1; 773 774 label_align.safe_grow_cleared (n_labels); 775 776 /* Range of labels grows monotonically in the function. Failing here 777 means that the initialization of array got lost. */ 778 gcc_assert (n_old_labels <= n_labels); 779 } 780 781 /* Update the already computed alignment information. LABEL_PAIRS is a vector 782 made up of pairs of labels for which the alignment information of the first 783 element will be copied from that of the second element. */ 784 785 void 786 update_alignments (vec<rtx> &label_pairs) 787 { 788 unsigned int i = 0; 789 rtx iter, label = NULL_RTX; 790 791 if (max_labelno != max_label_num ()) 792 grow_label_align (); 793 794 FOR_EACH_VEC_ELT (label_pairs, i, iter) 795 if (i & 1) 796 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter); 797 else 798 label = iter; 799 } 800 801 namespace { 802 803 const pass_data pass_data_compute_alignments = 804 { 805 RTL_PASS, /* type */ 806 "alignments", /* name */ 807 OPTGROUP_NONE, /* optinfo_flags */ 808 TV_NONE, /* tv_id */ 809 0, /* properties_required */ 810 0, /* properties_provided */ 811 0, /* properties_destroyed */ 812 0, /* todo_flags_start */ 813 0, /* todo_flags_finish */ 814 }; 815 816 class pass_compute_alignments : public rtl_opt_pass 817 { 818 public: 819 pass_compute_alignments (gcc::context *ctxt) 820 : rtl_opt_pass (pass_data_compute_alignments, ctxt) 821 {} 822 823 /* opt_pass methods: */ 824 virtual unsigned int execute (function *) { return compute_alignments (); } 825 826 }; // class pass_compute_alignments 827 828 } // anon namespace 829 830 rtl_opt_pass * 831 make_pass_compute_alignments (gcc::context *ctxt) 832 { 833 return new pass_compute_alignments (ctxt); 834 } 835 836 837 /* Make a pass over all insns and compute their actual lengths by shortening 838 any branches of variable length if possible. */ 839 840 /* shorten_branches might be called multiple times: for example, the SH 841 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG. 842 In order to do this, it needs proper length information, which it obtains 843 by calling shorten_branches. This cannot be collapsed with 844 shorten_branches itself into a single pass unless we also want to integrate 845 reorg.c, since the branch splitting exposes new instructions with delay 846 slots. */ 847 848 void 849 shorten_branches (rtx_insn *first) 850 { 851 rtx_insn *insn; 852 int max_uid; 853 int i; 854 rtx_insn *seq; 855 int something_changed = 1; 856 char *varying_length; 857 rtx body; 858 int uid; 859 rtx align_tab[MAX_CODE_ALIGN + 1]; 860 861 /* Compute maximum UID and allocate label_align / uid_shuid. */ 862 max_uid = get_max_uid (); 863 864 /* Free uid_shuid before reallocating it. */ 865 free (uid_shuid); 866 867 uid_shuid = XNEWVEC (int, max_uid); 868 869 if (max_labelno != max_label_num ()) 870 grow_label_align (); 871 872 /* Initialize label_align and set up uid_shuid to be strictly 873 monotonically rising with insn order. */ 874 /* We use alignment here to keep track of the maximum alignment we want to 875 impose on the next CODE_LABEL (or the current one if we are processing 876 the CODE_LABEL itself). */ 877 878 align_flags max_alignment; 879 880 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn)) 881 { 882 INSN_SHUID (insn) = i++; 883 if (INSN_P (insn)) 884 continue; 885 886 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn)) 887 { 888 /* Merge in alignments computed by compute_alignments. */ 889 align_flags alignment = LABEL_TO_ALIGNMENT (label); 890 max_alignment = align_flags::max (max_alignment, alignment); 891 892 rtx_jump_table_data *table = jump_table_for_label (label); 893 if (!table) 894 { 895 align_flags alignment = LABEL_ALIGN (label); 896 max_alignment = align_flags::max (max_alignment, alignment); 897 } 898 /* ADDR_VECs only take room if read-only data goes into the text 899 section. */ 900 if ((JUMP_TABLES_IN_TEXT_SECTION 901 || readonly_data_section == text_section) 902 && table) 903 { 904 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table)); 905 max_alignment = align_flags::max (max_alignment, alignment); 906 } 907 LABEL_TO_ALIGNMENT (label) = max_alignment; 908 max_alignment = align_flags (); 909 } 910 else if (BARRIER_P (insn)) 911 { 912 rtx_insn *label; 913 914 for (label = insn; label && ! INSN_P (label); 915 label = NEXT_INSN (label)) 916 if (LABEL_P (label)) 917 { 918 align_flags alignment 919 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn)); 920 max_alignment = align_flags::max (max_alignment, alignment); 921 break; 922 } 923 } 924 } 925 if (!HAVE_ATTR_length) 926 return; 927 928 /* Allocate the rest of the arrays. */ 929 insn_lengths = XNEWVEC (int, max_uid); 930 insn_lengths_max_uid = max_uid; 931 /* Syntax errors can lead to labels being outside of the main insn stream. 932 Initialize insn_addresses, so that we get reproducible results. */ 933 INSN_ADDRESSES_ALLOC (max_uid); 934 935 varying_length = XCNEWVEC (char, max_uid); 936 937 /* Initialize uid_align. We scan instructions 938 from end to start, and keep in align_tab[n] the last seen insn 939 that does an alignment of at least n+1, i.e. the successor 940 in the alignment chain for an insn that does / has a known 941 alignment of n. */ 942 uid_align = XCNEWVEC (rtx, max_uid); 943 944 for (i = MAX_CODE_ALIGN + 1; --i >= 0;) 945 align_tab[i] = NULL_RTX; 946 seq = get_last_insn (); 947 for (; seq; seq = PREV_INSN (seq)) 948 { 949 int uid = INSN_UID (seq); 950 int log; 951 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0); 952 uid_align[uid] = align_tab[0]; 953 if (log) 954 { 955 /* Found an alignment label. */ 956 gcc_checking_assert (log < MAX_CODE_ALIGN + 1); 957 uid_align[uid] = align_tab[log]; 958 for (i = log - 1; i >= 0; i--) 959 align_tab[i] = seq; 960 } 961 } 962 963 /* When optimizing, we start assuming minimum length, and keep increasing 964 lengths as we find the need for this, till nothing changes. 965 When not optimizing, we start assuming maximum lengths, and 966 do a single pass to update the lengths. */ 967 bool increasing = optimize != 0; 968 969 #ifdef CASE_VECTOR_SHORTEN_MODE 970 if (optimize) 971 { 972 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum 973 label fields. */ 974 975 int min_shuid = INSN_SHUID (get_insns ()) - 1; 976 int max_shuid = INSN_SHUID (get_last_insn ()) + 1; 977 int rel; 978 979 for (insn = first; insn != 0; insn = NEXT_INSN (insn)) 980 { 981 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat; 982 int len, i, min, max, insn_shuid; 983 int min_align; 984 addr_diff_vec_flags flags; 985 986 if (! JUMP_TABLE_DATA_P (insn) 987 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) 988 continue; 989 pat = PATTERN (insn); 990 len = XVECLEN (pat, 1); 991 gcc_assert (len > 0); 992 min_align = MAX_CODE_ALIGN; 993 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--) 994 { 995 rtx lab = XEXP (XVECEXP (pat, 1, i), 0); 996 int shuid = INSN_SHUID (lab); 997 if (shuid < min) 998 { 999 min = shuid; 1000 min_lab = lab; 1001 } 1002 if (shuid > max) 1003 { 1004 max = shuid; 1005 max_lab = lab; 1006 } 1007 1008 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log; 1009 if (min_align > label_alignment) 1010 min_align = label_alignment; 1011 } 1012 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab); 1013 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab); 1014 insn_shuid = INSN_SHUID (insn); 1015 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0)); 1016 memset (&flags, 0, sizeof (flags)); 1017 flags.min_align = min_align; 1018 flags.base_after_vec = rel > insn_shuid; 1019 flags.min_after_vec = min > insn_shuid; 1020 flags.max_after_vec = max > insn_shuid; 1021 flags.min_after_base = min > rel; 1022 flags.max_after_base = max > rel; 1023 ADDR_DIFF_VEC_FLAGS (pat) = flags; 1024 1025 if (increasing) 1026 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat)); 1027 } 1028 } 1029 #endif /* CASE_VECTOR_SHORTEN_MODE */ 1030 1031 /* Compute initial lengths, addresses, and varying flags for each insn. */ 1032 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length; 1033 1034 for (insn_current_address = 0, insn = first; 1035 insn != 0; 1036 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn)) 1037 { 1038 uid = INSN_UID (insn); 1039 1040 insn_lengths[uid] = 0; 1041 1042 if (LABEL_P (insn)) 1043 { 1044 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log; 1045 if (log) 1046 { 1047 int align = 1 << log; 1048 int new_address = (insn_current_address + align - 1) & -align; 1049 insn_lengths[uid] = new_address - insn_current_address; 1050 } 1051 } 1052 1053 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid]; 1054 1055 if (NOTE_P (insn) || BARRIER_P (insn) 1056 || LABEL_P (insn) || DEBUG_INSN_P (insn)) 1057 continue; 1058 if (insn->deleted ()) 1059 continue; 1060 1061 body = PATTERN (insn); 1062 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn)) 1063 { 1064 /* This only takes room if read-only data goes into the text 1065 section. */ 1066 if (JUMP_TABLES_IN_TEXT_SECTION 1067 || readonly_data_section == text_section) 1068 insn_lengths[uid] = (XVECLEN (body, 1069 GET_CODE (body) == ADDR_DIFF_VEC) 1070 * GET_MODE_SIZE (table->get_data_mode ())); 1071 /* Alignment is handled by ADDR_VEC_ALIGN. */ 1072 } 1073 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) 1074 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn); 1075 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body)) 1076 { 1077 int i; 1078 int const_delay_slots; 1079 if (DELAY_SLOTS) 1080 const_delay_slots = const_num_delay_slots (body_seq->insn (0)); 1081 else 1082 const_delay_slots = 0; 1083 1084 int (*inner_length_fun) (rtx_insn *) 1085 = const_delay_slots ? length_fun : insn_default_length; 1086 /* Inside a delay slot sequence, we do not do any branch shortening 1087 if the shortening could change the number of delay slots 1088 of the branch. */ 1089 for (i = 0; i < body_seq->len (); i++) 1090 { 1091 rtx_insn *inner_insn = body_seq->insn (i); 1092 int inner_uid = INSN_UID (inner_insn); 1093 int inner_length; 1094 1095 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT 1096 || asm_noperands (PATTERN (inner_insn)) >= 0) 1097 inner_length = (asm_insn_count (PATTERN (inner_insn)) 1098 * insn_default_length (inner_insn)); 1099 else 1100 inner_length = inner_length_fun (inner_insn); 1101 1102 insn_lengths[inner_uid] = inner_length; 1103 if (const_delay_slots) 1104 { 1105 if ((varying_length[inner_uid] 1106 = insn_variable_length_p (inner_insn)) != 0) 1107 varying_length[uid] = 1; 1108 INSN_ADDRESSES (inner_uid) = (insn_current_address 1109 + insn_lengths[uid]); 1110 } 1111 else 1112 varying_length[inner_uid] = 0; 1113 insn_lengths[uid] += inner_length; 1114 } 1115 } 1116 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER) 1117 { 1118 insn_lengths[uid] = length_fun (insn); 1119 varying_length[uid] = insn_variable_length_p (insn); 1120 } 1121 1122 /* If needed, do any adjustment. */ 1123 #ifdef ADJUST_INSN_LENGTH 1124 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]); 1125 if (insn_lengths[uid] < 0) 1126 fatal_insn ("negative insn length", insn); 1127 #endif 1128 } 1129 1130 /* Now loop over all the insns finding varying length insns. For each, 1131 get the current insn length. If it has changed, reflect the change. 1132 When nothing changes for a full pass, we are done. */ 1133 1134 while (something_changed) 1135 { 1136 something_changed = 0; 1137 insn_current_align = MAX_CODE_ALIGN - 1; 1138 for (insn_current_address = 0, insn = first; 1139 insn != 0; 1140 insn = NEXT_INSN (insn)) 1141 { 1142 int new_length; 1143 #ifdef ADJUST_INSN_LENGTH 1144 int tmp_length; 1145 #endif 1146 int length_align; 1147 1148 uid = INSN_UID (insn); 1149 1150 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn)) 1151 { 1152 int log = LABEL_TO_ALIGNMENT (label).levels[0].log; 1153 1154 #ifdef CASE_VECTOR_SHORTEN_MODE 1155 /* If the mode of a following jump table was changed, we 1156 may need to update the alignment of this label. */ 1157 1158 if (JUMP_TABLES_IN_TEXT_SECTION 1159 || readonly_data_section == text_section) 1160 { 1161 rtx_jump_table_data *table = jump_table_for_label (label); 1162 if (table) 1163 { 1164 int newlog = ADDR_VEC_ALIGN (table); 1165 if (newlog != log) 1166 { 1167 log = newlog; 1168 LABEL_TO_ALIGNMENT (insn) = log; 1169 something_changed = 1; 1170 } 1171 } 1172 } 1173 #endif 1174 1175 if (log > insn_current_align) 1176 { 1177 int align = 1 << log; 1178 int new_address= (insn_current_address + align - 1) & -align; 1179 insn_lengths[uid] = new_address - insn_current_address; 1180 insn_current_align = log; 1181 insn_current_address = new_address; 1182 } 1183 else 1184 insn_lengths[uid] = 0; 1185 INSN_ADDRESSES (uid) = insn_current_address; 1186 continue; 1187 } 1188 1189 length_align = INSN_LENGTH_ALIGNMENT (insn); 1190 if (length_align < insn_current_align) 1191 insn_current_align = length_align; 1192 1193 insn_last_address = INSN_ADDRESSES (uid); 1194 INSN_ADDRESSES (uid) = insn_current_address; 1195 1196 #ifdef CASE_VECTOR_SHORTEN_MODE 1197 if (optimize 1198 && JUMP_TABLE_DATA_P (insn) 1199 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) 1200 { 1201 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn); 1202 rtx body = PATTERN (insn); 1203 int old_length = insn_lengths[uid]; 1204 rtx_insn *rel_lab = 1205 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0)); 1206 rtx min_lab = XEXP (XEXP (body, 2), 0); 1207 rtx max_lab = XEXP (XEXP (body, 3), 0); 1208 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab)); 1209 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab)); 1210 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab)); 1211 rtx_insn *prev; 1212 int rel_align = 0; 1213 addr_diff_vec_flags flags; 1214 scalar_int_mode vec_mode; 1215 1216 /* Avoid automatic aggregate initialization. */ 1217 flags = ADDR_DIFF_VEC_FLAGS (body); 1218 1219 /* Try to find a known alignment for rel_lab. */ 1220 for (prev = rel_lab; 1221 prev 1222 && ! insn_lengths[INSN_UID (prev)] 1223 && ! (varying_length[INSN_UID (prev)] & 1); 1224 prev = PREV_INSN (prev)) 1225 if (varying_length[INSN_UID (prev)] & 2) 1226 { 1227 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log; 1228 break; 1229 } 1230 1231 /* See the comment on addr_diff_vec_flags in rtl.h for the 1232 meaning of the flags values. base: REL_LAB vec: INSN */ 1233 /* Anything after INSN has still addresses from the last 1234 pass; adjust these so that they reflect our current 1235 estimate for this pass. */ 1236 if (flags.base_after_vec) 1237 rel_addr += insn_current_address - insn_last_address; 1238 if (flags.min_after_vec) 1239 min_addr += insn_current_address - insn_last_address; 1240 if (flags.max_after_vec) 1241 max_addr += insn_current_address - insn_last_address; 1242 /* We want to know the worst case, i.e. lowest possible value 1243 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB, 1244 its offset is positive, and we have to be wary of code shrink; 1245 otherwise, it is negative, and we have to be vary of code 1246 size increase. */ 1247 if (flags.min_after_base) 1248 { 1249 /* If INSN is between REL_LAB and MIN_LAB, the size 1250 changes we are about to make can change the alignment 1251 within the observed offset, therefore we have to break 1252 it up into two parts that are independent. */ 1253 if (! flags.base_after_vec && flags.min_after_vec) 1254 { 1255 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0); 1256 min_addr -= align_fuzz (insn, min_lab, 0, 0); 1257 } 1258 else 1259 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0); 1260 } 1261 else 1262 { 1263 if (flags.base_after_vec && ! flags.min_after_vec) 1264 { 1265 min_addr -= align_fuzz (min_lab, insn, 0, ~0); 1266 min_addr -= align_fuzz (insn, rel_lab, 0, ~0); 1267 } 1268 else 1269 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0); 1270 } 1271 /* Likewise, determine the highest lowest possible value 1272 for the offset of MAX_LAB. */ 1273 if (flags.max_after_base) 1274 { 1275 if (! flags.base_after_vec && flags.max_after_vec) 1276 { 1277 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0); 1278 max_addr += align_fuzz (insn, max_lab, 0, ~0); 1279 } 1280 else 1281 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0); 1282 } 1283 else 1284 { 1285 if (flags.base_after_vec && ! flags.max_after_vec) 1286 { 1287 max_addr += align_fuzz (max_lab, insn, 0, 0); 1288 max_addr += align_fuzz (insn, rel_lab, 0, 0); 1289 } 1290 else 1291 max_addr += align_fuzz (max_lab, rel_lab, 0, 0); 1292 } 1293 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr, 1294 max_addr - rel_addr, body); 1295 if (!increasing 1296 || (GET_MODE_SIZE (vec_mode) 1297 >= GET_MODE_SIZE (table->get_data_mode ()))) 1298 PUT_MODE (body, vec_mode); 1299 if (JUMP_TABLES_IN_TEXT_SECTION 1300 || readonly_data_section == text_section) 1301 { 1302 insn_lengths[uid] 1303 = (XVECLEN (body, 1) 1304 * GET_MODE_SIZE (table->get_data_mode ())); 1305 insn_current_address += insn_lengths[uid]; 1306 if (insn_lengths[uid] != old_length) 1307 something_changed = 1; 1308 } 1309 1310 continue; 1311 } 1312 #endif /* CASE_VECTOR_SHORTEN_MODE */ 1313 1314 if (! (varying_length[uid])) 1315 { 1316 if (NONJUMP_INSN_P (insn) 1317 && GET_CODE (PATTERN (insn)) == SEQUENCE) 1318 { 1319 int i; 1320 1321 body = PATTERN (insn); 1322 for (i = 0; i < XVECLEN (body, 0); i++) 1323 { 1324 rtx inner_insn = XVECEXP (body, 0, i); 1325 int inner_uid = INSN_UID (inner_insn); 1326 1327 INSN_ADDRESSES (inner_uid) = insn_current_address; 1328 1329 insn_current_address += insn_lengths[inner_uid]; 1330 } 1331 } 1332 else 1333 insn_current_address += insn_lengths[uid]; 1334 1335 continue; 1336 } 1337 1338 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 1339 { 1340 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn)); 1341 int i; 1342 1343 body = PATTERN (insn); 1344 new_length = 0; 1345 for (i = 0; i < seqn->len (); i++) 1346 { 1347 rtx_insn *inner_insn = seqn->insn (i); 1348 int inner_uid = INSN_UID (inner_insn); 1349 int inner_length; 1350 1351 INSN_ADDRESSES (inner_uid) = insn_current_address; 1352 1353 /* insn_current_length returns 0 for insns with a 1354 non-varying length. */ 1355 if (! varying_length[inner_uid]) 1356 inner_length = insn_lengths[inner_uid]; 1357 else 1358 inner_length = insn_current_length (inner_insn); 1359 1360 if (inner_length != insn_lengths[inner_uid]) 1361 { 1362 if (!increasing || inner_length > insn_lengths[inner_uid]) 1363 { 1364 insn_lengths[inner_uid] = inner_length; 1365 something_changed = 1; 1366 } 1367 else 1368 inner_length = insn_lengths[inner_uid]; 1369 } 1370 insn_current_address += inner_length; 1371 new_length += inner_length; 1372 } 1373 } 1374 else 1375 { 1376 new_length = insn_current_length (insn); 1377 insn_current_address += new_length; 1378 } 1379 1380 #ifdef ADJUST_INSN_LENGTH 1381 /* If needed, do any adjustment. */ 1382 tmp_length = new_length; 1383 ADJUST_INSN_LENGTH (insn, new_length); 1384 insn_current_address += (new_length - tmp_length); 1385 #endif 1386 1387 if (new_length != insn_lengths[uid] 1388 && (!increasing || new_length > insn_lengths[uid])) 1389 { 1390 insn_lengths[uid] = new_length; 1391 something_changed = 1; 1392 } 1393 else 1394 insn_current_address += insn_lengths[uid] - new_length; 1395 } 1396 /* For a non-optimizing compile, do only a single pass. */ 1397 if (!increasing) 1398 break; 1399 } 1400 crtl->max_insn_address = insn_current_address; 1401 free (varying_length); 1402 } 1403 1404 /* Given the body of an INSN known to be generated by an ASM statement, return 1405 the number of machine instructions likely to be generated for this insn. 1406 This is used to compute its length. */ 1407 1408 static int 1409 asm_insn_count (rtx body) 1410 { 1411 const char *templ; 1412 1413 if (GET_CODE (body) == ASM_INPUT) 1414 templ = XSTR (body, 0); 1415 else 1416 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL); 1417 1418 return asm_str_count (templ); 1419 } 1420 1421 /* Return the number of machine instructions likely to be generated for the 1422 inline-asm template. */ 1423 int 1424 asm_str_count (const char *templ) 1425 { 1426 int count = 1; 1427 1428 if (!*templ) 1429 return 0; 1430 1431 for (; *templ; templ++) 1432 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ) 1433 || *templ == '\n') 1434 count++; 1435 1436 return count; 1437 } 1438 1439 /* Return true if DWARF2 debug info can be emitted for DECL. */ 1440 1441 static bool 1442 dwarf2_debug_info_emitted_p (tree decl) 1443 { 1444 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG) 1445 return false; 1446 1447 if (DECL_IGNORED_P (decl)) 1448 return false; 1449 1450 return true; 1451 } 1452 1453 /* Return scope resulting from combination of S1 and S2. */ 1454 static tree 1455 choose_inner_scope (tree s1, tree s2) 1456 { 1457 if (!s1) 1458 return s2; 1459 if (!s2) 1460 return s1; 1461 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2)) 1462 return s1; 1463 return s2; 1464 } 1465 1466 /* Emit lexical block notes needed to change scope from S1 to S2. */ 1467 1468 static void 1469 change_scope (rtx_insn *orig_insn, tree s1, tree s2) 1470 { 1471 rtx_insn *insn = orig_insn; 1472 tree com = NULL_TREE; 1473 tree ts1 = s1, ts2 = s2; 1474 tree s; 1475 1476 while (ts1 != ts2) 1477 { 1478 gcc_assert (ts1 && ts2); 1479 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2)) 1480 ts1 = BLOCK_SUPERCONTEXT (ts1); 1481 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2)) 1482 ts2 = BLOCK_SUPERCONTEXT (ts2); 1483 else 1484 { 1485 ts1 = BLOCK_SUPERCONTEXT (ts1); 1486 ts2 = BLOCK_SUPERCONTEXT (ts2); 1487 } 1488 } 1489 com = ts1; 1490 1491 /* Close scopes. */ 1492 s = s1; 1493 while (s != com) 1494 { 1495 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn); 1496 NOTE_BLOCK (note) = s; 1497 s = BLOCK_SUPERCONTEXT (s); 1498 } 1499 1500 /* Open scopes. */ 1501 s = s2; 1502 while (s != com) 1503 { 1504 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn); 1505 NOTE_BLOCK (insn) = s; 1506 s = BLOCK_SUPERCONTEXT (s); 1507 } 1508 } 1509 1510 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based 1511 on the scope tree and the newly reordered instructions. */ 1512 1513 static void 1514 reemit_insn_block_notes (void) 1515 { 1516 tree cur_block = DECL_INITIAL (cfun->decl); 1517 rtx_insn *insn; 1518 1519 insn = get_insns (); 1520 for (; insn; insn = NEXT_INSN (insn)) 1521 { 1522 tree this_block; 1523 1524 /* Prevent lexical blocks from straddling section boundaries. */ 1525 if (NOTE_P (insn)) 1526 switch (NOTE_KIND (insn)) 1527 { 1528 case NOTE_INSN_SWITCH_TEXT_SECTIONS: 1529 { 1530 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl); 1531 s = BLOCK_SUPERCONTEXT (s)) 1532 { 1533 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn); 1534 NOTE_BLOCK (note) = s; 1535 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn); 1536 NOTE_BLOCK (note) = s; 1537 } 1538 } 1539 break; 1540 1541 case NOTE_INSN_BEGIN_STMT: 1542 case NOTE_INSN_INLINE_ENTRY: 1543 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn)); 1544 goto set_cur_block_to_this_block; 1545 1546 default: 1547 continue; 1548 } 1549 1550 if (!active_insn_p (insn)) 1551 continue; 1552 1553 /* Avoid putting scope notes between jump table and its label. */ 1554 if (JUMP_TABLE_DATA_P (insn)) 1555 continue; 1556 1557 this_block = insn_scope (insn); 1558 /* For sequences compute scope resulting from merging all scopes 1559 of instructions nested inside. */ 1560 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn))) 1561 { 1562 int i; 1563 1564 this_block = NULL; 1565 for (i = 0; i < body->len (); i++) 1566 this_block = choose_inner_scope (this_block, 1567 insn_scope (body->insn (i))); 1568 } 1569 set_cur_block_to_this_block: 1570 if (! this_block) 1571 { 1572 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION) 1573 continue; 1574 else 1575 this_block = DECL_INITIAL (cfun->decl); 1576 } 1577 1578 if (this_block != cur_block) 1579 { 1580 change_scope (insn, cur_block, this_block); 1581 cur_block = this_block; 1582 } 1583 } 1584 1585 /* change_scope emits before the insn, not after. */ 1586 rtx_note *note = emit_note (NOTE_INSN_DELETED); 1587 change_scope (note, cur_block, DECL_INITIAL (cfun->decl)); 1588 delete_insn (note); 1589 1590 reorder_blocks (); 1591 } 1592 1593 static const char *some_local_dynamic_name; 1594 1595 /* Locate some local-dynamic symbol still in use by this function 1596 so that we can print its name in local-dynamic base patterns. 1597 Return null if there are no local-dynamic references. */ 1598 1599 const char * 1600 get_some_local_dynamic_name () 1601 { 1602 subrtx_iterator::array_type array; 1603 rtx_insn *insn; 1604 1605 if (some_local_dynamic_name) 1606 return some_local_dynamic_name; 1607 1608 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) 1609 if (NONDEBUG_INSN_P (insn)) 1610 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL) 1611 { 1612 const_rtx x = *iter; 1613 if (GET_CODE (x) == SYMBOL_REF) 1614 { 1615 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC) 1616 return some_local_dynamic_name = XSTR (x, 0); 1617 if (CONSTANT_POOL_ADDRESS_P (x)) 1618 iter.substitute (get_pool_constant (x)); 1619 } 1620 } 1621 1622 return 0; 1623 } 1624 1625 /* Arrange for us to emit a source location note before any further 1626 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in 1627 *SEEN, as long as we are keeping track of location views. The bit 1628 indicates we have referenced the next view at the current PC, so we 1629 have to emit it. This should be called next to the var_location 1630 debug hook. */ 1631 1632 static inline void 1633 set_next_view_needed (int *seen) 1634 { 1635 if (debug_variable_location_views) 1636 *seen |= SEEN_NEXT_VIEW; 1637 } 1638 1639 /* Clear the flag in *SEEN indicating we need to emit the next view. 1640 This should be called next to the source_line debug hook. */ 1641 1642 static inline void 1643 clear_next_view_needed (int *seen) 1644 { 1645 *seen &= ~SEEN_NEXT_VIEW; 1646 } 1647 1648 /* Test whether we have a pending request to emit the next view in 1649 *SEEN, and emit it if needed, clearing the request bit. */ 1650 1651 static inline void 1652 maybe_output_next_view (int *seen) 1653 { 1654 if ((*seen & SEEN_NEXT_VIEW) != 0) 1655 { 1656 clear_next_view_needed (seen); 1657 (*debug_hooks->source_line) (last_linenum, last_columnnum, 1658 last_filename, last_discriminator, 1659 false); 1660 } 1661 } 1662 1663 /* We want to emit param bindings (before the first begin_stmt) in the 1664 initial view, if we are emitting views. To that end, we may 1665 consume initial notes in the function, processing them in 1666 final_start_function, before signaling the beginning of the 1667 prologue, rather than in final. 1668 1669 We don't test whether the DECLs are PARM_DECLs: the assumption is 1670 that there will be a NOTE_INSN_BEGIN_STMT marker before any 1671 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not 1672 there, we'll just have more variable locations bound in the initial 1673 view, which is consistent with their being bound without any code 1674 that would give them a value. */ 1675 1676 static inline bool 1677 in_initial_view_p (rtx_insn *insn) 1678 { 1679 return (!DECL_IGNORED_P (current_function_decl) 1680 && debug_variable_location_views 1681 && insn && GET_CODE (insn) == NOTE 1682 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION 1683 || NOTE_KIND (insn) == NOTE_INSN_DELETED)); 1684 } 1685 1686 /* Output assembler code for the start of a function, 1687 and initialize some of the variables in this file 1688 for the new function. The label for the function and associated 1689 assembler pseudo-ops have already been output in `assemble_start_function'. 1690 1691 FIRST is the first insn of the rtl for the function being compiled. 1692 FILE is the file to write assembler code to. 1693 SEEN should be initially set to zero, and it may be updated to 1694 indicate we have references to the next location view, that would 1695 require us to emit it at the current PC. 1696 OPTIMIZE_P is nonzero if we should eliminate redundant 1697 test and compare insns. */ 1698 1699 static void 1700 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen, 1701 int optimize_p ATTRIBUTE_UNUSED) 1702 { 1703 block_depth = 0; 1704 1705 this_is_asm_operands = 0; 1706 1707 need_profile_function = false; 1708 1709 last_filename = LOCATION_FILE (prologue_location); 1710 last_linenum = LOCATION_LINE (prologue_location); 1711 last_columnnum = LOCATION_COLUMN (prologue_location); 1712 last_discriminator = discriminator = 0; 1713 last_bb_discriminator = bb_discriminator = 0; 1714 1715 high_block_linenum = high_function_linenum = last_linenum; 1716 1717 if (flag_sanitize & SANITIZE_ADDRESS) 1718 asan_function_start (); 1719 1720 rtx_insn *first = *firstp; 1721 if (in_initial_view_p (first)) 1722 { 1723 do 1724 { 1725 final_scan_insn (first, file, 0, 0, seen); 1726 first = NEXT_INSN (first); 1727 } 1728 while (in_initial_view_p (first)); 1729 *firstp = first; 1730 } 1731 1732 if (!DECL_IGNORED_P (current_function_decl)) 1733 debug_hooks->begin_prologue (last_linenum, last_columnnum, 1734 last_filename); 1735 1736 if (!dwarf2_debug_info_emitted_p (current_function_decl)) 1737 dwarf2out_begin_prologue (0, 0, NULL); 1738 1739 #ifdef LEAF_REG_REMAP 1740 if (crtl->uses_only_leaf_regs) 1741 leaf_renumber_regs (first); 1742 #endif 1743 1744 /* The Sun386i and perhaps other machines don't work right 1745 if the profiling code comes after the prologue. */ 1746 if (targetm.profile_before_prologue () && crtl->profile) 1747 { 1748 if (targetm.asm_out.function_prologue == default_function_pro_epilogue 1749 && targetm.have_prologue ()) 1750 { 1751 rtx_insn *insn; 1752 for (insn = first; insn; insn = NEXT_INSN (insn)) 1753 if (!NOTE_P (insn)) 1754 { 1755 insn = NULL; 1756 break; 1757 } 1758 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK 1759 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG) 1760 break; 1761 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED 1762 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION) 1763 continue; 1764 else 1765 { 1766 insn = NULL; 1767 break; 1768 } 1769 1770 if (insn) 1771 need_profile_function = true; 1772 else 1773 profile_function (file); 1774 } 1775 else 1776 profile_function (file); 1777 } 1778 1779 /* If debugging, assign block numbers to all of the blocks in this 1780 function. */ 1781 if (write_symbols) 1782 { 1783 reemit_insn_block_notes (); 1784 number_blocks (current_function_decl); 1785 /* We never actually put out begin/end notes for the top-level 1786 block in the function. But, conceptually, that block is 1787 always needed. */ 1788 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1; 1789 } 1790 1791 unsigned HOST_WIDE_INT min_frame_size 1792 = constant_lower_bound (get_frame_size ()); 1793 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size) 1794 { 1795 /* Issue a warning */ 1796 warning (OPT_Wframe_larger_than_, 1797 "the frame size of %wu bytes is larger than %wu bytes", 1798 min_frame_size, warn_frame_larger_than_size); 1799 } 1800 1801 /* First output the function prologue: code to set up the stack frame. */ 1802 targetm.asm_out.function_prologue (file); 1803 1804 /* If the machine represents the prologue as RTL, the profiling code must 1805 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */ 1806 if (! targetm.have_prologue ()) 1807 profile_after_prologue (file); 1808 } 1809 1810 /* This is an exported final_start_function_1, callable without SEEN. */ 1811 1812 void 1813 final_start_function (rtx_insn *first, FILE *file, 1814 int optimize_p ATTRIBUTE_UNUSED) 1815 { 1816 int seen = 0; 1817 final_start_function_1 (&first, file, &seen, optimize_p); 1818 gcc_assert (seen == 0); 1819 } 1820 1821 static void 1822 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED) 1823 { 1824 if (!targetm.profile_before_prologue () && crtl->profile) 1825 profile_function (file); 1826 } 1827 1828 static void 1829 profile_function (FILE *file ATTRIBUTE_UNUSED) 1830 { 1831 #ifndef NO_PROFILE_COUNTERS 1832 # define NO_PROFILE_COUNTERS 0 1833 #endif 1834 #ifdef ASM_OUTPUT_REG_PUSH 1835 rtx sval = NULL, chain = NULL; 1836 1837 if (cfun->returns_struct) 1838 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1839 true); 1840 if (cfun->static_chain_decl) 1841 chain = targetm.calls.static_chain (current_function_decl, true); 1842 #endif /* ASM_OUTPUT_REG_PUSH */ 1843 1844 if (! NO_PROFILE_COUNTERS) 1845 { 1846 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE); 1847 switch_to_section (data_section); 1848 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); 1849 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no); 1850 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1); 1851 } 1852 1853 switch_to_section (current_function_section ()); 1854 1855 #ifdef ASM_OUTPUT_REG_PUSH 1856 if (sval && REG_P (sval)) 1857 ASM_OUTPUT_REG_PUSH (file, REGNO (sval)); 1858 if (chain && REG_P (chain)) 1859 ASM_OUTPUT_REG_PUSH (file, REGNO (chain)); 1860 #endif 1861 1862 FUNCTION_PROFILER (file, current_function_funcdef_no); 1863 1864 #ifdef ASM_OUTPUT_REG_PUSH 1865 if (chain && REG_P (chain)) 1866 ASM_OUTPUT_REG_POP (file, REGNO (chain)); 1867 if (sval && REG_P (sval)) 1868 ASM_OUTPUT_REG_POP (file, REGNO (sval)); 1869 #endif 1870 } 1871 1872 /* Output assembler code for the end of a function. 1873 For clarity, args are same as those of `final_start_function' 1874 even though not all of them are needed. */ 1875 1876 void 1877 final_end_function (void) 1878 { 1879 app_disable (); 1880 1881 if (!DECL_IGNORED_P (current_function_decl)) 1882 debug_hooks->end_function (high_function_linenum); 1883 1884 /* Finally, output the function epilogue: 1885 code to restore the stack frame and return to the caller. */ 1886 targetm.asm_out.function_epilogue (asm_out_file); 1887 1888 /* And debug output. */ 1889 if (!DECL_IGNORED_P (current_function_decl)) 1890 debug_hooks->end_epilogue (last_linenum, last_filename); 1891 1892 if (!dwarf2_debug_info_emitted_p (current_function_decl) 1893 && dwarf2out_do_frame ()) 1894 dwarf2out_end_epilogue (last_linenum, last_filename); 1895 1896 some_local_dynamic_name = 0; 1897 } 1898 1899 1900 /* Dumper helper for basic block information. FILE is the assembly 1901 output file, and INSN is the instruction being emitted. */ 1902 1903 static void 1904 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb, 1905 basic_block *end_to_bb, int bb_map_size, int *bb_seqn) 1906 { 1907 basic_block bb; 1908 1909 if (!flag_debug_asm) 1910 return; 1911 1912 if (INSN_UID (insn) < bb_map_size 1913 && (bb = start_to_bb[INSN_UID (insn)]) != NULL) 1914 { 1915 edge e; 1916 edge_iterator ei; 1917 1918 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index); 1919 if (bb->count.initialized_p ()) 1920 { 1921 fprintf (file, ", count:"); 1922 bb->count.dump (file); 1923 } 1924 fprintf (file, " seq:%d", (*bb_seqn)++); 1925 fprintf (file, "\n%s PRED:", ASM_COMMENT_START); 1926 FOR_EACH_EDGE (e, ei, bb->preds) 1927 { 1928 dump_edge_info (file, e, TDF_DETAILS, 0); 1929 } 1930 fprintf (file, "\n"); 1931 } 1932 if (INSN_UID (insn) < bb_map_size 1933 && (bb = end_to_bb[INSN_UID (insn)]) != NULL) 1934 { 1935 edge e; 1936 edge_iterator ei; 1937 1938 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START); 1939 FOR_EACH_EDGE (e, ei, bb->succs) 1940 { 1941 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1); 1942 } 1943 fprintf (file, "\n"); 1944 } 1945 } 1946 1947 /* Output assembler code for some insns: all or part of a function. 1948 For description of args, see `final_start_function', above. */ 1949 1950 static void 1951 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p) 1952 { 1953 rtx_insn *insn, *next; 1954 1955 /* Used for -dA dump. */ 1956 basic_block *start_to_bb = NULL; 1957 basic_block *end_to_bb = NULL; 1958 int bb_map_size = 0; 1959 int bb_seqn = 0; 1960 1961 last_ignored_compare = 0; 1962 1963 if (HAVE_cc0) 1964 for (insn = first; insn; insn = NEXT_INSN (insn)) 1965 { 1966 /* If CC tracking across branches is enabled, record the insn which 1967 jumps to each branch only reached from one place. */ 1968 if (optimize_p && JUMP_P (insn)) 1969 { 1970 rtx lab = JUMP_LABEL (insn); 1971 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1) 1972 { 1973 LABEL_REFS (lab) = insn; 1974 } 1975 } 1976 } 1977 1978 init_recog (); 1979 1980 CC_STATUS_INIT; 1981 1982 if (flag_debug_asm) 1983 { 1984 basic_block bb; 1985 1986 bb_map_size = get_max_uid () + 1; 1987 start_to_bb = XCNEWVEC (basic_block, bb_map_size); 1988 end_to_bb = XCNEWVEC (basic_block, bb_map_size); 1989 1990 /* There is no cfg for a thunk. */ 1991 if (!cfun->is_thunk) 1992 FOR_EACH_BB_REVERSE_FN (bb, cfun) 1993 { 1994 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb; 1995 end_to_bb[INSN_UID (BB_END (bb))] = bb; 1996 } 1997 } 1998 1999 /* Output the insns. */ 2000 for (insn = first; insn;) 2001 { 2002 if (HAVE_ATTR_length) 2003 { 2004 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ()) 2005 { 2006 /* This can be triggered by bugs elsewhere in the compiler if 2007 new insns are created after init_insn_lengths is called. */ 2008 gcc_assert (NOTE_P (insn)); 2009 insn_current_address = -1; 2010 } 2011 else 2012 insn_current_address = INSN_ADDRESSES (INSN_UID (insn)); 2013 /* final can be seen as an iteration of shorten_branches that 2014 does nothing (since a fixed point has already been reached). */ 2015 insn_last_address = insn_current_address; 2016 } 2017 2018 dump_basic_block_info (file, insn, start_to_bb, end_to_bb, 2019 bb_map_size, &bb_seqn); 2020 insn = final_scan_insn (insn, file, optimize_p, 0, &seen); 2021 } 2022 2023 maybe_output_next_view (&seen); 2024 2025 if (flag_debug_asm) 2026 { 2027 free (start_to_bb); 2028 free (end_to_bb); 2029 } 2030 2031 /* Remove CFI notes, to avoid compare-debug failures. */ 2032 for (insn = first; insn; insn = next) 2033 { 2034 next = NEXT_INSN (insn); 2035 if (NOTE_P (insn) 2036 && (NOTE_KIND (insn) == NOTE_INSN_CFI 2037 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL)) 2038 delete_insn (insn); 2039 } 2040 } 2041 2042 /* This is an exported final_1, callable without SEEN. */ 2043 2044 void 2045 final (rtx_insn *first, FILE *file, int optimize_p) 2046 { 2047 /* Those that use the internal final_start_function_1/final_1 API 2048 skip initial debug bind notes in final_start_function_1, and pass 2049 the modified FIRST to final_1. But those that use the public 2050 final_start_function/final APIs, final_start_function can't move 2051 FIRST because it's not passed by reference, so if they were 2052 skipped there, skip them again here. */ 2053 while (in_initial_view_p (first)) 2054 first = NEXT_INSN (first); 2055 2056 final_1 (first, file, 0, optimize_p); 2057 } 2058 2059 const char * 2060 get_insn_template (int code, rtx_insn *insn) 2061 { 2062 switch (insn_data[code].output_format) 2063 { 2064 case INSN_OUTPUT_FORMAT_SINGLE: 2065 return insn_data[code].output.single; 2066 case INSN_OUTPUT_FORMAT_MULTI: 2067 return insn_data[code].output.multi[which_alternative]; 2068 case INSN_OUTPUT_FORMAT_FUNCTION: 2069 gcc_assert (insn); 2070 return (*insn_data[code].output.function) (recog_data.operand, insn); 2071 2072 default: 2073 gcc_unreachable (); 2074 } 2075 } 2076 2077 /* Emit the appropriate declaration for an alternate-entry-point 2078 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with 2079 LABEL_KIND != LABEL_NORMAL. 2080 2081 The case fall-through in this function is intentional. */ 2082 static void 2083 output_alternate_entry_point (FILE *file, rtx_insn *insn) 2084 { 2085 const char *name = LABEL_NAME (insn); 2086 2087 switch (LABEL_KIND (insn)) 2088 { 2089 case LABEL_WEAK_ENTRY: 2090 #ifdef ASM_WEAKEN_LABEL 2091 ASM_WEAKEN_LABEL (file, name); 2092 gcc_fallthrough (); 2093 #endif 2094 case LABEL_GLOBAL_ENTRY: 2095 targetm.asm_out.globalize_label (file, name); 2096 gcc_fallthrough (); 2097 case LABEL_STATIC_ENTRY: 2098 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE 2099 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function"); 2100 #endif 2101 ASM_OUTPUT_LABEL (file, name); 2102 break; 2103 2104 case LABEL_NORMAL: 2105 default: 2106 gcc_unreachable (); 2107 } 2108 } 2109 2110 /* Given a CALL_INSN, find and return the nested CALL. */ 2111 static rtx 2112 call_from_call_insn (rtx_call_insn *insn) 2113 { 2114 rtx x; 2115 gcc_assert (CALL_P (insn)); 2116 x = PATTERN (insn); 2117 2118 while (GET_CODE (x) != CALL) 2119 { 2120 switch (GET_CODE (x)) 2121 { 2122 default: 2123 gcc_unreachable (); 2124 case COND_EXEC: 2125 x = COND_EXEC_CODE (x); 2126 break; 2127 case PARALLEL: 2128 x = XVECEXP (x, 0, 0); 2129 break; 2130 case SET: 2131 x = XEXP (x, 1); 2132 break; 2133 } 2134 } 2135 return x; 2136 } 2137 2138 /* Print a comment into the asm showing FILENAME, LINENUM, and the 2139 corresponding source line, if available. */ 2140 2141 static void 2142 asm_show_source (const char *filename, int linenum) 2143 { 2144 if (!filename) 2145 return; 2146 2147 char_span line = location_get_source_line (filename, linenum); 2148 if (!line) 2149 return; 2150 2151 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum); 2152 /* "line" is not 0-terminated, so we must use its length. */ 2153 fwrite (line.get_buffer (), 1, line.length (), asm_out_file); 2154 fputc ('\n', asm_out_file); 2155 } 2156 2157 /* The final scan for one insn, INSN. 2158 Args are same as in `final', except that INSN 2159 is the insn being scanned. 2160 Value returned is the next insn to be scanned. 2161 2162 NOPEEPHOLES is the flag to disallow peephole processing (currently 2163 used for within delayed branch sequence output). 2164 2165 SEEN is used to track the end of the prologue, for emitting 2166 debug information. We force the emission of a line note after 2167 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */ 2168 2169 static rtx_insn * 2170 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED, 2171 int nopeepholes ATTRIBUTE_UNUSED, int *seen) 2172 { 2173 #if HAVE_cc0 2174 rtx set; 2175 #endif 2176 rtx_insn *next; 2177 rtx_jump_table_data *table; 2178 2179 insn_counter++; 2180 2181 /* Ignore deleted insns. These can occur when we split insns (due to a 2182 template of "#") while not optimizing. */ 2183 if (insn->deleted ()) 2184 return NEXT_INSN (insn); 2185 2186 switch (GET_CODE (insn)) 2187 { 2188 case NOTE: 2189 switch (NOTE_KIND (insn)) 2190 { 2191 case NOTE_INSN_DELETED: 2192 case NOTE_INSN_UPDATE_SJLJ_CONTEXT: 2193 break; 2194 2195 case NOTE_INSN_SWITCH_TEXT_SECTIONS: 2196 maybe_output_next_view (seen); 2197 2198 output_function_exception_table (0); 2199 2200 if (targetm.asm_out.unwind_emit) 2201 targetm.asm_out.unwind_emit (asm_out_file, insn); 2202 2203 in_cold_section_p = !in_cold_section_p; 2204 2205 if (in_cold_section_p) 2206 cold_function_name 2207 = clone_function_name (current_function_decl, "cold"); 2208 2209 if (dwarf2out_do_frame ()) 2210 { 2211 dwarf2out_switch_text_section (); 2212 if (!dwarf2_debug_info_emitted_p (current_function_decl) 2213 && !DECL_IGNORED_P (current_function_decl)) 2214 debug_hooks->switch_text_section (); 2215 } 2216 else if (!DECL_IGNORED_P (current_function_decl)) 2217 debug_hooks->switch_text_section (); 2218 2219 switch_to_section (current_function_section ()); 2220 targetm.asm_out.function_switched_text_sections (asm_out_file, 2221 current_function_decl, 2222 in_cold_section_p); 2223 /* Emit a label for the split cold section. Form label name by 2224 suffixing "cold" to the original function's name. */ 2225 if (in_cold_section_p) 2226 { 2227 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME 2228 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file, 2229 IDENTIFIER_POINTER 2230 (cold_function_name), 2231 current_function_decl); 2232 #else 2233 ASM_OUTPUT_LABEL (asm_out_file, 2234 IDENTIFIER_POINTER (cold_function_name)); 2235 #endif 2236 if (dwarf2out_do_frame () 2237 && cfun->fde->dw_fde_second_begin != NULL) 2238 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin); 2239 } 2240 break; 2241 2242 case NOTE_INSN_BASIC_BLOCK: 2243 if (need_profile_function) 2244 { 2245 profile_function (asm_out_file); 2246 need_profile_function = false; 2247 } 2248 2249 if (targetm.asm_out.unwind_emit) 2250 targetm.asm_out.unwind_emit (asm_out_file, insn); 2251 2252 bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator; 2253 break; 2254 2255 case NOTE_INSN_EH_REGION_BEG: 2256 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB", 2257 NOTE_EH_HANDLER (insn)); 2258 break; 2259 2260 case NOTE_INSN_EH_REGION_END: 2261 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE", 2262 NOTE_EH_HANDLER (insn)); 2263 break; 2264 2265 case NOTE_INSN_PROLOGUE_END: 2266 targetm.asm_out.function_end_prologue (file); 2267 profile_after_prologue (file); 2268 2269 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) 2270 { 2271 *seen |= SEEN_EMITTED; 2272 force_source_line = true; 2273 } 2274 else 2275 *seen |= SEEN_NOTE; 2276 2277 break; 2278 2279 case NOTE_INSN_EPILOGUE_BEG: 2280 if (!DECL_IGNORED_P (current_function_decl)) 2281 (*debug_hooks->begin_epilogue) (last_linenum, last_filename); 2282 targetm.asm_out.function_begin_epilogue (file); 2283 break; 2284 2285 case NOTE_INSN_CFI: 2286 dwarf2out_emit_cfi (NOTE_CFI (insn)); 2287 break; 2288 2289 case NOTE_INSN_CFI_LABEL: 2290 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI", 2291 NOTE_LABEL_NUMBER (insn)); 2292 break; 2293 2294 case NOTE_INSN_FUNCTION_BEG: 2295 if (need_profile_function) 2296 { 2297 profile_function (asm_out_file); 2298 need_profile_function = false; 2299 } 2300 2301 app_disable (); 2302 if (!DECL_IGNORED_P (current_function_decl)) 2303 debug_hooks->end_prologue (last_linenum, last_filename); 2304 2305 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) 2306 { 2307 *seen |= SEEN_EMITTED; 2308 force_source_line = true; 2309 } 2310 else 2311 *seen |= SEEN_NOTE; 2312 2313 break; 2314 2315 case NOTE_INSN_BLOCK_BEG: 2316 if (debug_info_level == DINFO_LEVEL_NORMAL 2317 || debug_info_level == DINFO_LEVEL_VERBOSE 2318 || write_symbols == DWARF2_DEBUG 2319 || write_symbols == VMS_AND_DWARF2_DEBUG 2320 || write_symbols == VMS_DEBUG) 2321 { 2322 int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); 2323 2324 app_disable (); 2325 ++block_depth; 2326 high_block_linenum = last_linenum; 2327 2328 /* Output debugging info about the symbol-block beginning. */ 2329 if (!DECL_IGNORED_P (current_function_decl)) 2330 debug_hooks->begin_block (last_linenum, n); 2331 2332 /* Mark this block as output. */ 2333 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1; 2334 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p; 2335 } 2336 if (write_symbols == DBX_DEBUG) 2337 { 2338 location_t *locus_ptr 2339 = block_nonartificial_location (NOTE_BLOCK (insn)); 2340 2341 if (locus_ptr != NULL) 2342 { 2343 override_filename = LOCATION_FILE (*locus_ptr); 2344 override_linenum = LOCATION_LINE (*locus_ptr); 2345 override_columnnum = LOCATION_COLUMN (*locus_ptr); 2346 override_discriminator = compute_discriminator (*locus_ptr); 2347 } 2348 } 2349 break; 2350 2351 case NOTE_INSN_BLOCK_END: 2352 maybe_output_next_view (seen); 2353 2354 if (debug_info_level == DINFO_LEVEL_NORMAL 2355 || debug_info_level == DINFO_LEVEL_VERBOSE 2356 || write_symbols == DWARF2_DEBUG 2357 || write_symbols == VMS_AND_DWARF2_DEBUG 2358 || write_symbols == VMS_DEBUG) 2359 { 2360 int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); 2361 2362 app_disable (); 2363 2364 /* End of a symbol-block. */ 2365 --block_depth; 2366 gcc_assert (block_depth >= 0); 2367 2368 if (!DECL_IGNORED_P (current_function_decl)) 2369 debug_hooks->end_block (high_block_linenum, n); 2370 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) 2371 == in_cold_section_p); 2372 } 2373 if (write_symbols == DBX_DEBUG) 2374 { 2375 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn)); 2376 location_t *locus_ptr 2377 = block_nonartificial_location (outer_block); 2378 2379 if (locus_ptr != NULL) 2380 { 2381 override_filename = LOCATION_FILE (*locus_ptr); 2382 override_linenum = LOCATION_LINE (*locus_ptr); 2383 override_columnnum = LOCATION_COLUMN (*locus_ptr); 2384 override_discriminator = compute_discriminator (*locus_ptr); 2385 } 2386 else 2387 { 2388 override_filename = NULL; 2389 override_linenum = 0; 2390 override_columnnum = 0; 2391 override_discriminator = 0; 2392 } 2393 } 2394 break; 2395 2396 case NOTE_INSN_DELETED_LABEL: 2397 /* Emit the label. We may have deleted the CODE_LABEL because 2398 the label could be proved to be unreachable, though still 2399 referenced (in the form of having its address taken. */ 2400 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn)); 2401 break; 2402 2403 case NOTE_INSN_DELETED_DEBUG_LABEL: 2404 /* Similarly, but need to use different namespace for it. */ 2405 if (CODE_LABEL_NUMBER (insn) != -1) 2406 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn)); 2407 break; 2408 2409 case NOTE_INSN_VAR_LOCATION: 2410 if (!DECL_IGNORED_P (current_function_decl)) 2411 { 2412 debug_hooks->var_location (insn); 2413 set_next_view_needed (seen); 2414 } 2415 break; 2416 2417 case NOTE_INSN_BEGIN_STMT: 2418 gcc_checking_assert (cfun->debug_nonbind_markers); 2419 if (!DECL_IGNORED_P (current_function_decl) 2420 && notice_source_line (insn, NULL)) 2421 { 2422 output_source_line: 2423 (*debug_hooks->source_line) (last_linenum, last_columnnum, 2424 last_filename, last_discriminator, 2425 true); 2426 clear_next_view_needed (seen); 2427 } 2428 break; 2429 2430 case NOTE_INSN_INLINE_ENTRY: 2431 gcc_checking_assert (cfun->debug_nonbind_markers); 2432 if (!DECL_IGNORED_P (current_function_decl) 2433 && notice_source_line (insn, NULL)) 2434 { 2435 (*debug_hooks->inline_entry) (LOCATION_BLOCK 2436 (NOTE_MARKER_LOCATION (insn))); 2437 goto output_source_line; 2438 } 2439 break; 2440 2441 default: 2442 gcc_unreachable (); 2443 break; 2444 } 2445 break; 2446 2447 case BARRIER: 2448 break; 2449 2450 case CODE_LABEL: 2451 /* The target port might emit labels in the output function for 2452 some insn, e.g. sh.c output_branchy_insn. */ 2453 if (CODE_LABEL_NUMBER (insn) <= max_labelno) 2454 { 2455 align_flags alignment = LABEL_TO_ALIGNMENT (insn); 2456 if (alignment.levels[0].log && NEXT_INSN (insn)) 2457 { 2458 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN 2459 /* Output both primary and secondary alignment. */ 2460 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log, 2461 alignment.levels[0].maxskip); 2462 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log, 2463 alignment.levels[1].maxskip); 2464 #else 2465 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP 2466 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log); 2467 #else 2468 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log); 2469 #endif 2470 #endif 2471 } 2472 } 2473 CC_STATUS_INIT; 2474 2475 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn)) 2476 debug_hooks->label (as_a <rtx_code_label *> (insn)); 2477 2478 app_disable (); 2479 2480 /* If this label is followed by a jump-table, make sure we put 2481 the label in the read-only section. Also possibly write the 2482 label and jump table together. */ 2483 table = jump_table_for_label (as_a <rtx_code_label *> (insn)); 2484 if (table) 2485 { 2486 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) 2487 /* In this case, the case vector is being moved by the 2488 target, so don't output the label at all. Leave that 2489 to the back end macros. */ 2490 #else 2491 if (! JUMP_TABLES_IN_TEXT_SECTION) 2492 { 2493 int log_align; 2494 2495 switch_to_section (targetm.asm_out.function_rodata_section 2496 (current_function_decl)); 2497 2498 #ifdef ADDR_VEC_ALIGN 2499 log_align = ADDR_VEC_ALIGN (table); 2500 #else 2501 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT); 2502 #endif 2503 ASM_OUTPUT_ALIGN (file, log_align); 2504 } 2505 else 2506 switch_to_section (current_function_section ()); 2507 2508 #ifdef ASM_OUTPUT_CASE_LABEL 2509 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table); 2510 #else 2511 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); 2512 #endif 2513 #endif 2514 break; 2515 } 2516 if (LABEL_ALT_ENTRY_P (insn)) 2517 output_alternate_entry_point (file, insn); 2518 else 2519 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); 2520 break; 2521 2522 default: 2523 { 2524 rtx body = PATTERN (insn); 2525 int insn_code_number; 2526 const char *templ; 2527 bool is_stmt, *is_stmt_p; 2528 2529 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers) 2530 { 2531 is_stmt = false; 2532 is_stmt_p = NULL; 2533 } 2534 else 2535 is_stmt_p = &is_stmt; 2536 2537 /* Reset this early so it is correct for ASM statements. */ 2538 current_insn_predicate = NULL_RTX; 2539 2540 /* An INSN, JUMP_INSN or CALL_INSN. 2541 First check for special kinds that recog doesn't recognize. */ 2542 2543 if (GET_CODE (body) == USE /* These are just declarations. */ 2544 || GET_CODE (body) == CLOBBER) 2545 break; 2546 2547 #if HAVE_cc0 2548 { 2549 /* If there is a REG_CC_SETTER note on this insn, it means that 2550 the setting of the condition code was done in the delay slot 2551 of the insn that branched here. So recover the cc status 2552 from the insn that set it. */ 2553 2554 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); 2555 if (note) 2556 { 2557 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0)); 2558 NOTICE_UPDATE_CC (PATTERN (other), other); 2559 cc_prev_status = cc_status; 2560 } 2561 } 2562 #endif 2563 2564 /* Detect insns that are really jump-tables 2565 and output them as such. */ 2566 2567 if (JUMP_TABLE_DATA_P (insn)) 2568 { 2569 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)) 2570 int vlen, idx; 2571 #endif 2572 2573 if (! JUMP_TABLES_IN_TEXT_SECTION) 2574 switch_to_section (targetm.asm_out.function_rodata_section 2575 (current_function_decl)); 2576 else 2577 switch_to_section (current_function_section ()); 2578 2579 app_disable (); 2580 2581 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) 2582 if (GET_CODE (body) == ADDR_VEC) 2583 { 2584 #ifdef ASM_OUTPUT_ADDR_VEC 2585 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body); 2586 #else 2587 gcc_unreachable (); 2588 #endif 2589 } 2590 else 2591 { 2592 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC 2593 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body); 2594 #else 2595 gcc_unreachable (); 2596 #endif 2597 } 2598 #else 2599 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC); 2600 for (idx = 0; idx < vlen; idx++) 2601 { 2602 if (GET_CODE (body) == ADDR_VEC) 2603 { 2604 #ifdef ASM_OUTPUT_ADDR_VEC_ELT 2605 ASM_OUTPUT_ADDR_VEC_ELT 2606 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); 2607 #else 2608 gcc_unreachable (); 2609 #endif 2610 } 2611 else 2612 { 2613 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT 2614 ASM_OUTPUT_ADDR_DIFF_ELT 2615 (file, 2616 body, 2617 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), 2618 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0))); 2619 #else 2620 gcc_unreachable (); 2621 #endif 2622 } 2623 } 2624 #ifdef ASM_OUTPUT_CASE_END 2625 ASM_OUTPUT_CASE_END (file, 2626 CODE_LABEL_NUMBER (PREV_INSN (insn)), 2627 insn); 2628 #endif 2629 #endif 2630 2631 switch_to_section (current_function_section ()); 2632 2633 if (debug_variable_location_views 2634 && !DECL_IGNORED_P (current_function_decl)) 2635 debug_hooks->var_location (insn); 2636 2637 break; 2638 } 2639 /* Output this line note if it is the first or the last line 2640 note in a row. */ 2641 if (!DECL_IGNORED_P (current_function_decl) 2642 && notice_source_line (insn, is_stmt_p)) 2643 { 2644 if (flag_verbose_asm) 2645 asm_show_source (last_filename, last_linenum); 2646 (*debug_hooks->source_line) (last_linenum, last_columnnum, 2647 last_filename, last_discriminator, 2648 is_stmt); 2649 clear_next_view_needed (seen); 2650 } 2651 else 2652 maybe_output_next_view (seen); 2653 2654 gcc_checking_assert (!DEBUG_INSN_P (insn)); 2655 2656 if (GET_CODE (body) == PARALLEL 2657 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT) 2658 body = XVECEXP (body, 0, 0); 2659 2660 if (GET_CODE (body) == ASM_INPUT) 2661 { 2662 const char *string = XSTR (body, 0); 2663 2664 /* There's no telling what that did to the condition codes. */ 2665 CC_STATUS_INIT; 2666 2667 if (string[0]) 2668 { 2669 expanded_location loc; 2670 2671 app_enable (); 2672 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body)); 2673 if (*loc.file && loc.line) 2674 fprintf (asm_out_file, "%s %i \"%s\" 1\n", 2675 ASM_COMMENT_START, loc.line, loc.file); 2676 fprintf (asm_out_file, "\t%s\n", string); 2677 #if HAVE_AS_LINE_ZERO 2678 if (*loc.file && loc.line) 2679 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START); 2680 #endif 2681 } 2682 break; 2683 } 2684 2685 /* Detect `asm' construct with operands. */ 2686 if (asm_noperands (body) >= 0) 2687 { 2688 unsigned int noperands = asm_noperands (body); 2689 rtx *ops = XALLOCAVEC (rtx, noperands); 2690 const char *string; 2691 location_t loc; 2692 expanded_location expanded; 2693 2694 /* There's no telling what that did to the condition codes. */ 2695 CC_STATUS_INIT; 2696 2697 /* Get out the operand values. */ 2698 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc); 2699 /* Inhibit dying on what would otherwise be compiler bugs. */ 2700 insn_noperands = noperands; 2701 this_is_asm_operands = insn; 2702 expanded = expand_location (loc); 2703 2704 #ifdef FINAL_PRESCAN_INSN 2705 FINAL_PRESCAN_INSN (insn, ops, insn_noperands); 2706 #endif 2707 2708 /* Output the insn using them. */ 2709 if (string[0]) 2710 { 2711 app_enable (); 2712 if (expanded.file && expanded.line) 2713 fprintf (asm_out_file, "%s %i \"%s\" 1\n", 2714 ASM_COMMENT_START, expanded.line, expanded.file); 2715 output_asm_insn (string, ops); 2716 #if HAVE_AS_LINE_ZERO 2717 if (expanded.file && expanded.line) 2718 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START); 2719 #endif 2720 } 2721 2722 if (targetm.asm_out.final_postscan_insn) 2723 targetm.asm_out.final_postscan_insn (file, insn, ops, 2724 insn_noperands); 2725 2726 this_is_asm_operands = 0; 2727 break; 2728 } 2729 2730 app_disable (); 2731 2732 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body)) 2733 { 2734 /* A delayed-branch sequence */ 2735 int i; 2736 2737 final_sequence = seq; 2738 2739 /* The first insn in this SEQUENCE might be a JUMP_INSN that will 2740 force the restoration of a comparison that was previously 2741 thought unnecessary. If that happens, cancel this sequence 2742 and cause that insn to be restored. */ 2743 2744 next = final_scan_insn (seq->insn (0), file, 0, 1, seen); 2745 if (next != seq->insn (1)) 2746 { 2747 final_sequence = 0; 2748 return next; 2749 } 2750 2751 for (i = 1; i < seq->len (); i++) 2752 { 2753 rtx_insn *insn = seq->insn (i); 2754 rtx_insn *next = NEXT_INSN (insn); 2755 /* We loop in case any instruction in a delay slot gets 2756 split. */ 2757 do 2758 insn = final_scan_insn (insn, file, 0, 1, seen); 2759 while (insn != next); 2760 } 2761 #ifdef DBR_OUTPUT_SEQEND 2762 DBR_OUTPUT_SEQEND (file); 2763 #endif 2764 final_sequence = 0; 2765 2766 /* If the insn requiring the delay slot was a CALL_INSN, the 2767 insns in the delay slot are actually executed before the 2768 called function. Hence we don't preserve any CC-setting 2769 actions in these insns and the CC must be marked as being 2770 clobbered by the function. */ 2771 if (CALL_P (seq->insn (0))) 2772 { 2773 CC_STATUS_INIT; 2774 } 2775 break; 2776 } 2777 2778 /* We have a real machine instruction as rtl. */ 2779 2780 body = PATTERN (insn); 2781 2782 #if HAVE_cc0 2783 set = single_set (insn); 2784 2785 /* Check for redundant test and compare instructions 2786 (when the condition codes are already set up as desired). 2787 This is done only when optimizing; if not optimizing, 2788 it should be possible for the user to alter a variable 2789 with the debugger in between statements 2790 and the next statement should reexamine the variable 2791 to compute the condition codes. */ 2792 2793 if (optimize_p) 2794 { 2795 if (set 2796 && GET_CODE (SET_DEST (set)) == CC0 2797 && insn != last_ignored_compare) 2798 { 2799 rtx src1, src2; 2800 if (GET_CODE (SET_SRC (set)) == SUBREG) 2801 SET_SRC (set) = alter_subreg (&SET_SRC (set), true); 2802 2803 src1 = SET_SRC (set); 2804 src2 = NULL_RTX; 2805 if (GET_CODE (SET_SRC (set)) == COMPARE) 2806 { 2807 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG) 2808 XEXP (SET_SRC (set), 0) 2809 = alter_subreg (&XEXP (SET_SRC (set), 0), true); 2810 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG) 2811 XEXP (SET_SRC (set), 1) 2812 = alter_subreg (&XEXP (SET_SRC (set), 1), true); 2813 if (XEXP (SET_SRC (set), 1) 2814 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0)))) 2815 src2 = XEXP (SET_SRC (set), 0); 2816 } 2817 if ((cc_status.value1 != 0 2818 && rtx_equal_p (src1, cc_status.value1)) 2819 || (cc_status.value2 != 0 2820 && rtx_equal_p (src1, cc_status.value2)) 2821 || (src2 != 0 && cc_status.value1 != 0 2822 && rtx_equal_p (src2, cc_status.value1)) 2823 || (src2 != 0 && cc_status.value2 != 0 2824 && rtx_equal_p (src2, cc_status.value2))) 2825 { 2826 /* Don't delete insn if it has an addressing side-effect. */ 2827 if (! FIND_REG_INC_NOTE (insn, NULL_RTX) 2828 /* or if anything in it is volatile. */ 2829 && ! volatile_refs_p (PATTERN (insn))) 2830 { 2831 /* We don't really delete the insn; just ignore it. */ 2832 last_ignored_compare = insn; 2833 break; 2834 } 2835 } 2836 } 2837 } 2838 2839 /* If this is a conditional branch, maybe modify it 2840 if the cc's are in a nonstandard state 2841 so that it accomplishes the same thing that it would 2842 do straightforwardly if the cc's were set up normally. */ 2843 2844 if (cc_status.flags != 0 2845 && JUMP_P (insn) 2846 && GET_CODE (body) == SET 2847 && SET_DEST (body) == pc_rtx 2848 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE 2849 && COMPARISON_P (XEXP (SET_SRC (body), 0)) 2850 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx) 2851 { 2852 /* This function may alter the contents of its argument 2853 and clear some of the cc_status.flags bits. 2854 It may also return 1 meaning condition now always true 2855 or -1 meaning condition now always false 2856 or 2 meaning condition nontrivial but altered. */ 2857 int result = alter_cond (XEXP (SET_SRC (body), 0)); 2858 /* If condition now has fixed value, replace the IF_THEN_ELSE 2859 with its then-operand or its else-operand. */ 2860 if (result == 1) 2861 SET_SRC (body) = XEXP (SET_SRC (body), 1); 2862 if (result == -1) 2863 SET_SRC (body) = XEXP (SET_SRC (body), 2); 2864 2865 /* The jump is now either unconditional or a no-op. 2866 If it has become a no-op, don't try to output it. 2867 (It would not be recognized.) */ 2868 if (SET_SRC (body) == pc_rtx) 2869 { 2870 delete_insn (insn); 2871 break; 2872 } 2873 else if (ANY_RETURN_P (SET_SRC (body))) 2874 /* Replace (set (pc) (return)) with (return). */ 2875 PATTERN (insn) = body = SET_SRC (body); 2876 2877 /* Rerecognize the instruction if it has changed. */ 2878 if (result != 0) 2879 INSN_CODE (insn) = -1; 2880 } 2881 2882 /* If this is a conditional trap, maybe modify it if the cc's 2883 are in a nonstandard state so that it accomplishes the same 2884 thing that it would do straightforwardly if the cc's were 2885 set up normally. */ 2886 if (cc_status.flags != 0 2887 && NONJUMP_INSN_P (insn) 2888 && GET_CODE (body) == TRAP_IF 2889 && COMPARISON_P (TRAP_CONDITION (body)) 2890 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx) 2891 { 2892 /* This function may alter the contents of its argument 2893 and clear some of the cc_status.flags bits. 2894 It may also return 1 meaning condition now always true 2895 or -1 meaning condition now always false 2896 or 2 meaning condition nontrivial but altered. */ 2897 int result = alter_cond (TRAP_CONDITION (body)); 2898 2899 /* If TRAP_CONDITION has become always false, delete the 2900 instruction. */ 2901 if (result == -1) 2902 { 2903 delete_insn (insn); 2904 break; 2905 } 2906 2907 /* If TRAP_CONDITION has become always true, replace 2908 TRAP_CONDITION with const_true_rtx. */ 2909 if (result == 1) 2910 TRAP_CONDITION (body) = const_true_rtx; 2911 2912 /* Rerecognize the instruction if it has changed. */ 2913 if (result != 0) 2914 INSN_CODE (insn) = -1; 2915 } 2916 2917 /* Make same adjustments to instructions that examine the 2918 condition codes without jumping and instructions that 2919 handle conditional moves (if this machine has either one). */ 2920 2921 if (cc_status.flags != 0 2922 && set != 0) 2923 { 2924 rtx cond_rtx, then_rtx, else_rtx; 2925 2926 if (!JUMP_P (insn) 2927 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE) 2928 { 2929 cond_rtx = XEXP (SET_SRC (set), 0); 2930 then_rtx = XEXP (SET_SRC (set), 1); 2931 else_rtx = XEXP (SET_SRC (set), 2); 2932 } 2933 else 2934 { 2935 cond_rtx = SET_SRC (set); 2936 then_rtx = const_true_rtx; 2937 else_rtx = const0_rtx; 2938 } 2939 2940 if (COMPARISON_P (cond_rtx) 2941 && XEXP (cond_rtx, 0) == cc0_rtx) 2942 { 2943 int result; 2944 result = alter_cond (cond_rtx); 2945 if (result == 1) 2946 validate_change (insn, &SET_SRC (set), then_rtx, 0); 2947 else if (result == -1) 2948 validate_change (insn, &SET_SRC (set), else_rtx, 0); 2949 else if (result == 2) 2950 INSN_CODE (insn) = -1; 2951 if (SET_DEST (set) == SET_SRC (set)) 2952 delete_insn (insn); 2953 } 2954 } 2955 2956 #endif 2957 2958 /* Do machine-specific peephole optimizations if desired. */ 2959 2960 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes) 2961 { 2962 rtx_insn *next = peephole (insn); 2963 /* When peepholing, if there were notes within the peephole, 2964 emit them before the peephole. */ 2965 if (next != 0 && next != NEXT_INSN (insn)) 2966 { 2967 rtx_insn *note, *prev = PREV_INSN (insn); 2968 2969 for (note = NEXT_INSN (insn); note != next; 2970 note = NEXT_INSN (note)) 2971 final_scan_insn (note, file, optimize_p, nopeepholes, seen); 2972 2973 /* Put the notes in the proper position for a later 2974 rescan. For example, the SH target can do this 2975 when generating a far jump in a delayed branch 2976 sequence. */ 2977 note = NEXT_INSN (insn); 2978 SET_PREV_INSN (note) = prev; 2979 SET_NEXT_INSN (prev) = note; 2980 SET_NEXT_INSN (PREV_INSN (next)) = insn; 2981 SET_PREV_INSN (insn) = PREV_INSN (next); 2982 SET_NEXT_INSN (insn) = next; 2983 SET_PREV_INSN (next) = insn; 2984 } 2985 2986 /* PEEPHOLE might have changed this. */ 2987 body = PATTERN (insn); 2988 } 2989 2990 /* Try to recognize the instruction. 2991 If successful, verify that the operands satisfy the 2992 constraints for the instruction. Crash if they don't, 2993 since `reload' should have changed them so that they do. */ 2994 2995 insn_code_number = recog_memoized (insn); 2996 cleanup_subreg_operands (insn); 2997 2998 /* Dump the insn in the assembly for debugging (-dAP). 2999 If the final dump is requested as slim RTL, dump slim 3000 RTL to the assembly file also. */ 3001 if (flag_dump_rtl_in_asm) 3002 { 3003 print_rtx_head = ASM_COMMENT_START; 3004 if (! (dump_flags & TDF_SLIM)) 3005 print_rtl_single (asm_out_file, insn); 3006 else 3007 dump_insn_slim (asm_out_file, insn); 3008 print_rtx_head = ""; 3009 } 3010 3011 if (! constrain_operands_cached (insn, 1)) 3012 fatal_insn_not_found (insn); 3013 3014 /* Some target machines need to prescan each insn before 3015 it is output. */ 3016 3017 #ifdef FINAL_PRESCAN_INSN 3018 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands); 3019 #endif 3020 3021 if (targetm.have_conditional_execution () 3022 && GET_CODE (PATTERN (insn)) == COND_EXEC) 3023 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn)); 3024 3025 #if HAVE_cc0 3026 cc_prev_status = cc_status; 3027 3028 /* Update `cc_status' for this instruction. 3029 The instruction's output routine may change it further. 3030 If the output routine for a jump insn needs to depend 3031 on the cc status, it should look at cc_prev_status. */ 3032 3033 NOTICE_UPDATE_CC (body, insn); 3034 #endif 3035 3036 current_output_insn = debug_insn = insn; 3037 3038 /* Find the proper template for this insn. */ 3039 templ = get_insn_template (insn_code_number, insn); 3040 3041 /* If the C code returns 0, it means that it is a jump insn 3042 which follows a deleted test insn, and that test insn 3043 needs to be reinserted. */ 3044 if (templ == 0) 3045 { 3046 rtx_insn *prev; 3047 3048 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare); 3049 3050 /* We have already processed the notes between the setter and 3051 the user. Make sure we don't process them again, this is 3052 particularly important if one of the notes is a block 3053 scope note or an EH note. */ 3054 for (prev = insn; 3055 prev != last_ignored_compare; 3056 prev = PREV_INSN (prev)) 3057 { 3058 if (NOTE_P (prev)) 3059 delete_insn (prev); /* Use delete_note. */ 3060 } 3061 3062 return prev; 3063 } 3064 3065 /* If the template is the string "#", it means that this insn must 3066 be split. */ 3067 if (templ[0] == '#' && templ[1] == '\0') 3068 { 3069 rtx_insn *new_rtx = try_split (body, insn, 0); 3070 3071 /* If we didn't split the insn, go away. */ 3072 if (new_rtx == insn && PATTERN (new_rtx) == body) 3073 fatal_insn ("could not split insn", insn); 3074 3075 /* If we have a length attribute, this instruction should have 3076 been split in shorten_branches, to ensure that we would have 3077 valid length info for the splitees. */ 3078 gcc_assert (!HAVE_ATTR_length); 3079 3080 return new_rtx; 3081 } 3082 3083 /* ??? This will put the directives in the wrong place if 3084 get_insn_template outputs assembly directly. However calling it 3085 before get_insn_template breaks if the insns is split. */ 3086 if (targetm.asm_out.unwind_emit_before_insn 3087 && targetm.asm_out.unwind_emit) 3088 targetm.asm_out.unwind_emit (asm_out_file, insn); 3089 3090 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn); 3091 if (call_insn != NULL) 3092 { 3093 rtx x = call_from_call_insn (call_insn); 3094 x = XEXP (x, 0); 3095 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF) 3096 { 3097 tree t; 3098 x = XEXP (x, 0); 3099 t = SYMBOL_REF_DECL (x); 3100 if (t) 3101 assemble_external (t); 3102 } 3103 } 3104 3105 /* Output assembler code from the template. */ 3106 output_asm_insn (templ, recog_data.operand); 3107 3108 /* Some target machines need to postscan each insn after 3109 it is output. */ 3110 if (targetm.asm_out.final_postscan_insn) 3111 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand, 3112 recog_data.n_operands); 3113 3114 if (!targetm.asm_out.unwind_emit_before_insn 3115 && targetm.asm_out.unwind_emit) 3116 targetm.asm_out.unwind_emit (asm_out_file, insn); 3117 3118 /* Let the debug info back-end know about this call. We do this only 3119 after the instruction has been emitted because labels that may be 3120 created to reference the call instruction must appear after it. */ 3121 if ((debug_variable_location_views || call_insn != NULL) 3122 && !DECL_IGNORED_P (current_function_decl)) 3123 debug_hooks->var_location (insn); 3124 3125 current_output_insn = debug_insn = 0; 3126 } 3127 } 3128 return NEXT_INSN (insn); 3129 } 3130 3131 /* This is a wrapper around final_scan_insn_1 that allows ports to 3132 call it recursively without a known value for SEEN. The value is 3133 saved at the outermost call, and recovered for recursive calls. 3134 Recursive calls MUST pass NULL, or the same pointer if they can 3135 otherwise get to it. */ 3136 3137 rtx_insn * 3138 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p, 3139 int nopeepholes, int *seen) 3140 { 3141 static int *enclosing_seen; 3142 static int recursion_counter; 3143 3144 gcc_assert (seen || recursion_counter); 3145 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen); 3146 3147 if (!recursion_counter++) 3148 enclosing_seen = seen; 3149 else if (!seen) 3150 seen = enclosing_seen; 3151 3152 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen); 3153 3154 if (!--recursion_counter) 3155 enclosing_seen = NULL; 3156 3157 return ret; 3158 } 3159 3160 3161 3162 /* Map DECLs to instance discriminators. This is allocated and 3163 defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS. 3164 Mappings from this table are saved and restored for LTO, so 3165 link-time compilation will have this map set, at least in 3166 partitions containing at least one DECL with an associated instance 3167 discriminator. */ 3168 3169 decl_to_instance_map_t *decl_to_instance_map; 3170 3171 /* Return the instance number assigned to DECL. */ 3172 3173 static inline int 3174 map_decl_to_instance (const_tree decl) 3175 { 3176 int *inst; 3177 3178 if (!decl_to_instance_map || !decl || !DECL_P (decl)) 3179 return 0; 3180 3181 inst = decl_to_instance_map->get (decl); 3182 3183 if (!inst) 3184 return 0; 3185 3186 return *inst; 3187 } 3188 3189 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */ 3190 3191 static inline int 3192 compute_discriminator (location_t loc) 3193 { 3194 int discriminator; 3195 3196 if (!decl_to_instance_map) 3197 discriminator = bb_discriminator; 3198 else 3199 { 3200 tree block = LOCATION_BLOCK (loc); 3201 3202 while (block && TREE_CODE (block) == BLOCK 3203 && !inlined_function_outer_scope_p (block)) 3204 block = BLOCK_SUPERCONTEXT (block); 3205 3206 tree decl; 3207 3208 if (!block) 3209 decl = current_function_decl; 3210 else if (DECL_P (block)) 3211 decl = block; 3212 else 3213 decl = block_ultimate_origin (block); 3214 3215 discriminator = map_decl_to_instance (decl); 3216 } 3217 3218 return discriminator; 3219 } 3220 3221 /* Return whether a source line note needs to be emitted before INSN. 3222 Sets IS_STMT to TRUE if the line should be marked as a possible 3223 breakpoint location. */ 3224 3225 static bool 3226 notice_source_line (rtx_insn *insn, bool *is_stmt) 3227 { 3228 const char *filename; 3229 int linenum, columnnum; 3230 3231 if (NOTE_MARKER_P (insn)) 3232 { 3233 location_t loc = NOTE_MARKER_LOCATION (insn); 3234 expanded_location xloc = expand_location (loc); 3235 if (xloc.line == 0) 3236 { 3237 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION 3238 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION); 3239 return false; 3240 } 3241 filename = xloc.file; 3242 linenum = xloc.line; 3243 columnnum = xloc.column; 3244 discriminator = compute_discriminator (loc); 3245 force_source_line = true; 3246 } 3247 else if (override_filename) 3248 { 3249 filename = override_filename; 3250 linenum = override_linenum; 3251 columnnum = override_columnnum; 3252 discriminator = override_discriminator; 3253 } 3254 else if (INSN_HAS_LOCATION (insn)) 3255 { 3256 expanded_location xloc = insn_location (insn); 3257 filename = xloc.file; 3258 linenum = xloc.line; 3259 columnnum = xloc.column; 3260 discriminator = compute_discriminator (INSN_LOCATION (insn)); 3261 } 3262 else 3263 { 3264 filename = NULL; 3265 linenum = 0; 3266 columnnum = 0; 3267 discriminator = 0; 3268 } 3269 3270 if (filename == NULL) 3271 return false; 3272 3273 if (force_source_line 3274 || filename != last_filename 3275 || last_linenum != linenum 3276 || (debug_column_info && last_columnnum != columnnum)) 3277 { 3278 force_source_line = false; 3279 last_filename = filename; 3280 last_linenum = linenum; 3281 last_columnnum = columnnum; 3282 last_discriminator = discriminator; 3283 if (is_stmt) 3284 *is_stmt = true; 3285 high_block_linenum = MAX (last_linenum, high_block_linenum); 3286 high_function_linenum = MAX (last_linenum, high_function_linenum); 3287 return true; 3288 } 3289 3290 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator) 3291 { 3292 /* If the discriminator changed, but the line number did not, 3293 output the line table entry with is_stmt false so the 3294 debugger does not treat this as a breakpoint location. */ 3295 last_discriminator = discriminator; 3296 if (is_stmt) 3297 *is_stmt = false; 3298 return true; 3299 } 3300 3301 return false; 3302 } 3303 3304 /* For each operand in INSN, simplify (subreg (reg)) so that it refers 3305 directly to the desired hard register. */ 3306 3307 void 3308 cleanup_subreg_operands (rtx_insn *insn) 3309 { 3310 int i; 3311 bool changed = false; 3312 extract_insn_cached (insn); 3313 for (i = 0; i < recog_data.n_operands; i++) 3314 { 3315 /* The following test cannot use recog_data.operand when testing 3316 for a SUBREG: the underlying object might have been changed 3317 already if we are inside a match_operator expression that 3318 matches the else clause. Instead we test the underlying 3319 expression directly. */ 3320 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG) 3321 { 3322 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true); 3323 changed = true; 3324 } 3325 else if (GET_CODE (recog_data.operand[i]) == PLUS 3326 || GET_CODE (recog_data.operand[i]) == MULT 3327 || MEM_P (recog_data.operand[i])) 3328 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed); 3329 } 3330 3331 for (i = 0; i < recog_data.n_dups; i++) 3332 { 3333 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG) 3334 { 3335 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true); 3336 changed = true; 3337 } 3338 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS 3339 || GET_CODE (*recog_data.dup_loc[i]) == MULT 3340 || MEM_P (*recog_data.dup_loc[i])) 3341 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed); 3342 } 3343 if (changed) 3344 df_insn_rescan (insn); 3345 } 3346 3347 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on 3348 the thing it is a subreg of. Do it anyway if FINAL_P. */ 3349 3350 rtx 3351 alter_subreg (rtx *xp, bool final_p) 3352 { 3353 rtx x = *xp; 3354 rtx y = SUBREG_REG (x); 3355 3356 /* simplify_subreg does not remove subreg from volatile references. 3357 We are required to. */ 3358 if (MEM_P (y)) 3359 { 3360 poly_int64 offset = SUBREG_BYTE (x); 3361 3362 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE 3363 contains 0 instead of the proper offset. See simplify_subreg. */ 3364 if (paradoxical_subreg_p (x)) 3365 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y)); 3366 3367 if (final_p) 3368 *xp = adjust_address (y, GET_MODE (x), offset); 3369 else 3370 *xp = adjust_address_nv (y, GET_MODE (x), offset); 3371 } 3372 else if (REG_P (y) && HARD_REGISTER_P (y)) 3373 { 3374 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y), 3375 SUBREG_BYTE (x)); 3376 3377 if (new_rtx != 0) 3378 *xp = new_rtx; 3379 else if (final_p && REG_P (y)) 3380 { 3381 /* Simplify_subreg can't handle some REG cases, but we have to. */ 3382 unsigned int regno; 3383 poly_int64 offset; 3384 3385 regno = subreg_regno (x); 3386 if (subreg_lowpart_p (x)) 3387 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y)); 3388 else 3389 offset = SUBREG_BYTE (x); 3390 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset); 3391 } 3392 } 3393 3394 return *xp; 3395 } 3396 3397 /* Do alter_subreg on all the SUBREGs contained in X. */ 3398 3399 static rtx 3400 walk_alter_subreg (rtx *xp, bool *changed) 3401 { 3402 rtx x = *xp; 3403 switch (GET_CODE (x)) 3404 { 3405 case PLUS: 3406 case MULT: 3407 case AND: 3408 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed); 3409 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed); 3410 break; 3411 3412 case MEM: 3413 case ZERO_EXTEND: 3414 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed); 3415 break; 3416 3417 case SUBREG: 3418 *changed = true; 3419 return alter_subreg (xp, true); 3420 3421 default: 3422 break; 3423 } 3424 3425 return *xp; 3426 } 3427 3428 #if HAVE_cc0 3429 3430 /* Given BODY, the body of a jump instruction, alter the jump condition 3431 as required by the bits that are set in cc_status.flags. 3432 Not all of the bits there can be handled at this level in all cases. 3433 3434 The value is normally 0. 3435 1 means that the condition has become always true. 3436 -1 means that the condition has become always false. 3437 2 means that COND has been altered. */ 3438 3439 static int 3440 alter_cond (rtx cond) 3441 { 3442 int value = 0; 3443 3444 if (cc_status.flags & CC_REVERSED) 3445 { 3446 value = 2; 3447 PUT_CODE (cond, swap_condition (GET_CODE (cond))); 3448 } 3449 3450 if (cc_status.flags & CC_INVERTED) 3451 { 3452 value = 2; 3453 PUT_CODE (cond, reverse_condition (GET_CODE (cond))); 3454 } 3455 3456 if (cc_status.flags & CC_NOT_POSITIVE) 3457 switch (GET_CODE (cond)) 3458 { 3459 case LE: 3460 case LEU: 3461 case GEU: 3462 /* Jump becomes unconditional. */ 3463 return 1; 3464 3465 case GT: 3466 case GTU: 3467 case LTU: 3468 /* Jump becomes no-op. */ 3469 return -1; 3470 3471 case GE: 3472 PUT_CODE (cond, EQ); 3473 value = 2; 3474 break; 3475 3476 case LT: 3477 PUT_CODE (cond, NE); 3478 value = 2; 3479 break; 3480 3481 default: 3482 break; 3483 } 3484 3485 if (cc_status.flags & CC_NOT_NEGATIVE) 3486 switch (GET_CODE (cond)) 3487 { 3488 case GE: 3489 case GEU: 3490 /* Jump becomes unconditional. */ 3491 return 1; 3492 3493 case LT: 3494 case LTU: 3495 /* Jump becomes no-op. */ 3496 return -1; 3497 3498 case LE: 3499 case LEU: 3500 PUT_CODE (cond, EQ); 3501 value = 2; 3502 break; 3503 3504 case GT: 3505 case GTU: 3506 PUT_CODE (cond, NE); 3507 value = 2; 3508 break; 3509 3510 default: 3511 break; 3512 } 3513 3514 if (cc_status.flags & CC_NO_OVERFLOW) 3515 switch (GET_CODE (cond)) 3516 { 3517 case GEU: 3518 /* Jump becomes unconditional. */ 3519 return 1; 3520 3521 case LEU: 3522 PUT_CODE (cond, EQ); 3523 value = 2; 3524 break; 3525 3526 case GTU: 3527 PUT_CODE (cond, NE); 3528 value = 2; 3529 break; 3530 3531 case LTU: 3532 /* Jump becomes no-op. */ 3533 return -1; 3534 3535 default: 3536 break; 3537 } 3538 3539 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N)) 3540 switch (GET_CODE (cond)) 3541 { 3542 default: 3543 gcc_unreachable (); 3544 3545 case NE: 3546 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT); 3547 value = 2; 3548 break; 3549 3550 case EQ: 3551 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE); 3552 value = 2; 3553 break; 3554 } 3555 3556 if (cc_status.flags & CC_NOT_SIGNED) 3557 /* The flags are valid if signed condition operators are converted 3558 to unsigned. */ 3559 switch (GET_CODE (cond)) 3560 { 3561 case LE: 3562 PUT_CODE (cond, LEU); 3563 value = 2; 3564 break; 3565 3566 case LT: 3567 PUT_CODE (cond, LTU); 3568 value = 2; 3569 break; 3570 3571 case GT: 3572 PUT_CODE (cond, GTU); 3573 value = 2; 3574 break; 3575 3576 case GE: 3577 PUT_CODE (cond, GEU); 3578 value = 2; 3579 break; 3580 3581 default: 3582 break; 3583 } 3584 3585 return value; 3586 } 3587 #endif 3588 3589 /* Report inconsistency between the assembler template and the operands. 3590 In an `asm', it's the user's fault; otherwise, the compiler's fault. */ 3591 3592 void 3593 output_operand_lossage (const char *cmsgid, ...) 3594 { 3595 char *fmt_string; 3596 char *new_message; 3597 const char *pfx_str; 3598 va_list ap; 3599 3600 va_start (ap, cmsgid); 3601 3602 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: "; 3603 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid)); 3604 new_message = xvasprintf (fmt_string, ap); 3605 3606 if (this_is_asm_operands) 3607 error_for_asm (this_is_asm_operands, "%s", new_message); 3608 else 3609 internal_error ("%s", new_message); 3610 3611 free (fmt_string); 3612 free (new_message); 3613 va_end (ap); 3614 } 3615 3616 /* Output of assembler code from a template, and its subroutines. */ 3617 3618 /* Annotate the assembly with a comment describing the pattern and 3619 alternative used. */ 3620 3621 static void 3622 output_asm_name (void) 3623 { 3624 if (debug_insn) 3625 { 3626 fprintf (asm_out_file, "\t%s %d\t", 3627 ASM_COMMENT_START, INSN_UID (debug_insn)); 3628 3629 fprintf (asm_out_file, "[c=%d", 3630 insn_cost (debug_insn, optimize_insn_for_speed_p ())); 3631 if (HAVE_ATTR_length) 3632 fprintf (asm_out_file, " l=%d", 3633 get_attr_length (debug_insn)); 3634 fprintf (asm_out_file, "] "); 3635 3636 int num = INSN_CODE (debug_insn); 3637 fprintf (asm_out_file, "%s", insn_data[num].name); 3638 if (insn_data[num].n_alternatives > 1) 3639 fprintf (asm_out_file, "/%d", which_alternative); 3640 3641 /* Clear this so only the first assembler insn 3642 of any rtl insn will get the special comment for -dp. */ 3643 debug_insn = 0; 3644 } 3645 } 3646 3647 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it 3648 or its address, return that expr . Set *PADDRESSP to 1 if the expr 3649 corresponds to the address of the object and 0 if to the object. */ 3650 3651 static tree 3652 get_mem_expr_from_op (rtx op, int *paddressp) 3653 { 3654 tree expr; 3655 int inner_addressp; 3656 3657 *paddressp = 0; 3658 3659 if (REG_P (op)) 3660 return REG_EXPR (op); 3661 else if (!MEM_P (op)) 3662 return 0; 3663 3664 if (MEM_EXPR (op) != 0) 3665 return MEM_EXPR (op); 3666 3667 /* Otherwise we have an address, so indicate it and look at the address. */ 3668 *paddressp = 1; 3669 op = XEXP (op, 0); 3670 3671 /* First check if we have a decl for the address, then look at the right side 3672 if it is a PLUS. Otherwise, strip off arithmetic and keep looking. 3673 But don't allow the address to itself be indirect. */ 3674 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp) 3675 return expr; 3676 else if (GET_CODE (op) == PLUS 3677 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp))) 3678 return expr; 3679 3680 while (UNARY_P (op) 3681 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH) 3682 op = XEXP (op, 0); 3683 3684 expr = get_mem_expr_from_op (op, &inner_addressp); 3685 return inner_addressp ? 0 : expr; 3686 } 3687 3688 /* Output operand names for assembler instructions. OPERANDS is the 3689 operand vector, OPORDER is the order to write the operands, and NOPS 3690 is the number of operands to write. */ 3691 3692 static void 3693 output_asm_operand_names (rtx *operands, int *oporder, int nops) 3694 { 3695 int wrote = 0; 3696 int i; 3697 3698 for (i = 0; i < nops; i++) 3699 { 3700 int addressp; 3701 rtx op = operands[oporder[i]]; 3702 tree expr = get_mem_expr_from_op (op, &addressp); 3703 3704 fprintf (asm_out_file, "%c%s", 3705 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START); 3706 wrote = 1; 3707 if (expr) 3708 { 3709 fprintf (asm_out_file, "%s", 3710 addressp ? "*" : ""); 3711 print_mem_expr (asm_out_file, expr); 3712 wrote = 1; 3713 } 3714 else if (REG_P (op) && ORIGINAL_REGNO (op) 3715 && ORIGINAL_REGNO (op) != REGNO (op)) 3716 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op)); 3717 } 3718 } 3719 3720 #ifdef ASSEMBLER_DIALECT 3721 /* Helper function to parse assembler dialects in the asm string. 3722 This is called from output_asm_insn and asm_fprintf. */ 3723 static const char * 3724 do_assembler_dialects (const char *p, int *dialect) 3725 { 3726 char c = *(p - 1); 3727 3728 switch (c) 3729 { 3730 case '{': 3731 { 3732 int i; 3733 3734 if (*dialect) 3735 output_operand_lossage ("nested assembly dialect alternatives"); 3736 else 3737 *dialect = 1; 3738 3739 /* If we want the first dialect, do nothing. Otherwise, skip 3740 DIALECT_NUMBER of strings ending with '|'. */ 3741 for (i = 0; i < dialect_number; i++) 3742 { 3743 while (*p && *p != '}') 3744 { 3745 if (*p == '|') 3746 { 3747 p++; 3748 break; 3749 } 3750 3751 /* Skip over any character after a percent sign. */ 3752 if (*p == '%') 3753 p++; 3754 if (*p) 3755 p++; 3756 } 3757 3758 if (*p == '}') 3759 break; 3760 } 3761 3762 if (*p == '\0') 3763 output_operand_lossage ("unterminated assembly dialect alternative"); 3764 } 3765 break; 3766 3767 case '|': 3768 if (*dialect) 3769 { 3770 /* Skip to close brace. */ 3771 do 3772 { 3773 if (*p == '\0') 3774 { 3775 output_operand_lossage ("unterminated assembly dialect alternative"); 3776 break; 3777 } 3778 3779 /* Skip over any character after a percent sign. */ 3780 if (*p == '%' && p[1]) 3781 { 3782 p += 2; 3783 continue; 3784 } 3785 3786 if (*p++ == '}') 3787 break; 3788 } 3789 while (1); 3790 3791 *dialect = 0; 3792 } 3793 else 3794 putc (c, asm_out_file); 3795 break; 3796 3797 case '}': 3798 if (! *dialect) 3799 putc (c, asm_out_file); 3800 *dialect = 0; 3801 break; 3802 default: 3803 gcc_unreachable (); 3804 } 3805 3806 return p; 3807 } 3808 #endif 3809 3810 /* Output text from TEMPLATE to the assembler output file, 3811 obeying %-directions to substitute operands taken from 3812 the vector OPERANDS. 3813 3814 %N (for N a digit) means print operand N in usual manner. 3815 %lN means require operand N to be a CODE_LABEL or LABEL_REF 3816 and print the label name with no punctuation. 3817 %cN means require operand N to be a constant 3818 and print the constant expression with no punctuation. 3819 %aN means expect operand N to be a memory address 3820 (not a memory reference!) and print a reference 3821 to that address. 3822 %nN means expect operand N to be a constant 3823 and print a constant expression for minus the value 3824 of the operand, with no other punctuation. */ 3825 3826 void 3827 output_asm_insn (const char *templ, rtx *operands) 3828 { 3829 const char *p; 3830 int c; 3831 #ifdef ASSEMBLER_DIALECT 3832 int dialect = 0; 3833 #endif 3834 int oporder[MAX_RECOG_OPERANDS]; 3835 char opoutput[MAX_RECOG_OPERANDS]; 3836 int ops = 0; 3837 3838 /* An insn may return a null string template 3839 in a case where no assembler code is needed. */ 3840 if (*templ == 0) 3841 return; 3842 3843 memset (opoutput, 0, sizeof opoutput); 3844 p = templ; 3845 putc ('\t', asm_out_file); 3846 3847 #ifdef ASM_OUTPUT_OPCODE 3848 ASM_OUTPUT_OPCODE (asm_out_file, p); 3849 #endif 3850 3851 while ((c = *p++)) 3852 switch (c) 3853 { 3854 case '\n': 3855 if (flag_verbose_asm) 3856 output_asm_operand_names (operands, oporder, ops); 3857 if (flag_print_asm_name) 3858 output_asm_name (); 3859 3860 ops = 0; 3861 memset (opoutput, 0, sizeof opoutput); 3862 3863 putc (c, asm_out_file); 3864 #ifdef ASM_OUTPUT_OPCODE 3865 while ((c = *p) == '\t') 3866 { 3867 putc (c, asm_out_file); 3868 p++; 3869 } 3870 ASM_OUTPUT_OPCODE (asm_out_file, p); 3871 #endif 3872 break; 3873 3874 #ifdef ASSEMBLER_DIALECT 3875 case '{': 3876 case '}': 3877 case '|': 3878 p = do_assembler_dialects (p, &dialect); 3879 break; 3880 #endif 3881 3882 case '%': 3883 /* %% outputs a single %. %{, %} and %| print {, } and | respectively 3884 if ASSEMBLER_DIALECT defined and these characters have a special 3885 meaning as dialect delimiters.*/ 3886 if (*p == '%' 3887 #ifdef ASSEMBLER_DIALECT 3888 || *p == '{' || *p == '}' || *p == '|' 3889 #endif 3890 ) 3891 { 3892 putc (*p, asm_out_file); 3893 p++; 3894 } 3895 /* %= outputs a number which is unique to each insn in the entire 3896 compilation. This is useful for making local labels that are 3897 referred to more than once in a given insn. */ 3898 else if (*p == '=') 3899 { 3900 p++; 3901 fprintf (asm_out_file, "%d", insn_counter); 3902 } 3903 /* % followed by a letter and some digits 3904 outputs an operand in a special way depending on the letter. 3905 Letters `acln' are implemented directly. 3906 Other letters are passed to `output_operand' so that 3907 the TARGET_PRINT_OPERAND hook can define them. */ 3908 else if (ISALPHA (*p)) 3909 { 3910 int letter = *p++; 3911 unsigned long opnum; 3912 char *endptr; 3913 3914 opnum = strtoul (p, &endptr, 10); 3915 3916 if (endptr == p) 3917 output_operand_lossage ("operand number missing " 3918 "after %%-letter"); 3919 else if (this_is_asm_operands && opnum >= insn_noperands) 3920 output_operand_lossage ("operand number out of range"); 3921 else if (letter == 'l') 3922 output_asm_label (operands[opnum]); 3923 else if (letter == 'a') 3924 output_address (VOIDmode, operands[opnum]); 3925 else if (letter == 'c') 3926 { 3927 if (CONSTANT_ADDRESS_P (operands[opnum])) 3928 output_addr_const (asm_out_file, operands[opnum]); 3929 else 3930 output_operand (operands[opnum], 'c'); 3931 } 3932 else if (letter == 'n') 3933 { 3934 if (CONST_INT_P (operands[opnum])) 3935 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, 3936 - INTVAL (operands[opnum])); 3937 else 3938 { 3939 putc ('-', asm_out_file); 3940 output_addr_const (asm_out_file, operands[opnum]); 3941 } 3942 } 3943 else 3944 output_operand (operands[opnum], letter); 3945 3946 if (!opoutput[opnum]) 3947 oporder[ops++] = opnum; 3948 opoutput[opnum] = 1; 3949 3950 p = endptr; 3951 c = *p; 3952 } 3953 /* % followed by a digit outputs an operand the default way. */ 3954 else if (ISDIGIT (*p)) 3955 { 3956 unsigned long opnum; 3957 char *endptr; 3958 3959 opnum = strtoul (p, &endptr, 10); 3960 if (this_is_asm_operands && opnum >= insn_noperands) 3961 output_operand_lossage ("operand number out of range"); 3962 else 3963 output_operand (operands[opnum], 0); 3964 3965 if (!opoutput[opnum]) 3966 oporder[ops++] = opnum; 3967 opoutput[opnum] = 1; 3968 3969 p = endptr; 3970 c = *p; 3971 } 3972 /* % followed by punctuation: output something for that 3973 punctuation character alone, with no operand. The 3974 TARGET_PRINT_OPERAND hook decides what is actually done. */ 3975 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p)) 3976 output_operand (NULL_RTX, *p++); 3977 else 3978 output_operand_lossage ("invalid %%-code"); 3979 break; 3980 3981 default: 3982 putc (c, asm_out_file); 3983 } 3984 3985 /* Try to keep the asm a bit more readable. */ 3986 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9) 3987 putc ('\t', asm_out_file); 3988 3989 /* Write out the variable names for operands, if we know them. */ 3990 if (flag_verbose_asm) 3991 output_asm_operand_names (operands, oporder, ops); 3992 if (flag_print_asm_name) 3993 output_asm_name (); 3994 3995 putc ('\n', asm_out_file); 3996 } 3997 3998 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */ 3999 4000 void 4001 output_asm_label (rtx x) 4002 { 4003 char buf[256]; 4004 4005 if (GET_CODE (x) == LABEL_REF) 4006 x = label_ref_label (x); 4007 if (LABEL_P (x) 4008 || (NOTE_P (x) 4009 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL)) 4010 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); 4011 else 4012 output_operand_lossage ("'%%l' operand isn't a label"); 4013 4014 assemble_name (asm_out_file, buf); 4015 } 4016 4017 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */ 4018 4019 void 4020 mark_symbol_refs_as_used (rtx x) 4021 { 4022 subrtx_iterator::array_type array; 4023 FOR_EACH_SUBRTX (iter, array, x, ALL) 4024 { 4025 const_rtx x = *iter; 4026 if (GET_CODE (x) == SYMBOL_REF) 4027 if (tree t = SYMBOL_REF_DECL (x)) 4028 assemble_external (t); 4029 } 4030 } 4031 4032 /* Print operand X using machine-dependent assembler syntax. 4033 CODE is a non-digit that preceded the operand-number in the % spec, 4034 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char 4035 between the % and the digits. 4036 When CODE is a non-letter, X is 0. 4037 4038 The meanings of the letters are machine-dependent and controlled 4039 by TARGET_PRINT_OPERAND. */ 4040 4041 void 4042 output_operand (rtx x, int code ATTRIBUTE_UNUSED) 4043 { 4044 if (x && GET_CODE (x) == SUBREG) 4045 x = alter_subreg (&x, true); 4046 4047 /* X must not be a pseudo reg. */ 4048 if (!targetm.no_register_allocation) 4049 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER); 4050 4051 targetm.asm_out.print_operand (asm_out_file, x, code); 4052 4053 if (x == NULL_RTX) 4054 return; 4055 4056 mark_symbol_refs_as_used (x); 4057 } 4058 4059 /* Print a memory reference operand for address X using 4060 machine-dependent assembler syntax. */ 4061 4062 void 4063 output_address (machine_mode mode, rtx x) 4064 { 4065 bool changed = false; 4066 walk_alter_subreg (&x, &changed); 4067 targetm.asm_out.print_operand_address (asm_out_file, mode, x); 4068 } 4069 4070 /* Print an integer constant expression in assembler syntax. 4071 Addition and subtraction are the only arithmetic 4072 that may appear in these expressions. */ 4073 4074 void 4075 output_addr_const (FILE *file, rtx x) 4076 { 4077 char buf[256]; 4078 4079 restart: 4080 switch (GET_CODE (x)) 4081 { 4082 case PC: 4083 putc ('.', file); 4084 break; 4085 4086 case SYMBOL_REF: 4087 if (SYMBOL_REF_DECL (x)) 4088 assemble_external (SYMBOL_REF_DECL (x)); 4089 #ifdef ASM_OUTPUT_SYMBOL_REF 4090 ASM_OUTPUT_SYMBOL_REF (file, x); 4091 #else 4092 assemble_name (file, XSTR (x, 0)); 4093 #endif 4094 break; 4095 4096 case LABEL_REF: 4097 x = label_ref_label (x); 4098 /* Fall through. */ 4099 case CODE_LABEL: 4100 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); 4101 #ifdef ASM_OUTPUT_LABEL_REF 4102 ASM_OUTPUT_LABEL_REF (file, buf); 4103 #else 4104 assemble_name (file, buf); 4105 #endif 4106 break; 4107 4108 case CONST_INT: 4109 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); 4110 break; 4111 4112 case CONST: 4113 /* This used to output parentheses around the expression, 4114 but that does not work on the 386 (either ATT or BSD assembler). */ 4115 output_addr_const (file, XEXP (x, 0)); 4116 break; 4117 4118 case CONST_WIDE_INT: 4119 /* We do not know the mode here so we have to use a round about 4120 way to build a wide-int to get it printed properly. */ 4121 { 4122 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0), 4123 CONST_WIDE_INT_NUNITS (x), 4124 CONST_WIDE_INT_NUNITS (x) 4125 * HOST_BITS_PER_WIDE_INT, 4126 false); 4127 print_decs (w, file); 4128 } 4129 break; 4130 4131 case CONST_DOUBLE: 4132 if (CONST_DOUBLE_AS_INT_P (x)) 4133 { 4134 /* We can use %d if the number is one word and positive. */ 4135 if (CONST_DOUBLE_HIGH (x)) 4136 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX, 4137 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x), 4138 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x)); 4139 else if (CONST_DOUBLE_LOW (x) < 0) 4140 fprintf (file, HOST_WIDE_INT_PRINT_HEX, 4141 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x)); 4142 else 4143 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); 4144 } 4145 else 4146 /* We can't handle floating point constants; 4147 PRINT_OPERAND must handle them. */ 4148 output_operand_lossage ("floating constant misused"); 4149 break; 4150 4151 case CONST_FIXED: 4152 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x)); 4153 break; 4154 4155 case PLUS: 4156 /* Some assemblers need integer constants to appear last (eg masm). */ 4157 if (CONST_INT_P (XEXP (x, 0))) 4158 { 4159 output_addr_const (file, XEXP (x, 1)); 4160 if (INTVAL (XEXP (x, 0)) >= 0) 4161 fprintf (file, "+"); 4162 output_addr_const (file, XEXP (x, 0)); 4163 } 4164 else 4165 { 4166 output_addr_const (file, XEXP (x, 0)); 4167 if (!CONST_INT_P (XEXP (x, 1)) 4168 || INTVAL (XEXP (x, 1)) >= 0) 4169 fprintf (file, "+"); 4170 output_addr_const (file, XEXP (x, 1)); 4171 } 4172 break; 4173 4174 case MINUS: 4175 /* Avoid outputting things like x-x or x+5-x, 4176 since some assemblers can't handle that. */ 4177 x = simplify_subtraction (x); 4178 if (GET_CODE (x) != MINUS) 4179 goto restart; 4180 4181 output_addr_const (file, XEXP (x, 0)); 4182 fprintf (file, "-"); 4183 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0) 4184 || GET_CODE (XEXP (x, 1)) == PC 4185 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF) 4186 output_addr_const (file, XEXP (x, 1)); 4187 else 4188 { 4189 fputs (targetm.asm_out.open_paren, file); 4190 output_addr_const (file, XEXP (x, 1)); 4191 fputs (targetm.asm_out.close_paren, file); 4192 } 4193 break; 4194 4195 case ZERO_EXTEND: 4196 case SIGN_EXTEND: 4197 case SUBREG: 4198 case TRUNCATE: 4199 output_addr_const (file, XEXP (x, 0)); 4200 break; 4201 4202 default: 4203 if (targetm.asm_out.output_addr_const_extra (file, x)) 4204 break; 4205 4206 output_operand_lossage ("invalid expression as operand"); 4207 } 4208 } 4209 4210 /* Output a quoted string. */ 4211 4212 void 4213 output_quoted_string (FILE *asm_file, const char *string) 4214 { 4215 #ifdef OUTPUT_QUOTED_STRING 4216 OUTPUT_QUOTED_STRING (asm_file, string); 4217 #else 4218 char c; 4219 4220 putc ('\"', asm_file); 4221 while ((c = *string++) != 0) 4222 { 4223 if (ISPRINT (c)) 4224 { 4225 if (c == '\"' || c == '\\') 4226 putc ('\\', asm_file); 4227 putc (c, asm_file); 4228 } 4229 else 4230 fprintf (asm_file, "\\%03o", (unsigned char) c); 4231 } 4232 putc ('\"', asm_file); 4233 #endif 4234 } 4235 4236 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */ 4237 4238 void 4239 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value) 4240 { 4241 char buf[2 + CHAR_BIT * sizeof (value) / 4]; 4242 if (value == 0) 4243 putc ('0', f); 4244 else 4245 { 4246 char *p = buf + sizeof (buf); 4247 do 4248 *--p = "0123456789abcdef"[value % 16]; 4249 while ((value /= 16) != 0); 4250 *--p = 'x'; 4251 *--p = '0'; 4252 fwrite (p, 1, buf + sizeof (buf) - p, f); 4253 } 4254 } 4255 4256 /* Internal function that prints an unsigned long in decimal in reverse. 4257 The output string IS NOT null-terminated. */ 4258 4259 static int 4260 sprint_ul_rev (char *s, unsigned long value) 4261 { 4262 int i = 0; 4263 do 4264 { 4265 s[i] = "0123456789"[value % 10]; 4266 value /= 10; 4267 i++; 4268 /* alternate version, without modulo */ 4269 /* oldval = value; */ 4270 /* value /= 10; */ 4271 /* s[i] = "0123456789" [oldval - 10*value]; */ 4272 /* i++ */ 4273 } 4274 while (value != 0); 4275 return i; 4276 } 4277 4278 /* Write an unsigned long as decimal to a file, fast. */ 4279 4280 void 4281 fprint_ul (FILE *f, unsigned long value) 4282 { 4283 /* python says: len(str(2**64)) == 20 */ 4284 char s[20]; 4285 int i; 4286 4287 i = sprint_ul_rev (s, value); 4288 4289 /* It's probably too small to bother with string reversal and fputs. */ 4290 do 4291 { 4292 i--; 4293 putc (s[i], f); 4294 } 4295 while (i != 0); 4296 } 4297 4298 /* Write an unsigned long as decimal to a string, fast. 4299 s must be wide enough to not overflow, at least 21 chars. 4300 Returns the length of the string (without terminating '\0'). */ 4301 4302 int 4303 sprint_ul (char *s, unsigned long value) 4304 { 4305 int len = sprint_ul_rev (s, value); 4306 s[len] = '\0'; 4307 4308 std::reverse (s, s + len); 4309 return len; 4310 } 4311 4312 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U. 4313 %R prints the value of REGISTER_PREFIX. 4314 %L prints the value of LOCAL_LABEL_PREFIX. 4315 %U prints the value of USER_LABEL_PREFIX. 4316 %I prints the value of IMMEDIATE_PREFIX. 4317 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string. 4318 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%. 4319 4320 We handle alternate assembler dialects here, just like output_asm_insn. */ 4321 4322 void 4323 asm_fprintf (FILE *file, const char *p, ...) 4324 { 4325 char buf[10]; 4326 char *q, c; 4327 #ifdef ASSEMBLER_DIALECT 4328 int dialect = 0; 4329 #endif 4330 va_list argptr; 4331 4332 va_start (argptr, p); 4333 4334 buf[0] = '%'; 4335 4336 while ((c = *p++)) 4337 switch (c) 4338 { 4339 #ifdef ASSEMBLER_DIALECT 4340 case '{': 4341 case '}': 4342 case '|': 4343 p = do_assembler_dialects (p, &dialect); 4344 break; 4345 #endif 4346 4347 case '%': 4348 c = *p++; 4349 q = &buf[1]; 4350 while (strchr ("-+ #0", c)) 4351 { 4352 *q++ = c; 4353 c = *p++; 4354 } 4355 while (ISDIGIT (c) || c == '.') 4356 { 4357 *q++ = c; 4358 c = *p++; 4359 } 4360 switch (c) 4361 { 4362 case '%': 4363 putc ('%', file); 4364 break; 4365 4366 case 'd': case 'i': case 'u': 4367 case 'x': case 'X': case 'o': 4368 case 'c': 4369 *q++ = c; 4370 *q = 0; 4371 fprintf (file, buf, va_arg (argptr, int)); 4372 break; 4373 4374 case 'w': 4375 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and 4376 'o' cases, but we do not check for those cases. It 4377 means that the value is a HOST_WIDE_INT, which may be 4378 either `long' or `long long'. */ 4379 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT)); 4380 q += strlen (HOST_WIDE_INT_PRINT); 4381 *q++ = *p++; 4382 *q = 0; 4383 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT)); 4384 break; 4385 4386 case 'l': 4387 *q++ = c; 4388 #ifdef HAVE_LONG_LONG 4389 if (*p == 'l') 4390 { 4391 *q++ = *p++; 4392 *q++ = *p++; 4393 *q = 0; 4394 fprintf (file, buf, va_arg (argptr, long long)); 4395 } 4396 else 4397 #endif 4398 { 4399 *q++ = *p++; 4400 *q = 0; 4401 fprintf (file, buf, va_arg (argptr, long)); 4402 } 4403 4404 break; 4405 4406 case 's': 4407 *q++ = c; 4408 *q = 0; 4409 fprintf (file, buf, va_arg (argptr, char *)); 4410 break; 4411 4412 case 'O': 4413 #ifdef ASM_OUTPUT_OPCODE 4414 ASM_OUTPUT_OPCODE (asm_out_file, p); 4415 #endif 4416 break; 4417 4418 case 'R': 4419 #ifdef REGISTER_PREFIX 4420 fprintf (file, "%s", REGISTER_PREFIX); 4421 #endif 4422 break; 4423 4424 case 'I': 4425 #ifdef IMMEDIATE_PREFIX 4426 fprintf (file, "%s", IMMEDIATE_PREFIX); 4427 #endif 4428 break; 4429 4430 case 'L': 4431 #ifdef LOCAL_LABEL_PREFIX 4432 fprintf (file, "%s", LOCAL_LABEL_PREFIX); 4433 #endif 4434 break; 4435 4436 case 'U': 4437 fputs (user_label_prefix, file); 4438 break; 4439 4440 #ifdef ASM_FPRINTF_EXTENSIONS 4441 /* Uppercase letters are reserved for general use by asm_fprintf 4442 and so are not available to target specific code. In order to 4443 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then, 4444 they are defined here. As they get turned into real extensions 4445 to asm_fprintf they should be removed from this list. */ 4446 case 'A': case 'B': case 'C': case 'D': case 'E': 4447 case 'F': case 'G': case 'H': case 'J': case 'K': 4448 case 'M': case 'N': case 'P': case 'Q': case 'S': 4449 case 'T': case 'V': case 'W': case 'Y': case 'Z': 4450 break; 4451 4452 ASM_FPRINTF_EXTENSIONS (file, argptr, p) 4453 #endif 4454 default: 4455 gcc_unreachable (); 4456 } 4457 break; 4458 4459 default: 4460 putc (c, file); 4461 } 4462 va_end (argptr); 4463 } 4464 4465 /* Return nonzero if this function has no function calls. */ 4466 4467 int 4468 leaf_function_p (void) 4469 { 4470 rtx_insn *insn; 4471 4472 /* Ensure we walk the entire function body. */ 4473 gcc_assert (!in_sequence_p ()); 4474 4475 /* Some back-ends (e.g. s390) want leaf functions to stay leaf 4476 functions even if they call mcount. */ 4477 if (crtl->profile && !targetm.keep_leaf_when_profiled ()) 4478 return 0; 4479 4480 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 4481 { 4482 if (CALL_P (insn) 4483 && ! SIBLING_CALL_P (insn)) 4484 return 0; 4485 if (NONJUMP_INSN_P (insn) 4486 && GET_CODE (PATTERN (insn)) == SEQUENCE 4487 && CALL_P (XVECEXP (PATTERN (insn), 0, 0)) 4488 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0))) 4489 return 0; 4490 } 4491 4492 return 1; 4493 } 4494 4495 /* Return 1 if branch is a forward branch. 4496 Uses insn_shuid array, so it works only in the final pass. May be used by 4497 output templates to customary add branch prediction hints. 4498 */ 4499 int 4500 final_forward_branch_p (rtx_insn *insn) 4501 { 4502 int insn_id, label_id; 4503 4504 gcc_assert (uid_shuid); 4505 insn_id = INSN_SHUID (insn); 4506 label_id = INSN_SHUID (JUMP_LABEL (insn)); 4507 /* We've hit some insns that does not have id information available. */ 4508 gcc_assert (insn_id && label_id); 4509 return insn_id < label_id; 4510 } 4511 4512 /* On some machines, a function with no call insns 4513 can run faster if it doesn't create its own register window. 4514 When output, the leaf function should use only the "output" 4515 registers. Ordinarily, the function would be compiled to use 4516 the "input" registers to find its arguments; it is a candidate 4517 for leaf treatment if it uses only the "input" registers. 4518 Leaf function treatment means renumbering so the function 4519 uses the "output" registers instead. */ 4520 4521 #ifdef LEAF_REGISTERS 4522 4523 /* Return 1 if this function uses only the registers that can be 4524 safely renumbered. */ 4525 4526 int 4527 only_leaf_regs_used (void) 4528 { 4529 int i; 4530 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS; 4531 4532 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 4533 if ((df_regs_ever_live_p (i) || global_regs[i]) 4534 && ! permitted_reg_in_leaf_functions[i]) 4535 return 0; 4536 4537 if (crtl->uses_pic_offset_table 4538 && pic_offset_table_rtx != 0 4539 && REG_P (pic_offset_table_rtx) 4540 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)]) 4541 return 0; 4542 4543 return 1; 4544 } 4545 4546 /* Scan all instructions and renumber all registers into those 4547 available in leaf functions. */ 4548 4549 static void 4550 leaf_renumber_regs (rtx_insn *first) 4551 { 4552 rtx_insn *insn; 4553 4554 /* Renumber only the actual patterns. 4555 The reg-notes can contain frame pointer refs, 4556 and renumbering them could crash, and should not be needed. */ 4557 for (insn = first; insn; insn = NEXT_INSN (insn)) 4558 if (INSN_P (insn)) 4559 leaf_renumber_regs_insn (PATTERN (insn)); 4560 } 4561 4562 /* Scan IN_RTX and its subexpressions, and renumber all regs into those 4563 available in leaf functions. */ 4564 4565 void 4566 leaf_renumber_regs_insn (rtx in_rtx) 4567 { 4568 int i, j; 4569 const char *format_ptr; 4570 4571 if (in_rtx == 0) 4572 return; 4573 4574 /* Renumber all input-registers into output-registers. 4575 renumbered_regs would be 1 for an output-register; 4576 they */ 4577 4578 if (REG_P (in_rtx)) 4579 { 4580 int newreg; 4581 4582 /* Don't renumber the same reg twice. */ 4583 if (in_rtx->used) 4584 return; 4585 4586 newreg = REGNO (in_rtx); 4587 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg 4588 to reach here as part of a REG_NOTE. */ 4589 if (newreg >= FIRST_PSEUDO_REGISTER) 4590 { 4591 in_rtx->used = 1; 4592 return; 4593 } 4594 newreg = LEAF_REG_REMAP (newreg); 4595 gcc_assert (newreg >= 0); 4596 df_set_regs_ever_live (REGNO (in_rtx), false); 4597 df_set_regs_ever_live (newreg, true); 4598 SET_REGNO (in_rtx, newreg); 4599 in_rtx->used = 1; 4600 return; 4601 } 4602 4603 if (INSN_P (in_rtx)) 4604 { 4605 /* Inside a SEQUENCE, we find insns. 4606 Renumber just the patterns of these insns, 4607 just as we do for the top-level insns. */ 4608 leaf_renumber_regs_insn (PATTERN (in_rtx)); 4609 return; 4610 } 4611 4612 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx)); 4613 4614 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++) 4615 switch (*format_ptr++) 4616 { 4617 case 'e': 4618 leaf_renumber_regs_insn (XEXP (in_rtx, i)); 4619 break; 4620 4621 case 'E': 4622 if (XVEC (in_rtx, i) != NULL) 4623 for (j = 0; j < XVECLEN (in_rtx, i); j++) 4624 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j)); 4625 break; 4626 4627 case 'S': 4628 case 's': 4629 case '0': 4630 case 'i': 4631 case 'w': 4632 case 'p': 4633 case 'n': 4634 case 'u': 4635 break; 4636 4637 default: 4638 gcc_unreachable (); 4639 } 4640 } 4641 #endif 4642 4643 /* Turn the RTL into assembly. */ 4644 static unsigned int 4645 rest_of_handle_final (void) 4646 { 4647 const char *fnname = get_fnname_from_decl (current_function_decl); 4648 4649 /* Turn debug markers into notes if the var-tracking pass has not 4650 been invoked. */ 4651 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS) 4652 delete_vta_debug_insns (false); 4653 4654 assemble_start_function (current_function_decl, fnname); 4655 rtx_insn *first = get_insns (); 4656 int seen = 0; 4657 final_start_function_1 (&first, asm_out_file, &seen, optimize); 4658 final_1 (first, asm_out_file, seen, optimize); 4659 if (flag_ipa_ra 4660 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)) 4661 /* Functions with naked attributes are supported only with basic asm 4662 statements in the body, thus for supported use cases the information 4663 on clobbered registers is not available. */ 4664 && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl))) 4665 collect_fn_hard_reg_usage (); 4666 final_end_function (); 4667 4668 /* The IA-64 ".handlerdata" directive must be issued before the ".endp" 4669 directive that closes the procedure descriptor. Similarly, for x64 SEH. 4670 Otherwise it's not strictly necessary, but it doesn't hurt either. */ 4671 output_function_exception_table (crtl->has_bb_partition ? 1 : 0); 4672 4673 assemble_end_function (current_function_decl, fnname); 4674 4675 /* Free up reg info memory. */ 4676 free_reg_info (); 4677 4678 if (! quiet_flag) 4679 fflush (asm_out_file); 4680 4681 /* Write DBX symbols if requested. */ 4682 4683 /* Note that for those inline functions where we don't initially 4684 know for certain that we will be generating an out-of-line copy, 4685 the first invocation of this routine (rest_of_compilation) will 4686 skip over this code by doing a `goto exit_rest_of_compilation;'. 4687 Later on, wrapup_global_declarations will (indirectly) call 4688 rest_of_compilation again for those inline functions that need 4689 to have out-of-line copies generated. During that call, we 4690 *will* be routed past here. */ 4691 4692 timevar_push (TV_SYMOUT); 4693 if (!DECL_IGNORED_P (current_function_decl)) 4694 debug_hooks->function_decl (current_function_decl); 4695 timevar_pop (TV_SYMOUT); 4696 4697 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */ 4698 DECL_INITIAL (current_function_decl) = error_mark_node; 4699 4700 if (DECL_STATIC_CONSTRUCTOR (current_function_decl) 4701 && targetm.have_ctors_dtors) 4702 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0), 4703 decl_init_priority_lookup 4704 (current_function_decl)); 4705 if (DECL_STATIC_DESTRUCTOR (current_function_decl) 4706 && targetm.have_ctors_dtors) 4707 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0), 4708 decl_fini_priority_lookup 4709 (current_function_decl)); 4710 return 0; 4711 } 4712 4713 namespace { 4714 4715 const pass_data pass_data_final = 4716 { 4717 RTL_PASS, /* type */ 4718 "final", /* name */ 4719 OPTGROUP_NONE, /* optinfo_flags */ 4720 TV_FINAL, /* tv_id */ 4721 0, /* properties_required */ 4722 0, /* properties_provided */ 4723 0, /* properties_destroyed */ 4724 0, /* todo_flags_start */ 4725 0, /* todo_flags_finish */ 4726 }; 4727 4728 class pass_final : public rtl_opt_pass 4729 { 4730 public: 4731 pass_final (gcc::context *ctxt) 4732 : rtl_opt_pass (pass_data_final, ctxt) 4733 {} 4734 4735 /* opt_pass methods: */ 4736 virtual unsigned int execute (function *) { return rest_of_handle_final (); } 4737 4738 }; // class pass_final 4739 4740 } // anon namespace 4741 4742 rtl_opt_pass * 4743 make_pass_final (gcc::context *ctxt) 4744 { 4745 return new pass_final (ctxt); 4746 } 4747 4748 4749 static unsigned int 4750 rest_of_handle_shorten_branches (void) 4751 { 4752 /* Shorten branches. */ 4753 shorten_branches (get_insns ()); 4754 return 0; 4755 } 4756 4757 namespace { 4758 4759 const pass_data pass_data_shorten_branches = 4760 { 4761 RTL_PASS, /* type */ 4762 "shorten", /* name */ 4763 OPTGROUP_NONE, /* optinfo_flags */ 4764 TV_SHORTEN_BRANCH, /* tv_id */ 4765 0, /* properties_required */ 4766 0, /* properties_provided */ 4767 0, /* properties_destroyed */ 4768 0, /* todo_flags_start */ 4769 0, /* todo_flags_finish */ 4770 }; 4771 4772 class pass_shorten_branches : public rtl_opt_pass 4773 { 4774 public: 4775 pass_shorten_branches (gcc::context *ctxt) 4776 : rtl_opt_pass (pass_data_shorten_branches, ctxt) 4777 {} 4778 4779 /* opt_pass methods: */ 4780 virtual unsigned int execute (function *) 4781 { 4782 return rest_of_handle_shorten_branches (); 4783 } 4784 4785 }; // class pass_shorten_branches 4786 4787 } // anon namespace 4788 4789 rtl_opt_pass * 4790 make_pass_shorten_branches (gcc::context *ctxt) 4791 { 4792 return new pass_shorten_branches (ctxt); 4793 } 4794 4795 4796 static unsigned int 4797 rest_of_clean_state (void) 4798 { 4799 rtx_insn *insn, *next; 4800 FILE *final_output = NULL; 4801 int save_unnumbered = flag_dump_unnumbered; 4802 int save_noaddr = flag_dump_noaddr; 4803 4804 if (flag_dump_final_insns) 4805 { 4806 final_output = fopen (flag_dump_final_insns, "a"); 4807 if (!final_output) 4808 { 4809 error ("could not open final insn dump file %qs: %m", 4810 flag_dump_final_insns); 4811 flag_dump_final_insns = NULL; 4812 } 4813 else 4814 { 4815 flag_dump_noaddr = flag_dump_unnumbered = 1; 4816 if (flag_compare_debug_opt || flag_compare_debug) 4817 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG; 4818 dump_function_header (final_output, current_function_decl, 4819 dump_flags); 4820 final_insns_dump_p = true; 4821 4822 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 4823 if (LABEL_P (insn)) 4824 INSN_UID (insn) = CODE_LABEL_NUMBER (insn); 4825 else 4826 { 4827 if (NOTE_P (insn)) 4828 set_block_for_insn (insn, NULL); 4829 INSN_UID (insn) = 0; 4830 } 4831 } 4832 } 4833 4834 /* It is very important to decompose the RTL instruction chain here: 4835 debug information keeps pointing into CODE_LABEL insns inside the function 4836 body. If these remain pointing to the other insns, we end up preserving 4837 whole RTL chain and attached detailed debug info in memory. */ 4838 for (insn = get_insns (); insn; insn = next) 4839 { 4840 next = NEXT_INSN (insn); 4841 SET_NEXT_INSN (insn) = NULL; 4842 SET_PREV_INSN (insn) = NULL; 4843 4844 rtx_insn *call_insn = insn; 4845 if (NONJUMP_INSN_P (call_insn) 4846 && GET_CODE (PATTERN (call_insn)) == SEQUENCE) 4847 { 4848 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn)); 4849 call_insn = seq->insn (0); 4850 } 4851 if (CALL_P (call_insn)) 4852 { 4853 rtx note 4854 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX); 4855 if (note) 4856 remove_note (call_insn, note); 4857 } 4858 4859 if (final_output 4860 && (!NOTE_P (insn) 4861 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION 4862 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT 4863 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY 4864 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG 4865 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END 4866 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL))) 4867 print_rtl_single (final_output, insn); 4868 } 4869 4870 if (final_output) 4871 { 4872 flag_dump_noaddr = save_noaddr; 4873 flag_dump_unnumbered = save_unnumbered; 4874 final_insns_dump_p = false; 4875 4876 if (fclose (final_output)) 4877 { 4878 error ("could not close final insn dump file %qs: %m", 4879 flag_dump_final_insns); 4880 flag_dump_final_insns = NULL; 4881 } 4882 } 4883 4884 flag_rerun_cse_after_global_opts = 0; 4885 reload_completed = 0; 4886 epilogue_completed = 0; 4887 #ifdef STACK_REGS 4888 regstack_completed = 0; 4889 #endif 4890 4891 /* Clear out the insn_length contents now that they are no 4892 longer valid. */ 4893 init_insn_lengths (); 4894 4895 /* Show no temporary slots allocated. */ 4896 init_temp_slots (); 4897 4898 free_bb_for_insn (); 4899 4900 if (cfun->gimple_df) 4901 delete_tree_ssa (cfun); 4902 4903 /* We can reduce stack alignment on call site only when we are sure that 4904 the function body just produced will be actually used in the final 4905 executable. */ 4906 if (flag_ipa_stack_alignment 4907 && decl_binds_to_current_def_p (current_function_decl)) 4908 { 4909 unsigned int pref = crtl->preferred_stack_boundary; 4910 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary) 4911 pref = crtl->stack_alignment_needed; 4912 cgraph_node::rtl_info (current_function_decl) 4913 ->preferred_incoming_stack_boundary = pref; 4914 } 4915 4916 /* Make sure volatile mem refs aren't considered valid operands for 4917 arithmetic insns. We must call this here if this is a nested inline 4918 function, since the above code leaves us in the init_recog state, 4919 and the function context push/pop code does not save/restore volatile_ok. 4920 4921 ??? Maybe it isn't necessary for expand_start_function to call this 4922 anymore if we do it here? */ 4923 4924 init_recog_no_volatile (); 4925 4926 /* We're done with this function. Free up memory if we can. */ 4927 free_after_parsing (cfun); 4928 free_after_compilation (cfun); 4929 return 0; 4930 } 4931 4932 namespace { 4933 4934 const pass_data pass_data_clean_state = 4935 { 4936 RTL_PASS, /* type */ 4937 "*clean_state", /* name */ 4938 OPTGROUP_NONE, /* optinfo_flags */ 4939 TV_FINAL, /* tv_id */ 4940 0, /* properties_required */ 4941 0, /* properties_provided */ 4942 PROP_rtl, /* properties_destroyed */ 4943 0, /* todo_flags_start */ 4944 0, /* todo_flags_finish */ 4945 }; 4946 4947 class pass_clean_state : public rtl_opt_pass 4948 { 4949 public: 4950 pass_clean_state (gcc::context *ctxt) 4951 : rtl_opt_pass (pass_data_clean_state, ctxt) 4952 {} 4953 4954 /* opt_pass methods: */ 4955 virtual unsigned int execute (function *) 4956 { 4957 return rest_of_clean_state (); 4958 } 4959 4960 }; // class pass_clean_state 4961 4962 } // anon namespace 4963 4964 rtl_opt_pass * 4965 make_pass_clean_state (gcc::context *ctxt) 4966 { 4967 return new pass_clean_state (ctxt); 4968 } 4969 4970 /* Return true if INSN is a call to the current function. */ 4971 4972 static bool 4973 self_recursive_call_p (rtx_insn *insn) 4974 { 4975 tree fndecl = get_call_fndecl (insn); 4976 return (fndecl == current_function_decl 4977 && decl_binds_to_current_def_p (fndecl)); 4978 } 4979 4980 /* Collect hard register usage for the current function. */ 4981 4982 static void 4983 collect_fn_hard_reg_usage (void) 4984 { 4985 rtx_insn *insn; 4986 #ifdef STACK_REGS 4987 int i; 4988 #endif 4989 struct cgraph_rtl_info *node; 4990 HARD_REG_SET function_used_regs; 4991 4992 /* ??? To be removed when all the ports have been fixed. */ 4993 if (!targetm.call_fusage_contains_non_callee_clobbers) 4994 return; 4995 4996 /* Be conservative - mark fixed and global registers as used. */ 4997 function_used_regs = fixed_reg_set; 4998 4999 #ifdef STACK_REGS 5000 /* Handle STACK_REGS conservatively, since the df-framework does not 5001 provide accurate information for them. */ 5002 5003 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) 5004 SET_HARD_REG_BIT (function_used_regs, i); 5005 #endif 5006 5007 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn)) 5008 { 5009 HARD_REG_SET insn_used_regs; 5010 5011 if (!NONDEBUG_INSN_P (insn)) 5012 continue; 5013 5014 if (CALL_P (insn) 5015 && !self_recursive_call_p (insn)) 5016 function_used_regs 5017 |= insn_callee_abi (insn).full_and_partial_reg_clobbers (); 5018 5019 find_all_hard_reg_sets (insn, &insn_used_regs, false); 5020 function_used_regs |= insn_used_regs; 5021 5022 if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (), 5023 function_used_regs)) 5024 return; 5025 } 5026 5027 /* Mask out fully-saved registers, so that they don't affect equality 5028 comparisons between function_abis. */ 5029 function_used_regs &= crtl->abi->full_and_partial_reg_clobbers (); 5030 5031 node = cgraph_node::rtl_info (current_function_decl); 5032 gcc_assert (node != NULL); 5033 5034 node->function_used_regs = function_used_regs; 5035 } 5036