1 /* Convert RTL to assembler code and output it, for GNU compiler. 2 Copyright (C) 1987-2019 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* This is the final pass of the compiler. 21 It looks at the rtl code for a function and outputs assembler code. 22 23 Call `final_start_function' to output the assembler code for function entry, 24 `final' to output assembler code for some RTL code, 25 `final_end_function' to output assembler code for function exit. 26 If a function is compiled in several pieces, each piece is 27 output separately with `final'. 28 29 Some optimizations are also done at this level. 30 Move instructions that were made unnecessary by good register allocation 31 are detected and omitted from the output. (Though most of these 32 are removed by the last jump pass.) 33 34 Instructions to set the condition codes are omitted when it can be 35 seen that the condition codes already had the desired values. 36 37 In some cases it is sufficient if the inherited condition codes 38 have related values, but this may require the following insn 39 (the one that tests the condition codes) to be modified. 40 41 The code for the function prologue and epilogue are generated 42 directly in assembler by the target functions function_prologue and 43 function_epilogue. Those instructions never exist as rtl. */ 44 45 #include "config.h" 46 #define INCLUDE_ALGORITHM /* reverse */ 47 #include "system.h" 48 #include "coretypes.h" 49 #include "backend.h" 50 #include "target.h" 51 #include "rtl.h" 52 #include "tree.h" 53 #include "cfghooks.h" 54 #include "df.h" 55 #include "memmodel.h" 56 #include "tm_p.h" 57 #include "insn-config.h" 58 #include "regs.h" 59 #include "emit-rtl.h" 60 #include "recog.h" 61 #include "cgraph.h" 62 #include "tree-pretty-print.h" /* for dump_function_header */ 63 #include "varasm.h" 64 #include "insn-attr.h" 65 #include "conditions.h" 66 #include "flags.h" 67 #include "output.h" 68 #include "except.h" 69 #include "rtl-error.h" 70 #include "toplev.h" /* exact_log2, floor_log2 */ 71 #include "reload.h" 72 #include "intl.h" 73 #include "cfgrtl.h" 74 #include "debug.h" 75 #include "tree-pass.h" 76 #include "tree-ssa.h" 77 #include "cfgloop.h" 78 #include "params.h" 79 #include "stringpool.h" 80 #include "attribs.h" 81 #include "asan.h" 82 #include "rtl-iter.h" 83 #include "print-rtl.h" 84 85 #ifdef XCOFF_DEBUGGING_INFO 86 #include "xcoffout.h" /* Needed for external data declarations. */ 87 #endif 88 89 #include "dwarf2out.h" 90 91 #ifdef DBX_DEBUGGING_INFO 92 #include "dbxout.h" 93 #endif 94 95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT. 96 So define a null default for it to save conditionalization later. */ 97 #ifndef CC_STATUS_INIT 98 #define CC_STATUS_INIT 99 #endif 100 101 /* Is the given character a logical line separator for the assembler? */ 102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR 103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';') 104 #endif 105 106 #ifndef JUMP_TABLES_IN_TEXT_SECTION 107 #define JUMP_TABLES_IN_TEXT_SECTION 0 108 #endif 109 110 /* Bitflags used by final_scan_insn. */ 111 #define SEEN_NOTE 1 112 #define SEEN_EMITTED 2 113 #define SEEN_NEXT_VIEW 4 114 115 /* Last insn processed by final_scan_insn. */ 116 static rtx_insn *debug_insn; 117 rtx_insn *current_output_insn; 118 119 /* Line number of last NOTE. */ 120 static int last_linenum; 121 122 /* Column number of last NOTE. */ 123 static int last_columnnum; 124 125 /* Discriminator written to assembly. */ 126 static int last_discriminator; 127 128 /* Discriminator to be written to assembly for current instruction. 129 Note: actual usage depends on loc_discriminator_kind setting. */ 130 static int discriminator; 131 static inline int compute_discriminator (location_t loc); 132 133 /* Discriminator identifying current basic block among others sharing 134 the same locus. */ 135 static int bb_discriminator; 136 137 /* Basic block discriminator for previous instruction. */ 138 static int last_bb_discriminator; 139 140 /* Highest line number in current block. */ 141 static int high_block_linenum; 142 143 /* Likewise for function. */ 144 static int high_function_linenum; 145 146 /* Filename of last NOTE. */ 147 static const char *last_filename; 148 149 /* Override filename, line and column number. */ 150 static const char *override_filename; 151 static int override_linenum; 152 static int override_columnnum; 153 static int override_discriminator; 154 155 /* Whether to force emission of a line note before the next insn. */ 156 static bool force_source_line = false; 157 158 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */ 159 160 /* Nonzero while outputting an `asm' with operands. 161 This means that inconsistencies are the user's fault, so don't die. 162 The precise value is the insn being output, to pass to error_for_asm. */ 163 const rtx_insn *this_is_asm_operands; 164 165 /* Number of operands of this insn, for an `asm' with operands. */ 166 static unsigned int insn_noperands; 167 168 /* Compare optimization flag. */ 169 170 static rtx last_ignored_compare = 0; 171 172 /* Assign a unique number to each insn that is output. 173 This can be used to generate unique local labels. */ 174 175 static int insn_counter = 0; 176 177 /* This variable contains machine-dependent flags (defined in tm.h) 178 set and examined by output routines 179 that describe how to interpret the condition codes properly. */ 180 181 CC_STATUS cc_status; 182 183 /* During output of an insn, this contains a copy of cc_status 184 from before the insn. */ 185 186 CC_STATUS cc_prev_status; 187 188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */ 189 190 static int block_depth; 191 192 /* Nonzero if have enabled APP processing of our assembler output. */ 193 194 static int app_on; 195 196 /* If we are outputting an insn sequence, this contains the sequence rtx. 197 Zero otherwise. */ 198 199 rtx_sequence *final_sequence; 200 201 #ifdef ASSEMBLER_DIALECT 202 203 /* Number of the assembler dialect to use, starting at 0. */ 204 static int dialect_number; 205 #endif 206 207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */ 208 rtx current_insn_predicate; 209 210 /* True if printing into -fdump-final-insns= dump. */ 211 bool final_insns_dump_p; 212 213 /* True if profile_function should be called, but hasn't been called yet. */ 214 static bool need_profile_function; 215 216 static int asm_insn_count (rtx); 217 static void profile_function (FILE *); 218 static void profile_after_prologue (FILE *); 219 static bool notice_source_line (rtx_insn *, bool *); 220 static rtx walk_alter_subreg (rtx *, bool *); 221 static void output_asm_name (void); 222 static void output_alternate_entry_point (FILE *, rtx_insn *); 223 static tree get_mem_expr_from_op (rtx, int *); 224 static void output_asm_operand_names (rtx *, int *, int); 225 #ifdef LEAF_REGISTERS 226 static void leaf_renumber_regs (rtx_insn *); 227 #endif 228 #if HAVE_cc0 229 static int alter_cond (rtx); 230 #endif 231 static int align_fuzz (rtx, rtx, int, unsigned); 232 static void collect_fn_hard_reg_usage (void); 233 static tree get_call_fndecl (rtx_insn *); 234 235 /* Initialize data in final at the beginning of a compilation. */ 236 237 void 238 init_final (const char *filename ATTRIBUTE_UNUSED) 239 { 240 app_on = 0; 241 final_sequence = 0; 242 243 #ifdef ASSEMBLER_DIALECT 244 dialect_number = ASSEMBLER_DIALECT; 245 #endif 246 } 247 248 /* Default target function prologue and epilogue assembler output. 249 250 If not overridden for epilogue code, then the function body itself 251 contains return instructions wherever needed. */ 252 void 253 default_function_pro_epilogue (FILE *) 254 { 255 } 256 257 void 258 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED, 259 tree decl ATTRIBUTE_UNUSED, 260 bool new_is_cold ATTRIBUTE_UNUSED) 261 { 262 } 263 264 /* Default target hook that outputs nothing to a stream. */ 265 void 266 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED) 267 { 268 } 269 270 /* Enable APP processing of subsequent output. 271 Used before the output from an `asm' statement. */ 272 273 void 274 app_enable (void) 275 { 276 if (! app_on) 277 { 278 fputs (ASM_APP_ON, asm_out_file); 279 app_on = 1; 280 } 281 } 282 283 /* Disable APP processing of subsequent output. 284 Called from varasm.c before most kinds of output. */ 285 286 void 287 app_disable (void) 288 { 289 if (app_on) 290 { 291 fputs (ASM_APP_OFF, asm_out_file); 292 app_on = 0; 293 } 294 } 295 296 /* Return the number of slots filled in the current 297 delayed branch sequence (we don't count the insn needing the 298 delay slot). Zero if not in a delayed branch sequence. */ 299 300 int 301 dbr_sequence_length (void) 302 { 303 if (final_sequence != 0) 304 return XVECLEN (final_sequence, 0) - 1; 305 else 306 return 0; 307 } 308 309 /* The next two pages contain routines used to compute the length of an insn 310 and to shorten branches. */ 311 312 /* Arrays for insn lengths, and addresses. The latter is referenced by 313 `insn_current_length'. */ 314 315 static int *insn_lengths; 316 317 vec<int> insn_addresses_; 318 319 /* Max uid for which the above arrays are valid. */ 320 static int insn_lengths_max_uid; 321 322 /* Address of insn being processed. Used by `insn_current_length'. */ 323 int insn_current_address; 324 325 /* Address of insn being processed in previous iteration. */ 326 int insn_last_address; 327 328 /* known invariant alignment of insn being processed. */ 329 int insn_current_align; 330 331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)] 332 gives the next following alignment insn that increases the known 333 alignment, or NULL_RTX if there is no such insn. 334 For any alignment obtained this way, we can again index uid_align with 335 its uid to obtain the next following align that in turn increases the 336 alignment, till we reach NULL_RTX; the sequence obtained this way 337 for each insn we'll call the alignment chain of this insn in the following 338 comments. */ 339 340 static rtx *uid_align; 341 static int *uid_shuid; 342 static vec<align_flags> label_align; 343 344 /* Indicate that branch shortening hasn't yet been done. */ 345 346 void 347 init_insn_lengths (void) 348 { 349 if (uid_shuid) 350 { 351 free (uid_shuid); 352 uid_shuid = 0; 353 } 354 if (insn_lengths) 355 { 356 free (insn_lengths); 357 insn_lengths = 0; 358 insn_lengths_max_uid = 0; 359 } 360 if (HAVE_ATTR_length) 361 INSN_ADDRESSES_FREE (); 362 if (uid_align) 363 { 364 free (uid_align); 365 uid_align = 0; 366 } 367 } 368 369 /* Obtain the current length of an insn. If branch shortening has been done, 370 get its actual length. Otherwise, use FALLBACK_FN to calculate the 371 length. */ 372 static int 373 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *)) 374 { 375 rtx body; 376 int i; 377 int length = 0; 378 379 if (!HAVE_ATTR_length) 380 return 0; 381 382 if (insn_lengths_max_uid > INSN_UID (insn)) 383 return insn_lengths[INSN_UID (insn)]; 384 else 385 switch (GET_CODE (insn)) 386 { 387 case NOTE: 388 case BARRIER: 389 case CODE_LABEL: 390 case DEBUG_INSN: 391 return 0; 392 393 case CALL_INSN: 394 case JUMP_INSN: 395 length = fallback_fn (insn); 396 break; 397 398 case INSN: 399 body = PATTERN (insn); 400 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER) 401 return 0; 402 403 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) 404 length = asm_insn_count (body) * fallback_fn (insn); 405 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body)) 406 for (i = 0; i < seq->len (); i++) 407 length += get_attr_length_1 (seq->insn (i), fallback_fn); 408 else 409 length = fallback_fn (insn); 410 break; 411 412 default: 413 break; 414 } 415 416 #ifdef ADJUST_INSN_LENGTH 417 ADJUST_INSN_LENGTH (insn, length); 418 #endif 419 return length; 420 } 421 422 /* Obtain the current length of an insn. If branch shortening has been done, 423 get its actual length. Otherwise, get its maximum length. */ 424 int 425 get_attr_length (rtx_insn *insn) 426 { 427 return get_attr_length_1 (insn, insn_default_length); 428 } 429 430 /* Obtain the current length of an insn. If branch shortening has been done, 431 get its actual length. Otherwise, get its minimum length. */ 432 int 433 get_attr_min_length (rtx_insn *insn) 434 { 435 return get_attr_length_1 (insn, insn_min_length); 436 } 437 438 /* Code to handle alignment inside shorten_branches. */ 439 440 /* Here is an explanation how the algorithm in align_fuzz can give 441 proper results: 442 443 Call a sequence of instructions beginning with alignment point X 444 and continuing until the next alignment point `block X'. When `X' 445 is used in an expression, it means the alignment value of the 446 alignment point. 447 448 Call the distance between the start of the first insn of block X, and 449 the end of the last insn of block X `IX', for the `inner size of X'. 450 This is clearly the sum of the instruction lengths. 451 452 Likewise with the next alignment-delimited block following X, which we 453 shall call block Y. 454 455 Call the distance between the start of the first insn of block X, and 456 the start of the first insn of block Y `OX', for the `outer size of X'. 457 458 The estimated padding is then OX - IX. 459 460 OX can be safely estimated as 461 462 if (X >= Y) 463 OX = round_up(IX, Y) 464 else 465 OX = round_up(IX, X) + Y - X 466 467 Clearly est(IX) >= real(IX), because that only depends on the 468 instruction lengths, and those being overestimated is a given. 469 470 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so 471 we needn't worry about that when thinking about OX. 472 473 When X >= Y, the alignment provided by Y adds no uncertainty factor 474 for branch ranges starting before X, so we can just round what we have. 475 But when X < Y, we don't know anything about the, so to speak, 476 `middle bits', so we have to assume the worst when aligning up from an 477 address mod X to one mod Y, which is Y - X. */ 478 479 #ifndef LABEL_ALIGN 480 #define LABEL_ALIGN(LABEL) align_labels 481 #endif 482 483 #ifndef LOOP_ALIGN 484 #define LOOP_ALIGN(LABEL) align_loops 485 #endif 486 487 #ifndef LABEL_ALIGN_AFTER_BARRIER 488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0 489 #endif 490 491 #ifndef JUMP_ALIGN 492 #define JUMP_ALIGN(LABEL) align_jumps 493 #endif 494 495 #ifndef ADDR_VEC_ALIGN 496 static int 497 final_addr_vec_align (rtx_jump_table_data *addr_vec) 498 { 499 int align = GET_MODE_SIZE (addr_vec->get_data_mode ()); 500 501 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT) 502 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT; 503 return exact_log2 (align); 504 505 } 506 507 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC) 508 #endif 509 510 #ifndef INSN_LENGTH_ALIGNMENT 511 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log 512 #endif 513 514 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)]) 515 516 static int min_labelno, max_labelno; 517 518 #define LABEL_TO_ALIGNMENT(LABEL) \ 519 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno]) 520 521 /* For the benefit of port specific code do this also as a function. */ 522 523 align_flags 524 label_to_alignment (rtx label) 525 { 526 if (CODE_LABEL_NUMBER (label) <= max_labelno) 527 return LABEL_TO_ALIGNMENT (label); 528 return align_flags (); 529 } 530 531 /* The differences in addresses 532 between a branch and its target might grow or shrink depending on 533 the alignment the start insn of the range (the branch for a forward 534 branch or the label for a backward branch) starts out on; if these 535 differences are used naively, they can even oscillate infinitely. 536 We therefore want to compute a 'worst case' address difference that 537 is independent of the alignment the start insn of the range end 538 up on, and that is at least as large as the actual difference. 539 The function align_fuzz calculates the amount we have to add to the 540 naively computed difference, by traversing the part of the alignment 541 chain of the start insn of the range that is in front of the end insn 542 of the range, and considering for each alignment the maximum amount 543 that it might contribute to a size increase. 544 545 For casesi tables, we also want to know worst case minimum amounts of 546 address difference, in case a machine description wants to introduce 547 some common offset that is added to all offsets in a table. 548 For this purpose, align_fuzz with a growth argument of 0 computes the 549 appropriate adjustment. */ 550 551 /* Compute the maximum delta by which the difference of the addresses of 552 START and END might grow / shrink due to a different address for start 553 which changes the size of alignment insns between START and END. 554 KNOWN_ALIGN_LOG is the alignment known for START. 555 GROWTH should be ~0 if the objective is to compute potential code size 556 increase, and 0 if the objective is to compute potential shrink. 557 The return value is undefined for any other value of GROWTH. */ 558 559 static int 560 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth) 561 { 562 int uid = INSN_UID (start); 563 rtx align_label; 564 int known_align = 1 << known_align_log; 565 int end_shuid = INSN_SHUID (end); 566 int fuzz = 0; 567 568 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid]) 569 { 570 int align_addr, new_align; 571 572 uid = INSN_UID (align_label); 573 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid]; 574 if (uid_shuid[uid] > end_shuid) 575 break; 576 align_flags alignment = LABEL_TO_ALIGNMENT (align_label); 577 new_align = 1 << alignment.levels[0].log; 578 if (new_align < known_align) 579 continue; 580 fuzz += (-align_addr ^ growth) & (new_align - known_align); 581 known_align = new_align; 582 } 583 return fuzz; 584 } 585 586 /* Compute a worst-case reference address of a branch so that it 587 can be safely used in the presence of aligned labels. Since the 588 size of the branch itself is unknown, the size of the branch is 589 not included in the range. I.e. for a forward branch, the reference 590 address is the end address of the branch as known from the previous 591 branch shortening pass, minus a value to account for possible size 592 increase due to alignment. For a backward branch, it is the start 593 address of the branch as known from the current pass, plus a value 594 to account for possible size increase due to alignment. 595 NB.: Therefore, the maximum offset allowed for backward branches needs 596 to exclude the branch size. */ 597 598 int 599 insn_current_reference_address (rtx_insn *branch) 600 { 601 rtx dest; 602 int seq_uid; 603 604 if (! INSN_ADDRESSES_SET_P ()) 605 return 0; 606 607 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch)); 608 seq_uid = INSN_UID (seq); 609 if (!jump_to_label_p (branch)) 610 /* This can happen for example on the PA; the objective is to know the 611 offset to address something in front of the start of the function. 612 Thus, we can treat it like a backward branch. 613 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than 614 any alignment we'd encounter, so we skip the call to align_fuzz. */ 615 return insn_current_address; 616 dest = JUMP_LABEL (branch); 617 618 /* BRANCH has no proper alignment chain set, so use SEQ. 619 BRANCH also has no INSN_SHUID. */ 620 if (INSN_SHUID (seq) < INSN_SHUID (dest)) 621 { 622 /* Forward branch. */ 623 return (insn_last_address + insn_lengths[seq_uid] 624 - align_fuzz (seq, dest, length_unit_log, ~0)); 625 } 626 else 627 { 628 /* Backward branch. */ 629 return (insn_current_address 630 + align_fuzz (dest, seq, length_unit_log, ~0)); 631 } 632 } 633 634 /* Compute branch alignments based on CFG profile. */ 635 636 unsigned int 637 compute_alignments (void) 638 { 639 basic_block bb; 640 align_flags max_alignment; 641 642 label_align.truncate (0); 643 644 max_labelno = max_label_num (); 645 min_labelno = get_first_label_num (); 646 label_align.safe_grow_cleared (max_labelno - min_labelno + 1); 647 648 /* If not optimizing or optimizing for size, don't assign any alignments. */ 649 if (! optimize || optimize_function_for_size_p (cfun)) 650 return 0; 651 652 if (dump_file) 653 { 654 dump_reg_info (dump_file); 655 dump_flow_info (dump_file, TDF_DETAILS); 656 flow_loops_dump (dump_file, NULL, 1); 657 } 658 loop_optimizer_init (AVOID_CFG_MODIFICATIONS); 659 profile_count count_threshold = cfun->cfg->count_max.apply_scale 660 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD)); 661 662 if (dump_file) 663 { 664 fprintf (dump_file, "count_max: "); 665 cfun->cfg->count_max.dump (dump_file); 666 fprintf (dump_file, "\n"); 667 } 668 FOR_EACH_BB_FN (bb, cfun) 669 { 670 rtx_insn *label = BB_HEAD (bb); 671 bool has_fallthru = 0; 672 edge e; 673 edge_iterator ei; 674 675 if (!LABEL_P (label) 676 || optimize_bb_for_size_p (bb)) 677 { 678 if (dump_file) 679 fprintf (dump_file, 680 "BB %4i loop %2i loop_depth %2i skipped.\n", 681 bb->index, 682 bb->loop_father->num, 683 bb_loop_depth (bb)); 684 continue; 685 } 686 max_alignment = LABEL_ALIGN (label); 687 profile_count fallthru_count = profile_count::zero (); 688 profile_count branch_count = profile_count::zero (); 689 690 FOR_EACH_EDGE (e, ei, bb->preds) 691 { 692 if (e->flags & EDGE_FALLTHRU) 693 has_fallthru = 1, fallthru_count += e->count (); 694 else 695 branch_count += e->count (); 696 } 697 if (dump_file) 698 { 699 fprintf (dump_file, "BB %4i loop %2i loop_depth" 700 " %2i fall ", 701 bb->index, bb->loop_father->num, 702 bb_loop_depth (bb)); 703 fallthru_count.dump (dump_file); 704 fprintf (dump_file, " branch "); 705 branch_count.dump (dump_file); 706 if (!bb->loop_father->inner && bb->loop_father->num) 707 fprintf (dump_file, " inner_loop"); 708 if (bb->loop_father->header == bb) 709 fprintf (dump_file, " loop_header"); 710 fprintf (dump_file, "\n"); 711 } 712 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ()) 713 continue; 714 715 /* There are two purposes to align block with no fallthru incoming edge: 716 1) to avoid fetch stalls when branch destination is near cache boundary 717 2) to improve cache efficiency in case the previous block is not executed 718 (so it does not need to be in the cache). 719 720 We to catch first case, we align frequently executed blocks. 721 To catch the second, we align blocks that are executed more frequently 722 than the predecessor and the predecessor is likely to not be executed 723 when function is called. */ 724 725 if (!has_fallthru 726 && (branch_count > count_threshold 727 || (bb->count > bb->prev_bb->count.apply_scale (10, 1) 728 && (bb->prev_bb->count 729 <= ENTRY_BLOCK_PTR_FOR_FN (cfun) 730 ->count.apply_scale (1, 2))))) 731 { 732 align_flags alignment = JUMP_ALIGN (label); 733 if (dump_file) 734 fprintf (dump_file, " jump alignment added.\n"); 735 max_alignment = align_flags::max (max_alignment, alignment); 736 } 737 /* In case block is frequent and reached mostly by non-fallthru edge, 738 align it. It is most likely a first block of loop. */ 739 if (has_fallthru 740 && !(single_succ_p (bb) 741 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)) 742 && optimize_bb_for_speed_p (bb) 743 && branch_count + fallthru_count > count_threshold 744 && (branch_count 745 > fallthru_count.apply_scale 746 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1))) 747 { 748 align_flags alignment = LOOP_ALIGN (label); 749 if (dump_file) 750 fprintf (dump_file, " internal loop alignment added.\n"); 751 max_alignment = align_flags::max (max_alignment, alignment); 752 } 753 LABEL_TO_ALIGNMENT (label) = max_alignment; 754 } 755 756 loop_optimizer_finalize (); 757 free_dominance_info (CDI_DOMINATORS); 758 return 0; 759 } 760 761 /* Grow the LABEL_ALIGN array after new labels are created. */ 762 763 static void 764 grow_label_align (void) 765 { 766 int old = max_labelno; 767 int n_labels; 768 int n_old_labels; 769 770 max_labelno = max_label_num (); 771 772 n_labels = max_labelno - min_labelno + 1; 773 n_old_labels = old - min_labelno + 1; 774 775 label_align.safe_grow_cleared (n_labels); 776 777 /* Range of labels grows monotonically in the function. Failing here 778 means that the initialization of array got lost. */ 779 gcc_assert (n_old_labels <= n_labels); 780 } 781 782 /* Update the already computed alignment information. LABEL_PAIRS is a vector 783 made up of pairs of labels for which the alignment information of the first 784 element will be copied from that of the second element. */ 785 786 void 787 update_alignments (vec<rtx> &label_pairs) 788 { 789 unsigned int i = 0; 790 rtx iter, label = NULL_RTX; 791 792 if (max_labelno != max_label_num ()) 793 grow_label_align (); 794 795 FOR_EACH_VEC_ELT (label_pairs, i, iter) 796 if (i & 1) 797 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter); 798 else 799 label = iter; 800 } 801 802 namespace { 803 804 const pass_data pass_data_compute_alignments = 805 { 806 RTL_PASS, /* type */ 807 "alignments", /* name */ 808 OPTGROUP_NONE, /* optinfo_flags */ 809 TV_NONE, /* tv_id */ 810 0, /* properties_required */ 811 0, /* properties_provided */ 812 0, /* properties_destroyed */ 813 0, /* todo_flags_start */ 814 0, /* todo_flags_finish */ 815 }; 816 817 class pass_compute_alignments : public rtl_opt_pass 818 { 819 public: 820 pass_compute_alignments (gcc::context *ctxt) 821 : rtl_opt_pass (pass_data_compute_alignments, ctxt) 822 {} 823 824 /* opt_pass methods: */ 825 virtual unsigned int execute (function *) { return compute_alignments (); } 826 827 }; // class pass_compute_alignments 828 829 } // anon namespace 830 831 rtl_opt_pass * 832 make_pass_compute_alignments (gcc::context *ctxt) 833 { 834 return new pass_compute_alignments (ctxt); 835 } 836 837 838 /* Make a pass over all insns and compute their actual lengths by shortening 839 any branches of variable length if possible. */ 840 841 /* shorten_branches might be called multiple times: for example, the SH 842 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG. 843 In order to do this, it needs proper length information, which it obtains 844 by calling shorten_branches. This cannot be collapsed with 845 shorten_branches itself into a single pass unless we also want to integrate 846 reorg.c, since the branch splitting exposes new instructions with delay 847 slots. */ 848 849 void 850 shorten_branches (rtx_insn *first) 851 { 852 rtx_insn *insn; 853 int max_uid; 854 int i; 855 rtx_insn *seq; 856 int something_changed = 1; 857 char *varying_length; 858 rtx body; 859 int uid; 860 rtx align_tab[MAX_CODE_ALIGN + 1]; 861 862 /* Compute maximum UID and allocate label_align / uid_shuid. */ 863 max_uid = get_max_uid (); 864 865 /* Free uid_shuid before reallocating it. */ 866 free (uid_shuid); 867 868 uid_shuid = XNEWVEC (int, max_uid); 869 870 if (max_labelno != max_label_num ()) 871 grow_label_align (); 872 873 /* Initialize label_align and set up uid_shuid to be strictly 874 monotonically rising with insn order. */ 875 /* We use alignment here to keep track of the maximum alignment we want to 876 impose on the next CODE_LABEL (or the current one if we are processing 877 the CODE_LABEL itself). */ 878 879 align_flags max_alignment; 880 881 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn)) 882 { 883 INSN_SHUID (insn) = i++; 884 if (INSN_P (insn)) 885 continue; 886 887 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn)) 888 { 889 /* Merge in alignments computed by compute_alignments. */ 890 align_flags alignment = LABEL_TO_ALIGNMENT (label); 891 max_alignment = align_flags::max (max_alignment, alignment); 892 893 rtx_jump_table_data *table = jump_table_for_label (label); 894 if (!table) 895 { 896 align_flags alignment = LABEL_ALIGN (label); 897 max_alignment = align_flags::max (max_alignment, alignment); 898 } 899 /* ADDR_VECs only take room if read-only data goes into the text 900 section. */ 901 if ((JUMP_TABLES_IN_TEXT_SECTION 902 || readonly_data_section == text_section) 903 && table) 904 { 905 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table)); 906 max_alignment = align_flags::max (max_alignment, alignment); 907 } 908 LABEL_TO_ALIGNMENT (label) = max_alignment; 909 max_alignment = align_flags (); 910 } 911 else if (BARRIER_P (insn)) 912 { 913 rtx_insn *label; 914 915 for (label = insn; label && ! INSN_P (label); 916 label = NEXT_INSN (label)) 917 if (LABEL_P (label)) 918 { 919 align_flags alignment 920 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn)); 921 max_alignment = align_flags::max (max_alignment, alignment); 922 break; 923 } 924 } 925 } 926 if (!HAVE_ATTR_length) 927 return; 928 929 /* Allocate the rest of the arrays. */ 930 insn_lengths = XNEWVEC (int, max_uid); 931 insn_lengths_max_uid = max_uid; 932 /* Syntax errors can lead to labels being outside of the main insn stream. 933 Initialize insn_addresses, so that we get reproducible results. */ 934 INSN_ADDRESSES_ALLOC (max_uid); 935 936 varying_length = XCNEWVEC (char, max_uid); 937 938 /* Initialize uid_align. We scan instructions 939 from end to start, and keep in align_tab[n] the last seen insn 940 that does an alignment of at least n+1, i.e. the successor 941 in the alignment chain for an insn that does / has a known 942 alignment of n. */ 943 uid_align = XCNEWVEC (rtx, max_uid); 944 945 for (i = MAX_CODE_ALIGN + 1; --i >= 0;) 946 align_tab[i] = NULL_RTX; 947 seq = get_last_insn (); 948 for (; seq; seq = PREV_INSN (seq)) 949 { 950 int uid = INSN_UID (seq); 951 int log; 952 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0); 953 uid_align[uid] = align_tab[0]; 954 if (log) 955 { 956 /* Found an alignment label. */ 957 gcc_checking_assert (log < MAX_CODE_ALIGN + 1); 958 uid_align[uid] = align_tab[log]; 959 for (i = log - 1; i >= 0; i--) 960 align_tab[i] = seq; 961 } 962 } 963 964 /* When optimizing, we start assuming minimum length, and keep increasing 965 lengths as we find the need for this, till nothing changes. 966 When not optimizing, we start assuming maximum lengths, and 967 do a single pass to update the lengths. */ 968 bool increasing = optimize != 0; 969 970 #ifdef CASE_VECTOR_SHORTEN_MODE 971 if (optimize) 972 { 973 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum 974 label fields. */ 975 976 int min_shuid = INSN_SHUID (get_insns ()) - 1; 977 int max_shuid = INSN_SHUID (get_last_insn ()) + 1; 978 int rel; 979 980 for (insn = first; insn != 0; insn = NEXT_INSN (insn)) 981 { 982 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat; 983 int len, i, min, max, insn_shuid; 984 int min_align; 985 addr_diff_vec_flags flags; 986 987 if (! JUMP_TABLE_DATA_P (insn) 988 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC) 989 continue; 990 pat = PATTERN (insn); 991 len = XVECLEN (pat, 1); 992 gcc_assert (len > 0); 993 min_align = MAX_CODE_ALIGN; 994 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--) 995 { 996 rtx lab = XEXP (XVECEXP (pat, 1, i), 0); 997 int shuid = INSN_SHUID (lab); 998 if (shuid < min) 999 { 1000 min = shuid; 1001 min_lab = lab; 1002 } 1003 if (shuid > max) 1004 { 1005 max = shuid; 1006 max_lab = lab; 1007 } 1008 1009 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log; 1010 if (min_align > label_alignment) 1011 min_align = label_alignment; 1012 } 1013 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab); 1014 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab); 1015 insn_shuid = INSN_SHUID (insn); 1016 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0)); 1017 memset (&flags, 0, sizeof (flags)); 1018 flags.min_align = min_align; 1019 flags.base_after_vec = rel > insn_shuid; 1020 flags.min_after_vec = min > insn_shuid; 1021 flags.max_after_vec = max > insn_shuid; 1022 flags.min_after_base = min > rel; 1023 flags.max_after_base = max > rel; 1024 ADDR_DIFF_VEC_FLAGS (pat) = flags; 1025 1026 if (increasing) 1027 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat)); 1028 } 1029 } 1030 #endif /* CASE_VECTOR_SHORTEN_MODE */ 1031 1032 /* Compute initial lengths, addresses, and varying flags for each insn. */ 1033 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length; 1034 1035 for (insn_current_address = 0, insn = first; 1036 insn != 0; 1037 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn)) 1038 { 1039 uid = INSN_UID (insn); 1040 1041 insn_lengths[uid] = 0; 1042 1043 if (LABEL_P (insn)) 1044 { 1045 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log; 1046 if (log) 1047 { 1048 int align = 1 << log; 1049 int new_address = (insn_current_address + align - 1) & -align; 1050 insn_lengths[uid] = new_address - insn_current_address; 1051 } 1052 } 1053 1054 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid]; 1055 1056 if (NOTE_P (insn) || BARRIER_P (insn) 1057 || LABEL_P (insn) || DEBUG_INSN_P (insn)) 1058 continue; 1059 if (insn->deleted ()) 1060 continue; 1061 1062 body = PATTERN (insn); 1063 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn)) 1064 { 1065 /* This only takes room if read-only data goes into the text 1066 section. */ 1067 if (JUMP_TABLES_IN_TEXT_SECTION 1068 || readonly_data_section == text_section) 1069 insn_lengths[uid] = (XVECLEN (body, 1070 GET_CODE (body) == ADDR_DIFF_VEC) 1071 * GET_MODE_SIZE (table->get_data_mode ())); 1072 /* Alignment is handled by ADDR_VEC_ALIGN. */ 1073 } 1074 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0) 1075 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn); 1076 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body)) 1077 { 1078 int i; 1079 int const_delay_slots; 1080 if (DELAY_SLOTS) 1081 const_delay_slots = const_num_delay_slots (body_seq->insn (0)); 1082 else 1083 const_delay_slots = 0; 1084 1085 int (*inner_length_fun) (rtx_insn *) 1086 = const_delay_slots ? length_fun : insn_default_length; 1087 /* Inside a delay slot sequence, we do not do any branch shortening 1088 if the shortening could change the number of delay slots 1089 of the branch. */ 1090 for (i = 0; i < body_seq->len (); i++) 1091 { 1092 rtx_insn *inner_insn = body_seq->insn (i); 1093 int inner_uid = INSN_UID (inner_insn); 1094 int inner_length; 1095 1096 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT 1097 || asm_noperands (PATTERN (inner_insn)) >= 0) 1098 inner_length = (asm_insn_count (PATTERN (inner_insn)) 1099 * insn_default_length (inner_insn)); 1100 else 1101 inner_length = inner_length_fun (inner_insn); 1102 1103 insn_lengths[inner_uid] = inner_length; 1104 if (const_delay_slots) 1105 { 1106 if ((varying_length[inner_uid] 1107 = insn_variable_length_p (inner_insn)) != 0) 1108 varying_length[uid] = 1; 1109 INSN_ADDRESSES (inner_uid) = (insn_current_address 1110 + insn_lengths[uid]); 1111 } 1112 else 1113 varying_length[inner_uid] = 0; 1114 insn_lengths[uid] += inner_length; 1115 } 1116 } 1117 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER) 1118 { 1119 insn_lengths[uid] = length_fun (insn); 1120 varying_length[uid] = insn_variable_length_p (insn); 1121 } 1122 1123 /* If needed, do any adjustment. */ 1124 #ifdef ADJUST_INSN_LENGTH 1125 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]); 1126 if (insn_lengths[uid] < 0) 1127 fatal_insn ("negative insn length", insn); 1128 #endif 1129 } 1130 1131 /* Now loop over all the insns finding varying length insns. For each, 1132 get the current insn length. If it has changed, reflect the change. 1133 When nothing changes for a full pass, we are done. */ 1134 1135 while (something_changed) 1136 { 1137 something_changed = 0; 1138 insn_current_align = MAX_CODE_ALIGN - 1; 1139 for (insn_current_address = 0, insn = first; 1140 insn != 0; 1141 insn = NEXT_INSN (insn)) 1142 { 1143 int new_length; 1144 #ifdef ADJUST_INSN_LENGTH 1145 int tmp_length; 1146 #endif 1147 int length_align; 1148 1149 uid = INSN_UID (insn); 1150 1151 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn)) 1152 { 1153 int log = LABEL_TO_ALIGNMENT (label).levels[0].log; 1154 1155 #ifdef CASE_VECTOR_SHORTEN_MODE 1156 /* If the mode of a following jump table was changed, we 1157 may need to update the alignment of this label. */ 1158 1159 if (JUMP_TABLES_IN_TEXT_SECTION 1160 || readonly_data_section == text_section) 1161 { 1162 rtx_jump_table_data *table = jump_table_for_label (label); 1163 if (table) 1164 { 1165 int newlog = ADDR_VEC_ALIGN (table); 1166 if (newlog != log) 1167 { 1168 log = newlog; 1169 LABEL_TO_ALIGNMENT (insn) = log; 1170 something_changed = 1; 1171 } 1172 } 1173 } 1174 #endif 1175 1176 if (log > insn_current_align) 1177 { 1178 int align = 1 << log; 1179 int new_address= (insn_current_address + align - 1) & -align; 1180 insn_lengths[uid] = new_address - insn_current_address; 1181 insn_current_align = log; 1182 insn_current_address = new_address; 1183 } 1184 else 1185 insn_lengths[uid] = 0; 1186 INSN_ADDRESSES (uid) = insn_current_address; 1187 continue; 1188 } 1189 1190 length_align = INSN_LENGTH_ALIGNMENT (insn); 1191 if (length_align < insn_current_align) 1192 insn_current_align = length_align; 1193 1194 insn_last_address = INSN_ADDRESSES (uid); 1195 INSN_ADDRESSES (uid) = insn_current_address; 1196 1197 #ifdef CASE_VECTOR_SHORTEN_MODE 1198 if (optimize 1199 && JUMP_TABLE_DATA_P (insn) 1200 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC) 1201 { 1202 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn); 1203 rtx body = PATTERN (insn); 1204 int old_length = insn_lengths[uid]; 1205 rtx_insn *rel_lab = 1206 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0)); 1207 rtx min_lab = XEXP (XEXP (body, 2), 0); 1208 rtx max_lab = XEXP (XEXP (body, 3), 0); 1209 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab)); 1210 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab)); 1211 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab)); 1212 rtx_insn *prev; 1213 int rel_align = 0; 1214 addr_diff_vec_flags flags; 1215 scalar_int_mode vec_mode; 1216 1217 /* Avoid automatic aggregate initialization. */ 1218 flags = ADDR_DIFF_VEC_FLAGS (body); 1219 1220 /* Try to find a known alignment for rel_lab. */ 1221 for (prev = rel_lab; 1222 prev 1223 && ! insn_lengths[INSN_UID (prev)] 1224 && ! (varying_length[INSN_UID (prev)] & 1); 1225 prev = PREV_INSN (prev)) 1226 if (varying_length[INSN_UID (prev)] & 2) 1227 { 1228 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log; 1229 break; 1230 } 1231 1232 /* See the comment on addr_diff_vec_flags in rtl.h for the 1233 meaning of the flags values. base: REL_LAB vec: INSN */ 1234 /* Anything after INSN has still addresses from the last 1235 pass; adjust these so that they reflect our current 1236 estimate for this pass. */ 1237 if (flags.base_after_vec) 1238 rel_addr += insn_current_address - insn_last_address; 1239 if (flags.min_after_vec) 1240 min_addr += insn_current_address - insn_last_address; 1241 if (flags.max_after_vec) 1242 max_addr += insn_current_address - insn_last_address; 1243 /* We want to know the worst case, i.e. lowest possible value 1244 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB, 1245 its offset is positive, and we have to be wary of code shrink; 1246 otherwise, it is negative, and we have to be vary of code 1247 size increase. */ 1248 if (flags.min_after_base) 1249 { 1250 /* If INSN is between REL_LAB and MIN_LAB, the size 1251 changes we are about to make can change the alignment 1252 within the observed offset, therefore we have to break 1253 it up into two parts that are independent. */ 1254 if (! flags.base_after_vec && flags.min_after_vec) 1255 { 1256 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0); 1257 min_addr -= align_fuzz (insn, min_lab, 0, 0); 1258 } 1259 else 1260 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0); 1261 } 1262 else 1263 { 1264 if (flags.base_after_vec && ! flags.min_after_vec) 1265 { 1266 min_addr -= align_fuzz (min_lab, insn, 0, ~0); 1267 min_addr -= align_fuzz (insn, rel_lab, 0, ~0); 1268 } 1269 else 1270 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0); 1271 } 1272 /* Likewise, determine the highest lowest possible value 1273 for the offset of MAX_LAB. */ 1274 if (flags.max_after_base) 1275 { 1276 if (! flags.base_after_vec && flags.max_after_vec) 1277 { 1278 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0); 1279 max_addr += align_fuzz (insn, max_lab, 0, ~0); 1280 } 1281 else 1282 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0); 1283 } 1284 else 1285 { 1286 if (flags.base_after_vec && ! flags.max_after_vec) 1287 { 1288 max_addr += align_fuzz (max_lab, insn, 0, 0); 1289 max_addr += align_fuzz (insn, rel_lab, 0, 0); 1290 } 1291 else 1292 max_addr += align_fuzz (max_lab, rel_lab, 0, 0); 1293 } 1294 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr, 1295 max_addr - rel_addr, body); 1296 if (!increasing 1297 || (GET_MODE_SIZE (vec_mode) 1298 >= GET_MODE_SIZE (table->get_data_mode ()))) 1299 PUT_MODE (body, vec_mode); 1300 if (JUMP_TABLES_IN_TEXT_SECTION 1301 || readonly_data_section == text_section) 1302 { 1303 insn_lengths[uid] 1304 = (XVECLEN (body, 1) 1305 * GET_MODE_SIZE (table->get_data_mode ())); 1306 insn_current_address += insn_lengths[uid]; 1307 if (insn_lengths[uid] != old_length) 1308 something_changed = 1; 1309 } 1310 1311 continue; 1312 } 1313 #endif /* CASE_VECTOR_SHORTEN_MODE */ 1314 1315 if (! (varying_length[uid])) 1316 { 1317 if (NONJUMP_INSN_P (insn) 1318 && GET_CODE (PATTERN (insn)) == SEQUENCE) 1319 { 1320 int i; 1321 1322 body = PATTERN (insn); 1323 for (i = 0; i < XVECLEN (body, 0); i++) 1324 { 1325 rtx inner_insn = XVECEXP (body, 0, i); 1326 int inner_uid = INSN_UID (inner_insn); 1327 1328 INSN_ADDRESSES (inner_uid) = insn_current_address; 1329 1330 insn_current_address += insn_lengths[inner_uid]; 1331 } 1332 } 1333 else 1334 insn_current_address += insn_lengths[uid]; 1335 1336 continue; 1337 } 1338 1339 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE) 1340 { 1341 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn)); 1342 int i; 1343 1344 body = PATTERN (insn); 1345 new_length = 0; 1346 for (i = 0; i < seqn->len (); i++) 1347 { 1348 rtx_insn *inner_insn = seqn->insn (i); 1349 int inner_uid = INSN_UID (inner_insn); 1350 int inner_length; 1351 1352 INSN_ADDRESSES (inner_uid) = insn_current_address; 1353 1354 /* insn_current_length returns 0 for insns with a 1355 non-varying length. */ 1356 if (! varying_length[inner_uid]) 1357 inner_length = insn_lengths[inner_uid]; 1358 else 1359 inner_length = insn_current_length (inner_insn); 1360 1361 if (inner_length != insn_lengths[inner_uid]) 1362 { 1363 if (!increasing || inner_length > insn_lengths[inner_uid]) 1364 { 1365 insn_lengths[inner_uid] = inner_length; 1366 something_changed = 1; 1367 } 1368 else 1369 inner_length = insn_lengths[inner_uid]; 1370 } 1371 insn_current_address += inner_length; 1372 new_length += inner_length; 1373 } 1374 } 1375 else 1376 { 1377 new_length = insn_current_length (insn); 1378 insn_current_address += new_length; 1379 } 1380 1381 #ifdef ADJUST_INSN_LENGTH 1382 /* If needed, do any adjustment. */ 1383 tmp_length = new_length; 1384 ADJUST_INSN_LENGTH (insn, new_length); 1385 insn_current_address += (new_length - tmp_length); 1386 #endif 1387 1388 if (new_length != insn_lengths[uid] 1389 && (!increasing || new_length > insn_lengths[uid])) 1390 { 1391 insn_lengths[uid] = new_length; 1392 something_changed = 1; 1393 } 1394 else 1395 insn_current_address += insn_lengths[uid] - new_length; 1396 } 1397 /* For a non-optimizing compile, do only a single pass. */ 1398 if (!increasing) 1399 break; 1400 } 1401 crtl->max_insn_address = insn_current_address; 1402 free (varying_length); 1403 } 1404 1405 /* Given the body of an INSN known to be generated by an ASM statement, return 1406 the number of machine instructions likely to be generated for this insn. 1407 This is used to compute its length. */ 1408 1409 static int 1410 asm_insn_count (rtx body) 1411 { 1412 const char *templ; 1413 1414 if (GET_CODE (body) == ASM_INPUT) 1415 templ = XSTR (body, 0); 1416 else 1417 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL); 1418 1419 return asm_str_count (templ); 1420 } 1421 1422 /* Return the number of machine instructions likely to be generated for the 1423 inline-asm template. */ 1424 int 1425 asm_str_count (const char *templ) 1426 { 1427 int count = 1; 1428 1429 if (!*templ) 1430 return 0; 1431 1432 for (; *templ; templ++) 1433 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ) 1434 || *templ == '\n') 1435 count++; 1436 1437 return count; 1438 } 1439 1440 /* Return true if DWARF2 debug info can be emitted for DECL. */ 1441 1442 static bool 1443 dwarf2_debug_info_emitted_p (tree decl) 1444 { 1445 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG) 1446 return false; 1447 1448 if (DECL_IGNORED_P (decl)) 1449 return false; 1450 1451 return true; 1452 } 1453 1454 /* Return scope resulting from combination of S1 and S2. */ 1455 static tree 1456 choose_inner_scope (tree s1, tree s2) 1457 { 1458 if (!s1) 1459 return s2; 1460 if (!s2) 1461 return s1; 1462 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2)) 1463 return s1; 1464 return s2; 1465 } 1466 1467 /* Emit lexical block notes needed to change scope from S1 to S2. */ 1468 1469 static void 1470 change_scope (rtx_insn *orig_insn, tree s1, tree s2) 1471 { 1472 rtx_insn *insn = orig_insn; 1473 tree com = NULL_TREE; 1474 tree ts1 = s1, ts2 = s2; 1475 tree s; 1476 1477 while (ts1 != ts2) 1478 { 1479 gcc_assert (ts1 && ts2); 1480 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2)) 1481 ts1 = BLOCK_SUPERCONTEXT (ts1); 1482 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2)) 1483 ts2 = BLOCK_SUPERCONTEXT (ts2); 1484 else 1485 { 1486 ts1 = BLOCK_SUPERCONTEXT (ts1); 1487 ts2 = BLOCK_SUPERCONTEXT (ts2); 1488 } 1489 } 1490 com = ts1; 1491 1492 /* Close scopes. */ 1493 s = s1; 1494 while (s != com) 1495 { 1496 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn); 1497 NOTE_BLOCK (note) = s; 1498 s = BLOCK_SUPERCONTEXT (s); 1499 } 1500 1501 /* Open scopes. */ 1502 s = s2; 1503 while (s != com) 1504 { 1505 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn); 1506 NOTE_BLOCK (insn) = s; 1507 s = BLOCK_SUPERCONTEXT (s); 1508 } 1509 } 1510 1511 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based 1512 on the scope tree and the newly reordered instructions. */ 1513 1514 static void 1515 reemit_insn_block_notes (void) 1516 { 1517 tree cur_block = DECL_INITIAL (cfun->decl); 1518 rtx_insn *insn; 1519 1520 insn = get_insns (); 1521 for (; insn; insn = NEXT_INSN (insn)) 1522 { 1523 tree this_block; 1524 1525 /* Prevent lexical blocks from straddling section boundaries. */ 1526 if (NOTE_P (insn)) 1527 switch (NOTE_KIND (insn)) 1528 { 1529 case NOTE_INSN_SWITCH_TEXT_SECTIONS: 1530 { 1531 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl); 1532 s = BLOCK_SUPERCONTEXT (s)) 1533 { 1534 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn); 1535 NOTE_BLOCK (note) = s; 1536 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn); 1537 NOTE_BLOCK (note) = s; 1538 } 1539 } 1540 break; 1541 1542 case NOTE_INSN_BEGIN_STMT: 1543 case NOTE_INSN_INLINE_ENTRY: 1544 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn)); 1545 goto set_cur_block_to_this_block; 1546 1547 default: 1548 continue; 1549 } 1550 1551 if (!active_insn_p (insn)) 1552 continue; 1553 1554 /* Avoid putting scope notes between jump table and its label. */ 1555 if (JUMP_TABLE_DATA_P (insn)) 1556 continue; 1557 1558 this_block = insn_scope (insn); 1559 /* For sequences compute scope resulting from merging all scopes 1560 of instructions nested inside. */ 1561 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn))) 1562 { 1563 int i; 1564 1565 this_block = NULL; 1566 for (i = 0; i < body->len (); i++) 1567 this_block = choose_inner_scope (this_block, 1568 insn_scope (body->insn (i))); 1569 } 1570 set_cur_block_to_this_block: 1571 if (! this_block) 1572 { 1573 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION) 1574 continue; 1575 else 1576 this_block = DECL_INITIAL (cfun->decl); 1577 } 1578 1579 if (this_block != cur_block) 1580 { 1581 change_scope (insn, cur_block, this_block); 1582 cur_block = this_block; 1583 } 1584 } 1585 1586 /* change_scope emits before the insn, not after. */ 1587 rtx_note *note = emit_note (NOTE_INSN_DELETED); 1588 change_scope (note, cur_block, DECL_INITIAL (cfun->decl)); 1589 delete_insn (note); 1590 1591 reorder_blocks (); 1592 } 1593 1594 static const char *some_local_dynamic_name; 1595 1596 /* Locate some local-dynamic symbol still in use by this function 1597 so that we can print its name in local-dynamic base patterns. 1598 Return null if there are no local-dynamic references. */ 1599 1600 const char * 1601 get_some_local_dynamic_name () 1602 { 1603 subrtx_iterator::array_type array; 1604 rtx_insn *insn; 1605 1606 if (some_local_dynamic_name) 1607 return some_local_dynamic_name; 1608 1609 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn)) 1610 if (NONDEBUG_INSN_P (insn)) 1611 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL) 1612 { 1613 const_rtx x = *iter; 1614 if (GET_CODE (x) == SYMBOL_REF) 1615 { 1616 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC) 1617 return some_local_dynamic_name = XSTR (x, 0); 1618 if (CONSTANT_POOL_ADDRESS_P (x)) 1619 iter.substitute (get_pool_constant (x)); 1620 } 1621 } 1622 1623 return 0; 1624 } 1625 1626 /* Arrange for us to emit a source location note before any further 1627 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in 1628 *SEEN, as long as we are keeping track of location views. The bit 1629 indicates we have referenced the next view at the current PC, so we 1630 have to emit it. This should be called next to the var_location 1631 debug hook. */ 1632 1633 static inline void 1634 set_next_view_needed (int *seen) 1635 { 1636 if (debug_variable_location_views) 1637 *seen |= SEEN_NEXT_VIEW; 1638 } 1639 1640 /* Clear the flag in *SEEN indicating we need to emit the next view. 1641 This should be called next to the source_line debug hook. */ 1642 1643 static inline void 1644 clear_next_view_needed (int *seen) 1645 { 1646 *seen &= ~SEEN_NEXT_VIEW; 1647 } 1648 1649 /* Test whether we have a pending request to emit the next view in 1650 *SEEN, and emit it if needed, clearing the request bit. */ 1651 1652 static inline void 1653 maybe_output_next_view (int *seen) 1654 { 1655 if ((*seen & SEEN_NEXT_VIEW) != 0) 1656 { 1657 clear_next_view_needed (seen); 1658 (*debug_hooks->source_line) (last_linenum, last_columnnum, 1659 last_filename, last_discriminator, 1660 false); 1661 } 1662 } 1663 1664 /* We want to emit param bindings (before the first begin_stmt) in the 1665 initial view, if we are emitting views. To that end, we may 1666 consume initial notes in the function, processing them in 1667 final_start_function, before signaling the beginning of the 1668 prologue, rather than in final. 1669 1670 We don't test whether the DECLs are PARM_DECLs: the assumption is 1671 that there will be a NOTE_INSN_BEGIN_STMT marker before any 1672 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not 1673 there, we'll just have more variable locations bound in the initial 1674 view, which is consistent with their being bound without any code 1675 that would give them a value. */ 1676 1677 static inline bool 1678 in_initial_view_p (rtx_insn *insn) 1679 { 1680 return (!DECL_IGNORED_P (current_function_decl) 1681 && debug_variable_location_views 1682 && insn && GET_CODE (insn) == NOTE 1683 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION 1684 || NOTE_KIND (insn) == NOTE_INSN_DELETED)); 1685 } 1686 1687 /* Output assembler code for the start of a function, 1688 and initialize some of the variables in this file 1689 for the new function. The label for the function and associated 1690 assembler pseudo-ops have already been output in `assemble_start_function'. 1691 1692 FIRST is the first insn of the rtl for the function being compiled. 1693 FILE is the file to write assembler code to. 1694 SEEN should be initially set to zero, and it may be updated to 1695 indicate we have references to the next location view, that would 1696 require us to emit it at the current PC. 1697 OPTIMIZE_P is nonzero if we should eliminate redundant 1698 test and compare insns. */ 1699 1700 static void 1701 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen, 1702 int optimize_p ATTRIBUTE_UNUSED) 1703 { 1704 block_depth = 0; 1705 1706 this_is_asm_operands = 0; 1707 1708 need_profile_function = false; 1709 1710 last_filename = LOCATION_FILE (prologue_location); 1711 last_linenum = LOCATION_LINE (prologue_location); 1712 last_columnnum = LOCATION_COLUMN (prologue_location); 1713 last_discriminator = discriminator = 0; 1714 last_bb_discriminator = bb_discriminator = 0; 1715 1716 high_block_linenum = high_function_linenum = last_linenum; 1717 1718 if (flag_sanitize & SANITIZE_ADDRESS) 1719 asan_function_start (); 1720 1721 rtx_insn *first = *firstp; 1722 if (in_initial_view_p (first)) 1723 { 1724 do 1725 { 1726 final_scan_insn (first, file, 0, 0, seen); 1727 first = NEXT_INSN (first); 1728 } 1729 while (in_initial_view_p (first)); 1730 *firstp = first; 1731 } 1732 1733 if (!DECL_IGNORED_P (current_function_decl)) 1734 debug_hooks->begin_prologue (last_linenum, last_columnnum, 1735 last_filename); 1736 1737 if (!dwarf2_debug_info_emitted_p (current_function_decl)) 1738 dwarf2out_begin_prologue (0, 0, NULL); 1739 1740 #ifdef LEAF_REG_REMAP 1741 if (crtl->uses_only_leaf_regs) 1742 leaf_renumber_regs (first); 1743 #endif 1744 1745 /* The Sun386i and perhaps other machines don't work right 1746 if the profiling code comes after the prologue. */ 1747 if (targetm.profile_before_prologue () && crtl->profile) 1748 { 1749 if (targetm.asm_out.function_prologue == default_function_pro_epilogue 1750 && targetm.have_prologue ()) 1751 { 1752 rtx_insn *insn; 1753 for (insn = first; insn; insn = NEXT_INSN (insn)) 1754 if (!NOTE_P (insn)) 1755 { 1756 insn = NULL; 1757 break; 1758 } 1759 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK 1760 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG) 1761 break; 1762 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED 1763 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION) 1764 continue; 1765 else 1766 { 1767 insn = NULL; 1768 break; 1769 } 1770 1771 if (insn) 1772 need_profile_function = true; 1773 else 1774 profile_function (file); 1775 } 1776 else 1777 profile_function (file); 1778 } 1779 1780 /* If debugging, assign block numbers to all of the blocks in this 1781 function. */ 1782 if (write_symbols) 1783 { 1784 reemit_insn_block_notes (); 1785 number_blocks (current_function_decl); 1786 /* We never actually put out begin/end notes for the top-level 1787 block in the function. But, conceptually, that block is 1788 always needed. */ 1789 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1; 1790 } 1791 1792 unsigned HOST_WIDE_INT min_frame_size 1793 = constant_lower_bound (get_frame_size ()); 1794 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size) 1795 { 1796 /* Issue a warning */ 1797 warning (OPT_Wframe_larger_than_, 1798 "the frame size of %wu bytes is larger than %wu bytes", 1799 min_frame_size, warn_frame_larger_than_size); 1800 } 1801 1802 /* First output the function prologue: code to set up the stack frame. */ 1803 targetm.asm_out.function_prologue (file); 1804 1805 /* If the machine represents the prologue as RTL, the profiling code must 1806 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */ 1807 if (! targetm.have_prologue ()) 1808 profile_after_prologue (file); 1809 } 1810 1811 /* This is an exported final_start_function_1, callable without SEEN. */ 1812 1813 void 1814 final_start_function (rtx_insn *first, FILE *file, 1815 int optimize_p ATTRIBUTE_UNUSED) 1816 { 1817 int seen = 0; 1818 final_start_function_1 (&first, file, &seen, optimize_p); 1819 gcc_assert (seen == 0); 1820 } 1821 1822 static void 1823 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED) 1824 { 1825 if (!targetm.profile_before_prologue () && crtl->profile) 1826 profile_function (file); 1827 } 1828 1829 static void 1830 profile_function (FILE *file ATTRIBUTE_UNUSED) 1831 { 1832 #ifndef NO_PROFILE_COUNTERS 1833 # define NO_PROFILE_COUNTERS 0 1834 #endif 1835 #ifdef ASM_OUTPUT_REG_PUSH 1836 rtx sval = NULL, chain = NULL; 1837 1838 if (cfun->returns_struct) 1839 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1840 true); 1841 if (cfun->static_chain_decl) 1842 chain = targetm.calls.static_chain (current_function_decl, true); 1843 #endif /* ASM_OUTPUT_REG_PUSH */ 1844 1845 if (! NO_PROFILE_COUNTERS) 1846 { 1847 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE); 1848 switch_to_section (data_section); 1849 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT)); 1850 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no); 1851 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1); 1852 } 1853 1854 switch_to_section (current_function_section ()); 1855 1856 #ifdef ASM_OUTPUT_REG_PUSH 1857 if (sval && REG_P (sval)) 1858 ASM_OUTPUT_REG_PUSH (file, REGNO (sval)); 1859 if (chain && REG_P (chain)) 1860 ASM_OUTPUT_REG_PUSH (file, REGNO (chain)); 1861 #endif 1862 1863 FUNCTION_PROFILER (file, current_function_funcdef_no); 1864 1865 #ifdef ASM_OUTPUT_REG_PUSH 1866 if (chain && REG_P (chain)) 1867 ASM_OUTPUT_REG_POP (file, REGNO (chain)); 1868 if (sval && REG_P (sval)) 1869 ASM_OUTPUT_REG_POP (file, REGNO (sval)); 1870 #endif 1871 } 1872 1873 /* Output assembler code for the end of a function. 1874 For clarity, args are same as those of `final_start_function' 1875 even though not all of them are needed. */ 1876 1877 void 1878 final_end_function (void) 1879 { 1880 app_disable (); 1881 1882 if (!DECL_IGNORED_P (current_function_decl)) 1883 debug_hooks->end_function (high_function_linenum); 1884 1885 /* Finally, output the function epilogue: 1886 code to restore the stack frame and return to the caller. */ 1887 targetm.asm_out.function_epilogue (asm_out_file); 1888 1889 /* And debug output. */ 1890 if (!DECL_IGNORED_P (current_function_decl)) 1891 debug_hooks->end_epilogue (last_linenum, last_filename); 1892 1893 if (!dwarf2_debug_info_emitted_p (current_function_decl) 1894 && dwarf2out_do_frame ()) 1895 dwarf2out_end_epilogue (last_linenum, last_filename); 1896 1897 some_local_dynamic_name = 0; 1898 } 1899 1900 1901 /* Dumper helper for basic block information. FILE is the assembly 1902 output file, and INSN is the instruction being emitted. */ 1903 1904 static void 1905 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb, 1906 basic_block *end_to_bb, int bb_map_size, int *bb_seqn) 1907 { 1908 basic_block bb; 1909 1910 if (!flag_debug_asm) 1911 return; 1912 1913 if (INSN_UID (insn) < bb_map_size 1914 && (bb = start_to_bb[INSN_UID (insn)]) != NULL) 1915 { 1916 edge e; 1917 edge_iterator ei; 1918 1919 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index); 1920 if (bb->count.initialized_p ()) 1921 { 1922 fprintf (file, ", count:"); 1923 bb->count.dump (file); 1924 } 1925 fprintf (file, " seq:%d", (*bb_seqn)++); 1926 fprintf (file, "\n%s PRED:", ASM_COMMENT_START); 1927 FOR_EACH_EDGE (e, ei, bb->preds) 1928 { 1929 dump_edge_info (file, e, TDF_DETAILS, 0); 1930 } 1931 fprintf (file, "\n"); 1932 } 1933 if (INSN_UID (insn) < bb_map_size 1934 && (bb = end_to_bb[INSN_UID (insn)]) != NULL) 1935 { 1936 edge e; 1937 edge_iterator ei; 1938 1939 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START); 1940 FOR_EACH_EDGE (e, ei, bb->succs) 1941 { 1942 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1); 1943 } 1944 fprintf (file, "\n"); 1945 } 1946 } 1947 1948 /* Output assembler code for some insns: all or part of a function. 1949 For description of args, see `final_start_function', above. */ 1950 1951 static void 1952 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p) 1953 { 1954 rtx_insn *insn, *next; 1955 1956 /* Used for -dA dump. */ 1957 basic_block *start_to_bb = NULL; 1958 basic_block *end_to_bb = NULL; 1959 int bb_map_size = 0; 1960 int bb_seqn = 0; 1961 1962 last_ignored_compare = 0; 1963 1964 if (HAVE_cc0) 1965 for (insn = first; insn; insn = NEXT_INSN (insn)) 1966 { 1967 /* If CC tracking across branches is enabled, record the insn which 1968 jumps to each branch only reached from one place. */ 1969 if (optimize_p && JUMP_P (insn)) 1970 { 1971 rtx lab = JUMP_LABEL (insn); 1972 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1) 1973 { 1974 LABEL_REFS (lab) = insn; 1975 } 1976 } 1977 } 1978 1979 init_recog (); 1980 1981 CC_STATUS_INIT; 1982 1983 if (flag_debug_asm) 1984 { 1985 basic_block bb; 1986 1987 bb_map_size = get_max_uid () + 1; 1988 start_to_bb = XCNEWVEC (basic_block, bb_map_size); 1989 end_to_bb = XCNEWVEC (basic_block, bb_map_size); 1990 1991 /* There is no cfg for a thunk. */ 1992 if (!cfun->is_thunk) 1993 FOR_EACH_BB_REVERSE_FN (bb, cfun) 1994 { 1995 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb; 1996 end_to_bb[INSN_UID (BB_END (bb))] = bb; 1997 } 1998 } 1999 2000 /* Output the insns. */ 2001 for (insn = first; insn;) 2002 { 2003 if (HAVE_ATTR_length) 2004 { 2005 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ()) 2006 { 2007 /* This can be triggered by bugs elsewhere in the compiler if 2008 new insns are created after init_insn_lengths is called. */ 2009 gcc_assert (NOTE_P (insn)); 2010 insn_current_address = -1; 2011 } 2012 else 2013 insn_current_address = INSN_ADDRESSES (INSN_UID (insn)); 2014 /* final can be seen as an iteration of shorten_branches that 2015 does nothing (since a fixed point has already been reached). */ 2016 insn_last_address = insn_current_address; 2017 } 2018 2019 dump_basic_block_info (file, insn, start_to_bb, end_to_bb, 2020 bb_map_size, &bb_seqn); 2021 insn = final_scan_insn (insn, file, optimize_p, 0, &seen); 2022 } 2023 2024 maybe_output_next_view (&seen); 2025 2026 if (flag_debug_asm) 2027 { 2028 free (start_to_bb); 2029 free (end_to_bb); 2030 } 2031 2032 /* Remove CFI notes, to avoid compare-debug failures. */ 2033 for (insn = first; insn; insn = next) 2034 { 2035 next = NEXT_INSN (insn); 2036 if (NOTE_P (insn) 2037 && (NOTE_KIND (insn) == NOTE_INSN_CFI 2038 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL)) 2039 delete_insn (insn); 2040 } 2041 } 2042 2043 /* This is an exported final_1, callable without SEEN. */ 2044 2045 void 2046 final (rtx_insn *first, FILE *file, int optimize_p) 2047 { 2048 /* Those that use the internal final_start_function_1/final_1 API 2049 skip initial debug bind notes in final_start_function_1, and pass 2050 the modified FIRST to final_1. But those that use the public 2051 final_start_function/final APIs, final_start_function can't move 2052 FIRST because it's not passed by reference, so if they were 2053 skipped there, skip them again here. */ 2054 while (in_initial_view_p (first)) 2055 first = NEXT_INSN (first); 2056 2057 final_1 (first, file, 0, optimize_p); 2058 } 2059 2060 const char * 2061 get_insn_template (int code, rtx_insn *insn) 2062 { 2063 switch (insn_data[code].output_format) 2064 { 2065 case INSN_OUTPUT_FORMAT_SINGLE: 2066 return insn_data[code].output.single; 2067 case INSN_OUTPUT_FORMAT_MULTI: 2068 return insn_data[code].output.multi[which_alternative]; 2069 case INSN_OUTPUT_FORMAT_FUNCTION: 2070 gcc_assert (insn); 2071 return (*insn_data[code].output.function) (recog_data.operand, insn); 2072 2073 default: 2074 gcc_unreachable (); 2075 } 2076 } 2077 2078 /* Emit the appropriate declaration for an alternate-entry-point 2079 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with 2080 LABEL_KIND != LABEL_NORMAL. 2081 2082 The case fall-through in this function is intentional. */ 2083 static void 2084 output_alternate_entry_point (FILE *file, rtx_insn *insn) 2085 { 2086 const char *name = LABEL_NAME (insn); 2087 2088 switch (LABEL_KIND (insn)) 2089 { 2090 case LABEL_WEAK_ENTRY: 2091 #ifdef ASM_WEAKEN_LABEL 2092 ASM_WEAKEN_LABEL (file, name); 2093 gcc_fallthrough (); 2094 #endif 2095 case LABEL_GLOBAL_ENTRY: 2096 targetm.asm_out.globalize_label (file, name); 2097 gcc_fallthrough (); 2098 case LABEL_STATIC_ENTRY: 2099 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE 2100 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function"); 2101 #endif 2102 ASM_OUTPUT_LABEL (file, name); 2103 break; 2104 2105 case LABEL_NORMAL: 2106 default: 2107 gcc_unreachable (); 2108 } 2109 } 2110 2111 /* Given a CALL_INSN, find and return the nested CALL. */ 2112 static rtx 2113 call_from_call_insn (rtx_call_insn *insn) 2114 { 2115 rtx x; 2116 gcc_assert (CALL_P (insn)); 2117 x = PATTERN (insn); 2118 2119 while (GET_CODE (x) != CALL) 2120 { 2121 switch (GET_CODE (x)) 2122 { 2123 default: 2124 gcc_unreachable (); 2125 case COND_EXEC: 2126 x = COND_EXEC_CODE (x); 2127 break; 2128 case PARALLEL: 2129 x = XVECEXP (x, 0, 0); 2130 break; 2131 case SET: 2132 x = XEXP (x, 1); 2133 break; 2134 } 2135 } 2136 return x; 2137 } 2138 2139 /* Print a comment into the asm showing FILENAME, LINENUM, and the 2140 corresponding source line, if available. */ 2141 2142 static void 2143 asm_show_source (const char *filename, int linenum) 2144 { 2145 if (!filename) 2146 return; 2147 2148 char_span line = location_get_source_line (filename, linenum); 2149 if (!line) 2150 return; 2151 2152 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum); 2153 /* "line" is not 0-terminated, so we must use its length. */ 2154 fwrite (line.get_buffer (), 1, line.length (), asm_out_file); 2155 fputc ('\n', asm_out_file); 2156 } 2157 2158 /* The final scan for one insn, INSN. 2159 Args are same as in `final', except that INSN 2160 is the insn being scanned. 2161 Value returned is the next insn to be scanned. 2162 2163 NOPEEPHOLES is the flag to disallow peephole processing (currently 2164 used for within delayed branch sequence output). 2165 2166 SEEN is used to track the end of the prologue, for emitting 2167 debug information. We force the emission of a line note after 2168 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */ 2169 2170 static rtx_insn * 2171 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED, 2172 int nopeepholes ATTRIBUTE_UNUSED, int *seen) 2173 { 2174 #if HAVE_cc0 2175 rtx set; 2176 #endif 2177 rtx_insn *next; 2178 rtx_jump_table_data *table; 2179 2180 insn_counter++; 2181 2182 /* Ignore deleted insns. These can occur when we split insns (due to a 2183 template of "#") while not optimizing. */ 2184 if (insn->deleted ()) 2185 return NEXT_INSN (insn); 2186 2187 switch (GET_CODE (insn)) 2188 { 2189 case NOTE: 2190 switch (NOTE_KIND (insn)) 2191 { 2192 case NOTE_INSN_DELETED: 2193 case NOTE_INSN_UPDATE_SJLJ_CONTEXT: 2194 break; 2195 2196 case NOTE_INSN_SWITCH_TEXT_SECTIONS: 2197 maybe_output_next_view (seen); 2198 2199 output_function_exception_table (0); 2200 2201 if (targetm.asm_out.unwind_emit) 2202 targetm.asm_out.unwind_emit (asm_out_file, insn); 2203 2204 in_cold_section_p = !in_cold_section_p; 2205 2206 if (in_cold_section_p) 2207 cold_function_name 2208 = clone_function_name (current_function_decl, "cold"); 2209 2210 if (dwarf2out_do_frame ()) 2211 { 2212 dwarf2out_switch_text_section (); 2213 if (!dwarf2_debug_info_emitted_p (current_function_decl) 2214 && !DECL_IGNORED_P (current_function_decl)) 2215 debug_hooks->switch_text_section (); 2216 } 2217 else if (!DECL_IGNORED_P (current_function_decl)) 2218 debug_hooks->switch_text_section (); 2219 2220 switch_to_section (current_function_section ()); 2221 targetm.asm_out.function_switched_text_sections (asm_out_file, 2222 current_function_decl, 2223 in_cold_section_p); 2224 /* Emit a label for the split cold section. Form label name by 2225 suffixing "cold" to the original function's name. */ 2226 if (in_cold_section_p) 2227 { 2228 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME 2229 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file, 2230 IDENTIFIER_POINTER 2231 (cold_function_name), 2232 current_function_decl); 2233 #else 2234 ASM_OUTPUT_LABEL (asm_out_file, 2235 IDENTIFIER_POINTER (cold_function_name)); 2236 #endif 2237 if (dwarf2out_do_frame () 2238 && cfun->fde->dw_fde_second_begin != NULL) 2239 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin); 2240 } 2241 break; 2242 2243 case NOTE_INSN_BASIC_BLOCK: 2244 if (need_profile_function) 2245 { 2246 profile_function (asm_out_file); 2247 need_profile_function = false; 2248 } 2249 2250 if (targetm.asm_out.unwind_emit) 2251 targetm.asm_out.unwind_emit (asm_out_file, insn); 2252 2253 bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator; 2254 break; 2255 2256 case NOTE_INSN_EH_REGION_BEG: 2257 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB", 2258 NOTE_EH_HANDLER (insn)); 2259 break; 2260 2261 case NOTE_INSN_EH_REGION_END: 2262 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE", 2263 NOTE_EH_HANDLER (insn)); 2264 break; 2265 2266 case NOTE_INSN_PROLOGUE_END: 2267 targetm.asm_out.function_end_prologue (file); 2268 profile_after_prologue (file); 2269 2270 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) 2271 { 2272 *seen |= SEEN_EMITTED; 2273 force_source_line = true; 2274 } 2275 else 2276 *seen |= SEEN_NOTE; 2277 2278 break; 2279 2280 case NOTE_INSN_EPILOGUE_BEG: 2281 if (!DECL_IGNORED_P (current_function_decl)) 2282 (*debug_hooks->begin_epilogue) (last_linenum, last_filename); 2283 targetm.asm_out.function_begin_epilogue (file); 2284 break; 2285 2286 case NOTE_INSN_CFI: 2287 dwarf2out_emit_cfi (NOTE_CFI (insn)); 2288 break; 2289 2290 case NOTE_INSN_CFI_LABEL: 2291 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI", 2292 NOTE_LABEL_NUMBER (insn)); 2293 break; 2294 2295 case NOTE_INSN_FUNCTION_BEG: 2296 if (need_profile_function) 2297 { 2298 profile_function (asm_out_file); 2299 need_profile_function = false; 2300 } 2301 2302 app_disable (); 2303 if (!DECL_IGNORED_P (current_function_decl)) 2304 debug_hooks->end_prologue (last_linenum, last_filename); 2305 2306 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE) 2307 { 2308 *seen |= SEEN_EMITTED; 2309 force_source_line = true; 2310 } 2311 else 2312 *seen |= SEEN_NOTE; 2313 2314 break; 2315 2316 case NOTE_INSN_BLOCK_BEG: 2317 if (debug_info_level == DINFO_LEVEL_NORMAL 2318 || debug_info_level == DINFO_LEVEL_VERBOSE 2319 || write_symbols == DWARF2_DEBUG 2320 || write_symbols == VMS_AND_DWARF2_DEBUG 2321 || write_symbols == VMS_DEBUG) 2322 { 2323 int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); 2324 2325 app_disable (); 2326 ++block_depth; 2327 high_block_linenum = last_linenum; 2328 2329 /* Output debugging info about the symbol-block beginning. */ 2330 if (!DECL_IGNORED_P (current_function_decl)) 2331 debug_hooks->begin_block (last_linenum, n); 2332 2333 /* Mark this block as output. */ 2334 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1; 2335 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p; 2336 } 2337 if (write_symbols == DBX_DEBUG) 2338 { 2339 location_t *locus_ptr 2340 = block_nonartificial_location (NOTE_BLOCK (insn)); 2341 2342 if (locus_ptr != NULL) 2343 { 2344 override_filename = LOCATION_FILE (*locus_ptr); 2345 override_linenum = LOCATION_LINE (*locus_ptr); 2346 override_columnnum = LOCATION_COLUMN (*locus_ptr); 2347 override_discriminator = compute_discriminator (*locus_ptr); 2348 } 2349 } 2350 break; 2351 2352 case NOTE_INSN_BLOCK_END: 2353 maybe_output_next_view (seen); 2354 2355 if (debug_info_level == DINFO_LEVEL_NORMAL 2356 || debug_info_level == DINFO_LEVEL_VERBOSE 2357 || write_symbols == DWARF2_DEBUG 2358 || write_symbols == VMS_AND_DWARF2_DEBUG 2359 || write_symbols == VMS_DEBUG) 2360 { 2361 int n = BLOCK_NUMBER (NOTE_BLOCK (insn)); 2362 2363 app_disable (); 2364 2365 /* End of a symbol-block. */ 2366 --block_depth; 2367 gcc_assert (block_depth >= 0); 2368 2369 if (!DECL_IGNORED_P (current_function_decl)) 2370 debug_hooks->end_block (high_block_linenum, n); 2371 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) 2372 == in_cold_section_p); 2373 } 2374 if (write_symbols == DBX_DEBUG) 2375 { 2376 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn)); 2377 location_t *locus_ptr 2378 = block_nonartificial_location (outer_block); 2379 2380 if (locus_ptr != NULL) 2381 { 2382 override_filename = LOCATION_FILE (*locus_ptr); 2383 override_linenum = LOCATION_LINE (*locus_ptr); 2384 override_columnnum = LOCATION_COLUMN (*locus_ptr); 2385 override_discriminator = compute_discriminator (*locus_ptr); 2386 } 2387 else 2388 { 2389 override_filename = NULL; 2390 override_linenum = 0; 2391 override_columnnum = 0; 2392 override_discriminator = 0; 2393 } 2394 } 2395 break; 2396 2397 case NOTE_INSN_DELETED_LABEL: 2398 /* Emit the label. We may have deleted the CODE_LABEL because 2399 the label could be proved to be unreachable, though still 2400 referenced (in the form of having its address taken. */ 2401 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn)); 2402 break; 2403 2404 case NOTE_INSN_DELETED_DEBUG_LABEL: 2405 /* Similarly, but need to use different namespace for it. */ 2406 if (CODE_LABEL_NUMBER (insn) != -1) 2407 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn)); 2408 break; 2409 2410 case NOTE_INSN_VAR_LOCATION: 2411 if (!DECL_IGNORED_P (current_function_decl)) 2412 { 2413 debug_hooks->var_location (insn); 2414 set_next_view_needed (seen); 2415 } 2416 break; 2417 2418 case NOTE_INSN_BEGIN_STMT: 2419 gcc_checking_assert (cfun->debug_nonbind_markers); 2420 if (!DECL_IGNORED_P (current_function_decl) 2421 && notice_source_line (insn, NULL)) 2422 { 2423 output_source_line: 2424 (*debug_hooks->source_line) (last_linenum, last_columnnum, 2425 last_filename, last_discriminator, 2426 true); 2427 clear_next_view_needed (seen); 2428 } 2429 break; 2430 2431 case NOTE_INSN_INLINE_ENTRY: 2432 gcc_checking_assert (cfun->debug_nonbind_markers); 2433 if (!DECL_IGNORED_P (current_function_decl) 2434 && notice_source_line (insn, NULL)) 2435 { 2436 (*debug_hooks->inline_entry) (LOCATION_BLOCK 2437 (NOTE_MARKER_LOCATION (insn))); 2438 goto output_source_line; 2439 } 2440 break; 2441 2442 default: 2443 gcc_unreachable (); 2444 break; 2445 } 2446 break; 2447 2448 case BARRIER: 2449 break; 2450 2451 case CODE_LABEL: 2452 /* The target port might emit labels in the output function for 2453 some insn, e.g. sh.c output_branchy_insn. */ 2454 if (CODE_LABEL_NUMBER (insn) <= max_labelno) 2455 { 2456 align_flags alignment = LABEL_TO_ALIGNMENT (insn); 2457 if (alignment.levels[0].log && NEXT_INSN (insn)) 2458 { 2459 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN 2460 /* Output both primary and secondary alignment. */ 2461 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log, 2462 alignment.levels[0].maxskip); 2463 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log, 2464 alignment.levels[1].maxskip); 2465 #else 2466 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP 2467 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log); 2468 #else 2469 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log); 2470 #endif 2471 #endif 2472 } 2473 } 2474 CC_STATUS_INIT; 2475 2476 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn)) 2477 debug_hooks->label (as_a <rtx_code_label *> (insn)); 2478 2479 app_disable (); 2480 2481 /* If this label is followed by a jump-table, make sure we put 2482 the label in the read-only section. Also possibly write the 2483 label and jump table together. */ 2484 table = jump_table_for_label (as_a <rtx_code_label *> (insn)); 2485 if (table) 2486 { 2487 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) 2488 /* In this case, the case vector is being moved by the 2489 target, so don't output the label at all. Leave that 2490 to the back end macros. */ 2491 #else 2492 if (! JUMP_TABLES_IN_TEXT_SECTION) 2493 { 2494 int log_align; 2495 2496 switch_to_section (targetm.asm_out.function_rodata_section 2497 (current_function_decl)); 2498 2499 #ifdef ADDR_VEC_ALIGN 2500 log_align = ADDR_VEC_ALIGN (table); 2501 #else 2502 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT); 2503 #endif 2504 ASM_OUTPUT_ALIGN (file, log_align); 2505 } 2506 else 2507 switch_to_section (current_function_section ()); 2508 2509 #ifdef ASM_OUTPUT_CASE_LABEL 2510 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table); 2511 #else 2512 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); 2513 #endif 2514 #endif 2515 break; 2516 } 2517 if (LABEL_ALT_ENTRY_P (insn)) 2518 output_alternate_entry_point (file, insn); 2519 else 2520 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn)); 2521 break; 2522 2523 default: 2524 { 2525 rtx body = PATTERN (insn); 2526 int insn_code_number; 2527 const char *templ; 2528 bool is_stmt, *is_stmt_p; 2529 2530 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers) 2531 { 2532 is_stmt = false; 2533 is_stmt_p = NULL; 2534 } 2535 else 2536 is_stmt_p = &is_stmt; 2537 2538 /* Reset this early so it is correct for ASM statements. */ 2539 current_insn_predicate = NULL_RTX; 2540 2541 /* An INSN, JUMP_INSN or CALL_INSN. 2542 First check for special kinds that recog doesn't recognize. */ 2543 2544 if (GET_CODE (body) == USE /* These are just declarations. */ 2545 || GET_CODE (body) == CLOBBER) 2546 break; 2547 2548 #if HAVE_cc0 2549 { 2550 /* If there is a REG_CC_SETTER note on this insn, it means that 2551 the setting of the condition code was done in the delay slot 2552 of the insn that branched here. So recover the cc status 2553 from the insn that set it. */ 2554 2555 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX); 2556 if (note) 2557 { 2558 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0)); 2559 NOTICE_UPDATE_CC (PATTERN (other), other); 2560 cc_prev_status = cc_status; 2561 } 2562 } 2563 #endif 2564 2565 /* Detect insns that are really jump-tables 2566 and output them as such. */ 2567 2568 if (JUMP_TABLE_DATA_P (insn)) 2569 { 2570 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)) 2571 int vlen, idx; 2572 #endif 2573 2574 if (! JUMP_TABLES_IN_TEXT_SECTION) 2575 switch_to_section (targetm.asm_out.function_rodata_section 2576 (current_function_decl)); 2577 else 2578 switch_to_section (current_function_section ()); 2579 2580 app_disable (); 2581 2582 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC) 2583 if (GET_CODE (body) == ADDR_VEC) 2584 { 2585 #ifdef ASM_OUTPUT_ADDR_VEC 2586 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body); 2587 #else 2588 gcc_unreachable (); 2589 #endif 2590 } 2591 else 2592 { 2593 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC 2594 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body); 2595 #else 2596 gcc_unreachable (); 2597 #endif 2598 } 2599 #else 2600 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC); 2601 for (idx = 0; idx < vlen; idx++) 2602 { 2603 if (GET_CODE (body) == ADDR_VEC) 2604 { 2605 #ifdef ASM_OUTPUT_ADDR_VEC_ELT 2606 ASM_OUTPUT_ADDR_VEC_ELT 2607 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0))); 2608 #else 2609 gcc_unreachable (); 2610 #endif 2611 } 2612 else 2613 { 2614 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT 2615 ASM_OUTPUT_ADDR_DIFF_ELT 2616 (file, 2617 body, 2618 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)), 2619 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0))); 2620 #else 2621 gcc_unreachable (); 2622 #endif 2623 } 2624 } 2625 #ifdef ASM_OUTPUT_CASE_END 2626 ASM_OUTPUT_CASE_END (file, 2627 CODE_LABEL_NUMBER (PREV_INSN (insn)), 2628 insn); 2629 #endif 2630 #endif 2631 2632 switch_to_section (current_function_section ()); 2633 2634 if (debug_variable_location_views 2635 && !DECL_IGNORED_P (current_function_decl)) 2636 debug_hooks->var_location (insn); 2637 2638 break; 2639 } 2640 /* Output this line note if it is the first or the last line 2641 note in a row. */ 2642 if (!DECL_IGNORED_P (current_function_decl) 2643 && notice_source_line (insn, is_stmt_p)) 2644 { 2645 if (flag_verbose_asm) 2646 asm_show_source (last_filename, last_linenum); 2647 (*debug_hooks->source_line) (last_linenum, last_columnnum, 2648 last_filename, last_discriminator, 2649 is_stmt); 2650 clear_next_view_needed (seen); 2651 } 2652 else 2653 maybe_output_next_view (seen); 2654 2655 gcc_checking_assert (!DEBUG_INSN_P (insn)); 2656 2657 if (GET_CODE (body) == PARALLEL 2658 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT) 2659 body = XVECEXP (body, 0, 0); 2660 2661 if (GET_CODE (body) == ASM_INPUT) 2662 { 2663 const char *string = XSTR (body, 0); 2664 2665 /* There's no telling what that did to the condition codes. */ 2666 CC_STATUS_INIT; 2667 2668 if (string[0]) 2669 { 2670 expanded_location loc; 2671 2672 app_enable (); 2673 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body)); 2674 if (*loc.file && loc.line) 2675 fprintf (asm_out_file, "%s %i \"%s\" 1\n", 2676 ASM_COMMENT_START, loc.line, loc.file); 2677 fprintf (asm_out_file, "\t%s\n", string); 2678 #if HAVE_AS_LINE_ZERO 2679 if (*loc.file && loc.line) 2680 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START); 2681 #endif 2682 } 2683 break; 2684 } 2685 2686 /* Detect `asm' construct with operands. */ 2687 if (asm_noperands (body) >= 0) 2688 { 2689 unsigned int noperands = asm_noperands (body); 2690 rtx *ops = XALLOCAVEC (rtx, noperands); 2691 const char *string; 2692 location_t loc; 2693 expanded_location expanded; 2694 2695 /* There's no telling what that did to the condition codes. */ 2696 CC_STATUS_INIT; 2697 2698 /* Get out the operand values. */ 2699 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc); 2700 /* Inhibit dying on what would otherwise be compiler bugs. */ 2701 insn_noperands = noperands; 2702 this_is_asm_operands = insn; 2703 expanded = expand_location (loc); 2704 2705 #ifdef FINAL_PRESCAN_INSN 2706 FINAL_PRESCAN_INSN (insn, ops, insn_noperands); 2707 #endif 2708 2709 /* Output the insn using them. */ 2710 if (string[0]) 2711 { 2712 app_enable (); 2713 if (expanded.file && expanded.line) 2714 fprintf (asm_out_file, "%s %i \"%s\" 1\n", 2715 ASM_COMMENT_START, expanded.line, expanded.file); 2716 output_asm_insn (string, ops); 2717 #if HAVE_AS_LINE_ZERO 2718 if (expanded.file && expanded.line) 2719 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START); 2720 #endif 2721 } 2722 2723 if (targetm.asm_out.final_postscan_insn) 2724 targetm.asm_out.final_postscan_insn (file, insn, ops, 2725 insn_noperands); 2726 2727 this_is_asm_operands = 0; 2728 break; 2729 } 2730 2731 app_disable (); 2732 2733 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body)) 2734 { 2735 /* A delayed-branch sequence */ 2736 int i; 2737 2738 final_sequence = seq; 2739 2740 /* The first insn in this SEQUENCE might be a JUMP_INSN that will 2741 force the restoration of a comparison that was previously 2742 thought unnecessary. If that happens, cancel this sequence 2743 and cause that insn to be restored. */ 2744 2745 next = final_scan_insn (seq->insn (0), file, 0, 1, seen); 2746 if (next != seq->insn (1)) 2747 { 2748 final_sequence = 0; 2749 return next; 2750 } 2751 2752 for (i = 1; i < seq->len (); i++) 2753 { 2754 rtx_insn *insn = seq->insn (i); 2755 rtx_insn *next = NEXT_INSN (insn); 2756 /* We loop in case any instruction in a delay slot gets 2757 split. */ 2758 do 2759 insn = final_scan_insn (insn, file, 0, 1, seen); 2760 while (insn != next); 2761 } 2762 #ifdef DBR_OUTPUT_SEQEND 2763 DBR_OUTPUT_SEQEND (file); 2764 #endif 2765 final_sequence = 0; 2766 2767 /* If the insn requiring the delay slot was a CALL_INSN, the 2768 insns in the delay slot are actually executed before the 2769 called function. Hence we don't preserve any CC-setting 2770 actions in these insns and the CC must be marked as being 2771 clobbered by the function. */ 2772 if (CALL_P (seq->insn (0))) 2773 { 2774 CC_STATUS_INIT; 2775 } 2776 break; 2777 } 2778 2779 /* We have a real machine instruction as rtl. */ 2780 2781 body = PATTERN (insn); 2782 2783 #if HAVE_cc0 2784 set = single_set (insn); 2785 2786 /* Check for redundant test and compare instructions 2787 (when the condition codes are already set up as desired). 2788 This is done only when optimizing; if not optimizing, 2789 it should be possible for the user to alter a variable 2790 with the debugger in between statements 2791 and the next statement should reexamine the variable 2792 to compute the condition codes. */ 2793 2794 if (optimize_p) 2795 { 2796 if (set 2797 && GET_CODE (SET_DEST (set)) == CC0 2798 && insn != last_ignored_compare) 2799 { 2800 rtx src1, src2; 2801 if (GET_CODE (SET_SRC (set)) == SUBREG) 2802 SET_SRC (set) = alter_subreg (&SET_SRC (set), true); 2803 2804 src1 = SET_SRC (set); 2805 src2 = NULL_RTX; 2806 if (GET_CODE (SET_SRC (set)) == COMPARE) 2807 { 2808 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG) 2809 XEXP (SET_SRC (set), 0) 2810 = alter_subreg (&XEXP (SET_SRC (set), 0), true); 2811 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG) 2812 XEXP (SET_SRC (set), 1) 2813 = alter_subreg (&XEXP (SET_SRC (set), 1), true); 2814 if (XEXP (SET_SRC (set), 1) 2815 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0)))) 2816 src2 = XEXP (SET_SRC (set), 0); 2817 } 2818 if ((cc_status.value1 != 0 2819 && rtx_equal_p (src1, cc_status.value1)) 2820 || (cc_status.value2 != 0 2821 && rtx_equal_p (src1, cc_status.value2)) 2822 || (src2 != 0 && cc_status.value1 != 0 2823 && rtx_equal_p (src2, cc_status.value1)) 2824 || (src2 != 0 && cc_status.value2 != 0 2825 && rtx_equal_p (src2, cc_status.value2))) 2826 { 2827 /* Don't delete insn if it has an addressing side-effect. */ 2828 if (! FIND_REG_INC_NOTE (insn, NULL_RTX) 2829 /* or if anything in it is volatile. */ 2830 && ! volatile_refs_p (PATTERN (insn))) 2831 { 2832 /* We don't really delete the insn; just ignore it. */ 2833 last_ignored_compare = insn; 2834 break; 2835 } 2836 } 2837 } 2838 } 2839 2840 /* If this is a conditional branch, maybe modify it 2841 if the cc's are in a nonstandard state 2842 so that it accomplishes the same thing that it would 2843 do straightforwardly if the cc's were set up normally. */ 2844 2845 if (cc_status.flags != 0 2846 && JUMP_P (insn) 2847 && GET_CODE (body) == SET 2848 && SET_DEST (body) == pc_rtx 2849 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE 2850 && COMPARISON_P (XEXP (SET_SRC (body), 0)) 2851 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx) 2852 { 2853 /* This function may alter the contents of its argument 2854 and clear some of the cc_status.flags bits. 2855 It may also return 1 meaning condition now always true 2856 or -1 meaning condition now always false 2857 or 2 meaning condition nontrivial but altered. */ 2858 int result = alter_cond (XEXP (SET_SRC (body), 0)); 2859 /* If condition now has fixed value, replace the IF_THEN_ELSE 2860 with its then-operand or its else-operand. */ 2861 if (result == 1) 2862 SET_SRC (body) = XEXP (SET_SRC (body), 1); 2863 if (result == -1) 2864 SET_SRC (body) = XEXP (SET_SRC (body), 2); 2865 2866 /* The jump is now either unconditional or a no-op. 2867 If it has become a no-op, don't try to output it. 2868 (It would not be recognized.) */ 2869 if (SET_SRC (body) == pc_rtx) 2870 { 2871 delete_insn (insn); 2872 break; 2873 } 2874 else if (ANY_RETURN_P (SET_SRC (body))) 2875 /* Replace (set (pc) (return)) with (return). */ 2876 PATTERN (insn) = body = SET_SRC (body); 2877 2878 /* Rerecognize the instruction if it has changed. */ 2879 if (result != 0) 2880 INSN_CODE (insn) = -1; 2881 } 2882 2883 /* If this is a conditional trap, maybe modify it if the cc's 2884 are in a nonstandard state so that it accomplishes the same 2885 thing that it would do straightforwardly if the cc's were 2886 set up normally. */ 2887 if (cc_status.flags != 0 2888 && NONJUMP_INSN_P (insn) 2889 && GET_CODE (body) == TRAP_IF 2890 && COMPARISON_P (TRAP_CONDITION (body)) 2891 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx) 2892 { 2893 /* This function may alter the contents of its argument 2894 and clear some of the cc_status.flags bits. 2895 It may also return 1 meaning condition now always true 2896 or -1 meaning condition now always false 2897 or 2 meaning condition nontrivial but altered. */ 2898 int result = alter_cond (TRAP_CONDITION (body)); 2899 2900 /* If TRAP_CONDITION has become always false, delete the 2901 instruction. */ 2902 if (result == -1) 2903 { 2904 delete_insn (insn); 2905 break; 2906 } 2907 2908 /* If TRAP_CONDITION has become always true, replace 2909 TRAP_CONDITION with const_true_rtx. */ 2910 if (result == 1) 2911 TRAP_CONDITION (body) = const_true_rtx; 2912 2913 /* Rerecognize the instruction if it has changed. */ 2914 if (result != 0) 2915 INSN_CODE (insn) = -1; 2916 } 2917 2918 /* Make same adjustments to instructions that examine the 2919 condition codes without jumping and instructions that 2920 handle conditional moves (if this machine has either one). */ 2921 2922 if (cc_status.flags != 0 2923 && set != 0) 2924 { 2925 rtx cond_rtx, then_rtx, else_rtx; 2926 2927 if (!JUMP_P (insn) 2928 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE) 2929 { 2930 cond_rtx = XEXP (SET_SRC (set), 0); 2931 then_rtx = XEXP (SET_SRC (set), 1); 2932 else_rtx = XEXP (SET_SRC (set), 2); 2933 } 2934 else 2935 { 2936 cond_rtx = SET_SRC (set); 2937 then_rtx = const_true_rtx; 2938 else_rtx = const0_rtx; 2939 } 2940 2941 if (COMPARISON_P (cond_rtx) 2942 && XEXP (cond_rtx, 0) == cc0_rtx) 2943 { 2944 int result; 2945 result = alter_cond (cond_rtx); 2946 if (result == 1) 2947 validate_change (insn, &SET_SRC (set), then_rtx, 0); 2948 else if (result == -1) 2949 validate_change (insn, &SET_SRC (set), else_rtx, 0); 2950 else if (result == 2) 2951 INSN_CODE (insn) = -1; 2952 if (SET_DEST (set) == SET_SRC (set)) 2953 delete_insn (insn); 2954 } 2955 } 2956 2957 #endif 2958 2959 /* Do machine-specific peephole optimizations if desired. */ 2960 2961 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes) 2962 { 2963 rtx_insn *next = peephole (insn); 2964 /* When peepholing, if there were notes within the peephole, 2965 emit them before the peephole. */ 2966 if (next != 0 && next != NEXT_INSN (insn)) 2967 { 2968 rtx_insn *note, *prev = PREV_INSN (insn); 2969 2970 for (note = NEXT_INSN (insn); note != next; 2971 note = NEXT_INSN (note)) 2972 final_scan_insn (note, file, optimize_p, nopeepholes, seen); 2973 2974 /* Put the notes in the proper position for a later 2975 rescan. For example, the SH target can do this 2976 when generating a far jump in a delayed branch 2977 sequence. */ 2978 note = NEXT_INSN (insn); 2979 SET_PREV_INSN (note) = prev; 2980 SET_NEXT_INSN (prev) = note; 2981 SET_NEXT_INSN (PREV_INSN (next)) = insn; 2982 SET_PREV_INSN (insn) = PREV_INSN (next); 2983 SET_NEXT_INSN (insn) = next; 2984 SET_PREV_INSN (next) = insn; 2985 } 2986 2987 /* PEEPHOLE might have changed this. */ 2988 body = PATTERN (insn); 2989 } 2990 2991 /* Try to recognize the instruction. 2992 If successful, verify that the operands satisfy the 2993 constraints for the instruction. Crash if they don't, 2994 since `reload' should have changed them so that they do. */ 2995 2996 insn_code_number = recog_memoized (insn); 2997 cleanup_subreg_operands (insn); 2998 2999 /* Dump the insn in the assembly for debugging (-dAP). 3000 If the final dump is requested as slim RTL, dump slim 3001 RTL to the assembly file also. */ 3002 if (flag_dump_rtl_in_asm) 3003 { 3004 print_rtx_head = ASM_COMMENT_START; 3005 if (! (dump_flags & TDF_SLIM)) 3006 print_rtl_single (asm_out_file, insn); 3007 else 3008 dump_insn_slim (asm_out_file, insn); 3009 print_rtx_head = ""; 3010 } 3011 3012 if (! constrain_operands_cached (insn, 1)) 3013 fatal_insn_not_found (insn); 3014 3015 /* Some target machines need to prescan each insn before 3016 it is output. */ 3017 3018 #ifdef FINAL_PRESCAN_INSN 3019 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands); 3020 #endif 3021 3022 if (targetm.have_conditional_execution () 3023 && GET_CODE (PATTERN (insn)) == COND_EXEC) 3024 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn)); 3025 3026 #if HAVE_cc0 3027 cc_prev_status = cc_status; 3028 3029 /* Update `cc_status' for this instruction. 3030 The instruction's output routine may change it further. 3031 If the output routine for a jump insn needs to depend 3032 on the cc status, it should look at cc_prev_status. */ 3033 3034 NOTICE_UPDATE_CC (body, insn); 3035 #endif 3036 3037 current_output_insn = debug_insn = insn; 3038 3039 /* Find the proper template for this insn. */ 3040 templ = get_insn_template (insn_code_number, insn); 3041 3042 /* If the C code returns 0, it means that it is a jump insn 3043 which follows a deleted test insn, and that test insn 3044 needs to be reinserted. */ 3045 if (templ == 0) 3046 { 3047 rtx_insn *prev; 3048 3049 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare); 3050 3051 /* We have already processed the notes between the setter and 3052 the user. Make sure we don't process them again, this is 3053 particularly important if one of the notes is a block 3054 scope note or an EH note. */ 3055 for (prev = insn; 3056 prev != last_ignored_compare; 3057 prev = PREV_INSN (prev)) 3058 { 3059 if (NOTE_P (prev)) 3060 delete_insn (prev); /* Use delete_note. */ 3061 } 3062 3063 return prev; 3064 } 3065 3066 /* If the template is the string "#", it means that this insn must 3067 be split. */ 3068 if (templ[0] == '#' && templ[1] == '\0') 3069 { 3070 rtx_insn *new_rtx = try_split (body, insn, 0); 3071 3072 /* If we didn't split the insn, go away. */ 3073 if (new_rtx == insn && PATTERN (new_rtx) == body) 3074 fatal_insn ("could not split insn", insn); 3075 3076 /* If we have a length attribute, this instruction should have 3077 been split in shorten_branches, to ensure that we would have 3078 valid length info for the splitees. */ 3079 gcc_assert (!HAVE_ATTR_length); 3080 3081 return new_rtx; 3082 } 3083 3084 /* ??? This will put the directives in the wrong place if 3085 get_insn_template outputs assembly directly. However calling it 3086 before get_insn_template breaks if the insns is split. */ 3087 if (targetm.asm_out.unwind_emit_before_insn 3088 && targetm.asm_out.unwind_emit) 3089 targetm.asm_out.unwind_emit (asm_out_file, insn); 3090 3091 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn); 3092 if (call_insn != NULL) 3093 { 3094 rtx x = call_from_call_insn (call_insn); 3095 x = XEXP (x, 0); 3096 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF) 3097 { 3098 tree t; 3099 x = XEXP (x, 0); 3100 t = SYMBOL_REF_DECL (x); 3101 if (t) 3102 assemble_external (t); 3103 } 3104 } 3105 3106 /* Output assembler code from the template. */ 3107 output_asm_insn (templ, recog_data.operand); 3108 3109 /* Some target machines need to postscan each insn after 3110 it is output. */ 3111 if (targetm.asm_out.final_postscan_insn) 3112 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand, 3113 recog_data.n_operands); 3114 3115 if (!targetm.asm_out.unwind_emit_before_insn 3116 && targetm.asm_out.unwind_emit) 3117 targetm.asm_out.unwind_emit (asm_out_file, insn); 3118 3119 /* Let the debug info back-end know about this call. We do this only 3120 after the instruction has been emitted because labels that may be 3121 created to reference the call instruction must appear after it. */ 3122 if ((debug_variable_location_views || call_insn != NULL) 3123 && !DECL_IGNORED_P (current_function_decl)) 3124 debug_hooks->var_location (insn); 3125 3126 current_output_insn = debug_insn = 0; 3127 } 3128 } 3129 return NEXT_INSN (insn); 3130 } 3131 3132 /* This is a wrapper around final_scan_insn_1 that allows ports to 3133 call it recursively without a known value for SEEN. The value is 3134 saved at the outermost call, and recovered for recursive calls. 3135 Recursive calls MUST pass NULL, or the same pointer if they can 3136 otherwise get to it. */ 3137 3138 rtx_insn * 3139 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p, 3140 int nopeepholes, int *seen) 3141 { 3142 static int *enclosing_seen; 3143 static int recursion_counter; 3144 3145 gcc_assert (seen || recursion_counter); 3146 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen); 3147 3148 if (!recursion_counter++) 3149 enclosing_seen = seen; 3150 else if (!seen) 3151 seen = enclosing_seen; 3152 3153 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen); 3154 3155 if (!--recursion_counter) 3156 enclosing_seen = NULL; 3157 3158 return ret; 3159 } 3160 3161 3162 3163 /* Map DECLs to instance discriminators. This is allocated and 3164 defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS. 3165 Mappings from this table are saved and restored for LTO, so 3166 link-time compilation will have this map set, at least in 3167 partitions containing at least one DECL with an associated instance 3168 discriminator. */ 3169 3170 decl_to_instance_map_t *decl_to_instance_map; 3171 3172 /* Return the instance number assigned to DECL. */ 3173 3174 static inline int 3175 map_decl_to_instance (const_tree decl) 3176 { 3177 int *inst; 3178 3179 if (!decl_to_instance_map || !decl || !DECL_P (decl)) 3180 return 0; 3181 3182 inst = decl_to_instance_map->get (decl); 3183 3184 if (!inst) 3185 return 0; 3186 3187 return *inst; 3188 } 3189 3190 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */ 3191 3192 static inline int 3193 compute_discriminator (location_t loc) 3194 { 3195 int discriminator; 3196 3197 if (!decl_to_instance_map) 3198 discriminator = bb_discriminator; 3199 else 3200 { 3201 tree block = LOCATION_BLOCK (loc); 3202 3203 while (block && TREE_CODE (block) == BLOCK 3204 && !inlined_function_outer_scope_p (block)) 3205 block = BLOCK_SUPERCONTEXT (block); 3206 3207 tree decl; 3208 3209 if (!block) 3210 decl = current_function_decl; 3211 else if (DECL_P (block)) 3212 decl = block; 3213 else 3214 decl = block_ultimate_origin (block); 3215 3216 discriminator = map_decl_to_instance (decl); 3217 } 3218 3219 return discriminator; 3220 } 3221 3222 /* Return whether a source line note needs to be emitted before INSN. 3223 Sets IS_STMT to TRUE if the line should be marked as a possible 3224 breakpoint location. */ 3225 3226 static bool 3227 notice_source_line (rtx_insn *insn, bool *is_stmt) 3228 { 3229 const char *filename; 3230 int linenum, columnnum; 3231 3232 if (NOTE_MARKER_P (insn)) 3233 { 3234 location_t loc = NOTE_MARKER_LOCATION (insn); 3235 expanded_location xloc = expand_location (loc); 3236 if (xloc.line == 0) 3237 { 3238 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION 3239 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION); 3240 return false; 3241 } 3242 filename = xloc.file; 3243 linenum = xloc.line; 3244 columnnum = xloc.column; 3245 discriminator = compute_discriminator (loc); 3246 force_source_line = true; 3247 } 3248 else if (override_filename) 3249 { 3250 filename = override_filename; 3251 linenum = override_linenum; 3252 columnnum = override_columnnum; 3253 discriminator = override_discriminator; 3254 } 3255 else if (INSN_HAS_LOCATION (insn)) 3256 { 3257 expanded_location xloc = insn_location (insn); 3258 filename = xloc.file; 3259 linenum = xloc.line; 3260 columnnum = xloc.column; 3261 discriminator = compute_discriminator (INSN_LOCATION (insn)); 3262 } 3263 else 3264 { 3265 filename = NULL; 3266 linenum = 0; 3267 columnnum = 0; 3268 discriminator = 0; 3269 } 3270 3271 if (filename == NULL) 3272 return false; 3273 3274 if (force_source_line 3275 || filename != last_filename 3276 || last_linenum != linenum 3277 || (debug_column_info && last_columnnum != columnnum)) 3278 { 3279 force_source_line = false; 3280 last_filename = filename; 3281 last_linenum = linenum; 3282 last_columnnum = columnnum; 3283 last_discriminator = discriminator; 3284 if (is_stmt) 3285 *is_stmt = true; 3286 high_block_linenum = MAX (last_linenum, high_block_linenum); 3287 high_function_linenum = MAX (last_linenum, high_function_linenum); 3288 return true; 3289 } 3290 3291 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator) 3292 { 3293 /* If the discriminator changed, but the line number did not, 3294 output the line table entry with is_stmt false so the 3295 debugger does not treat this as a breakpoint location. */ 3296 last_discriminator = discriminator; 3297 if (is_stmt) 3298 *is_stmt = false; 3299 return true; 3300 } 3301 3302 return false; 3303 } 3304 3305 /* For each operand in INSN, simplify (subreg (reg)) so that it refers 3306 directly to the desired hard register. */ 3307 3308 void 3309 cleanup_subreg_operands (rtx_insn *insn) 3310 { 3311 int i; 3312 bool changed = false; 3313 extract_insn_cached (insn); 3314 for (i = 0; i < recog_data.n_operands; i++) 3315 { 3316 /* The following test cannot use recog_data.operand when testing 3317 for a SUBREG: the underlying object might have been changed 3318 already if we are inside a match_operator expression that 3319 matches the else clause. Instead we test the underlying 3320 expression directly. */ 3321 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG) 3322 { 3323 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true); 3324 changed = true; 3325 } 3326 else if (GET_CODE (recog_data.operand[i]) == PLUS 3327 || GET_CODE (recog_data.operand[i]) == MULT 3328 || MEM_P (recog_data.operand[i])) 3329 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed); 3330 } 3331 3332 for (i = 0; i < recog_data.n_dups; i++) 3333 { 3334 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG) 3335 { 3336 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true); 3337 changed = true; 3338 } 3339 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS 3340 || GET_CODE (*recog_data.dup_loc[i]) == MULT 3341 || MEM_P (*recog_data.dup_loc[i])) 3342 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed); 3343 } 3344 if (changed) 3345 df_insn_rescan (insn); 3346 } 3347 3348 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on 3349 the thing it is a subreg of. Do it anyway if FINAL_P. */ 3350 3351 rtx 3352 alter_subreg (rtx *xp, bool final_p) 3353 { 3354 rtx x = *xp; 3355 rtx y = SUBREG_REG (x); 3356 3357 /* simplify_subreg does not remove subreg from volatile references. 3358 We are required to. */ 3359 if (MEM_P (y)) 3360 { 3361 poly_int64 offset = SUBREG_BYTE (x); 3362 3363 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE 3364 contains 0 instead of the proper offset. See simplify_subreg. */ 3365 if (paradoxical_subreg_p (x)) 3366 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y)); 3367 3368 if (final_p) 3369 *xp = adjust_address (y, GET_MODE (x), offset); 3370 else 3371 *xp = adjust_address_nv (y, GET_MODE (x), offset); 3372 } 3373 else if (REG_P (y) && HARD_REGISTER_P (y)) 3374 { 3375 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y), 3376 SUBREG_BYTE (x)); 3377 3378 if (new_rtx != 0) 3379 *xp = new_rtx; 3380 else if (final_p && REG_P (y)) 3381 { 3382 /* Simplify_subreg can't handle some REG cases, but we have to. */ 3383 unsigned int regno; 3384 poly_int64 offset; 3385 3386 regno = subreg_regno (x); 3387 if (subreg_lowpart_p (x)) 3388 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y)); 3389 else 3390 offset = SUBREG_BYTE (x); 3391 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset); 3392 } 3393 } 3394 3395 return *xp; 3396 } 3397 3398 /* Do alter_subreg on all the SUBREGs contained in X. */ 3399 3400 static rtx 3401 walk_alter_subreg (rtx *xp, bool *changed) 3402 { 3403 rtx x = *xp; 3404 switch (GET_CODE (x)) 3405 { 3406 case PLUS: 3407 case MULT: 3408 case AND: 3409 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed); 3410 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed); 3411 break; 3412 3413 case MEM: 3414 case ZERO_EXTEND: 3415 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed); 3416 break; 3417 3418 case SUBREG: 3419 *changed = true; 3420 return alter_subreg (xp, true); 3421 3422 default: 3423 break; 3424 } 3425 3426 return *xp; 3427 } 3428 3429 #if HAVE_cc0 3430 3431 /* Given BODY, the body of a jump instruction, alter the jump condition 3432 as required by the bits that are set in cc_status.flags. 3433 Not all of the bits there can be handled at this level in all cases. 3434 3435 The value is normally 0. 3436 1 means that the condition has become always true. 3437 -1 means that the condition has become always false. 3438 2 means that COND has been altered. */ 3439 3440 static int 3441 alter_cond (rtx cond) 3442 { 3443 int value = 0; 3444 3445 if (cc_status.flags & CC_REVERSED) 3446 { 3447 value = 2; 3448 PUT_CODE (cond, swap_condition (GET_CODE (cond))); 3449 } 3450 3451 if (cc_status.flags & CC_INVERTED) 3452 { 3453 value = 2; 3454 PUT_CODE (cond, reverse_condition (GET_CODE (cond))); 3455 } 3456 3457 if (cc_status.flags & CC_NOT_POSITIVE) 3458 switch (GET_CODE (cond)) 3459 { 3460 case LE: 3461 case LEU: 3462 case GEU: 3463 /* Jump becomes unconditional. */ 3464 return 1; 3465 3466 case GT: 3467 case GTU: 3468 case LTU: 3469 /* Jump becomes no-op. */ 3470 return -1; 3471 3472 case GE: 3473 PUT_CODE (cond, EQ); 3474 value = 2; 3475 break; 3476 3477 case LT: 3478 PUT_CODE (cond, NE); 3479 value = 2; 3480 break; 3481 3482 default: 3483 break; 3484 } 3485 3486 if (cc_status.flags & CC_NOT_NEGATIVE) 3487 switch (GET_CODE (cond)) 3488 { 3489 case GE: 3490 case GEU: 3491 /* Jump becomes unconditional. */ 3492 return 1; 3493 3494 case LT: 3495 case LTU: 3496 /* Jump becomes no-op. */ 3497 return -1; 3498 3499 case LE: 3500 case LEU: 3501 PUT_CODE (cond, EQ); 3502 value = 2; 3503 break; 3504 3505 case GT: 3506 case GTU: 3507 PUT_CODE (cond, NE); 3508 value = 2; 3509 break; 3510 3511 default: 3512 break; 3513 } 3514 3515 if (cc_status.flags & CC_NO_OVERFLOW) 3516 switch (GET_CODE (cond)) 3517 { 3518 case GEU: 3519 /* Jump becomes unconditional. */ 3520 return 1; 3521 3522 case LEU: 3523 PUT_CODE (cond, EQ); 3524 value = 2; 3525 break; 3526 3527 case GTU: 3528 PUT_CODE (cond, NE); 3529 value = 2; 3530 break; 3531 3532 case LTU: 3533 /* Jump becomes no-op. */ 3534 return -1; 3535 3536 default: 3537 break; 3538 } 3539 3540 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N)) 3541 switch (GET_CODE (cond)) 3542 { 3543 default: 3544 gcc_unreachable (); 3545 3546 case NE: 3547 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT); 3548 value = 2; 3549 break; 3550 3551 case EQ: 3552 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE); 3553 value = 2; 3554 break; 3555 } 3556 3557 if (cc_status.flags & CC_NOT_SIGNED) 3558 /* The flags are valid if signed condition operators are converted 3559 to unsigned. */ 3560 switch (GET_CODE (cond)) 3561 { 3562 case LE: 3563 PUT_CODE (cond, LEU); 3564 value = 2; 3565 break; 3566 3567 case LT: 3568 PUT_CODE (cond, LTU); 3569 value = 2; 3570 break; 3571 3572 case GT: 3573 PUT_CODE (cond, GTU); 3574 value = 2; 3575 break; 3576 3577 case GE: 3578 PUT_CODE (cond, GEU); 3579 value = 2; 3580 break; 3581 3582 default: 3583 break; 3584 } 3585 3586 return value; 3587 } 3588 #endif 3589 3590 /* Report inconsistency between the assembler template and the operands. 3591 In an `asm', it's the user's fault; otherwise, the compiler's fault. */ 3592 3593 void 3594 output_operand_lossage (const char *cmsgid, ...) 3595 { 3596 char *fmt_string; 3597 char *new_message; 3598 const char *pfx_str; 3599 va_list ap; 3600 3601 va_start (ap, cmsgid); 3602 3603 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: "; 3604 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid)); 3605 new_message = xvasprintf (fmt_string, ap); 3606 3607 if (this_is_asm_operands) 3608 error_for_asm (this_is_asm_operands, "%s", new_message); 3609 else 3610 internal_error ("%s", new_message); 3611 3612 free (fmt_string); 3613 free (new_message); 3614 va_end (ap); 3615 } 3616 3617 /* Output of assembler code from a template, and its subroutines. */ 3618 3619 /* Annotate the assembly with a comment describing the pattern and 3620 alternative used. */ 3621 3622 static void 3623 output_asm_name (void) 3624 { 3625 if (debug_insn) 3626 { 3627 fprintf (asm_out_file, "\t%s %d\t", 3628 ASM_COMMENT_START, INSN_UID (debug_insn)); 3629 3630 fprintf (asm_out_file, "[c=%d", 3631 insn_cost (debug_insn, optimize_insn_for_speed_p ())); 3632 if (HAVE_ATTR_length) 3633 fprintf (asm_out_file, " l=%d", 3634 get_attr_length (debug_insn)); 3635 fprintf (asm_out_file, "] "); 3636 3637 int num = INSN_CODE (debug_insn); 3638 fprintf (asm_out_file, "%s", insn_data[num].name); 3639 if (insn_data[num].n_alternatives > 1) 3640 fprintf (asm_out_file, "/%d", which_alternative); 3641 3642 /* Clear this so only the first assembler insn 3643 of any rtl insn will get the special comment for -dp. */ 3644 debug_insn = 0; 3645 } 3646 } 3647 3648 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it 3649 or its address, return that expr . Set *PADDRESSP to 1 if the expr 3650 corresponds to the address of the object and 0 if to the object. */ 3651 3652 static tree 3653 get_mem_expr_from_op (rtx op, int *paddressp) 3654 { 3655 tree expr; 3656 int inner_addressp; 3657 3658 *paddressp = 0; 3659 3660 if (REG_P (op)) 3661 return REG_EXPR (op); 3662 else if (!MEM_P (op)) 3663 return 0; 3664 3665 if (MEM_EXPR (op) != 0) 3666 return MEM_EXPR (op); 3667 3668 /* Otherwise we have an address, so indicate it and look at the address. */ 3669 *paddressp = 1; 3670 op = XEXP (op, 0); 3671 3672 /* First check if we have a decl for the address, then look at the right side 3673 if it is a PLUS. Otherwise, strip off arithmetic and keep looking. 3674 But don't allow the address to itself be indirect. */ 3675 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp) 3676 return expr; 3677 else if (GET_CODE (op) == PLUS 3678 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp))) 3679 return expr; 3680 3681 while (UNARY_P (op) 3682 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH) 3683 op = XEXP (op, 0); 3684 3685 expr = get_mem_expr_from_op (op, &inner_addressp); 3686 return inner_addressp ? 0 : expr; 3687 } 3688 3689 /* Output operand names for assembler instructions. OPERANDS is the 3690 operand vector, OPORDER is the order to write the operands, and NOPS 3691 is the number of operands to write. */ 3692 3693 static void 3694 output_asm_operand_names (rtx *operands, int *oporder, int nops) 3695 { 3696 int wrote = 0; 3697 int i; 3698 3699 for (i = 0; i < nops; i++) 3700 { 3701 int addressp; 3702 rtx op = operands[oporder[i]]; 3703 tree expr = get_mem_expr_from_op (op, &addressp); 3704 3705 fprintf (asm_out_file, "%c%s", 3706 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START); 3707 wrote = 1; 3708 if (expr) 3709 { 3710 fprintf (asm_out_file, "%s", 3711 addressp ? "*" : ""); 3712 print_mem_expr (asm_out_file, expr); 3713 wrote = 1; 3714 } 3715 else if (REG_P (op) && ORIGINAL_REGNO (op) 3716 && ORIGINAL_REGNO (op) != REGNO (op)) 3717 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op)); 3718 } 3719 } 3720 3721 #ifdef ASSEMBLER_DIALECT 3722 /* Helper function to parse assembler dialects in the asm string. 3723 This is called from output_asm_insn and asm_fprintf. */ 3724 static const char * 3725 do_assembler_dialects (const char *p, int *dialect) 3726 { 3727 char c = *(p - 1); 3728 3729 switch (c) 3730 { 3731 case '{': 3732 { 3733 int i; 3734 3735 if (*dialect) 3736 output_operand_lossage ("nested assembly dialect alternatives"); 3737 else 3738 *dialect = 1; 3739 3740 /* If we want the first dialect, do nothing. Otherwise, skip 3741 DIALECT_NUMBER of strings ending with '|'. */ 3742 for (i = 0; i < dialect_number; i++) 3743 { 3744 while (*p && *p != '}') 3745 { 3746 if (*p == '|') 3747 { 3748 p++; 3749 break; 3750 } 3751 3752 /* Skip over any character after a percent sign. */ 3753 if (*p == '%') 3754 p++; 3755 if (*p) 3756 p++; 3757 } 3758 3759 if (*p == '}') 3760 break; 3761 } 3762 3763 if (*p == '\0') 3764 output_operand_lossage ("unterminated assembly dialect alternative"); 3765 } 3766 break; 3767 3768 case '|': 3769 if (*dialect) 3770 { 3771 /* Skip to close brace. */ 3772 do 3773 { 3774 if (*p == '\0') 3775 { 3776 output_operand_lossage ("unterminated assembly dialect alternative"); 3777 break; 3778 } 3779 3780 /* Skip over any character after a percent sign. */ 3781 if (*p == '%' && p[1]) 3782 { 3783 p += 2; 3784 continue; 3785 } 3786 3787 if (*p++ == '}') 3788 break; 3789 } 3790 while (1); 3791 3792 *dialect = 0; 3793 } 3794 else 3795 putc (c, asm_out_file); 3796 break; 3797 3798 case '}': 3799 if (! *dialect) 3800 putc (c, asm_out_file); 3801 *dialect = 0; 3802 break; 3803 default: 3804 gcc_unreachable (); 3805 } 3806 3807 return p; 3808 } 3809 #endif 3810 3811 /* Output text from TEMPLATE to the assembler output file, 3812 obeying %-directions to substitute operands taken from 3813 the vector OPERANDS. 3814 3815 %N (for N a digit) means print operand N in usual manner. 3816 %lN means require operand N to be a CODE_LABEL or LABEL_REF 3817 and print the label name with no punctuation. 3818 %cN means require operand N to be a constant 3819 and print the constant expression with no punctuation. 3820 %aN means expect operand N to be a memory address 3821 (not a memory reference!) and print a reference 3822 to that address. 3823 %nN means expect operand N to be a constant 3824 and print a constant expression for minus the value 3825 of the operand, with no other punctuation. */ 3826 3827 void 3828 output_asm_insn (const char *templ, rtx *operands) 3829 { 3830 const char *p; 3831 int c; 3832 #ifdef ASSEMBLER_DIALECT 3833 int dialect = 0; 3834 #endif 3835 int oporder[MAX_RECOG_OPERANDS]; 3836 char opoutput[MAX_RECOG_OPERANDS]; 3837 int ops = 0; 3838 3839 /* An insn may return a null string template 3840 in a case where no assembler code is needed. */ 3841 if (*templ == 0) 3842 return; 3843 3844 memset (opoutput, 0, sizeof opoutput); 3845 p = templ; 3846 putc ('\t', asm_out_file); 3847 3848 #ifdef ASM_OUTPUT_OPCODE 3849 ASM_OUTPUT_OPCODE (asm_out_file, p); 3850 #endif 3851 3852 while ((c = *p++)) 3853 switch (c) 3854 { 3855 case '\n': 3856 if (flag_verbose_asm) 3857 output_asm_operand_names (operands, oporder, ops); 3858 if (flag_print_asm_name) 3859 output_asm_name (); 3860 3861 ops = 0; 3862 memset (opoutput, 0, sizeof opoutput); 3863 3864 putc (c, asm_out_file); 3865 #ifdef ASM_OUTPUT_OPCODE 3866 while ((c = *p) == '\t') 3867 { 3868 putc (c, asm_out_file); 3869 p++; 3870 } 3871 ASM_OUTPUT_OPCODE (asm_out_file, p); 3872 #endif 3873 break; 3874 3875 #ifdef ASSEMBLER_DIALECT 3876 case '{': 3877 case '}': 3878 case '|': 3879 p = do_assembler_dialects (p, &dialect); 3880 break; 3881 #endif 3882 3883 case '%': 3884 /* %% outputs a single %. %{, %} and %| print {, } and | respectively 3885 if ASSEMBLER_DIALECT defined and these characters have a special 3886 meaning as dialect delimiters.*/ 3887 if (*p == '%' 3888 #ifdef ASSEMBLER_DIALECT 3889 || *p == '{' || *p == '}' || *p == '|' 3890 #endif 3891 ) 3892 { 3893 putc (*p, asm_out_file); 3894 p++; 3895 } 3896 /* %= outputs a number which is unique to each insn in the entire 3897 compilation. This is useful for making local labels that are 3898 referred to more than once in a given insn. */ 3899 else if (*p == '=') 3900 { 3901 p++; 3902 fprintf (asm_out_file, "%d", insn_counter); 3903 } 3904 /* % followed by a letter and some digits 3905 outputs an operand in a special way depending on the letter. 3906 Letters `acln' are implemented directly. 3907 Other letters are passed to `output_operand' so that 3908 the TARGET_PRINT_OPERAND hook can define them. */ 3909 else if (ISALPHA (*p)) 3910 { 3911 int letter = *p++; 3912 unsigned long opnum; 3913 char *endptr; 3914 3915 opnum = strtoul (p, &endptr, 10); 3916 3917 if (endptr == p) 3918 output_operand_lossage ("operand number missing " 3919 "after %%-letter"); 3920 else if (this_is_asm_operands && opnum >= insn_noperands) 3921 output_operand_lossage ("operand number out of range"); 3922 else if (letter == 'l') 3923 output_asm_label (operands[opnum]); 3924 else if (letter == 'a') 3925 output_address (VOIDmode, operands[opnum]); 3926 else if (letter == 'c') 3927 { 3928 if (CONSTANT_ADDRESS_P (operands[opnum])) 3929 output_addr_const (asm_out_file, operands[opnum]); 3930 else 3931 output_operand (operands[opnum], 'c'); 3932 } 3933 else if (letter == 'n') 3934 { 3935 if (CONST_INT_P (operands[opnum])) 3936 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC, 3937 - INTVAL (operands[opnum])); 3938 else 3939 { 3940 putc ('-', asm_out_file); 3941 output_addr_const (asm_out_file, operands[opnum]); 3942 } 3943 } 3944 else 3945 output_operand (operands[opnum], letter); 3946 3947 if (!opoutput[opnum]) 3948 oporder[ops++] = opnum; 3949 opoutput[opnum] = 1; 3950 3951 p = endptr; 3952 c = *p; 3953 } 3954 /* % followed by a digit outputs an operand the default way. */ 3955 else if (ISDIGIT (*p)) 3956 { 3957 unsigned long opnum; 3958 char *endptr; 3959 3960 opnum = strtoul (p, &endptr, 10); 3961 if (this_is_asm_operands && opnum >= insn_noperands) 3962 output_operand_lossage ("operand number out of range"); 3963 else 3964 output_operand (operands[opnum], 0); 3965 3966 if (!opoutput[opnum]) 3967 oporder[ops++] = opnum; 3968 opoutput[opnum] = 1; 3969 3970 p = endptr; 3971 c = *p; 3972 } 3973 /* % followed by punctuation: output something for that 3974 punctuation character alone, with no operand. The 3975 TARGET_PRINT_OPERAND hook decides what is actually done. */ 3976 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p)) 3977 output_operand (NULL_RTX, *p++); 3978 else 3979 output_operand_lossage ("invalid %%-code"); 3980 break; 3981 3982 default: 3983 putc (c, asm_out_file); 3984 } 3985 3986 /* Try to keep the asm a bit more readable. */ 3987 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9) 3988 putc ('\t', asm_out_file); 3989 3990 /* Write out the variable names for operands, if we know them. */ 3991 if (flag_verbose_asm) 3992 output_asm_operand_names (operands, oporder, ops); 3993 if (flag_print_asm_name) 3994 output_asm_name (); 3995 3996 putc ('\n', asm_out_file); 3997 } 3998 3999 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */ 4000 4001 void 4002 output_asm_label (rtx x) 4003 { 4004 char buf[256]; 4005 4006 if (GET_CODE (x) == LABEL_REF) 4007 x = label_ref_label (x); 4008 if (LABEL_P (x) 4009 || (NOTE_P (x) 4010 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL)) 4011 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); 4012 else 4013 output_operand_lossage ("'%%l' operand isn't a label"); 4014 4015 assemble_name (asm_out_file, buf); 4016 } 4017 4018 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */ 4019 4020 void 4021 mark_symbol_refs_as_used (rtx x) 4022 { 4023 subrtx_iterator::array_type array; 4024 FOR_EACH_SUBRTX (iter, array, x, ALL) 4025 { 4026 const_rtx x = *iter; 4027 if (GET_CODE (x) == SYMBOL_REF) 4028 if (tree t = SYMBOL_REF_DECL (x)) 4029 assemble_external (t); 4030 } 4031 } 4032 4033 /* Print operand X using machine-dependent assembler syntax. 4034 CODE is a non-digit that preceded the operand-number in the % spec, 4035 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char 4036 between the % and the digits. 4037 When CODE is a non-letter, X is 0. 4038 4039 The meanings of the letters are machine-dependent and controlled 4040 by TARGET_PRINT_OPERAND. */ 4041 4042 void 4043 output_operand (rtx x, int code ATTRIBUTE_UNUSED) 4044 { 4045 if (x && GET_CODE (x) == SUBREG) 4046 x = alter_subreg (&x, true); 4047 4048 /* X must not be a pseudo reg. */ 4049 if (!targetm.no_register_allocation) 4050 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER); 4051 4052 targetm.asm_out.print_operand (asm_out_file, x, code); 4053 4054 if (x == NULL_RTX) 4055 return; 4056 4057 mark_symbol_refs_as_used (x); 4058 } 4059 4060 /* Print a memory reference operand for address X using 4061 machine-dependent assembler syntax. */ 4062 4063 void 4064 output_address (machine_mode mode, rtx x) 4065 { 4066 bool changed = false; 4067 walk_alter_subreg (&x, &changed); 4068 targetm.asm_out.print_operand_address (asm_out_file, mode, x); 4069 } 4070 4071 /* Print an integer constant expression in assembler syntax. 4072 Addition and subtraction are the only arithmetic 4073 that may appear in these expressions. */ 4074 4075 void 4076 output_addr_const (FILE *file, rtx x) 4077 { 4078 char buf[256]; 4079 4080 restart: 4081 switch (GET_CODE (x)) 4082 { 4083 case PC: 4084 putc ('.', file); 4085 break; 4086 4087 case SYMBOL_REF: 4088 if (SYMBOL_REF_DECL (x)) 4089 assemble_external (SYMBOL_REF_DECL (x)); 4090 #ifdef ASM_OUTPUT_SYMBOL_REF 4091 ASM_OUTPUT_SYMBOL_REF (file, x); 4092 #else 4093 assemble_name (file, XSTR (x, 0)); 4094 #endif 4095 break; 4096 4097 case LABEL_REF: 4098 x = label_ref_label (x); 4099 /* Fall through. */ 4100 case CODE_LABEL: 4101 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x)); 4102 #ifdef ASM_OUTPUT_LABEL_REF 4103 ASM_OUTPUT_LABEL_REF (file, buf); 4104 #else 4105 assemble_name (file, buf); 4106 #endif 4107 break; 4108 4109 case CONST_INT: 4110 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x)); 4111 break; 4112 4113 case CONST: 4114 /* This used to output parentheses around the expression, 4115 but that does not work on the 386 (either ATT or BSD assembler). */ 4116 output_addr_const (file, XEXP (x, 0)); 4117 break; 4118 4119 case CONST_WIDE_INT: 4120 /* We do not know the mode here so we have to use a round about 4121 way to build a wide-int to get it printed properly. */ 4122 { 4123 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0), 4124 CONST_WIDE_INT_NUNITS (x), 4125 CONST_WIDE_INT_NUNITS (x) 4126 * HOST_BITS_PER_WIDE_INT, 4127 false); 4128 print_decs (w, file); 4129 } 4130 break; 4131 4132 case CONST_DOUBLE: 4133 if (CONST_DOUBLE_AS_INT_P (x)) 4134 { 4135 /* We can use %d if the number is one word and positive. */ 4136 if (CONST_DOUBLE_HIGH (x)) 4137 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX, 4138 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x), 4139 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x)); 4140 else if (CONST_DOUBLE_LOW (x) < 0) 4141 fprintf (file, HOST_WIDE_INT_PRINT_HEX, 4142 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x)); 4143 else 4144 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x)); 4145 } 4146 else 4147 /* We can't handle floating point constants; 4148 PRINT_OPERAND must handle them. */ 4149 output_operand_lossage ("floating constant misused"); 4150 break; 4151 4152 case CONST_FIXED: 4153 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x)); 4154 break; 4155 4156 case PLUS: 4157 /* Some assemblers need integer constants to appear last (eg masm). */ 4158 if (CONST_INT_P (XEXP (x, 0))) 4159 { 4160 output_addr_const (file, XEXP (x, 1)); 4161 if (INTVAL (XEXP (x, 0)) >= 0) 4162 fprintf (file, "+"); 4163 output_addr_const (file, XEXP (x, 0)); 4164 } 4165 else 4166 { 4167 output_addr_const (file, XEXP (x, 0)); 4168 if (!CONST_INT_P (XEXP (x, 1)) 4169 || INTVAL (XEXP (x, 1)) >= 0) 4170 fprintf (file, "+"); 4171 output_addr_const (file, XEXP (x, 1)); 4172 } 4173 break; 4174 4175 case MINUS: 4176 /* Avoid outputting things like x-x or x+5-x, 4177 since some assemblers can't handle that. */ 4178 x = simplify_subtraction (x); 4179 if (GET_CODE (x) != MINUS) 4180 goto restart; 4181 4182 output_addr_const (file, XEXP (x, 0)); 4183 fprintf (file, "-"); 4184 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0) 4185 || GET_CODE (XEXP (x, 1)) == PC 4186 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF) 4187 output_addr_const (file, XEXP (x, 1)); 4188 else 4189 { 4190 fputs (targetm.asm_out.open_paren, file); 4191 output_addr_const (file, XEXP (x, 1)); 4192 fputs (targetm.asm_out.close_paren, file); 4193 } 4194 break; 4195 4196 case ZERO_EXTEND: 4197 case SIGN_EXTEND: 4198 case SUBREG: 4199 case TRUNCATE: 4200 output_addr_const (file, XEXP (x, 0)); 4201 break; 4202 4203 default: 4204 if (targetm.asm_out.output_addr_const_extra (file, x)) 4205 break; 4206 4207 output_operand_lossage ("invalid expression as operand"); 4208 } 4209 } 4210 4211 /* Output a quoted string. */ 4212 4213 void 4214 output_quoted_string (FILE *asm_file, const char *string) 4215 { 4216 #ifdef OUTPUT_QUOTED_STRING 4217 OUTPUT_QUOTED_STRING (asm_file, string); 4218 #else 4219 char c; 4220 4221 putc ('\"', asm_file); 4222 while ((c = *string++) != 0) 4223 { 4224 if (ISPRINT (c)) 4225 { 4226 if (c == '\"' || c == '\\') 4227 putc ('\\', asm_file); 4228 putc (c, asm_file); 4229 } 4230 else 4231 fprintf (asm_file, "\\%03o", (unsigned char) c); 4232 } 4233 putc ('\"', asm_file); 4234 #endif 4235 } 4236 4237 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */ 4238 4239 void 4240 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value) 4241 { 4242 char buf[2 + CHAR_BIT * sizeof (value) / 4]; 4243 if (value == 0) 4244 putc ('0', f); 4245 else 4246 { 4247 char *p = buf + sizeof (buf); 4248 do 4249 *--p = "0123456789abcdef"[value % 16]; 4250 while ((value /= 16) != 0); 4251 *--p = 'x'; 4252 *--p = '0'; 4253 fwrite (p, 1, buf + sizeof (buf) - p, f); 4254 } 4255 } 4256 4257 /* Internal function that prints an unsigned long in decimal in reverse. 4258 The output string IS NOT null-terminated. */ 4259 4260 static int 4261 sprint_ul_rev (char *s, unsigned long value) 4262 { 4263 int i = 0; 4264 do 4265 { 4266 s[i] = "0123456789"[value % 10]; 4267 value /= 10; 4268 i++; 4269 /* alternate version, without modulo */ 4270 /* oldval = value; */ 4271 /* value /= 10; */ 4272 /* s[i] = "0123456789" [oldval - 10*value]; */ 4273 /* i++ */ 4274 } 4275 while (value != 0); 4276 return i; 4277 } 4278 4279 /* Write an unsigned long as decimal to a file, fast. */ 4280 4281 void 4282 fprint_ul (FILE *f, unsigned long value) 4283 { 4284 /* python says: len(str(2**64)) == 20 */ 4285 char s[20]; 4286 int i; 4287 4288 i = sprint_ul_rev (s, value); 4289 4290 /* It's probably too small to bother with string reversal and fputs. */ 4291 do 4292 { 4293 i--; 4294 putc (s[i], f); 4295 } 4296 while (i != 0); 4297 } 4298 4299 /* Write an unsigned long as decimal to a string, fast. 4300 s must be wide enough to not overflow, at least 21 chars. 4301 Returns the length of the string (without terminating '\0'). */ 4302 4303 int 4304 sprint_ul (char *s, unsigned long value) 4305 { 4306 int len = sprint_ul_rev (s, value); 4307 s[len] = '\0'; 4308 4309 std::reverse (s, s + len); 4310 return len; 4311 } 4312 4313 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U. 4314 %R prints the value of REGISTER_PREFIX. 4315 %L prints the value of LOCAL_LABEL_PREFIX. 4316 %U prints the value of USER_LABEL_PREFIX. 4317 %I prints the value of IMMEDIATE_PREFIX. 4318 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string. 4319 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%. 4320 4321 We handle alternate assembler dialects here, just like output_asm_insn. */ 4322 4323 void 4324 asm_fprintf (FILE *file, const char *p, ...) 4325 { 4326 char buf[10]; 4327 char *q, c; 4328 #ifdef ASSEMBLER_DIALECT 4329 int dialect = 0; 4330 #endif 4331 va_list argptr; 4332 4333 va_start (argptr, p); 4334 4335 buf[0] = '%'; 4336 4337 while ((c = *p++)) 4338 switch (c) 4339 { 4340 #ifdef ASSEMBLER_DIALECT 4341 case '{': 4342 case '}': 4343 case '|': 4344 p = do_assembler_dialects (p, &dialect); 4345 break; 4346 #endif 4347 4348 case '%': 4349 c = *p++; 4350 q = &buf[1]; 4351 while (strchr ("-+ #0", c)) 4352 { 4353 *q++ = c; 4354 c = *p++; 4355 } 4356 while (ISDIGIT (c) || c == '.') 4357 { 4358 *q++ = c; 4359 c = *p++; 4360 } 4361 switch (c) 4362 { 4363 case '%': 4364 putc ('%', file); 4365 break; 4366 4367 case 'd': case 'i': case 'u': 4368 case 'x': case 'X': case 'o': 4369 case 'c': 4370 *q++ = c; 4371 *q = 0; 4372 fprintf (file, buf, va_arg (argptr, int)); 4373 break; 4374 4375 case 'w': 4376 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and 4377 'o' cases, but we do not check for those cases. It 4378 means that the value is a HOST_WIDE_INT, which may be 4379 either `long' or `long long'. */ 4380 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT)); 4381 q += strlen (HOST_WIDE_INT_PRINT); 4382 *q++ = *p++; 4383 *q = 0; 4384 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT)); 4385 break; 4386 4387 case 'l': 4388 *q++ = c; 4389 #ifdef HAVE_LONG_LONG 4390 if (*p == 'l') 4391 { 4392 *q++ = *p++; 4393 *q++ = *p++; 4394 *q = 0; 4395 fprintf (file, buf, va_arg (argptr, long long)); 4396 } 4397 else 4398 #endif 4399 { 4400 *q++ = *p++; 4401 *q = 0; 4402 fprintf (file, buf, va_arg (argptr, long)); 4403 } 4404 4405 break; 4406 4407 case 's': 4408 *q++ = c; 4409 *q = 0; 4410 fprintf (file, buf, va_arg (argptr, char *)); 4411 break; 4412 4413 case 'O': 4414 #ifdef ASM_OUTPUT_OPCODE 4415 ASM_OUTPUT_OPCODE (asm_out_file, p); 4416 #endif 4417 break; 4418 4419 case 'R': 4420 #ifdef REGISTER_PREFIX 4421 fprintf (file, "%s", REGISTER_PREFIX); 4422 #endif 4423 break; 4424 4425 case 'I': 4426 #ifdef IMMEDIATE_PREFIX 4427 fprintf (file, "%s", IMMEDIATE_PREFIX); 4428 #endif 4429 break; 4430 4431 case 'L': 4432 #ifdef LOCAL_LABEL_PREFIX 4433 fprintf (file, "%s", LOCAL_LABEL_PREFIX); 4434 #endif 4435 break; 4436 4437 case 'U': 4438 fputs (user_label_prefix, file); 4439 break; 4440 4441 #ifdef ASM_FPRINTF_EXTENSIONS 4442 /* Uppercase letters are reserved for general use by asm_fprintf 4443 and so are not available to target specific code. In order to 4444 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then, 4445 they are defined here. As they get turned into real extensions 4446 to asm_fprintf they should be removed from this list. */ 4447 case 'A': case 'B': case 'C': case 'D': case 'E': 4448 case 'F': case 'G': case 'H': case 'J': case 'K': 4449 case 'M': case 'N': case 'P': case 'Q': case 'S': 4450 case 'T': case 'V': case 'W': case 'Y': case 'Z': 4451 break; 4452 4453 ASM_FPRINTF_EXTENSIONS (file, argptr, p) 4454 #endif 4455 default: 4456 gcc_unreachable (); 4457 } 4458 break; 4459 4460 default: 4461 putc (c, file); 4462 } 4463 va_end (argptr); 4464 } 4465 4466 /* Return nonzero if this function has no function calls. */ 4467 4468 int 4469 leaf_function_p (void) 4470 { 4471 rtx_insn *insn; 4472 4473 /* Ensure we walk the entire function body. */ 4474 gcc_assert (!in_sequence_p ()); 4475 4476 /* Some back-ends (e.g. s390) want leaf functions to stay leaf 4477 functions even if they call mcount. */ 4478 if (crtl->profile && !targetm.keep_leaf_when_profiled ()) 4479 return 0; 4480 4481 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 4482 { 4483 if (CALL_P (insn) 4484 && ! SIBLING_CALL_P (insn)) 4485 return 0; 4486 if (NONJUMP_INSN_P (insn) 4487 && GET_CODE (PATTERN (insn)) == SEQUENCE 4488 && CALL_P (XVECEXP (PATTERN (insn), 0, 0)) 4489 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0))) 4490 return 0; 4491 } 4492 4493 return 1; 4494 } 4495 4496 /* Return 1 if branch is a forward branch. 4497 Uses insn_shuid array, so it works only in the final pass. May be used by 4498 output templates to customary add branch prediction hints. 4499 */ 4500 int 4501 final_forward_branch_p (rtx_insn *insn) 4502 { 4503 int insn_id, label_id; 4504 4505 gcc_assert (uid_shuid); 4506 insn_id = INSN_SHUID (insn); 4507 label_id = INSN_SHUID (JUMP_LABEL (insn)); 4508 /* We've hit some insns that does not have id information available. */ 4509 gcc_assert (insn_id && label_id); 4510 return insn_id < label_id; 4511 } 4512 4513 /* On some machines, a function with no call insns 4514 can run faster if it doesn't create its own register window. 4515 When output, the leaf function should use only the "output" 4516 registers. Ordinarily, the function would be compiled to use 4517 the "input" registers to find its arguments; it is a candidate 4518 for leaf treatment if it uses only the "input" registers. 4519 Leaf function treatment means renumbering so the function 4520 uses the "output" registers instead. */ 4521 4522 #ifdef LEAF_REGISTERS 4523 4524 /* Return 1 if this function uses only the registers that can be 4525 safely renumbered. */ 4526 4527 int 4528 only_leaf_regs_used (void) 4529 { 4530 int i; 4531 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS; 4532 4533 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++) 4534 if ((df_regs_ever_live_p (i) || global_regs[i]) 4535 && ! permitted_reg_in_leaf_functions[i]) 4536 return 0; 4537 4538 if (crtl->uses_pic_offset_table 4539 && pic_offset_table_rtx != 0 4540 && REG_P (pic_offset_table_rtx) 4541 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)]) 4542 return 0; 4543 4544 return 1; 4545 } 4546 4547 /* Scan all instructions and renumber all registers into those 4548 available in leaf functions. */ 4549 4550 static void 4551 leaf_renumber_regs (rtx_insn *first) 4552 { 4553 rtx_insn *insn; 4554 4555 /* Renumber only the actual patterns. 4556 The reg-notes can contain frame pointer refs, 4557 and renumbering them could crash, and should not be needed. */ 4558 for (insn = first; insn; insn = NEXT_INSN (insn)) 4559 if (INSN_P (insn)) 4560 leaf_renumber_regs_insn (PATTERN (insn)); 4561 } 4562 4563 /* Scan IN_RTX and its subexpressions, and renumber all regs into those 4564 available in leaf functions. */ 4565 4566 void 4567 leaf_renumber_regs_insn (rtx in_rtx) 4568 { 4569 int i, j; 4570 const char *format_ptr; 4571 4572 if (in_rtx == 0) 4573 return; 4574 4575 /* Renumber all input-registers into output-registers. 4576 renumbered_regs would be 1 for an output-register; 4577 they */ 4578 4579 if (REG_P (in_rtx)) 4580 { 4581 int newreg; 4582 4583 /* Don't renumber the same reg twice. */ 4584 if (in_rtx->used) 4585 return; 4586 4587 newreg = REGNO (in_rtx); 4588 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg 4589 to reach here as part of a REG_NOTE. */ 4590 if (newreg >= FIRST_PSEUDO_REGISTER) 4591 { 4592 in_rtx->used = 1; 4593 return; 4594 } 4595 newreg = LEAF_REG_REMAP (newreg); 4596 gcc_assert (newreg >= 0); 4597 df_set_regs_ever_live (REGNO (in_rtx), false); 4598 df_set_regs_ever_live (newreg, true); 4599 SET_REGNO (in_rtx, newreg); 4600 in_rtx->used = 1; 4601 return; 4602 } 4603 4604 if (INSN_P (in_rtx)) 4605 { 4606 /* Inside a SEQUENCE, we find insns. 4607 Renumber just the patterns of these insns, 4608 just as we do for the top-level insns. */ 4609 leaf_renumber_regs_insn (PATTERN (in_rtx)); 4610 return; 4611 } 4612 4613 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx)); 4614 4615 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++) 4616 switch (*format_ptr++) 4617 { 4618 case 'e': 4619 leaf_renumber_regs_insn (XEXP (in_rtx, i)); 4620 break; 4621 4622 case 'E': 4623 if (XVEC (in_rtx, i) != NULL) 4624 for (j = 0; j < XVECLEN (in_rtx, i); j++) 4625 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j)); 4626 break; 4627 4628 case 'S': 4629 case 's': 4630 case '0': 4631 case 'i': 4632 case 'w': 4633 case 'p': 4634 case 'n': 4635 case 'u': 4636 break; 4637 4638 default: 4639 gcc_unreachable (); 4640 } 4641 } 4642 #endif 4643 4644 /* Turn the RTL into assembly. */ 4645 static unsigned int 4646 rest_of_handle_final (void) 4647 { 4648 const char *fnname = get_fnname_from_decl (current_function_decl); 4649 4650 /* Turn debug markers into notes if the var-tracking pass has not 4651 been invoked. */ 4652 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS) 4653 delete_vta_debug_insns (false); 4654 4655 assemble_start_function (current_function_decl, fnname); 4656 rtx_insn *first = get_insns (); 4657 int seen = 0; 4658 final_start_function_1 (&first, asm_out_file, &seen, optimize); 4659 final_1 (first, asm_out_file, seen, optimize); 4660 if (flag_ipa_ra 4661 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl)) 4662 /* Functions with naked attributes are supported only with basic asm 4663 statements in the body, thus for supported use cases the information 4664 on clobbered registers is not available. */ 4665 && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl))) 4666 collect_fn_hard_reg_usage (); 4667 final_end_function (); 4668 4669 /* The IA-64 ".handlerdata" directive must be issued before the ".endp" 4670 directive that closes the procedure descriptor. Similarly, for x64 SEH. 4671 Otherwise it's not strictly necessary, but it doesn't hurt either. */ 4672 output_function_exception_table (crtl->has_bb_partition ? 1 : 0); 4673 4674 assemble_end_function (current_function_decl, fnname); 4675 4676 /* Free up reg info memory. */ 4677 free_reg_info (); 4678 4679 if (! quiet_flag) 4680 fflush (asm_out_file); 4681 4682 /* Write DBX symbols if requested. */ 4683 4684 /* Note that for those inline functions where we don't initially 4685 know for certain that we will be generating an out-of-line copy, 4686 the first invocation of this routine (rest_of_compilation) will 4687 skip over this code by doing a `goto exit_rest_of_compilation;'. 4688 Later on, wrapup_global_declarations will (indirectly) call 4689 rest_of_compilation again for those inline functions that need 4690 to have out-of-line copies generated. During that call, we 4691 *will* be routed past here. */ 4692 4693 timevar_push (TV_SYMOUT); 4694 if (!DECL_IGNORED_P (current_function_decl)) 4695 debug_hooks->function_decl (current_function_decl); 4696 timevar_pop (TV_SYMOUT); 4697 4698 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */ 4699 DECL_INITIAL (current_function_decl) = error_mark_node; 4700 4701 if (DECL_STATIC_CONSTRUCTOR (current_function_decl) 4702 && targetm.have_ctors_dtors) 4703 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0), 4704 decl_init_priority_lookup 4705 (current_function_decl)); 4706 if (DECL_STATIC_DESTRUCTOR (current_function_decl) 4707 && targetm.have_ctors_dtors) 4708 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0), 4709 decl_fini_priority_lookup 4710 (current_function_decl)); 4711 return 0; 4712 } 4713 4714 namespace { 4715 4716 const pass_data pass_data_final = 4717 { 4718 RTL_PASS, /* type */ 4719 "final", /* name */ 4720 OPTGROUP_NONE, /* optinfo_flags */ 4721 TV_FINAL, /* tv_id */ 4722 0, /* properties_required */ 4723 0, /* properties_provided */ 4724 0, /* properties_destroyed */ 4725 0, /* todo_flags_start */ 4726 0, /* todo_flags_finish */ 4727 }; 4728 4729 class pass_final : public rtl_opt_pass 4730 { 4731 public: 4732 pass_final (gcc::context *ctxt) 4733 : rtl_opt_pass (pass_data_final, ctxt) 4734 {} 4735 4736 /* opt_pass methods: */ 4737 virtual unsigned int execute (function *) { return rest_of_handle_final (); } 4738 4739 }; // class pass_final 4740 4741 } // anon namespace 4742 4743 rtl_opt_pass * 4744 make_pass_final (gcc::context *ctxt) 4745 { 4746 return new pass_final (ctxt); 4747 } 4748 4749 4750 static unsigned int 4751 rest_of_handle_shorten_branches (void) 4752 { 4753 /* Shorten branches. */ 4754 shorten_branches (get_insns ()); 4755 return 0; 4756 } 4757 4758 namespace { 4759 4760 const pass_data pass_data_shorten_branches = 4761 { 4762 RTL_PASS, /* type */ 4763 "shorten", /* name */ 4764 OPTGROUP_NONE, /* optinfo_flags */ 4765 TV_SHORTEN_BRANCH, /* tv_id */ 4766 0, /* properties_required */ 4767 0, /* properties_provided */ 4768 0, /* properties_destroyed */ 4769 0, /* todo_flags_start */ 4770 0, /* todo_flags_finish */ 4771 }; 4772 4773 class pass_shorten_branches : public rtl_opt_pass 4774 { 4775 public: 4776 pass_shorten_branches (gcc::context *ctxt) 4777 : rtl_opt_pass (pass_data_shorten_branches, ctxt) 4778 {} 4779 4780 /* opt_pass methods: */ 4781 virtual unsigned int execute (function *) 4782 { 4783 return rest_of_handle_shorten_branches (); 4784 } 4785 4786 }; // class pass_shorten_branches 4787 4788 } // anon namespace 4789 4790 rtl_opt_pass * 4791 make_pass_shorten_branches (gcc::context *ctxt) 4792 { 4793 return new pass_shorten_branches (ctxt); 4794 } 4795 4796 4797 static unsigned int 4798 rest_of_clean_state (void) 4799 { 4800 rtx_insn *insn, *next; 4801 FILE *final_output = NULL; 4802 int save_unnumbered = flag_dump_unnumbered; 4803 int save_noaddr = flag_dump_noaddr; 4804 4805 if (flag_dump_final_insns) 4806 { 4807 final_output = fopen (flag_dump_final_insns, "a"); 4808 if (!final_output) 4809 { 4810 error ("could not open final insn dump file %qs: %m", 4811 flag_dump_final_insns); 4812 flag_dump_final_insns = NULL; 4813 } 4814 else 4815 { 4816 flag_dump_noaddr = flag_dump_unnumbered = 1; 4817 if (flag_compare_debug_opt || flag_compare_debug) 4818 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG; 4819 dump_function_header (final_output, current_function_decl, 4820 dump_flags); 4821 final_insns_dump_p = true; 4822 4823 for (insn = get_insns (); insn; insn = NEXT_INSN (insn)) 4824 if (LABEL_P (insn)) 4825 INSN_UID (insn) = CODE_LABEL_NUMBER (insn); 4826 else 4827 { 4828 if (NOTE_P (insn)) 4829 set_block_for_insn (insn, NULL); 4830 INSN_UID (insn) = 0; 4831 } 4832 } 4833 } 4834 4835 /* It is very important to decompose the RTL instruction chain here: 4836 debug information keeps pointing into CODE_LABEL insns inside the function 4837 body. If these remain pointing to the other insns, we end up preserving 4838 whole RTL chain and attached detailed debug info in memory. */ 4839 for (insn = get_insns (); insn; insn = next) 4840 { 4841 next = NEXT_INSN (insn); 4842 SET_NEXT_INSN (insn) = NULL; 4843 SET_PREV_INSN (insn) = NULL; 4844 4845 rtx_insn *call_insn = insn; 4846 if (NONJUMP_INSN_P (call_insn) 4847 && GET_CODE (PATTERN (call_insn)) == SEQUENCE) 4848 { 4849 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn)); 4850 call_insn = seq->insn (0); 4851 } 4852 if (CALL_P (call_insn)) 4853 { 4854 rtx note 4855 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX); 4856 if (note) 4857 remove_note (call_insn, note); 4858 } 4859 4860 if (final_output 4861 && (!NOTE_P (insn) 4862 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION 4863 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT 4864 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY 4865 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG 4866 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END 4867 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL))) 4868 print_rtl_single (final_output, insn); 4869 } 4870 4871 if (final_output) 4872 { 4873 flag_dump_noaddr = save_noaddr; 4874 flag_dump_unnumbered = save_unnumbered; 4875 final_insns_dump_p = false; 4876 4877 if (fclose (final_output)) 4878 { 4879 error ("could not close final insn dump file %qs: %m", 4880 flag_dump_final_insns); 4881 flag_dump_final_insns = NULL; 4882 } 4883 } 4884 4885 flag_rerun_cse_after_global_opts = 0; 4886 reload_completed = 0; 4887 epilogue_completed = 0; 4888 #ifdef STACK_REGS 4889 regstack_completed = 0; 4890 #endif 4891 4892 /* Clear out the insn_length contents now that they are no 4893 longer valid. */ 4894 init_insn_lengths (); 4895 4896 /* Show no temporary slots allocated. */ 4897 init_temp_slots (); 4898 4899 free_bb_for_insn (); 4900 4901 if (cfun->gimple_df) 4902 delete_tree_ssa (cfun); 4903 4904 /* We can reduce stack alignment on call site only when we are sure that 4905 the function body just produced will be actually used in the final 4906 executable. */ 4907 if (flag_ipa_stack_alignment 4908 && decl_binds_to_current_def_p (current_function_decl)) 4909 { 4910 unsigned int pref = crtl->preferred_stack_boundary; 4911 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary) 4912 pref = crtl->stack_alignment_needed; 4913 cgraph_node::rtl_info (current_function_decl) 4914 ->preferred_incoming_stack_boundary = pref; 4915 } 4916 4917 /* Make sure volatile mem refs aren't considered valid operands for 4918 arithmetic insns. We must call this here if this is a nested inline 4919 function, since the above code leaves us in the init_recog state, 4920 and the function context push/pop code does not save/restore volatile_ok. 4921 4922 ??? Maybe it isn't necessary for expand_start_function to call this 4923 anymore if we do it here? */ 4924 4925 init_recog_no_volatile (); 4926 4927 /* We're done with this function. Free up memory if we can. */ 4928 free_after_parsing (cfun); 4929 free_after_compilation (cfun); 4930 return 0; 4931 } 4932 4933 namespace { 4934 4935 const pass_data pass_data_clean_state = 4936 { 4937 RTL_PASS, /* type */ 4938 "*clean_state", /* name */ 4939 OPTGROUP_NONE, /* optinfo_flags */ 4940 TV_FINAL, /* tv_id */ 4941 0, /* properties_required */ 4942 0, /* properties_provided */ 4943 PROP_rtl, /* properties_destroyed */ 4944 0, /* todo_flags_start */ 4945 0, /* todo_flags_finish */ 4946 }; 4947 4948 class pass_clean_state : public rtl_opt_pass 4949 { 4950 public: 4951 pass_clean_state (gcc::context *ctxt) 4952 : rtl_opt_pass (pass_data_clean_state, ctxt) 4953 {} 4954 4955 /* opt_pass methods: */ 4956 virtual unsigned int execute (function *) 4957 { 4958 return rest_of_clean_state (); 4959 } 4960 4961 }; // class pass_clean_state 4962 4963 } // anon namespace 4964 4965 rtl_opt_pass * 4966 make_pass_clean_state (gcc::context *ctxt) 4967 { 4968 return new pass_clean_state (ctxt); 4969 } 4970 4971 /* Return true if INSN is a call to the current function. */ 4972 4973 static bool 4974 self_recursive_call_p (rtx_insn *insn) 4975 { 4976 tree fndecl = get_call_fndecl (insn); 4977 return (fndecl == current_function_decl 4978 && decl_binds_to_current_def_p (fndecl)); 4979 } 4980 4981 /* Collect hard register usage for the current function. */ 4982 4983 static void 4984 collect_fn_hard_reg_usage (void) 4985 { 4986 rtx_insn *insn; 4987 #ifdef STACK_REGS 4988 int i; 4989 #endif 4990 struct cgraph_rtl_info *node; 4991 HARD_REG_SET function_used_regs; 4992 4993 /* ??? To be removed when all the ports have been fixed. */ 4994 if (!targetm.call_fusage_contains_non_callee_clobbers) 4995 return; 4996 4997 CLEAR_HARD_REG_SET (function_used_regs); 4998 4999 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn)) 5000 { 5001 HARD_REG_SET insn_used_regs; 5002 5003 if (!NONDEBUG_INSN_P (insn)) 5004 continue; 5005 5006 if (CALL_P (insn) 5007 && !self_recursive_call_p (insn)) 5008 { 5009 if (!get_call_reg_set_usage (insn, &insn_used_regs, 5010 call_used_reg_set)) 5011 return; 5012 5013 IOR_HARD_REG_SET (function_used_regs, insn_used_regs); 5014 } 5015 5016 find_all_hard_reg_sets (insn, &insn_used_regs, false); 5017 IOR_HARD_REG_SET (function_used_regs, insn_used_regs); 5018 } 5019 5020 /* Be conservative - mark fixed and global registers as used. */ 5021 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set); 5022 5023 #ifdef STACK_REGS 5024 /* Handle STACK_REGS conservatively, since the df-framework does not 5025 provide accurate information for them. */ 5026 5027 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++) 5028 SET_HARD_REG_BIT (function_used_regs, i); 5029 #endif 5030 5031 /* The information we have gathered is only interesting if it exposes a 5032 register from the call_used_regs that is not used in this function. */ 5033 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs)) 5034 return; 5035 5036 node = cgraph_node::rtl_info (current_function_decl); 5037 gcc_assert (node != NULL); 5038 5039 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs); 5040 node->function_used_regs_valid = 1; 5041 } 5042 5043 /* Get the declaration of the function called by INSN. */ 5044 5045 static tree 5046 get_call_fndecl (rtx_insn *insn) 5047 { 5048 rtx note, datum; 5049 5050 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX); 5051 if (note == NULL_RTX) 5052 return NULL_TREE; 5053 5054 datum = XEXP (note, 0); 5055 if (datum != NULL_RTX) 5056 return SYMBOL_REF_DECL (datum); 5057 5058 return NULL_TREE; 5059 } 5060 5061 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for 5062 call targets that can be overwritten. */ 5063 5064 static struct cgraph_rtl_info * 5065 get_call_cgraph_rtl_info (rtx_insn *insn) 5066 { 5067 tree fndecl; 5068 5069 if (insn == NULL_RTX) 5070 return NULL; 5071 5072 fndecl = get_call_fndecl (insn); 5073 if (fndecl == NULL_TREE 5074 || !decl_binds_to_current_def_p (fndecl)) 5075 return NULL; 5076 5077 return cgraph_node::rtl_info (fndecl); 5078 } 5079 5080 /* Find hard registers used by function call instruction INSN, and return them 5081 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */ 5082 5083 bool 5084 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set, 5085 HARD_REG_SET default_set) 5086 { 5087 if (flag_ipa_ra) 5088 { 5089 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn); 5090 if (node != NULL 5091 && node->function_used_regs_valid) 5092 { 5093 COPY_HARD_REG_SET (*reg_set, node->function_used_regs); 5094 AND_HARD_REG_SET (*reg_set, default_set); 5095 return true; 5096 } 5097 } 5098 COPY_HARD_REG_SET (*reg_set, default_set); 5099 targetm.remove_extra_call_preserved_regs (insn, reg_set); 5100 return false; 5101 } 5102