xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/fibonacci_heap.h (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Vector API for GNU compiler.
2    Copyright (C) 1998-2015 Free Software Foundation, Inc.
3    Contributed by Daniel Berlin (dan@cgsoftware.com).
4    Re-implemented in C++ by Martin Liska <mliska@suse.cz>
5 
6 This file is part of GCC.
7 
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12 
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16 for more details.
17 
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3.  If not see
20 <http://www.gnu.org/licenses/>.  */
21 
22 /* Fibonacci heaps are somewhat complex, but, there's an article in
23    DDJ that explains them pretty well:
24 
25    http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms
26 
27    Introduction to algorithms by Corman and Rivest also goes over them.
28 
29    The original paper that introduced them is "Fibonacci heaps and their
30    uses in improved network optimization algorithms" by Tarjan and
31    Fredman (JACM 34(3), July 1987).
32 
33    Amortized and real worst case time for operations:
34 
35    ExtractMin: O(lg n) amortized. O(n) worst case.
36    DecreaseKey: O(1) amortized.  O(lg n) worst case.
37    Insert: O(1) amortized.
38    Union: O(1) amortized.  */
39 
40 #ifndef GCC_FIBONACCI_HEAP_H
41 #define GCC_FIBONACCI_HEAP_H
42 
43 /* Forward definition.  */
44 
45 template<class K, class V>
46 class fibonacci_heap;
47 
48 /* Fibonacci heap node class.  */
49 
50 template<class K, class V>
51 class fibonacci_node
52 {
53   typedef fibonacci_node<K,V> fibonacci_node_t;
54   friend class fibonacci_heap<K,V>;
55 
56 public:
57   /* Default constructor.  */
58   fibonacci_node (): m_parent (NULL), m_child (NULL), m_left (this),
59     m_right (this), m_degree (0), m_mark (0)
60   {
61   }
62 
63   /* Constructor for a node with given KEY.  */
64   fibonacci_node (K key): m_parent (NULL), m_child (NULL), m_left (this),
65     m_right (this), m_key (key),
66     m_degree (0), m_mark (0)
67   {
68   }
69 
70   /* Compare fibonacci node with OTHER node.  */
71   int compare (fibonacci_node_t *other)
72   {
73     if (m_key < other->m_key)
74       return -1;
75     if (m_key > other->m_key)
76       return 1;
77     return 0;
78   }
79 
80   /* Compare the node with a given KEY.  */
81   int compare_data (K key)
82   {
83     return fibonacci_node_t (key).compare (this);
84   }
85 
86   /* Remove fibonacci heap node.  */
87   fibonacci_node_t *remove ();
88 
89   /* Link the node with PARENT.  */
90   void link (fibonacci_node_t *parent);
91 
92   /* Return key associated with the node.  */
93   K get_key ()
94   {
95     return m_key;
96   }
97 
98   /* Return data associated with the node.  */
99   V *get_data ()
100   {
101     return m_data;
102   }
103 
104 private:
105   /* Put node B after this node.  */
106   void insert_after (fibonacci_node_t *b);
107 
108   /* Insert fibonacci node B after this node.  */
109   void insert_before (fibonacci_node_t *b)
110   {
111     m_left->insert_after (b);
112   }
113 
114   /* Parent node.  */
115   fibonacci_node *m_parent;
116   /* Child node.  */
117   fibonacci_node *m_child;
118   /* Left sibling.  */
119   fibonacci_node *m_left;
120   /* Right node.  */
121   fibonacci_node *m_right;
122   /* Key associated with node.  */
123   K m_key;
124   /* Data associated with node.  */
125   V *m_data;
126 
127 #if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
128   /* Degree of the node.  */
129   __extension__ unsigned long int m_degree : 31;
130   /* Mark of the node.  */
131   __extension__ unsigned long int m_mark : 1;
132 #else
133   /* Degree of the node.  */
134   unsigned int m_degree : 31;
135   /* Mark of the node.  */
136   unsigned int m_mark : 1;
137 #endif
138 };
139 
140 /* Fibonacci heap class. */
141 template<class K, class V>
142 class fibonacci_heap
143 {
144   typedef fibonacci_node<K,V> fibonacci_node_t;
145   friend class fibonacci_node<K,V>;
146 
147 public:
148   /* Default constructor.  */
149   fibonacci_heap (K global_min_key): m_nodes (0), m_min (NULL), m_root (NULL),
150     m_global_min_key (global_min_key)
151   {
152   }
153 
154   /* Destructor.  */
155   ~fibonacci_heap ()
156   {
157     while (m_min != NULL)
158       delete (extract_minimum_node ());
159   }
160 
161   /* Insert new node given by KEY and DATA associated with the key.  */
162   fibonacci_node_t *insert (K key, V *data);
163 
164   /* Return true if no entry is present.  */
165   bool empty ()
166   {
167     return m_nodes == 0;
168   }
169 
170   /* Return the number of nodes.  */
171   size_t nodes ()
172   {
173     return m_nodes;
174   }
175 
176   /* Return minimal key presented in the heap.  */
177   K min_key ()
178   {
179     if (m_min == NULL)
180       gcc_unreachable ();
181 
182     return m_min->m_key;
183   }
184 
185   /* For given NODE, set new KEY value.  */
186   K replace_key (fibonacci_node_t *node, K key)
187   {
188     K okey = node->m_key;
189 
190     replace_key_data (node, key, node->m_data);
191     return okey;
192   }
193 
194   /* For given NODE, decrease value to new KEY.  */
195   K decrease_key (fibonacci_node_t *node, K key)
196   {
197     gcc_assert (key <= node->m_key);
198     return replace_key (node, key);
199   }
200 
201   /* For given NODE, set new KEY and DATA value.  */
202   V *replace_key_data (fibonacci_node_t *node, K key, V *data);
203 
204   /* Extract minimum node in the heap. If RELEASE is specified,
205      memory is released.  */
206   V *extract_min (bool release = true);
207 
208   /* Return value associated with minimum node in the heap.  */
209   V *min ()
210   {
211     if (m_min == NULL)
212       return NULL;
213 
214     return m_min->m_data;
215   }
216 
217   /* Replace data associated with NODE and replace it with DATA.  */
218   V *replace_data (fibonacci_node_t *node, V *data)
219   {
220     return replace_key_data (node, node->m_key, data);
221   }
222 
223   /* Delete NODE in the heap.  */
224   V *delete_node (fibonacci_node_t *node, bool release = true);
225 
226   /* Union the heap with HEAPB.  */
227   fibonacci_heap *union_with (fibonacci_heap *heapb);
228 
229 private:
230   /* Insert new NODE given by KEY and DATA associated with the key.  */
231   fibonacci_node_t *insert (fibonacci_node_t *node, K key, V *data);
232 
233   /* Insert it into the root list.  */
234   void insert_root (fibonacci_node_t *node);
235 
236   /* Remove NODE from PARENT's child list.  */
237   void cut (fibonacci_node_t *node, fibonacci_node_t *parent);
238 
239   /* Process cut of node Y and do it recursivelly.  */
240   void cascading_cut (fibonacci_node_t *y);
241 
242   /* Extract minimum node from the heap.  */
243   fibonacci_node_t * extract_minimum_node ();
244 
245   /* Remove root NODE from the heap.  */
246   void remove_root (fibonacci_node_t *node);
247 
248   /* Consolidate heap.  */
249   void consolidate ();
250 
251   /* Number of nodes.  */
252   size_t m_nodes;
253   /* Minimum node of the heap.  */
254   fibonacci_node_t *m_min;
255   /* Root node of the heap.  */
256   fibonacci_node_t *m_root;
257   /* Global minimum given in the heap construction.  */
258   K m_global_min_key;
259 };
260 
261 /* Remove fibonacci heap node.  */
262 
263 template<class K, class V>
264 fibonacci_node<K,V> *
265 fibonacci_node<K,V>::remove ()
266 {
267   fibonacci_node<K,V> *ret;
268 
269   if (this == m_left)
270     ret = NULL;
271   else
272     ret = m_left;
273 
274   if (m_parent != NULL && m_parent->m_child == this)
275     m_parent->m_child = ret;
276 
277   m_right->m_left = m_left;
278   m_left->m_right = m_right;
279 
280   m_parent = NULL;
281   m_left = this;
282   m_right = this;
283 
284   return ret;
285 }
286 
287 /* Link the node with PARENT.  */
288 
289 template<class K, class V>
290 void
291 fibonacci_node<K,V>::link (fibonacci_node<K,V> *parent)
292 {
293   if (parent->m_child == NULL)
294     parent->m_child = this;
295   else
296     parent->m_child->insert_before (this);
297   m_parent = parent;
298   parent->m_degree++;
299   m_mark = 0;
300 }
301 
302 /* Put node B after this node.  */
303 
304 template<class K, class V>
305 void
306 fibonacci_node<K,V>::insert_after (fibonacci_node<K,V> *b)
307 {
308   fibonacci_node<K,V> *a = this;
309 
310   if (a == a->m_right)
311     {
312       a->m_right = b;
313       a->m_left = b;
314       b->m_right = a;
315       b->m_left = a;
316     }
317   else
318     {
319       b->m_right = a->m_right;
320       a->m_right->m_left = b;
321       a->m_right = b;
322       b->m_left = a;
323     }
324 }
325 
326 /* Insert new node given by KEY and DATA associated with the key.  */
327 
328 template<class K, class V>
329 fibonacci_node<K,V>*
330 fibonacci_heap<K,V>::insert (K key, V *data)
331 {
332   /* Create the new node.  */
333   fibonacci_node<K,V> *node = new fibonacci_node_t ();
334 
335   return insert (node, key, data);
336 }
337 
338 /* Insert new NODE given by KEY and DATA associated with the key.  */
339 
340 template<class K, class V>
341 fibonacci_node<K,V>*
342 fibonacci_heap<K,V>::insert (fibonacci_node_t *node, K key, V *data)
343 {
344   /* Set the node's data.  */
345   node->m_data = data;
346   node->m_key = key;
347 
348   /* Insert it into the root list.  */
349   insert_root (node);
350 
351   /* If their was no minimum, or this key is less than the min,
352      it's the new min.  */
353   if (m_min == NULL || node->m_key < m_min->m_key)
354     m_min = node;
355 
356   m_nodes++;
357 
358   return node;
359 }
360 
361 /* For given NODE, set new KEY and DATA value.  */
362 template<class K, class V>
363 V*
364 fibonacci_heap<K,V>::replace_key_data (fibonacci_node<K,V> *node, K key,
365 				       V *data)
366 {
367   K okey;
368   fibonacci_node<K,V> *y;
369   V *odata = node->m_data;
370 
371   /* If we wanted to, we do a real increase by redeleting and
372      inserting.  */
373   if (node->compare_data (key) > 0)
374     {
375       delete_node (node, false);
376 
377       node = new (node) fibonacci_node_t ();
378       insert (node, key, data);
379 
380       return odata;
381     }
382 
383   okey = node->m_key;
384   node->m_data = data;
385   node->m_key = key;
386   y = node->m_parent;
387 
388   /* Short-circuit if the key is the same, as we then don't have to
389      do anything.  Except if we're trying to force the new node to
390      be the new minimum for delete.  */
391   if (okey == key && okey != m_global_min_key)
392     return odata;
393 
394   /* These two compares are specifically <= 0 to make sure that in the case
395      of equality, a node we replaced the data on, becomes the new min.  This
396      is needed so that delete's call to extractmin gets the right node.  */
397   if (y != NULL && node->compare (y) <= 0)
398     {
399       cut (node, y);
400       cascading_cut (y);
401     }
402 
403   if (node->compare (m_min) <= 0)
404     m_min = node;
405 
406   return odata;
407 }
408 
409 /* Extract minimum node in the heap.  */
410 template<class K, class V>
411 V*
412 fibonacci_heap<K,V>::extract_min (bool release)
413 {
414   fibonacci_node<K,V> *z;
415   V *ret = NULL;
416 
417   /* If we don't have a min set, it means we have no nodes.  */
418   if (m_min != NULL)
419     {
420       /* Otherwise, extract the min node, free the node, and return the
421        node's data.  */
422       z = extract_minimum_node ();
423       ret = z->m_data;
424 
425       if (release)
426         delete (z);
427     }
428 
429   return ret;
430 }
431 
432 /* Delete NODE in the heap, if RELEASE is specified memory is released.  */
433 
434 template<class K, class V>
435 V*
436 fibonacci_heap<K,V>::delete_node (fibonacci_node<K,V> *node, bool release)
437 {
438   V *ret = node->m_data;
439 
440   /* To perform delete, we just make it the min key, and extract.  */
441   replace_key (node, m_global_min_key);
442   if (node != m_min)
443     {
444       fprintf (stderr, "Can't force minimum on fibheap.\n");
445       abort ();
446     }
447   extract_min (release);
448 
449   return ret;
450 }
451 
452 /* Union the heap with HEAPB.  */
453 
454 template<class K, class V>
455 fibonacci_heap<K,V>*
456 fibonacci_heap<K,V>::union_with (fibonacci_heap<K,V> *heapb)
457 {
458   fibonacci_heap<K,V> *heapa = this;
459 
460   fibonacci_node<K,V> *a_root, *b_root, *temp;
461 
462   /* If one of the heaps is empty, the union is just the other heap.  */
463   if ((a_root = heapa->m_root) == NULL)
464     {
465       delete (heapa);
466       return heapb;
467     }
468   if ((b_root = heapb->m_root) == NULL)
469     {
470       delete (heapb);
471       return heapa;
472     }
473 
474   /* Merge them to the next nodes on the opposite chain.  */
475   a_root->m_left->m_right = b_root;
476   b_root->m_left->m_right = a_root;
477   temp = a_root->m_left;
478   a_root->m_left = b_root->m_left;
479   b_root->m_left = temp;
480   heapa->m_nodes += heapb->m_nodes;
481 
482   /* And set the new minimum, if it's changed.  */
483   if (heapb->min->compare (heapa->min) < 0)
484     heapa->m_min = heapb->m_min;
485 
486   delete (heapb);
487   return heapa;
488 }
489 
490 /* Insert it into the root list.  */
491 
492 template<class K, class V>
493 void
494 fibonacci_heap<K,V>::insert_root (fibonacci_node_t *node)
495 {
496   /* If the heap is currently empty, the new node becomes the singleton
497      circular root list.  */
498   if (m_root == NULL)
499     {
500       m_root = node;
501       node->m_left = node;
502       node->m_right = node;
503       return;
504     }
505 
506   /* Otherwise, insert it in the circular root list between the root
507      and it's right node.  */
508   m_root->insert_after (node);
509 }
510 
511 /* Remove NODE from PARENT's child list.  */
512 
513 template<class K, class V>
514 void
515 fibonacci_heap<K,V>::cut (fibonacci_node<K,V> *node,
516 			  fibonacci_node<K,V> *parent)
517 {
518   node->remove ();
519   parent->m_degree--;
520   insert_root (node);
521   node->m_parent = NULL;
522   node->m_mark = 0;
523 }
524 
525 /* Process cut of node Y and do it recursivelly.  */
526 
527 template<class K, class V>
528 void
529 fibonacci_heap<K,V>::cascading_cut (fibonacci_node<K,V> *y)
530 {
531   fibonacci_node<K,V> *z;
532 
533   while ((z = y->m_parent) != NULL)
534     {
535       if (y->m_mark == 0)
536 	{
537 	  y->m_mark = 1;
538 	  return;
539 	}
540       else
541 	{
542 	  cut (y, z);
543 	  y = z;
544 	}
545     }
546 }
547 
548 /* Extract minimum node from the heap.  */
549 template<class K, class V>
550 fibonacci_node<K,V>*
551 fibonacci_heap<K,V>::extract_minimum_node ()
552 {
553   fibonacci_node<K,V> *ret = m_min;
554   fibonacci_node<K,V> *x, *y, *orig;
555 
556   /* Attach the child list of the minimum node to the root list of the heap.
557      If there is no child list, we don't do squat.  */
558   for (x = ret->m_child, orig = NULL; x != orig && x != NULL; x = y)
559     {
560       if (orig == NULL)
561 	orig = x;
562       y = x->m_right;
563       x->m_parent = NULL;
564       insert_root (x);
565     }
566 
567   /* Remove the old root.  */
568   remove_root (ret);
569   m_nodes--;
570 
571   /* If we are left with no nodes, then the min is NULL.  */
572   if (m_nodes == 0)
573     m_min = NULL;
574   else
575     {
576       /* Otherwise, consolidate to find new minimum, as well as do the reorg
577        work that needs to be done.  */
578       m_min = ret->m_right;
579       consolidate ();
580     }
581 
582   return ret;
583 }
584 
585 /* Remove root NODE from the heap.  */
586 
587 template<class K, class V>
588 void
589 fibonacci_heap<K,V>::remove_root (fibonacci_node<K,V> *node)
590 {
591   if (node->m_left == node)
592     m_root = NULL;
593   else
594     m_root = node->remove ();
595 }
596 
597 /* Consolidate heap.  */
598 
599 template<class K, class V>
600 void fibonacci_heap<K,V>::consolidate ()
601 {
602   int D = 1 + 8 * sizeof (long);
603   auto_vec<fibonacci_node<K,V> *> a (D);
604   a.safe_grow_cleared (D);
605   fibonacci_node<K,V> *w, *x, *y;
606   int i, d;
607 
608   while ((w = m_root) != NULL)
609     {
610       x = w;
611       remove_root (w);
612       d = x->m_degree;
613       while (a[d] != NULL)
614 	{
615 	  y = a[d];
616 	  if (x->compare (y) > 0)
617 	    std::swap (x, y);
618 	  y->link (x);
619 	  a[d] = NULL;
620 	  d++;
621 	}
622       a[d] = x;
623     }
624   m_min = NULL;
625   for (i = 0; i < D; i++)
626     if (a[i] != NULL)
627       {
628 	insert_root (a[i]);
629 	if (m_min == NULL || a[i]->compare (m_min) < 0)
630 	  m_min = a[i];
631       }
632 }
633 
634 #endif  // GCC_FIBONACCI_HEAP_H
635