1 /* Subroutines for manipulating rtx's in semantically interesting ways. 2 Copyright (C) 1987-2017 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 21 #include "config.h" 22 #include "system.h" 23 #include "coretypes.h" 24 #include "target.h" 25 #include "function.h" 26 #include "rtl.h" 27 #include "tree.h" 28 #include "memmodel.h" 29 #include "tm_p.h" 30 #include "expmed.h" 31 #include "optabs.h" 32 #include "emit-rtl.h" 33 #include "recog.h" 34 #include "diagnostic-core.h" 35 #include "stor-layout.h" 36 #include "except.h" 37 #include "dojump.h" 38 #include "explow.h" 39 #include "expr.h" 40 #include "common/common-target.h" 41 #include "output.h" 42 43 static rtx break_out_memory_refs (rtx); 44 45 46 /* Truncate and perhaps sign-extend C as appropriate for MODE. */ 47 48 HOST_WIDE_INT 49 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode) 50 { 51 int width = GET_MODE_PRECISION (mode); 52 53 /* You want to truncate to a _what_? */ 54 gcc_assert (SCALAR_INT_MODE_P (mode) 55 || POINTER_BOUNDS_MODE_P (mode)); 56 57 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */ 58 if (mode == BImode) 59 return c & 1 ? STORE_FLAG_VALUE : 0; 60 61 /* Sign-extend for the requested mode. */ 62 63 if (width < HOST_BITS_PER_WIDE_INT) 64 { 65 HOST_WIDE_INT sign = 1; 66 sign <<= width - 1; 67 c &= (sign << 1) - 1; 68 c ^= sign; 69 c -= sign; 70 } 71 72 return c; 73 } 74 75 /* Return an rtx for the sum of X and the integer C, given that X has 76 mode MODE. INPLACE is true if X can be modified inplace or false 77 if it must be treated as immutable. */ 78 79 rtx 80 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c, 81 bool inplace) 82 { 83 RTX_CODE code; 84 rtx y; 85 rtx tem; 86 int all_constant = 0; 87 88 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode); 89 90 if (c == 0) 91 return x; 92 93 restart: 94 95 code = GET_CODE (x); 96 y = x; 97 98 switch (code) 99 { 100 CASE_CONST_SCALAR_INT: 101 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode); 102 case MEM: 103 /* If this is a reference to the constant pool, try replacing it with 104 a reference to a new constant. If the resulting address isn't 105 valid, don't return it because we have no way to validize it. */ 106 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF 107 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))) 108 { 109 rtx cst = get_pool_constant (XEXP (x, 0)); 110 111 if (GET_CODE (cst) == CONST_VECTOR 112 && GET_MODE_INNER (GET_MODE (cst)) == mode) 113 { 114 cst = gen_lowpart (mode, cst); 115 gcc_assert (cst); 116 } 117 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode) 118 { 119 tem = plus_constant (mode, cst, c); 120 tem = force_const_mem (GET_MODE (x), tem); 121 /* Targets may disallow some constants in the constant pool, thus 122 force_const_mem may return NULL_RTX. */ 123 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0))) 124 return tem; 125 } 126 } 127 break; 128 129 case CONST: 130 /* If adding to something entirely constant, set a flag 131 so that we can add a CONST around the result. */ 132 if (inplace && shared_const_p (x)) 133 inplace = false; 134 x = XEXP (x, 0); 135 all_constant = 1; 136 goto restart; 137 138 case SYMBOL_REF: 139 case LABEL_REF: 140 all_constant = 1; 141 break; 142 143 case PLUS: 144 /* The interesting case is adding the integer to a sum. Look 145 for constant term in the sum and combine with C. For an 146 integer constant term or a constant term that is not an 147 explicit integer, we combine or group them together anyway. 148 149 We may not immediately return from the recursive call here, lest 150 all_constant gets lost. */ 151 152 if (CONSTANT_P (XEXP (x, 1))) 153 { 154 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace); 155 if (term == const0_rtx) 156 x = XEXP (x, 0); 157 else if (inplace) 158 XEXP (x, 1) = term; 159 else 160 x = gen_rtx_PLUS (mode, XEXP (x, 0), term); 161 c = 0; 162 } 163 else if (rtx *const_loc = find_constant_term_loc (&y)) 164 { 165 if (!inplace) 166 { 167 /* We need to be careful since X may be shared and we can't 168 modify it in place. */ 169 x = copy_rtx (x); 170 const_loc = find_constant_term_loc (&x); 171 } 172 *const_loc = plus_constant (mode, *const_loc, c, true); 173 c = 0; 174 } 175 break; 176 177 default: 178 break; 179 } 180 181 if (c != 0) 182 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode)); 183 184 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF) 185 return x; 186 else if (all_constant) 187 return gen_rtx_CONST (mode, x); 188 else 189 return x; 190 } 191 192 /* If X is a sum, return a new sum like X but lacking any constant terms. 193 Add all the removed constant terms into *CONSTPTR. 194 X itself is not altered. The result != X if and only if 195 it is not isomorphic to X. */ 196 197 rtx 198 eliminate_constant_term (rtx x, rtx *constptr) 199 { 200 rtx x0, x1; 201 rtx tem; 202 203 if (GET_CODE (x) != PLUS) 204 return x; 205 206 /* First handle constants appearing at this level explicitly. */ 207 if (CONST_INT_P (XEXP (x, 1)) 208 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr, 209 XEXP (x, 1))) 210 && CONST_INT_P (tem)) 211 { 212 *constptr = tem; 213 return eliminate_constant_term (XEXP (x, 0), constptr); 214 } 215 216 tem = const0_rtx; 217 x0 = eliminate_constant_term (XEXP (x, 0), &tem); 218 x1 = eliminate_constant_term (XEXP (x, 1), &tem); 219 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0)) 220 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), 221 *constptr, tem)) 222 && CONST_INT_P (tem)) 223 { 224 *constptr = tem; 225 return gen_rtx_PLUS (GET_MODE (x), x0, x1); 226 } 227 228 return x; 229 } 230 231 232 /* Return a copy of X in which all memory references 233 and all constants that involve symbol refs 234 have been replaced with new temporary registers. 235 Also emit code to load the memory locations and constants 236 into those registers. 237 238 If X contains no such constants or memory references, 239 X itself (not a copy) is returned. 240 241 If a constant is found in the address that is not a legitimate constant 242 in an insn, it is left alone in the hope that it might be valid in the 243 address. 244 245 X may contain no arithmetic except addition, subtraction and multiplication. 246 Values returned by expand_expr with 1 for sum_ok fit this constraint. */ 247 248 static rtx 249 break_out_memory_refs (rtx x) 250 { 251 if (MEM_P (x) 252 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x) 253 && GET_MODE (x) != VOIDmode)) 254 x = force_reg (GET_MODE (x), x); 255 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS 256 || GET_CODE (x) == MULT) 257 { 258 rtx op0 = break_out_memory_refs (XEXP (x, 0)); 259 rtx op1 = break_out_memory_refs (XEXP (x, 1)); 260 261 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1)) 262 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1); 263 } 264 265 return x; 266 } 267 268 /* Given X, a memory address in address space AS' pointer mode, convert it to 269 an address in the address space's address mode, or vice versa (TO_MODE says 270 which way). We take advantage of the fact that pointers are not allowed to 271 overflow by commuting arithmetic operations over conversions so that address 272 arithmetic insns can be used. IN_CONST is true if this conversion is inside 273 a CONST. NO_EMIT is true if no insns should be emitted, and instead 274 it should return NULL if it can't be simplified without emitting insns. */ 275 276 rtx 277 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED, 278 rtx x, addr_space_t as ATTRIBUTE_UNUSED, 279 bool in_const ATTRIBUTE_UNUSED, 280 bool no_emit ATTRIBUTE_UNUSED) 281 { 282 #ifndef POINTERS_EXTEND_UNSIGNED 283 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode); 284 return x; 285 #else /* defined(POINTERS_EXTEND_UNSIGNED) */ 286 machine_mode pointer_mode, address_mode, from_mode; 287 rtx temp; 288 enum rtx_code code; 289 290 /* If X already has the right mode, just return it. */ 291 if (GET_MODE (x) == to_mode) 292 return x; 293 294 pointer_mode = targetm.addr_space.pointer_mode (as); 295 address_mode = targetm.addr_space.address_mode (as); 296 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode; 297 298 /* Here we handle some special cases. If none of them apply, fall through 299 to the default case. */ 300 switch (GET_CODE (x)) 301 { 302 CASE_CONST_SCALAR_INT: 303 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)) 304 code = TRUNCATE; 305 else if (POINTERS_EXTEND_UNSIGNED < 0) 306 break; 307 else if (POINTERS_EXTEND_UNSIGNED > 0) 308 code = ZERO_EXTEND; 309 else 310 code = SIGN_EXTEND; 311 temp = simplify_unary_operation (code, to_mode, x, from_mode); 312 if (temp) 313 return temp; 314 break; 315 316 case SUBREG: 317 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x))) 318 && GET_MODE (SUBREG_REG (x)) == to_mode) 319 return SUBREG_REG (x); 320 break; 321 322 case LABEL_REF: 323 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x)); 324 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x); 325 return temp; 326 327 case SYMBOL_REF: 328 temp = shallow_copy_rtx (x); 329 PUT_MODE (temp, to_mode); 330 return temp; 331 332 case CONST: 333 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as, 334 true, no_emit); 335 return temp ? gen_rtx_CONST (to_mode, temp) : temp; 336 337 case PLUS: 338 case MULT: 339 /* For addition we can safely permute the conversion and addition 340 operation if one operand is a constant and converting the constant 341 does not change it or if one operand is a constant and we are 342 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0). 343 We can always safely permute them if we are making the address 344 narrower. Inside a CONST RTL, this is safe for both pointers 345 zero or sign extended as pointers cannot wrap. */ 346 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode) 347 || (GET_CODE (x) == PLUS 348 && CONST_INT_P (XEXP (x, 1)) 349 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0) 350 || XEXP (x, 1) == convert_memory_address_addr_space_1 351 (to_mode, XEXP (x, 1), as, in_const, 352 no_emit) 353 || POINTERS_EXTEND_UNSIGNED < 0))) 354 { 355 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), 356 as, in_const, no_emit); 357 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode, 358 temp, XEXP (x, 1)) 359 : temp); 360 } 361 break; 362 363 default: 364 break; 365 } 366 367 if (no_emit) 368 return NULL_RTX; 369 370 return convert_modes (to_mode, from_mode, 371 x, POINTERS_EXTEND_UNSIGNED); 372 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */ 373 } 374 375 /* Given X, a memory address in address space AS' pointer mode, convert it to 376 an address in the address space's address mode, or vice versa (TO_MODE says 377 which way). We take advantage of the fact that pointers are not allowed to 378 overflow by commuting arithmetic operations over conversions so that address 379 arithmetic insns can be used. */ 380 381 rtx 382 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as) 383 { 384 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false); 385 } 386 387 388 /* Return something equivalent to X but valid as a memory address for something 389 of mode MODE in the named address space AS. When X is not itself valid, 390 this works by copying X or subexpressions of it into registers. */ 391 392 rtx 393 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as) 394 { 395 rtx oldx = x; 396 machine_mode address_mode = targetm.addr_space.address_mode (as); 397 398 x = convert_memory_address_addr_space (address_mode, x, as); 399 400 /* By passing constant addresses through registers 401 we get a chance to cse them. */ 402 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)) 403 x = force_reg (address_mode, x); 404 405 /* We get better cse by rejecting indirect addressing at this stage. 406 Let the combiner create indirect addresses where appropriate. 407 For now, generate the code so that the subexpressions useful to share 408 are visible. But not if cse won't be done! */ 409 else 410 { 411 if (! cse_not_expected && !REG_P (x)) 412 x = break_out_memory_refs (x); 413 414 /* At this point, any valid address is accepted. */ 415 if (memory_address_addr_space_p (mode, x, as)) 416 goto done; 417 418 /* If it was valid before but breaking out memory refs invalidated it, 419 use it the old way. */ 420 if (memory_address_addr_space_p (mode, oldx, as)) 421 { 422 x = oldx; 423 goto done; 424 } 425 426 /* Perform machine-dependent transformations on X 427 in certain cases. This is not necessary since the code 428 below can handle all possible cases, but machine-dependent 429 transformations can make better code. */ 430 { 431 rtx orig_x = x; 432 x = targetm.addr_space.legitimize_address (x, oldx, mode, as); 433 if (orig_x != x && memory_address_addr_space_p (mode, x, as)) 434 goto done; 435 } 436 437 /* PLUS and MULT can appear in special ways 438 as the result of attempts to make an address usable for indexing. 439 Usually they are dealt with by calling force_operand, below. 440 But a sum containing constant terms is special 441 if removing them makes the sum a valid address: 442 then we generate that address in a register 443 and index off of it. We do this because it often makes 444 shorter code, and because the addresses thus generated 445 in registers often become common subexpressions. */ 446 if (GET_CODE (x) == PLUS) 447 { 448 rtx constant_term = const0_rtx; 449 rtx y = eliminate_constant_term (x, &constant_term); 450 if (constant_term == const0_rtx 451 || ! memory_address_addr_space_p (mode, y, as)) 452 x = force_operand (x, NULL_RTX); 453 else 454 { 455 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term); 456 if (! memory_address_addr_space_p (mode, y, as)) 457 x = force_operand (x, NULL_RTX); 458 else 459 x = y; 460 } 461 } 462 463 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS) 464 x = force_operand (x, NULL_RTX); 465 466 /* If we have a register that's an invalid address, 467 it must be a hard reg of the wrong class. Copy it to a pseudo. */ 468 else if (REG_P (x)) 469 x = copy_to_reg (x); 470 471 /* Last resort: copy the value to a register, since 472 the register is a valid address. */ 473 else 474 x = force_reg (address_mode, x); 475 } 476 477 done: 478 479 gcc_assert (memory_address_addr_space_p (mode, x, as)); 480 /* If we didn't change the address, we are done. Otherwise, mark 481 a reg as a pointer if we have REG or REG + CONST_INT. */ 482 if (oldx == x) 483 return x; 484 else if (REG_P (x)) 485 mark_reg_pointer (x, BITS_PER_UNIT); 486 else if (GET_CODE (x) == PLUS 487 && REG_P (XEXP (x, 0)) 488 && CONST_INT_P (XEXP (x, 1))) 489 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT); 490 491 /* OLDX may have been the address on a temporary. Update the address 492 to indicate that X is now used. */ 493 update_temp_slot_address (oldx, x); 494 495 return x; 496 } 497 498 /* Convert a mem ref into one with a valid memory address. 499 Pass through anything else unchanged. */ 500 501 rtx 502 validize_mem (rtx ref) 503 { 504 if (!MEM_P (ref)) 505 return ref; 506 ref = use_anchored_address (ref); 507 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0), 508 MEM_ADDR_SPACE (ref))) 509 return ref; 510 511 /* Don't alter REF itself, since that is probably a stack slot. */ 512 return replace_equiv_address (ref, XEXP (ref, 0)); 513 } 514 515 /* If X is a memory reference to a member of an object block, try rewriting 516 it to use an anchor instead. Return the new memory reference on success 517 and the old one on failure. */ 518 519 rtx 520 use_anchored_address (rtx x) 521 { 522 rtx base; 523 HOST_WIDE_INT offset; 524 machine_mode mode; 525 526 if (!flag_section_anchors) 527 return x; 528 529 if (!MEM_P (x)) 530 return x; 531 532 /* Split the address into a base and offset. */ 533 base = XEXP (x, 0); 534 offset = 0; 535 if (GET_CODE (base) == CONST 536 && GET_CODE (XEXP (base, 0)) == PLUS 537 && CONST_INT_P (XEXP (XEXP (base, 0), 1))) 538 { 539 offset += INTVAL (XEXP (XEXP (base, 0), 1)); 540 base = XEXP (XEXP (base, 0), 0); 541 } 542 543 /* Check whether BASE is suitable for anchors. */ 544 if (GET_CODE (base) != SYMBOL_REF 545 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base) 546 || SYMBOL_REF_ANCHOR_P (base) 547 || SYMBOL_REF_BLOCK (base) == NULL 548 || !targetm.use_anchors_for_symbol_p (base)) 549 return x; 550 551 /* Decide where BASE is going to be. */ 552 place_block_symbol (base); 553 554 /* Get the anchor we need to use. */ 555 offset += SYMBOL_REF_BLOCK_OFFSET (base); 556 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset, 557 SYMBOL_REF_TLS_MODEL (base)); 558 559 /* Work out the offset from the anchor. */ 560 offset -= SYMBOL_REF_BLOCK_OFFSET (base); 561 562 /* If we're going to run a CSE pass, force the anchor into a register. 563 We will then be able to reuse registers for several accesses, if the 564 target costs say that that's worthwhile. */ 565 mode = GET_MODE (base); 566 if (!cse_not_expected) 567 base = force_reg (mode, base); 568 569 return replace_equiv_address (x, plus_constant (mode, base, offset)); 570 } 571 572 /* Copy the value or contents of X to a new temp reg and return that reg. */ 573 574 rtx 575 copy_to_reg (rtx x) 576 { 577 rtx temp = gen_reg_rtx (GET_MODE (x)); 578 579 /* If not an operand, must be an address with PLUS and MULT so 580 do the computation. */ 581 if (! general_operand (x, VOIDmode)) 582 x = force_operand (x, temp); 583 584 if (x != temp) 585 emit_move_insn (temp, x); 586 587 return temp; 588 } 589 590 /* Like copy_to_reg but always give the new register mode Pmode 591 in case X is a constant. */ 592 593 rtx 594 copy_addr_to_reg (rtx x) 595 { 596 return copy_to_mode_reg (Pmode, x); 597 } 598 599 /* Like copy_to_reg but always give the new register mode MODE 600 in case X is a constant. */ 601 602 rtx 603 copy_to_mode_reg (machine_mode mode, rtx x) 604 { 605 rtx temp = gen_reg_rtx (mode); 606 607 /* If not an operand, must be an address with PLUS and MULT so 608 do the computation. */ 609 if (! general_operand (x, VOIDmode)) 610 x = force_operand (x, temp); 611 612 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode); 613 if (x != temp) 614 emit_move_insn (temp, x); 615 return temp; 616 } 617 618 /* Load X into a register if it is not already one. 619 Use mode MODE for the register. 620 X should be valid for mode MODE, but it may be a constant which 621 is valid for all integer modes; that's why caller must specify MODE. 622 623 The caller must not alter the value in the register we return, 624 since we mark it as a "constant" register. */ 625 626 rtx 627 force_reg (machine_mode mode, rtx x) 628 { 629 rtx temp, set; 630 rtx_insn *insn; 631 632 if (REG_P (x)) 633 return x; 634 635 if (general_operand (x, mode)) 636 { 637 temp = gen_reg_rtx (mode); 638 insn = emit_move_insn (temp, x); 639 } 640 else 641 { 642 temp = force_operand (x, NULL_RTX); 643 if (REG_P (temp)) 644 insn = get_last_insn (); 645 else 646 { 647 rtx temp2 = gen_reg_rtx (mode); 648 insn = emit_move_insn (temp2, temp); 649 temp = temp2; 650 } 651 } 652 653 /* Let optimizers know that TEMP's value never changes 654 and that X can be substituted for it. Don't get confused 655 if INSN set something else (such as a SUBREG of TEMP). */ 656 if (CONSTANT_P (x) 657 && (set = single_set (insn)) != 0 658 && SET_DEST (set) == temp 659 && ! rtx_equal_p (x, SET_SRC (set))) 660 set_unique_reg_note (insn, REG_EQUAL, x); 661 662 /* Let optimizers know that TEMP is a pointer, and if so, the 663 known alignment of that pointer. */ 664 { 665 unsigned align = 0; 666 if (GET_CODE (x) == SYMBOL_REF) 667 { 668 align = BITS_PER_UNIT; 669 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x))) 670 align = DECL_ALIGN (SYMBOL_REF_DECL (x)); 671 } 672 else if (GET_CODE (x) == LABEL_REF) 673 align = BITS_PER_UNIT; 674 else if (GET_CODE (x) == CONST 675 && GET_CODE (XEXP (x, 0)) == PLUS 676 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF 677 && CONST_INT_P (XEXP (XEXP (x, 0), 1))) 678 { 679 rtx s = XEXP (XEXP (x, 0), 0); 680 rtx c = XEXP (XEXP (x, 0), 1); 681 unsigned sa, ca; 682 683 sa = BITS_PER_UNIT; 684 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s))) 685 sa = DECL_ALIGN (SYMBOL_REF_DECL (s)); 686 687 if (INTVAL (c) == 0) 688 align = sa; 689 else 690 { 691 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT; 692 align = MIN (sa, ca); 693 } 694 } 695 696 if (align || (MEM_P (x) && MEM_POINTER (x))) 697 mark_reg_pointer (temp, align); 698 } 699 700 return temp; 701 } 702 703 /* If X is a memory ref, copy its contents to a new temp reg and return 704 that reg. Otherwise, return X. */ 705 706 rtx 707 force_not_mem (rtx x) 708 { 709 rtx temp; 710 711 if (!MEM_P (x) || GET_MODE (x) == BLKmode) 712 return x; 713 714 temp = gen_reg_rtx (GET_MODE (x)); 715 716 if (MEM_POINTER (x)) 717 REG_POINTER (temp) = 1; 718 719 emit_move_insn (temp, x); 720 return temp; 721 } 722 723 /* Copy X to TARGET (if it's nonzero and a reg) 724 or to a new temp reg and return that reg. 725 MODE is the mode to use for X in case it is a constant. */ 726 727 rtx 728 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode) 729 { 730 rtx temp; 731 732 if (target && REG_P (target)) 733 temp = target; 734 else 735 temp = gen_reg_rtx (mode); 736 737 emit_move_insn (temp, x); 738 return temp; 739 } 740 741 /* Return the mode to use to pass or return a scalar of TYPE and MODE. 742 PUNSIGNEDP points to the signedness of the type and may be adjusted 743 to show what signedness to use on extension operations. 744 745 FOR_RETURN is nonzero if the caller is promoting the return value 746 of FNDECL, else it is for promoting args. */ 747 748 machine_mode 749 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp, 750 const_tree funtype, int for_return) 751 { 752 /* Called without a type node for a libcall. */ 753 if (type == NULL_TREE) 754 { 755 if (INTEGRAL_MODE_P (mode)) 756 return targetm.calls.promote_function_mode (NULL_TREE, mode, 757 punsignedp, funtype, 758 for_return); 759 else 760 return mode; 761 } 762 763 switch (TREE_CODE (type)) 764 { 765 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 766 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE: 767 case POINTER_TYPE: case REFERENCE_TYPE: 768 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype, 769 for_return); 770 771 default: 772 return mode; 773 } 774 } 775 /* Return the mode to use to store a scalar of TYPE and MODE. 776 PUNSIGNEDP points to the signedness of the type and may be adjusted 777 to show what signedness to use on extension operations. */ 778 779 machine_mode 780 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode, 781 int *punsignedp ATTRIBUTE_UNUSED) 782 { 783 #ifdef PROMOTE_MODE 784 enum tree_code code; 785 int unsignedp; 786 #endif 787 788 /* For libcalls this is invoked without TYPE from the backends 789 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that 790 case. */ 791 if (type == NULL_TREE) 792 return mode; 793 794 /* FIXME: this is the same logic that was there until GCC 4.4, but we 795 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE 796 is not defined. The affected targets are M32C, S390, SPARC. */ 797 #ifdef PROMOTE_MODE 798 code = TREE_CODE (type); 799 unsignedp = *punsignedp; 800 801 switch (code) 802 { 803 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: 804 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE: 805 PROMOTE_MODE (mode, unsignedp, type); 806 *punsignedp = unsignedp; 807 return mode; 808 809 #ifdef POINTERS_EXTEND_UNSIGNED 810 case REFERENCE_TYPE: 811 case POINTER_TYPE: 812 *punsignedp = POINTERS_EXTEND_UNSIGNED; 813 return targetm.addr_space.address_mode 814 (TYPE_ADDR_SPACE (TREE_TYPE (type))); 815 #endif 816 817 default: 818 return mode; 819 } 820 #else 821 return mode; 822 #endif 823 } 824 825 826 /* Use one of promote_mode or promote_function_mode to find the promoted 827 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness 828 of DECL after promotion. */ 829 830 machine_mode 831 promote_decl_mode (const_tree decl, int *punsignedp) 832 { 833 tree type = TREE_TYPE (decl); 834 int unsignedp = TYPE_UNSIGNED (type); 835 machine_mode mode = DECL_MODE (decl); 836 machine_mode pmode; 837 838 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl)) 839 pmode = promote_function_mode (type, mode, &unsignedp, 840 TREE_TYPE (current_function_decl), 1); 841 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL) 842 pmode = promote_function_mode (type, mode, &unsignedp, 843 TREE_TYPE (current_function_decl), 2); 844 else 845 pmode = promote_mode (type, mode, &unsignedp); 846 847 if (punsignedp) 848 *punsignedp = unsignedp; 849 return pmode; 850 } 851 852 /* Return the promoted mode for name. If it is a named SSA_NAME, it 853 is the same as promote_decl_mode. Otherwise, it is the promoted 854 mode of a temp decl of same type as the SSA_NAME, if we had created 855 one. */ 856 857 machine_mode 858 promote_ssa_mode (const_tree name, int *punsignedp) 859 { 860 gcc_assert (TREE_CODE (name) == SSA_NAME); 861 862 /* Partitions holding parms and results must be promoted as expected 863 by function.c. */ 864 if (SSA_NAME_VAR (name) 865 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL 866 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL)) 867 { 868 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp); 869 if (mode != BLKmode) 870 return mode; 871 } 872 873 tree type = TREE_TYPE (name); 874 int unsignedp = TYPE_UNSIGNED (type); 875 machine_mode pmode = promote_mode (type, TYPE_MODE (type), &unsignedp); 876 if (punsignedp) 877 *punsignedp = unsignedp; 878 879 return pmode; 880 } 881 882 883 884 /* Controls the behavior of {anti_,}adjust_stack. */ 885 static bool suppress_reg_args_size; 886 887 /* A helper for adjust_stack and anti_adjust_stack. */ 888 889 static void 890 adjust_stack_1 (rtx adjust, bool anti_p) 891 { 892 rtx temp; 893 rtx_insn *insn; 894 895 /* Hereafter anti_p means subtract_p. */ 896 if (!STACK_GROWS_DOWNWARD) 897 anti_p = !anti_p; 898 899 temp = expand_binop (Pmode, 900 anti_p ? sub_optab : add_optab, 901 stack_pointer_rtx, adjust, stack_pointer_rtx, 0, 902 OPTAB_LIB_WIDEN); 903 904 if (temp != stack_pointer_rtx) 905 insn = emit_move_insn (stack_pointer_rtx, temp); 906 else 907 { 908 insn = get_last_insn (); 909 temp = single_set (insn); 910 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx); 911 } 912 913 if (!suppress_reg_args_size) 914 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta)); 915 } 916 917 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes). 918 This pops when ADJUST is positive. ADJUST need not be constant. */ 919 920 void 921 adjust_stack (rtx adjust) 922 { 923 if (adjust == const0_rtx) 924 return; 925 926 /* We expect all variable sized adjustments to be multiple of 927 PREFERRED_STACK_BOUNDARY. */ 928 if (CONST_INT_P (adjust)) 929 stack_pointer_delta -= INTVAL (adjust); 930 931 adjust_stack_1 (adjust, false); 932 } 933 934 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes). 935 This pushes when ADJUST is positive. ADJUST need not be constant. */ 936 937 void 938 anti_adjust_stack (rtx adjust) 939 { 940 if (adjust == const0_rtx) 941 return; 942 943 /* We expect all variable sized adjustments to be multiple of 944 PREFERRED_STACK_BOUNDARY. */ 945 if (CONST_INT_P (adjust)) 946 stack_pointer_delta += INTVAL (adjust); 947 948 adjust_stack_1 (adjust, true); 949 } 950 951 /* Round the size of a block to be pushed up to the boundary required 952 by this machine. SIZE is the desired size, which need not be constant. */ 953 954 static rtx 955 round_push (rtx size) 956 { 957 rtx align_rtx, alignm1_rtx; 958 959 if (!SUPPORTS_STACK_ALIGNMENT 960 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT) 961 { 962 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT; 963 964 if (align == 1) 965 return size; 966 967 if (CONST_INT_P (size)) 968 { 969 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align; 970 971 if (INTVAL (size) != new_size) 972 size = GEN_INT (new_size); 973 return size; 974 } 975 976 align_rtx = GEN_INT (align); 977 alignm1_rtx = GEN_INT (align - 1); 978 } 979 else 980 { 981 /* If crtl->preferred_stack_boundary might still grow, use 982 virtual_preferred_stack_boundary_rtx instead. This will be 983 substituted by the right value in vregs pass and optimized 984 during combine. */ 985 align_rtx = virtual_preferred_stack_boundary_rtx; 986 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1), 987 NULL_RTX); 988 } 989 990 /* CEIL_DIV_EXPR needs to worry about the addition overflowing, 991 but we know it can't. So add ourselves and then do 992 TRUNC_DIV_EXPR. */ 993 size = expand_binop (Pmode, add_optab, size, alignm1_rtx, 994 NULL_RTX, 1, OPTAB_LIB_WIDEN); 995 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx, 996 NULL_RTX, 1); 997 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1); 998 999 return size; 1000 } 1001 1002 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer 1003 to a previously-created save area. If no save area has been allocated, 1004 this function will allocate one. If a save area is specified, it 1005 must be of the proper mode. */ 1006 1007 void 1008 emit_stack_save (enum save_level save_level, rtx *psave) 1009 { 1010 rtx sa = *psave; 1011 /* The default is that we use a move insn and save in a Pmode object. */ 1012 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn; 1013 machine_mode mode = STACK_SAVEAREA_MODE (save_level); 1014 1015 /* See if this machine has anything special to do for this kind of save. */ 1016 switch (save_level) 1017 { 1018 case SAVE_BLOCK: 1019 if (targetm.have_save_stack_block ()) 1020 fcn = targetm.gen_save_stack_block; 1021 break; 1022 case SAVE_FUNCTION: 1023 if (targetm.have_save_stack_function ()) 1024 fcn = targetm.gen_save_stack_function; 1025 break; 1026 case SAVE_NONLOCAL: 1027 if (targetm.have_save_stack_nonlocal ()) 1028 fcn = targetm.gen_save_stack_nonlocal; 1029 break; 1030 default: 1031 break; 1032 } 1033 1034 /* If there is no save area and we have to allocate one, do so. Otherwise 1035 verify the save area is the proper mode. */ 1036 1037 if (sa == 0) 1038 { 1039 if (mode != VOIDmode) 1040 { 1041 if (save_level == SAVE_NONLOCAL) 1042 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0); 1043 else 1044 *psave = sa = gen_reg_rtx (mode); 1045 } 1046 } 1047 1048 do_pending_stack_adjust (); 1049 if (sa != 0) 1050 sa = validize_mem (sa); 1051 emit_insn (fcn (sa, stack_pointer_rtx)); 1052 } 1053 1054 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save 1055 area made by emit_stack_save. If it is zero, we have nothing to do. */ 1056 1057 void 1058 emit_stack_restore (enum save_level save_level, rtx sa) 1059 { 1060 /* The default is that we use a move insn. */ 1061 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn; 1062 1063 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both 1064 STACK_POINTER and HARD_FRAME_POINTER. 1065 If stack_realign_fp, the x86 backend emits a prologue that aligns only 1066 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing 1067 aligned variables, which is reflected in ix86_can_eliminate. 1068 We normally still have the realigned STACK_POINTER that we can use. 1069 But if there is a stack restore still present at reload, it can trigger 1070 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate 1071 FRAME_POINTER into a hard reg. 1072 To prevent this situation, we force need_drap if we emit a stack 1073 restore. */ 1074 if (SUPPORTS_STACK_ALIGNMENT) 1075 crtl->need_drap = true; 1076 1077 /* See if this machine has anything special to do for this kind of save. */ 1078 switch (save_level) 1079 { 1080 case SAVE_BLOCK: 1081 if (targetm.have_restore_stack_block ()) 1082 fcn = targetm.gen_restore_stack_block; 1083 break; 1084 case SAVE_FUNCTION: 1085 if (targetm.have_restore_stack_function ()) 1086 fcn = targetm.gen_restore_stack_function; 1087 break; 1088 case SAVE_NONLOCAL: 1089 if (targetm.have_restore_stack_nonlocal ()) 1090 fcn = targetm.gen_restore_stack_nonlocal; 1091 break; 1092 default: 1093 break; 1094 } 1095 1096 if (sa != 0) 1097 { 1098 sa = validize_mem (sa); 1099 /* These clobbers prevent the scheduler from moving 1100 references to variable arrays below the code 1101 that deletes (pops) the arrays. */ 1102 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode))); 1103 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx)); 1104 } 1105 1106 discard_pending_stack_adjust (); 1107 1108 emit_insn (fcn (stack_pointer_rtx, sa)); 1109 } 1110 1111 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current 1112 function. This should be called whenever we allocate or deallocate 1113 dynamic stack space. */ 1114 1115 void 1116 update_nonlocal_goto_save_area (void) 1117 { 1118 tree t_save; 1119 rtx r_save; 1120 1121 /* The nonlocal_goto_save_area object is an array of N pointers. The 1122 first one is used for the frame pointer save; the rest are sized by 1123 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first 1124 of the stack save area slots. */ 1125 t_save = build4 (ARRAY_REF, 1126 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)), 1127 cfun->nonlocal_goto_save_area, 1128 integer_one_node, NULL_TREE, NULL_TREE); 1129 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE); 1130 1131 emit_stack_save (SAVE_NONLOCAL, &r_save); 1132 } 1133 1134 /* Record a new stack level for the current function. This should be called 1135 whenever we allocate or deallocate dynamic stack space. */ 1136 1137 void 1138 record_new_stack_level (void) 1139 { 1140 /* Record the new stack level for nonlocal gotos. */ 1141 if (cfun->nonlocal_goto_save_area) 1142 update_nonlocal_goto_save_area (); 1143 1144 /* Record the new stack level for SJLJ exceptions. */ 1145 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ) 1146 update_sjlj_context (); 1147 } 1148 1149 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */ 1150 static rtx 1151 align_dynamic_address (rtx target, unsigned required_align) 1152 { 1153 /* CEIL_DIV_EXPR needs to worry about the addition overflowing, 1154 but we know it can't. So add ourselves and then do 1155 TRUNC_DIV_EXPR. */ 1156 target = expand_binop (Pmode, add_optab, target, 1157 gen_int_mode (required_align / BITS_PER_UNIT - 1, 1158 Pmode), 1159 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1160 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target, 1161 gen_int_mode (required_align / BITS_PER_UNIT, 1162 Pmode), 1163 NULL_RTX, 1); 1164 target = expand_mult (Pmode, target, 1165 gen_int_mode (required_align / BITS_PER_UNIT, 1166 Pmode), 1167 NULL_RTX, 1); 1168 1169 return target; 1170 } 1171 1172 /* Return an rtx through *PSIZE, representing the size of an area of memory to 1173 be dynamically pushed on the stack. 1174 1175 *PSIZE is an rtx representing the size of the area. 1176 1177 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This 1178 parameter may be zero. If so, a proper value will be extracted 1179 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed. 1180 1181 REQUIRED_ALIGN is the alignment (in bits) required for the region 1182 of memory. 1183 1184 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for 1185 the additional size returned. */ 1186 void 1187 get_dynamic_stack_size (rtx *psize, unsigned size_align, 1188 unsigned required_align, 1189 HOST_WIDE_INT *pstack_usage_size) 1190 { 1191 unsigned extra = 0; 1192 rtx size = *psize; 1193 1194 /* Ensure the size is in the proper mode. */ 1195 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1196 size = convert_to_mode (Pmode, size, 1); 1197 1198 if (CONST_INT_P (size)) 1199 { 1200 unsigned HOST_WIDE_INT lsb; 1201 1202 lsb = INTVAL (size); 1203 lsb &= -lsb; 1204 1205 /* Watch out for overflow truncating to "unsigned". */ 1206 if (lsb > UINT_MAX / BITS_PER_UNIT) 1207 size_align = 1u << (HOST_BITS_PER_INT - 1); 1208 else 1209 size_align = (unsigned)lsb * BITS_PER_UNIT; 1210 } 1211 else if (size_align < BITS_PER_UNIT) 1212 size_align = BITS_PER_UNIT; 1213 1214 /* We can't attempt to minimize alignment necessary, because we don't 1215 know the final value of preferred_stack_boundary yet while executing 1216 this code. */ 1217 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY) 1218 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; 1219 1220 /* We will need to ensure that the address we return is aligned to 1221 REQUIRED_ALIGN. At this point in the compilation, we don't always 1222 know the final value of the STACK_DYNAMIC_OFFSET used in function.c 1223 (it might depend on the size of the outgoing parameter lists, for 1224 example), so we must preventively align the value. We leave space 1225 in SIZE for the hole that might result from the alignment operation. */ 1226 1227 extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT; 1228 size = plus_constant (Pmode, size, extra); 1229 size = force_operand (size, NULL_RTX); 1230 1231 if (flag_stack_usage_info && pstack_usage_size) 1232 *pstack_usage_size += extra; 1233 1234 if (extra && size_align > BITS_PER_UNIT) 1235 size_align = BITS_PER_UNIT; 1236 1237 /* Round the size to a multiple of the required stack alignment. 1238 Since the stack is presumed to be rounded before this allocation, 1239 this will maintain the required alignment. 1240 1241 If the stack grows downward, we could save an insn by subtracting 1242 SIZE from the stack pointer and then aligning the stack pointer. 1243 The problem with this is that the stack pointer may be unaligned 1244 between the execution of the subtraction and alignment insns and 1245 some machines do not allow this. Even on those that do, some 1246 signal handlers malfunction if a signal should occur between those 1247 insns. Since this is an extremely rare event, we have no reliable 1248 way of knowing which systems have this problem. So we avoid even 1249 momentarily mis-aligning the stack. */ 1250 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0) 1251 { 1252 size = round_push (size); 1253 1254 if (flag_stack_usage_info && pstack_usage_size) 1255 { 1256 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT; 1257 *pstack_usage_size = 1258 (*pstack_usage_size + align - 1) / align * align; 1259 } 1260 } 1261 1262 *psize = size; 1263 } 1264 1265 /* Return an rtx representing the address of an area of memory dynamically 1266 pushed on the stack. 1267 1268 Any required stack pointer alignment is preserved. 1269 1270 SIZE is an rtx representing the size of the area. 1271 1272 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This 1273 parameter may be zero. If so, a proper value will be extracted 1274 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed. 1275 1276 REQUIRED_ALIGN is the alignment (in bits) required for the region 1277 of memory. 1278 1279 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the 1280 stack space allocated by the generated code cannot be added with itself 1281 in the course of the execution of the function. It is always safe to 1282 pass FALSE here and the following criterion is sufficient in order to 1283 pass TRUE: every path in the CFG that starts at the allocation point and 1284 loops to it executes the associated deallocation code. */ 1285 1286 rtx 1287 allocate_dynamic_stack_space (rtx size, unsigned size_align, 1288 unsigned required_align, bool cannot_accumulate) 1289 { 1290 HOST_WIDE_INT stack_usage_size = -1; 1291 rtx_code_label *final_label; 1292 rtx final_target, target; 1293 1294 /* If we're asking for zero bytes, it doesn't matter what we point 1295 to since we can't dereference it. But return a reasonable 1296 address anyway. */ 1297 if (size == const0_rtx) 1298 return virtual_stack_dynamic_rtx; 1299 1300 /* Otherwise, show we're calling alloca or equivalent. */ 1301 cfun->calls_alloca = 1; 1302 1303 /* If stack usage info is requested, look into the size we are passed. 1304 We need to do so this early to avoid the obfuscation that may be 1305 introduced later by the various alignment operations. */ 1306 if (flag_stack_usage_info) 1307 { 1308 if (CONST_INT_P (size)) 1309 stack_usage_size = INTVAL (size); 1310 else if (REG_P (size)) 1311 { 1312 /* Look into the last emitted insn and see if we can deduce 1313 something for the register. */ 1314 rtx_insn *insn; 1315 rtx set, note; 1316 insn = get_last_insn (); 1317 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size)) 1318 { 1319 if (CONST_INT_P (SET_SRC (set))) 1320 stack_usage_size = INTVAL (SET_SRC (set)); 1321 else if ((note = find_reg_equal_equiv_note (insn)) 1322 && CONST_INT_P (XEXP (note, 0))) 1323 stack_usage_size = INTVAL (XEXP (note, 0)); 1324 } 1325 } 1326 1327 /* If the size is not constant, we can't say anything. */ 1328 if (stack_usage_size == -1) 1329 { 1330 current_function_has_unbounded_dynamic_stack_size = 1; 1331 stack_usage_size = 0; 1332 } 1333 } 1334 1335 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size); 1336 1337 target = gen_reg_rtx (Pmode); 1338 1339 /* The size is supposed to be fully adjusted at this point so record it 1340 if stack usage info is requested. */ 1341 if (flag_stack_usage_info) 1342 { 1343 current_function_dynamic_stack_size += stack_usage_size; 1344 1345 /* ??? This is gross but the only safe stance in the absence 1346 of stack usage oriented flow analysis. */ 1347 if (!cannot_accumulate) 1348 current_function_has_unbounded_dynamic_stack_size = 1; 1349 } 1350 1351 do_pending_stack_adjust (); 1352 1353 final_label = NULL; 1354 final_target = NULL_RTX; 1355 1356 /* If we are splitting the stack, we need to ask the backend whether 1357 there is enough room on the current stack. If there isn't, or if 1358 the backend doesn't know how to tell is, then we need to call a 1359 function to allocate memory in some other way. This memory will 1360 be released when we release the current stack segment. The 1361 effect is that stack allocation becomes less efficient, but at 1362 least it doesn't cause a stack overflow. */ 1363 if (flag_split_stack) 1364 { 1365 rtx_code_label *available_label; 1366 rtx ask, space, func; 1367 1368 available_label = NULL; 1369 1370 if (targetm.have_split_stack_space_check ()) 1371 { 1372 available_label = gen_label_rtx (); 1373 1374 /* This instruction will branch to AVAILABLE_LABEL if there 1375 are SIZE bytes available on the stack. */ 1376 emit_insn (targetm.gen_split_stack_space_check 1377 (size, available_label)); 1378 } 1379 1380 /* The __morestack_allocate_stack_space function will allocate 1381 memory using malloc. If the alignment of the memory returned 1382 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to 1383 make sure we allocate enough space. */ 1384 if (MALLOC_ABI_ALIGNMENT >= required_align) 1385 ask = size; 1386 else 1387 ask = expand_binop (Pmode, add_optab, size, 1388 gen_int_mode (required_align / BITS_PER_UNIT - 1, 1389 Pmode), 1390 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1391 1392 func = init_one_libfunc ("__morestack_allocate_stack_space"); 1393 1394 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode, 1395 1, ask, Pmode); 1396 1397 if (available_label == NULL_RTX) 1398 return space; 1399 1400 final_target = gen_reg_rtx (Pmode); 1401 1402 emit_move_insn (final_target, space); 1403 1404 final_label = gen_label_rtx (); 1405 emit_jump (final_label); 1406 1407 emit_label (available_label); 1408 } 1409 1410 /* We ought to be called always on the toplevel and stack ought to be aligned 1411 properly. */ 1412 gcc_assert (!(stack_pointer_delta 1413 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))); 1414 1415 /* If needed, check that we have the required amount of stack. Take into 1416 account what has already been checked. */ 1417 if (STACK_CHECK_MOVING_SP) 1418 ; 1419 else if (flag_stack_check == GENERIC_STACK_CHECK) 1420 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE, 1421 size); 1422 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK) 1423 probe_stack_range (STACK_CHECK_PROTECT, size); 1424 1425 /* Don't let anti_adjust_stack emit notes. */ 1426 suppress_reg_args_size = true; 1427 1428 /* Perform the required allocation from the stack. Some systems do 1429 this differently than simply incrementing/decrementing from the 1430 stack pointer, such as acquiring the space by calling malloc(). */ 1431 if (targetm.have_allocate_stack ()) 1432 { 1433 struct expand_operand ops[2]; 1434 /* We don't have to check against the predicate for operand 0 since 1435 TARGET is known to be a pseudo of the proper mode, which must 1436 be valid for the operand. */ 1437 create_fixed_operand (&ops[0], target); 1438 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true); 1439 expand_insn (targetm.code_for_allocate_stack, 2, ops); 1440 } 1441 else 1442 { 1443 int saved_stack_pointer_delta; 1444 1445 if (!STACK_GROWS_DOWNWARD) 1446 emit_move_insn (target, virtual_stack_dynamic_rtx); 1447 1448 /* Check stack bounds if necessary. */ 1449 if (crtl->limit_stack) 1450 { 1451 rtx available; 1452 rtx_code_label *space_available = gen_label_rtx (); 1453 if (STACK_GROWS_DOWNWARD) 1454 available = expand_binop (Pmode, sub_optab, 1455 stack_pointer_rtx, stack_limit_rtx, 1456 NULL_RTX, 1, OPTAB_WIDEN); 1457 else 1458 available = expand_binop (Pmode, sub_optab, 1459 stack_limit_rtx, stack_pointer_rtx, 1460 NULL_RTX, 1, OPTAB_WIDEN); 1461 1462 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1, 1463 space_available); 1464 if (targetm.have_trap ()) 1465 emit_insn (targetm.gen_trap ()); 1466 else 1467 error ("stack limits not supported on this target"); 1468 emit_barrier (); 1469 emit_label (space_available); 1470 } 1471 1472 saved_stack_pointer_delta = stack_pointer_delta; 1473 1474 if (flag_stack_check && STACK_CHECK_MOVING_SP) 1475 anti_adjust_stack_and_probe (size, false); 1476 else 1477 anti_adjust_stack (size); 1478 1479 /* Even if size is constant, don't modify stack_pointer_delta. 1480 The constant size alloca should preserve 1481 crtl->preferred_stack_boundary alignment. */ 1482 stack_pointer_delta = saved_stack_pointer_delta; 1483 1484 if (STACK_GROWS_DOWNWARD) 1485 emit_move_insn (target, virtual_stack_dynamic_rtx); 1486 } 1487 1488 suppress_reg_args_size = false; 1489 1490 /* Finish up the split stack handling. */ 1491 if (final_label != NULL_RTX) 1492 { 1493 gcc_assert (flag_split_stack); 1494 emit_move_insn (final_target, target); 1495 emit_label (final_label); 1496 target = final_target; 1497 } 1498 1499 target = align_dynamic_address (target, required_align); 1500 1501 /* Now that we've committed to a return value, mark its alignment. */ 1502 mark_reg_pointer (target, required_align); 1503 1504 /* Record the new stack level. */ 1505 record_new_stack_level (); 1506 1507 return target; 1508 } 1509 1510 /* Return an rtx representing the address of an area of memory already 1511 statically pushed onto the stack in the virtual stack vars area. (It is 1512 assumed that the area is allocated in the function prologue.) 1513 1514 Any required stack pointer alignment is preserved. 1515 1516 OFFSET is the offset of the area into the virtual stack vars area. 1517 1518 REQUIRED_ALIGN is the alignment (in bits) required for the region 1519 of memory. */ 1520 1521 rtx 1522 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align) 1523 { 1524 rtx target; 1525 1526 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY) 1527 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; 1528 1529 target = gen_reg_rtx (Pmode); 1530 emit_move_insn (target, virtual_stack_vars_rtx); 1531 target = expand_binop (Pmode, add_optab, target, 1532 gen_int_mode (offset, Pmode), 1533 NULL_RTX, 1, OPTAB_LIB_WIDEN); 1534 target = align_dynamic_address (target, required_align); 1535 1536 /* Now that we've committed to a return value, mark its alignment. */ 1537 mark_reg_pointer (target, required_align); 1538 1539 return target; 1540 } 1541 1542 /* A front end may want to override GCC's stack checking by providing a 1543 run-time routine to call to check the stack, so provide a mechanism for 1544 calling that routine. */ 1545 1546 static GTY(()) rtx stack_check_libfunc; 1547 1548 void 1549 set_stack_check_libfunc (const char *libfunc_name) 1550 { 1551 gcc_assert (stack_check_libfunc == NULL_RTX); 1552 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name); 1553 } 1554 1555 /* Emit one stack probe at ADDRESS, an address within the stack. */ 1556 1557 void 1558 emit_stack_probe (rtx address) 1559 { 1560 if (targetm.have_probe_stack_address ()) 1561 emit_insn (targetm.gen_probe_stack_address (address)); 1562 else 1563 { 1564 rtx memref = gen_rtx_MEM (word_mode, address); 1565 1566 MEM_VOLATILE_P (memref) = 1; 1567 1568 /* See if we have an insn to probe the stack. */ 1569 if (targetm.have_probe_stack ()) 1570 emit_insn (targetm.gen_probe_stack (memref)); 1571 else 1572 emit_move_insn (memref, const0_rtx); 1573 } 1574 } 1575 1576 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive. 1577 FIRST is a constant and size is a Pmode RTX. These are offsets from 1578 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add 1579 or subtract them from the stack pointer. */ 1580 1581 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP) 1582 1583 #if STACK_GROWS_DOWNWARD 1584 #define STACK_GROW_OP MINUS 1585 #define STACK_GROW_OPTAB sub_optab 1586 #define STACK_GROW_OFF(off) -(off) 1587 #else 1588 #define STACK_GROW_OP PLUS 1589 #define STACK_GROW_OPTAB add_optab 1590 #define STACK_GROW_OFF(off) (off) 1591 #endif 1592 1593 void 1594 probe_stack_range (HOST_WIDE_INT first, rtx size) 1595 { 1596 /* First ensure SIZE is Pmode. */ 1597 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1598 size = convert_to_mode (Pmode, size, 1); 1599 1600 /* Next see if we have a function to check the stack. */ 1601 if (stack_check_libfunc) 1602 { 1603 rtx addr = memory_address (Pmode, 1604 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1605 stack_pointer_rtx, 1606 plus_constant (Pmode, 1607 size, first))); 1608 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr, 1609 Pmode); 1610 } 1611 1612 /* Next see if we have an insn to check the stack. */ 1613 else if (targetm.have_check_stack ()) 1614 { 1615 struct expand_operand ops[1]; 1616 rtx addr = memory_address (Pmode, 1617 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1618 stack_pointer_rtx, 1619 plus_constant (Pmode, 1620 size, first))); 1621 bool success; 1622 create_input_operand (&ops[0], addr, Pmode); 1623 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops); 1624 gcc_assert (success); 1625 } 1626 1627 /* Otherwise we have to generate explicit probes. If we have a constant 1628 small number of them to generate, that's the easy case. */ 1629 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL) 1630 { 1631 HOST_WIDE_INT isize = INTVAL (size), i; 1632 rtx addr; 1633 1634 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until 1635 it exceeds SIZE. If only one probe is needed, this will not 1636 generate any code. Then probe at FIRST + SIZE. */ 1637 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL) 1638 { 1639 addr = memory_address (Pmode, 1640 plus_constant (Pmode, stack_pointer_rtx, 1641 STACK_GROW_OFF (first + i))); 1642 emit_stack_probe (addr); 1643 } 1644 1645 addr = memory_address (Pmode, 1646 plus_constant (Pmode, stack_pointer_rtx, 1647 STACK_GROW_OFF (first + isize))); 1648 emit_stack_probe (addr); 1649 } 1650 1651 /* In the variable case, do the same as above, but in a loop. Note that we 1652 must be extra careful with variables wrapping around because we might be 1653 at the very top (or the very bottom) of the address space and we have to 1654 be able to handle this case properly; in particular, we use an equality 1655 test for the loop condition. */ 1656 else 1657 { 1658 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp; 1659 rtx_code_label *loop_lab = gen_label_rtx (); 1660 rtx_code_label *end_lab = gen_label_rtx (); 1661 1662 /* Step 1: round SIZE to the previous multiple of the interval. */ 1663 1664 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */ 1665 rounded_size 1666 = simplify_gen_binary (AND, Pmode, size, 1667 gen_int_mode (-PROBE_INTERVAL, Pmode)); 1668 rounded_size_op = force_operand (rounded_size, NULL_RTX); 1669 1670 1671 /* Step 2: compute initial and final value of the loop counter. */ 1672 1673 /* TEST_ADDR = SP + FIRST. */ 1674 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1675 stack_pointer_rtx, 1676 gen_int_mode (first, Pmode)), 1677 NULL_RTX); 1678 1679 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */ 1680 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1681 test_addr, 1682 rounded_size_op), NULL_RTX); 1683 1684 1685 /* Step 3: the loop 1686 1687 while (TEST_ADDR != LAST_ADDR) 1688 { 1689 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL 1690 probe at TEST_ADDR 1691 } 1692 1693 probes at FIRST + N * PROBE_INTERVAL for values of N from 1 1694 until it is equal to ROUNDED_SIZE. */ 1695 1696 emit_label (loop_lab); 1697 1698 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */ 1699 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1, 1700 end_lab); 1701 1702 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */ 1703 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr, 1704 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr, 1705 1, OPTAB_WIDEN); 1706 1707 gcc_assert (temp == test_addr); 1708 1709 /* Probe at TEST_ADDR. */ 1710 emit_stack_probe (test_addr); 1711 1712 emit_jump (loop_lab); 1713 1714 emit_label (end_lab); 1715 1716 1717 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time 1718 that SIZE is equal to ROUNDED_SIZE. */ 1719 1720 /* TEMP = SIZE - ROUNDED_SIZE. */ 1721 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size); 1722 if (temp != const0_rtx) 1723 { 1724 rtx addr; 1725 1726 if (CONST_INT_P (temp)) 1727 { 1728 /* Use [base + disp} addressing mode if supported. */ 1729 HOST_WIDE_INT offset = INTVAL (temp); 1730 addr = memory_address (Pmode, 1731 plus_constant (Pmode, last_addr, 1732 STACK_GROW_OFF (offset))); 1733 } 1734 else 1735 { 1736 /* Manual CSE if the difference is not known at compile-time. */ 1737 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op); 1738 addr = memory_address (Pmode, 1739 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1740 last_addr, temp)); 1741 } 1742 1743 emit_stack_probe (addr); 1744 } 1745 } 1746 1747 /* Make sure nothing is scheduled before we are done. */ 1748 emit_insn (gen_blockage ()); 1749 } 1750 1751 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes) 1752 while probing it. This pushes when SIZE is positive. SIZE need not 1753 be constant. If ADJUST_BACK is true, adjust back the stack pointer 1754 by plus SIZE at the end. */ 1755 1756 void 1757 anti_adjust_stack_and_probe (rtx size, bool adjust_back) 1758 { 1759 /* We skip the probe for the first interval + a small dope of 4 words and 1760 probe that many bytes past the specified size to maintain a protection 1761 area at the botton of the stack. */ 1762 const int dope = 4 * UNITS_PER_WORD; 1763 1764 /* First ensure SIZE is Pmode. */ 1765 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode) 1766 size = convert_to_mode (Pmode, size, 1); 1767 1768 /* If we have a constant small number of probes to generate, that's the 1769 easy case. */ 1770 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL) 1771 { 1772 HOST_WIDE_INT isize = INTVAL (size), i; 1773 bool first_probe = true; 1774 1775 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for 1776 values of N from 1 until it exceeds SIZE. If only one probe is 1777 needed, this will not generate any code. Then adjust and probe 1778 to PROBE_INTERVAL + SIZE. */ 1779 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL) 1780 { 1781 if (first_probe) 1782 { 1783 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope)); 1784 first_probe = false; 1785 } 1786 else 1787 anti_adjust_stack (GEN_INT (PROBE_INTERVAL)); 1788 emit_stack_probe (stack_pointer_rtx); 1789 } 1790 1791 if (first_probe) 1792 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope)); 1793 else 1794 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i)); 1795 emit_stack_probe (stack_pointer_rtx); 1796 } 1797 1798 /* In the variable case, do the same as above, but in a loop. Note that we 1799 must be extra careful with variables wrapping around because we might be 1800 at the very top (or the very bottom) of the address space and we have to 1801 be able to handle this case properly; in particular, we use an equality 1802 test for the loop condition. */ 1803 else 1804 { 1805 rtx rounded_size, rounded_size_op, last_addr, temp; 1806 rtx_code_label *loop_lab = gen_label_rtx (); 1807 rtx_code_label *end_lab = gen_label_rtx (); 1808 1809 1810 /* Step 1: round SIZE to the previous multiple of the interval. */ 1811 1812 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */ 1813 rounded_size 1814 = simplify_gen_binary (AND, Pmode, size, 1815 gen_int_mode (-PROBE_INTERVAL, Pmode)); 1816 rounded_size_op = force_operand (rounded_size, NULL_RTX); 1817 1818 1819 /* Step 2: compute initial and final value of the loop counter. */ 1820 1821 /* SP = SP_0 + PROBE_INTERVAL. */ 1822 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope)); 1823 1824 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */ 1825 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode, 1826 stack_pointer_rtx, 1827 rounded_size_op), NULL_RTX); 1828 1829 1830 /* Step 3: the loop 1831 1832 while (SP != LAST_ADDR) 1833 { 1834 SP = SP + PROBE_INTERVAL 1835 probe at SP 1836 } 1837 1838 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for 1839 values of N from 1 until it is equal to ROUNDED_SIZE. */ 1840 1841 emit_label (loop_lab); 1842 1843 /* Jump to END_LAB if SP == LAST_ADDR. */ 1844 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX, 1845 Pmode, 1, end_lab); 1846 1847 /* SP = SP + PROBE_INTERVAL and probe at SP. */ 1848 anti_adjust_stack (GEN_INT (PROBE_INTERVAL)); 1849 emit_stack_probe (stack_pointer_rtx); 1850 1851 emit_jump (loop_lab); 1852 1853 emit_label (end_lab); 1854 1855 1856 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot 1857 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */ 1858 1859 /* TEMP = SIZE - ROUNDED_SIZE. */ 1860 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size); 1861 if (temp != const0_rtx) 1862 { 1863 /* Manual CSE if the difference is not known at compile-time. */ 1864 if (GET_CODE (temp) != CONST_INT) 1865 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op); 1866 anti_adjust_stack (temp); 1867 emit_stack_probe (stack_pointer_rtx); 1868 } 1869 } 1870 1871 /* Adjust back and account for the additional first interval. */ 1872 if (adjust_back) 1873 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope)); 1874 else 1875 adjust_stack (GEN_INT (PROBE_INTERVAL + dope)); 1876 } 1877 1878 /* Return an rtx representing the register or memory location 1879 in which a scalar value of data type VALTYPE 1880 was returned by a function call to function FUNC. 1881 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise 1882 function is known, otherwise 0. 1883 OUTGOING is 1 if on a machine with register windows this function 1884 should return the register in which the function will put its result 1885 and 0 otherwise. */ 1886 1887 rtx 1888 hard_function_value (const_tree valtype, const_tree func, const_tree fntype, 1889 int outgoing ATTRIBUTE_UNUSED) 1890 { 1891 rtx val; 1892 1893 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing); 1894 1895 if (REG_P (val) 1896 && GET_MODE (val) == BLKmode) 1897 { 1898 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype); 1899 machine_mode tmpmode; 1900 1901 /* int_size_in_bytes can return -1. We don't need a check here 1902 since the value of bytes will then be large enough that no 1903 mode will match anyway. */ 1904 1905 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT); 1906 tmpmode != VOIDmode; 1907 tmpmode = GET_MODE_WIDER_MODE (tmpmode)) 1908 { 1909 /* Have we found a large enough mode? */ 1910 if (GET_MODE_SIZE (tmpmode) >= bytes) 1911 break; 1912 } 1913 1914 /* No suitable mode found. */ 1915 gcc_assert (tmpmode != VOIDmode); 1916 1917 PUT_MODE (val, tmpmode); 1918 } 1919 return val; 1920 } 1921 1922 /* Return an rtx representing the register or memory location 1923 in which a scalar value of mode MODE was returned by a library call. */ 1924 1925 rtx 1926 hard_libcall_value (machine_mode mode, rtx fun) 1927 { 1928 return targetm.calls.libcall_value (mode, fun); 1929 } 1930 1931 /* Look up the tree code for a given rtx code 1932 to provide the arithmetic operation for real_arithmetic. 1933 The function returns an int because the caller may not know 1934 what `enum tree_code' means. */ 1935 1936 int 1937 rtx_to_tree_code (enum rtx_code code) 1938 { 1939 enum tree_code tcode; 1940 1941 switch (code) 1942 { 1943 case PLUS: 1944 tcode = PLUS_EXPR; 1945 break; 1946 case MINUS: 1947 tcode = MINUS_EXPR; 1948 break; 1949 case MULT: 1950 tcode = MULT_EXPR; 1951 break; 1952 case DIV: 1953 tcode = RDIV_EXPR; 1954 break; 1955 case SMIN: 1956 tcode = MIN_EXPR; 1957 break; 1958 case SMAX: 1959 tcode = MAX_EXPR; 1960 break; 1961 default: 1962 tcode = LAST_AND_UNUSED_TREE_CODE; 1963 break; 1964 } 1965 return ((int) tcode); 1966 } 1967 1968 #include "gt-explow.h" 1969