xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/explow.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2    Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "expmed.h"
31 #include "optabs.h"
32 #include "emit-rtl.h"
33 #include "recog.h"
34 #include "diagnostic-core.h"
35 #include "stor-layout.h"
36 #include "except.h"
37 #include "dojump.h"
38 #include "explow.h"
39 #include "expr.h"
40 #include "common/common-target.h"
41 #include "output.h"
42 
43 static rtx break_out_memory_refs (rtx);
44 
45 
46 /* Truncate and perhaps sign-extend C as appropriate for MODE.  */
47 
48 HOST_WIDE_INT
49 trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
50 {
51   int width = GET_MODE_PRECISION (mode);
52 
53   /* You want to truncate to a _what_?  */
54   gcc_assert (SCALAR_INT_MODE_P (mode)
55 	      || POINTER_BOUNDS_MODE_P (mode));
56 
57   /* Canonicalize BImode to 0 and STORE_FLAG_VALUE.  */
58   if (mode == BImode)
59     return c & 1 ? STORE_FLAG_VALUE : 0;
60 
61   /* Sign-extend for the requested mode.  */
62 
63   if (width < HOST_BITS_PER_WIDE_INT)
64     {
65       HOST_WIDE_INT sign = 1;
66       sign <<= width - 1;
67       c &= (sign << 1) - 1;
68       c ^= sign;
69       c -= sign;
70     }
71 
72   return c;
73 }
74 
75 /* Return an rtx for the sum of X and the integer C, given that X has
76    mode MODE.  INPLACE is true if X can be modified inplace or false
77    if it must be treated as immutable.  */
78 
79 rtx
80 plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
81 	       bool inplace)
82 {
83   RTX_CODE code;
84   rtx y;
85   rtx tem;
86   int all_constant = 0;
87 
88   gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
89 
90   if (c == 0)
91     return x;
92 
93  restart:
94 
95   code = GET_CODE (x);
96   y = x;
97 
98   switch (code)
99     {
100     CASE_CONST_SCALAR_INT:
101       return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
102     case MEM:
103       /* If this is a reference to the constant pool, try replacing it with
104 	 a reference to a new constant.  If the resulting address isn't
105 	 valid, don't return it because we have no way to validize it.  */
106       if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
107 	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
108 	{
109 	  rtx cst = get_pool_constant (XEXP (x, 0));
110 
111 	  if (GET_CODE (cst) == CONST_VECTOR
112 	      && GET_MODE_INNER (GET_MODE (cst)) == mode)
113 	    {
114 	      cst = gen_lowpart (mode, cst);
115 	      gcc_assert (cst);
116 	    }
117 	  if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
118 	    {
119 	      tem = plus_constant (mode, cst, c);
120 	      tem = force_const_mem (GET_MODE (x), tem);
121 	      /* Targets may disallow some constants in the constant pool, thus
122 		 force_const_mem may return NULL_RTX.  */
123 	      if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
124 		return tem;
125 	    }
126 	}
127       break;
128 
129     case CONST:
130       /* If adding to something entirely constant, set a flag
131 	 so that we can add a CONST around the result.  */
132       if (inplace && shared_const_p (x))
133 	inplace = false;
134       x = XEXP (x, 0);
135       all_constant = 1;
136       goto restart;
137 
138     case SYMBOL_REF:
139     case LABEL_REF:
140       all_constant = 1;
141       break;
142 
143     case PLUS:
144       /* The interesting case is adding the integer to a sum.  Look
145 	 for constant term in the sum and combine with C.  For an
146 	 integer constant term or a constant term that is not an
147 	 explicit integer, we combine or group them together anyway.
148 
149 	 We may not immediately return from the recursive call here, lest
150 	 all_constant gets lost.  */
151 
152       if (CONSTANT_P (XEXP (x, 1)))
153 	{
154 	  rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
155 	  if (term == const0_rtx)
156 	    x = XEXP (x, 0);
157 	  else if (inplace)
158 	    XEXP (x, 1) = term;
159 	  else
160 	    x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
161 	  c = 0;
162 	}
163       else if (rtx *const_loc = find_constant_term_loc (&y))
164 	{
165 	  if (!inplace)
166 	    {
167 	      /* We need to be careful since X may be shared and we can't
168 		 modify it in place.  */
169 	      x = copy_rtx (x);
170 	      const_loc = find_constant_term_loc (&x);
171 	    }
172 	  *const_loc = plus_constant (mode, *const_loc, c, true);
173 	  c = 0;
174 	}
175       break;
176 
177     default:
178       break;
179     }
180 
181   if (c != 0)
182     x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
183 
184   if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
185     return x;
186   else if (all_constant)
187     return gen_rtx_CONST (mode, x);
188   else
189     return x;
190 }
191 
192 /* If X is a sum, return a new sum like X but lacking any constant terms.
193    Add all the removed constant terms into *CONSTPTR.
194    X itself is not altered.  The result != X if and only if
195    it is not isomorphic to X.  */
196 
197 rtx
198 eliminate_constant_term (rtx x, rtx *constptr)
199 {
200   rtx x0, x1;
201   rtx tem;
202 
203   if (GET_CODE (x) != PLUS)
204     return x;
205 
206   /* First handle constants appearing at this level explicitly.  */
207   if (CONST_INT_P (XEXP (x, 1))
208       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
209 						XEXP (x, 1)))
210       && CONST_INT_P (tem))
211     {
212       *constptr = tem;
213       return eliminate_constant_term (XEXP (x, 0), constptr);
214     }
215 
216   tem = const0_rtx;
217   x0 = eliminate_constant_term (XEXP (x, 0), &tem);
218   x1 = eliminate_constant_term (XEXP (x, 1), &tem);
219   if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
220       && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
221 						*constptr, tem))
222       && CONST_INT_P (tem))
223     {
224       *constptr = tem;
225       return gen_rtx_PLUS (GET_MODE (x), x0, x1);
226     }
227 
228   return x;
229 }
230 
231 
232 /* Return a copy of X in which all memory references
233    and all constants that involve symbol refs
234    have been replaced with new temporary registers.
235    Also emit code to load the memory locations and constants
236    into those registers.
237 
238    If X contains no such constants or memory references,
239    X itself (not a copy) is returned.
240 
241    If a constant is found in the address that is not a legitimate constant
242    in an insn, it is left alone in the hope that it might be valid in the
243    address.
244 
245    X may contain no arithmetic except addition, subtraction and multiplication.
246    Values returned by expand_expr with 1 for sum_ok fit this constraint.  */
247 
248 static rtx
249 break_out_memory_refs (rtx x)
250 {
251   if (MEM_P (x)
252       || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
253 	  && GET_MODE (x) != VOIDmode))
254     x = force_reg (GET_MODE (x), x);
255   else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
256 	   || GET_CODE (x) == MULT)
257     {
258       rtx op0 = break_out_memory_refs (XEXP (x, 0));
259       rtx op1 = break_out_memory_refs (XEXP (x, 1));
260 
261       if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
262 	x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
263     }
264 
265   return x;
266 }
267 
268 /* Given X, a memory address in address space AS' pointer mode, convert it to
269    an address in the address space's address mode, or vice versa (TO_MODE says
270    which way).  We take advantage of the fact that pointers are not allowed to
271    overflow by commuting arithmetic operations over conversions so that address
272    arithmetic insns can be used. IN_CONST is true if this conversion is inside
273    a CONST. NO_EMIT is true if no insns should be emitted, and instead
274    it should return NULL if it can't be simplified without emitting insns.  */
275 
276 rtx
277 convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
278 				     rtx x, addr_space_t as ATTRIBUTE_UNUSED,
279 				     bool in_const ATTRIBUTE_UNUSED,
280 				     bool no_emit ATTRIBUTE_UNUSED)
281 {
282 #ifndef POINTERS_EXTEND_UNSIGNED
283   gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
284   return x;
285 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
286   machine_mode pointer_mode, address_mode, from_mode;
287   rtx temp;
288   enum rtx_code code;
289 
290   /* If X already has the right mode, just return it.  */
291   if (GET_MODE (x) == to_mode)
292     return x;
293 
294   pointer_mode = targetm.addr_space.pointer_mode (as);
295   address_mode = targetm.addr_space.address_mode (as);
296   from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
297 
298   /* Here we handle some special cases.  If none of them apply, fall through
299      to the default case.  */
300   switch (GET_CODE (x))
301     {
302     CASE_CONST_SCALAR_INT:
303       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
304 	code = TRUNCATE;
305       else if (POINTERS_EXTEND_UNSIGNED < 0)
306 	break;
307       else if (POINTERS_EXTEND_UNSIGNED > 0)
308 	code = ZERO_EXTEND;
309       else
310 	code = SIGN_EXTEND;
311       temp = simplify_unary_operation (code, to_mode, x, from_mode);
312       if (temp)
313 	return temp;
314       break;
315 
316     case SUBREG:
317       if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
318 	  && GET_MODE (SUBREG_REG (x)) == to_mode)
319 	return SUBREG_REG (x);
320       break;
321 
322     case LABEL_REF:
323       temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
324       LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
325       return temp;
326 
327     case SYMBOL_REF:
328       temp = shallow_copy_rtx (x);
329       PUT_MODE (temp, to_mode);
330       return temp;
331 
332     case CONST:
333       temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
334 						  true, no_emit);
335       return temp ? gen_rtx_CONST (to_mode, temp) : temp;
336 
337     case PLUS:
338     case MULT:
339       /* For addition we can safely permute the conversion and addition
340 	 operation if one operand is a constant and converting the constant
341 	 does not change it or if one operand is a constant and we are
342 	 using a ptr_extend instruction  (POINTERS_EXTEND_UNSIGNED < 0).
343 	 We can always safely permute them if we are making the address
344 	 narrower. Inside a CONST RTL, this is safe for both pointers
345 	 zero or sign extended as pointers cannot wrap. */
346       if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
347 	  || (GET_CODE (x) == PLUS
348 	      && CONST_INT_P (XEXP (x, 1))
349 	      && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
350 		  || XEXP (x, 1) == convert_memory_address_addr_space_1
351 				     (to_mode, XEXP (x, 1), as, in_const,
352 				      no_emit)
353                   || POINTERS_EXTEND_UNSIGNED < 0)))
354 	{
355 	  temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
356 						      as, in_const, no_emit);
357 	  return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
358 					 temp, XEXP (x, 1))
359 		       : temp);
360 	}
361       break;
362 
363     default:
364       break;
365     }
366 
367   if (no_emit)
368     return NULL_RTX;
369 
370   return convert_modes (to_mode, from_mode,
371 			x, POINTERS_EXTEND_UNSIGNED);
372 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
373 }
374 
375 /* Given X, a memory address in address space AS' pointer mode, convert it to
376    an address in the address space's address mode, or vice versa (TO_MODE says
377    which way).  We take advantage of the fact that pointers are not allowed to
378    overflow by commuting arithmetic operations over conversions so that address
379    arithmetic insns can be used.  */
380 
381 rtx
382 convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
383 {
384   return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
385 }
386 
387 
388 /* Return something equivalent to X but valid as a memory address for something
389    of mode MODE in the named address space AS.  When X is not itself valid,
390    this works by copying X or subexpressions of it into registers.  */
391 
392 rtx
393 memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
394 {
395   rtx oldx = x;
396   machine_mode address_mode = targetm.addr_space.address_mode (as);
397 
398   x = convert_memory_address_addr_space (address_mode, x, as);
399 
400   /* By passing constant addresses through registers
401      we get a chance to cse them.  */
402   if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
403     x = force_reg (address_mode, x);
404 
405   /* We get better cse by rejecting indirect addressing at this stage.
406      Let the combiner create indirect addresses where appropriate.
407      For now, generate the code so that the subexpressions useful to share
408      are visible.  But not if cse won't be done!  */
409   else
410     {
411       if (! cse_not_expected && !REG_P (x))
412 	x = break_out_memory_refs (x);
413 
414       /* At this point, any valid address is accepted.  */
415       if (memory_address_addr_space_p (mode, x, as))
416 	goto done;
417 
418       /* If it was valid before but breaking out memory refs invalidated it,
419 	 use it the old way.  */
420       if (memory_address_addr_space_p (mode, oldx, as))
421 	{
422 	  x = oldx;
423 	  goto done;
424 	}
425 
426       /* Perform machine-dependent transformations on X
427 	 in certain cases.  This is not necessary since the code
428 	 below can handle all possible cases, but machine-dependent
429 	 transformations can make better code.  */
430       {
431 	rtx orig_x = x;
432 	x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
433 	if (orig_x != x && memory_address_addr_space_p (mode, x, as))
434 	  goto done;
435       }
436 
437       /* PLUS and MULT can appear in special ways
438 	 as the result of attempts to make an address usable for indexing.
439 	 Usually they are dealt with by calling force_operand, below.
440 	 But a sum containing constant terms is special
441 	 if removing them makes the sum a valid address:
442 	 then we generate that address in a register
443 	 and index off of it.  We do this because it often makes
444 	 shorter code, and because the addresses thus generated
445 	 in registers often become common subexpressions.  */
446       if (GET_CODE (x) == PLUS)
447 	{
448 	  rtx constant_term = const0_rtx;
449 	  rtx y = eliminate_constant_term (x, &constant_term);
450 	  if (constant_term == const0_rtx
451 	      || ! memory_address_addr_space_p (mode, y, as))
452 	    x = force_operand (x, NULL_RTX);
453 	  else
454 	    {
455 	      y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
456 	      if (! memory_address_addr_space_p (mode, y, as))
457 		x = force_operand (x, NULL_RTX);
458 	      else
459 		x = y;
460 	    }
461 	}
462 
463       else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
464 	x = force_operand (x, NULL_RTX);
465 
466       /* If we have a register that's an invalid address,
467 	 it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
468       else if (REG_P (x))
469 	x = copy_to_reg (x);
470 
471       /* Last resort: copy the value to a register, since
472 	 the register is a valid address.  */
473       else
474 	x = force_reg (address_mode, x);
475     }
476 
477  done:
478 
479   gcc_assert (memory_address_addr_space_p (mode, x, as));
480   /* If we didn't change the address, we are done.  Otherwise, mark
481      a reg as a pointer if we have REG or REG + CONST_INT.  */
482   if (oldx == x)
483     return x;
484   else if (REG_P (x))
485     mark_reg_pointer (x, BITS_PER_UNIT);
486   else if (GET_CODE (x) == PLUS
487 	   && REG_P (XEXP (x, 0))
488 	   && CONST_INT_P (XEXP (x, 1)))
489     mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
490 
491   /* OLDX may have been the address on a temporary.  Update the address
492      to indicate that X is now used.  */
493   update_temp_slot_address (oldx, x);
494 
495   return x;
496 }
497 
498 /* Convert a mem ref into one with a valid memory address.
499    Pass through anything else unchanged.  */
500 
501 rtx
502 validize_mem (rtx ref)
503 {
504   if (!MEM_P (ref))
505     return ref;
506   ref = use_anchored_address (ref);
507   if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
508 				   MEM_ADDR_SPACE (ref)))
509     return ref;
510 
511   /* Don't alter REF itself, since that is probably a stack slot.  */
512   return replace_equiv_address (ref, XEXP (ref, 0));
513 }
514 
515 /* If X is a memory reference to a member of an object block, try rewriting
516    it to use an anchor instead.  Return the new memory reference on success
517    and the old one on failure.  */
518 
519 rtx
520 use_anchored_address (rtx x)
521 {
522   rtx base;
523   HOST_WIDE_INT offset;
524   machine_mode mode;
525 
526   if (!flag_section_anchors)
527     return x;
528 
529   if (!MEM_P (x))
530     return x;
531 
532   /* Split the address into a base and offset.  */
533   base = XEXP (x, 0);
534   offset = 0;
535   if (GET_CODE (base) == CONST
536       && GET_CODE (XEXP (base, 0)) == PLUS
537       && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
538     {
539       offset += INTVAL (XEXP (XEXP (base, 0), 1));
540       base = XEXP (XEXP (base, 0), 0);
541     }
542 
543   /* Check whether BASE is suitable for anchors.  */
544   if (GET_CODE (base) != SYMBOL_REF
545       || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
546       || SYMBOL_REF_ANCHOR_P (base)
547       || SYMBOL_REF_BLOCK (base) == NULL
548       || !targetm.use_anchors_for_symbol_p (base))
549     return x;
550 
551   /* Decide where BASE is going to be.  */
552   place_block_symbol (base);
553 
554   /* Get the anchor we need to use.  */
555   offset += SYMBOL_REF_BLOCK_OFFSET (base);
556   base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
557 			     SYMBOL_REF_TLS_MODEL (base));
558 
559   /* Work out the offset from the anchor.  */
560   offset -= SYMBOL_REF_BLOCK_OFFSET (base);
561 
562   /* If we're going to run a CSE pass, force the anchor into a register.
563      We will then be able to reuse registers for several accesses, if the
564      target costs say that that's worthwhile.  */
565   mode = GET_MODE (base);
566   if (!cse_not_expected)
567     base = force_reg (mode, base);
568 
569   return replace_equiv_address (x, plus_constant (mode, base, offset));
570 }
571 
572 /* Copy the value or contents of X to a new temp reg and return that reg.  */
573 
574 rtx
575 copy_to_reg (rtx x)
576 {
577   rtx temp = gen_reg_rtx (GET_MODE (x));
578 
579   /* If not an operand, must be an address with PLUS and MULT so
580      do the computation.  */
581   if (! general_operand (x, VOIDmode))
582     x = force_operand (x, temp);
583 
584   if (x != temp)
585     emit_move_insn (temp, x);
586 
587   return temp;
588 }
589 
590 /* Like copy_to_reg but always give the new register mode Pmode
591    in case X is a constant.  */
592 
593 rtx
594 copy_addr_to_reg (rtx x)
595 {
596   return copy_to_mode_reg (Pmode, x);
597 }
598 
599 /* Like copy_to_reg but always give the new register mode MODE
600    in case X is a constant.  */
601 
602 rtx
603 copy_to_mode_reg (machine_mode mode, rtx x)
604 {
605   rtx temp = gen_reg_rtx (mode);
606 
607   /* If not an operand, must be an address with PLUS and MULT so
608      do the computation.  */
609   if (! general_operand (x, VOIDmode))
610     x = force_operand (x, temp);
611 
612   gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
613   if (x != temp)
614     emit_move_insn (temp, x);
615   return temp;
616 }
617 
618 /* Load X into a register if it is not already one.
619    Use mode MODE for the register.
620    X should be valid for mode MODE, but it may be a constant which
621    is valid for all integer modes; that's why caller must specify MODE.
622 
623    The caller must not alter the value in the register we return,
624    since we mark it as a "constant" register.  */
625 
626 rtx
627 force_reg (machine_mode mode, rtx x)
628 {
629   rtx temp, set;
630   rtx_insn *insn;
631 
632   if (REG_P (x))
633     return x;
634 
635   if (general_operand (x, mode))
636     {
637       temp = gen_reg_rtx (mode);
638       insn = emit_move_insn (temp, x);
639     }
640   else
641     {
642       temp = force_operand (x, NULL_RTX);
643       if (REG_P (temp))
644 	insn = get_last_insn ();
645       else
646 	{
647 	  rtx temp2 = gen_reg_rtx (mode);
648 	  insn = emit_move_insn (temp2, temp);
649 	  temp = temp2;
650 	}
651     }
652 
653   /* Let optimizers know that TEMP's value never changes
654      and that X can be substituted for it.  Don't get confused
655      if INSN set something else (such as a SUBREG of TEMP).  */
656   if (CONSTANT_P (x)
657       && (set = single_set (insn)) != 0
658       && SET_DEST (set) == temp
659       && ! rtx_equal_p (x, SET_SRC (set)))
660     set_unique_reg_note (insn, REG_EQUAL, x);
661 
662   /* Let optimizers know that TEMP is a pointer, and if so, the
663      known alignment of that pointer.  */
664   {
665     unsigned align = 0;
666     if (GET_CODE (x) == SYMBOL_REF)
667       {
668         align = BITS_PER_UNIT;
669 	if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
670 	  align = DECL_ALIGN (SYMBOL_REF_DECL (x));
671       }
672     else if (GET_CODE (x) == LABEL_REF)
673       align = BITS_PER_UNIT;
674     else if (GET_CODE (x) == CONST
675 	     && GET_CODE (XEXP (x, 0)) == PLUS
676 	     && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
677 	     && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
678       {
679 	rtx s = XEXP (XEXP (x, 0), 0);
680 	rtx c = XEXP (XEXP (x, 0), 1);
681 	unsigned sa, ca;
682 
683 	sa = BITS_PER_UNIT;
684 	if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
685 	  sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
686 
687 	if (INTVAL (c) == 0)
688 	  align = sa;
689 	else
690 	  {
691 	    ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
692 	    align = MIN (sa, ca);
693 	  }
694       }
695 
696     if (align || (MEM_P (x) && MEM_POINTER (x)))
697       mark_reg_pointer (temp, align);
698   }
699 
700   return temp;
701 }
702 
703 /* If X is a memory ref, copy its contents to a new temp reg and return
704    that reg.  Otherwise, return X.  */
705 
706 rtx
707 force_not_mem (rtx x)
708 {
709   rtx temp;
710 
711   if (!MEM_P (x) || GET_MODE (x) == BLKmode)
712     return x;
713 
714   temp = gen_reg_rtx (GET_MODE (x));
715 
716   if (MEM_POINTER (x))
717     REG_POINTER (temp) = 1;
718 
719   emit_move_insn (temp, x);
720   return temp;
721 }
722 
723 /* Copy X to TARGET (if it's nonzero and a reg)
724    or to a new temp reg and return that reg.
725    MODE is the mode to use for X in case it is a constant.  */
726 
727 rtx
728 copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
729 {
730   rtx temp;
731 
732   if (target && REG_P (target))
733     temp = target;
734   else
735     temp = gen_reg_rtx (mode);
736 
737   emit_move_insn (temp, x);
738   return temp;
739 }
740 
741 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
742    PUNSIGNEDP points to the signedness of the type and may be adjusted
743    to show what signedness to use on extension operations.
744 
745    FOR_RETURN is nonzero if the caller is promoting the return value
746    of FNDECL, else it is for promoting args.  */
747 
748 machine_mode
749 promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
750 		       const_tree funtype, int for_return)
751 {
752   /* Called without a type node for a libcall.  */
753   if (type == NULL_TREE)
754     {
755       if (INTEGRAL_MODE_P (mode))
756 	return targetm.calls.promote_function_mode (NULL_TREE, mode,
757 						    punsignedp, funtype,
758 						    for_return);
759       else
760 	return mode;
761     }
762 
763   switch (TREE_CODE (type))
764     {
765     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
766     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
767     case POINTER_TYPE:   case REFERENCE_TYPE:
768       return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
769 						  for_return);
770 
771     default:
772       return mode;
773     }
774 }
775 /* Return the mode to use to store a scalar of TYPE and MODE.
776    PUNSIGNEDP points to the signedness of the type and may be adjusted
777    to show what signedness to use on extension operations.  */
778 
779 machine_mode
780 promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
781 	      int *punsignedp ATTRIBUTE_UNUSED)
782 {
783 #ifdef PROMOTE_MODE
784   enum tree_code code;
785   int unsignedp;
786 #endif
787 
788   /* For libcalls this is invoked without TYPE from the backends
789      TARGET_PROMOTE_FUNCTION_MODE hooks.  Don't do anything in that
790      case.  */
791   if (type == NULL_TREE)
792     return mode;
793 
794   /* FIXME: this is the same logic that was there until GCC 4.4, but we
795      probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
796      is not defined.  The affected targets are M32C, S390, SPARC.  */
797 #ifdef PROMOTE_MODE
798   code = TREE_CODE (type);
799   unsignedp = *punsignedp;
800 
801   switch (code)
802     {
803     case INTEGER_TYPE:   case ENUMERAL_TYPE:   case BOOLEAN_TYPE:
804     case REAL_TYPE:      case OFFSET_TYPE:     case FIXED_POINT_TYPE:
805       PROMOTE_MODE (mode, unsignedp, type);
806       *punsignedp = unsignedp;
807       return mode;
808 
809 #ifdef POINTERS_EXTEND_UNSIGNED
810     case REFERENCE_TYPE:
811     case POINTER_TYPE:
812       *punsignedp = POINTERS_EXTEND_UNSIGNED;
813       return targetm.addr_space.address_mode
814 	       (TYPE_ADDR_SPACE (TREE_TYPE (type)));
815 #endif
816 
817     default:
818       return mode;
819     }
820 #else
821   return mode;
822 #endif
823 }
824 
825 
826 /* Use one of promote_mode or promote_function_mode to find the promoted
827    mode of DECL.  If PUNSIGNEDP is not NULL, store there the unsignedness
828    of DECL after promotion.  */
829 
830 machine_mode
831 promote_decl_mode (const_tree decl, int *punsignedp)
832 {
833   tree type = TREE_TYPE (decl);
834   int unsignedp = TYPE_UNSIGNED (type);
835   machine_mode mode = DECL_MODE (decl);
836   machine_mode pmode;
837 
838   if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
839     pmode = promote_function_mode (type, mode, &unsignedp,
840                                    TREE_TYPE (current_function_decl), 1);
841   else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
842     pmode = promote_function_mode (type, mode, &unsignedp,
843                                    TREE_TYPE (current_function_decl), 2);
844   else
845     pmode = promote_mode (type, mode, &unsignedp);
846 
847   if (punsignedp)
848     *punsignedp = unsignedp;
849   return pmode;
850 }
851 
852 /* Return the promoted mode for name.  If it is a named SSA_NAME, it
853    is the same as promote_decl_mode.  Otherwise, it is the promoted
854    mode of a temp decl of same type as the SSA_NAME, if we had created
855    one.  */
856 
857 machine_mode
858 promote_ssa_mode (const_tree name, int *punsignedp)
859 {
860   gcc_assert (TREE_CODE (name) == SSA_NAME);
861 
862   /* Partitions holding parms and results must be promoted as expected
863      by function.c.  */
864   if (SSA_NAME_VAR (name)
865       && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
866 	  || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
867     {
868       machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
869       if (mode != BLKmode)
870 	return mode;
871     }
872 
873   tree type = TREE_TYPE (name);
874   int unsignedp = TYPE_UNSIGNED (type);
875   machine_mode pmode = promote_mode (type, TYPE_MODE (type), &unsignedp);
876   if (punsignedp)
877     *punsignedp = unsignedp;
878 
879   return pmode;
880 }
881 
882 
883 
884 /* Controls the behavior of {anti_,}adjust_stack.  */
885 static bool suppress_reg_args_size;
886 
887 /* A helper for adjust_stack and anti_adjust_stack.  */
888 
889 static void
890 adjust_stack_1 (rtx adjust, bool anti_p)
891 {
892   rtx temp;
893   rtx_insn *insn;
894 
895   /* Hereafter anti_p means subtract_p.  */
896   if (!STACK_GROWS_DOWNWARD)
897     anti_p = !anti_p;
898 
899   temp = expand_binop (Pmode,
900 		       anti_p ? sub_optab : add_optab,
901 		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
902 		       OPTAB_LIB_WIDEN);
903 
904   if (temp != stack_pointer_rtx)
905     insn = emit_move_insn (stack_pointer_rtx, temp);
906   else
907     {
908       insn = get_last_insn ();
909       temp = single_set (insn);
910       gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
911     }
912 
913   if (!suppress_reg_args_size)
914     add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
915 }
916 
917 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
918    This pops when ADJUST is positive.  ADJUST need not be constant.  */
919 
920 void
921 adjust_stack (rtx adjust)
922 {
923   if (adjust == const0_rtx)
924     return;
925 
926   /* We expect all variable sized adjustments to be multiple of
927      PREFERRED_STACK_BOUNDARY.  */
928   if (CONST_INT_P (adjust))
929     stack_pointer_delta -= INTVAL (adjust);
930 
931   adjust_stack_1 (adjust, false);
932 }
933 
934 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
935    This pushes when ADJUST is positive.  ADJUST need not be constant.  */
936 
937 void
938 anti_adjust_stack (rtx adjust)
939 {
940   if (adjust == const0_rtx)
941     return;
942 
943   /* We expect all variable sized adjustments to be multiple of
944      PREFERRED_STACK_BOUNDARY.  */
945   if (CONST_INT_P (adjust))
946     stack_pointer_delta += INTVAL (adjust);
947 
948   adjust_stack_1 (adjust, true);
949 }
950 
951 /* Round the size of a block to be pushed up to the boundary required
952    by this machine.  SIZE is the desired size, which need not be constant.  */
953 
954 static rtx
955 round_push (rtx size)
956 {
957   rtx align_rtx, alignm1_rtx;
958 
959   if (!SUPPORTS_STACK_ALIGNMENT
960       || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
961     {
962       int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
963 
964       if (align == 1)
965 	return size;
966 
967       if (CONST_INT_P (size))
968 	{
969 	  HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
970 
971 	  if (INTVAL (size) != new_size)
972 	    size = GEN_INT (new_size);
973 	  return size;
974 	}
975 
976       align_rtx = GEN_INT (align);
977       alignm1_rtx = GEN_INT (align - 1);
978     }
979   else
980     {
981       /* If crtl->preferred_stack_boundary might still grow, use
982 	 virtual_preferred_stack_boundary_rtx instead.  This will be
983 	 substituted by the right value in vregs pass and optimized
984 	 during combine.  */
985       align_rtx = virtual_preferred_stack_boundary_rtx;
986       alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
987 				   NULL_RTX);
988     }
989 
990   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
991      but we know it can't.  So add ourselves and then do
992      TRUNC_DIV_EXPR.  */
993   size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
994 		       NULL_RTX, 1, OPTAB_LIB_WIDEN);
995   size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
996 			NULL_RTX, 1);
997   size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
998 
999   return size;
1000 }
1001 
1002 /* Save the stack pointer for the purpose in SAVE_LEVEL.  PSAVE is a pointer
1003    to a previously-created save area.  If no save area has been allocated,
1004    this function will allocate one.  If a save area is specified, it
1005    must be of the proper mode.  */
1006 
1007 void
1008 emit_stack_save (enum save_level save_level, rtx *psave)
1009 {
1010   rtx sa = *psave;
1011   /* The default is that we use a move insn and save in a Pmode object.  */
1012   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1013   machine_mode mode = STACK_SAVEAREA_MODE (save_level);
1014 
1015   /* See if this machine has anything special to do for this kind of save.  */
1016   switch (save_level)
1017     {
1018     case SAVE_BLOCK:
1019       if (targetm.have_save_stack_block ())
1020 	fcn = targetm.gen_save_stack_block;
1021       break;
1022     case SAVE_FUNCTION:
1023       if (targetm.have_save_stack_function ())
1024 	fcn = targetm.gen_save_stack_function;
1025       break;
1026     case SAVE_NONLOCAL:
1027       if (targetm.have_save_stack_nonlocal ())
1028 	fcn = targetm.gen_save_stack_nonlocal;
1029       break;
1030     default:
1031       break;
1032     }
1033 
1034   /* If there is no save area and we have to allocate one, do so.  Otherwise
1035      verify the save area is the proper mode.  */
1036 
1037   if (sa == 0)
1038     {
1039       if (mode != VOIDmode)
1040 	{
1041 	  if (save_level == SAVE_NONLOCAL)
1042 	    *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1043 	  else
1044 	    *psave = sa = gen_reg_rtx (mode);
1045 	}
1046     }
1047 
1048   do_pending_stack_adjust ();
1049   if (sa != 0)
1050     sa = validize_mem (sa);
1051   emit_insn (fcn (sa, stack_pointer_rtx));
1052 }
1053 
1054 /* Restore the stack pointer for the purpose in SAVE_LEVEL.  SA is the save
1055    area made by emit_stack_save.  If it is zero, we have nothing to do.  */
1056 
1057 void
1058 emit_stack_restore (enum save_level save_level, rtx sa)
1059 {
1060   /* The default is that we use a move insn.  */
1061   rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
1062 
1063   /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1064      STACK_POINTER and HARD_FRAME_POINTER.
1065      If stack_realign_fp, the x86 backend emits a prologue that aligns only
1066      STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1067      aligned variables, which is reflected in ix86_can_eliminate.
1068      We normally still have the realigned STACK_POINTER that we can use.
1069      But if there is a stack restore still present at reload, it can trigger
1070      mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1071      FRAME_POINTER into a hard reg.
1072      To prevent this situation, we force need_drap if we emit a stack
1073      restore.  */
1074   if (SUPPORTS_STACK_ALIGNMENT)
1075     crtl->need_drap = true;
1076 
1077   /* See if this machine has anything special to do for this kind of save.  */
1078   switch (save_level)
1079     {
1080     case SAVE_BLOCK:
1081       if (targetm.have_restore_stack_block ())
1082 	fcn = targetm.gen_restore_stack_block;
1083       break;
1084     case SAVE_FUNCTION:
1085       if (targetm.have_restore_stack_function ())
1086 	fcn = targetm.gen_restore_stack_function;
1087       break;
1088     case SAVE_NONLOCAL:
1089       if (targetm.have_restore_stack_nonlocal ())
1090 	fcn = targetm.gen_restore_stack_nonlocal;
1091       break;
1092     default:
1093       break;
1094     }
1095 
1096   if (sa != 0)
1097     {
1098       sa = validize_mem (sa);
1099       /* These clobbers prevent the scheduler from moving
1100 	 references to variable arrays below the code
1101 	 that deletes (pops) the arrays.  */
1102       emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1103       emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1104     }
1105 
1106   discard_pending_stack_adjust ();
1107 
1108   emit_insn (fcn (stack_pointer_rtx, sa));
1109 }
1110 
1111 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1112    function.  This should be called whenever we allocate or deallocate
1113    dynamic stack space.  */
1114 
1115 void
1116 update_nonlocal_goto_save_area (void)
1117 {
1118   tree t_save;
1119   rtx r_save;
1120 
1121   /* The nonlocal_goto_save_area object is an array of N pointers.  The
1122      first one is used for the frame pointer save; the rest are sized by
1123      STACK_SAVEAREA_MODE.  Create a reference to array index 1, the first
1124      of the stack save area slots.  */
1125   t_save = build4 (ARRAY_REF,
1126 		   TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1127 		   cfun->nonlocal_goto_save_area,
1128 		   integer_one_node, NULL_TREE, NULL_TREE);
1129   r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1130 
1131   emit_stack_save (SAVE_NONLOCAL, &r_save);
1132 }
1133 
1134 /* Record a new stack level for the current function.  This should be called
1135    whenever we allocate or deallocate dynamic stack space.  */
1136 
1137 void
1138 record_new_stack_level (void)
1139 {
1140   /* Record the new stack level for nonlocal gotos.  */
1141   if (cfun->nonlocal_goto_save_area)
1142     update_nonlocal_goto_save_area ();
1143 
1144   /* Record the new stack level for SJLJ exceptions.  */
1145   if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1146     update_sjlj_context ();
1147 }
1148 
1149 /* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET.  */
1150 static rtx
1151 align_dynamic_address (rtx target, unsigned required_align)
1152 {
1153   /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1154      but we know it can't.  So add ourselves and then do
1155      TRUNC_DIV_EXPR.  */
1156   target = expand_binop (Pmode, add_optab, target,
1157 			 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1158 				       Pmode),
1159 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1160   target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1161 			  gen_int_mode (required_align / BITS_PER_UNIT,
1162 					Pmode),
1163 			  NULL_RTX, 1);
1164   target = expand_mult (Pmode, target,
1165 			gen_int_mode (required_align / BITS_PER_UNIT,
1166 				      Pmode),
1167 			NULL_RTX, 1);
1168 
1169   return target;
1170 }
1171 
1172 /* Return an rtx through *PSIZE, representing the size of an area of memory to
1173    be dynamically pushed on the stack.
1174 
1175    *PSIZE is an rtx representing the size of the area.
1176 
1177    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1178    parameter may be zero.  If so, a proper value will be extracted
1179    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1180 
1181    REQUIRED_ALIGN is the alignment (in bits) required for the region
1182    of memory.
1183 
1184    If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1185    the additional size returned.  */
1186 void
1187 get_dynamic_stack_size (rtx *psize, unsigned size_align,
1188 			unsigned required_align,
1189 			HOST_WIDE_INT *pstack_usage_size)
1190 {
1191   unsigned extra = 0;
1192   rtx size = *psize;
1193 
1194   /* Ensure the size is in the proper mode.  */
1195   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1196     size = convert_to_mode (Pmode, size, 1);
1197 
1198   if (CONST_INT_P (size))
1199     {
1200       unsigned HOST_WIDE_INT lsb;
1201 
1202       lsb = INTVAL (size);
1203       lsb &= -lsb;
1204 
1205       /* Watch out for overflow truncating to "unsigned".  */
1206       if (lsb > UINT_MAX / BITS_PER_UNIT)
1207 	size_align = 1u << (HOST_BITS_PER_INT - 1);
1208       else
1209 	size_align = (unsigned)lsb * BITS_PER_UNIT;
1210     }
1211   else if (size_align < BITS_PER_UNIT)
1212     size_align = BITS_PER_UNIT;
1213 
1214   /* We can't attempt to minimize alignment necessary, because we don't
1215      know the final value of preferred_stack_boundary yet while executing
1216      this code.  */
1217   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1218     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1219 
1220   /* We will need to ensure that the address we return is aligned to
1221      REQUIRED_ALIGN.  At this point in the compilation, we don't always
1222      know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1223      (it might depend on the size of the outgoing parameter lists, for
1224      example), so we must preventively align the value.  We leave space
1225      in SIZE for the hole that might result from the alignment operation.  */
1226 
1227   extra = (required_align - BITS_PER_UNIT) / BITS_PER_UNIT;
1228   size = plus_constant (Pmode, size, extra);
1229   size = force_operand (size, NULL_RTX);
1230 
1231   if (flag_stack_usage_info && pstack_usage_size)
1232     *pstack_usage_size += extra;
1233 
1234   if (extra && size_align > BITS_PER_UNIT)
1235     size_align = BITS_PER_UNIT;
1236 
1237   /* Round the size to a multiple of the required stack alignment.
1238      Since the stack is presumed to be rounded before this allocation,
1239      this will maintain the required alignment.
1240 
1241      If the stack grows downward, we could save an insn by subtracting
1242      SIZE from the stack pointer and then aligning the stack pointer.
1243      The problem with this is that the stack pointer may be unaligned
1244      between the execution of the subtraction and alignment insns and
1245      some machines do not allow this.  Even on those that do, some
1246      signal handlers malfunction if a signal should occur between those
1247      insns.  Since this is an extremely rare event, we have no reliable
1248      way of knowing which systems have this problem.  So we avoid even
1249      momentarily mis-aligning the stack.  */
1250   if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1251     {
1252       size = round_push (size);
1253 
1254       if (flag_stack_usage_info && pstack_usage_size)
1255 	{
1256 	  int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1257 	  *pstack_usage_size =
1258 	    (*pstack_usage_size + align - 1) / align * align;
1259 	}
1260     }
1261 
1262   *psize = size;
1263 }
1264 
1265 /* Return an rtx representing the address of an area of memory dynamically
1266    pushed on the stack.
1267 
1268    Any required stack pointer alignment is preserved.
1269 
1270    SIZE is an rtx representing the size of the area.
1271 
1272    SIZE_ALIGN is the alignment (in bits) that we know SIZE has.  This
1273    parameter may be zero.  If so, a proper value will be extracted
1274    from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1275 
1276    REQUIRED_ALIGN is the alignment (in bits) required for the region
1277    of memory.
1278 
1279    If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1280    stack space allocated by the generated code cannot be added with itself
1281    in the course of the execution of the function.  It is always safe to
1282    pass FALSE here and the following criterion is sufficient in order to
1283    pass TRUE: every path in the CFG that starts at the allocation point and
1284    loops to it executes the associated deallocation code.  */
1285 
1286 rtx
1287 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1288 			      unsigned required_align, bool cannot_accumulate)
1289 {
1290   HOST_WIDE_INT stack_usage_size = -1;
1291   rtx_code_label *final_label;
1292   rtx final_target, target;
1293 
1294   /* If we're asking for zero bytes, it doesn't matter what we point
1295      to since we can't dereference it.  But return a reasonable
1296      address anyway.  */
1297   if (size == const0_rtx)
1298     return virtual_stack_dynamic_rtx;
1299 
1300   /* Otherwise, show we're calling alloca or equivalent.  */
1301   cfun->calls_alloca = 1;
1302 
1303   /* If stack usage info is requested, look into the size we are passed.
1304      We need to do so this early to avoid the obfuscation that may be
1305      introduced later by the various alignment operations.  */
1306   if (flag_stack_usage_info)
1307     {
1308       if (CONST_INT_P (size))
1309 	stack_usage_size = INTVAL (size);
1310       else if (REG_P (size))
1311         {
1312 	  /* Look into the last emitted insn and see if we can deduce
1313 	     something for the register.  */
1314 	  rtx_insn *insn;
1315 	  rtx set, note;
1316 	  insn = get_last_insn ();
1317 	  if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1318 	    {
1319 	      if (CONST_INT_P (SET_SRC (set)))
1320 		stack_usage_size = INTVAL (SET_SRC (set));
1321 	      else if ((note = find_reg_equal_equiv_note (insn))
1322 		       && CONST_INT_P (XEXP (note, 0)))
1323 		stack_usage_size = INTVAL (XEXP (note, 0));
1324 	    }
1325 	}
1326 
1327       /* If the size is not constant, we can't say anything.  */
1328       if (stack_usage_size == -1)
1329 	{
1330 	  current_function_has_unbounded_dynamic_stack_size = 1;
1331 	  stack_usage_size = 0;
1332 	}
1333     }
1334 
1335   get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1336 
1337   target = gen_reg_rtx (Pmode);
1338 
1339   /* The size is supposed to be fully adjusted at this point so record it
1340      if stack usage info is requested.  */
1341   if (flag_stack_usage_info)
1342     {
1343       current_function_dynamic_stack_size += stack_usage_size;
1344 
1345       /* ??? This is gross but the only safe stance in the absence
1346 	 of stack usage oriented flow analysis.  */
1347       if (!cannot_accumulate)
1348 	current_function_has_unbounded_dynamic_stack_size = 1;
1349     }
1350 
1351   do_pending_stack_adjust ();
1352 
1353   final_label = NULL;
1354   final_target = NULL_RTX;
1355 
1356   /* If we are splitting the stack, we need to ask the backend whether
1357      there is enough room on the current stack.  If there isn't, or if
1358      the backend doesn't know how to tell is, then we need to call a
1359      function to allocate memory in some other way.  This memory will
1360      be released when we release the current stack segment.  The
1361      effect is that stack allocation becomes less efficient, but at
1362      least it doesn't cause a stack overflow.  */
1363   if (flag_split_stack)
1364     {
1365       rtx_code_label *available_label;
1366       rtx ask, space, func;
1367 
1368       available_label = NULL;
1369 
1370       if (targetm.have_split_stack_space_check ())
1371 	{
1372 	  available_label = gen_label_rtx ();
1373 
1374 	  /* This instruction will branch to AVAILABLE_LABEL if there
1375 	     are SIZE bytes available on the stack.  */
1376 	  emit_insn (targetm.gen_split_stack_space_check
1377 		     (size, available_label));
1378 	}
1379 
1380       /* The __morestack_allocate_stack_space function will allocate
1381 	 memory using malloc.  If the alignment of the memory returned
1382 	 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1383 	 make sure we allocate enough space.  */
1384       if (MALLOC_ABI_ALIGNMENT >= required_align)
1385 	ask = size;
1386       else
1387 	ask = expand_binop (Pmode, add_optab, size,
1388 			    gen_int_mode (required_align / BITS_PER_UNIT - 1,
1389 					  Pmode),
1390 			    NULL_RTX, 1, OPTAB_LIB_WIDEN);
1391 
1392       func = init_one_libfunc ("__morestack_allocate_stack_space");
1393 
1394       space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1395 				       1, ask, Pmode);
1396 
1397       if (available_label == NULL_RTX)
1398 	return space;
1399 
1400       final_target = gen_reg_rtx (Pmode);
1401 
1402       emit_move_insn (final_target, space);
1403 
1404       final_label = gen_label_rtx ();
1405       emit_jump (final_label);
1406 
1407       emit_label (available_label);
1408     }
1409 
1410  /* We ought to be called always on the toplevel and stack ought to be aligned
1411     properly.  */
1412   gcc_assert (!(stack_pointer_delta
1413 		% (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1414 
1415   /* If needed, check that we have the required amount of stack.  Take into
1416      account what has already been checked.  */
1417   if (STACK_CHECK_MOVING_SP)
1418     ;
1419   else if (flag_stack_check == GENERIC_STACK_CHECK)
1420     probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1421 		       size);
1422   else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1423     probe_stack_range (STACK_CHECK_PROTECT, size);
1424 
1425   /* Don't let anti_adjust_stack emit notes.  */
1426   suppress_reg_args_size = true;
1427 
1428   /* Perform the required allocation from the stack.  Some systems do
1429      this differently than simply incrementing/decrementing from the
1430      stack pointer, such as acquiring the space by calling malloc().  */
1431   if (targetm.have_allocate_stack ())
1432     {
1433       struct expand_operand ops[2];
1434       /* We don't have to check against the predicate for operand 0 since
1435 	 TARGET is known to be a pseudo of the proper mode, which must
1436 	 be valid for the operand.  */
1437       create_fixed_operand (&ops[0], target);
1438       create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1439       expand_insn (targetm.code_for_allocate_stack, 2, ops);
1440     }
1441   else
1442     {
1443       int saved_stack_pointer_delta;
1444 
1445       if (!STACK_GROWS_DOWNWARD)
1446 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1447 
1448       /* Check stack bounds if necessary.  */
1449       if (crtl->limit_stack)
1450 	{
1451 	  rtx available;
1452 	  rtx_code_label *space_available = gen_label_rtx ();
1453 	  if (STACK_GROWS_DOWNWARD)
1454 	    available = expand_binop (Pmode, sub_optab,
1455 				      stack_pointer_rtx, stack_limit_rtx,
1456 				      NULL_RTX, 1, OPTAB_WIDEN);
1457 	  else
1458 	    available = expand_binop (Pmode, sub_optab,
1459 				      stack_limit_rtx, stack_pointer_rtx,
1460 				      NULL_RTX, 1, OPTAB_WIDEN);
1461 
1462 	  emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1463 				   space_available);
1464 	  if (targetm.have_trap ())
1465 	    emit_insn (targetm.gen_trap ());
1466 	  else
1467 	    error ("stack limits not supported on this target");
1468 	  emit_barrier ();
1469 	  emit_label (space_available);
1470 	}
1471 
1472       saved_stack_pointer_delta = stack_pointer_delta;
1473 
1474       if (flag_stack_check && STACK_CHECK_MOVING_SP)
1475 	anti_adjust_stack_and_probe (size, false);
1476       else
1477 	anti_adjust_stack (size);
1478 
1479       /* Even if size is constant, don't modify stack_pointer_delta.
1480 	 The constant size alloca should preserve
1481 	 crtl->preferred_stack_boundary alignment.  */
1482       stack_pointer_delta = saved_stack_pointer_delta;
1483 
1484       if (STACK_GROWS_DOWNWARD)
1485 	emit_move_insn (target, virtual_stack_dynamic_rtx);
1486     }
1487 
1488   suppress_reg_args_size = false;
1489 
1490   /* Finish up the split stack handling.  */
1491   if (final_label != NULL_RTX)
1492     {
1493       gcc_assert (flag_split_stack);
1494       emit_move_insn (final_target, target);
1495       emit_label (final_label);
1496       target = final_target;
1497     }
1498 
1499   target = align_dynamic_address (target, required_align);
1500 
1501   /* Now that we've committed to a return value, mark its alignment.  */
1502   mark_reg_pointer (target, required_align);
1503 
1504   /* Record the new stack level.  */
1505   record_new_stack_level ();
1506 
1507   return target;
1508 }
1509 
1510 /* Return an rtx representing the address of an area of memory already
1511    statically pushed onto the stack in the virtual stack vars area.  (It is
1512    assumed that the area is allocated in the function prologue.)
1513 
1514    Any required stack pointer alignment is preserved.
1515 
1516    OFFSET is the offset of the area into the virtual stack vars area.
1517 
1518    REQUIRED_ALIGN is the alignment (in bits) required for the region
1519    of memory.  */
1520 
1521 rtx
1522 get_dynamic_stack_base (HOST_WIDE_INT offset, unsigned required_align)
1523 {
1524   rtx target;
1525 
1526   if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1527     crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1528 
1529   target = gen_reg_rtx (Pmode);
1530   emit_move_insn (target, virtual_stack_vars_rtx);
1531   target = expand_binop (Pmode, add_optab, target,
1532 			 gen_int_mode (offset, Pmode),
1533 			 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1534   target = align_dynamic_address (target, required_align);
1535 
1536   /* Now that we've committed to a return value, mark its alignment.  */
1537   mark_reg_pointer (target, required_align);
1538 
1539   return target;
1540 }
1541 
1542 /* A front end may want to override GCC's stack checking by providing a
1543    run-time routine to call to check the stack, so provide a mechanism for
1544    calling that routine.  */
1545 
1546 static GTY(()) rtx stack_check_libfunc;
1547 
1548 void
1549 set_stack_check_libfunc (const char *libfunc_name)
1550 {
1551   gcc_assert (stack_check_libfunc == NULL_RTX);
1552   stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1553 }
1554 
1555 /* Emit one stack probe at ADDRESS, an address within the stack.  */
1556 
1557 void
1558 emit_stack_probe (rtx address)
1559 {
1560   if (targetm.have_probe_stack_address ())
1561     emit_insn (targetm.gen_probe_stack_address (address));
1562   else
1563     {
1564       rtx memref = gen_rtx_MEM (word_mode, address);
1565 
1566       MEM_VOLATILE_P (memref) = 1;
1567 
1568       /* See if we have an insn to probe the stack.  */
1569       if (targetm.have_probe_stack ())
1570         emit_insn (targetm.gen_probe_stack (memref));
1571       else
1572         emit_move_insn (memref, const0_rtx);
1573     }
1574 }
1575 
1576 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1577    FIRST is a constant and size is a Pmode RTX.  These are offsets from
1578    the current stack pointer.  STACK_GROWS_DOWNWARD says whether to add
1579    or subtract them from the stack pointer.  */
1580 
1581 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1582 
1583 #if STACK_GROWS_DOWNWARD
1584 #define STACK_GROW_OP MINUS
1585 #define STACK_GROW_OPTAB sub_optab
1586 #define STACK_GROW_OFF(off) -(off)
1587 #else
1588 #define STACK_GROW_OP PLUS
1589 #define STACK_GROW_OPTAB add_optab
1590 #define STACK_GROW_OFF(off) (off)
1591 #endif
1592 
1593 void
1594 probe_stack_range (HOST_WIDE_INT first, rtx size)
1595 {
1596   /* First ensure SIZE is Pmode.  */
1597   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1598     size = convert_to_mode (Pmode, size, 1);
1599 
1600   /* Next see if we have a function to check the stack.  */
1601   if (stack_check_libfunc)
1602     {
1603       rtx addr = memory_address (Pmode,
1604 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1605 					         stack_pointer_rtx,
1606 					         plus_constant (Pmode,
1607 								size, first)));
1608       emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode, 1, addr,
1609 			 Pmode);
1610     }
1611 
1612   /* Next see if we have an insn to check the stack.  */
1613   else if (targetm.have_check_stack ())
1614     {
1615       struct expand_operand ops[1];
1616       rtx addr = memory_address (Pmode,
1617 				 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1618 					         stack_pointer_rtx,
1619 					         plus_constant (Pmode,
1620 								size, first)));
1621       bool success;
1622       create_input_operand (&ops[0], addr, Pmode);
1623       success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
1624       gcc_assert (success);
1625     }
1626 
1627   /* Otherwise we have to generate explicit probes.  If we have a constant
1628      small number of them to generate, that's the easy case.  */
1629   else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1630     {
1631       HOST_WIDE_INT isize = INTVAL (size), i;
1632       rtx addr;
1633 
1634       /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1635 	 it exceeds SIZE.  If only one probe is needed, this will not
1636 	 generate any code.  Then probe at FIRST + SIZE.  */
1637       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1638 	{
1639 	  addr = memory_address (Pmode,
1640 				 plus_constant (Pmode, stack_pointer_rtx,
1641 				 		STACK_GROW_OFF (first + i)));
1642 	  emit_stack_probe (addr);
1643 	}
1644 
1645       addr = memory_address (Pmode,
1646 			     plus_constant (Pmode, stack_pointer_rtx,
1647 					    STACK_GROW_OFF (first + isize)));
1648       emit_stack_probe (addr);
1649     }
1650 
1651   /* In the variable case, do the same as above, but in a loop.  Note that we
1652      must be extra careful with variables wrapping around because we might be
1653      at the very top (or the very bottom) of the address space and we have to
1654      be able to handle this case properly; in particular, we use an equality
1655      test for the loop condition.  */
1656   else
1657     {
1658       rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1659       rtx_code_label *loop_lab = gen_label_rtx ();
1660       rtx_code_label *end_lab = gen_label_rtx ();
1661 
1662       /* Step 1: round SIZE to the previous multiple of the interval.  */
1663 
1664       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1665       rounded_size
1666 	= simplify_gen_binary (AND, Pmode, size,
1667 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1668       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1669 
1670 
1671       /* Step 2: compute initial and final value of the loop counter.  */
1672 
1673       /* TEST_ADDR = SP + FIRST.  */
1674       test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1675 					 	 stack_pointer_rtx,
1676 						 gen_int_mode (first, Pmode)),
1677 				 NULL_RTX);
1678 
1679       /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE.  */
1680       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1681 						 test_addr,
1682 						 rounded_size_op), NULL_RTX);
1683 
1684 
1685       /* Step 3: the loop
1686 
1687 	 while (TEST_ADDR != LAST_ADDR)
1688 	   {
1689 	     TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1690 	     probe at TEST_ADDR
1691 	   }
1692 
1693 	 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1694 	 until it is equal to ROUNDED_SIZE.  */
1695 
1696       emit_label (loop_lab);
1697 
1698       /* Jump to END_LAB if TEST_ADDR == LAST_ADDR.  */
1699       emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1700 			       end_lab);
1701 
1702       /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL.  */
1703       temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1704 			   gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
1705 			   1, OPTAB_WIDEN);
1706 
1707       gcc_assert (temp == test_addr);
1708 
1709       /* Probe at TEST_ADDR.  */
1710       emit_stack_probe (test_addr);
1711 
1712       emit_jump (loop_lab);
1713 
1714       emit_label (end_lab);
1715 
1716 
1717       /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1718 	 that SIZE is equal to ROUNDED_SIZE.  */
1719 
1720       /* TEMP = SIZE - ROUNDED_SIZE.  */
1721       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1722       if (temp != const0_rtx)
1723 	{
1724 	  rtx addr;
1725 
1726 	  if (CONST_INT_P (temp))
1727 	    {
1728 	      /* Use [base + disp} addressing mode if supported.  */
1729 	      HOST_WIDE_INT offset = INTVAL (temp);
1730 	      addr = memory_address (Pmode,
1731 				     plus_constant (Pmode, last_addr,
1732 						    STACK_GROW_OFF (offset)));
1733 	    }
1734 	  else
1735 	    {
1736 	      /* Manual CSE if the difference is not known at compile-time.  */
1737 	      temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1738 	      addr = memory_address (Pmode,
1739 				     gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1740 						     last_addr, temp));
1741 	    }
1742 
1743 	  emit_stack_probe (addr);
1744 	}
1745     }
1746 
1747   /* Make sure nothing is scheduled before we are done.  */
1748   emit_insn (gen_blockage ());
1749 }
1750 
1751 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1752    while probing it.  This pushes when SIZE is positive.  SIZE need not
1753    be constant.  If ADJUST_BACK is true, adjust back the stack pointer
1754    by plus SIZE at the end.  */
1755 
1756 void
1757 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1758 {
1759   /* We skip the probe for the first interval + a small dope of 4 words and
1760      probe that many bytes past the specified size to maintain a protection
1761      area at the botton of the stack.  */
1762   const int dope = 4 * UNITS_PER_WORD;
1763 
1764   /* First ensure SIZE is Pmode.  */
1765   if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1766     size = convert_to_mode (Pmode, size, 1);
1767 
1768   /* If we have a constant small number of probes to generate, that's the
1769      easy case.  */
1770   if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1771     {
1772       HOST_WIDE_INT isize = INTVAL (size), i;
1773       bool first_probe = true;
1774 
1775       /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1776 	 values of N from 1 until it exceeds SIZE.  If only one probe is
1777 	 needed, this will not generate any code.  Then adjust and probe
1778 	 to PROBE_INTERVAL + SIZE.  */
1779       for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1780 	{
1781 	  if (first_probe)
1782 	    {
1783 	      anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1784 	      first_probe = false;
1785 	    }
1786 	  else
1787 	    anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1788 	  emit_stack_probe (stack_pointer_rtx);
1789 	}
1790 
1791       if (first_probe)
1792 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1793       else
1794 	anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
1795       emit_stack_probe (stack_pointer_rtx);
1796     }
1797 
1798   /* In the variable case, do the same as above, but in a loop.  Note that we
1799      must be extra careful with variables wrapping around because we might be
1800      at the very top (or the very bottom) of the address space and we have to
1801      be able to handle this case properly; in particular, we use an equality
1802      test for the loop condition.  */
1803   else
1804     {
1805       rtx rounded_size, rounded_size_op, last_addr, temp;
1806       rtx_code_label *loop_lab = gen_label_rtx ();
1807       rtx_code_label *end_lab = gen_label_rtx ();
1808 
1809 
1810       /* Step 1: round SIZE to the previous multiple of the interval.  */
1811 
1812       /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL  */
1813       rounded_size
1814 	= simplify_gen_binary (AND, Pmode, size,
1815 			       gen_int_mode (-PROBE_INTERVAL, Pmode));
1816       rounded_size_op = force_operand (rounded_size, NULL_RTX);
1817 
1818 
1819       /* Step 2: compute initial and final value of the loop counter.  */
1820 
1821       /* SP = SP_0 + PROBE_INTERVAL.  */
1822       anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1823 
1824       /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE.  */
1825       last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1826 						 stack_pointer_rtx,
1827 						 rounded_size_op), NULL_RTX);
1828 
1829 
1830       /* Step 3: the loop
1831 
1832 	 while (SP != LAST_ADDR)
1833 	   {
1834 	     SP = SP + PROBE_INTERVAL
1835 	     probe at SP
1836 	   }
1837 
1838 	 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1839 	 values of N from 1 until it is equal to ROUNDED_SIZE.  */
1840 
1841       emit_label (loop_lab);
1842 
1843       /* Jump to END_LAB if SP == LAST_ADDR.  */
1844       emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1845 			       Pmode, 1, end_lab);
1846 
1847       /* SP = SP + PROBE_INTERVAL and probe at SP.  */
1848       anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1849       emit_stack_probe (stack_pointer_rtx);
1850 
1851       emit_jump (loop_lab);
1852 
1853       emit_label (end_lab);
1854 
1855 
1856       /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1857 	 assert at compile-time that SIZE is equal to ROUNDED_SIZE.  */
1858 
1859       /* TEMP = SIZE - ROUNDED_SIZE.  */
1860       temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1861       if (temp != const0_rtx)
1862 	{
1863 	  /* Manual CSE if the difference is not known at compile-time.  */
1864 	  if (GET_CODE (temp) != CONST_INT)
1865 	    temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1866 	  anti_adjust_stack (temp);
1867 	  emit_stack_probe (stack_pointer_rtx);
1868 	}
1869     }
1870 
1871   /* Adjust back and account for the additional first interval.  */
1872   if (adjust_back)
1873     adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
1874   else
1875     adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1876 }
1877 
1878 /* Return an rtx representing the register or memory location
1879    in which a scalar value of data type VALTYPE
1880    was returned by a function call to function FUNC.
1881    FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1882    function is known, otherwise 0.
1883    OUTGOING is 1 if on a machine with register windows this function
1884    should return the register in which the function will put its result
1885    and 0 otherwise.  */
1886 
1887 rtx
1888 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1889 		     int outgoing ATTRIBUTE_UNUSED)
1890 {
1891   rtx val;
1892 
1893   val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1894 
1895   if (REG_P (val)
1896       && GET_MODE (val) == BLKmode)
1897     {
1898       unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1899       machine_mode tmpmode;
1900 
1901       /* int_size_in_bytes can return -1.  We don't need a check here
1902 	 since the value of bytes will then be large enough that no
1903 	 mode will match anyway.  */
1904 
1905       for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1906 	   tmpmode != VOIDmode;
1907 	   tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1908 	{
1909 	  /* Have we found a large enough mode?  */
1910 	  if (GET_MODE_SIZE (tmpmode) >= bytes)
1911 	    break;
1912 	}
1913 
1914       /* No suitable mode found.  */
1915       gcc_assert (tmpmode != VOIDmode);
1916 
1917       PUT_MODE (val, tmpmode);
1918     }
1919   return val;
1920 }
1921 
1922 /* Return an rtx representing the register or memory location
1923    in which a scalar value of mode MODE was returned by a library call.  */
1924 
1925 rtx
1926 hard_libcall_value (machine_mode mode, rtx fun)
1927 {
1928   return targetm.calls.libcall_value (mode, fun);
1929 }
1930 
1931 /* Look up the tree code for a given rtx code
1932    to provide the arithmetic operation for real_arithmetic.
1933    The function returns an int because the caller may not know
1934    what `enum tree_code' means.  */
1935 
1936 int
1937 rtx_to_tree_code (enum rtx_code code)
1938 {
1939   enum tree_code tcode;
1940 
1941   switch (code)
1942     {
1943     case PLUS:
1944       tcode = PLUS_EXPR;
1945       break;
1946     case MINUS:
1947       tcode = MINUS_EXPR;
1948       break;
1949     case MULT:
1950       tcode = MULT_EXPR;
1951       break;
1952     case DIV:
1953       tcode = RDIV_EXPR;
1954       break;
1955     case SMIN:
1956       tcode = MIN_EXPR;
1957       break;
1958     case SMAX:
1959       tcode = MAX_EXPR;
1960       break;
1961     default:
1962       tcode = LAST_AND_UNUSED_TREE_CODE;
1963       break;
1964     }
1965   return ((int) tcode);
1966 }
1967 
1968 #include "gt-explow.h"
1969